std::is_const

From cppreference.com
< cpp‎ | types
 
 
Metaprogramming library
Type traits
Type categories
(C++11)
(C++14)  
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
Type properties
is_const
(C++11)
(C++11)
(C++14)
(C++11)
(C++11)(until C++20*)
(C++11)(deprecated in C++20)
(C++11)
Type trait constants
Metafunctions
(C++17)
Supported operations
Relationships and property queries
Type modifications
(C++11)(C++11)(C++11)
Type transformations
(C++11)(deprecated in C++23)
(C++11)(deprecated in C++23)
(C++11)
(C++11)
(C++17)

(C++11)(until C++20*)(C++17)
Compile-time rational arithmetic
Compile-time integer sequences
 
Defined in header <type_traits>
template< class T >
struct is_const;
(since C++11)

std::is_const is a UnaryTypeTrait.

If T is a const-qualified type (that is, const, or const volatile), provides the member constant value equal to true. For any other type, value is false.

If the program adds specializations for std::is_const or std::is_const_v, the behavior is undefined.

Template parameters

T - a type to check

Helper variable template

template< class T >
constexpr bool is_const_v = is_const<T>::value;
(since C++17)

Inherited from std::integral_constant

Member constants

value
[static]
true if T is a const-qualified type, false otherwise
(public static member constant)

Member functions

operator bool
converts the object to bool, returns value
(public member function)
operator()
(C++14)
returns value
(public member function)

Member types

Type Definition
value_type bool
type std::integral_constant<bool, value>

Notes

If T is a reference type then is_const<T>::value is always false. The proper way to check a potentially-reference type for constness is to remove the reference: is_const<typename remove_reference<T>::type>.

Possible implementation

template<class T> struct is_const          : std::false_type {};
template<class T> struct is_const<const T> : std::true_type {};

Example

#include <type_traits>
 
static_assert(std::is_same_v<const int*, int const*>,
    "Remember, constness binds tightly inside pointers.");
static_assert(!std::is_const_v<int>);
static_assert(std::is_const_v<const int>);
static_assert(!std::is_const_v<int*>);
static_assert(std::is_const_v<int* const>,
    "Because the pointer itself can't be changed but the int pointed at can.");
static_assert(!std::is_const_v<const int*>,
    "Because the pointer itself can be changed but not the int pointed at.");
static_assert(!std::is_const_v<const int&>);
static_assert(std::is_const_v<std::remove_reference_t<const int&>>);
 
struct S
{
    void foo() const {}
    void bar() const {}
};
 
int main()
{
    // A const member function is const in a different way:
 
    static_assert(!std::is_const_v<decltype(&S::foo)>,
        "Because &S::foo is a pointer.");
 
    using S_mem_fun_ptr = void(S::*)() const;
 
    S_mem_fun_ptr sfp = &S::foo;
    sfp = &S::bar; // OK, can be re-pointed
    static_assert(!std::is_const_v<decltype(sfp)>,
        "Because sfp is the same pointer type and thus can be re-pointed.");
 
    const S_mem_fun_ptr csfp = &S::foo;
    // csfp = &S::bar; // Error
    static_assert(std::is_const_v<decltype(csfp)>,
        "Because csfp cannot be re-pointed.");
}

See also

checks if a type is volatile-qualified
(class template)
(C++17)
obtains a reference to const to its argument
(function template)