std::ranges::count, std::ranges::count_if

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template< std::input_iterator I, std::sentinel_for<I> S,

          class T, class Proj = std::identity >
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr std::iter_difference_t<I>

    count( I first, S last, const T& value, Proj proj = {} );
(since C++20)
(until C++26)
template< std::input_iterator I, std::sentinel_for<I> S,

          class Proj = std::identity,
          class T = std::projected_value_t<I, Proj> >
requires std::indirect_binary_predicate
             <ranges::equal_to, std::projected<I, Proj>, const T*>
constexpr std::iter_difference_t<I>

    count( I first, S last, const T& value, Proj proj = {} );
(since C++26)
(2)
template< ranges::input_range R, class T, class Proj = std::identity >

requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexpr ranges::range_difference_t<R>

    count( R&& r, const T& value, Proj proj = {} );
(since C++20)
(until C++26)
template< ranges::input_range R, class Proj = std::identity,

          class T = std::projected_value_t<ranges::iterator_t<R>, Proj> >
requires std::indirect_binary_predicate
             <ranges::equal_to,
              std::projected<ranges::iterator_t<R>, Proj>, const T*>
constexpr ranges::range_difference_t<R>

    count( R&& r, const T& value, Proj proj = {} );
(since C++26)
template< std::input_iterator I, std::sentinel_for<I> S,

          class Proj = std::identity,
          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexpr std::iter_difference_t<I>

    count_if( I first, S last, Pred pred, Proj proj = {} );
(3) (since C++20)
template< ranges::input_range R, class Proj = std::identity,

          std::indirect_unary_predicate<
              std::projected<ranges::iterator_t<R>, Proj>> Pred >
constexpr ranges::range_difference_t<R>

    count_if( R&& r, Pred pred, Proj proj = {} );
(4) (since C++20)

Returns the number of elements in the range [firstlast) satisfying specific criteria.

1) Counts the elements that are equal to value.
3) Counts elements for which predicate p returns true.
2,4) Same as (1,3), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to examine
r - the range of the elements to examine
value - the value to search for
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

Number of elements satisfying the condition.

Complexity

Exactly last - first comparisons and projection.

Notes

For the number of elements in the range without any additional criteria, see std::ranges::distance.

Feature-test macro Value Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for algorithms (1,2)

Possible implementation

count (1)
struct count_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<I, Proj>, const T*>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, const T& value, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(proj, *first) == value)
                ++counter;
        return counter;
    }
 
    template<ranges::input_range R, class Proj = std::identity
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
    requires std::indirect_binary_predicate<ranges::equal_to,
                                            std::projected<ranges::iterator_t<R>, Proj>,
                                            const T*>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, const T& value, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value, std::ref(proj));
    }
};
 
inline constexpr count_fn count;
count_if (3)
struct count_if_fn
{
    template<std::input_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr std::iter_difference_t<I>
        operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        std::iter_difference_t<I> counter = 0;
        for (; first != last; ++first)
            if (std::invoke(pred, std::invoke(proj, *first)))
                ++counter;
        return counter;
    }
 
    template<ranges::input_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    constexpr ranges::range_difference_t<R>
        operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::ref(pred), std::ref(proj));
    }
};
 
inline constexpr count_if_fn count_if;

Example

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <vector>
 
int main()
{
    std::vector<int> v{1, 2, 3, 4, 4, 3, 7, 8, 9, 10};
 
    namespace ranges = std::ranges;
 
    // determine how many integers in a std::vector match a target value.
    int target1 = 3;
    int target2 = 5;
    int num_items1 = ranges::count(v.begin(), v.end(), target1);
    int num_items2 = ranges::count(v, target2);
    std::cout << "number: " << target1 << " count: " << num_items1 << '\n';
    std::cout << "number: " << target2 << " count: " << num_items2 << '\n';
 
    // use a lambda expression to count elements divisible by 3.
    int num_items3 = ranges::count_if(v.begin(), v.end(), [](int i){ return i % 3 == 0; });
    std::cout << "number divisible by three: " << num_items3 << '\n';
 
    // use a lambda expression to count elements divisible by 11.
    int num_items11 = ranges::count_if(v, [](int i){ return i % 11 == 0; });
    std::cout << "number divisible by eleven: " << num_items11 << '\n';
 
    std::vector<std::complex<double>> nums{{4, 2}, {1, 3}, {4, 2}};
    #ifdef __cpp_lib_algorithm_default_value_type
        auto c = ranges::count(nums, {4, 2});
    #else
        auto c = ranges::count(nums, std::complex<double>{4, 2});
    #endif
    assert(c == 2);
}

Output:

number: 3 count: 2
number: 5 count: 0
number divisible by three: 3
number divisible by eleven: 0

See also

returns the distance between an iterator and a sentinel, or between the beginning and end of a range
(niebloid)
creates a subrange from an iterator and a count
(customization point object)
a view that consists of the elements of a range that satisfies a predicate
(class template) (range adaptor object)
returns the number of elements satisfying specific criteria
(function template)