std::ratio_multiply
Defined in header <ratio>
|
||
template< class R1, class R2 > using ratio_multiply = /* see below */; |
(since C++11) | |
The alias template std::ratio_multiply
denotes the result of multiplying two exact rational fractions represented by the std::ratio specializations R1
and R2
.
The result is a std::ratio specialization std::ratio<U, V>, such that given Num == R1::num * R2::num and Denom == R1::den * R2::den (computed without arithmetic overflow), U
is std::ratio<Num, Denom>::num and V
is std::ratio<Num, Denom>::den.
Notes
If U
or V
is not representable in std::intmax_t, the program is ill-formed. If Num
or Denom
is not representable in std::intmax_t, the program is ill-formed unless the implementation yields correct values for U
and V
.
The above definition requires that the result of std::ratio_multiply<R1, R2> be already reduced to lowest terms; for example, std::ratio_multiply<std::ratio<1, 6>, std::ratio<4, 5>> is the same type as std::ratio<2, 15>.
Example
#include <iostream> #include <ratio> int main() { using two_third = std::ratio<2, 3>; using one_sixth = std::ratio<1, 6>; using product = std::ratio_multiply<two_third, one_sixth>; static_assert(std::ratio_equal_v<product, std::ratio<13, 117>>); std::cout << "2/3 * 1/6 = " << product::num << '/' << product::den << '\n'; }
Output:
2/3 * 1/6 = 1/9
See also
(C++11) |
divides two ratio objects at compile-time(alias template) |