std::ranges::partition

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
template< std::permutable I, std::sentinel_for<I> S, class Proj = std::identity,

          std::indirect_unary_predicate<std::projected<I, Proj>> Pred >
constexpr ranges::subrange<I>

    partition( I first, S last, Pred pred, Proj proj = {} );
(1) (since C++20)
template< ranges::forward_range R, class Proj = std::identity,

          std::indirect_unary_predicate<
              std::projected<ranges::iterator_t<R>, Proj>> Pred >
requires std::permutable<ranges::iterator_t<R>>
constexpr ranges::borrowed_subrange_t<R>

    partition( R&& r, Pred pred, Proj proj = {} );
(2) (since C++20)
1) Reorders the elements in the range [firstlast) in such a way that the projection proj of all elements for which the predicate pred returns true precede the projection proj of elements for which predicate pred returns false. Relative order of elements is not preserved.
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to reorder
r - the range of elements to reorder
pred - predicate to apply to the projected elements
proj - projection to apply to the elements

Return value

A subrange starting with an iterator to the first element of the second group and finishing with an iterator equal to last. (2) returns std::ranges::dangling if r is an rvalue of non-borrowed_range type.

Complexity

Given N = ranges::distance(first, last), exactly N applications of the predicate and projection. At most N / 2 swaps if I models ranges::bidirectional_iterator, and at most N swaps otherwise.

Possible implementation

struct partition_fn
{
    template<std::permutable I, std::sentinel_for<I> S, class Proj = std::identity,
             std::indirect_unary_predicate<std::projected<I, Proj>> Pred>
    constexpr ranges::subrange<I>
        operator()(I first, S last, Pred pred, Proj proj = {}) const
    {
        first = ranges::find_if_not(first, last, std::ref(pred), std::ref(proj));
        if (first == last)
            return {first, first};
 
        for (auto i = ranges::next(first); i != last; ++i)
        {
            if (std::invoke(pred, std::invoke(proj, *i)))
            {
                ranges::iter_swap(i, first);
                ++first;
            }
        }
        return {std::move(first), std::move(last)};
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
             std::indirect_unary_predicate<
                 std::projected<ranges::iterator_t<R>, Proj>> Pred>
    requires std::permutable<ranges::iterator_t<R>>
    constexpr ranges::borrowed_subrange_t<R>
        operator()(R&& r, Pred pred, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::ref(pred), std::ref(proj));
    }
};
 
inline constexpr partition_fn partition;

Example

#include <algorithm>
#include <forward_list>
#include <functional>
#include <iostream>
#include <iterator>
#include <ranges>
#include <vector>
 
namespace ranges = std::ranges;
 
template<class I, std::sentinel_for<I> S, class Cmp = ranges::less>
requires std::sortable<I, Cmp>
void quicksort(I first, S last, Cmp cmp = Cmp {})
{
    using reference = std::iter_reference_t<I>;
 
    if (first == last)
        return;
 
    auto size = ranges::distance(first, last);
    auto pivot = ranges::next(first, size - 1);
    ranges::iter_swap(pivot, ranges::next(first, size / 2));
 
    auto tail = ranges::partition(first, pivot, [=](reference em)
    {
        return std::invoke(cmp, em, *pivot); // em < pivot
    });
 
    ranges::iter_swap(pivot, tail.begin());
    quicksort(first, tail.begin(), std::ref(cmp));
    quicksort(ranges::next(tail.begin()), last, std::ref(cmp));
}
 
int main()
{
    std::ostream_iterator<int> cout {std::cout, " "};
 
    std::vector<int> v {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
    std::cout << "Original vector:  \t";
    ranges::copy(v, cout);
 
    auto tail = ranges::partition(v, [](int i) { return i % 2 == 0; });
 
    std::cout << "\nPartitioned vector: \t";
    ranges::copy(ranges::begin(v), ranges::begin(tail), cout);
    std::cout << "│ ";
    ranges::copy(tail, cout);
 
    std::forward_list<int> fl {1, 30, -4, 3, 5, -4, 1, 6, -8, 2, -5, 64, 1, 92};
    std::cout << "\nUnsorted list: \t\t";
    ranges::copy(fl, cout);
 
    quicksort(ranges::begin(fl), ranges::end(fl), ranges::greater {});
    std::cout << "\nQuick-sorted list: \t";
    ranges::copy(fl, cout);
 
    std::cout << '\n';
}

Possible output:

Original vector:        0 1 2 3 4 5 6 7 8 9
Partitioned vector:     0 8 2 6 4 │ 5 3 7 1 9
Unsorted list:          1 30 -4 3 5 -4 1 6 -8 2 -5 64 1 92
Quick-sorted list:      92 64 30 6 5 3 2 1 1 1 -4 -4 -5 -8

See also

copies a range dividing the elements into two groups
(niebloid)
determines if the range is partitioned by the given predicate
(niebloid)
divides elements into two groups while preserving their relative order
(niebloid)
divides a range of elements into two groups
(function template)