std::ranges::cartesian_product_view<First, Vs...>::size
From cppreference.com
< cpp | ranges | cartesian product view
constexpr /* see description */ size() requires /*cartesian-product-is-sized*/<First, Vs...>; |
(1) | (since C++23) |
constexpr /* see description */ size() const requires /*cartesian-product-is-sized*/<const First, const Vs...>; |
(2) | (since C++23) |
Returns the number of elements. The return type is an implementation-defined /*unsigned-integer-like*/ type U.
Let bases_
be the underlying tuple of views, and prod be the product of the sizes of all the ranges in bases_
.
1,2) Returns prod. The behavior is undefined if prod cannot be represented by the return type U.
Equivalent to:
return [&]<std::size_t... Is>(std::index_sequence<Is...>) { auto prod = static_cast<U>(1); prod = (static_cast<U>(ranges::size(std::get<Is>(bases_))) * ...); return prod; } (std::make_index_sequence<1U + sizeof...(Vs)>{});
Parameters
(none)
Return value
The number of elements, that is, the product of the sizes of all the underlying ranges.
Notes
The return type is the smallest /*unsigned-integer-like*/ type that is sufficiently wide to store the product of the maximum sizes of all the underlying ranges, if such a type exists.
Example
Run this code
#include <ranges> int main() { constexpr static auto w = {1}; constexpr static auto x = {2, 3}; constexpr static auto y = {4, 5, 6}; constexpr static auto z = {7, 8, 9, 10, 11, 12, 13}; constexpr auto v = std::ranges::cartesian_product_view(w, x, y, z); static_assert(v.size() == w.size() * x.size() * y.size() * z.size() and v.size() == 42); }
See also
(C++20) |
returns an integer equal to the size of a range (customization point object) |
(C++20) |
returns a signed integer equal to the size of a range (customization point object) |