std::ranges::search_n

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template< std::forward_iterator I, std::sentinel_for<I> S, class T,

          class Pred = ranges::equal_to, class Proj = std::identity >
requires std::indirectly_comparable<I, const T*, Pred, Proj>
constexpr ranges::subrange<I>
    search_n( I first, S last, std::iter_difference_t<I> count,

              const T& value, Pred pred = {}, Proj proj = {} );
(since C++20)
(until C++26)
template< std::forward_iterator I, std::sentinel_for<I> S,

          class Pred = ranges::equal_to, class Proj = std::identity,
          class T = std::projected_value_t<I, Proj> >
requires std::indirectly_comparable<I, const T*, Pred, Proj>
constexpr ranges::subrange<I>
    search_n( I first, S last, std::iter_difference_t<I> count,

              const T& value, Pred pred = {}, Proj proj = {} );
(since C++26)
(2)
template< ranges::forward_range R, class T,

          class Pred = ranges::equal_to, class Proj = std::identity >
requires std::indirectly_comparable
    <ranges::iterator_t<R>, const T*, Pred, Proj>
constexpr ranges::borrowed_subrange_t<R>
    search_n( R&& r, ranges::range_difference_t<R> count,

              const T& value, Pred pred = {}, Proj proj = {} );
(since C++20)
(until C++26)
template< ranges::forward_range R,

          class Pred = ranges::equal_to, class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj> >
requires std::indirectly_comparable
    <ranges::iterator_t<R>, const T*, Pred, Proj>
constexpr ranges::borrowed_subrange_t<R>
    search_n( R&& r, ranges::range_difference_t<R> count,

              const T& value, Pred pred = {}, Proj proj = {} );
(since C++26)
1) Searches the range [firstlast) for the first sequence of count elements whose projected values are each equal to the given value according to the binary predicate pred.
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to examine (aka haystack)
r - the range of elements to examine (aka haystack)
count - the length of the sequence to search for
value - the value to search for (aka needle)
pred - the binary predicate that compares the projected elements with value
proj - the projection to apply to the elements of the range to examine

Return value

1) Returns std::ranges::subrange object that contains a pair of iterators in the range [firstlast) that designate the found subsequence.

If no such subsequence is found, returns std::ranges::subrange{last, last}.

If count <= 0, returns std::ranges::subrange{first, first}.
2) Same as (1) but the return type is ranges::borrowed_subrange_t<R>.

Complexity

Linear: at most ranges::distance(first, last) applications of the predicate and the projection.

Notes

An implementation can improve efficiency of the search in average if the iterators model std::random_access_iterator.

Feature-test macro Value Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for algorithms

Possible implementation

struct search_n_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S,
             class Pred = ranges::equal_to, class Proj = std::identity,
             class T = std::projected_value_t<I, Proj>>
    requires std::indirectly_comparable<I, const T*, Pred, Proj>
    constexpr ranges::subrange<I>
        operator()(I first, S last, std::iter_difference_t<I> count,
                   const T& value, Pred pred = {}, Proj proj = {}) const
    {
        if (count <= 0)
            return {first, first};
        for (; first != last; ++first)
            if (std::invoke(pred, std::invoke(proj, *first), value))
            {
                I start = first;
                std::iter_difference_t<I> n{1};
                for (;;)
                {
                    if (n++ == count)
                        return {start, std::next(first)}; // found
                    if (++first == last)
                        return {first, first}; // not found
                    if (!std::invoke(pred, std::invoke(proj, *first), value))
                        break; // not equ to value
                }
            }
        return {first, first};
    }
 
    template<ranges::forward_range R,
             class Pred = ranges::equal_to, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>>
    requires std::indirectly_comparable<ranges::iterator_t<R>, const T*, Pred, Proj>
    constexpr ranges::borrowed_subrange_t<R>
        operator()(R&& r, ranges::range_difference_t<R> count,
                   const T& value, Pred pred = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r),
                       std::move(count), value,
                       std::move(pred), std::move(proj));
    }
};
 
inline constexpr search_n_fn search_n {};

Example

#include <algorithm>
#include <cassert>
#include <complex>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <string>
#include <vector>
 
int main()
{
    namespace ranges = std::ranges;
 
    static constexpr auto nums = {1, 2, 2, 3, 4, 1, 2, 2, 2, 1};
    constexpr int count{3};
    constexpr int value{2};
    typedef int count_t, value_t;
 
    constexpr auto result1 = ranges::search_n
    (
        nums.begin(), nums.end(), count, value
    );
    static_assert // found
    (
        result1.size() == count &&
        std::distance(nums.begin(), result1.begin()) == 6 &&
        std::distance(nums.begin(), result1.end()) == 9
    );
 
    constexpr auto result2 = ranges::search_n(nums, count, value);
    static_assert // found
    (
        result2.size() == count &&
        std::distance(nums.begin(), result2.begin()) == 6 &&
        std::distance(nums.begin(), result2.end()) == 9
    );
 
    constexpr auto result3 = ranges::search_n(nums, count, value_t{5});
    static_assert // not found
    (
        result3.size() == 0 &&
        result3.begin() == result3.end() &&
        result3.end() == nums.end()
    );
 
    constexpr auto result4 = ranges::search_n(nums, count_t{0}, value_t{1});
    static_assert // not found
    (
        result4.size() == 0 &&
        result4.begin() == result4.end() &&
        result4.end() == nums.begin()
    );
 
    constexpr char symbol{'B'};
    auto to_ascii = [](const int z) -> char { return 'A' + z - 1; };
    auto is_equ = [](const char x, const char y) { return x == y; };
 
    std::cout << "Find a sub-sequence " << std::string(count, symbol) << " in the ";
    std::ranges::transform(nums, std::ostream_iterator<char>(std::cout, ""), to_ascii);
    std::cout << '\n';
 
    auto result5 = ranges::search_n(nums, count, symbol, is_equ, to_ascii);
    if (not result5.empty())
        std::cout << "Found at position "
                  << ranges::distance(nums.begin(), result5.begin()) << '\n';
 
    std::vector<std::complex<double>> nums2{{4, 2}, {4, 2}, {1, 3}};
    #ifdef __cpp_lib_algorithm_default_value_type
        auto it = ranges::search_n(nums2, 2, {4, 2});
    #else
        auto it = ranges::search_n(nums2, 2, std::complex<double>{4, 2});
    #endif
    assert(it.size() == 2);
}

Output:

Find a sub-sequence BBB in the ABBCDABBBA
Found at position 6

See also

finds the first two adjacent items that are equal (or satisfy a given predicate)
(niebloid)
finds the first element satisfying specific criteria
(niebloid)
finds the last sequence of elements in a certain range
(niebloid)
searches for any one of a set of elements
(niebloid)
returns true if one sequence is a subsequence of another
(niebloid)
finds the first position where two ranges differ
(niebloid)
searches for the first occurrence of a range of elements
(niebloid)
searches for the first occurrence of a number consecutive copies of an element in a range
(function template)