std::ranges::rotate

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::permutable I, std::sentinel_for<I> S >

constexpr ranges::subrange<I>

    rotate( I first, I middle, S last );
(1) (since C++20)
template< ranges::forward_range R >

requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>

    rotate( R&& r, ranges::iterator_t<R> middle );
(2) (since C++20)
1) Performs a left rotation on a range of elements. Specifically, ranges::rotate swaps the elements in the range [firstlast) in such a way that the element *middle becomes the first element of the new range and *(middle - 1) becomes the last element.
The behavior is undefined if [firstlast) is not a valid range or middle is not in [firstlast).
2) Same as (1), but uses r as the range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to rotate
r - the range of elements to rotate
middle - the iterator to the element that should appear at the beginning of the rotated range

Return value

{new_first, last}, where new_first compares equal to ranges::next(first, ranges::distance(middle, last)) and designates a new location of the element pointed by first.

Complexity

Linear at worst: ranges::distance(first, last) swaps.

Notes

ranges::rotate has better efficiency on common implementations if I models bidirectional_iterator or (better) random_access_iterator.

Implementations (e.g. MSVC STL) may enable vectorization when the iterator type models contiguous_iterator and swapping its value type calls neither non-trivial special member function nor ADL-found swap.

Possible implementation

See also the implementations in libstdc++ and MSVC STL.

struct rotate_fn
{
    template<std::permutable I, std::sentinel_for<I> S>
    constexpr ranges::subrange<I>
        operator()(I first, I middle, S last) const
    {
        if (first == middle)
        {
            auto last_it = ranges::next(first, last);
            return {last_it, last_it};
        }
        if (middle == last)
            return {std::move(first), std::move(middle)};
 
        if constexpr (std::bidirectional_iterator<I>)
        {
            ranges::reverse(first, middle);
            auto last_it = ranges::next(first, last);
            ranges::reverse(middle, last_it);
 
            if constexpr (std::random_access_iterator<I>)
            {
                ranges::reverse(first, last_it);
                return {first + (last_it - middle), std::move(last_it)};
            }
            else
            {
                auto mid_last = last_it;
                do
                {
                    ranges::iter_swap(first, --mid_last);
                    ++first;
                }
                while (first != middle && mid_last != middle);
                ranges::reverse(first, mid_last);
 
                if (first == middle)
                    return {std::move(mid_last), std::move(last_it)};
                else
                    return {std::move(first), std::move(last_it)};
            }
        }
        else
        { // I is merely a forward_iterator
            auto next_it = middle;
            do
            { // rotate the first cycle
                ranges::iter_swap(first, next_it);
                ++first;
                ++next_it;
                if (first == middle)
                    middle = next_it;
            }
            while (next_it != last);
 
            auto new_first = first;
            while (middle != last)
            { // rotate subsequent cycles
                next_it = middle;
                do
                {
                    ranges::iter_swap(first, next_it);
                    ++first;
                    ++next_it;
                    if (first == middle)
                        middle = next_it;
                }
                while (next_it != last);
            }
 
            return {std::move(new_first), std::move(middle)};
        }
    }
 
    template<ranges::forward_range R>
    requires std::permutable<ranges::iterator_t<R>>
    constexpr ranges::borrowed_subrange_t<R>
        operator()(R&& r, ranges::iterator_t<R> middle) const
    {
        return (*this)(ranges::begin(r), std::move(middle), ranges::end(r));
    }
};
 
inline constexpr rotate_fn rotate {};

Example

ranges::rotate is a common building block in many algorithms. This example demonstrates insertion sort.

#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>
 
int main()
{
    std::string s(16, ' ');
 
    for (int k {}; k != 5; ++k)
    {
        std::iota(s.begin(), s.end(), 'A');
        std::ranges::rotate(s, s.begin() + k);
        std::cout << "Rotate left (" << k << "): " << s << '\n';
    }
    std::cout << '\n';
 
    for (int k {}; k != 5; ++k)
    {
        std::iota(s.begin(), s.end(), 'A');
        std::ranges::rotate(s, s.end() - k);
        std::cout << "Rotate right (" << k << "): " << s << '\n';
    }
 
    std::cout << "\nInsertion sort using `rotate`, step-by-step:\n";
 
    s = {'2', '4', '2', '0', '5', '9', '7', '3', '7', '1'};
 
    for (auto i = s.begin(); i != s.end(); ++i)
    {
        std::cout << "i = " << std::ranges::distance(s.begin(), i) << ": ";
        std::ranges::rotate(std::ranges::upper_bound(s.begin(), i, *i), i, i + 1);
        std::cout << s << '\n';
    }
    std::cout << (std::ranges::is_sorted(s) ? "Sorted!" : "Not sorted.") << '\n';
}

Output:

Rotate left (0): ABCDEFGHIJKLMNOP
Rotate left (1): BCDEFGHIJKLMNOPA
Rotate left (2): CDEFGHIJKLMNOPAB
Rotate left (3): DEFGHIJKLMNOPABC
Rotate left (4): EFGHIJKLMNOPABCD
 
Rotate right (0): ABCDEFGHIJKLMNOP
Rotate right (1): PABCDEFGHIJKLMNO
Rotate right (2): OPABCDEFGHIJKLMN
Rotate right (3): NOPABCDEFGHIJKLM
Rotate right (4): MNOPABCDEFGHIJKL
 
Insertion sort using `rotate`, step-by-step:
i = 0: 2420597371
i = 1: 2420597371
i = 2: 2240597371
i = 3: 0224597371
i = 4: 0224597371
i = 5: 0224597371
i = 6: 0224579371
i = 7: 0223457971
i = 8: 0223457791
i = 9: 0122345779
Sorted!

See also

copies and rotate a range of elements
(niebloid)
reverses the order of elements in a range
(niebloid)
rotates the order of elements in a range
(function template)