std::ranges::count, std::ranges::count_if
Defined in header <algorithm>
|
||
Call signature |
||
(1) | ||
template< std::input_iterator I, std::sentinel_for<I> S, class T, class Proj = std::identity > |
(since C++20) (until C++26) |
|
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(since C++26) | |
(2) | ||
template< ranges::input_range R, class T, class Proj = std::identity > requires std::indirect_binary_predicate |
(since C++20) (until C++26) |
|
template< ranges::input_range R, class Proj = std::identity, class T = std::projected_value_t<ranges::iterator_t<R>, Proj> > |
(since C++26) | |
template< std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, |
(3) | (since C++20) |
template< ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< |
(4) | (since C++20) |
Returns the number of elements in the range [
first,
last)
satisfying specific criteria.
The function-like entities described on this page are niebloids, that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
In practice, they may be implemented as function objects, or with special compiler extensions.
Parameters
first, last | - | the range of elements to examine |
r | - | the range of the elements to examine |
value | - | the value to search for |
pred | - | predicate to apply to the projected elements |
proj | - | projection to apply to the elements |
Return value
Number of elements satisfying the condition.
Complexity
Exactly last - first comparisons and projection.
Notes
For the number of elements in the range without any additional criteria, see std::ranges::distance.
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_algorithm_default_value_type |
202403 | (C++26) | List-initialization for algorithms (1,2) |
Possible implementation
count (1) |
---|
struct count_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, class T = std::projected_value_t<I, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<I, Proj>, const T*> constexpr std::iter_difference_t<I> operator()(I first, S last, const T& value, Proj proj = {}) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) if (std::invoke(proj, *first) == value) ++counter; return counter; } template<ranges::input_range R, class Proj = std::identity class T = std::projected_value_t<ranges::iterator_t<R>, Proj>> requires std::indirect_binary_predicate<ranges::equal_to, std::projected<ranges::iterator_t<R>, Proj>, const T*> constexpr ranges::range_difference_t<R> operator()(R&& r, const T& value, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj)); } }; inline constexpr count_fn count; |
count_if (3) |
struct count_if_fn { template<std::input_iterator I, std::sentinel_for<I> S, class Proj = std::identity, std::indirect_unary_predicate<std::projected<I, Proj>> Pred> constexpr std::iter_difference_t<I> operator()(I first, S last, Pred pred, Proj proj = {}) const { std::iter_difference_t<I> counter = 0; for (; first != last; ++first) if (std::invoke(pred, std::invoke(proj, *first))) ++counter; return counter; } template<ranges::input_range R, class Proj = std::identity, std::indirect_unary_predicate< std::projected<ranges::iterator_t<R>, Proj>> Pred> constexpr ranges::range_difference_t<R> operator()(R&& r, Pred pred, Proj proj = {}) const { return (*this)(ranges::begin(r), ranges::end(r), std::ref(pred), std::ref(proj)); } }; inline constexpr count_if_fn count_if; |
Example
#include <algorithm> #include <cassert> #include <complex> #include <iostream> #include <vector> int main() { std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10}; namespace ranges = std::ranges; // determine how many integers in a std::vector match a target value. int target1 = 3; int target2 = 5; int num_items1 = ranges::count(v.begin(), v.end(), target1); int num_items2 = ranges::count(v, target2); std::cout << "number: " << target1 << " count: " << num_items1 << '\n'; std::cout << "number: " << target2 << " count: " << num_items2 << '\n'; // use a lambda expression to count elements divisible by 3. int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){ return i % 3 == 0; }); std::cout << "number divisible by three: " << num_items3 << '\n'; // use a lambda expression to count elements divisible by 11. int num_items11 = ranges::count_if(v, [](int i){ return i % 11 == 0; }); std::cout << "number divisible by eleven: " << num_items11 << '\n'; std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}}; #ifdef __cpp_lib_algorithm_default_value_type auto c = ranges::count(nums, {4, 2}); #else auto c = ranges::count(nums, std::complex<double>{4, 2}); #endif assert(c == 2); }
Output:
number: 3 count: 2 number: 5 count: 0 number divisible by three: 3 number divisible by eleven: 0
See also
(C++20) |
returns the distance between an iterator and a sentinel, or between the beginning and end of a range (niebloid) |
(C++20) |
creates a subrange from an iterator and a count (customization point object) |
a view that consists of the elements of a range that satisfies a predicate(class template) (range adaptor object) | |
returns the number of elements satisfying specific criteria (function template) |