std::modf, std::modff, std::modfl
Defined in header <cmath>
|
||
(1) | ||
float modf ( float num, float* iptr ); double modf ( double num, double* iptr ); |
(until C++23) | |
constexpr /* floating-point-type */ modf ( /* floating-point-type */ num, |
(since C++23) | |
float modff( float num, float* iptr ); |
(2) | (since C++11) (constexpr since C++23) |
long double modfl( long double num, long double* iptr ); |
(3) | (since C++11) (constexpr since C++23) |
Additional overloads (since C++11) |
||
Defined in header <cmath>
|
||
template< class Integer > double modf ( Integer num, double* iptr ); |
(A) | (constexpr since C++23) |
std::modf
for all cv-unqualified floating-point types as the type of the parameter num and the pointed-to type of iptr.(since C++23)
A) Additional overloads are provided for all integer types, which are treated as double.
|
(since C++11) |
Parameters
num | - | floating-point or integer value |
iptr | - | pointer to floating-point value to store the integral part to |
Return value
If no errors occur, returns the fractional part of num with the same sign as num. The integral part is put into the value pointed to by iptr.
The sum of the returned value and the value stored in *iptr gives num (allowing for rounding).
Error handling
This function is not subject to any errors specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If num is ±0, ±0 is returned, and ±0 is stored in *iptr.
- If num is ±∞, ±0 is returned, and ±∞ is stored in *iptr.
- If num is NaN, NaN is returned, and NaN is stored in *iptr.
- The returned value is exact, the current rounding mode is ignored.
Notes
This function behaves as if implemented as follows:
double modf(double num, double* iptr) { #pragma STDC FENV_ACCESS ON int save_round = std::fegetround(); std::fesetround(FE_TOWARDZERO); *iptr = std::nearbyint(num); std::fesetround(save_round); return std::copysign(std::isinf(num) ? 0.0 : num - (*iptr), num); }
The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their argument num of integer type, std::modf(num, iptr) has the same effect as std::modf(static_cast<double>(num), iptr).
Example
Compares different floating-point decomposition functions:
#include <cmath> #include <iostream> #include <limits> int main() { double f = 123.45; std::cout << "Given the number " << f << " or " << std::hexfloat << f << std::defaultfloat << " in hex,\n"; double f3; double f2 = std::modf(f, &f3); std::cout << "modf() makes " << f3 << " + " << f2 << '\n'; int i; f2 = std::frexp(f, &i); std::cout << "frexp() makes " << f2 << " * 2^" << i << '\n'; i = std::ilogb(f); std::cout << "logb()/ilogb() make " << f / std::scalbn(1.0, i) << " * " << std::numeric_limits<double>::radix << "^" << std::ilogb(f) << '\n'; // special values f2 = std::modf(-0.0, &f3); std::cout << "modf(-0) makes " << f3 << " + " << f2 << '\n'; f2 = std::modf(-INFINITY, &f3); std::cout << "modf(-Inf) makes " << f3 << " + " << f2 << '\n'; }
Possible output:
Given the number 123.45 or 0x1.edccccccccccdp+6 in hex, modf() makes 123 + 0.45 frexp() makes 0.964453 * 2^7 logb()/ilogb() make 1.92891 * 2^6 modf(-0) makes -0 + -0 modf(-Inf) makes -INF + -0
See also
(C++11)(C++11)(C++11) |
nearest integer not greater in magnitude than the given value (function) |
C documentation for modf
|