std::ranges::binary_search

From cppreference.com
< cpp‎ | algorithm‎ | ranges
 
 
Algorithm library
Constrained algorithms and algorithms on ranges (C++20)
Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
Execution policies (C++17)
Non-modifying sequence operations
Batch operations
(C++17)
Search operations
(C++11)                (C++11)(C++11)

Modifying sequence operations
Copy operations
(C++11)
(C++11)
Swap operations
Transformation operations
Generation operations
Removing operations
Order-changing operations
(until C++17)(C++11)
(C++20)(C++20)
Sampling operations
(C++17)

Sorting and related operations
Partitioning operations
Sorting operations
Binary search operations
(on partitioned ranges)
Set operations (on sorted ranges)
Merge operations (on sorted ranges)
Heap operations
Minimum/maximum operations
(C++11)
(C++17)
Lexicographical comparison operations
Permutation operations
C library
Numeric operations
Operations on uninitialized memory
 
Constrained algorithms
All names in this menu belong to namespace std::ranges
Non-modifying sequence operations
Modifying sequence operations
Partitioning operations
Sorting operations
Binary search operations (on sorted ranges)
       
       
binary_search
    
Set operations (on sorted ranges)
Heap operations
Minimum/maximum operations
       
       
Permutation operations
Fold operations
Numeric operations
(C++23)            
Operations on uninitialized storage
Return types
 
Defined in header <algorithm>
Call signature
(1)
template< std::forward_iterator I, std::sentinel_for<I> S,

          class T, class Proj = std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr bool binary_search( I first, S last, const T& value,

                              Comp comp = {}, Proj proj = {} );
(since C++20)
(until C++26)
template< std::forward_iterator I, std::sentinel_for<I> S,

          class Proj = std::identity,
          class T = std::projected_value_t<I, Proj>,
          std::indirect_strict_weak_order
              <const T*, std::projected<I, Proj>> Comp = ranges::less >
constexpr bool binary_search( I first, S last, const T& value,

                              Comp comp = {}, Proj proj = {} );
(since C++26)
(2)
template< ranges::forward_range R,

          class T, class Proj = std::identity,
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less >
constexpr bool binary_search( R&& r, const T& value,

                              Comp comp = {}, Proj proj = {} );
(since C++20)
(until C++26)
template< ranges::forward_range R,

          class Proj = std::identity,
          class T = std::projected_value_t<ranges::iterator_t<R>, Proj>,
          std::indirect_strict_weak_order
              <const T*, std::projected<ranges::iterator_t<R>,
                                        Proj>> Comp = ranges::less >
constexpr bool binary_search( R&& r, const T& value,

                              Comp comp = {}, Proj proj = {} );
(since C++26)
1) Checks if a projected element equivalent to value appears within the range [firstlast).
2) Same as (1), but uses r as the source range, as if using ranges::begin(r) as first and ranges::end(r) as last.

For ranges::binary_search to succeed, the range [firstlast) must be at least partially ordered with respect to value, i.e. it must satisfy all of the following requirements:

  • partitioned with respect to std::invoke(comp, std::invoke(proj, element), value) (that is, all projected elements for which the expression is true precedes all elements for which the expression is false).
  • partitioned with respect to !std::invoke(comp, value, std::invoke(proj, element)).
  • for all elements, if std::invoke(comp, std::invoke(proj, element), value) is true then !std::invoke(comp, value, std::invoke(proj, element)) is also true.

A fully-sorted range meets these criteria.

The function-like entities described on this page are niebloids, that is:

In practice, they may be implemented as function objects, or with special compiler extensions.

Parameters

first, last - the range of elements to examine
r - the range of elements to examine
value - value to compare the elements to
comp - comparison function to apply to the projected elements
proj - projection to apply to the elements

Return value

true if an element equal to value is found, false otherwise.

Complexity

The number of comparisons and projections performed is logarithmic in the distance between first and last (at most log
2
(last - first) + O(1)
comparisons and projections). However, for iterator-sentinel pair that does not model std::random_access_iterator, number of iterator increments is linear.

Notes

std::ranges::binary_search doesn't return an iterator to the found element when an element whose projection equals value is found. If an iterator is desired, std::ranges::lower_bound should be used instead.

Feature-test macro Value Std Feature
__cpp_lib_algorithm_default_value_type 202403 (C++26) List-initialization for algorithms (1,2)

Possible implementation

struct binary_search_fn
{
    template<std::forward_iterator I, std::sentinel_for<I> S,
             class Proj = std::identity, class T = std::projected_value_t<I, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<I, Proj>> Comp = ranges::less>
    constexpr bool operator()(I first, S last, const T& value,
                              Comp comp = {}, Proj proj = {}) const
    {
        auto x = ranges::lower_bound(first, last, value, comp, proj);
        return (!(x == last) && !(std::invoke(comp, value, std::invoke(proj, *x))));
    }
 
    template<ranges::forward_range R, class Proj = std::identity,
             class T = std::projected_value_t<ranges::iterator_t<R>, Proj>,
             std::indirect_strict_weak_order
                 <const T*, std::projected<ranges::iterator_t<R>,
                                           Proj>> Comp = ranges::less>
    constexpr bool operator()(R&& r, const T& value, Comp comp = {}, Proj proj = {}) const
    {
        return (*this)(ranges::begin(r), ranges::end(r), value,
                       std::move(comp), std::move(proj));
    }
};
 
inline constexpr binary_search_fn binary_search;

Example

#include <algorithm>
#include <cassert>
#include <complex>
#include <iostream>
#include <ranges>
#include <vector>
 
int main()
{
    constexpr static auto haystack = {1, 3, 4, 5, 9};
    static_assert(std::ranges::is_sorted(haystack));
 
    for (const int needle : std::views::iota(1)
                          | std::views::take(3))
    {
        std::cout << "Searching for " << needle << ": ";
        std::ranges::binary_search(haystack, needle)
            ? std::cout << "found " << needle << '\n'
            : std::cout << "no dice!\n";
    }
 
    using CD = std::complex<double>;
    std::vector<CD> nums{{1, 1}, {2, 3}, {4, 2}, {4, 3}};
    auto cmpz = [](CD x, CD y){ return abs(x) < abs(y); };
    #ifdef __cpp_lib_algorithm_default_value_type
        assert(std::ranges::binary_search(nums, {4, 2}, cmpz));
    #else
        assert(std::ranges::binary_search(nums, CD{4, 2}, cmpz));
    #endif
}

Output:

Searching for 1: found 1
Searching for 2: no dice!
Searching for 3: found 3

See also

returns range of elements matching a specific key
(niebloid)
returns an iterator to the first element not less than the given value
(niebloid)
returns an iterator to the first element greater than a certain value
(niebloid)
checks if the range contains the given element or subrange
(niebloid)
determines if an element exists in a partially-ordered range
(function template)