std::ranges::ends_with

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::input_iterator I1, std::sentinel_for<I1> S1,

          std::input_iterator I2, std::sentinel_for<I2> S2,
          class Pred = ranges::equal_to,
          class Proj1 = std::identity, class Proj2 = std::identity >
requires (std::forward_iterator<I1> || std::sized_sentinel_for<S1, I1>) &&
         (std::forward_iterator<I2> || std::sized_sentinel_for<S2, I2>) &&
         std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
constexpr bool ends_with( I1 first1, S1 last1,
                          I2 first2, S2 last2, Pred pred = {},

                          Proj1 proj1 = {}, Proj2 proj2 = {} );
(1) (since C++23)
template< ranges::input_range R1, ranges::input_range R2,

          class Pred = ranges::equal_to,
          class Proj1 = std::identity, class Proj2 = std::identity >
requires (ranges::forward_range<R1> || ranges::sized_range<R1>) &&
         (ranges::forward_range<R2> || ranges::sized_range<R2>) &&
         std::indirectly_comparable<ranges::iterator_t<R1>,
                                    ranges::iterator_t<R2>,
                                    Pred, Proj1, Proj2>
constexpr bool ends_with( R1&& r1, R2&& r2, Pred pred = {},

                          Proj1 proj1 = {}, Proj2 proj2 = {} );
(2) (since C++23)

Checks whether the second range matches the suffix of the first range.

1) Let N1 be ranges::distance(first1, last1) and N2 be ranges::distance(first2, last2):
  • If N1 < N2 is true, returns false.
  • Otherwise, returns ranges::equal(std::move(first1) + (N1 - N2), last1,
                  std::move(first2), last2, pred, proj1, proj2)
    .
2) Let N1 be ranges::distance(r1) and N2 be ranges::distance(r2).
  • If N1 < N2 is true, returns false.
  • Otherwise, returns ranges::equal(views::drop(ranges::ref_view(r1),
                              N1 - static_cast<decltype(N1)>(N2)),
                  r2, pred, proj1, proj2)
    .

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first1, last1 - the range of elements to examine
r1 - the range of elements to examine
first2, last2 - the range of elements to be used as the suffix
r2 - the range of elements to be used as the suffix
pred - the binary predicate that compares the projected elements
proj1 - the projection to apply to the elements of the range to examine
proj2 - the projection to apply to the elements of the range to be used as the suffix

Return value

true if the second range matches the suffix of the first range, false otherwise.

Complexity

Generally linear: at most min(N1,N2) applications of the predicate and both projections. The predicate and both projections are not applied if N1 < N2 is true.

If both N1 and N2 can be calculated in constant time (i.e. both iterator-sentinel type pairs model sized_sentinel_for, or both range types model sized_range) and N1 < N2 is true, the time complexity is constant.

Possible implementation

struct ends_with_fn
{
    template<std::input_iterator I1, std::sentinel_for<I1> S1,
             std::input_iterator I2, std::sentinel_for<I2> S2,
             class Pred = ranges::equal_to,
             class Proj1 = std::identity, class Proj2 = std::identity>
    requires (std::forward_iterator<I1> || std::sized_sentinel_for<S1, I1>) &&
             (std::forward_iterator<I2> || std::sized_sentinel_for<S2, I2>) &&
             std::indirectly_comparable<I1, I2, Pred, Proj1, Proj2>
    constexpr bool operator()(I1 first1, S1 last1, I2 first2, S2 last2,
                              Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const
    {
        const auto n1 = ranges::distance(first1, last1);
        const auto n2 = ranges::distance(first2, last2);
        if (n1 < n2)
            return false;
        ranges::advance(first1, n1 - n2);
        return ranges::equal(std::move(first1), last1,
                             std::move(first2), last2,
                             pred, proj1, proj2);
    }
 
    template<ranges::input_range R1, ranges::input_range R2,
             class Pred = ranges::equal_to,
             class Proj1 = std::identity, class Proj2 = std::identity>
    requires (ranges::forward_range<R1> || ranges::sized_range<R1>) &&
             (ranges::forward_range<R2> || ranges::sized_range<R2>) &&
             std::indirectly_comparable<ranges::iterator_t<R1>,
                                        ranges::iterator_t<R2>,
                                        Pred, Proj1, Proj2>
    constexpr bool operator()(R1&& r1, R2&& r2,
                              Pred pred = {}, Proj1 proj1 = {}, Proj2 proj2 = {}) const
    {
        const auto n1 = ranges::distance(r1);
        const auto n2 = ranges::distance(r2);
        if (n1 < n2)
            return false;
        return ranges::equal(views::drop(ranges::ref_view(r1),
                                         n1 - static_cast<decltype(n1)>(n2)),
                             r2, pred, proj1, proj2);
    }
};
 
inline constexpr ends_with_fn ends_with{};

Notes

Feature-test macro Value Std Feature
__cpp_lib_ranges_starts_ends_with 202106L (C++23) std::ranges::starts_with, std::ranges::ends_with

Example

#include <algorithm>
#include <array>
 
static_assert
(
    ! std::ranges::ends_with("for", "cast") &&
    std::ranges::ends_with("dynamic_cast", "cast") &&
    ! std::ranges::ends_with("as_const", "cast") &&
    std::ranges::ends_with("bit_cast", "cast") &&
    ! std::ranges::ends_with("to_underlying", "cast") &&
    std::ranges::ends_with(std::array{1, 2, 3, 4}, std::array{3, 4}) &&
    ! std::ranges::ends_with(std::array{1, 2, 3, 4}, std::array{4, 5})
);
 
int main() {}

Defect reports

The following behavior-changing defect reports were applied retroactively to previously published C++ standards.

DR Applied to Behavior as published Correct behavior
LWG 4105 C++23 overload (2) calculated the size
difference by N1 - N2[1]
changed to
N1 - static_cast<decltype(N1)>(N2)
  1. Its result might be of an integer-class type, in this case ranges::drop_view cannot be constructed.

See also

checks whether a range starts with another range
(niebloid)
(C++20)
checks if the string ends with the given suffix
(public member function of std::basic_string<CharT,Traits,Allocator>)
(C++20)
checks if the string view ends with the given suffix
(public member function of std::basic_string_view<CharT,Traits>)