std::projected
Defined in header <iterator>
|
||
(1) | ||
template< std::indirectly_readable I, std::indirectly_regular_unary_invocable<I> Proj > |
(since C++20) (until C++26) |
|
template< std::indirectly_readable I, std::indirectly_regular_unary_invocable<I> Proj > |
(since C++26) | |
template< std::weakly_incrementable I, class Proj > struct incrementable_traits<std::projected<I, Proj>> |
(2) | (since C++20) (until C++26) |
template< class I, class Proj > struct /*projected-impl*/ |
(3) | (since C++26) (exposition only*) |
projected
combines an indirectly_readable
type I
and a callable object type Proj
into a new indirectly_readable
type whose reference type is the result of applying Proj
to the std::iter_reference_t<I>.weakly_incrementable
type when I
is also a weakly_incrementable
type.difference_type
exists only if I
models weakly_incrementable
.projected
is used only to constrain algorithms that accept callable objects and projections, and hence its operator*() is not defined.
Template parameters
I | - | an indirectly readable type |
Proj | - | projection applied to a dereferenced I
|
Notes
The indirect layer prevents I
and Proj
to be associated classes of projected
. When an associated class of I
or Proj
is an incomplete class type, the indirect layer avoids the unnecessary attempt to inspect the definition of that type that results in hard error.
Example
#include <algorithm> #include <cassert> #include <functional> #include <iterator> template<class T> struct Holder { T t; }; struct Incomplete; using P = Holder<Incomplete>*; static_assert(std::equality_comparable<P>); // OK static_assert(std::indirectly_comparable<P*, P*, std::equal_to<>>); // Error before C++26 static_assert(std::sortable<P*>); // Error before C++26 int main() { P a[10] = {}; // ten null pointers assert(std::count(a, a + 10, nullptr) == 10); // OK assert(std::ranges::count(a, a + 10, nullptr) == 10); // Error before C++26 }
See also
(C++26) |
computes the value type of an indirectly_readable type by projection(alias template) |