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Foreword 

During a visit to an exhibition on the history of Chinese technology, I learned of the 
existence of the very first tester. Two centuries after the birth of Christ, Chinese farmers 
had developed a hand-operated mill to separate chaff from grain. Amazingly enough, this 
equipment was not introduced into Europe for more than 16 centuries! There could be 
several reasons for this. Perhaps the agricultural industry in Europe was not sufficiently 
developed to require the equipment, or perhaps the ubiquitous "not invented here" 
syndrome was already hampering the progress of technological change. More likely, 
however, is that there was no communication on the development and transfer of 
technology between workers within the same industry — in this case, between Chinese 
and Europeans. 

In today's world, testers are needed to separate the bad from the good. However, the 
complexity of our electronic circuit designs and the continuing miniaturization of the 
finished product have made the difference between good and bad more subtle and more 
difficult to detect. Now, testing can be an expensive process, but fortunately we have the 
freedom to design the product to improve its testability. The Chinese farmers didn't. 

Recently, we have come to realize the value of discussing approaches to 
design-for-testability between companies and countries and, as a result, the standard 
described in this book has been created. The development of the IEEE Standard Test 
Access Port and Boundary—Scan Architecture began in 1985 when representatives from a 
small group of European electronics companies met in The Netherlands to discuss 
problems caused by the increased use of surface-mount technology and very large-scale 
integration (VLSI). At that first meeting, a consensus was reached about the problems and 
a willingness emerged to cooperate in solving them. More meetings were organized and, to 
identify the activity, a name was chosen: the Joint European Test Action Group. Later, 
as companies from North America joined the group, the name was changed to the Joint 
Test Action Group (JTAG). 

JTAG started to define a test methodology that would address the foreseen problems 
and to describe the methodology in a technical proposal. This proposal, which became the 
JTAG Test Access Port and Boundary-Scan Architecture, was promoted at technical 
conferences and workshops to raise the interest and awareness of other companies, 
especially the integrated circuit manufacturers and the automatic test equipment vendors. 
The reaction from the electronics industry was very enthusiastic, with support coming 
from the test community and the management of many companies. Letters of endorsement 
were provided by the senior management of major electronics companies, demonstrating 
the benefit that adoption of the JTAG proposal would have for their businesses. This, in 
turn, increased the motivation of the JTAG members involved in the technical 
development. 

By the summer of 1988, the JTAG proposal had matured into a specification that met 
many requirements of the electronics industry, and the support of the IEEE was sought to 
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convert the ad-hoc JTAG proposal into a formal standard. Also at that time, the 
designers of the companies involved in JTAG began to develop the first integrated circuit 
designs for production and inclusion in their products. Commercially-available integrated 
circuits (ICs) and application-specific integrated circuit (ASIC) cells followed shortly 
afterwards. 

Looking back, it is surprising that so much interest in boundary-scan techniques 
developed so rapidly. This achievement was only possible through the cooperation and 
support of all the companies involved, and through the significant contributions made by 
those involved in the technical development activities. 

I hope that the examples contained in this book will give you some idea of the range of 
applications of the standard that JTAG created, as well as the potential value of the 
standard for your business. If you have a need for the solutions described in this book, 
don't wait 17 centuries before you use them! 

Harry Bleeker 
JTAG Chairman 
Philips Telecommunications and Data Systems 
Hilversum, The Netherlands 
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Preface 

...denn da is keine Stelle, 
die dich nicht sieht. Du musst dein Leben aendem. 
[...for there is no place at all 
that isn't looking at you. You must change your life.] 

R. M. Rilke, "Archaischer Torso Apollos" 

Pasteur's was the most enviable life I had yet encountered. It 
was his privilege to do things until they were done. 

A. Dillard, An American Childhood 

We are able to witness achievements in the arts and everything 
else, not because of those who adhere to the established order, but 
because of the innovators, who dare to change or move things that 
need change or correction. 

Isocrates, Evagore 

It has been our pleasure, as well as that of our colleagues, to witness changes in the art 
of electronic testing. We know that it is not given to everyone to witness and participate 
in such things. We know we have been party to a rare experience — something bound to 
be matched by few other experiences in our professional lives. We witnessed and served 
during the birth and development of an international standard for testing — IEEE Std 
1149.1. We had the opportunity to work with a set of international, expert volunteers on a 
critical task, and, like Pasteur, to work on our job until it had been completed — until a 
standard was successfully described and promulgated. 

There is no question that the situation in electronic testing is in need of change; indeed, 
significant change is inevitable whether or not it is promulgated with an accompanying, 
technically sound, supportive test technology. We believe that such change is being forced 
on us today caused (at least in large part) by the following factors: 

• the constant pressures for greater integration; 

• the widespread adoption of surface mount technology (SMT) employed on both 
one-sided and two-sided printed wiring boards (PWBs); 

• the shrinking feature sizes of these PWBs; 

• the decreasing distances between pins of SMT devices; 

• the consequent difficulties of continuing to test PWBs via physical contact by 
spring-loaded nails; 
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• the growing gap in speed between product and automatic test equipment (ATE); 

• the increasing cost of acquiring capital equipment such as ATE and the increasing 
cost of developing associated test fixtures; 

• the significant difficulty of rapidly developing accurate, automated diagnoses for 
loaded boards and systems; 

• the desire to have a test methodology compatible with assembly processes that are 
rapidly reconfigurable through software and aimed at lot~size-of-one 
manufacturing; 

• the continuing, if not increasing, consumer demand for high reliability and 
maintainability; and 

• the need for generic solutions that can be repeatedly reused in a variety of digital 
products. 

The engineers who formed the ad-hoc group known as the Joint Test Action Group 
(JTAG) were all aware of the impact on product quality that would arise if solutions to 
these needs were not found. 

The continuous process of increasingly greater integration never gives a process engineer 
time to congratulate himself/herself on nearing perfection before process and product 
change again. We cannot expect perfect processes — process engineers have to expect to 
be working on process improvement and alteration throughout their careers. What is the 
best source of guidance to them? It is the carefully analyzed results of testing. The widely 
accepted concept of quality through continuous improvement is not possible if one cannot 
assess causes of failure and their frequency. The results of testing and subsequent failure 
mode analysis form a treasure trove for the engineer concerned with quality. When testing 
is threatened, quality is threatened. And this is a threat to an electronics firm's ability to 
manufacture — a threat to its existence. 

IEEE Std 1149,1 was not only developed to contain testing costs. Basically, it was 
developed because the ability to perform tests and to learn from test results was perceived 
to be under dire threat. 

Once IEEE Std 1149.1 was well along the way in its development, it became clear that 
application notes and other supportive information that could not be properly considered 
part of the standard document were going to be needed. More than a dozen application 
notes were sketched to some degree of completion by members of JTAG, but there was a 
need for much more than that. There was a need to provide a teaching vehicle that would 
provide motivation, history, and theory as well as application suggestions and records of 
successful use. The result of evaluation of these needs is this book. 
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The book is composed of five parts: 

I. "Background." Chapter 1 describes the situation giving rise to the development of 
the IEEE Standard Test Access Port and Boundary-Scan Architecture. Chapter 2 
introduces the boundary-scan technique and shows how it can provide a solution 
to the problems identified in Chapter 1. The technology that was available in the 
literature when JTAG first set to work and the steps in the development of the 
standard are reviewed in Chapter 3. 

II. "Tutorial." Chapters 4 to 6 contain a tutorial introduction to the circuitry defined 
by the standard. 

III. "Applications to Loaded Board Testing." In Parts HE and IV, we have gathered 
material for this tutorial book especially written or rewritten by authors from 
companies that contributed to the creation of the standard. The chapters in Part 
HI discuss the application of IEEE Std 1149.1 to the testing of loaded boards — 
that is, applications in the problem area originally targeted by JTAG. The topics 
discussed in this part of the book include: 

• the structure of a typical board test program; 

• testing and diagnosis of the standardized test logic; and 

• the testing of boards containing components that are incompatible with IEEE 
Std 1149.1. 

IV. "Implementation Examples and Further Applications." In Part IV, we discuss the 
implementation of IEEE Std 1149.1 and give a view of the range of applications of 
the standard beyond board testing. A sampling of topics includes: 

• silicon implementations and related costs; 

• interfacing to scan design and built-in self-test; 

• analog and mixed-signal applications; 

• applications to systems debugging and emulation; and 

• testing throughout the assembly hierarchy: integrated circuit (IC) to system. 

V. "Bibliography and Reprints." The final part of the book contains an extensive 
annotated bibliography and reprints of selected papers. The papers selected describe 
key steps in the development of boundary-scan prior to IEEE Std 1149.1 and 
continue the discussion of applications for the standard. 

IEEE Std 1149.1 was developed for your use. As more engineers and more firms use it, 
it will become more valuable. The more expertise in ATEs, circuit design, catalog ICs, 
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application-specific ICs (ASICs), etc. that is developed collectively, the more we all can 
benefit from reuse of generic solutions to common technological problems. As Harry 
Bleeker did in his foreword to this book, we urge you to use the standard, we urge you to 
participate in its further evolution, and we urge you to do so in the superbly constructive 
and cooperative spirit that has infused JTAG. 

Guard the mysteries. 
Constantly reveal them. 

L. Welch, "Course College Courses: Religion" 

Colin M. Maunder 
British Telecom Research Labs 
Design Technology Division 
Martlesham Heath, Ipswich, UK 

Rodham E. Tulloss 
AT&T Bell Labs 
Engineering Research Center 
Princeton, New Jersey, U.S.A. 
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Part I: Background 

In Part I, the trends in product and test technology that 
motivated the development of IEEE Std 1149.1 are discussed and 
the concept of standardized test-support features at the 
integrated circuit and loaded printed wiring board levels is 
introduced. 

Chapter 1 outlines "traditional" test techniques for loaded 
boards and examines the effects of trends in design-for-test and 
circuit miniaturization. Readers familiar with this material may 
want to move to Chapter 2 where the boundary-scan technique is 
introduced. Chapter 3 concludes Part I with an overview of the 
work of the Joint Test Action Group and, subsequently, of the 
IEEE P1149.1 Working Group. 
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Chapter 1. Test Technology Prior to IEEE Std 1149.1 

1.1: Test Technology for Loaded Boards 

Over the years, the automatic test equipment (ATE) used to test electronic products has 
evolved to cope with continued increases both in the number of integrated circuit packages 
used on, say, a printed wiring board (PWB) and in the complexity of the integrated 
circuits (ICs) themselves. Typically, manufacturers of loaded boards will use high pin 
count in-circuit and functionalf board test systems, either separately or in sequence, to 
detect defects and to enable high quality levels to be achieved in shipped products. 

Using the in-circuit test technique, tests are applied directly to individual components 
by backdriving their connections from other devices in the product. The objective is to 
apply an appropriate test sequence for the component type regardless of the environment 
in which it is used. Direct access is made to the component's outputs to monitor the test 
results, enabling the function of each component in the circuit and the interconnections 
between the various components to be checked. This method reduces the expense of test 
development for each circuit design since, as long as an ICs functionality is not modified 
by externally wired connections (e.g., by direct connection to power or ground), the same 
test can be applied irrespective of where the IC is used. Clearly, the process requires 
extensive access to the circuit, because every connection must be driven and monitored 
directly to apply the tests to the individual components. This access is provided through a 
bed-of-nails interface in which spring-loaded probes are used to make contact with the 
interconnections on the PWB (Figure 1-1). 

In the functional test technique, the principal interface for applying test stimuli and for 
observing circuit responses is that provided by the board's normal terminations — for 
example, the edge connector (Figure 1-2). Access may also be made to connections 
internal to the loaded board, but this is on a more limited scale than that required by an 
in-circuit test system; frequently such access is limited to monitoring, rather than to 
driving, the connection. In contrast with in-circuit testing, the functional test technique is 
able to confirm that the various components used to construct the product interact 
correctly and that the overall required function is achieved. In the process, the correctness 
of both the components in the circuit and their interconnections is verified. However, the 
achievement of a thorough test is a difficult task since tests must be generated separately 
for each board design. This task can be both time-consuming and extremely expensive, 
sometimes prohibitively so [1]. 

f The term "functional" is used to describe test systems that do not require the use of 
backdriving. This includes edge-to-edge functional testing, structural testing, or a 
modular test approach. 
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Figure 1-2: Functional test using the board connector. 

Due to the differences in operation and failure detection capability between the 
in-circuit and functional test techniques, a common approach is to use the two techniques 
in sequence to achieve a high-quality test (Figure 1-3). Initial product screening is 
performed by using an in-circuit test system since this is able to rapidly detect and 
diagnose the most common failures in newly assembled boards — for example, those due 
to soldering errors or to incorrect or wrongly-inserted components [2]. Once a loaded 
board has passed the screening test, it is passed forward to a functional test system where 
checks are made for more complex (and less frequent) failures caused by faulty interaction 
between components. To allow the mix between the two test techniques to be more easily 
optimized for a given product, test equipment that supports both techniques within a 
single system has more recently become available. 

Figure 1-3: Sequential use of in-circuit and functional test. 

1.2: Trends in Design-for-Testability 

We have already remarked on the expense of generating tests, especially for use on 
functional test systems. Because of this, the past decade has seen the development of 
many circuit structures and design techniques that can be used to improve the testability 
of digital circuits, thus reducing the cost of the various test tasks [3]. Perhaps the most 
prominent among these have been scan-design [4], data generation and compaction circuits 
based on linear-feedback shift-registers (e.g., [5,6]), and the development of built-in 
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self-test (BIST) techniques based around the built-in logic block observer (BILBO) [7] 
and other building blocks. For use at the board level, families of components offering 
proprietary test-support features have become available (e.g., [8, 9]). Today, these and 
other techniques are being used to restrain the costs of test development and application 
as the complexity of loaded boards continues to increase. 

Unfortunately, however, many of the techniques are applicable only in situations where 
an organization has the capability to adopt a consistent design-for-testability approach at 
all design levels, from IC to system. For example, the scan-design technique can be used 
at the board level if a complete set of scan-design components is available from which the 
board can be constructed. Typically, however, board designs are constructed from catalog 
ICs obtained from a variety of sources on the open market. Almost without exception, 
these ICs fail to offer the board designer facilities that will assist him to develop tests for 
his circuit. 

For this reason design-for-testability at the board level has been a less structured 
activity than for many complex IC designs. Also, there has been less need for structured 
approaches because of the extensive use of in-circuit test techniques in industry. At the 
board level, the ease of making access through a bed-of-nails fixture has obviated or, at 
least, has significantly delayed the need for more structured techniques to gain access to 
circuit nodes such as those essential in IC testing. 

1.3: The Effect of Miniaturization 

The test techniques for loaded boards discussed in Section 1.1 evolved steadily during a 
period when, although circuit complexity increased rapidly, interconnection technology 
remained relatively static. Thus, automatic test systems began to rely heavily on the 
established dual-in-line package (DIP) and the associated plated-through-hole (FIH) 
PWB. DIP/PTH technology provided the extensive access to component interconnections 
needed by bed-of-nails fixtures or for guided probing during fault diagnosis. 

Recently, however, there has been an increasing trend toward the use of surface-mount 
package designs and PWBs that no longer rely on through-hole connections between their 
layers of printed interconnections [9] and it is now clear that such technology will become 
the norm for the production of complex digital boards in the 1990s. This trend is the 
result of a number of factors, among them the need to produce packages that can 
accommodate high pin-count components and the pressures for continued product 
miniaturization. 

The new interconnection technology has had a considerable impact on current 
loaded-board test techniques primarily due to reduced pin spacings on packages, the fact 
that package pins may no longer be directly accessible during test, and the increased 
density with which packages may be mounted onto the host PWB. As a result, the cost of 
bed-of-nails fixtures for surface-mount boards is high and probing of component 
interconnections can be impossible where components are densely packed. Further, the 
test heads of current board test systems are optimized toward an assumed even distribution 
of test contacts over a large area on one side of a board as required for DIP/PTH 
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technology, whereas surface-mount products may require contact to both sides through 
"toaster" and "clam-shell" style fixtures (e.g., as described in [11]). 

So far, the established test techniques have succeeded in meeting the challenges of 
surface-mount technology (SMT). For example, test fixtures can be constructed to permit 
the use of in-circuit test techniques for surface-mount boards if care is taken in the 
design of the PWB artwork and if components are spaced sufficiently apart from one 
another [12]. However, such fixtures are extremely expensive and the technical problems in 
producing them are increasing as SMT continues to develop. Further, the need to design 
the loaded boards so that they can be probed acts against the area-conserving thrust of 
SMT. 

Looking to the future, the lack of a test methodology that can be applied 
cost-effectively to products formed by surface-mount interconnection of complex 
functions will be a major obstacle to the adoption of the very high-density packaging 
techniques currently under development. Examples of high-density packaging techniques 
include silicon-on-silicon and direct-chip-attach (e.g., [13-16]). 

1.4: The Need for a New Approach 

To summarize, two key factors are having an increasingly adverse effect on the cost of 
testing loaded boards. 

First, the ICs used in such products are becoming increasingly complex and this 
complexity contributes significantly to the difficulty in testing the loaded board. Generally, 
ICs available on the open market do not offer the test support facilities that the board 
producer needs, although some do contain design features (such as self-test capability) 
that could be of considerable interest to the purchaser (e.g., [17,18]). For in-circuit 
testing, it is difficult to perform a comprehensive test of the function of a complex IC due 
to the need to keep the test length sufficiently short that surrounding ICs will not be 
damaged by the backdriving techniques employed during test application [19]. Also, board 
wiring may tie together component inputs — severely restricting the set of usable test 
patterns. 

Second, increasing use is being made of surface-mount interconnection technology, 
where access to connections is considerably more limited than for the established 
dual-in-line technology. It is clear that existing test techniques — particularly in-circuit 
test — will be faced with increasing difficulties as this technology continues to develop. 
In effect, use of SMT is increasing the similarity between ICs and loaded boards from the 
test viewpoint; access to connections is becoming increasingly difficult to achieve. 
Therefore, loaded-board testing must be done increasingly through the normal input and 
output connections in a "functional" manner as is already the case for ICs. 

While the functional test technique is better able to cope with the results of advanced 
surface-mount technology, the technique carries the penalty of requiring generation of 
comprehensive test programs for each separate design. This process is extremely expensive 
for complex boards due to the complexity of controlling and observing individual 
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components through the others on the board. For ICs, where functional testing is the only 
technique that can be used, structured design-for-test techniques (e.g., scan design, 
BIST) are often used to make all parts of a design sufficiently testable by improving either 
controllability or observability or both at critical circuit connections. 

Arguably, therefore, the way forward is to use a structured technique similar to scan 
design or self-test at the board level, rather than through continued evolution of existing 
board test techniques. As we will see in Chapter 2, a version of scan design called 
boundary-scan provides the functionality that would be required. In fact, the 
boundary-scan technique has been used for some time by several companies to solve 
precisely the problems highlighted in this chapter. The advantage that these companies had 
was that they designed their boards entirely (or predominantly) from application-specific 
ICs (ASICs) developed to their own requirements. They were able to design features into 
these ASICs to help solve their board test problems. 

The opportunity of being able to design every board entirely out of ASICs is, however, 
comparatively rare. In most companies, boards are designed primarily using the 
off-the-shelf ICs advertised in vendor catalogs. Therefore, most companies will be able to 
move to use of structured board-level design-for-test techniques only when both ASICs 
and off-the-shelf ICs include the facilities that this requires. Further, it is essential that 
ICs offered by different manufacturers can interact with each other appropriately and 
predictably during the testing of the loaded board. 

A widely-supported standard is therefore essential if the electronics industry at large is 
to make progress in solving the increasing test problems that it faces. The prime objective 
of IEEE Std 1149.1 is to meet this requirement. 
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Chapter 2. An Introduction to Boundary-Scan 

This chapter provides an introduction to boundary-scan. It shows how the technique 
can provide an answer to the problems identified in Chapter 1. 

2.1: Scan Testing at the Board Level 

At the chip level, the scan-design technique can be used to guarantee testability and to 
permit use of automatic test pattern generation (ATPG) tools [1]. Many companies have 
used the technique, some to the extent that every chip on a board is scan testable. In such 
cases, the board can be made scan testable by daisy-chain interconnection of the scan 
paths in the individual integrated circuits (ICs) (Figure 2-1). 

Figure 2 - 1 : Scan design at the board level. 

In these cases, the board design has the same structure as each individual chip — it is 
formed from a combinational logic block and one or more shift-register paths. Test 
generation for the loaded board can, in principle, be approached in exactly the same way 
as for a chip. 

Several problems arise, however. First, the combinational logic block will be many times 
larger than for any individual chip. This will result in increased test generation costs and, 
as the complexity of the product increases, may cause the capacity of the ATPG software 
to be exceeded. Second, test generation costs for the loaded board would be considerably 
reduced if the tests created for stand-alone chip testing could be reused in the board 
environment. Unfortunately, however, this is far from straightforward. Whereas for the 
chip a test may require that a logic 1 is applied at a package pin, at the board level this 
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logic value must be applied by scanning appropriate patterns into the chips that drive the 
signal. Consider, for example, the process of applying a logic 1 to the input of chip D in 
Figure 2-2. This requires that the board-level bus is set to 1, which can be achieved by 
setting the output of one of the driving chips (A, B, or C) to 1 while the others are set to 
high-impedance. These conditions can be achieved by shifting appropriate Is and Os into 
the scan paths of chips A, B, and C. The precise patterns to be shifted in can be 
determined by analysis of the combinational logic network that controls the output of 
each IC. 

Similar problems arise when trying to observe an output from one IC on the board. 
When the IC is tested using automatic test equipment (ATE), the output can be observed 
directly; however, to apply the same test when the chip is on the board the output signal 
must be observed using the scan paths in the ICs that receive the signal. This requires that 
a path is set up through the combinational logic between the inputs of the receiving ICs 
and their internal scan paths, such that the signal can be examined by loading the scan 
path and then scanning the contents out of the board to the ATE. 

Figure 2 - 2 : Testing a board- level bus by using embedded scan paths. 

Consider, for example, the case where a test of component A in Figure 2-2 produces a 
0 at its output. The following actions are necessary to allow the board-level ATE to 
check this result: 
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1. All other ICs that can drive the bus must have their outputs set to 
high-impedance. In this case, this is achieved by controlling the scan paths in 
components B and C. 

2. The signal received at the input to component D must be observed using the 
component's scan path. The combinational logic between the input and the scan 
path must therefore be controlled such that a change at the input from the bus 
produces a corresponding change in the value loaded into one or more scan path 
stages (i.e., so that a sensitive path is set up between the input pin and the scan 
path). This may require conditions to be established at the outputs of other 
components on the board or in the scan path within component D. 

The consequence of the problems just discussed is that a chip test cannot be used 
directly once the IC has been assembled onto a board. A significant amount of 
computation is required to compute the values that must be scanned into and out of the 
other ICs on the board to apply the test. As shown in Figure 2-2, there may be a 
significant amount of logic in the combinational logic networks that drive or are driven by 
any chip pin, particularly where board-level bus structures are involved, such as on a 
microprocessor board. 

The final problem is a practical one — diagnosing the cause of any failures detected so 
that repair is possible. That is, what is the cause of a particular error in the data scanned 
out of the board? Referring to Figure 2-2 again, if an incorrect value is scanned out of 
one of the shift-register stages in chip D, this could be caused by a fault in one of the 
following locations: 

• the shift-register stage in chip D; 

• the combinational logic in chip D; 

• the chip-to-board connections of one of the chips connected to the bus (e.g., an 
open-circuit joint); 

• the board level bus (e.g., a short-circuit to another signal or a broken 
printed-circuit track); 

• the combinational logic in a chip that drives the bus (A, B, or C); or 

• one of the shift-register stages in a chip that drives the bus. 

A more accurate diagnosis can be achieved only by careful analysis of the data scanned 
out of chip D in response to a number of tests. In some cases, further tests may need to 
be generated to achieve an acceptable level of diagnostic accuracy. 
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2.2: The Value of Boundary-Scan 

The problems reviewed above can be overcome by placing a scan shift-register stage 
adjacent to every input or output pin of each chip — that is, at the component 
boundaries. To achieve this, specialized test circuitry may need to be added to an IC 
design between the pin and the logic to which it is connected, as shown in Figure 2-3. 
These test circuits, called boundary-scan cells, are connected into a shift-register path 
around the periphery of the IC. This is called the boundary-scan path. 

Boundary-Scon 
Cells 

Figure 2 - 3 : Inclusion of boundary-scan cells in an IC. 

An example design for a boundary-scan cell is shown in Figure 2-4. Note that the 
boundary-scan cells defined by IEEE Std 1149.1 are more complex than the cell shown 
here. The simplified cell designs used in this chapter only illustrate the processes involved 
in boundary-scan testing. (Chapter 6 describes the constraints within which 
boundary-scan cells compatible with the standard must be designed.) Note also that 
throughout this book (as in IEEE Std 1149.1), signal names that end in an asterisk (e.g., 
Load*) are active-low, while others (e.g., Shift) are active-high. 

Data can flow directly through the boundary-scan cell (from Data_In to Data_Out) 
when normal operation of the component is required. During testing, the cells at output 
pins can be used to drive signal values onto the external network, while those at the input 
pins can capture the signals received. 
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Figure 2-4: A basic boundary-scan cell. 

2.3: Testing a Board with Boundary-Scan 

With boundary-scan cells of the form shown in Figure 2-4, testing could proceed in 
two stages: 

1. Testing interconnections between chips: Test patterns are shifted into the 
boundary-scan cells at component output pins and driven onto the board-level 
interconnections by setting their Test/Normal* inputs to 1. The responses that 
arrive at chip input pins are loaded into their boundary-scan cells (while 
Shift/Load* is 0) and shifted out for examination (while Shift/Load* is 1). By 
careful selection of the test patterns, the interconnections can be tested for 
stuck-at, short-circuit, open-circuit, and other fault types. Figure 2-5 shows a 
circuit that contains a short-to-ground (stuck-at-0) fault and a wire-OR 
short-circuit fault in the board interconnect (e.g., a solder bridge). Table 2-1 
shows some test vectors for these faults. 

2. Testing the chip: Figure 2-6 shows a simple IC that contains a NAND gate. To 
apply tests to this gate, the Test/Normal* control signals for the cells at input pins 
(i.e., pins that drive into the on-chip logic) would be held at 1, while those at 
output pins are held at 0. Test vectors are shifted into the boundary-scan path and 
applied to the gate. The result is then loaded into the cell at the output pin 
(Shift/Load* = 0) and shifted out for examination (Shift/Load* - 1). For the 
NAND gate, test vectors would be as shown in Table 2-2. 

If the target chip is scan testable, then operation of its internal scan path can be 
synchronized to that of the surrounding boundary-scan path during application of the chip 
test. Note that, in contrast to the situation without boundary-scan, the process for 
converting the stand-alone chip tests into a test that can be used on the loaded board is 
simple. It requires only that the correct sequences of Is and 0s are scanned through the 
boundary-scan path. 

Because the board-level interconnections can be tested independently of the circuitry 
within any chip, the problem of fault diagnosis is eased considerably . 
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Figure 2-5: Testing for interconnect faults. 

Table 2 - 1 : Example tests for interconnect faults. 

Input 

xOxOxlxxxxxx 

Output 

Expected 

xxxxxxxx01x1 

xxxxxxxxl0x0 

Actual 

xxxxxxxxllxO 

xxxxxxxx11x0 

NOTE: The rightmost bit of the above data values is shifted into the 
serial input, or out of the serial output, first. Bold type is used to 
highlight the output data bits that are changed by the faults. 
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S e r i a l 
I n p u t 

B o u n d a r y - Scan 
C e l l 

Serial 
O u t p u t 

Figure 2-6: Testing on-chip logic. 

Table 2-2: Example tests for the NAND gate. 

Input 

xlOxxxxx 
xOlxxxxx 
xllxxxxx 

Expected Output 

xxxxx1xx 
xxxxxlxx 
xxxxxOxx 

NOTE: The rightmost bit of the above data 
values is shifted into the serial input, or out of 
the serial output, first. 
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2.4: Boundary-Scan for ICs That Are Not Themselves Scannable 

There will be an increasing number of ICs that are themselves too complex to test 
efficiently via scan testing. Boundary-scan can still handle interconnect testing in such 
situations, but a different chip test strategy is required — hopefully one that produces 
tests that are able to be used at chip, board, and system levels of assembly, both in the 
factory and in the field. 

Testing of board-level interconnections can proceed in exactly the same manner as 
previously described — the boundary-scan cells at output pins apply the test stimulus, 
while those at input pins capture the results. To allow the boundary-scan cells at the 
component's output pins to determine the signals driven from the IC, the Test/Normal* 
controls for those cells are set to l. † 

For the test of the chip, the boundary-scan path assumes the role of the pin electronics 
on a chip tester. Each test pattern that would have been applied to the IC's inputs is 
shifted into the boundary-scan path. When the pattern is in place, the chip is clocked 
once. The test response is then captured into the boundary-scan cells at the IC's output 
pins and shifted out for examination. 

There is a problem that may be significant. The test is applied at a greatly reduced rate 
compared to the stand-alone chip test because of the need to shift patterns and responses 
through the boundary-scan paths. At best, the speed will be reduced by a factor close to 
the number of non-test signal pins on the chip under test; typically, the speed will be tens 
or hundreds of times slower than the maximum possible during chip testing. 

This significant reduction in test application rate can make it impossible to test certain 
types of logic. Even when a test is possible using this approach, the test length may be 
undesirable. Consider the following cases: 

1. An IC that does not contain dynamic logic: ‡ In this case, a slow-speed static test 
can be applied. Static faults (e.g., stuck-at faults or short-circuits) will be 
detected, while other faults that require "at-speed" testing will not be found. As 
already mentioned, the run time for a high coverage test may be significant for a 
complex, high pin-count chip and, as a result, the amount of testing that can be 
achieved economically may be limited. In practice, it may only be possible to apply 
an "are-you-alive?" test of limited fault coverage. 

† Note that it may be advisable to ensure that the signals arriving at the IC's input pins 
during the test do not place the on-chip system logic in a state where damage to the IC 
might occur. For example, if inputs to the on-chip logic are set to conditions that would 
not arise normally, several drivers within the IC may be enabled simultaneously onto a 
single bus. Such problems can be avoided in a number of ways, for example by disabling 
the clock. 

‡ Dynamic logic circuits contain stored-state logic elements (e.g., latches, flip-flops, 
etc.) that do not hold their state indefinitely. Typically, a clock must be applied at a 
specified minimum frequency to prevent the stored-state elements from "forgetting" their 
state. 

18 



2. A self—testing IC: Here, the surrounding boundary-scan paths can be used to 
trigger execution of the self-test, apply any required starting patterns at the chip's 
input pins, and examine the test results. The chip is tested to the same extent as 
when the self-test is executed; there need be no reduction in test quality. The 
relatively low test throughput of the boundary-scan path is not a problem because 
data are shifted only at the beginning and end of the test. 

As we will see from the application examples in Parts HI and IV of this book, 
boundary-scan and self-test together provide an excellent solution to chip and 
loaded-board testing. The boundary-scan path isolates the on-chip logic from 
neighboring ICs while the self-test runs in addition to allowing chip-to-chip 
interconnections to be tested. Self-test can provide a high-quality test of the 
on-chip system logic. A standard boundary-scan architecture and protocol 
provides a gateway to reusable self-test and, by providing added leverage for 
system-house purchasers, encourages development and use of self-test technology 
by IC suppliers. 

3. An IC that contains dynamic logic: Due to the low test application rate, it is not 
practical to use the boundary-scan path to test a chip that contains dynamic 
circuitry unless self-test features are available. The operation of dynamic circuitry 
depends on the ability to store a charge on internal chip connections. After a 
relatively limited period of time, this charge will decay, resulting in incorrect 
operation of the component. Therefore, a minimum clock rate is generally specified 
for dynamic logic circuits, and it might be impossible to achieve this clock rate 
where test patterns are being shifted in and out by using the boundary-scan path. 
An exception would be where the chip could be placed in a "hold" mode while 
each test was shifted such that the clock could continue to be applied to the 
on-chip logic without changing its state. 

In summary, boundary-scan can be used to test board interconnections whether or not 
the chips themselves are designed to be scan testable. Self-test and scan testable ICs can 
be tested on the board by using their boundary-scan paths just as effectively as they can 
be stand-alone tested. Without scan or self-test, some limited tests can be performed on 
static logic designs, but, in such cases, on-board testing of dynamic logic might be 
impractical. 

2.5: Boundary-Scan Compared to In-Circuit and Functional Test 

As was discussed in Chapter 1, the motivation for producing a standard form of 
boundary-scan was to address the problems of increasing IC complexity and of reducing 
product size. We have seen that boundary-scan techniques can be used to apply tests to 
digital circuit boards without the necessity of extensive physical access (e.g., using a 
bed-of-nails), but how effective are these tests? What is the fault coverage and diagnostic 
resolution of these tests? 

Figure 2-7 illustrates the region tested by using an in-circuit test system. Typically, the 
loaded board is tested for shorts between interconnections (i.e., between bed-of-nails 
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probes of which there is often only one per net) before power is applied. For complex 
interconnections, the number of potential faults that is tested during each test will be 
quite large, and may include faults in segments of interconnect that are provided solely for 
test purposes (e.g.,, branches leading only to test pads). When power has been applied, 
tests are applied by using backdriving techniques on a chip-by-chip basis to the various 
ICs on the board. These tests detect many faults in the board interconnections 
(open-circuits, stuck-ats, etc.) and some defects in the chips. The precise coverage will 
depend on the quality of the test applied, and the speed of application. 

Bed-of-Noiis 
Probe 

Region Tested for 
Opens, Faulty or Wrong ICs, etc. 

Region Tested for Shorts, Stuck-ots 

Figure 2-7: Test coverage using an in-circuit tester. 

Virtual Probe Points 

Region Tested 
for Faulty ICs, etc. 

Region Tested for Opens, 
Shorts, Driver/Receiver Faults 

Figure 2-8: Test coverage using boundary-scan. 

Figure 2-8 shows the regions tested by the interconnect and component boundary-scan 
tests. As for the in-circuit test, the quality of the test performed on each component will 
vary — in this case, depending on the type of chip concerned. For example, ICs that 
offer a self-test facility will probably be tested more thoroughly than those tested by 
shifting patterns in and out through the boundary-scan path. Note that the chip-to-chip 
interconnect test will detect faults both in the interconnection itself and in the drivers and 
receivers of the chips at each end, covering those parts of the chips and the board that are 
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most likely to be incorrectly manufactured or damaged during either chip or board 
assembly, or later in the product's life. 

Regardless of whether in-circuit test or boundary-scan is used, errors in "at speed" 
interactions between chips will not be thoroughly tested — each IC on the loaded board 
is tested in isolation from all others. Therefore, it might be necessary to follow both 
in-circuit and boundary-scan tests with a further test that exercises the complete loaded 
board in its normal operating mode. This test could be applied by using a functional test 
system, or it could be a board-level self-test (e.g., applied by a microprocessor on the 
board running some specially-designed test firmware). Note, however, that this functional 
test can normally be accomplished without the necessity for extensive bed-of-nails contact 
with the board; contact through the board connector, etc. is usually sufficient. In cases in 
which it is possible, another option is to design ICs so that they form groups that can be 
treated as self-testing "meta-components" or clusters during board test. 

2.6: Reference 

[1] E.B. Eichelberger and T.W. Williams, "A Logic Design Structure for LSI 
Testability," Journal of Design Automation and Fault—Tolerant Computing, Vol. 2, 
No. 2, May 1978, pp. 165-178. 
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Chapter 3. The Development of IEEE Std 1149.1 f 

The effort of establishing IEEE Std 1149.1 began with the creation of an ad-hoc group 
of systems electronics companies. This group became the Joint Test Action Group 
(JTAG) and, subsequently, the core of the IEEE Working Group that developed IEEE 
Std 1149.1. 

In this chapter, we will review the steps in the technical development of IEEE Std 
1149.1, from the formation of the JTAG through publication of the IEEE Standard. As 
shown in Figure 3-1, the technical activity developed in four key steps and each will be 
reviewed in turn in the following sections. Note that the development of the standard has 
continued since its approval, with the aim of extending the functionality of the circuitry 
described and of improving the clarity of the document. 

3.1: The Joint Test Action Group 

JTAG was set up following a paper by Frans Beenker of Philips Research Labs in 1985 
[1,2]. He discussed the need for a structured approach to loaded-board testing and 
considered the value of boundary-scan as a solution to the problems he identified. 

The initial JTAG meeting was attended by representatives from several major European 
electronics companies. By the end of 1986, however, JTAG had become an international 
group involving both European and North American companies, all of whom were seeking 
solutions for the test problems in hybrid and loaded-board products created by the 
combination of complex integrated circuits (ICs) and surface-mount technology. During 
1986, JTAG members decided the problems they were facing could be solved if a 
standardized form of boundary-scan was available that allowed correct test interaction 
between various vendor's ICs. 

3.2: JTAG Version 0 

The initial JTAG proposal [3] was created by Frans Beenker (Philips Research Labs, The 
Netherlands), Chantal Vivier (Bull Systemes, France), and Colin Maunder (British 
Telecom Research Labs, UK) in June 1986, based on their understanding of work done 
with boundary-scan in their respective companies and of other material published 
internationally. Among the developments reviewed were the following: 

• IBM: Chip partitioning aid (CPA) [4]. 

• IBM: Electronic chip in place test (ECIPT) [5] 

• Control Data Corporation: On-chip maintenance system (OCMS) [6] 

f The text of this chapter is derived from a segment of the IEEE Satellite Seminar 
Chip-to-System Testability transmitted March 1, 1989. 
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Figure 3 - 1 : The development of IEEE Std 1149.1. 

• STC Computer Research Corporation: Shift test control logic (STCL) [7]. 

• Bull Systemes [8]. 

• Control Data Corporation: Built-in evaluation and self-test (BEST) [9]. 

• Hewlett-Packard [10]. 

The proposal was for an architecture based on a single serial shift-register path and was 
targeted solely at boundary-scan testing, as shown in Figure 3-2. 
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C o n t r o 1 
C e l l s 

B o u n d a r y - S c a n 
C e l l s 

Figure 3-2: JTAG version 0.1 architecture. 

The serial path was constructed from two control register cells and a number of 
boundary-scan register cells — one for each system input or output of the chip. The 
control cells allowed the boundary-scan cells to be set into three operating modes: 

• the exterior test mode that allowed the interconnections between chips on a loaded 
board to be tested; 

• the interior test mode that allowed slow-speed static testing of the logic within the 
chip; and 

• the normal operation mode where the boundary-scan cells were configured to allow 
the system function of the chip to occur unimpeded. 

Five pins were required for this architecture: 

• A test mode control, boundary-scan enable (BSE), that enables the boundary-scan 
circuitry. 

• A test clock, boundary-scan clock (BSC). 

• A signal to select between loading and shifting of the boundary-scan path — 
boundary apply/scan (BAS). 

• A serial data input, boundary-scan input (BSI). 

• A serial data output, boundary-scan output (BSO). 
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This architecture was very simple, but its functionality was limited. It was soon clear 
that a more complex design would be needed. 

3.3: JTAG Version 1.0 

Over the following year, JTAG members worked on this straw-man proposal — 
eventually forming the Technical Sub-Committee to focus on the technical development 
activities. During this period, Lee Whetsel from Texas Instruments (TI) joined the 
Technical Sub-Committee, bringing with him the initial designs for TI's SCOPE 
architecture [11] — a boundary-scan design developed in TI's Military Products Division. 

The JTAG proposal was improved and extended to include a number of inputs from the 
SCOPE design and other sources, resulting in the JTAG version 1.0 proposal [12] — the 
first document to be widely mailed in Europe and North America. 

Figure 3 -3 : JTAG version 1.0 architecture. 

The version 1.0 architecture (Figure 3-3) included two key features in addition to those 
of the initial design: 

The design allowed the serial path through the chip to be short-circuited under 
control of one or more select bits placed at the head of the path. This feature 
allows a chip to be bypassed when it is not involved in a particular test, with the 
result that the volume of test data can be significantly reduced. The control and 
boundary-scan segments of the path are accessed only when necessary. 
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2. The design allowed the serial path to be extended by adding shift-register stages at 
its tail end, between the boundary-scan cells and the multiplexer shown in Figure 
3-3. This feature allows design-for-test features other than the boundary-scan 
register to be accessed, increasing the scope and value of the proposal considerably. 
For example, access to embedded self-test features in a design is now possible by 
using the same pins as those provided for boundary-scan. 

3.4: JTAG Version 2.0 

The version 1.0 proposal was discussed widely both in Europe and North America and 
was the subject of a paper at the 1987 IEEE International Test Conference (ITC) [13]. 
Also, at ITC in 1987 an evening meeting was arranged to allow discussion of the JTAG 
proposal. This was attended by more than 100 engineers from many electronics companies. 

At that evening meeting, and at working meetings hastily arranged later during the 
conference week, a number of key suggestions for improvements and extensions to the 
proposed design were made. These included input from Digital Equipment Corporation 
(DEC) and from a number of people involved in the development of the United States 
Department of Defense's VHSICt Element Test and Maintenance Bus — the ETM-Bus 
[14]. 

The principal suggestion was that the design should be altered to allow efficient access 
to any serial design-for-test circuitry embedded in a chip. Simply, given that a number of 
package pins need to be dedicated to test to provide access to the boundary-scan cells, 
the objective is to exploit these pins to the fullest extent possible. 

The JTAG version 2.0 architecture [15,16,17] (Figure 3-4) is structurally identical to the 
design embodied in IEEE Std 1149.1. Since the detail of the standard is presented in Part 
II, the discussion here is intended only to highlight the changes between JTAG version 1.0 
and JTAG version 2.0. 

In contrast to the earlier architectures, the JTAG version 2.0 design was based on 
parallel instruction and test data registers located between common serial input and output 
pins. 

The instruction register provides the functions of the select and control registers of the 
earlier designs and is also extensible to meet the particular needs of any chip. The 
alternative path consists of a parallel bank of test data registers, each of which can be 
accessed when an appropriate instruction is loaded into the instruction register. The bank 
of test data registers can support a whole range of test, maintenance, and other functions 
embedded in the chip design — in addition to the boundary-scan test capability that was 
the prime focus of JTAG activity from the outset. 

f VHSIC - Very high-speed integrated circuit 
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Figure 3-4: JTAG version 2.0 architecture. 

Also, the minimum requirement for dedicated test pins has been reduced from five to 
four compared to the earlier designs. This change reflects the widely-held view that the 
number of pins dedicated to test must be kept to the absolute minimum. 

3.5: IEEE Std 1149.1 

Late in 1987, JTAG decided to approach the IEEE to discuss the possibility of 
formalizing their technical proposal as an IEEE Standard. As a result of this approach, 
the JTAG proposal became one of a range of testability approaches being developed by 
the IEEE Testability Bus Standards Committee. At the same time, the JTAG Technical 
Sub-Committee became the core of the working group responsible for the further 
development of the JTAG proposal as IEEE Draft Standard P1149.1. 

Technical changes made by the Working Group prior to approval of the standard 
concentrated on the detailed design of the boundary-scan register, the instruction set, the 
device identification register, and on the integration of built-in self-test features within 
the overall design. 
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Part II: Tutorial 

Part II provides a tutorial introduction to the circuitry defined 
by IEEE Std 1149.1. The material is a considerably reduced 
description compared to that given in the standard itself. It is 
therefore strongly recommended that readers intending to build 
an integrated circuit that conforms to the standard consult a copy 
of IEEE Std 1149.1 before doing so. 

Copies of the standard may be obtained from: IEEE Standards 
Department, P.O. Box 1331, 445 Hoes Lane, Piscataway, New 
Jersey 08855-1331, U.S.A. 
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Chapter 4. IEEE Std 1149.1: The Top-Level View 

This chapter provides an introduction to the test circuitry defined by IEEE Std 1149.1 
and shows how it can be used to perform a number of basic test operations. The chapter 
also indicates how further test circuitry can be added to that specified by the standard to 
allow access to test functions beyond the minimum required. 

4.1: The IEEE Std 1149.1 Architecture 

The top-level schematic of the test logic defined by IEEE Std 1149.1 includes three key 
blocks (Figure 4-1): 

Figure 4 - 1 : IEEE Std 1149.1 test logic. 

The TAP controller: This responds to the control sequences supplied through the 
test access port (TAP — see below) and generates the clocks and control signals 
required for correct operation of the other circuit blocks. 

The instruction register: This shift-register-based circuit is serially loaded with the 
instruction that selects a test to be performed. 

• The test data registers: This is a bank of shift-register based circuits (Figure 4-2). 
The stimuli or conditioning values required by a test are serially loaded into the test 
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data register selected by the current instruction. Following execution of the test, the 
results can be shifted out for examination. 

Clock and Control Signals 
from Instruction Register, 

TAP Controller, etc. 

Figure 4-2: Test data registers. 

These circuit blocks are connected to a TAP which includes the four or, optionally, five 
signals used to control the operation of tests and to allow serial loading and unloading of 
instructions and test data. The role of the TAP on an integrated circuit (IC) is directly 
analogous to the "diagnostic" socket provided on many automobiles — it allows an 
external test processor to control and to communicate with the various test features built 
into the product. 

In addition, the test data registers can be connected to the system circuitry within the 
chip (i.e., the circuitry that performs the particular function, other than test, for which 
the chip was designed) or to the pins that are connected to the system circuitry. These 
connections allow tests of the system circuitry to be performed. The operation of the test 
data register is described in Section 4,5. 

The following sections discuss the TAP and the main circuit blocks in more detail. 
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4.2: The TAP 

The TAP contains four or, optionally, five pins. These are: 

• The test clock input (TCK): This is independent of the system clock(s) for the chip 
so that test operations can be synchronized between the various chips on a printed 
wiring board. Both the rising and falling edges of the clock are significant: the rising 
edge is used to load signals applied at the TAP input pins (test mode select(TMS) 
and test data input (TDI)), while the falling edge is used to clock signals out 
through the TAP test data output (TDO) pin. As will be discussed in Chapter 6, 
the boundary-scan register defined by the standard is controlled such that data is 
loaded from system input pins on the rising edge of TCK while data are driven 
through system output pins on the falling edge. 

• The test mode select input (TMS): The operation of the test logic is controlled by 
the sequence of Is and Os applied at this input, with the signal value typically 
changing on the falling edge of TCK. As will be discussed in Section' 4.3, this 
sequence is fed to the TAP controller which samples the value at TMS on each 
rising edge of TCK and which uses this information to generate the clock and 
control signals required by the other test logic blocks. TMS is either equipped with 
a pull-up resistor or otherwise designed such that, when it is not driven from an 
external source, the test logic perceives a logic 1. 

• The test data input (TDI): Data applied at this serial input are fed either into the 
instruction register or into a test data register, depending on the sequence previously 
applied at TMS. Typically, the signal applied at TDI will be controlled to change 
state following the falling edge of TCK, while the registers shift in the value 
received on the rising edge. Like TMS, TDI is either equipped with a pull-up 
resistor or otherwise designed such that, when it is not driven from an external 
source, the test logic perceives a logic 1. 

• The test data output (TDO): This serial output from the test logic is fed either from 
the instruction register or from a test data register depending on the sequence 
previously applied at TMS. During shifting, data applied at TDI will appear at TDO 
after a number of cycles of TCK determined by the length of the register included 
in the serial path. The signal driven through TDO changes state following the falling 
edge of TCK. When data are not being shifted through the chip, TDO is set to an 
inactive drive state (e.g., high-impedance). 

• The optional test reset input (TRST*): The need to be able to initialize a circuit to a 
known starting state (the "reset" state) is crucial in testing. As will be discussed in 
Section 4.3, the TAP controller is designed so that this state can be quickly entered 
under control of TCK and TMS. The standard also requires that the test logic can 
be initialized at power-up independently of TCK and TMS. This can be achieved 
either by building features into the test logic itself (e.g., a power-up reset circuit) 
or by adding the optional TRST* signal to the TAP. Application of a 0 at TRST* 
asynchronously forces the test logic into its reset state. Note that, in this state, the 
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test logic cannot interfere with the operation of the on-chip system logic, so TRST* 
can also be viewed as a "test mode enable" input. 

By loading the signals applied to the test logic through chip input pins (e.g., through 
TMS and TDI) on the rising edge of TCK, while using the falling edge to clock signals out 
through chip output pins (such as TDO), operation of the IEEE Std 1149.1 test logic can 
be made race-free. For example, when chips compatible with the standard are serially 
connected (e.g., as in Figure 4-3) data are applied to TDO by the first chip one half cycle 
of TCK prior to the time when they are loaded from the TDI input of the second. This 
allows time to account for delays in the serial path, skew between the clocks fed to the 
neighboring ICs, and other factors. 

Figure 4-3: Simple serial connection of IEEE Std 1149.1-compatible ICs. 

Since TDO is set to an inactive drive state when no data are being shifted, the TAPs of 
individual chips can, if required, be connected to give parallel serial paths at the board 
level (e.g., as shown in Figure 4-4). In such cases, a different TMS signal is required for 
each serial path. These signals should be controlled such that no two paths attempt to 
shift data simultaneously. 

Figure 4-4: Hybrid serial/parallel connection of IEEE Std 1149.1-compatible ICs. 
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At the board level, the test signals can be controlled either by external automatic test 
equipment (ATE) or by an on-board bus-master chip. In the latter case, the bus-master 
chip might provide an interface between the interface defined by the IEEE Std 1149.1 
TAP and some higher level test and maintenance messaging system (Figure 4-5) [e.g., [1]). 

Figure 4 -5 : Use of a bus-master chip to control ICs compatible with IEEE Std 
1149.1. 

4.3: The TAP Controller 

A key goal during the development of IEEE Std 1149.1 was to keep the number of pins 
in the TAP to a minimum, based on the knowledge that many ICs are pin- (rather than 
silicon-) limited. As test engineers are only too aware, designers are always reluctant to 
allocate pins for test purposes. 

The TAP controller allows us to meet this goal. It is a 16-state finite state machine that 
operates according to the state diagram shown in Figure 4-6. Note that in the states 
whose names end "—DR" the test data registers operate, while in those whose names end 
"-IR" the instruction register operates. A move along a state transition arc occurs on every 
rising edge of TCK. The Os and Is shown adjacent to the state transition arcs show the 
value that must be present on TMS at the time of the next rising edge of TCK for the 
particular transition to occur. 
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NOTE: The value shown adjacent to eoch state transition in this 
figure represents the signal present at TMS at the time of a 
rising edge at TCK. 

Figure 4-6: State diagram for the TAP controller. 

Eight of the 16 controller states determine operation of the test logic, allowing the 
following test functions to be performed: 

• Test—Logic—Reset: In this controller state, all test logic is reset. As mentioned 
earlier, when the test logic is reset, it is effectively disconnected from the on-chip 
system logic, allowing normal operation of the chip to occur without interference. 
Regardless of the starting state of the TAP controller, the Test—Logic—Reset 
controller state is reached by holding the TMS input at 1 and applying five rising 
edges at TCK. Further, this controller state must be entered automatically when 
power is applied to a chip that does not have the optional TRST* input. 
Alternatively, where TRST* is provided, it can be used to force the controller 
asynchronously into the Test—Logic—Reset controller state both at power-up and at 
any desired point during circuit operation. 

• Run—Test/Idle: The operation of the test logic in this controller state depends on 
the instruction held in the instruction register. When the instruction is, for example, 
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one that activates a self-test, then the self-test will be run when the controller is in 
this state.t In another case, if the instruction in the instruction register is one that 
selects a data register for scanning, then the test logic is idle in the Run — Test/'Idle 
controller state. 

• Capture—DR: Each instruction must identify one or more test data registers that are 
enabled to operate in test mode when the instruction is selected. In this controller 
state, data are loaded from the parallel input of these selected test data registers 
into their shift-register paths on the rising edge of TCK. 

• Shift-DR: Each instruction must identify a single test data register that is to be 
used to shift data between TDI and TDO in the Shift-DR controller state. Shifting 
allows the previously captured data to be examined and new test input data to be 
entered. Shifting occurs on the rising edge of TCK in this controller state. In the 
Shift-DR controller state, the TDO output is active (it is inactive in all other 
controller states except the Shift—IR state). 

• Update-DR: This controller state marks the completion of the shifting process. 
Some test data registers may be provided with a latched parallel output to prevent 
signals applied to the system logic, or through the chip's system pins, from rippling 
while new data are shifted into the register. Where such test data registers are 
selected by the current instruction, the new data is transferred to their parallel 
outputs on the falling edge of TCK in this controller state. 

• Capture—IR, Shift—IR, and Update—IR: These controller states are analogous to 
Capture—DR, Shift—DR, and Update—DR respectively but cause operation of the 
instruction register. By entering these states, a new instruction can be entered and 
applied to the test data registers and/or other specialized circuitry. This instruction 
becomes "current" on the falling edge of TCK in the Update—IR controller state. 

The actions of the instruction and test data registers in each of these controller states 
will be described in more detail in the following sections of this chapter. Figure 4-7 shows 
where the actions described occur in each controller state. 

In the remaining eight controller states, no operation of the test logic occurs - that is, 
the test logic is "idle." The "pause" states {Pause-DR and Pause-IR) are provided to allow 
the shifting process to be temporarily halted, for example while an ATE or other 
equipment controlling the test logic fetches more test data from backup memory (e.g., 
disc). 

f Note: An important goal in the development of IEEE Std 1149.1 was to allow 
built-in self-test (BIST) functions to be integrated within the test logic. As was discussed 
in Chapter 2, the combination of BIST and boundary-scan is especially powerful — 
allowing effective testing of ICs once they have been mounted on a board. 
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Figure 4-7: The timing of events within a controller state. 

The final six controller states (Select-DR-Scan, Select-IR—Scan, Exitl-DR, Exitl-IR, 
Exit2-DR, and Exit2-IR) are decision points that allow choices to be made as to the 
route to be followed around the controller's state diagram. For example, in the Exitl—DR 
controller state a choice is made, depending on the signal applied at the TMS input, 
between entry into the Pause—DR state or entry into the Update—DR state. 

Without the TAP controller, the nine functions fulfilled by the states previously 
described (Test-Logic-Reset, Run-Test, and Idle plus Capture, Shift, and Update for the 
two register types) would need to be selected by using at least four control inputs. With 
the TAP controller, only one control input (TMS) is required. The penalties are that a 
certain amount of logic must be built into every component to decode the signals received 
at TMS and that the ability to move between the functions is slightly constrained. Neither 
of these penalties is severe, however. As shown by the example controller implementation 
in Figures 4-8 and 4-9, construction of the controller requires only approximately 80 
2-input NAND gates, † This is a small cost in the context of a complex very-large scale 
integration (VLSI) IC that can contain upwards of 250,000 gates. 

The restriction in the freedom to move arbitrarily between test operations is similarly 
not a significant one since freedom would, in many cases, be removed as a result of 
simplification of the software written to control the test logic. 

The encoding of the controller states for the example controller implementation is 
shown in Table 4-1 . 

† For the remainder of this part of the book, implementation examples will be given 
that are compatible with the TAP controller implementation included here. 
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Figure 4-8: An example implementation of the TAP controller: Part 1. 
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Figure 4-9: An example implementation of the TAP controller: Part 2. 
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Table 4-1: State assignments for the example TAP controller. 

Controller state 

Exit2-DR 
Exitl-DR 
Shift-DR 
Pause-DR 
Select-IR-Scan 
Update-DR 
Capture-DR 
Select-DR-Scan 
Exit2~IR 
Exitl-IR 
Shift-IR 
Pause-IR 
Run-Test/Idle 
Update-IR 
Capture-IR 
Test-Logic-Reset 

DCBA (hex) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

4.4: The Instruction Register 

The instruction register provides one of the alternate serial paths between TDI and 
TDO. It operates when the instruction scanning portion of the controller state diagram is 
entered (i.e., the portion where state names end "—IR"). 

The instruction register allows test instructions to be entered into each component along 
the board-level path. The instruction registers are daisy-chained together at the board 
level in the Shift—IR controller state (Figure 4-10), so a different instruction can be 
loaded into each chip on the path if required. Although it is unnecessary for each IC to 
be executing the same instruction at any given time, because instructions are shifted into 
all ICs on a single serial path at the same time, loading and execution of the instructions 
for each IC must be synchronized. For example, all ICs controlled by a single TMS signal 
must be simultaneously in the Shift-IR controller state. 
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Figure 4-10: Daisy-chain connection of instruction registers. 

4.4.1: Instruction Register Design 

At the core of the instruction register's design is a shift register that must contain at 
least two stages (shown cross-hatched in Figure 4-11). No maximum length is defined, 
since this will be determined by the number of test instructions provided by the particular 
chip. 

Optional Stages Mandatory Stages 

— Status Data— G 1 

Current Instruction 

Figure 4-11: The instruction register. 

The standard requires that stages I1 and I0 † must be set to 0 and 1 respectively on the 
rising edge of TCK in the Capture-IR controller state. These fixed values assist in 
detecting and locating faults in the serial path through chips on a board, as will be 
discussed in Chapter 9. Instruction register stages numbered I2 or greater are optional and 
can have a parallel input from which data (typically, status information) are loaded. 

Each shift-register stage in the instruction register might be designed as shown in Figure 
4-12. 

† Note that, within IEEE Std 1149.1, the convention is used that the least significant 
bit is that written or read from the shift-register stage closest to TDO. In addition, the 
least significant bit is numbered 0. For example, if the instruction register is named I the 
least significant stage is named I0 and a minimum instruction register design must have 
stages I1 and I0. 
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ShiftIR 

Data 
From Lost Cell 

ClockIR 
UpdateIR 

TRST* 
Reset* 

Figure 4-12: An example instruction register cell. 

Each stage has a latched parallel output to which instructions are transferred when they 
are valid (i.e., on the falling edge of TCK in the Update—IR controller state — at this 
time, the example TAP controller changes the UpdateIR signal from 0 to 1). The provision 
of a latched output means that the remaining test logic receives only valid instructions — 
it does not see the changing contents of the shift-register while the new instruction is 
shifted in. The reset input shown to the parallel output register in Figure 4-12 forces a 0 
onto the instruction register's output when the TAP controller enters the 
Test—Logic—Reset controller state (when the example TAP controller applies a 0 to 
Reset*). If this state is entered as a result of signals received at the TCK and TMS inputs, 
then the reset occurs on the falling edge of TCK. If, on the other hand, the state is 
entered through use of the optional TRST* input (or on power-up), then the reset will 
occur immediately on entry into the state. Note that some instruction register cells might 
need to be designed to have preset, rather than reset, capability for the latched parallel 
output. This is necessary because the standard requires that the instruction present at the 
register's parallel output in the Test-Logic-Reset controller state must be the IDCODE 
or, if the optional device identification register is not provided, the BYPASS instruction 
(see Chapter 5). 

4.4.2: Instruction Register Operation 

Figure 4-13 gives a view of the sequence of events involved in loading a new instruction 
into the test logic, starting from the Test-Logic-Reset controller state. This figure shows 
the signals applied to and generated by the example TAP controller design included in 
Section 4.3. The hexadecimal characters shown for signal "State" show the movement 
between certain of the 16 TAP controller states as represented by the states of the four 
state flip-flops in Figure 4-8 and summarized in hexadecimal encoding in Table 4 -1 . 

I n s t r u c t i o n 

To Next Ce l l 
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Figure 4-13: Loading a new instruction. 

In the example of Figure 4-13, the circuit begins in the Test—Logic—Reset controller 
state. Instruction register scan is selected by manipulation of the signal applied to TMS. 
The scanning is interrupted by a pause and then continued. (Note the two periods of 
activity of ClockIR separated by a quiescent period.) Finally, instruction register scanning 
is completed and the TAP controller is taken to the Run — Test/Idle controller state. 

Note that the new instruction becomes current on the rising edge of the UpdatelR 
signal from the TAP controller (i.e., on the falling edge of TCK in the Update—IR 
controller state). 

4.5: The Test Data Registers 

The test logic design provides for a bank of test data registers as shown in Figure 4-2. 
IEEE Std 1149.1 specifies the design of three test data registers, two of which must be 
included in the design. The mandatory test data registers are the bypass and 
boundary-scan registers. The provision of a device identification register is optional and 
further design-specific test data registers can be added as appropriate to a given design. 
The design-specific registers can be a part of the on-chip system logic and can have both 
system and test functions. 

46 



The design of the three test data registers specified by the standard is discussed in 
Chapters 5 and 6. In this section, the general design characteristics that apply to all test 
data registers (including design-specific registers) are described. 

4.5.1: The Control of Test Data Registers 

The operation of the various test data registers is controlled according to the instruction 
present at the output of the instruction register. An instruction can place several test data 
registers into their test mode of operation, but it might select only one register for 
connection as the serial path between TDI and TDO in the Shift-DR controller state. 

IEEE Std 1149.1 requires that each named test data register must have a defined length 
(number of shift-register stages) and a defined set of operating modes. Thus, it will 
appear the same whenever it is accessed. 

In practice, several test data registers can be constructed out of the same circuitry, for 
example, as shown in Figure 4-14. This circuit contains three test data registers: 

1. a six stage register formed by enabling shifting through all six stages; 

2. a three stage register formed from stages 2, 1, and 0; and 

3. a three stage register formed from stages 5, 4, and 3. 

This is acceptable provided the three test data registers are given unique names and each 
individually meets all the requirements of the standard. Therefore, some test data registers 
within an IC might appear as identifiable, dedicated circuit blocks while others might be 
"virtual" — that is, they only exist when they are required by the current instruction. 

Figure 4-14: Sharing of circuitry between test data registers. 

Decoded Signals from 
Instruction Register 
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4.5.2: Test Data Register Operation 

All test data registers operate according to the same principles: 

• Registers that are not enabled for test operation by the current instruction are 
configured so that they do not interfere with operation of the on-chip system logic. 
Where a register can operate in either a system or test mode, the system mode will 
be selected whenever the register is not required by the current test instruction. 
Because test data registers might not actually exist as distinct circuit blocks when 
they are not enabled (they can share circuitry with each other or with the system 
logic), they should be considered to have been left in an undefined, but safe (with 
respect to the system logic), state. 

• The registers enabled for test operation by the current instruction will load data 
from their parallel inputs (if any) on the rising edge of TCK in the Capture-DR 
controller state, and will make any new data available at their latched parallel 
outputs (if any) on the falling edge of TCK in the Update—DR controller state. In 
other words, the results of a test are sampled in the Capture—DR controller state 
and the new test stimulus is available, at the latest, in the Update—DR controller 
state. Where test execution is required between the Update—DR and Capture—DR 
controller states (e.g., execution of a self-test), this occurs in the Run —Test/Idle 
state. 

• The register selected by the instruction selects to be the serial path between TDI 
and TDO will shift data from TDI towards TDO in the Shift-DR controller state. 
Other test data registers enabled for test operation will hold their state while 
shifting occurs. 

Figure 4-15 gives a view of the sequence of events involved in loading new test data into 
a selected test data register. We might imagine that Figure 4-15 is simply a continuation of 
Figure 4-13 which left the TAP controller in the Run-Test/Idle controller state after an 
instruction had been entered to select a data register. As in the earlier example, the 
shifting is done in two parts separated by a pause. (Note the activity on ClockDR.) At 
the completion of the shifting process, the UpdateDR signal goes active. This example 
ends with the controller being returned to the Test—Logic—Reset controller state. 
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TMS 

TDI/TDO 

State 

Reset* 

ClockIR 

ShiftIR 

UpdotelR 

ClockDR 

ShiftDR 

UpdateDR 

Se leet 

Enable 

4.6: Reference 

Figure 4-15: Loading new test data. 

[1] IBM, Honeywell, and TRW, VHSIC Phase 2 Interoperability Standards: TM-Bus 
Specification — Version 3.0, November 9, 1987 (available from J.P. Letellier, 
Naval Research Laboratory, Code 5305, Washington DC 20375, U.S.A). 
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Chapter 5. The Bypass and Device Identification Registers 

This chapter describes two of the test data registers defined by IEEE Std 1149.1: the 
mandatory bypass register and the optional device identification register. The standard also 
defines three instructions for these registers: BYPASS, IDCODE, and USERCODE. These 
instructions are discussed below. 

5.1: The Bypass Register 

The bypass register must be present in all chips that conform to the standard. It 
provides a minimum length path between the test data input (TDI) and test data output 
(TOO) pins and can be accessed when there is no requirement to use another test data 
register in the chip. This allows data to be shifted through the chip without interfering 
with its system operation. 

The bypass register consists of a single shift-register stage that loads a constant logic 0 in 
the Capture-DR controller state when the BYPASS instruction is selected. IEEE Std 
1149.1 defines the binary code for the BYPASS instruction to be "all-Is" (i.e., a logic 1 
entered into each stage of the instruction register). 

The bypass register might be implemented as shown in Figure 5-1. 

From TDI 
S h i f t D R 

ClockDR 

Figure 5 - 1 : An example design for the bypass register. 

The bypass register does not have a parallel data output so there is no significance to the 
data present in the register when shifting is completed. Its operation cannot interfere with 
that of the on-chip system logic. 

5.1.1: Use of the Bypass Register 

As an example of an occasion when the bypass register might be used, consider a board 
containing 100 integrated circuits (ICs), all with boundary-scan and connected into a 
single serial chain, a small part of which is shown in Figure 5-2. Assume that a need arises 
to access a test data register located in IC57, but that it is desired not to interfere with 
the operation of the remaining 99 ICs. (An example of such a situation might be when the 
target chip includes a "shadow" test data register that permits the state of its key internal 
registers to be read.) 

To TDO 
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IC56 IC57 IC58 

Figure 5-2: Use of the bypass register. 

In this case, the required instruction would be loaded into IC57, with the BYPASS 
instruction being loaded into the other ICs. The serial bit stream shifted into TDI during 
the instruction scanning cycle would be: 

111 .1111CCC...CCC1111 I l l 

where CCC...CCC is the instruction to be loaded into IC57. As a result of use of the 
"all-Is" value for the BYPASS instruction, the complexity of the bit stream input to the 
serial path is considerably reduced. This is an important consideration, since it reduces the 
data storage requirement for the automatic test equipment (ATE) or bus master chip that 
control the operation of the board during test. 

Once the instructions are loaded, a minimum length serial path to and from the target 
chip is set up. This allows access to the chip of interest in the minimum possible time, 
increasing test throughput. 

5.2: The Device Identification Register 

The device identification register is an optional feature of the standard. Where included 
in the test logic, it allows a binary data pattern to be read from the chip that identifies 
the manufacturer, the part number, and the variant. 

During testing, this information might be used to: 

• adjust test program execution, depending on the source and/or variant of each chip 
present on the board; 

• verify that the correct IC has been mounted in each board location; or 

• establish which member of a plug-compatible family of boards is being tested. 
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5.2.1: Construction 

The register contains 32 parallel-in, serial-out shift-register stages, each of which might 
be constructed as shown in Figure 5-3. 

Figure 5-3: An example implementation of a device identification register cell. 

Where a chip is programmed off-line (e.g., by blowing fuses or through some other 
nonreversible process), it is useful if the programmed state can also be observed via the 
device identification register. Therefore, where the function of the chip can be 
programmed by the user, each cell must have a pair of alternative data inputs so that two 
different 32-bit codes can be loaded — one to identify the device and one to identify its 
programming. The former is loaded when the IDCODE instruction is selected, while the 
latter is loaded when the USERCODE instruction is selected. 

When the register is addressed from the instruction register, the data pattern at its 
parallel input is loaded on the rising edge of the test clock (TCK) in the Capture—DR 
controller state. (At this time, the example TAP controller generates a rising edge on 
ClockDR while holding ShiftDR = 0.) These data are shifted toward TDO on the rising 
edge of TCK in the Shift—DR controller state, while data are shifted in from the TDI pin. 
(The example TAP controller changes ShiftDR to 1 and continues to generate clock edges 
on ClockDR.) 

The bypass register has no parallel output and cannot interfere with the operation of the 
system logic in the chip. Therefore, when shifting is completed, the data present in the 
register have no significance. 

5.2.2: The IDCODE Instruction 

The structure of the data loaded into the device identification register in response to the 
IDCODE instruction is shown in Figure 5-4. As discussed previously, the data presented 
are loaded into the register from inputs ID 3 1 -IDQ in the Capture—DR controller state. 

There are four separate fields: 

1. The header: TDQ loads a constant logic 1. Recall that the bypass register loads a 

constant 0 in the Capture-DR controller state. Later in this chapter, the advantage 
of this in determining the IC sequence for a given board will be explained. 
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MSB 
ID ID 
28 27 

ID12 IQ11 

LSB 

ID1IDQ 

Vers i on Port 
Number 

Manufacturer 
I den t i ty 

1 

(4 Bits) (16 Bits) (11 Bits) 

Figure 5 -4 : Structure of the device identity code. 

2. The manufacturer code: ED1 1-ID1 load an 11-bit manufacturer code. This code is 

derived from a scheme managed by the Joint Electron Device Engineering Council 
(JEDEC) [1]. 

In the JEDEC scheme, each manufacturer is allocated a code consisting of one 
or more 8-bit bytes. The most significant bit in each byte ensures odd parity, so a 
maximum of 128 available manufacturers can be distinguished by a 1-byte JEDEC 
code. Clearly, however, there are more than 128 manufacturers of integrated 
circuits. To cater to those who cannot be allocated 1-byte codes, the code Hex 7F 
is reserved as a continuation character. One hundred and twenty-seven 
manufacturers are thus given codes consisting of just one byte, 127 are given 2-byte 
codes (the first byte being Hex 7F), a further 127 get 3-byte codes (the first two 
bytes being Hex 7F), and so on. 

The scheme used in IEEE Std 1149.1 is a compressed form of this code 
containing a fixed number of bits (11) and is better suited to a serial environment. 
The 11 bits are derived from the JEDEC code as follows: 

• Bits ID 7 - ID 1 are the same as the seven data bits of the final byte of the 

JEDEC code. 

• Bits ID11 - ID 8 contain a count of the number of continuation bytes in the 

JEDEC code (i.e., the total number of bytes in the JEDEC code minus one). 

This scheme can uniquely identify up to 2032 manufacturers, since the pattern 
Hex 7F cannot occur in bits ID 7 - ID 1 . Section 5.3 will show how the 16 "invalid" 

manufacturer codes can be used to advantage during board testing. If more than 
2032 manufacturer codes are issued by JEDEC, then the scheme will result in reuse 
of some code values within the manufacturer code field. However, the chance that 
a component from an incorrect manufacturer will have the same code and the same 
test functionality is acceptably low. 
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3. The part number code: I D 2 7 - I D 1 2 provide a 16 bit part number, chosen by the 
manufacturer to distinguish a chip from the others that the company sells. In cases 
where more than 21 6 chip types are offered by a manufacturer, part number codes 
might have to be reused. The objective is to minimize the chance that an incorrect 
chip in a given position on a board will have the same part number as the correct 
chip type. Given that 21 6 codes are available, and that chip types will be further 
distinguished by the number of pins and the position of the test access port (TAP) 
pins, the chance of falsely receiving the expected part number code is extremely 
small. 

4. The version number code: For chips that are manufactured in several different 
versions through their lives, bits ID31.-ID28 can be used to distinguish up to 16 

variants. As a minimum, the version code should distinguish variants of a chip that 
exhibit differences in the operation of the test logic — e.g., different behavior in 
response to instructions or in the data to be sent or received through the TAP. 

5.2.3: The USERCODE Instruction 

In response to the USERCODE instruction, data are loaded from the alternative data 
input to the register — USER31, - U S E R 0 . Unlike the data presented to ID31 - I D 0 , these 

data can be programmed by the user at the same time (and in the same way) that the 
function of the chip is programmed. 

U S E R 0 must load a constant logic 1, while the structure of the data presented at 

U S E R 3 1 - U S E R 1 could be identical to that of the device identification code (i.e., 

variant, part number, and company). 

Note that this second data input is required only for chips whose function is "one-time" 
programmed off-line (e.g., by blowing fuses or through some other irreversible process) 
and cannot be modified through use of the test logic (e.g., by sending programming 
instructions through the TAP). For "soft" programmable chips whose programmed 
function is determined by instruction and data sequences entered through the TAP, the 
USERCODE instruction is not required. In such cases, the chip can be set arbitrarily to 
perform any desired function at the start of a test. Therefore, knowledge of the 
previously-programmed function is not required. 

5.3: Learning the Structure of an Unknown Board 

There are occasions when it would be useful to be able to access the device 
identification registers of chips to learn more about the precise mix of chips mounted on a 
particular board. For example, a board can be configured to perform one of a range of 
functions by including a different chip in some partipular location. 

There are two problems that have to be solved to permit this kind of "blind" 
interrogation: 
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• the device identification register is optional, so not every chip will include one; and 

• because the value of the IDCODE instruction will vary from chip to chip — indeed, 
the length of the instruction register can vary from component to component — 
there is no way to know in advance what sequence of instructions to enter to select 
the device identification registers. 

Two features are included in IEEE Std 1149.1 to allow these problems to be solved. 

First, it is required that the instruction register's latched parallel output is initialized in 
the Test-Logic-Reset controller state to: 

• the value of the IDCODE instruction if a device identification register is included in 
the chip; or 

• the value of the BYPASS instruction if the device identification register is not 
provided. 

Therefore, by moving from the Test—Logic—Reset controller state directly into the test 
data register scan sequence (starting with the Capture—DR controller state) all available 
identification codes on the board will be shifted out for examination. Referring to the 
TAP controller state diagram in Figure 4-6, the application of the sequence 
"111110100...0" to the TMS of all chips on a serial board-level path (one bit per cycle of 
TCK) will cause all available identification codes to be output, regardless of the starting 
states of the TAP controllers. 

Second, because the standard requires that all identification codes have a logic 1 in the 
least significant bit (the header bit) while the bypass register is required to load a logic 0, 
it is possible to locate identification codes in the output bit stream. Consider, for 
example, the output sequence shown in Figure 5-5. A flow chart for decoding such an 
output sequence received is shown in Figure 5-6. 

r I n«v»o l i d ' Code 
f r o m RTE, E t c . 

Manufacturer, Port, 
and Version Codes 

Figure 5-5: Output sequence following 'blind' access. 
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Figure 5-6: Flow chart for decoding output identity code sequence. 

For the example sequence, this gives the result shown in Table 5-1. Note that by 
injecting at the board's serial input an identification code containing an invalid 
manufacturer code, it is possible to determine when the end of the sequence has been 
reached. 

Table 5 - 1 : Result of decoding the received sequence. 

Bit(s) 

0 
1-32 
33-64 
65 
66-98 
99 
100-111 

Component 

1 
2 
3 
4 
5 
6 

-

Comment 

No ID code 
ID code available 
ID code available 
No ID code 
ID code available 
No ID code 
Invalid manufacturer 
- end of sequence 

5.4: Reference 

[1] Joint Electron Device Engineering Council, "Standard Manufacturer's Identification 
Code," JEDEC Publication 106-A,, July 1986. (Obtainable from JEDEC, 2001 Eye 
Street. N.W., Washington, D.C. 20006, U.S.A) 
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Chapter 6. The Boundary-Scan Register 

Every integrated circuit (IC) that complies with IEEE Std 1149.1 must include a 
boundary-scan register, which can be used to allow interconnections between ICs to be 
tested (the interconnect test described in Chapter 2). Optionally, it can also be used to 
support testing of the logic within the component — either in conjunction with self-test 
or by shifting patterns and results on a test-by-test basis (again, as described in Chapter 
2). 

While many different implementations of boundary-scan are possible that would provide 
this level of functionality, the standard imposes a number of particular requirements. 
These ensure that boundary-scan paths included in chips obtained from two or more 
different vendors can be used reliably in concert to perform board interconnect testing. 

Later in this chapter, we will describe the operation of the boundary-scan register and 
will illustrate how it might be designed through a series of example circuits. As we did in 
the introduction to Part II, we again stress that there are several features of the standard 
that we will not be able to discuss in this tutorial. Readers are therefore strongly 
recommended to consult the standard itself before implementing an IC design. 

6.1: The Provision of Boundary-Scan Cells 

Before discussing the provision of boundary-scan cells in an IC, two terms must be 
defined: 

1. The on—chip system logic: This is the circuitry contained in the IC to allow it to 
perform the required "normal" function. For example, if the chip is intended to 
operate as a counter, then the on-chip system logic would comprise all the 
necessary circuitry to construct a counter. 

2. The test logic: This is the circuitry built into the IC to assist either in testing of the 
on-chip system logic (e.g., confirming that the counter is indeed able to count) or 
in testing off-chip circuitry (e.g., board level interconnections). 

Where design-for-test features are built into the on-chip system logic, these are 
regarded as a part of the test logic in their test mode of operation; otherwise, they are a 
part of the on-chip system logic. 

To comply with IEEE Std 1149.1, an IC must contain boundary-scan cells at all 
off-chip system inputs and outputst, as shown in Figure 6-1. That is, cells should be 
located: 

† Cells are not required at connections between the test logic and the on-chip system 
logic or as the test access port (TAP) pins. 
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• between each system input pin (clock or data) and the corresponding input to the 
on-chip system logic; 

• between each output from the on-chip system logic and the corresponding system 
output pin; and 

• between each 3-state enable or direction control output from the on-chip system 
logic and the corresponding system pin output driver. 

Note that, for chips that contain some analog circuitry between the on-chip logic and 
the system pins, the connections to and from the analog circuit block are treated exactly 
as if they were off-chip digital connections. This topic will be discussed further in 
Chapter 19. 

Figure 6 - 1 : Provision of boundary-scan cells. 

Of particular note are the cells located at the output enable and direction control 
outputs from the on-chip system logic to 3-state output and bidirectional pins, 
respectively. Operating in conjunction with the cells at the data connections of the 
on-chip system logic, these cells allow the state of the output driver (active or inactive), 
as well as the data value driven when the driver is active, to be controlled. The reason for 
the inclusion of these cells is illustrated in Figure 6-2. 
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Figure 6-2: A board-level bus connection. 
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Figure 6-2 shows a board-level 3-state bus connection that can be driven by one of 
three chips: A, B, or C. To provide a test of the interconnection between these chips, it 
is necessary to check that: 

• the bus can be driven to both 0 and 1; and 

• each chip can drive signals onto the bus independently of the others. 

For the circuit in Figure 6-2, this will require a total of six tests as shown in Table 6-1. 
Note that, in these tests, the data value fed to the output buffers of the components 
whose drivers are inactive is the complement of that fed to the active driver. This increases 
the chance of detecting a fault that would cause a driver to be active when it should be 
inactive, regardless of whether a wire-OR or wire-AND combination of the contending 
outputs results. 

Table 6 - 1 : Tests for the board-level bus. 

Stimulus applied to bus from: 

Component A 

0/on 
1/off 
1/off 
1/on 
0/off 
0/off 

Component B 

1/off 
0/on 
1/off 
0/off 
1/on 
0/off 

Component C 

1/off 
1/off 
0/on 
0/off 
0/off 
1/on 

Result seen at 

component D 

0 
0 
0 
1 
1 
1 

While it might seem that the cells provided to control the activity of the driver at a 
3-state or bidirectional pin might form a significant fraction of those in the complete 
boundary-scan register — particularly where a chip has many such pins — this will not 
normally be the case. The reason is that chips often have groups of 3-state outputs or 
bidirectional pins that are controlled from a single source. In such cases, all the outputs 
that form an address bus would be active or inactive simultaneously. It would be a design 
error if two or more such pin groupings were connected at the board level; therefore, it is 
only necessary to provide one output enable or direction control cell for each group of 
pins. Figure 6-3 provides an example to illustrate this point. 
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TDO 

Figure 6-3: Control of multiple 3-state outputs from a single source. 

6.2: The Minimum Requirement 

Figures 6-4 and 6-5 show boundary-scan cell designs that meet the minimum 
requirements of the standard for input and output pins, respectively. In these cell designs, 
the signals ShiftDR, ClockDR, and UpdateDR are those generated by the example TAP 
controller (see Figures 4-8 and 4-9). 
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Figure 6-4: Basic boundary-scan cell for an input pin. 

Figure 6-5: Basic boundary-scan cell for an output pin. 

These boundary-scan cells allow an IC to support the two mandatory instructions 
defined by the standard: EXTEST and SAMPLE/PRELOAD. The Mode signal in Figure 
6-5 is generated by decoding the current instruction and should be 1 when the EXTEST 
instruction is present; otherwise it should be 0. 
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6.2.1: EXTEST 

The EXTEST (external test) instruction allows the boundary-scan register to be used for 
board-level interconnect testing in a similar manner to that presented in Chapter 2: 

• Test stimuli shifted into the boundary-scan cells located at system output pins are 
driven through the connected pins onto the board interconnections. This process is 
started by first entering the EXTEST instruction and then moving to the Shift—DR 
controller state. One bit of data is shifted into the boundary-scan register on each 
rising edge of the test clock (TCK). The example TAP controller shown in Figures 
4-8 and 4-9 enables shifting by setting ShiftDR to 1 and allowing TCK to propagate 
through to ClockDR. 

When entry of stimuli is concluded, the shifting process is completed by moving to 
the Update-DR controller state. On the falling edge of TCK in this state, the 
stimuli are transferred from the shift-register stages onto the latched parallel 
outputs of each cell. Because the Mode input to the cells at system output pins is 
set to 1 by the EXTEST instruction, the test is applied to the board 
interconnections at this time. The example TAP controller generates a rising edge on 
UpdateDR to cause the latched parallel outputs of the example boundary-scan cells 
to be updated from the associated shift-register stages. 

The test results are captured in the cells at the system input pins. This occurs on the 
rising edge of TCK in the next Capture—DR controller state. The example TAP 
controller causes data to be captured by holding ShiftDR at 0 and allowing TCK to 
propagate through to ClockDR. 

The test results are examined by moving back to the Shift-DR controller state. The 
data held in the boundary-scan register move one stage towards the test data output 
(TDO) on each rising edge of TCK. The data in cell number 0 (the cell nearest to 
TDO) appear at TDO on the falling edge of TCK after it reaches the cell. 

Note that the output pin cell contains an additional register between the shift-register 
stage and the output to the connected system pin.f In Figure 6-5, this additional register 
is clocked by the signal UpdateDR, generated by the example TAP controller in the 
Update—DR controller state. This allows the data present in the shift-register stage to be 
latched onto the parallel output of the cell when shifting has been completed. It is held 
there until the next test stimulus has been completely shifted into the boundary-scan 
path, ensuring that the data driven from the cell when Mode is 1 changes cleanly from one 
serially-supplied stimulus to the next. 

Provision of this latched output to the connected system pin allows the boundary-scan 
cells at system output pins to be used to apply test stimuli to circuitry external to the chip 

• 

† The standard permits use of either an edge-triggered register or a level-operated latch 
to fulfill this requirement. We have chosen to use an edge-triggered flip-flop in the 
examples contained in this book. 
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in a carefully-controlled manner. For example, clocks or inputs to asynchronous circuits 
can be included among the signals that feed into the external logic, as illustrated in Figure 
6-6. These signals (as well as others — for example, see the discussion in Chapter 19 
regarding signals that feed into analog circuits) must not change state between one test 
pattern and the next. Any intervening changes will cause misoperation of the circuit under 
test. Therefore, it is necessary to prevent the data from being applied to the external 
circuitry as they pass along the boundary-scan path during shifting-in. The latched parallel 
output is included to meet this requirement. 

TDO 

A TDI 

Figure 6-6: Using the boundary-scan path to test external logic. 
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6.2.2: SAMPLE/PRELOAD 

While the SAMPLE/PRELOAD instruction is selected, the Mode input to the cells at 
system logic outputs is held at 0 — allowing the chip to continue its normal operation 
without interference. 

The instruction supports two distinct test operations. 

In the first instance (SAMPLE), the boundary-scan cells at both inputs and outputs 
load the state of the signal flowing through them between the system pin and the on-chip 
logic: 

• A snap-shot of the data flowing through the chip's system input and output pins is 
taken by first selecting the SAMPLE/PRELOAD instruction and then moving to the 
Capture—DR controller state. Data are sampled on the rising edge of TCK in this 
state. (At this time, the example TAP controller holds ShiftDR at 0 and applies a 
rising edge to CiockDR.) 

• The captured data can be shifted out for examination in the Shift—DR controller 
state. On each rising edge of TCK, the data held in the boundary-scan register 
move one stage towards TDO. A data bit that arrives in cell number 0 (the cell 
nearest TDO) is driven through TDO on the following falling edge of TCK. (The 
example TAP controller holds ShiftDR at 1 and generates a rising edge on CiockDR 
for each rising edge of TCK.) 

Applications of the SAMPLE test include debugging of prototype boards and a 
contactless form of the guided-probing process common on functional board testers. 

In the second instance (PRELOAD), data can be shifted into the boundary-scan cells 
without interfering with the normal flow of signals between the system pins and the 
on-chip logic. This allows the latched parallel outputs in boundary-scan cells to be 
primed with data before another boundary-scan instruction is selected: 

• The desired data are shifted into the boundary-scan register by first selecting the 
SAMPLE/PRELOAD instruction and then moving to the Shift—DR controller state. 
On each rising edge of TCK, one data bit is shifted into the register. (The example 
TAP controller generates clock transitions on CiockDR. ShiftDR is held at 0 for 
one clock cycle and then changed to 1.) 

• When all data have been entered, shifting is halted by moving to the Update—DR 
controller state. On the falling edge of TCK, the data in each shift-register stage is 
shifted onto the cell's latched parallel output. (At this time, the example TAP 
controller generates a rising edge on UpdateDR.) 

By loading suitable data when PRELOAD is selected, the user can ensure that all signals 
driven out of the chip are defined as soon as the EXTEST instruction is selected. The 
Mode input would change to 1 in response to the instruction change, allowing the data 
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held in the boundary-scan cell (rather than the data generated by the on-chip logic) to be 
driven from the chip. 

6.2.3: Cells for 3-state and Bi-directional Pins 

Figures 6-7 and 6-8 show boundary-scan cells that could be used at 3-state output and 
bidirectional system pins, respectively, of an IC. These figures include the additional cell 
required to control the activity of the output driver. Both figures contain two 
shift-register stages — one for data and one for output driver control. The signal 
CHIP_TEST* is 0 when the INTEST or RUNBIST instruction is selected (see Sections 6.3 
and 6.4). 

Figure 6-7: Basic boundary-scan cells for a 3-state output pin. 
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Figure 6-8: Basic boundary-scan cells for a 3-state bidirectional pin. 

The design in Figure 6-8 is, in effect, a merging of those in Figures 6-4 and 6-7. It 
functions in the same way as the cell in Figure 6-7 when "output" operation is required 
and as the cell in Figure 6-4 when "input" operation is required. In Figure 6-8, the 
assumption is made that the bidirectional pin is either input or output at a given instant 
— but never both simultaneously. This allows one shift-register stage to be used to 
convey the data value for the pin; two stages would be necessary were the pin to always be 
used as an input, allowing data to be driven out of the pin to be determined and data 
received at the pin to be monitored. 

Figure 6-9 shows how a boundary-scan cell might be constructed for a 2-state 
open-collector bidirectional pin. 
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Figure 6-9: Basic boundary-scan cells for a 2-state open-collector bidirectional 
pin. 

Boundary-scan cells for other types of pins can be constructed in a similar manner by 
correct combination of the cells for input and output pins. 

6.3: The INTEST Instruction 

The standard defines two optional instructions that can be used to perform tests of the 
on-chip system logic. The first of these is the INTEST instruction. The operation of the 
boundary-scan register when the INTEST instruction is selected is similar to that 
described for internal logic testing in Chapter 2: 

1. Test stimuli for the on-chip logic are shifted into the cells at system input pins. 
Following the falling edge of TCK in the Update-DR controller state, the test 
stimulus is in place and is applied to the inputs of the on-chip system logic. 
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2. Between the Update-DR and Capture-DR controller states, the test is applied. For 
stored-state system logic designs, this will require entry into the Run—Test/Idle 
controller state where appropriate clock transitions will be applied to the on-chip 
system logic. This might require control of the clock signal(s) supplied to the clock 
input pin(s) (see Section 6.3.2). 

3. On the rising edge of TCK in the Capture—DR controller state, the results are 
loaded into the cells at system output pins prior to being shifted out for 
examination. 

Because of the slow test application rate, the chip must be able to support single-step 
operation where the INTEST instruction is offered. This requirement can be met in several 
ways, for example, where: 

• no dynamic logic is included in the on-chip system logic; or 

• the on-chip system logic can be placed in a "hold" state between tests. 

6.3.7; Boundary-Scan Cell Designs That Support INTEST 

Input Pins: To support this instruction, the design of the boundary-scan cells at 
non-clock system input pins must be extended beyond that of the cell shown in Figure 
6-4. This is necessary to allow the data shifted into the cell to be driven to the connected 
system logic input. Figures 6-10 and 6-11 show two options for doing this. 

Figure 6-10: Enhanced boundary-scan cell for an input pin: Example 1. 
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Figure 6-11: Enhanced boundary-scan cell for an input pin: Example 2. 

In the design in Figure 6-10, the data in the shift-register stage are applied directly to 
the on-chip logic. This is acceptable provided the on-chip logic does not respond to the 
data that is shifted through the cell as each test is loaded and each set of results is 
examined. For example, the cell might feed the data input to a flip-flop whose clock was 
constrained not to change state during the shifting process. Therefore, the data applied 
from the boundary-scan cells become significant only when the flip-flop is clocked. 

The design in Figure 6-11 is better than that in Figure 6-10 in cases where the circuitry 
fed by the cell will respond to the shifting data. This cell design is identical to that shown 
earlier for a system output pin (Figure 6-5) because it is targeted at the same problem. As 
when the cell is used at a system output pin, the added register (or latch) holds the 
stimulus data while new data are being shifted in, preventing the shifting data values from 
reaching the logic under test. 

Output pins: Among the functions performed by the boundary-scan register when the 
INTEST instruction is selected is that of preventing output signals of the on-chip logic 
from flowing through chip pins to external circuitry on the board. This is necessary 
because the signals output during IC testing will probably not be representative of those 
generated as a result of normal operation. They might contain illegal signal combinations 
or sequences that cause damage to the off-chip circuitry. For example, the memory 
controller shown in Figure 6-12 would normally operate such that only one of the 
connected memories would be enabled to drive the output bus. During testing, however, 
signals might be generated that enabled two or more of the memories onto the bus 
simultaneously. The resulting contention between output drivers might cause damage to 
either memory chip. 
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Figure 6-12: A circuit where bus contention might occur. 

This problem is overcome by enhancing the design of bbundary-scan cells for output 
pins when the INTEST instruction is to be supported. As shown in Figure 6-13, the 
design is changed so that data can be fed off-chip independently of that received from the 
on-chip system logic. This is not possible with the cell design in Figure 6-5, because of 
the feedback loop through the cell. If the data received from the on-chip system logic is 
to be captured into the cell, it will also be driven off-chip. The cell in Figure 6-13 is a 
feed-forward design that allows the user to define the chip's output, independently of the 
operation of the on-chip system logic, while the on-chip system logic test is in progress. 

Figure 6-13: Enhanced boundary-scan cell for an output pin. 
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The cells presented earlier for 3-state output and bidirectional pins (Figures 6-7 and 
6-8) support the INTEST instruction. For these cells, the output is set to an inactive state 
while the INTEST instruction is selected (CHIP_TEST* is set to 0). This prevents data 
leaving the chip. Note that it might be necessary to control external circuitry such that it 
does not sample the bus driven from the 3-state or bidirectional pin while the chip is 
undergoing test, because it might respond incorrectly when the bus is not driven by any 
chip (i.e., when it is "floating"). 

6.3.2: Control of Clocks During Use of INTEST 

The extended cell designs just described are required only at non-clock input pins. The 
cell design of Figure 6-4 can still be used at clock input pins. Further design changes 
might be required, however, depending on the way that clocking of the on-chip system 
logic is to be controlled during testing. The following are three possibilities: 

1. The system clock signal supplied to the chip can be externally controlled such that 
action-causing transitions will occur only in the Run-Test/Idle controller state, for 
example, as shown in Figure 6-14. 

Figure 6-14: Control of the signal supplied to a clock input during INTEST. 

A signal generated from TCK can be used in place of the externally-supplied signal 
while the INTEST instruction is selected. This signal must be controlled so that 
TCK pulses will be applied to the on-chip system logic only in the Run -Test/Idle 
controller state. The example shown in Figure 6-15 provides a positive edge clock 
to the on-chip system logic. 

Figure 6-15: Generation of a system logic clock from TCK during INTEST. 
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A free-running clock could be supplied to the component and fed through to the 
on-chip system logic. In this case, the system logic must be placed in a "hold" state 
so that clock transitions received other than in the Run-Test/'Idle controller state 
will not change the state of any of the stored-state devices contained in the 
on-chip system logic. Where a component has a HOLD* input (e.g., as is common 
on microprocessors to allow single-step operation), the signal fed to the on-chip 
system logic while the INTEST instruction is selected can be modified to be pulsed 
following entry into the Run —Test/Idle controller state. An example of how this 
could be achieved is shown in Figure 6-16. In this figure, the RT/I signal is 1 when 
the test logic is in the Run —Test/Idle state. The INTEST signal is true when the 
INTEST instruction is selected. 

Figure 6-16: Generation of a "HOLD*" pulse. 

6.4: The RUNBIST Instruction 

The purpose of the optional RUNBIST instruction is to provide a consistent, 
straight-forward means of verifying the health of an IC through using embedded self-test 
facilities. The objective is to allow a health check to be run simultaneously in every chip 
on a board that supports the instruction without the need for complex control and/or data 
sequences. In effect, the RUNBIST instruction allows the user to ask the chip "Are you 
healthy?" and to receive the component's reply. As we will see in Section 6.4.2, when the 
RUNBIST instruction is selected it is necessary for output pins to be set to defined states 
independent of the operation of the on-chip system logic, 
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6.4.1: Execution of the Health Check 

There are many different ways of building self-test features into an IC design. For 
example, self-test can be based on the inclusion of linear-feedback shift-registers 
(LFSRs), signature analyzers, or built-in logic block observers (BILBOs). The approach 
taken for any particular chip will depend on the nature of the circuit, on the preference of 
the circuit designer, and on many other factors. 

The objective of the RUNBIST instruction is to provide users of ICs with a consistent 
means of accessing self-test features that is independent of the type of self-test offered by 
a chip and that requires only a very limited amount of data to be stored on the ATE 
system, on-board bus-master chip, or other unit in control of the board-level test bus. 

To meet the requirements of the RUNBIST instruction, the self-test must execute only 
while the TAP controller remains in the Run —Test/Idle state. Typically, the logic involved 
in the test will need to be set to an initial starting state before test execution can begin 
and this must occur automatically within the chip. As shown in Figure 6-17, initialization 
could occur in the first clock cycle following entry into the Run-Test/Idle controller state 
and the test could execute in subsequent clock cycles.f In the figure, the RT/I signal is 1 
while the test logic is in the Run-Test/Idle controller state; the RUNBIST signal is 1 
when the RUNBIST instruction is selected. 

Figure 6-17: Control of on-chip system logic during RUNBIST. 

The self-test will run to completion provided the TAP controller remains in the 
Run—Test/Idle state for a specified minimum period, for example, as measured by the 
number of clock cycles applied to the on-chip system logic. By moving to the 
Capture—DR controller state following this period, the result of the self-test can be 
loaded into the test data register selected by the RUNBIST instruction and then shifted 
out for examination. 

To allow self-tests of different lengths to be run simultaneously in two or more chips 
on a board, the standard requires that, as long as the TAP controller remains in the 

f Note that, as in the case of the INTEST instruction, the clock(s) for the on-chip 
system logic can be fed either from TCK or by an externally-generated clock source while 
the RUNBIST instruction is selected. 
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Run-Test/Idle state for more than the manufacturer-specified minimum period, the result 
loaded into the selected test data register must be invariant no matter how long the 
controller remains in this state. To illustrate, consider a board containing two ICs, one of 
which must receive 100 TCK cycles to complete its self-test and the other 1000 cycles. 
Once 100 cycles have been applied, the test on the first IC will have been completed and 
its result will be ready for inspection. After 1000 cycles have been applied, the results from 
both ICs will be ready for inspection. Therefore, by entering the RUNBIST instruction, 
moving to the Run-Test/Idle controller state for 1000+ clock cycles, and then moving 
through the Capture-DR controller state into the Shift-DR state, a test on the health of 
both ICs can be performed. 

An additional benefit of this feature of the RUNBIST instruction is that it removes the 
need to maintain one version of the board test program for each variant of a chip used on 
the board. Should the length of the self-test change between variants, a board test 
program, which allows at least the maximum specified number of clocks to be applied to 
the on-chip system logic, will meet the requirements of both chip variants. 

6.4.2: Control of the Boundary-Scan Register 

While self-test execution is in progress, the boundary-scan register is used to hold the 
component's outputs at fixed values. This prevents the signals generated by the on-chip 
system logic during the test from propagating to neighboring components where they might 
cause unwanted or hazardous operation. For 2-state outputs, the value to be driven can 
be defined by the user. For 3-state outputs, some components might also allow the value 
to be user-defined; alternatively, the output might be set to the high-impedance state 
while the RUNBIST instruction is selected. Note that, in contrast to the other instructions 
described in this chapter, the boundary-scan register does not have to be selected by the 
RUNBIST instruction to form the serial path between TDI and TDO (although this is an 
option). 

Typically, the values to be placed on the component's output pins will be shifted into 
place by use of the SAMPLE/PRELOAD instruction before the RUNBIST instruction is 
entered. Once the RUNBIST instruction has been entered, the Mode inputs of the cells 
connected to the chip's system output pins will change to 1, allowing the data held at the 
latched parallel outputs of the cells to be driven onto the board interconnections.f The 
latched parallel outputs of boundary-scan cells at system output pins are not updated in 
the Update—DR controller state while the RUNBIST instruction is selected; their state is 
held throughout the period for which the instruction is selected. 

In some designs, the boundary-scan register can participate in the application of the 
self-test and can, if required, be the test data register enabled to shift data between TDI 
and TDO. For example, while the test is executing in the Run -Test/Idle controller state, 
the shift-register stages within the boundary-scan register cells could be configured to 
behave as LFSRs, multiple-input signature registers (MISRs), and other functions. 

f In cases where the pin state cannot be programmed by the user, the output will be set 
to high-impedance. 

77 





Part III: Applications to Loaded-Board Testing 

Part III contains application examples to illustrate the use of 
the IEEE Standard Test Access Port and Boundary—Scan 
Architecture in testing loaded boards. These examples show how 
boards composed purely of chips compatible with the standard 
can be tested and how the provision of boundary-scan facilities 
in some chips can help in the application of tests to others. 

Further material on the application of boundary-scan 
techniques to loaded-board testing is contained in the reprinted 
papers in Part V. 
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Chapter 7. Taking Advantage of Boundary—Scan 
in Loaded-Board Testing 

Peter Hansen 
Teradyne Inc 

321 Harrison Avenue 
Boston, MA 02118, U.S.A. 

Until recently, design-for-test (DFT) circuitry built onto chips was the province of 
large, vertically-integrated systems manufacturers. But that monopoly is fast disappearing 
now that the IEEE Standard Test Access Port and Boundary-Scan Architecture has been 
defined, as commercial parts incorporating that standard are being developed, and as 
application-specific integrated circuit (ASIC) technology gives more and more designers 
control over their own silicon. 

Much of the drive towards DFT will focus on boundary-scan, which is implemented at 
the chip level and which can ease and simplify board-level testing. Boundary-scan offers 
test engineers a way around increasingly thorny testability problems that stem from 
advances in very large-scale integration (VLSI) integrated circuit (IC) processing and 
packaging technologies. 

7.1: Loaded-Board Testability Problems and Traditional Test Techniques 

VLSI processing advances have escalated IC gate counts; therefore, the number and 
complexity of test patterns needed for IC and board-level testing have also escalated. 
Meanwhile, device packaging advances such as surface-mount technology (SMT), tape 
automated bonding (TAB), and high pin-count IC packages have increasingly restricted 
the physical accessibility of device leads to fixtures and hand-held probes traditionally used 
to test and diagnose faults on printed wiring boards (PWBs). 

7.1.1: The Fault Spectrum 

The faults present on a board can be categorized as either structural or performance 
defects. A structural fault is created by a physical defect in a device or in an interconnect 
on the board, and can be detected at low test speeds. Test coverage is often simulated or 
thought about in terms of "stuck-at" faults measured at either the gate or device-pin 
level. The detection of performance faults is much more demanding, as test speed and 
operating modes might need to be close (if not identical) to actual system behavior. 

Most faults that exist in manufacturing are structural faults. Performance defects are a 
much smaller, although a very troublesome, class. Manufacturers usually report that 
performance problems account for as much as 5 percent, to as little as a fraction of 1 
percent, of all board failures. Unfortunately, however, performance faults require a 
disproportionately large amount of time and effort to diagnose and repair. [1] 
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The distribution of faults between analog and digital circuitry depends primarily on the 
make-up of the board. Good IC testing typically results in few bad chips being on boards, 
with the exception of devices that are grossly damaged during assembly. The latter class of 
faults is nearly always detected by a test that provides good coverage of pin-level stuck-at 
faults. 

Figure 7-1 shows a rough representation of the frequency with which various fault 
classes occur on a predominantly digital VLSI board. Actual relative proportions depend 
on the types of components used on the board, as well as the design and quality practices 
used. Of utmost importance is the fact that structural faults dominate, and that structural 
faults occur mainly at device pins. Even in field returns, structural faults far outweigh 
performance failures, although a higher frequency of internal device faults would be 
expected. 

Digital Performance 
Analog Performance 
Analog Structural 
Digital Internal Device Structural 
Digital Pin Level Structural 

Figure 7 - 1 : The fault spectrum. 

To ship quality products, board manufacturers need to screen out both structural and 
performance faults. Since performance tests and their associated diagnostic techniques are 
far more expensive than structural testing, it is most important to eliminate virtually all 
structural defects prior to performance test. 

7.7.2; In-Circuit Testing 

In-circuit board testing for structural faults traditionally has offered three major 
benefits: 

• fast, automated test generation; 

• straightforward fault diagnosis; and 

• relatively low capital equipment costs. 

Escalating VLSI and ASIC complexity, however, is eroding these advantages. 
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Test generation, for example, is becoming more difficult as increasing gate counts 
demand more patterns. At the same time, the custom nature of ASICs means that 
engineers cannot pull in-circuit test sets ready-made from a pattern library. 

Some patterns might be pulled directly from device test, although the ease and success 
of this practice usually depend on whether these patterns were developed specifically 
taking the target tester into account. Otherwise, test engineers might find that the 
chip-test patterns are too numerous to be handled efficiently by the in-circuit system's 
available pattern memory, and that some of the patterns conflict with the ASIC's wiring 
constraints in the board environment [2]. 

As a result, manufacturing test engineers often bear most of the burden of test 
development. Automatic test pattern generation (ATPG) tools, which can't handle circuits 
of large sequential depth, are only of limited assistance. 

Backdrive and access restrictions also hamper in-circuit testing. Large ASICs, along with 
many advanced logic families, can be difficult or even impossible to backdrive, 
complicating the task of isolating neighboring components for in-circuit tests. Large 
pin-count ICs also can make board testing a highly channel-intensive proposition, thus 
driving up the cost of in-circuit test equipment. 

Meanwhile, dense SMT and TAB packaging restricts the accessibility of component leads 
to conventional bed-of-nails fixtures. In some cases, the use of fine-pitch probes can 
overcome this problem, but only at the expense of more costly and less reliable fixtures. 

Probe point density on boards can make it impossible to use vacuum-based fixturing 
techniques without causing excessive board flexing. And two-sided boards, packages with 
completely inaccessible leads, or fixtures that deny manual access all prevent the use of 
hand-held probes and make it impossible to diagnose even simple problems like open 
etches or bad solder joints. 

7.7.3; Functional Testing 

Entailing far more difficult program generation and diagnostics than in-circuit testing, 
functional testing typically is used to find simple structural faults only as a last resort. 
Functional techniques are best reserved for performance testing in critical applications. 

Defense-related programs, for example, frequently use functional testing in instances 
where contractual agreements prohibit overdriving or conformal coatings preclude 
in-circuit access to boards under test. Commercial manufacturers might also adopt a 
functional strategy when device packaging so restricts access that in-circuit testing 
becomes impractical. 

The pattern-generation and accessibility issues that affect in-circuit testing, however, 
impact functional test even more. Very large numbers of very complex patterns are needed 
to test full-board functionality; and these patterns must be generated anew, using logic 
and fault simulation, for each board design. Since structural faults are abundant and 
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concentrated at device pins, very high stuck-at pin-fault coverage is called for; attaining 
this level of coverage with functional test patterns is extremely expensive. 

Moreover, increasingly complex VLSI and ASIC components have sent board-level 
modeling, pattern generation, simulation, and diagnostic costs soaring. Finally, the same 
packaging technologies that restrict in-circuit access to a board also might block the 
hand-held guided probes traditionally used for functional fault diagnosis. 

As these problems grow more acute, many boards will become impractical to test using 
either in-circuit or functional techniques. The way out of this dilemma is boundary-scan. 

7.2: 100 Percent Boundary-Scan Testing 

When boards incorporate boundary-scan components, the shift paths of these 
components are connected to form a larger shift path on the board. Through this path, a 
tester can access individual device leads, which serve as "virtual channels" providing control 
and visibility that otherwise would have to come from physical ATE channels. Backdriving 
is eliminated, test channel requirements are reduced, and access requirements for fixturing 
are simplified. Boundary-scan also decreases or eliminates the need for hand probing of a 
board to isolate faults, easing the diagnostic chore. 

Boundary-scan, moreover, simplifies test development. By increasing the board's 
controllability and observability, boundary-scan makes it possible to partition the board 
test program to simplify test generation. The board test applications discussed in this 
chapter use one of the boundary-scan instructions defined by the standard: INTEST, 
RUNBIST, or EXTEST. 

7.2.1: Checking Internal Logic with INTEST 

Board test applications that require the highest possible fault coverage — such as system 
test or field return testing — include a comprehensive check for defects in the internal 
logic of the board's components. The INTEST instruction serves this function, allowing a 
tester to use the boundary-scan path to check the structural integrity of internal device 
logic. The tester can control the internal logic at device inputs and observe the results at 
device outputs. 

The INTEST instruction usually cannot provide a complete gate-level test, however, 
because the quantity of data that would have to be clocked through the shift path to test 
a complex sequential IC would bog down test times. INTEST therefore must be 
augmented by other test-oriented circuitry in large, complex devices. 

Sometimes the obvious choice is partial or full internal scan, which works very well for 
the static logic structures embedded in gate arrays. An IC having both internal scan and 
boundary-scan can be tested in the INTEST mode from the edge of the board, using 
patterns from incoming inspection or device test to provide nearly perfect gate-level fault 
coverage. 
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Boundary and internal scan techniques are not good for dynamic logic used in 
microprocessors and their peripherals because patterns can't be applied fast enough to keep 
dynamic devices alive. Moreover, adding scan capability in a highly repetitive logic 
structure such as a memory chip would double or triple the size of the device. An 
emerging alternative for these types of devices is built-in self-test (BIST), which designs 
test circuitry into the chip itself. 

7.2.2: Implementing Chip Self-Test Using RUNBIST 

In a boundary-scan IC containing BIST, provision of the RUNBIST instruction allows 
the test access port (TAP) to become the tester's means of accessing the BIST circuitry. 
The tester instructs the BIST circuitry on how to initialize the self-test, which typically 
uses pseudo-random pattern generation to create stimuli, and signature analysis for 
checking device response. The results of the signature analysis then are read from the shift 
path by the tester. 

The internal fault coverage provided by BIST varies greatly. If coverage is very high, no 
supplemental testing by the automatic test equipment (ATE) is required. If coverage is 
reasonably good, a tester might supplement BIST with external patterns. Another 
possibility is that the BIST circuitry is only intended to test pieces of logic buried deep in 
the chip (logic that would otherwise be difficult for a tester to get at from the I/O pins), 
leaving the rest of the chip to be tested by more conventional means. 

7.2.3: Verifying Board Interconnects Using EXTEST 

Production board testing usually assumes that incoming inspection already has screened 
out nearly all components with internal defects and, therefore, concentrates on detecting 
the most common process faults: shorts and opens in device interconnections and stuck-at 
pin faults. If boards were composed entirely of boundary-scan parts, the EXTEST 
instruction could be used to do all this. 

Faults detectable when using EXTEST interconnect testing occur between 
boundary-scan devices, and between these devices and primary inputs or outputs — 
which must be connected to ATE channels. For digital portions of a board, EXTEST 
interconnect testing can provide fault coverage and diagnostic resolution far superior to 
that achieved through using manufacturing defect analyzers (MDAs) and in-circuit test 
systems. 

In contrast with the in-circuit approach, moreover, EXTEST doesn't require the tester 
to have direct physical contact with individual device leads. Instead, a test system can 
control and observe boundary-scan device leads by clocking data to and from their 
associated shift-register cells (Figure 7-2). Thus, device pins along the boundary-scan 
path become the tester's "virtual channels" on the board. The test system can apply test 
patterns and capture response data through these virtual channels, much as it does through 
conventional ATE channels. 
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Figure 7 -2 : Interconnect testing using EXTEST. 

Pattern generation also is simplified when boundary-scan testing is used to verify board 
interconnects, because failures don't have to be propagated through complex chips. Pattern 
generation algorithms have been developed that provide 100 percent fault coverage with 
minimal data size for both opens and shorts by using what are known as "counting" 
patterns [3]. These patterns can be generated automatically by using information extracted 
from netlist and boundary-scan configuration databases. 

Since all boundary-scan device pins must be tested in both the logic-0 and logic-1 
states to test the interconnect, 100 percent device-pin fault coverage is achieved during 
these tests. Thus, much more than the board interconnect is being tested. Each IC is 
shown to be basically functioning and the various interconnections — from silicon to lead 
bonds, from solder bonds to the circuit board itself — are shown to be intact. 

While the counting patterns are fast and efficient, they do not provide the basis for 
good diagnosis. The reason is that many faults can cause tests to fail in an identical 
manner, a phenomenon known as fault aliasing and confounding [4]. 

The best means of dealing with this limitation is to use the counting patterns to identify 
failing networks and then to apply additional "walking" patterns (so called because they 
"walk" through the circuit, testing it by setting all networks except the failing one to 
logic-l or logic-0) to provide information from which a precise diagnosis can be drawn. 
These patterns are also called "adaptive" patterns [4,5] because they are generated and 
applied by the ATE to the board immediately after a failure occurs, based on the specific 
nets that have failed. 
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A boundary-scan interconnect-fault diagnosis algorithm correlates the mass of serial 
response data shifted out of the boundary-scan path with topological data to identify 
physical defects and their locations on the board. Properly done, this method achieves 
diagnostic resolution comparable to a bed-of-nails tester for identifying shorts. It also 
gives superior resolution in pinpointing opens, because of the improved board visibility 
achieved by having boundary-scan cells at each chip pin. 

EXTEST will be the most extensively used of boundary-scan's various modes for 
loaded-board testing — not only because it deals with the interconnect faults described 
above, but also because it can be used to test mixed-technology boards containing both 
boundary-scan and conventional components. This application will be detailed in the 
remainder of this chapter. 

7.3: Test-Access Strategies for Mixed-Technology Boards 

Structural testing for an ideal board — one implemented exclusively by using 
boundary-scan components — is a fairly simple matter. Such boards are and will likely 
continue to be rare, however. Although boundary-scan is proliferating rapidly in gate 
array and standard-cell ASICs, it will advance only gradually and over a period of years in 
commercial components. In fact, the extra silicon or device leads required to implement 
boundary-scan may preclude its ever being used in chips such as small logic devices and 
some memory chips. 

In consequence, mixed-technology boards populated by both boundary-scan and 
conventional components will predominate for the foreseeable future. Testing of these 
boards will combine boundary-scan testing with traditional in-circuit or functional testing 
of the conventional circuitry. 

Analog components are not generally applicable to boundary-scan, so their board 
networks would require physical access if analog in-circuit testing is desired. Often, the 
extra power of having the full capability of ATE channels available at specific points on 
the board can make significant improvements in programming time, in test and diagnostic 
throughput, and in quality. 

For most mixed-technology boards, having physical access to some of the board's 
networks will be the most critical factor in determining the economics of structural 
testing. The decision on which networks have fixture access must be made with a 
particular test strategy in mind during physical layout of the board. 

Circuit designers must therefore convey to layout people both a knowledge of the virtual 
access provided by the leads of boundary-scan chips on the board, and the access 
requirements imposed by the specific test strategy to be implemented. This 
"design-for-access" methodology guarantees full access to a board through a combination 
of physical and virtual test channels. 

The range of access strategies available for testing mixed-technology boards are listed 
below, in order from simplest to most difficult. It should be noted that the more complex 
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strategies can contain one or more elements of simpler ones. 

1. A standard in-circuit strategy is used when all the board's networks are fully 
accessible via bed-of-nails fixturing, providing contact to boundary-scan 
components and conventional logic on the board. 

2. A virtual interconnect strategy combines nail-less testing of pure boundary-scan 
networks with standard in-circuit testing of conventional components. 

3. A virtual in-circuit strategy tests individual non-scan components one by one; the 
leads of the device under test (DUT) are connected either to physical ATE 
channels via a fixture or to the virtual channels provided by the I/O pins of 
neighboring boundary-scan parts. 

4. A standard cluster-test strategy groups non-scan devices together and tests them 
functionally through test nails at the cluster's periphery. 

5. A virtual cluster-test strategy is applied when nails cannot be placed around a 
cluster; instead, the virtual channels associated with boundary-scan devices are 
used to test the cluster. 

7.3.1: Standard In-Circuit Testing 

If all board networks are accessible to traditional fixturing, a full bed-of-nails in-circuit 
test approach can be employed, as illustrated in Figure 7-3 (as in all the diagrams that 
follow, the Xs in Figure 7-3 represent physical tester-access points). While this might 
appear to be an overly conservative strategy (since a primary advantage of boundary-scan is 
to permit nail-less networks), a full bed-of-nails environment provides significant 
advantages. For one thing, all shorts testing can be done prior to powering up the board. 
Further, device patterns that achieve 100 percent pin-fault coverage for complex 
boundary-scan devices are made easy when ATE channels are used in conjunction with 
the boundary-scan DUT through the EXTEST instruction. 

Stimulus applied by ATE channels is captured by the boundary-scan input cells. 
Stimulus shifted into boundary-scan device output cells is captured by ATE channels. 

This procedure can be performed without requiring ATE channels to be simultaneously 
presented to the DUT. Taking advantage of multiplexing, DUT leads can be split into 
subsets that are tested independently, dramatically decreasing the channel count that 
would otherwise be required; the benefits of this approach are most significant when 
boundary-scan is present on the largest components on the board. 
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Figure 7-3: Standard in-circuit testing. 

Diagnosis of open-circuit faults using boundary-scan devices is much better than with 
conventional ones in a bed-of-nails environment. With boundary-scan, opens can be 
isolated down to a single network without the aid of manual probing. Without 
boundary-scan, an open that causes a device failure can be properly identified only 
through manual probing. On double-sided SMT boards, this can be prohibited by device 
packaging and by fixture designs that do not allow access for hand-held probes. 

7.3.2: Virtual Interconnect Testing 

Leaving probes off networks that consist only of boundary-scan device interconnects can 
simplify in-circuit fixturing. In this virtual interconnect strategy, the only new element is 
that the EXTEST mode is used to test boundary-scan networks via the virtual channels 
provided by boundary-scan IC leads. Because all conventional chips are surrounded by 
physical test channels, they are tested by using existing in-circuit techniques and tools 
(Figure 7-4). 
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Figure 7-4: Virtual interconnect testing. 

7.3.3: Virtual In-Circuit Testing 

Virtual in-circuit testing, which accesses some or all of a DUT's leads via virtual 
channels provided by boundary-scan device I/O pins (Figure 7-5), retains the 
programming and diagnostic advantages of conventional in-circuit testing. Because it 
further reduces nail counts, however, this approach eases in-circuit testability problems 
stemming from physical access and overdrive restrictions. 

A typical non-scan device tested by virtual in-circuit testing would be a small-, 
medium-, or large-scale integration (SSI, MSI, or LSI) IC whose test can be pulled from 
an in-circuit pattern library associated with the tester being used. These patterns are in 
parallel format because that's the way in which they have traditionally been applied. 
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Figure 7-5: Virtual in-circuit testing. 

While DUT pins connected to normal ATE channels are controlled conventionally using 
these parallel-format channels, the DUT pins actually serviced by virtual channels must be 
tested by using serial data. Many combinational testers can handle this requirement; thus, 
special scan-test hardware might not be needed. 

Special data serializing software, though, is needed both for pattern serialization and 
fault diagnosis. Serialized patterns become a normal part of the automatic in-circuit 
programming, test, and diagnostic process. 

Virtual in-circuit testing consumes local memory rapidly. While a conventional, 
parallel-format test pattern takes up only one location in a tester's channel memory, a 
serialized pattern requires many memory locations because of the repetitive shifting 
operations involved in testing through the boundary-scan path. Judicious use of hardware 
looping capabilities is required to compress consecutive "don't-care" states into one 
memory location to conserve space. 

7.3.4: Standard Cluster Testing 

In conventional cluster testing, chips that are inaccessible by using in-circuit techniques 
can be handled by grouping them together with other chips and placing nails or special test 
points around the cluster's periphery (Figure 7-6). A combinational test system can handle 
these clusters by using current functional test techniques and existing functional diagnostic 
tools such as guided probing, fault dictionary, or a combination of the two. Other parts 
of the board can be tested using elements of access strategies already described. 
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Figure 7-6: Standard cluster testing. 

Standard cluster testing is valid for mixed-technology boards as long as the clusters can 
be accessed through nails or special test points. But a growing number of test applications 
effectively block all physical access to a board. In such cases, test engineers can once again 
resort to the board's boundary-scan path to get virtual access. 

7.3.5: Virtual Cluster Testing 

As is the case in the virtual in-circuit approach, virtual cluster testing uses a mixture of 
real test channels and virtual access through the boundary-scan path. Employing virtual 
access to test non-scan chips and device clusters as well as device interconnects (Figure 
7-7), this strategy will be called upon often when edge-connector-based functional testing 
is the only available option. 

As in standard cluster testing, the program for a virtual cluster test is generated by using 
logic and fault simulation. The test engineer creates a simulation model of the cluster, by 
using netlist-editing tools to extract the requisite device and interconnect data from a 
full-board netlist. 

The engineer then writes test stimuli, which are applied to the cluster model in logic and 
fault simulation. The virtual channels, supplied by boundary-scan device I/O pins, are 
modeled as static ATE channels, which eliminates the need to simulate repetitive shifting 
operations. 
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Figure 7-7: Virtual cluster testing. 

Fault simulation grades the fault coverage provided by the test patterns written by the 
programmer. Near-perfect coverage of stuck-at pin faults should be the goal here, 
because faults that slip through this test will be more expensive to pinpoint in later test 
stages. With tomorrow's VLSI clusters likely to rival today's VLSI boards in complexity, 
achievement of this level of fault coverage will be an increasingly time-consuming task. 

Board designers can help counter this trend by minimizing the size and sequential depth 
of non-scan clusters on the board. One way of breaking up a large block of sequential 
logic is to intersperse it with more boundary-scan components or physical access points to 
improve cluster controllability and observability. Designers also must take into account the 
basic static rate of virtual channels and must add physical access points or board-level 
BIST for dynamic logic. 

When fault simulation indicates that the desired level of fault coverage has been reached, 
the stimulus and response data from the simulator is postprocessed for use by the target 
board test system. Converting the simulator's parallel-format test patterns into the serial 
data required for testing through the boundary-scan path, however, will require more than 
the software serializer described earlier. 
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Virtual cluster testing is the most pattern-intensive test strategy yet discussed, requiring 
a tester to clock many millions of bits through the boundary-scan path to functionally test 
a large cluster. One reason for this is that the boundary-scan device I/O pins used as 
virtual channels in this application are far less intelligent than real ATE channels. They 
have neither the data formatting (i.e., return-to-zero, return-to-one) nor the complex 
timing capabilities that an ATE channel routinely employs to convey large amounts of data 
with each pattern. 

Software serializers, adequate for the more limited needs of virtual in-circuit testing, 
cannot produce efficiently the sheer volume of data required for a virtual cluster test due 
to the limitations of ordinary ATE channels, which are optimized for applying relatively 
shallow pattern depth across hundreds of channels. Instead, test engineers will need to 
apply special scan-test hardware to the task. 

Such hardware would be able to handle extremely long serial data streams and could 
apply data-compression techniques to minimize testing times and storage requirements [6]. 
Scan hardware also can serialize a variety of test data for use in virtual cluster tests: 
parallel-format patterns or truth tables output by simulators or manual programs for 
testing most digital logic and possibly algorithmic patterns created by hardware number 
generators for testing memory devices (including signature analyzers for response 
compaction). 

In addition to the problems associated with serializing patterns for go/no-go testing, 
automated diagnosis of cluster failures is important. Guided probing in a scan environment 
has been used for some time on boards with devices built by using internal-scan 
techniques such as level-sensitive scan design (LSSD) [7] and is applicable to virtual cluster 
testing through the boundary-scan path. 

Guided probing can be integrated with fault dictionary diagnosis, which identifies likely 
fault locations without requiring physical access to the board [8,9] and can therefore be 
used even in situations where direct access to internal nodes of the loaded board is 
limited. To supply virtual cluster test diagnostics, the guided probe and fault dictionary 
tools must be adapted to accept serial response data clocked out of the boundary-scan 
path, just as they now accept parallel response data from conventional ATE channels. 

7.4: Conclusion 

On boards implemented exclusively with components designed according to IEEE Std 
1149.1, boundary-scan testing allows automated generation of patterns with 100 percent 
coverage of digital structural pin-level faults, which account for the overwhelming 
majority of board failures. But because most boards in the foreseeable future will mix 
boundary-scan devices with conventional ICs, boundary-scan testing typically will be used 
in conjunction with current in-circuit and functional cluster test techniques. 

This chapter has described five strategies for accessing, testing, and diagnosing 
mixed-technology boards. Where restricted physical access hampers traditional test 
methodologies, virtual access provided by boundary-scan device leads might offer the only 
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means of assuring a comprehensive test of a complex board. 

When a test application demands both physical and virtual access, these requirements 
must be taken into account during board design and layout. The designer must concentrate 
on breaking up the board's conventional circuitry as much as possible into isolated 
individual ICs or into relatively small clusters, which might be interspersed with 
boundary-scan chips for further improved visibility and controllability. Information about 
both design (i.e., data about which chips are boundary-scan ones and which are 
conventional) and test (i.e., the physical/virtual access requirements of the test strategy) 
must be factored into board layout to guarantee successful implementation of the test. 
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8. A Test Program Pseudocode† 

Rodham E. Tulloss and Chi W. Yau 
AT&T Bell Laboratories 

Engineering Research Center 
Princeton, NJ 08540, U.S.A. 

A product utilizing the IEEE Std. 1149.1 boundary-scan method, architecture, and 
protocol [1] is hypothesized. The product is assumed to contain a significant number of 
large- and very large-scale integration (LSI and VLSI) integrated circuits (ICs) equipped 
with the standard architecture and test access port (TAP). The parts equipped with 
boundary-scan are assumed to provide a single command activating all built-in self-test 
(BIST) capability which is available to the purchaser of the part in question. The 
pseudocode of a circuit board test program is laid out demonstrating: 

• the initialization of the board for testing; 

• the necessary steps to validate the test circuitry in those ICs equipped with 
boundary- scan; 

• the verification of board-level interconnect circuitry; 

• the activation of self-test features in parts equipped with the TAP and included on 
the boundary-scan path; and, very briefly, 

• the testing of non-boundary-scan parts on the board. 

The data available for diagnosis and its use in diagnosing the board are discussed briefly. 

8.1: Introduction 

This chapter describes pseudocode for a test program of a circuit board containing a 
significant number of chips designed with BIST and boundary-scan. This format has been 
chosen in order to present an operational view of the meaning of IEEE Std 1149.1. 

Imagine that the "lines" of pseudocode become comments in the completed test 
program. In order to highlight the portions of pseudocode, they are presented indented in 
the COURIER font. 

The boundary-scan standard provides for a 4-wire interface: test data input (TDI), test 
data output (TDO), test mode select (TMS), and test clock (TCK). An additional test 
logic reset (TRST*) line is optional and is predominantly used to provide protection 
against bus conflict during power up. There is no restriction in the standard regarding 
whether a single serial path is made up by connecting TDO and TDI lines of the chips 

† An earlier version of this paper was presented at the First European Test Conference, 
Paris, April 1989. 
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that have boundary-scan on a given board. A multiple ring configuration or a star 
configuration can also be designed by using chips with the features of the standard. 

The pseudocode below is written: 

• as if there were a single 5-wire port on the board under test; and 

• as if there were a single serial path through all the chips on which boundary-scan is 
implemented. 

For diagnostic purposes, we have assumed a duplication of the TMS line as shown in 
Figure 8-1. (This structure is also used in Chapter 9). 

One of the TMS lines (TMS1) should be used to apply the TAP protocol to the 
even-numbered chips; and the other (TMS2), to apply the protocol to the TAPs of the 
odd-numbered chips. The presence of the optional TRST* line in an actual 
implementation is probable. 

At the board level, one might assume that the first TDI on the ring, the last TDO on 
the ring, TCK, and test mode select lines are all available at board connectors. In 
multi-board systems, it is more likely that concerns over clock distribution and test mode 
select line coordination would lead to a master bus-controller. This device might be a 
stand-alone entity or it might be a peripheral to a programmable device that had other 
system (non-test) functions. It would source and sink the boundary-scan signals and 
provide protocol conversion between: 

• commands arriving over a back-plane from a test and diagnostic processor; and 

• the ICs constituting the boundary-scan ring. 

In this paper it is not assumed that there is a master bus controller. If a master bus 
controller is present, the program should be read as providing instructions to the master 
bus-controller that then would generate the protocol necessary to do the various tasks. In 
case there is more than one serial path (ring) or even more than one test port, the 
program will become more complicated, especially in the case of interconnect testing 
where coordination of events between rings with separate TCK and TMS lines will be of 
great concern. 

We assume that before this test begins, transistors, capacitors and other analog 
components have been checked by a process tester or have such high in-coming and 
process/assembly quality levels that such testing can be rationally eliminated. Alternative 
methods of testing these components are not excluded: They could be included as part of 
a lower level package and tested at that level rather than at the board level; or an 
in-circuit tester could be fixtured in such a way as to do in-circuit testing on 
non-boundary-scan parts and also to provide the necessary resources to carry out the 
portion of the test that is dependent on boundary-scan. 
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Figure 8 - 1 : Board level interconnection of components. 
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In the electronic industry as a whole, the time period in which there will be mixing of 
boundary-scan and non-boundary-scan product on a single assembled unit is of 
unpredictable length. On the other hand the introduction of products: 

• implemented in chip-on-board, double-sided surface mount boards, and 
silicon-on-silicon technologies; 

• requiring encapsulation in controlled environment chambers; or 

• requiring extensive, post-installation, diagnostic support features 

are likely to require boundary-scan on all ICs involved — even today. Of course, it is one 
goal of the engineers and firms who participated in the effort to establish IEEE Std 1149.1 
that lower cost test facilities will be made possible as a result of successful standard 
promulgation. In other words, part of the desired effect of standardization is to provide a 
sufficiently simplified test interface so that the cost of board-level ATE could be reduced 
by an order of magnitude without a loss of test effectiveness. 

The following sections contain the pseudocode and its explanation. A number of 
definitions of symbols and terms will be needed and these are defined in Table 8-1. By 
"odd(even)-numbered chips" we mean those chips in the odd (even) numbered positions 
on the boundary-scan path starting with the one nearest the TDI board-level input as the 
first. 

You should become familiar with IEEE Std 1149.1, especially the TAP controller state 
diagram and the general operation of the standardized test logic, before reading further. 

8.2: Initialization 

First, the board is placed in the test fixture and powered up [2]. The parts, which 
include the boundary-scan standard architecture and TAP, will offer protection against 
damage caused by bus conflicts that might occur momentarily during the power-up [1]. 
This is done by a required reset capability that can be achieved by the use of an optional 
reset line (TRST*) or by internal chip design features. Whichever method is used, the 
finite state machine (FSM) of the TAP control circuitry is forced to the Test-Logic-Reset 
controller state. 

1. POWER UP ON BOARD. BOUNDARY SCAN TEST-CIRCUITRY GOES INTO 

RESET STATE. WHERE POWER-UP RESET REQUIRES THE USE OF THE 

BOUNDARY-SCAN OPTIONAL RESET LINE, THIS LINE IS ACTIVATED BY 

TOGGLING FROM THE INACTIVE (HIGH) TO THE ACTIVE (LOW) STATE. IN 

ADDITION, BEFORE RUNNING THE FOLLOWING TESTS, AN LBSR BIT LONG 

SAFE VECTOR SHOULD BE LOADED INTO THE BOUNDARY-SCAN DATA 

REGISTERS USING THE SAMPLE/PRELOAD INSTRUCTION. THIS WILL 

ALLEVIATE POTENTIAL BUS CONTENTION PROBLEMS. 
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Table 8 - 1 : Terms used in this chapter. 

L B S R T o t a l l e n g t h o f a l l bounda ry - scan d a t a r e g i s t e r s 

on t h e boa rd 
L E B S T o t a l l e n g t h o f a l l b o u n d a r y - s c a n d a t a r e g i s t e r s 

i n even-numbered c h i p s 
L O B S T o t a l l e n g t h o f a l l bounda ry - scan d a t a r e g i s t e r s 

i n odd-numbered c h i p s 
L I R T o t a l l e n g t h o f a l l i n s t r u c t i o n r e g i s t e r s o n 

t h e boa rd 
L E I R T o t a l l e n g t h o f i n s t r u c t i o n r e g i s t e r s i n 

even-numbered c h i p s 
L 0 I R T o t a l l e n g t h o f i n s t r u c t i o n r e g i s t e r s i n 

odd-numbered c h i p s 
MDR Maximum number of data registers per chip on 

the board 
N Number of chips with boundary-scan on the board 
P Period (in TCK clock cycles) of single entry into 

the Pause-DR or Pause-IR controller state 
Tx Number of interconnect tests required by the board 

8.3: Test Circuitry Check 

A known bit pattern, available in the ICs equipped with boundary-scan, assists in 
verifying that the serial path through the devices is intact. This technique was in use prior 
to the development of I E E E Std 1149.1 [3,4]. In the case of I E E E Std 1149.1, the pattern 
consists of a '01' in the two lowest order bits of the instruction register. This pattern is 
required to be loaded automatically by the test circuitry when in the Capture—IR 
controller state. When configured through the instruction registers of all the chips in this 
controller state, the serial path will pass through a long composite register having '01' at 
intervals known to the test programmer or to a test development tool used by the test 
programmer. This is the case because it is a further requirement of the standard that 
documentation of boundary-scan parts provide the lengths of all instruction and data 
registers in the boundary-scan test logic. 

2. USING THE BOUNDARY-SCAN CLOCK (TCK) AND THE 2 TEST MODE 

SELECT LINES (TMS1 and TMS2), ALL BOUNDARY-SCANNABLE PARTS ARE 

PLACED IN THE INSTRUCTION REGISTER SELECT CONTROLLER STATE 

(SELECT-IR-SCAN). 
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Beginning with the test circuitry of all ICs in the Test—Logic—Reset controller state, this 
is accomplished in three cycles of TCK. Both TMS lines must provide the sequence "Oil' 
— one bit is shifted in during each clock cycle. 

3. NOT CONSUMING ANY TCK CLOCK PULSES, CONFIGURE RECEIVER ON TDO 

TO RECEIVE (LIR+2) BITS. EXPECTED VALUES WILL BE THE 

CONCATENATED CONTENTS OF THE INSTRUCTION REGISTERS (EACH IR WILL 

CONTAIN A VECTOR OF THE FORM [X...X01}) FOLLOWED BY {01}. 

CONFIGURE DRIVER ON TDI TO SEND (LIR+2) BITS CONSISTING OF THE 

SERIAL VECTOR {01} CONCATENATED WITH LIR IS. 

There are a number of steps that we have expressed in the form used for step 3. Our 
intent is to indicate that preparation for serial input/output of vectors can be done as an 
ATE background activity. It is simply the case that the vectors must be ready when the 
next shifting activity is set to begin. 

Note that the trailing '01' pattern detected by the TDO receiver will check the TDI edge 
connector pin for common defects such as opens, shorts, and stuck-ats. 

4. USING 2 TCK CLOCK CYCLES PROCEED TO THE SHIFT-IR CONTROLLER 

STATE: BOTH TMS LINES TAKE ON THE VALUE 0 DURING BOTH CYCLES. 

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.] 

5. APPLY 0 ON BOTH TMS LINES FOR (LIR+1) TCK CYCLES THUS 

SHIFTING THE DRIVER SUPPLIED SERIAL INPUT VECTOR INTO THE 

BOUNDARY-SCAN PATH AND DUMPING THE PREVIOUS CONTENTS OF THE PATH 

FOLLOWED BY {01}. 

/* THIS ALLOWS A CHECK FOR A BREAK IN THE SCAN PATH AND ALSO 

TESTS MANY STUCK-AT FAULTS IN THE SCAN PATH. THE CONNECTIONS IN 

THE CLOCK AND TEST MODE SELECT DISTRIBUTION NETS WILL ALSO BE 

CHECKED. IN CASE OF FAILURE OF THIS TEST, THE POINT IN THE 

SERIAL SCAN AT WHICH WRONG VALUES ARE FIRST DETECTED IS CRITICAL 

TO DIAGNOSIS. */ 

The loading of '1...1' into all instruction registers preload the instruction that will force 
selection of the bypass data registers in preparation for the next step of the test. 

6. WITHOUT CONSUMING TCK CYCLES, CONFIGURE RECEIVER ON TDO TO 

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE 

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN 

PATH) THE EXPECTED CONTENTS OF THE INSTRUCTION REGISTERS (AS IN 

STEP 3) OF THE ODD-NUMBERED CHIPS AND A 0 FOR EACH EVEN-NUMBERED 

CHIP; FOLLOW THIS SEQUENCE WITH {01}. SIMULTANEOUSLY CONFIGURE 

THE DRIVER ON TDI TO SUPPLY THE SERIAL VECTOR COMPOSED BY 

CONCATENATING {01} WITH (L0IR + |N/2| ) 1S. 
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Starting with Step 6, the trailing '01' pattern is included mainly for program simplicity. 
By this time, the integrity of the TDI edge connector pin has been checked. Therefore, a 
trailing pattern is needed only when the last IC on the boundary-scan path is in the 
bypass configuration. In this case, the minimum trailing pattern is a single-bit "1,' which is 
needed to detect the stuck-at-0 fault associated with the bypass data register of the last 
IC. 

7. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE 

ODD-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY SELECT 

THE BYPASS DATA REGISTER IN THE EVEN-NUMBERED POSITION CHIPS. 

/* STEP 7 REQUIRES 2 COORDINATED TEST MODE SELECT LINES. */ 

This action requires a minimum of 4 TCK cycles. The values required on TMSn (n = 1 
or 2) are given in Table 8-2. 

Table 8-2: Coordination of TMS lines. 

TCK Cycle 

1 
2 
†3 
4 
5 

TMS1 

1 
1 
0 
0 
1 

TMS 2 

1 
1 
0 
1 
1 

Next TAP States 

In Even ICs 

Exitl-DR 
Update-DR 
RunTest/Idle 
RunTest/Idle 
Select-DR-Scan 

In Odd ICs 

Exitl-DR 
Update-DR 
RunTest/Idle 
Select-DR-Scan 
Select-IR-Scan 

When the FSMs of the test logic of the even-numbered chips enter the 
Select—DR—Scan controller state, the selected data register will be the bypass data register 
because all instruction registers contain vectors of the form ' l . . . l . ' 

8. USING 2 TCK CYCLES, TAKE ALL ODD (EVEN) CHIPS TO THE 

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 ON BOTH TMS LINES 

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS 

OPERATION.] 

† This cycle is optional. However, if time is needed to prepare an input/output vector 
for shifting, the third clock cycle in the above table can be stretched into many cycles 
because after the third clock cycle, the boundary-scan FSMs of all the chips will be in the 
Run —Test/Idle controller state. Maintaining v0' on both TMS lines will keep all FSMs in 
that controller state until the ATE is ready to proceed. This technique can be used in 
many similar steps below. 
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9. SHIFT SERIALLY THE PREPARED INPUT VECTOR INTO THE 

BOUNDARY-SCAN PATH BY SUPPLYING (L0IR + |
 N/2 | +1) TCK PULSES WHILE 

HOLDING BOTH TMS LINES AT 0. 

/* THE CONTINUITY THROUGH THE BYPASS REGISTERS IN THE 

EVEN-NUMBERED CHIPS HAS NOW BEEN CHECKED. IN CASE OF FAILURE OF 

THIS TEST, THE POINT IN THE SERIAL SCAN AT WHICH WRONG VALUES 

WERE FIRST DETECTED IS CRITICAL TO DIAGNOSIS. */ 

Note that the instruction registers in odd-numbered chips have again been pre-loaded 
with the instruction that will cause the bypass data register to be selected in those chips 
when the FSMs of their test logic enter the Select—DR—Scan state. 

10. WITHOUT CONSUMING TCK CYCLES, CONFIGURE RECEIVER ON TDO TO 

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE 

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN 

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION 

REGISTERS OF THE EVEN-NUMBERED CHIPS AND A 0 FOR EACH 

ODD-NUMBERED CHIP; FOLLOW THIS SEQUENCE WITH {01}. 

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL 

VECTOR COMPOSED BY CONCATENATING [01] WITH (LEIR + [
N/2] ) 0S. 

Loading the instruction registers in even-numbered chips with '0...0' preloads them with 
the instruction that will cause selection of the boundary-scan data register for continuity 
checking once the bypass data register continuity is confirmed in all chips. Note that we 
must be careful about the values to be shifted into the boundary-scan data register so that 
potential problems such as bus contention are avoided (see Step 14). 

11. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE 
EVEN-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY 
SELECT THE BYPASS DATA REGISTER IN THE ODD-NUMBERED POSITION 
CHIPS. 

/* STEP 11 REQUIRES 2 COORDINATED TMS LINES. */ 

This action requires 4 TCK cycles. The sequences of values in Table 8-2, Step 7 (above) 
on TMS1 and TMS2 are swapped — the sequence previously applied to TMS1 is applied, 
this time, to TMS2 and vice-versa. 

12. USING 2 TCK CYCLES, TAKE ALL EVEN (ODD) CHIPS TO THE 

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING THE 0 ON BOTH TMS 

LINES DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED 

BY THIS OPERATION.] 

104 



13. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE 

BOUNDARY-SCAN PATH BY SUPPLYING (LEIR + [
N/2] +1) TCK PULSES WHILE 

HOLDING BOTH TMS LINES AT 0. 

/* NOW CONTINUITY OF THE TEST PATH THROUGH ALL BYPASS REGISTERS 

HAS BEEN CHECKED. */ 

14. WITHOUT CONSUMING TCK CYCLES: CONFIGURE RECEIVER ON TDO TO 

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE 

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN 

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION 

REGISTERS OF THE ODD-NUMBERED CHIPS AND SEQUENCES OF {X. . .X} OF 

THE LENGTH OF THE BOUNDARY-SCAN DATA REGISTERS IN THE 

EVEN-NUMBERED CHIPS; FOLLOW THIS SEQUENCE WITH {01}. 

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL 

VECTOR COMPOSED BY CONCATENATING [01] WITH A (L0IR + LEBS)BIT 

VECTOR WHICH, WHEN SHIFTED INTO THE BOUNDARY-SCAN PATH, WILL 

LOAD OS INTO THE SELECTED INSTRUCTION REGISTERS, AND THE SAFE 

VECTORS INTO THE SELECTED BOUNDARY-SCAN DATA REGISTERS (SEE STEP 

1). 

15. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE 

ODD-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY 

SELECT THE DATA REGISTER IN THE EVEN-NUMBERED POSITION CHIPS. 

/* STEP 15 REQUIRES 2 COORDINATED TMS LINES. */ 

This action requires 4 TCK cycles with TMS line signals as in Step 7, above. 

16. USING 2 TCK CYCLES, TAKE ALL ODD (EVEN) CHIPS TO THE 

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 ON BOTH TMS LINES 

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS 

OPERATION.] 

The placing of v0...0' in all instruction registers of odd-numbered chips prepares them 
to cause selection of the boundary-scan data register the next time the FSMs of the 
odd-numbered chips go into the Select—DR—Scan controller state. Note that we must be 
careful about the values that are shifted into the boundary-scan data register to avoid 
potential problems such as bus contention (see Step 18). 

17. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE 

BOUNDARY-SCAN PATH BY SUPPLYING (L0IR+LEBS+l) TCK PULSES WHILE 

HOLDING BOTH TMS LINES AT 0. 

/* CONTINUITY IN THE BOUNDARY-SCAN DATA REGISTERS OF THE 

EVEN-NUMBERED CHIPS HAS NOW BEEN CHECKED. THE FIRST BIT IN THE 
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SERIAL STREAM AT WHICH A WRONG VALUE OCCURS IS CRITICAL TO 

DIAGNOSIS. */ 

18. WITHOUT CONSUMING TCK CYCLES: CONFIGURE RECEIVER ON TDO TO 

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE 

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN 

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION 

REGISTERS OF THE EVEN-NUMBERED CHIPS AND SEQUENCES OF {X. . .X} OF 

THE LENGTH OF THE BOUNDARY-SCAN DATA REGISTERS IN THE 

ODD-NUMBERED CHIPS; FOLLOW THIS SEQUENCE WITH {01}. 

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL 

VECTOR COMPOSED BY CONCATENATING {01} WITH A (l£iR+I<)BS) B I T 

VECTOR WHICH, WHEN SHIFTED INTO THE BOUNDARY-SCAN PATH, WILL 

LOAD OS INTO THE SELECTED INSTRUCTION REGISTERS, AND THE SAFE 

VECTORS INTO THE SELECTED BOUNDARY-SCAN DATA REGISTERS (SEE STEP 

1). 

The input vector used here is somewhat arbitrary because we do not plan to give an 
example of further checking of continuity through optional, user-defined data registers. If 
user-defined data registers are present, then the input vector of Step 18 would be slightly 
more complex. The positions in the vector representing values that would be in instruction 
registers at the end of the shifting sequence would be manufacturer-defined instructions 
selecting some set of user-defined data registers. The values that would end up in 
boundary-scan data register cells should still be "safe" (i.e., contention-free). 

19. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE 

EVEN-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY 

SELECT THE DATA REGISTER IN THE ODD-NUMBERED POSITION CHIPS. 

/* THIS REQUIRES 2 COORDINATED TMS LINES AND FOLLOWS THE METHOD 

OF STEP 11. */ 

20. USING 2 TCK CYCLES, TAKE ALL EVEN (ODD) CHIPS TO THE 

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 TO BOTH TMS LINES 

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS 

OPERATION.] 

21. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE 

BOUNDARY-SCAN PATH BY SUPPLYING (LIR+L0BS+1) TCK PULSES WHILE 

HOLDING BOTH TMS LINES AT 0. 

/* BY THIS OPERATION YOU WILL HAVE CONFIRMED CONTINUITY THROUGH 

THE BOUNDARY-SCAN REGISTERS OF ALL PARTS IN THE SERIAL PATH. THE 

FIRST BIT IN THE SERIAL STREAM AT WHICH A WRONG VALUE OCCURS IS 

CRITICAL TO DIAGNOSIS. */ 
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To save space in this discussion, no additional data registers that might be in chips on 
the board will be checked for continuity in this pseudocode. It would be wise to check 
those paths in a real board should any exist. Such paths might contain registers read in 
determining the results of self-testing of ICs. They might also be used in deterministic 
scan testing of the on-chip logic of an IC or of groups of ICs. The method of checking 
them is analogous to that used to confirm continuity through the boundary-scan data 
register and the bypass data register. 

The number of TCK cycles that have been employed in our test to this point can be 
obtained from the following formula: 

L I R + N + L B S R + 35 

In all probability, the dominating value will be L B S R . It is worth noting that L B S R is 
not computed merely by counting the number of boundary-scan input and output cells on 
all the chips with boundary-scan. On chips with 3-state and bidirectional leads, there will 
be cells added to the boundary-scan data register to provide control of those leads. 

8.4: Interconnect Check 

A set of deterministic patterns of verification of the interconnections between chips on 
the board is assumed to have been prepared in advance. Note that if no optional data 
registers exist, Steps 22-25 can be skipped. 

22. SELECT THE INSTRUCTION REGISTERS IN ALL PARTS, CONSUMING 4 

TCK CYCLES. 

23. WITHOUT CONSUMING TCK CLOCK CYCLES, PREPARE A SERIAL INPUT 

STREAM OF L I R OS TO BE LOADED AT TDI. SET OUTPUT BUFFER ON TDO 

TO DONT CARE. 

24. GO TO THE SHIFT-IR CONTROLLER STATE CONSUMING 2 TCK CYCLES. 

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.] 

25. LOAD THE INSTRUCTION THAT WILL SELECT THE BOUNDARY SCAN DATA 

REGISTER IN ALL PARTS BY LOADING THE INPUT PREPARED IN STEP 23. 

THIS REQUIRES (LIR-1) TCK CYCLES. 

26. WITHOUT CONSUMING TCK CYCLES, PREPARE TO LOAD THE FIRST 

BOUNDARY-SCAN INTERCONNECT TEST VECTOR VIA TDI. THE LENGTH OF 

THIS VECTOR AND ALL SUBSEQUENT INTERCONNECT TEST VECTORS IS LBSR 

BITS. AT THE SAME TIME, SET THE OUTPUT EXPECT BUFFER ON TDO TO 

DONT CARE. IT IS THE SAME LENGTH AS THE INPUT VECTOR. 

27. PROCEED TO THE SHIFT-DR STATE. THIS CONSUMES 5 TCK CLOCK 

CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.] 
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28. LOAD THE PREPARED INTERCONNECT TEST VECTOR. THIS CONSUMES 

(LBSR-1) TCK CYCLES. 

29. PROCEED TO THE UPDATE-DR STATE TO PLACE THE LOADED VALUES ON 

THE INTERCONNECT LINES. SIMULTANEOUSLY, PLACE ANY VALUES 

REQUIRED ON PRIMARY CIRCUIT PACK EDGE CONNECTOR LEADS ON THOSE 

LEADS. THIS REQUIRES 2 TCK CYCLES. 

30. PROCEED TO THE CAPTURE-DR STATE TO COLLECT THE TEST RESULTS. 

THIS REQUIRES 2 TCK CYCLES. 

31. WITHOUT CONSUMING TCK CYCLES, PREPARE THE NEXT INTERCONNECT 

TEST VECTOR FOR LOADING ON TDI. SIMULTANEOUSLY PREPARE THE 

EXPECTED OUTPUT BUFFER ON TDO WITH THE EXPECTED OUTPUT OF THE 

INTERCONNECT TEST JUST CARRIED OUT. 

32. PROCEED TO THE SHIFT-DR STATE TO UNLOAD THE TEST RESULTS AND 

SIMULTANEOUSLY LOAD THE NEXT TEST. THIS REQUIRES 1 TCK CYCLE. 

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.] 

/* UNLOAD RESULTS OF TESTt-1 AND LOAD INPUT OF TESTt 

SIMULTANEOUSLY */ 

33. APPLY THE INTERCONNECT TEST PREPARED IN STEP 31 AND READ AND 

COMPARE OUTPUT OF PREVIOUS TEST TO EXPECTED OUTPUT PREPARED IN 

STEP 31. THIS REQUIRES (LBSR-l) TCK CYCLES. 

34. PROCEED TO THE UPDATE-DR CONTROLLER STATE TO PLACE THE 

LOADED VALUES ON THE INTERCONNECT LINES AND CONDITION PRIMARY 

CIRCUIT BOARD INPUTS — AS IN STEP 29. THIS REQUIRES 2 TCK 

CYCLES. 

35. PROCEED TO THE CAPTURE-DR CONTROLLER STATE AS IN STEP 30 (2 

TCK CYCLES). 

36. WHILE THERE IS ANOTHER INTERCONNECT TEST TO DO, GO TO STEP 
31. 

37. WHEN LAST INTERCONNECT TEST HAS BEEN INPUT, WITHOUT 

CONSUMING TCK CYCLES, PREPARE A SAFE/CONTENTION-FREE INPUT 

VECTOR FOR TDI; AND, SIMULTANEOUSLY, PREPARE AN EXPECTED OUTPUT 

VECTOR FOR THE LAST INTERCONNECT TEST FOR THE TDO OUTPUT BUFFER. 

38. PROCEED TO THE SHIFT-DR CONTROLLER STATE. (1 TCK CYCLE.) 

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.] 
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39. UNLOAD THE LAST INTERCONNECT TEST RESULTS. (LBSR-l TCK 

CYCLES.) 

All output data must be saved for use by the diagnostic program that will evaluate the 
interconnect test results. This evaluation can be done during the testing or following the 
interconnect testing section of the test program. Condensation of test results in this part 
of the test by a signature analysis approach is not acceptable in diagnostic situations. It is 
possible that a GO/NOGO situation might use a compacted signature; however, for 
efficiency of the test process, it might be better not to have to run a test twice to get the 
full data needed for diagnosis. The actual error bit position is used in the diagnosis. 

If there are small- and medium-scale integration (SSI and MSI) ICs between chips on 
which boundary-scan is implemented, deterministic vectors can be applied to SSI/MSI 
clusters in a manner identical to that done in applying the interconnect test. In fact, if the 
diagnostic package is properly developed, the two tasks can be carried out with some 
(possibly considerable) overlap. 

The number of TCK cycles required to carry out the interconnect test is: 

LIR + ( T X + 1 ) ( L B S R + 4 ) + 5 

If SSI and MSI parts are to be tested using the boundary-scan path, then replace Tx in 
the above equation with T X + T S S I + T M S I in which TSSI is the number of tests beyond Tx 

needed to get adequate fault coverage of SSI parts and TMSI is defined analogously for the 
number of tests needed for MSI parts. 

The expected values of Tx have been computed. The worst case situation requires 2k 

tests for open and stuck-at faults (where k is the maximum number of boundary-scan 
data register output cells on a given net) and 21og2 (n+2) tests for bridging faults including 
diagnosis (where n is the number of nets on the circuit board). 

It is very clear that test length is dominated by the value of L B S R . For this reason, it is 
very probable that future interconnect testing could be complicated by requiring 
synchronization of test application on more than one boundary-scan serial path per circuit 
board. 

It might be the case that ATE input and output buffers on TDI and TDO can be set up 
for many vectors in advance. IEEE Std 1149.1 provides for a pause state even in the 
middle of shifting should ATE test vector buffers require reloading. If ATE buffers need 
to be reloaded r times during shifting, then the time of test application will be extended 
by a period of r(P+4) TCK cycles. 
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8.5: BIST Part Check 

At this point, the integrity of the boundary-scan path, the integrity of the interconnect, 
and the possibility of faults in the MSI and SSI logic that is surrounded by boundary-scan 
paths will have been checked. There remains the task of testing the non-surrounded MSI 
and SSI chips and the LSI and VLSI parts on the board. First, we do all we can with the 
boundary-scan interface by checking the parts that have it and have BIST. Sometimes a 
group of parts might be considered as a single part for these purposes. This means that the 
capability of seeing parts individually and as part of a single "cluster" is important in the 
ATE system software. 

In the following, we assume that a "safe" vector has been loaded into the boundary-scan 
data register through the last scan operation of the interconnect check (Section 8.4, Step 
37). This alleviates many potential problems, such as bus contention, during execution of 
the BIST program. 

40. SELECT THE INSTRUCTION REGISTER IN ALL ICS AND LOAD THE 

RUNBIST COMMAND IN ALL ICS THAT HAVE BIST. 

/* EVERY IC WITH PUBLICLY-ACCESSIBLE BIST IS REQUIRED TO HAVE A 

COMMAND THAT RUNS (SERIALLY OR IN PARALLEL) ALL BIST FEATURES 

AVAILABLE TO THE PURCHASER OF THE PART. */ 

41. SELECT THE RUN-TEST/IDLE STATE IN ALL ICS. 

42. SUPPLY THE NUMBER OF SYSTEM CLOCK PULSES EQUAL TO THE 

LARGEST NUMBER REQUIRED FOR SELF-TESTING OF ANY IC IN THE 

BOUNDARY-SCAN CHAIN. 

/* THE TEST LOGIC IS REQUIRED TO BE OF STATIC DESIGN SO THAT 

PARTS THAT COMPLETE THEIR SELF-TESTS WILL HOLD THE RESULTS OF 

THOSE TESTS UNTIL THEY ARE POLLED. */ 

43. SCAN THE RESULTS OF SELF-TEST OUT OF THE DATA REGISTERS 
(WHICH ARE SIGNATURE REGISTERS AUTOMATICALLY SELECTED BY THE 
RUNBIST INSTRUCTION). 

/* THE TEST SOFTWARE MUST PARSE THIS TEST SEQUENCE SO THAT THE 

SIGNATURES FOR EACH CHIP CAN BE READ AND CHECKED SEPARATELY BY 

THE TEST/DIAGNOSTIC SYSTEM. */ 

It is important to note that the expected values of the self-test signatures that are 
scanned out in the last step are required to be supplied to IC purchasers in the data sheet 
of the IC. 

It is possible that for some reason (e.g., power dissipation) not all the chips can be 
self-tested at once or that the self-test is carried out on a group of chips excluding 
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others. If this is the case, Steps 40 through 43 would be modified to test groups of chips 
while others have their bypass data registers selected to reduce the length of the scan path 
when unloading the self-test results. 

8.6: The Remaining Chips 

At this point, the parts on the board that have not been tested are the parts without 
boundary-scan and those SSI and MSI parts not surrounded by boundary-scan. In early 
implementations, it might be s simplification to test these parts on an in-circuit tester 
while checking the passive components. However, if these parts have very good quality 
histories, it might be acceptable to test them only as part of a functional test following 
the test represented above in pseudocode. In the future, octal parts containing the 
boundary-scan TAP, boundary-scan path, and eight bits of signature analysis register or 
pseudorandom pattern generating register will be available from companies such as Texas 
Instruments [9]. These parts would allow the surrounding of all SSI and MSI parts with 
boundary-scan, thus reducing the problem of lack of coverage if in-circuit test were to be 
used only to check passive components on a partially assembled board. 

8.7: Comments on Diagnosis 

Full implementation of BIST and boundary-scan at board level can greatly improve the 
accuracy in diagnosing complex, high-density boards. The potential improvement comes 
from two board-level testability features realized through BIST and boundary-scan: 

• The self-test capability of all or most of the components on a board allows for easy 
isolation of complex components with internal faults. 

• The TAP serves as the common medium through which the results of chip-level 
self-tests are polled or scanned out for diagnosis. 

Compact, effective interconnect test patterns can be easily applied to the board under 
test without suffering from many constraints commonly encountered by conventional 
in-circuit testers. Specifically, boundary-scan helps eliminate most problems associated 
with backdriving and test access limitation. 

To fully exploit these advantages, however, the complete test response must be captured 
for examination. Specifically, one has to determine the locations of the erroneous bits 
contained in the test results to isolate those components that have failed the self-tests. As 
for board-level faults such as short-circuits and opens, the positions of the failed bits are 
also vital in pin-pointing the physical locations of these faults. For instance, a simple 
algorithm for identifying interconnect failures requires that all responses from the 
board-under-test to the [21og2 (n+2)] test patterns (n = number of nets on the board) be 
examined [6]. The entire test set consists of the well-known [log2(n+2)] test patterns (the 
counting sequence), that detect all interconnect failures, and of their complements. It is 
interesting to point out that for GO/NO-GO testing, only the responses, or (for added 
throughput) the compressed signature, corresponding to the first [log2(n+2)] patterns 
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need to be perused. The signature analysis approach can be particularly attractive when 
the first-pass yield of a board is relatively high, and when sufficient empirical repair data 
are available to support diagnostic techniques based on statistical pattern recognition [10]. 
Otherwise, the uncompressed responses to both the [log2(n+2)] patterns and their 
complements need to be examined to achieve more precise fault isolation. 

Other sophisticated diagnostic algorithms have been published that can achieve higher 
diagnostic resolution than the algorithm mentioned above. Please refer to the literature for 
an in-depth discussion of the various boundary-scan diagnostic techniques [7,8]. 

8.8: Conclusion 

We have presented the outline of a complete program for testing boards equipped with 
BIST and boundary-scan. The test program is designed to deal with the initialization of 
the board under test, the verification of the boundary-scan test circuitry, the application 
of interconnect test patterns through the TAP, and the verification of components with 
BIST. Issues related to testing components without boundary-scan have been briefly 
addressed. Finally, with reference to some of the published diagnostic techniques, we have 
offered some comments on issues concerning the diagnosis of a board equipped with BIST 
and boundary-scan. 
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9. Diagnosing Faults in the Serial Test Data Path 

Rod Tulloss and Chi Yau Lee Whetsel 
AT&T Bell Labs Texas Instruments 

Engineering Research Center 6500 Chase Oaks Boulevard 
Princeton, NJ 08540, U.S.A. Piano, TX 75086, U.S.A. 

9.1: Objective 

Before the serial test data path can be used to test the chips on a board and, through 
the boundary-scan registers, their normal functional interconnections, it must itself be 
tested for common production defects — for example, solder shorts and opens. The 
design of the instruction register within the IEEE Std 1149.1 architecture includes facilities 
to assist in this task. 

9.2: A Basic Path Test 

The first step is to initialize the test access port (TAP) and instruction register. This can 
be achieved by holding the test mode select (TMS) signal (which is broadcast to all 
devices) high and applying five rising edges to the test clock (TCK). Where provided, the 
optional test logic reset (TRST*) inputs can also be used for this task. At the end of this 
process the TAP controller in each chip will be in the Test—Logic—Reset controller state 
which will cause other circuitry in the IEEE Std 1149.1 architecture to be initialized. For 
example, the instruction register's latched parallel output will be set to either the IDCODE 
or the BYPASS instruction, depending on the availability of a device identification register 
within the chip. 

The second step is to move through the Run —Test/Idle, Select—DR—Scan, and 
Select—IR—Scan controller states and enter the instruction register scanning sequence. The 
initial Capture—IR controller state will cause the instruction register to be loaded with the 
{X...X01} pattern as specified by the standard.f Note that, so far, the only connections 
that have been involved are TMS and TCK. No shifting is needed during initialization. 

By entering and remaining in the Shift—IR controller state for a number of TCK pulses 
equal to 2 plus the number of bits in all instruction registers of all chips, the constant 
patterns loaded into the least significant bits of the instruction registers in each chip will 
be observed at the serial output of a board with an error-free serial path. An additional 
2-bit sequence {01} is shifted into the serial input of the first chip to check that 
connection and the part of the serial data path in the first chip that is between the fixed 
bits loaded into its instruction register and its test data input (TDI) pin. For example, the 
pattern at the serial output of a fault-free board containing three chips each having a 
4-bit instruction register would be: 

t As in IEEE Std 1149.1, we will use the convention that the least significant bit of a 
register is that nearest TDO. The convention that bit streams are shown with the least 
significant bit on the right is also adopted, so the 1 in the pattern shown will be shifted 
out first, the 0 second, etc. 
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01XX01XX01XX01 

where the bit at the right is shifted out first. 

In the event of faults, the patterns from several chips will be observed followed by 
erroneous data — allowing the nearest fault to the board's serial output to be localized. 
This allows faults to be diagnosed and removed from the board one at a time. Consider, 
for example, the circuit shown in Figure 9-1, which contains an open-circuit fault 
between chips IC2 and IC3. 

O p e n - C i r c u i t F a u l t 

Figure 9 - 1 : Testing for an open-circuit fault in the serial path. 

Again, assume that the instruction register in each chip contains four shift-register 
stages and that a 2-bit {01} shift-terminating sequence is shifted into the board's serial 
input from the automatic test equipment (ATE) or bus master chip. In this case, the 
output observed at the board's serial output would be: 

111111XX01XX01 

where, again, the bit at the right is shifted out first. The open-circuit fault can be 
detected because the pull-up on the TDI input of IC2 causes a constant 1 to be shifted 
into that chip instead of the expected pattern, which starts {01} (read from left to right). 

9.3: Use of the Device Identification Register 

If a device identification register is present in the design, it is possible to combine a 
check of the assembly process with a test of the integrity of the board-level serial test 
data path by shifting all device identification codes out of the board in one pass. This 
approach is adopted in some proprietary boundary-scan implementations — for example, 
as discussed in [1]. 

As described in Chapter 5, all available identification codes from chips on a board-level 
serial path will be shifted out for examination if the sequence {1111101000...} is applied at 
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TMS, one bit for each cycle of TCK. This sequence causes the TAP controllers in the 
driven chips to move first to the Test—Logic—Reset state and then through Run—Test/Idle, 
Select-DR-Scan, and Capture-DR to Shift-DR. In the Test-Logic-Reset controller 
state, the output of the instruction register is set to the IDCODE instruction in all chips 
that have the device identification register and to BYPASS in all other chips. As a result, 
the available identification codes will be shifted out, interspersed with strings of Os output 
from chips that do not contain a device identification register. 

A complete description of this process, and of a method for decoding the output data 
stream, is contained in Chapter 5. 

9.4: More Complex Methods 

The above diagnostic method adequately deals with many of the faults in the serial test 
data path (e.g., internal faults in the instruction registers and external faults resulting from 
solder opens and shorts). However, it does not guarantee the diagnosability of internal 
faults in the scannable test data registers. Next, we will describe two diagnostic methods 
that can alleviate this problem. 

9.4.1: Method 1 

This method requires the test data registers to be designed so that, in each of the 
registers except the single-bit bypass register, the two bits nearest to the serial test data 
output (TDO) can be initialized to a binary {01} pattern upon Test—Logic—Reset. With 
this added hardware provision, the method of testing the integrity of a serial test data path 
consisting of cascaded test data registers can be easily derived from the preceding 
paragraphs. Because the bypass register consists of only a single bit, we cannot locate a 
fault in the bypass bit of an arbitrary chip with only one scan pass. (Method 2 can be 
adapted here for locating a fault in the bypass register within two scan passes.) 

9.4.2: Method 2 

This method saves the hardware overhead required by Method 1 at the expense of 
decreased diagnostic throughput. This method applies after the instruction registers have 
checked out as good by using the method described in Section 9.2. In this method, a 
board is set up so that alternating integrated circuits (ICs) on the serial test data path 
between bus master TDO and bus master TDI receive TMS signals from two different, but 
coordinated, sources. This allows one set of chips (for example, those in the 
even-numbered spots along the serial path) to be set up for instruction register scanning 
while the other set (those in the odd-numbered spots) are set up for test data register 
scanning. The fixed bits of the instruction registers in the even-numbered ICs can then be 
used to diagnose the integrity of the selected test data registers in the odd-numbered ICs. 

As an example, we will apply this method to the diagnosis of a fault in the bypass 
register of an IC. Any fault equivalent to a stuck-at fault on the input or output of an 
ICs bypass register can be located in no more than two scan passes. Because the bypass 
registers and the instruction registers are scanned in two different controller states — 
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Shift-DR and Shift—IR respectively — this approach requires that two separate TMS 
wires (designated TMSl and TMS2) be distributed. TMSl controls the odd-numbered ICs, 
while TMS2 controls the even-numbered ICs as shown in Figure 9-2. 

IC1 

IC2 

IC3 

IC4 

I Ceven 

Figure 9-2: Board level connection of TAP pins for Method 2. 
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In Figure 9-2, it is assumed arbitrarily that there is an even number of ICs on the 
board-level serial path, and this assumption is carried forward through the example in this 
section. Note that TMS1 and TMS2 can come directly from the TAP bus master or they 
can come from a board-level controller. 

To illustrate this approach, let us assume that all chips on a board's test data path have 
been initialized to the Test—Logic-Reset controller state. Then we can apply the following 
control sequences on TMS1 and TMS2 so that, on each of two separate scan passes, half 
of the chips at a time will be bypassed and the other half will have their instruction 
registers scanned. 

At the start of the test, all instruction registers are set to the BYPASS instruction by 
holding the board's serial input at 1 and completing an instruction scan sequence. This 
must contain sufficient clocks in the Shift—IR controller state for all instruction register 
stages in all chips to be set to 1. This requires that the same control sequences are applied 
to the two TMS lines — TMSl and TMS2. At the end of the instruction scan sequence, 
the TMS lines are controlled such that all chips enter the Run — Test/Idle controller state. 
At this point, the bypass registers in all chips have been selected for a following data 
register scan sequence. From this starting state, testing proceeds as shown in Table 9—1. 

Table 9 - 1 : Coordinated TMS values for method 2. 

Clock 
Cycle 

1 
2 
3 
4 
5 
6 
• • • 

M-3 
M-2 
M-l 
M 
• • • 

N 
N+l 
N+2 
N+3 
N+4 
N+5 

• 

TMSl 

0 
0 
1 
0 
0 
0 

0 
1 
1 
0 

0 
1 
1 
0 
0 
0 

• 

Odd Chip Con­
troller State 

Run-Test/Idle 
Run-Test/Idle 
Select-DR-Scan 
Capture-DR 
Shift-DR 
Shift-DR 

Shift-DR 
Exitl-DR 
Update-DR 
Run-Test/Idle 

Run-Test/Idle 
Select-DR-Scan 
Select-IR-Scan 
Capture-IR 
Shift-IR 
Shift-IR 

• • • 

TMS 2 

0 
1 
0 
0 
0 
0 

0 
1 
1 
0 

0 
0 
1 
0 
0 
0 

• 

Even Chip Con­
troller State 

Run-Test/Idle 
Select-DR-Scan 
Select-IR-Scan 
Capture-IR 
Shift-IR 
Shift-IR 

Shift-IR 
Exitl-IR 
Update-IR 
Run-Test/Idle 

Run-Test/Idle 
Run-Test/Idle 
Select-DR-Scan 
Capture-DR 
Shift-DR 
Shift-DR 

• • • 
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Note that, in the first scan pass, TMS1 holds the odd-numbered components in the 
Run—Test/Idle state for one more cycle than the even-numbered components, so that 
shifting of the data/instruction registers of all components is synchronized. In the second 
scan pass (starting at clock cycle N), TMS2 holds the even-numbered components in the 
Run-Test/Idle state for one more cycle than that of the odd-numbered components. 
Also, note that a fault in the bypass register of an odd-numbered component will be 
located in the first scan pass, and a similar fault in an even-numbered component will be 
located in the second scan pass. 

In Table 9-2, control sequences similar to those in Table 9-1 are applied to diagnose a 
stuck-at-1 fault in the bypass register of IC4. As in the earlier example, all chips are 
depicted as having instruction registers that are four bits long.f 

Table 9-2: Detection of a stuck-at fault. 

Chip 

Bus master TDO 

IClast 
• • • 

IC6 

IC5 

IC4 

IC3 

IC2 

IC1 

Test 1 

Expected 

n/a 

XXOl 

XXOl 

[0] 

XXOl 

[0] 

XXOl 

[0] 

Observed 

n/a 

XXOl 

XXOl 

[0] 

XXOl 

[0] 

XXOl 

[0] 

Test 2 

Expected 

1 

[0] 

[0] 

XXOl 

[0] 

XXOl 

[0] 

XXOl 

Observed 

1 

[1] 

[1] 

1111 
Lc 

[1] 
LB 

XXOl 
LA 
[0] 

XXOl 

The first incorrect value of observed output 2 is the 1 from IC4. However, this error 
only implies that a bad bit occurred between points A and B (marked on Table 9-2). The 

f Brackets are used to delimit the single-bit serial outputs from those chips that are 
bypassed. 
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bad bit must occur first at B because the instruction register of IC4 has previously been 
tested and found fault-free when using the method described in Section 9.2. Similarly, the 
bit in IC4 stuck-at-0 can be detected by finding a 0 at position C in the analog of 
observed output 2. Note that a stuck-at-0 fault in a bypass register can be detected, but 
not located, by scan operations using only one TMS line. This is because, in the 
single-TMS-line case, there is no way to place Is in registers between the fault and the 
board-level serial output. 

Note: Because a test must be performed for the stuck-at-0 fault in the bypass register 
of IClast. it is necessary to shift an additional 1 into the TDI input of that component 
in the second test. Stuck-at faults on TDI itself will have been tested by the test 
described in Section 9.2. 

9.5: Reference 

[1] R. Lake, "A Fast 20K Gate Array with On-Chip Test System," VLSI Systems 
Design, Vol. 7, No. 6, June 86, pp. 46-65. 
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10. In-Circuit Testing 

Bob Russell 
Bull HN Information Systems 

38 Life Street 
Brighton, MA 02135, U.S.A. 

In the immediate future, occasions will frequently arise in which not all the integrated 
circuits used to construct a loaded printed wiring board contain the features defined by 
IEEE Std 1149.1. For such boards, there may be a continued need to use in-circuit test 
techniques as a part of the overall test process. This chapter discusses how integrated 
circuits (ICs) compatible with IEEE Std 1149.1 may be designed so that such testing of 
non-conformant chips can be reliably performed. 

10.1: Mixed In-Circuit and Boundary-Scan Testing 

During in-circuit testing of chips on a board, it is necessary for the tester to be able to 
determine the signals fed into the chip under test. On occasions, tester signals will be 
applied to the outputs of chips that conform to IEEE Std 1149.1. Where these outputs 
can be placed in an inactive drive state (e.g., high-impedance) or can be set to a logic 
level that can be safely and effectively backdriven, this is readily achieved without risk of 
damage. In other cases, backdriving must be carefully controlled to ensure that no damage 
is caused to the chips that normally determine the signals to be supplied to the chip under 
test. Such controls place limits on the length of test that can be applied and may therefore 
adversely impact test quality. 

It is advisable, therefore, to provide a means for setting the outputs of all chips — 
including those compatible with IEEE Std 1149.1 — to a state that can be safely 
backdriven during in-circuit test. 

Figure 10-1 consists of six examples of system output (Fl through F6) and shows how 
each can be placed in a state that can be safely backdriven under control of a signal ICT* 
(ICT* = 0 for in-circuit test): 

• Fl and F2 are set to high-impedance during the in-circuit test mode by using a 
single added AND gate (or, if the high-impedance control was previously driven 
from an AND gate, by adding an additional gate input). 

• F3 represents one or more 3-state drivers requiring an extra AND gate for 
independent enabling in the system mode. 

• F4 and F5 represent, respectively, outputs capable of being backdriven from zero 
(but not from one) and from one (but not from zero). 

• F6 represents an output that can be backdriven when at either logic level and, 
therefore, requires no modification. 
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Figure 10-1: Control of outputs into an overdrivable state. 

NOTE: The open squares in this figure indicate boundary-scan cells; 
the dotted line is the serial "TDI-to-TDO" connection between 
them. 

The following sections discuss methods for allowing chips compatible with the standard 
to be configured such that they can be safely backdriven. 
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10.2: Method 1 

The first method described is based on an extension to the test logic functionality 
defined by IEEE Std 1149.1. It allows signals supplied to the loaded board by the 
in-circuit test system to place the chip in an "in-circuit-safe" state. This is achieved 
through use of the test pins defined by the standard and, as will be discussed, has a 
minimum impact on the test and system logic in an IC. 

The method is based on two properties defined by the standard: 

1. The driver for the test data output (TDO) pin is a 3-state device that is active only 
when data or instructions are being shifted through the chip. As a result, the 
connection from the TDO output of one chip to the test data input (TDI) of the 
next on the board-level serial path will be floating (i.e., not driven) while the 
chips are set for normal (i.e., non test) operation of the on-chip system logic. 

2. The TDI input to a chip must be designed such that, when not externally driven, it 
behaves as though a logic 1 was being applied. Typically, but not universally, the 
latter requirement will be met through inclusion of an internal pull-up resistor. 
The method described here assumes that a pull-up resistor is present at the TDI 
input of the next chip on the serial board-level path. Where this is not the case, a 
pull-up resistor must be added externally to the connected chips to ensure correct 
operation of the method described. 

Typically, then, the TDO-TDI connection between a pair of chips will be pulled to 
logic 1 when the components are in their normal (i.e., non-test) mode of operation — 
that is, when their test access port (TAP) controllers are in the Test—Logic—Reset state. 
Thus, if a bed-of-nails probe were to be connected to this signal, its state could be 
changed to 0 without the need for backdriving provided that the chips had previously been 
configured for normal operation (e.g., through application of a 0 at the test logic reset 
(TRST*) input). 

As shown in Figure 10-2, the addition of a small amount of logic at the TDO output 
allows the condition where the TDO driver is inactive, but the driven connection is at 
logic 0, to be detected and used to control entry into an "in-circuit-safe" test mode (i.e., 
to generate the ICT* signal required in Figure 10-1). 

Where no TRST* input is available, the "in-circuit-safe" test mode can be entered by 
holding TMS high and applying five or more rising edges at the test clock input (TCK) so 
that the Test-Logic-Reset controller state is reached. The TDO-TDI connections can 
then be pulled low as required. 
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Figure 10-2: In-circuit test application. 

10.3: Method 2 

As an alternative to method 1, the "in-circuit-safe" test mode may be provided through 
inclusion of a dedicated instruction for the purpose. Such an instruction could be serially 
entered into the chip prior to the application of in-circuit tests to other chips on the 
board. In this case, the ICT* signal would be generated by the instruction decoder. 

10.4: Method 3 

In IEEE Std 1149.1 it is recommended that the "in-circuit safe" test mode be attainable 
by means of data loaded into the boundary-scan path while the EXTEST instruction is 
selected. This requires that the user knows which state at each pin can be safely 
backdriven and also that the automatic test equipment (ATE) is able to control the chip's 
TAP interface. 

10.5: Conclusions 

Several means of placing a chip compatible with IEEE Std 1149.1 in a state where its 
outputs can be safely backdriven during in-circuit testing have been discussed. These 
methods vary in the complexity of their use. Method 1 allows the chip to be set into the 
"in-circuit-safe" state simply by applying a voltage level to the board through a 
bed-of-nails probe. In contrast, method 2 requires that the ATE first causes an 
instruction to be entered into the TAP controller of each chip that is to be backdriven. 
Method 3 additionally requires that the ATE enters data into the boundary-scan path that 
will set each chip output such that it can be safely backdriven and that it will then select 
the EXTEST instruction. 

The advantage of simplicity in attaining pre-test set-up in practical in-circuit testing 
should not be ignored. 
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Part IV: Implementation Examples and 
Further Applications 

The chapters in Part IV discuss the implementation of IEEE 
Std 1149.1 and show how it can be applied to tasks other than 
loaded-board testing. Our aim in bringing together this material 
is to illustrate as wide a range of potential applications as possible 
and to provide a balanced view of the costs and benefits of using 
the standard. 
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Chapter 11. Applications of IEEE Std 1149.1: An Overviewt 

Peter Fleming 
Texas Instruments 

6500 Chase Oaks Boulevard 
Piano, TX 75086, U.S.A. 

The original motivation for the development of IEEE Std 1149.1 was the increasing 
difficulty of testing newly-assembled or field-returned printed wiring boards (PWBs). 
Among the causes of this difficulty are increases in the complexity of integrated circuits 
(ICs) and use of highly-miniaturized interconnection and assembly technologies such as 
surface-mount. 

However, loaded-board tests are by no means the only test tasks during a product's life 
that can be more effectively or more economically performed if IEEE Std 1149.1 is 
adopted at the integrated circuit level. In fact, the range of applications is very broad — 
ranging from wafer to system test and from prototype debugging to maintenance and 
repair. 

This chapter provides an overview of these applications and gives an introduction to the 
more detailed discussions contained both in subsequent chapters and in the reprinted 
papers contained in Part V. 

11.1: Test Cost Reductions: Chip-to-System, Womb-to-Tomb 

IEEE Std 1149.1 provides the foundation of a hierarchical approach to testing in which 
tests developed for use at one level in a product assembly hierarchy (for example, for an 
IC) can be reused at the various higher levels of assembly (for example, for testing the 
loaded PWB). The idea is to obtain the maximum return for each investment in 
design-for-test features or test data and thus reduce the overall cost of testing. 

Not only does the standard provide the basis for an hierarchical approach from chip to 
system that allows efficient and economic testing at one stage during the product's life (for 
example, at production testing), it also supports testing throughout the total life cycle of a 
product — from womb to tomb. This gives the opportunity for further test cost savings. 

Like any other design-for-test technique, of course, these savings cannot be achieved 
without incurring costs. The objective is that, overall, the savings should significantly 
outweigh the costs. 

Unfortunately, both costs and savings are highly dependent on such features as the type 
of product and the type of company; therefore, it is difficult to provide a detailed analysis 
in this book. However, Chapter 12 discusses the various issues in more detail and provides 
a basis for an in-depth economic analysis that might be performed. This chapter outlines 

t This chapter is an updated extract from an article first published in the Texas 
Instruments Technical Journal, Vol. 5, No. 4, July-Aug. 1988. 
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the costs that will be incurred in implementing IEEE Std 1149.1 and shows how these 
might be reduced by careful design. 

In the remainder of this introductory chapter it is assumed that IEEE Std 1149.1 is fully 
exploited in a product — not only through implementation of the mandatory features 
(e.g., the boundary-scan path), but also through provision of test access to key internal 
registers in ICs. The aim is to describe what could ultimately be achieved when the 
standard is widely adopted across the electronics industry. 

11.2: Applications During Design and Development 

11.2.1: Integrated Circuit Debug 

Traditionally, the greatest resistance to design-for-testability has come from IC 
designers, who feel they pay the most significant penalty for its inclusion while reaping the 
least benefit. However, today these designers are paying far greater attention to testability 
than ever before. They are also doing this voluntarily, with little pressure from the test 
community. 

The reason is that, while IC designs are approaching the complexity of boards, they do 
not provide the probeability necessary to debug the design. Industry reports indicate that 
half of the application-specific IC (ASIC) designs produced do not work on the first pass 
because of inadequate testing and simulation. To successfully debug a complex design, 
designers have begun to explore scan paths as a technique for improving observation and 
control. 

Unfortunately this has often been accomplished by multiplexing the scan path input and 
output connections onto functional pins, precluding the use of the paths during later 
testing (e.g., when the chip is mounted on a board). In some complex chips, however, 
four to six pins are fully dedicated for testability to allow access to the serial scan paths 
for test and debugging, for both stand-alone IC testing and chip-on-board testing. 

The emergence of an industry-standard serial test data interface (the test access port 
(TAP)) will allow for the development of robust debugging environments based on 
personal computers or engineering workstations (Figure 11-1). Software tools provided on 
these machines will allow designers to conduct register level transactions interactively and 
to view the results on a personal computer or workstation in a graphic waveform format. 
States of internal registers need no longer be hidden, since inclusion of optional test data 
registers within the IEEE Std 1149.1 architecture will provide for test access and allow 
faster debugging and confirmation of designs. 
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Chip or Board under Test 

Figure 11-1: Low-cost debug/test station. 

11.2.2: Loaded PWB Debug 

Even with the greater accessibility afforded by loaded PWBs, design verification can 
often be a long and tedious process. Special software may need to be written and use of 
test equipment such as logic analyzers, oscilloscopes, and multimeters may be required. 

For example, a major limitation of board debugging today is the difficulty of setting the 
design into the state the designer needs. Many instruments are available to observe those 
nodes that can be physically probed, but driving nodes to desired states is usually far more 
difficult. The outputs of chips that normally drive the nodes must be inhibited so that the 
nodes can be driven by the tester without risk of damage. An added complication is that 
the critical points to be controlled and observed frequently do not exist as probeable chip 
pins — consider the key internal registers of a microprocessor, for example. 

The provision of a standard test interface eliminates the necessity for physically probing 
the loaded board to control it. The designer can set up specific conditions (for example, in 
internal registers that can be accessed through a chip's TAP) and can observe how the 
design responds under software control via the serial test interface. Moving the points of 
observation is achieved simply by typing in commands, as opposed to reconnecting the 
logic analyzer to change the nodes being monitored. The designer can visualize the board 
from a register level and can use diagnostic tools to query the state of the hardware. All 
of the visibility provided during IC debugging remains available through the dedicated test 
interface. 
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For the future, where designs may be based on advanced surface mount technologies, 
physical access may be very limited, precluding the use of logic analyzers altogether. 
However, access using the serial test interface will continue to be possible. 

11.2.3: System Debug 

At the system level, debugging is rarely performed by using a sophisticated test 
environment. Techniques such as hot mock-ups, where systems are assembled and tested 
by using functional tests that emulate the end-user environment, are employed. Special 
test code is sometimes developed, but, typically, this code tests individual functions whose 
logic may reside on multiple boards. Thus, when failures are detected, it is often a long 
and tedious process to localize the fault. The problem is that no simple means exists to 
access the core of the system to help identify the failing board — diagnosis must be done 
based on externally-observable symptoms. 

Use of a standard test interface provides a flexible debugging tool, again based on 
personal computers or workstations. The designer is able to take advantage of the same 
debug routines used for the chips and boards, and can observe states on multiple cards 
simultaneously on the display. The hardware can be set into known states and its responses 
to these tests can be observed. Boards do not have to be placed on card extenders for 
probing, nor do special instruments have to be connected directly, avoiding the risk of 
affecting the parameter being measured. 

11.2.4: Hardware/Software Integration 

For many complex systems, the hardware design effort is dwarfed by the magnitude of 
the software development task. The most complex aspect of this task is the successful 
integration of the hardware and software. In cases where the system does not perform as 
anticipated, it is extremely difficult to resolve the failure between the hardware and 
software because of the poor visibility and controllability of the integrated system. 

A consistent platform for debugging ICs, loaded boards, and systems, that also supports 
software testing tools, can significantly reduce the effort required to debug 
hardware/software systems. Robust software running on cost-effective hardware provides a 
single platform for downloading, uploading, and executing application software on target 
designs. 

Significant debugging capabilities exist that can be windowed-in to provide improved 
knowledge of how the system performs, with the ability to access internal nodes that 
cannot possibly be viewed by using current instrumentation. Registers, program counters, 
arithmetic logic units, address and data busses, and other key areas become both 
controllable and viewable at the terminal. Instruction op-codes can be traced and 
converted by the debugging tool into mnemonics the programmer can more easily follow 
and understand. In some cases, code patches can be interactively generated and checked 
without the need to recompile. 
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For complex problems, hardware states can be captured and dumped to disc for off-line 
analysis. 

11.2.5: Environmental Testing 

Often the final step in qualifying a design is to verify that it operates correctly under a 
wide range of thermal, vibrational, and other environmental stresses. 

During these tests, the instrumentation relied upon for design validation (e.g., 
oscilloscopes, logic analyzers) cannot be used because the system is enclosed by its case 
and is housed in a "hostile" environment. Therefore, the instruments cannot easily be 
connected to the desired points. 

By making the standard test interface accessible on a connector of the fully assembled 
product, internal nodes continue to be both controllable and observable under software 
control. As at other test stages, the dependency on physical access is broken. Use of the 
interface can allow downloading and execution of special test software, and for monitoring 
of the system under external control. If failures occur, engineers may troubleshoot the 
problem while the subsystem remains in the environmental chamber under the conditions 
that caused the fault to occur. The added visibility may also provide useful data to system 
engineers in learning how the hardware responds to environmental stresses. An example 
would be in setting false alarm filter values for built-in test. 

11.3: Applications During the Production Cycle 

11.3.1: IC Testing 

For relatively simple IC designs, testability features are sometimes included for design 
validation that are accessed through special wafer-probe pads. These features are usually 
not available for later test stages because the necessary connections are not bonded to pins 
on the packaged chip. A new test must therefore be developed for the packaged chip that 
accomplishes high detection without use of the test features. 

This has grown to be unacceptable in complex designs. Often, the test features are 
preserved only by creating access through multiplexed use of functional pins. 
Unfortunately, the result is that the test developed for production testing of the IC is of 
no further use for assembled board and system test. It cannot be used once the chip is 
installed in a loaded board. 

With the IEEE Std 1149.1 TAP, four (or five) pins are dedicated to ensure permanent 
access to the test features. The design of the test for the packaged chip becomes more 
straightforward because no multiplexing need be involved. If the IC has boundary-scan, 
the static vectors used for packaged-chip tests can be reused when the chip has been 
assembled onto the board. 

The availability of the boundary-scan path also offers a simplified technique for 
achieving a reasonable confidence level during wafer test with greatly simplified fixturing. 
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By using the four (or five) pin test interface instead of providing connections to every I/O 
pin of the part, a significant portion of the logic can be exercised prior to packaging. This 
assumes that the dropout rate caused by faults in the I/O region is acceptably small 
enough to defer detection until the part is tested on a packaged part tester. 

11.3.2; Parametric Testing of ICs 

The boundary-scan register can be used to simplify the creation and application of 
parametric tests for ICs. 

To perform a parametric test by using the boundary-scan register, a test program loop is 
entered. First, the boundary-scan register is set to test board interconnections by shifting 
the EXTEST instruction into the instruction register. A data register scan cycle is then 
entered, which causes the data applied at the system input pins to be captured in the 
boundary-scan register. The logic signal value perceived at each input pin can be examined 
by shifting the latched values through the test data output (TDO) pin. This load-shift 
cycle is repeated for different input voltages until all required voltage levels have been 
applied, The test program loop then ends. 

Similarly, the boundary-scan register can be used to facilitate measurements on output 
drive capability, slew rates, etc. Further, the inclusion of cells in the boundary-scan 
register that allow each 3-state output pin or bidirectional pin to be forced to 
high-impedance allows this aspect of chip performance to be tested easily. 

A parametric test constructed by using the boundary-scan register may be significantly 
shorter than that of a conventional equivalent. For example, a test of the input switching 
thresholds of an IC would normally require paths to be set up through the circuit so that 
each input can be observed by monitoring chip outputs. The resulting test sequence could 
be extremely long — perhaps up to 50,000 vectors. When the boundary-scan register is 
used, each test cycle contains roughly as many patterns as there are pins on the chip — 
typically, many fewer test patterns than would be required to propagate signals through 
the chip from input to output. 

11.3.3: Incoming Goods Testing 

Companies continue to test integrated circuits prior to introducing them into stock. This 
usually requires a multi-million dollar capital investment in automatic test equipment 
(ATE) and leads to demands for design data to be supplied by the chip vendor. Not 
surprisingly, these vendors are not keen to support the multiple types of ATE used by 
their customers or to part with their design data. 

In some cases, the user has enough confidence in the foundry's quality levels to allow 
"ship-to-stock" without incoming inspection. It can be very expensive, however, to isolate 
even the limited number of faults that slip through when each echelon of test adds a 
tenfold increase in cost. 
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Depending on the fault spectrum of chips after once successfully passing the 
packaged-chip test, potential exists for a cost-effective static tester that could be used for 
many chip types. If such a test were based on features accessible when using IEEE Std 
1149.1, the personal-computer- or workstation-based test environment would be capable 
of simultaneously directing the test of multiple ICs, reusing a subset of the vectors 
developed for the packaged part test. 

Assuming that the most severe faults would be detected in this relatively low-cost 
environment, companies could feel more comfortable about "ship-to-stock." This highly 
portable test environment would also support retest of chips thought to have subsequently 
failed during the manufacturing process or field use. 

11.3.4: In-Circuit Loaded-Board Test 

The continued need for low-cost manufacturing defect test environments gave birth to 
the Joint Test Action Group and the sudden momentum in the electronics industry 
toward provision of standard test busses and boundary-scan. 

Today, in-circuit test is used to detect the large majority of faults introduced during the 
manufacturing process — damaged parts, wrong parts, misoriented parts, opens, and 
solder shorts. However, many major companies shared concerns over the ability to 
continue performing bed-of-nails testing when confronted with dual-sided surface mount 
boards populated with complex ASICs packaged with 25 mil lead spacing. While this 
suggested a need to give up this type of testing it was felt that the alternative of using 
functional (edge-connector) testers was unattractive, because the equipment is generally 
more expensive and can be far slower and more expensive for isolating typical production 
faults. 

Current technology for in-circuit testing has many undesirable shortcomings that make 
it unattractive as a long-term solution. ATE vendors have attempted to overcome 50 mil 
spacing with clamshell fixtures whose reliability over thousands of actuations in a high 
volume environment remains unproven. Progression to 25 mil spacing will, in all 
likelihood, exceed the mechanical capabilities of these fixtures. 

The alternative is to provide special staggered probe pads that cause the board to 
become larger, defeating the purpose of using surface mount technology. The effects are 
far more drastic with pin grid arrays and where the connections that link the layers of the 
PWB (the vias) are buried. Further, the parts themselves may be damaged from the lengthy 
tests that are applied by backdriving. 

Boundary-scan allows a "virtual probe" to access the node between the I/O buffer and 
the core logic (Figure 11-2). Testing proceeds in two stages: 

• Pins—in testing: A subset of the vectors developed for packaged-chip test are 
applied via the boundary-scan path to exercise the core logic in each component. 
These vectors are usually developed to validate the design but, hitherto, they have 
not been able to be used in PWB/system test. 
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Pins-out testing: Simple vectors are propagated from scannable device output to 
input to detect and isolate manufacturing and other connectivity-related problems. 
This provides a capability superior to that of an in-circuit test, and without the 
need for probing. 

Printed Wiring Board 

Figure 11-2: Boundary-scan approach. 

No physical contact is required and backdriving is not necessary. Ones and zeroes are 
easily generated and applied out of the devices (pins-out testing) to confirm the integrity 
of the input or output (I/O) buffer, package lead, solder, and etch for the printed wiring 
network. Subsets of the static packaged part test are applied from the inputs across the 
core logic (pins-in testing) to confirm the functionality and integrity of the part. 

Manufacturing faults typically detected by in-circuit testers can be localized when using 
personal computers and a desktop fixture, in sharp contrast to the $250K+ test systems of 
today. When the board design changes, the test is modified in software by linking in new 
device test files and by describing the new configuration of the board. This flexibility is a 
large improvement compared with generating a new fixture. 

An important advantage of the test structures on the loaded boards is their ability to 
partition the design into segments small enough for computer automated test pattern 
generation. With proper levels of testability, the future may hold virtual turnkey test 
generation for patterns that detect stuck-at-one and stuck-at-zero conditions. 

This new, low-cost manufacturing defect test capability can be applied cost-effectively 
to development efforts at far lower volumes than those required for in-circuit test 
investments. The low capital investment and high portability allow manufacturing screening 
to be introduced during design validation and leveraged across all phases of the product 
life cycle. The manufacturing defect test, once developed, can be used for subsequent 
board level tests in the factory, field, and depot. 

11.3.5: Functional Loaded-Board Test 

Functional testing today still relies on physical probing by the operator to isolate 
detected faults. Sequencing of the probing may be fixed, left to the operator, or 
determined on the fly by guided probe algorithms. Probing of very fine pitched pads 

136 



without glitching will be a challenge for even the most skilled of operators, potentially 
necessitating robotic probing. Testing itself will be more complex if the additional 
observation is limited because only chip I/O pins can be probed. 

The boundary-scan path can provide a capability referred to as "virtual probing," where 
the condition of nodes is retrieved by software without requiring instrumentation. A 
straightforward software layer can intercept the normal directions to the user to probe a 
node and can determine whether it is accessible via the scan path. If it is, the path can be 
accessed and the value can be returned to the test program without the operator having to 
participate. More importantly, the number of accessible nodes expands to include internal 
points located along the scan paths. 

The improved visibility and control, combined with at-speed test capabilities 
incorporated into the design, can greatly improve the fault detection and isolation of 
functional testing. Integrated circuit built-in self-test (BIST) and board/system level 
built-in test (BIT) capabilities can enhance the performance of functional board testers. 

11.3.6: Subsystem and System Test 

The benefits provided to subsystem and system debugging may be leveraged against the 
production test problems with great impact. More importantly, manufacturing tests 
developed for the loaded boards may be reapplied and augmented to form the subsystem 
test at reduced cost. Eliminating the need for physical contact allows these tests to be 
reused in the testing of the fully assembled product, even when its enclosure prevents 
physical contact with internal connections. 

11.4: Completing the Leverage into Field Test 

11.4.1: Built-in Test 

Built-in test (BIT) features have become increasingly more complex as systems have 
absorbed more and more functionality within a given constant volume. Software has 
become more complex and hardware speeds have escalated. The ability to monitor and 
detect system faults and to successfully isolate them has become a tremendous challenge. 

The ability for firmware-based BIT to adequately exercise the full functionality of a 
system through instruction execution is rapidly being reducing. It may soon become 
unfeasible. Techniques that provide a more thorough test to smaller functional segments 
are therefore required. A transition into pattern-oriented BIT offers opportunities to 
improve BIT performance but it must be carefully measured against the impacts in terms 
of timelines and test data storage. 

BIT techniques using pseudo-random pattern generation (PRPG) and parallel signature 
analysis (PSA) offer the ability to exercise hardware at full operating speed with minimal 
throughput and storage impact. Connectivity tests of similar or better performance to 
those generated for the in-circuit testers today can be algorithmically generated and 
rapidly executed. Pattern-oriented testing is better suited for fault simulation, offering an 
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alternative for test grading to the physical fault insertion often conducted today. The 
emergence of an industry standard serial test interface provides an opportunity to provide 
additional control and to obtain better data within this environment. 

11.4.2: Run Time Diagnostics 

The boundary-scan path has the ability to capture data and make them available for 
examination without having any effect on the functional logic during its normal operation. 
This provides an avenue to the establishment of test processes in a background mode, that 
executes during operational time windows. One can take "snapshots" of the system and 
scan them out for external review. In this manner, useful information can be obtained to 
support run time diagnostic requirements. 

11.4.3: Reconfiguration and Graceful Degradation 

The operation of many systems is critical; consequently they cannot be allowed to fail 
catastrophically. Typically these systems feature redundancy, allowing tasks to be 
redistributed to fault-free resources when a failure occurs. 

As with other cases discussed previously, the structured test access based on IEEE Std 
1149.1 can provide greatly improved localization and monitoring of failing hardware. Upon 
detection of a failure, a system manager function can reallocate the task or function of the 
failed hardware to a backup node or it can reconfigure the hardware to allow the least 
critical function to be dropped temporarily. Thus graceful degradation occurs while the 
system manager executes diagnostics on the failed function in an attempt to confirm and 
isolate the fault. 

The system manager is able to maintain a near real-time assessment of the system's 
capabilities and to rededicate resources as required. Additionally, the failed function can 
be continuously retested in the background to detennine if the failure was intermittent or 
transient. Having determined a function to be "restored," the system manager can 
gracefully recover and bring the system back up to full performance. 

11.4.4: Off-line Diagnostics 

The structured test and debugging capabilities provided allow sophisticated highly 
portable tools to re-execute BIT and factory tests in the operational environment of the 
system. Manufacturing tests for digital boards can be rerun on boards still in the chassis 
through a system-level maintenance bus (e.g., the VHSIC TM-bus [l]†). Compact 
computers equipped with relatively simple interfaces can isolate failures to single boards 
with minimal activity on the part of the maintainer. 

In cases where off-line test procedures are required, possibly augmented by portable 
maintenance aids, the structured test architecture acts like a built-in instrument and 

† The VHSIC TM-bus has been accepted as the basis of a companion project to IEEE 
Std 1149.1 — the P1149.5 Module Test and Maintenance Bus. 
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provides a path to the failure data collected during on-line operation. A smart controller 
within the product can interface to a host computer via phone or radio link to remotely 
execute diagnostics maintained at a base repair facility. 

11.4.5: Test and Repair of Field Returns 

Testing to detect and repair failures of boards returned after field repair of systems is an 
expensive and often capital-intensive area for many companies. In the military arena, and 
in some areas of the commercial sector, in-circuit test techniques cannot be used because 
the conformal coating used to protect loaded boards from damage cannot be easily 
removed or penetrated by probes. Depots and repair facilities have to rely on 
multi-million-dollar functional testers, that are good for detection, but often poor on 
diagnosis. The functional tests differ significantly from the on-line and off-line 
diagnostics used in the operational environment, causing fault repeatability problems. 

Because standardized test interfaces reduce the need for physical contact, depots can use 
the same low-cost manufacturing tests run in the production facility. The inherent 
modularity of the tests provides good isolation, and when replicating field test sequences 
reduces the chance of "cannot-duplicate" problems. Warranty repair facilities for 
commercial products are small operations that cannot justify large capital investments for 
troubleshooting or repair. Again, the possibility of being able to use test environments 
similar to those used in the factory can offer greater repair efficiency at costs lower than 
those achievable today. 

11.5: Conclusion 

Implementation of a structured chip-through-system test architecture requires an 
investment at the IC level toward the solution of system level problems that are becoming 
major barriers to profitability and performance. This investment can pay for itself many 
times over in reduced costs throughout the product life cycle. The process of test 
generation and verification for digital logic can be constrained into the region capable of 
being handled by current-day computer-aided tools. The tests can be reutilized 
throughout all test phases of the product's life. 

By removing the dependence on complex fixturing, the potential exists for simpler 
personal-computer-based systems for testing and debugging. These systems are 
cost-effective enough to be introduced during product debug and test of initial prototypes 
when volumes are still too low to justify current approaches. Basic hardware/software 
building blocks, combined with application software, provide highly functional yet 
portable debugging and testing environments. Production tests and production ATE can be 
utilized cost-effectively in the field to reduce the costs of field and warranty support. 

Having reduced the test interface to a four-wire port, the majority of the test capability 
lies within the linking and execution of previously developed tests for ICs combined with 
automatically-generated connectivity tests. This environment is far more flexible and 
robust, allowing test program sets to quickly adapt to design changes. Set-up and 
take-down time for tests is minimal. 
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Additionally, tests can be extended into numerous environments previously unavailable 
because of constraints on connecting instrumentation. Tests can be applied in closed boxes 
within environmental chambers, equipment bays, or difficult-to-access places using 
portable, reusable test programs. 

The robustness, flexibility, and performance of such a test architecture will allow many 
companies to meet their obligations to their customers while containing test costs and 
achieving greater profitability. While an investment is needed during IC design, this will be 
leveraged against a broad range of problems spanning the entire product cycle. 

11.6: Reference 

[1] IBM, Honeywell, and TRW, VHSIC Phase 2 Interoperability Standards: TM-Bus 
Specification — Version 3.0, Nov. 9 1987. (Copies can be obtained from J.P. 
Letellier, Naval Research Lab, Code 5305, Washington, D.C. 20375, U.S.A.) 
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Chapter 12. Benefits and Penalties of Boundary-Scan 

Richard Sedmak Colin Maunder 
Self-Test Services British Telecom Research Labs 

6 Lindenwold Terrace Martlesham Heath 
Ambler, PA 19002, U.S.A. Ipswich IPS 7RE, U.K. 

An analysis of the economics of boundary-scan begins with consideration of the benefits 
and penalties associated with the technique. In some cases, the penalties may appear to 
outweigh the benefits if considered only at the integrated circuit (IC) level. However, the 
benefits usually far outweigh the penalties when we consider a more comprehensive 
analysis spanning all levels of assembly from chip to system and consider all test phases 
during the life cycle of a system. 

12.1: Benefits 

12.1.1: Lower Test Generation Costs 

Costs of test generation can be lowered. At the board level, boundary-scan testing 
provides the equivalent of in-circuit testing without the cost and need for a bed-of-nails 
fixture. This is true even when assembly techniques that impede in-circuit testing are used 
— for example, conformal coating, surface-mount technology, and double-sided boards. 
By being able to use boundary-scan based testing as the primary means of testing loaded 
boards, perhaps supplemented by a reduced functional test, a company can avoid the 
enormous costs of test generation associated with pure functional or edge-connector test. 
In addition, the presence of boundary-scan permits some reuse of test patterns up through 
the hierarchy of packaging levels. For example, at the board level, a portion or full set of 
chip level test vectors can be reused as a nucleus for the board level test. 

When boundary-scan is the a basis for built-in self-test (BIST) at the chip, loaded 
board, or system level, the cost of test generation can be substantially reduced because the 
test stimuli (such as pseudo-random patterns) are generated automatically and 
algorithmically within the product. 

12.1.2: Reduced Test Time 

Another benefit of boundary-scan is the possibility of reducing test time, particularly in 
the diagnostic area. In regard to GO/NO-GO testing, the use of boundary-scan may, at 
first glance, seem to lead to increased test time because of the serialization of test stimuli 
and circuit responses. This may be particularly true when comparing boundary-scan testing 
with in-circuit testing. However, as described earlier, the limitations imposed during the 
latter type of testing, as well as the complications caused by board packaging methods, 
may make it difficult (if not impossible) to use the in-circuit test approach. A true 
comparison of boundary-scan test times with functional test times requires more careful 
scrutiny of the assumptions. If we assume a very complex board and a required level of 
single stuck-at fault coverage — for example, in the high 90 percentages — some 
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segments of the electronics industry feel that boundary-scan test times may actually be less 
than the equivalent times for functional testing because of the divide-and-conquer 
approach used. Achievement of high-fault coverage without adequate design-for-test 
provision can be a lengthy and expensive task. 

Few people take exception to the claim that, for a given level of fault coverage, lower 
test times result when boundary-scan based BIST is used in conjunction with, or in lieu 
of, externally-applied functional or in-circuit tests. 

72.7.3: Reduced Time to Market 

Use of scan design techniques at the chip level can have a significant positive impact on 
time to market, because less time needs to be spent on test generation [1]. 

Similar benefits result at the board level through use of boundary-scan. For example, 
where a considerable amount of engineering effort would previously have been required to 
develop an in-circuit test module for a new state-of-the-art IC, this task can now be 
completed in a matter of hours because it is no longer necessary for the board test 
engineer to understand the detailed operation of the new chip. 

In highly competitive markets, the saving in test development time for a new product, 
even where only a small percentage of the chips on a board include boundary-scan, can 
help ensure its commercial success. 

12.1.4: Additional Benefits 

Three additional benefits result: 

• simpler and less costly testers; 

• commonality of interface with the tester; and 

• the ability to accommodate high-density and poor-access packaging approaches. 

Boundary-scan based testing can be performed regardless of any constraints imposed by 
new packaging methodologies — therefore allowing a reduction and, in some cases, the 
elimination of the need for expensive bed-of-nails test fixturing. Furthermore, since 
IEEE Std 1149.1 establishes a common four- (or five-) pin interface and protocol with 
the tester, such commonality across all board types will save even more in fixturing or 
interface adapter costs, particularly if one considers the cost impact of engineering 
changes. 
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12.2: Penalties: Additional Circuitry 

The first and most obvious penalty is the cost of the additional circuitry. 

The effect on circuit size of adding boundary-scan capability is, as for other 
design-for-test changes, difficult to predict because much depends on the detail of the 
implementation — for example: Are "holding" registers or latches provided in all 
boundary-scan cells? What is the geometry and positioning of the cells? Etc. 

The following examples provide estimates for the overall size of the circuitry required to 
give conformance to IEEE Std 1149.1, but without extensions to the facilities defined in 
the standard. An important consideration when it comes to an analysis of the penalties of 
boundary-scan, including the amount of added circuitry, is that their impact can be 
reduced by early planning in the development cycle, by good design practices, by the use 
of automated tools, and by exploiting boundary-scan in all life-cycle phases of testing as 
discussed in Chapter 11. 

It should also be emphasized that a good many ICs are pin limited — that is, the size 
of the chip is determined by the space required along the chip sides to provide sufficient 
bonding pads for all inputs and outputs, and not by the number of gates or transistors 
required to implement the function of the chip. Therefore, there may be "spare" gates or 
silicon area within the chip that can be used to construct the boundary-scan test logic. 
Under these circumstances, the real cost of implementing boundary-scan is at least 
considerably reduced and may, in some cases, be zero. 

12.2.1: Example 1 

The first cost example is for a full-custom 6 mm. x 6 mm. IC built in a 2.0 micron 
single-layer metal complimentary metal-oxide semiconductor (CMOS) process. 

• Test access port (TAP) controller: Implementation of the TAP controller requires on 
the order of 80 NAND gates. A more efficient implementation could, however, be 
achieved using a transistor level state machine design. An initial implementation in 
the stated technology requires a silicon area of approximately 0.3 sq. mm. 

• Instruction and bypass registers: An instruction register containing two bits (the 
minimum configuration) would occupy on the order of 0.02 sq. mm. The bypass 
register is approximately one half of the size of the minimum instruction register, or 
0.01 sq. mm. 

• Boundary—scan register: An estimate of the total size of the boundary-scan register 
can be obtained by looking at the size of the boundary-scan cell for an output pin 
illustrated in Figure 12-1. A circuit that implements this design requires around 
0.015 sq. mm. It can be expected that boundary-scan cells for input and other pin 
types would be of similar size. Therefore, for an IC with 40 system pins (input or 
output), implementation of the boundary-scan register would require some 0.6 sq. 
mm. silicon area. 
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Figure 12-1: A boundary-scan cell for an output pin. 

The combined silicon area for a minimal implementation comprising a TAP controller, a 
two-bit instruction register, a bypass register, and a 40-bit boundary-scan register would 
be approximately 1 sq. mm. from the above figures (including a small allowance for the 
multiplexers, etc., required to complete the minimum implementation of IEEE Std 
1149.1). This represents an increase in size of 3 percent for the 36 sq. mm. chip. Clearly, 
this figure is significantly affected by changes in circuit size, component geometries, and 
other changes (such as the use of two metal layers). It also does not take any account of 
any increase in the size of the on-chip system logic, for example because of increased 
separation of cells caused by increased pitch between input/output pads. 

72.2.2; Example 2 

This second example details the cost of the additional circuitry in a library-based 
application-specific IC (ASIC) design environment. The assumption is made that the 
ASIC cell library does not include custom-designed ("hard") boundary-scan cells or other 
cells to support IEEE Std 1149.1. Therefore, all the required features are provided by 
using "soft" macros (i.e., cells constructed as interconnections of "hard" cells) in the 
vendor-supplied library or are constructed by the user from "hard" cells. 

The gate counts given are based on those shown in [2] for basic logic gates and flip-flops 
and relate to a 10,000 gate design with 40 system pins. They relate to implementations of 
the example circuits shown in IEEE Std 1149.1. 
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Table 12-1: Gate requirement for a semi-custom implementation. 

Item 

TAP controller 
Instruction register (2 bits) 
Bypass register 
Boundary-scan register (40 cells) 
Miscellaneous logic 

TOTAL 

Gate Equivalent 

131 
28 
9 

680 approx. 
20 approx. 

868 approx. 

In total, construction of the various building blocks required by IEEE Std 1149.1 from 
the available macrocells requires an equivalent of 868 gates, broken down as shown in 
Table 12-1. The reduction in usable capacity from 10000 to 9200 gates gives an estimated 
overhead of 8 percent. 

Two comments must be made on this cost estimate: 

1. It has been assumed that the chip has only input and 2-state output pins. Because 
IEEE Std 1149.1 requires additional circuitry in the boundary-scan cells placed at 
3-state and bidirectional pins, the cost could rise if the design included any such 
pins. 

2. The cost is based on the use of macrocells from a version of the cell library [2] 
created prior to publication of IEEE Std 1149.1. It is therefore assumed that all 
the required circuitry is constructed in the area available for the user's circuit 
design. If specific cell designs were available to support IEEE Std 1149.1 or if the 
vendor were to place the boundary-scan circuitry in areas of the chip not available 
for the user's design, then the cost could be considerably reduced. (Some methods 
of reducing the cost are discussed in Section 12.2.4 and Chapter 13.) 

Further examples of costs using the same ASIC product are contained in [3] 

72.2.3: Example 3 

Reference [4] discusses the costs of implementing a built-in self-test architecture based 
on the principles of cellular automata in a circuit that includes a boundary-scan path. The 
architecture is based on the Joint Test Action Group (JTAG) version 2.0 definition, a 
precursor to IEEE Std 1149.1 (see Chapter 3). 

The paper estimates that a boundary-scan cell with BIST facilities would occupy 
approximately 0.065 sq.mm. in a 3 micron CMOS process. Estimates are given for the 
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overall cost (measured as a reduction in usable silicon area) for a range of chip sizes. These 
estimates vary from 17 percent down to 6.7 percent as the size of the chip increases from 
11.8 sq. mm. to 64.3 sq. mm. (with pin counts varying from 28 to 84 pins, respectively). 

12.2.4: Reducing the Cost of Added Circuitry 

The amount of circuitry required to implement IEEE Std 1149.1 can be reduced in 
several ways, dependent on the circuit design. The following list gives some examples: 

1. Boundary-scan register cells can be integrated with the input or output buffer 
stages in the circuit design [5]. 

2. The TAP and the boundary-scan register cells can be implemented in "dead" area 
around the periphery of the circuit. In the implementation discussed in [6], for 
example, the cells are located beneath power distribution busses. Others have 
discussed the possibility of locating the cells between the input and output bonding 
pads on the IC. 

3. Circuitry can be shared between the various shift-register-based features of the 
test logic (e.g., the instruction, bypass, and boundary-scan registers). One way of 
achieving this is described in Chapter 13. 

12.3: Other Penalties 

12.3.1: Added Pins 

The second most apparent penalty is the need to add dedicated test pins to the chip. 
IEEE Std 1149.1 calls for a minimum of four pins. While the provision of the fifth test 
logic reset (TRST*) pin is optional, feedback from some IC manufacturers indicates that 
they may also provide this pin. 

As illustrated in the following chapters, the TAP can allow access to many testability 
features within a design that might otherwise require package pins for additional data or 
control access. The four or five pins required by the TAP may therefore frequently provide 
for all test purposes. Viewed in this way, the requirement for a number pins dedicated to 
test is not unusual — many ICs today use several dedicated test pins to allow them to be 
tested economically. 

12.3.2: Design Effort 

Since there is additional circuitry associated with boundary-scan, it can be safely 
assumed that some form of additional design effort will be required. The exact impact will 
depend on the degree of automation of the design process and on other factors: 

• Some companies are already working on computer-aids that will automatically add 
the boundary-scan path and associated test logic to a design, for example. 
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• In others, application-specific ICs (ASICs) are being developed that have the 
boundary-scan path built into the periphery of the base logic array. It will be there 
whether the designer chooses to use it or not. 

In .either case, the amount of additional effort required to produce an IC design that 
conforms with the standard will be low. 

12.3.3: Performance 

Performance is another consideration. The multiplexer that feeds the system pin in 
Figure 12-1, for example, could add two gate delays that, together with the additional 
delay due to the input loading of the boundary-scan register, would increase the 
propagation delay of signals leaving the chip. Similarly, the delays experienced by signals 
entering the chip would be increased if boundary-scan cells were used that included 
multiplexers in the pin-to-logic data path (such multiplexers are required only where the 
INTEST instruction is supported). 

The importance of these additional delays clearly depends on the application for which 
the chip is intended. However, the impact of the additional circuitry can be minimized by 
careful design or by combining input buffers with the boundary-scan register cells [5], etc. 

In many cases, the skew between signal changes at two or more output pins of a 
component resulting from a common cause is more important than the absolute delay, for 
example, between a clock edge and a signal change at one output. Since identical cells can 
be introduced at each output, the pin-to-pin skew can be kept under tight control. 

It must be pointed out, however, that the use of multiplexers at output pins to permit 
observation of test data from the core of the design is already commonplace. Many ASIC 
vendors require that complex macrocells are connected in this way to ensure that library 
test waveforms can be applied. Given this situation, there is no additional delay 
introduced by the inclusion of a boundary-scan path — the multiplexer at the output 
needs only to be widened to allow for the input from the boundary-scan shift-register 
stage. 

12.3.4: Power Consumption 

Because circuitry is added to the basic design to provide the boundary-scan path, an 
increase in the power consumption of the component must be expected. For CMOS IC 
designs in which operation is controlled by gated clock signals, the increase in 
consumption during normal operation will be small because the boundary-scan path and 
much of the other test logic will be inactive. Only the TAP controller will remain active 
since, in the absence of a TRST* input, it must continue to be clocked with the test 
mode select (TMS) input driven to logic 1 to ensure that the controller can return to the 
Test—Logic—Reset state following any upset. 
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12.3.5: Reliability and Yield 

Also resulting from the additional circuitry are the potential penalties of reduced 
reliability and reduced yield. While sufficient data have not yet been collected in this 
regard, one can say at least that any reduced "raw yield" of the integrated circuit resulting 
from a slightly larger die size, for example, will be off-set by improved yield measured 
after test at subsequent packaging levels. This yield improvement will result from the high 
test performance achievable by using boundary-scan. 

Note also that the periphery of an IC contains the circuitry and connections that are 
most likely to fail during operation of the component [7]. These are the areas that are 
most directly addressed by the boundary-scan test technique. An improvement to system 
mean-time-to-repair can therefore be expected through simplified testing and diagnosis of 
faults in input and output buffers, bond wires, etc. 

12.4: Conclusion 

The principal benefits and penalties of boundary-scan have been presented and 
discussed. By careful design and by provision of appropriate design-support tools, the cost 
of implementing IEEE Std 1149.1 can be minimized. As discussed in Chapter 11, the 
benefits of using boundary-scan accrue at many test stages and can be significant where 
field support and maintenance of systems are key requirements [8]. When viewed against 
the escalating cost of using traditional functional or in-circuit test techniques for loaded 
boards, boundary-scan quickly becomes an attractive proposition. 
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Chapter 13. Single Transport Chain 

Wim Sauerwald, Frans de Jong, and Math Muris 
Philips Centre for Manufacturing Technology 

Eindhoven, The Netherlands 

The example implementations included in IEEE Std 1149.1 show instruction and test 
data registers implemented as a bank of parallel shift-register paths connected between the 
test data input (TDI) and test data output (TDO) pins. This chapter describes a more 
efficient, implementation called the single transport chain (STC) architecture. 

13.1: Introduction 

The test logic defined by IEEE Std 1149.1 can be implemented as a bank of parallel 
shift-register paths, for example as illustrated by Figure 13-1. The registers will, in 
general, contain different numbers of shift-register stages. Each stage can be visualized as 
being constructed from three basic elements: 

1. a capture element that allows data to be loaded into the register stage; 

2. a shift-register (or transport) element that allows data to be moved serially through 
the register stage; and 

3. an update element that holds a data value at the register's output while a new value 
is shifted in. 

Figure 13-1: IEEE Std 1149.1 architecture. 

These elements work together to perform the following functions: 

1. data can be captured and transported through TDO for examination (Figure 13-2) 
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Figure 13-2: Capture then transport. 

2. data can be shifted in through TDI and, when shifting is completed, made available 
through update elements (Figure 13-3). 

Figure 13-3: Transport then update. 

Not all the registers defined by IEEE Std 1149.1 are constructed from all three kinds of 
element (for example, the bypass register has only capture and transport elements). 
However, where a register has an element of a given kind then its operation will be the 
same as that of any other register with that element type. 

13.2: The STC Architecture 

The STC architecture exploits the following features to allow a more efficient (in terms 
of gate count) realization that is more efficient in terms of gate count: 

1. the commonality of structure and operation just described; 

2. the fact that only one register can be connected between TDI and TDO at any 
time; 

3. the permission that registers are required only when they are selected; and 

4. the fact that every scan operation (instruction or test data) starts with a "capture" 
that overrides old data in the shift-register (transport) elements. 
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Together, these features permit one set of transport elements to service all the basic 
registers defined in IEEE Std 1149.1. As illustrated in Figure 13-4, capture elements 
(based on multiplexers) are used to select data from a set of data sources and update 
elements (based on demultiplexers) are used to load data from the transport element onto 
the appropriate update element output. 

Figure 13-4: The single transport chain architecture. 

13.3: The Transport Chain 

The length of the core transport chain is determined by the longest of the registers to be 
implemented. For example, Figure 13-5 shows how segments of the transport chain that 
are not required for the selected register can be bypassed. 

Figure 13-5: Single transport chain with various outputs. 
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Figure 13-5 shows a design with: 

• a bypass register (transport register stage 1); 

• a minimum instruction register implementation (transport register stages 1 and 2); 
and 

• a boundary-scan register (transport register stages 1 to N). 

In this case, the overall length of the transport chain is determined by the 
boundary-scan register — the longest register in the design. 

Where a device identification register, which must contain 32 shift-register stages, is also 
implemented, the potential savings through sharing of transport elements between registers 
as described can be significant. For example, where the boundary-scan register contains 60 
shift-register-based cells, some 180 gates are saved through the reduction from 95 to 60 
transport elements in the design with an identification register. 

13.4: Capture Element Design 

The identification code of a chip is accessed by capturing a stored, read-only, value into 
the transport elements. The stored value can either be held in read-only memory cells or 
it can be built into the design by use of two types of cell design in the register: 

• one that loads a 0 in the Capture—DR controller state; and 

• one that loads a 1 in the Capture—DR controller state. 

In the STC architecture, the identification code can be built into the design of the 
capture elements for each relevant shift-register stage. As shown by Figure 13-6, the 
capture elements then become multiplexers that are able to select between a variety of 
external data sources (X1, X2, or X3) and the hard-wired identity-code bit (IDENT) --
0 or 1. 

Figure 13-6: Multiplexor with built-in IDENT value. 
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13.5: Update Element Design 

Together, the update elements operate as a bank of addressable latches — one for the 
instruction register, another for the boundary-scan register, and so on. Data are loaded 
into one of these latches at the end of shifting, dependent on the type of scan operation 
being executed (instruction or test data) and the register selected by the current 
instruction. 

Reg i s t e r 
Ou t p u t s 

Figure 13-7: Update element design. 

Note that, as shown in Figure 13-7 the latches in the update elements need only be 
level-operated devices (they do not have to be master-slave flip-flops). Note also that for 
registers that do not require a latched parallel output, the update element behaves, in 
effect, as a data demultiplexer. 

13.6: Transport Element Design 

The transport element completes the design for each register stage. Figure 13-8 shows a 
design with a short feedback path to allow the state of the register to be held and 
therefore does not require clock gating. The selection between the three modes of 
operation: 

1. holds the present data value; 

2. loads the data presented from the capture element; and 

3. shifts in data from the previous transport element (or TDI) 

is controlled by signals fed to the multiplexer from the test access port (TAP) controller. 
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To UPDATE Element 

Figure 13-8: Transport element design. 

13.7: A Complete STC Register Cell Design 

Figure 13-9 shows a complete cell design that implements the functions of: 

1. the instruction register with data input (Status) and instruction output 
(Instruction); 

2. the device identification register with data input IDENT; and 

3. the boundary-scan register with data input Data In and data output Data Out . 

Figure 13-9: A complete cell design. 
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Table 13-1 shows the functions that must be implemented by each cell according to its 
position in the transport chain in a design example used earlier (which included a 
minimum-length instruction register, a device-identification register, and a 60-cell 
boundary-scan register). In the table, it is assumed that the cell nearest to TDI is 
numbered 1 and that the boundary-scan register is the longest. The complexity required 
for cell implementation varies from location to location: 

• cell requires an additional input to the capture element to allow a constant 0 to be 
loaded when the bypass register is selected; 

• the Data In input and the instruction output latch are not required in cells 3 to 60; 
and 

• the IDENT input is not required in cells 33 to 60. 

Table 13-1: Cell function versus position. 

13.8: Conclusions 

In this chapter, we have described a different implementation of IEEE Std 1149.1 to 
that given as an example in the standard. This implementation, which we call the STC 
architecture, exploits the potential for sharing circuitry between the registers defined by 
the standard and, therefore, allows a lower cost implementation. 
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Chapter 14. Boundary-Scan Cell Provision: 
Some Dos and Don'ts 

Colin Maunder 
British Telecom Research Labs 

Martlesham Heath 
Ipswich IP5 7 RE, U.K. 

Kenneth P. Parker 
Hewlett Packard Company 
P.O. Box 301 A, M/S AU100 
Loveland, CO 80537, U.S.A. 

This chapter provides examples to illustrate the correct provision of boundary-scan cells 
within an integrated circuit that seeks to conform to IEEE Std 1149.1. It must be 
emphasized that the opinions expressed here are those of the authors, and not necessarily 
those of the IEEE. 

14.1: Clock Pins 

For system clock input pins, performance issues are often important, for example, the 
time taken for clock signals to reach stored-state devices within the integrated circuit. The 
inclusion of a boundary-scan cell at the clock pin could, therefore, have an adverse effect 
on the capability of the complete design to meet its performance targets. 

For this reason, IEEE Std 1149.1 permits the use of cells that can monitor, but not 
control, the signals that arrive at clock pins. Figure 14-1 shows an example of such a cell. 

Figure 14-1: A boundary-scan cell for a clock input pin. 

Further, the standard permits the data input to the boundary-scan cell to be taken from 
any point in the clock distribution tree, provided that there is no logic (other than buffers 
or inverters) between the clock pin and the monitored point. Figure 14-2 shows several 
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points in a clock distribution tree that could be used to supply the data input of a 
boundary-scan cell. These points are labeled A and B. Figure 14-2 also shows a point that 
cannot be used as the input to the boundary-scan cell, because two signals are combined 
onto the monitored point. 

Figure 14-2: Boundary-scan cells for clock inputs. 

Note that the standard requires that the value seen by loading and then scanning the 
boundary-scan register must be that applied at the input pin. Given that the 
boundary-scan cell shown in Figure 14-1 loads the value present at the data input into the 
shift-register stage without inversion, the monitored point must be an even number of 
inversions removed from the input pin (i.e., it must be driven from a point marked A). It 
would not be permissible to monitor the output of one of the first rank of inverters 
(marked B) using this cell. However, a different cell design could be used (see Section 
14.4). 

14.2: Logic Outside the Boundary-Scan Path 

IEEE Std 1149.1 does not permit any logic (other than buffers or inverters) outside the 
boundary-scan path. 

The motivation for this is that the test generation process would be significantly more 
complex if "external" logic functions needed to be accommodated. While there may be a 
savings in circuitry in the component by combining two signals outside the boundary-scan 
path (for example, by using a NAND gate) it would no longer be possible to use 
algorithmically generated test patterns to test the board interconnect. To be able to take 
into account the effect of the external logic on the interconnect test, a test generator 
would need to be expanded every time a chip became available that included a new circuit 
type external to the boundary-scan register. 
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Figure 14-3 shows a number of situations where logic is placed between the 
boundary-scan path and the input/output pins. All circuitry between the boundary-scan 
path and the package pins in this figure violates the rules of IEEE Std 1149.1, because it 
allows interaction between data received at two or more input pins or between data from 
two or more outputs of the on-chip system logic. 

Boundary-Scan 
C e l l s 

Figure 14-3: "Illegal" logic outside the boundary-scan path. 

Note that, in IEEE Std 1149.1, cell designs are shown for 3-state and bidirectional pins 
that include a logic gate between the boundary-scan cell and the control input of the 
output buffer. An example is shown in Figure 14-4, where the added gate is controlled by 
signal CHIP_TEST*. While the provision of this gate may seem to be "illegal" according to 
the earlier discussion, note that the CHIP_TEST* input is generated by decoding the 
instruction that has been entered (CHIP_TEST* is 0 when either INTEST or RUNBIST is 
selected). The signal does not come from the on-chip system logic or a system pin. 
Therefore, when an instruction is selected that requires the system pin to be controlled 
from the boundary-scan cells (e.g., EXTEST), the added gate is transparent 
(CHIP_TEST* = 1) and can be ignored by software that determines how to control the 
system pin to the desired state (0, 1, or Z). In contrast, for the earlier examples, the test 
generation software would require a knowledge of the logic function provided outside the 
boundary-scan path. 
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Figure 14-4: Boundary-scan cells for a 3-state pin. 

14.3: Special Cases 

There are a number of special cases where there is no circuitry, other than inverters and 
buffers, located between two system pins of a component. A common example is when a 
component has an output-enable input pin that serves only to control the activity of a set 
of output drivers, for example, as shown in Figure 14-5. In cases such as this, it is 
possible to use a single boundary-scan cell to meet the requirements for the input pin and 
output pin or driver. 

Note, however, that it is only permissible to use a single boundary-scan cell in cases 
where the input signal is not used to feed the on-chip system logic as well as the output 
driver(s). Figures 14-6 and 14-7 show two "illegal" circuits where the input data are also 
fed to the on-chip system logic. A correct implementation, using two separate 
boundary-scan cells, is shown in Figure 14-8. 
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Figure 14-5: Input used only to control an output enable. 

Figure 14-6: "Illegal" design: Example 1. 

Figure 14-7: "Illegal" design: Example 2. 
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Figure 14-8: A correct design. 

Similar shared use of a boundary-scan cell is possible in cases where a data input feeds 
directly to a data output. Figure 14-9 shows a bidirectional buffer component, for 
example. In Figure 14-9, boundary-scan cell A receives its input from pin Data_A and 
feeds pin Data_B. Boundary-scan cell B receives its input from pin DataJB and feeds pin 
Data_A. As in Figure 14-5, a single boundary-scan cell is used to receive data from the 
control input pin and to supply control signals to the output buffers. 

Figure 14-9: A bidirectional buffer: Example 1. 

Note that, while Figure 14-9 shows a single cell being used to control both output 
buffers, there are advantages to board test if a separate cell is used for each buffer. For 
example, data can be driven onto Data_A and DataJB simultaneously, allowing circuitry 
on both sides of the component to be stimulated. Also, the data received at both inputs 
would be captured simultaneously. Together, these features would permit independent 
testing of the connections and/or logic on each side of the component. It is therefore 
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recommended that the design of Figure 14-10 is used where possible. However, designers 
should use the design shown in Figure 14-9 where simultaneous activation of busses 
Data_A and Data_B would cause the power supply to the chip to be overloaded. 

Figure 14-10: A bidirectional buffer: Example 2. 

14.4: Components with Inverting Input and Output Buffers 

It was briefly mentioned in the last section that IEEE Std 1149.1 requires that the data 
shifted into or from a boundary-scan cell must be identical to that driven from or applied 
at the corresponding package pin, respectively. For example, when the EXTEST 
instruction is selected, a logic 1 applied to an input pin of a component should result in a 
logic 1 being captured into the corresponding shift-register stage. Equally, a logic 1 shifted 
into a shift-register stage should result in a logic 1 being driven through a connected 
output pin. The aim of these requirements is to ensure that the data that are shifted into 
or out of the component's boundary-scan path is exactly that which would be seen by 
connecting probes at the system pins. 

The example boundary-scan cell designs included earlier in this book and in the standard 
assume that non-inverting input and output buffers are used at the component's system 
pins. All paths in these cell designs are non-inverting, so the requirements are met. 
However, if inverting input and/or output buffers are used, then a number of inversions 
must take place in the boundary-scan cells to compensate. Figures 14-11 and 14-12 give 
examples for input and output pins, respectively. Note, for example, the inversions at the 
inputs of the multiplexers controlled by ShiftDR and at the outputs of the flip-flips 
controlled by UpdateDR. 
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Figure 14-11: A boundary-scan cell for an input pin with an inverting input buffer. 

Figure 14-12: A boundary-scan cell for an output pin with an inverting output 
buffer. 
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In Figure 14-12, for example, a logic 1 output from the on-chip system logic would 
result in a logic 0 being driven from the component pin during normal chip operation. 
When the SAMPLE/PRELOAD instruction is used_(Mode = 0), the logic 1 output from 
the on-chip system logic will (due to the inverting 1 input to the input multiplexer) result 
in a logic 0 being loaded into the shift-register stage. That is, the value loaded into the 
shift-register stage will be the same as that driven through the component pin. 

When the EXTEST instruction is selected (Mode = 1), a logic 1 shifted into the 
shift-register stage will result in a logic 1 being driven through the component pin, this 
time due to the inversion at the output of the parallel output flip-flop. 

A further example is given in Figure 14-13. This figure shows a design for an inverter 
chip which, in effect, is a component with a non-inverting input buffer, an inverting 
output buffer and no on-chip system logic. 

Figure 14-13: An inverter chip with boundary-scan. 

As discussed in Section 14.3, one boundary-scan cell can meet the requirements for 
both the input and output pin in this case. In this case, the requirements for the data in 
the shift-register stage to match that at the pins has the following impact: there can be 
no inversion between the input pin and the shift-register stage, therefore the inversion 
between the shift-register stage and the inverting output buffer is required. 

167 



14.5: Complex Boundary-Scan Cells 

IEEE Std 1149.1 addresses the four most common types of pin on an integrated circuit: 

• input pins; 

• 2-state (including open-collector) output pins; 

• 3-state output pins; and 

• bidirectional pins with 3-state output capability. 

Other types of pin are occasionally found on integrated circuits. In these cases, an 
appropriate combination of the "basic" input and output pin cells must be constructed to 
meet the special requirements of the pin. For example, Figure 14-14 shows a 
boundary-scan cell for a bidirectional pin that includes a 2-state open-collector output 
buffer. This combines a 2-state output boundary-scan cell (at the top) with an input cell 
(at the bottom). 

Figure 14-14: Boundary-scan cells for 2-state open-collector bidirectional pins. 
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Figure 14-15 shows two components that use a more complex type of pin for 
chip-to-chip communication. In effect, a 3-state bus flows into each component. Two 
3-state drivers and one input are included in each chip, connected to the bus. 

In a case such as this, each component would need to have five boundary-scan cells 
connected to the pin: 

• one input cell; 

• two data output cells; and 

• two output enable cells. 

This combination of cells will permit the ability of each output buffer in the component 
to drive the pin to be tested, as well as the ability of the component to receive data from 
the pin. 

Figure 14-15: A complex chip-to-chip connection. 

An alternative arrangement would be to redesign the circuitry as shown in Figure 14-16. 
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Boundary-Scan Cel ls 

Figure 14-16: An alternative approach. 

14.6: Conclusion 

Inevitably, situations will arise from time-to-time that are not covered explicitly by the 
rules in IEEE Std 1149.1. In this chapter, a number of such situations has been discussed 
and the authors' personal interpretations of the standard have been presented, 
accompanied with comments that show why decisions have been made. 

More designers will find structures that are not covered explicitly by the standard as its 
use increases. In these situations, as in those described in this chapter, the underlying 
objectives of the standard — clear separation of chip and loaded-board test, simplicity of 
test pattern generation for external circuitry, etc. — should be borne in mind when 
determining appropriate solutions. 
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Chapter 15. Providing Boundary-Scan on Chips 
with Power or Output-Switching Limitations 

Lee Whetsel 
Texas Instruments 

6500 Chase Oaks Boulevard 
Piano, TX 75086, U.S.A. 

This chapter will identify problems that may arise during boundary-scan testing of 
inter-component connections in cases where a chip is not designed to support 
simultaneous enabling or switching at all its output pins. Some solutions are given to these 
problems. 

15.1: Problem Statement 

A principal motivation for including boundary-scan in a chip is to be able to efficiently 
verify the wiring interconnects between multiple chips on a loaded board. Initially these 
test patterns will be developed manually by a test engineer familiar with the circuit board 
design. In the future, this effort will become automated as test pattern generation tools 
are developed. In either case the test patterns will be designed to verify that all possible 
wiring paths between chips in the circuit can be set to both logic zero and logic one and 
that no short- or open-circuit faults exist. 

Ideally, only an understanding of the board interconnects and of the boundary-scan 
configuration or each chip should be required to allow the development of test patterns 
for board-level interconnect. However, if chips are not designed to fully support the 
operation of the boundary-scan circuitry, other factors may need to be included to insure 
proper operation of such a test. The result is that test generation, and the tools that 
support it, will be more complex. 

In Figure 15-1, an example circuit is shown to illustrate problems that could occur 
during boundary-scan testing of board-level interconnections, but that can be avoided by 
correct design of the test logic (as will be described later). 

IC1 has three output busses. In normal operation, these busses would be controlled 
either so that they change state at different times (Figure 15-2) or so that only one of the 
three output busses is active at any given time (Figure 15-3). Controls such as these may 
be required to minimize the power consumption requirements for the chip, allowing the 
number of power and ground pins needed by the chip to be reduced. For example, more 
power is consumed when outputs change state so sequencing of output changes as shown 
in Figure 15-2 will result in lower power consumption. 
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Figure 15-1: Example component with three output busses. 

Figure 15-2: Normal component operation: Case 1. 

Figure 15-3: Normal component operation: Case 2. 

The problems arise when the pins of a chip that does not normally support simultaneous 
switching or enabling of all outputs are controlled from the boundary-scan path, rather 
than from the on-chip system logic. For example, this situation arises when the EXTEST 
instruction is selected. As shown in Figure 15-4, it is probable that the tests supplied 
through the boundary-scan path will cause all outputs to change state and/or be active 
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simultaneously. In the former case (Figure 15-2), the sum of the switching currents of all 
pins may produce VCC and VSS glitches that might very well exceed the tolerance level of 
IC1, and the core logic as well as the boundary cells and TAP would then be subject to 
interference. In the latter case (Figure 15-3), the power consumption could be increased 
beyond the capacity of the power pins for a prolonged period, with the probable result 
that incorrect operation of the chip will occur. 

Figure 15-4: Possible component operation during a boundary-scan interconnect 
test. 

Both problems can be solved if the boundary-scan test patterns are constrained to 
conform to the normal requirements of each IC on the board design, for example, by 
ensuring that only one output bus changes state between adjacent test patterns. 
Unfortunately, however, this complicates the test generation task and requires that 
additional information on chip operation is made available to, and used by, the test 
engineer or test pattern generation tool. Alternative solutions, where features built into 
the chip ensure that it cannot overload its power pins, are preferred because they do not 
require provision, storage, and use of this additional information. Some example solutions 
are presented in the following sections. 

15.2: Provide More Power Pins 

The first (and least practical) solution is for the chip manufacturer to provide the 
additional power and ground pins required to ensure tolerance of simultaneous switching 
or enabling of all output pins. This solution may, however, not be practical because it may 
force an increase in the size of package required for the chip, which in turn may affect the 
cost to the customer. 

15.3: Preventing Simultaneous Switching of Output Pins 

Figure 15-5 shows how delays can be added to prevent simultaneous switching of 
outputs when pins are driven from the boundary-scan register [1,2]. The added delays 
should be small in comparison with the minimum period of TCK, but should be sufficient 
to ensure that the power-current demand arising from the change of state at one pin does 
not overlap with that from another. 
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Note that the added delays impact only changes at the pin due to: 

• a change of instruction (the delays in the Mode distribution network); or 

• a change in test pattern (the delays in the UpdateDR distribution network). 

Signals received from the on-chip logic propagate through the boundary-scan cells 
without added delay. 

Figure 15-5: Adding delays to prevent simultaneous switching of outputs. 
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15.4: Do Not Allow Pins to be Enabled Simultaneously 

Where output pins or busses cannot be enabled simultaneously, this limitation should be 
met as a result of features built into the chip, rather than through constraints imposed on 
the test pattern generation process. For example, because two boundary-scan cells 
(numbered 1 and 3) are provided in Figure 15-6, pins A and B can be enabled 
independently. The test engineer or, more realistically, the test generation software can 
enable both pins, disable both, or enable just one pin as required. In this case, the chip 
should be provided with sufficient power and ground pins to support simultaneous 
enabling of the two pins — avoiding the need to constrain the test generation process. 

B o u n d a r y - S c a n 

Figure 15-6: Circuit that allows simultaneous enabling of outputs. 

In contrast, only three boundary-scan cells are provided in Figure 15-7, although the 
circuit performs the same normal function. In this circuit, both output buffers are 
controlled from a single boundary-scan cell (numbered 1) — a logic 1 in this cell enables 
pin A and disables pin B. Since there is only one boundary-scan cell, it is not possible for 
both pins to be enabled simultaneously during testing — the restriction is inherent in the 
chip's design and is not only one that needs to be imposed on the test generation process. 
The test engineer, or test generation software, cannot inadvertently cause the power supply 
to be overloaded. 

175 



B o u n d a r y 
/ C e l l s 

Scan 

P i n 
A 

P i n 
B 

Figure 15-7: Circuit that does not allow simultaneous enabling of outputs. 

15.5: Acknowledgments 

The author is greatful to Thomas Williams and Bob Bassett, IBM, and Ken Parker, 
Hewlett-Packard, for bringing the solution presented in Section 15.3 to his attention. 

15.6: References 

[1] Anon., "Improved Off-Chip-Driver Sequencer for LSSD Testing," IBM Technical 
Disclosure Bulletin, Sept. 1989, pp. 422-423. 

[2] Anon. "Inhibit Sequencing Delay Circuit," IBM Technical Disclosure Bulletin, 
June 1986, pp. 251-252. 

176 



Chapter 16. Tapping into ECL Chips 

Lee Whetsel 
Texas Instruments 

6500 Chase Oaks Boulevard 
Piano, TX 75086, U.S.A. 

This chapter will illustrate some problems and suggested solutions for the addition of the 
test access port (TAP) interface to emitter-coupled logic (ECL) chips. 

16.1: The Problem 

Several semiconductor technologies — for example, transistor-transistor logic (TTL) 
and complimentary metal-oxide semiconductor (CMOS) — use compatible input and 
output voltage levels for the two logic states (0 and 1). Chips constructed using these 
technologies can therefore be easily connected together, for example to form the serial test 
data path at the board level. However, to construct a scan path through chips that use 
different voltage levels for each logic state — for example, through chips built using TTL 
and ECL technologies — it is necessary to convert the various test signals from one set of 
logic voltage levels to another at appropriate points along the serial path. This level 
translation can be performed by either an external level shifting circuit residing between 
the device boundaries or in the input and output buffer regions of chips incorporating the 
TAP. 

The focus of this chapter is the problem created by the way that ECL technology reacts 
to open-circuit conditions at the TAP inputs, which is significantly different from the 
reaction of a TTL chip. The problem stems from the fact that to conform to IEEE Std 
1149.1 the output state of a non-driven TAP input buffer must be set to a logic 1 level. 

In TTL technology a non-driven input buffer is usually pulled up to logic 1 by an 
internal resistance incorporated in the buffer, because this condition draws minimal 
current. In CMOS technology, a non-driven input buffer can be pulled up or down, with 
neither logic state having an apparent advantage over the other. Both of these technologies 
adapt easily to the rules of IEEE Std 1149.1 regarding non-terminated TAP input buffers. 

For performance and biasing reasons, a non-driven ECL input buffer is usually pulled 
down to logic 0 by an internal resistance incorporated in the buffer. At first, it would 
appear that substituting a pull-up resistor for the pull-down resistor on the input buffers 
for the TAP signals would solve the problem. However, the circuit shown in Figure 16-1 
(in which the test data input (TDO) output of one ECL chip is connected to the test data 
input (TDI) input of another) identifies three problems that prevent this from being the 
desired simple solution: 

1. An open circuit at wiring point 1 causes the receiving chip's input to be pulled 
down to -V (typically -2 or -5 volts). Since Rl << R2, the condition results in a 
logic 0 output from the chip's input buffer. 
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An open circuit at wiring point 2 causes the receiving chip's input to be pulled up 
to GND (typically -0.7 volts), resulting in a logic 1 output from the chip's input 
buffer. 

An open circuit at wiring point 3 results in improper termination and loss of 
operation between the ECL chips since the output buffer in the driving chip has 
no resistive path to -V that would enable it to source the required output biasing 
current. 

Figure 16-1 : A TDO-to-TDI connection between ECL components. 

It is clear, therefore, that placing a pull-up resistor on ECL inputs is not a suitable 
solution. The result of an open-circuit in the serial path between ECL chips would be 
dependent on the location of the fault in the wiring path and could disable data 
transmission. 

The following are suggested solutions that can be implemented in ECL chip designs to 
allow compliance with IEEE Std 1149.1 regarding open-circuit, non-driven TAP inputs. 

16.2: Incorporating TTL/CMOS TAP Connections on ECL Chips 

The first option is to incorporate TTL/CMOS compatible TAP inputs and outputs into 
ECL designs. Using this approach requires the use of an additional 5 volt power supply 
pin on the package for the TAP input and output level shifting buffers. If the additional 5 
volt supply pin is not a problem, this is probably the preferred approach. 

178 



16.3: Using a Special ECL Input Buffer for TDI, TMS, and TRST* 

The second option is to design a special ECL input buffer that can differentiate between 
an open-circuit input and a normally-biased logic 0 input. These special ECL input 
buffers would be provided at the TAP input pins: TDI, the test mode select (TMS) input, 
and the optional test reset (TRST*) input. 

In Figure 16-2, a typical interconnection between an ECL device output and ECL 
device input is shown. During normal operation, the ECL output buffer provides the 
output biasing current (lout) required to develop the correct ECL logic voltage levels 
across load resistor Rl . Typical ECL output voltages are -0.9V for a logic 1 and -1.75V 
for a logic 0. 

Figure 16-2: Current flow for an ECL TDO-to-TDI connection. 

As long as the interconnection between the ECL output buffer and load resistor Rl 
remains intact, the input voltage to the ECL input buffer will remain in the normal ECL 
logic level switching range of either a logic 1 or logic 0. 

In Figure 16-3, a detailed view of the special ECL input buffer is illustrated. The input 
buffer contains two single-ended differential amplifiers, Dampl and Damp2. Dampl is the 
normal differential amplifier seen in ECL input buffers and is used to determine the input 
logic state by comparing the input voltage (Vin) against a reference switching threshold 
voltage VR1. 
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Figure 16-3: A special ECL input buffer design. 

Damp2 is an additional differential amplifier used to detect Vin levels that are more 
negative than the normal logic 0 voltage levels produced by ECL output buffers. The 
voltage reference input (VR2) to Damp2 is set to detect Vin levels falling below the typical 
ECL logic 0 level. VR2 should be set to allow Damp2 to detect the following two types of 
open-circuit fault (see Figure 16-2): 

• A fault between the ECL output buffer and the load resistor Rl. If this fault occurs, 
the ECL input buffer will be driven to a static voltage level determined by the 
voltage divider effect of Rl and R2. Since Rl << R2, the open-circuit input 
voltage to the ECL input buffer and Damp2 is slightly less than -2V. 

• A fault between load resistor Rl and the ECL input buffer. If this fault occurs, the 
voltage applied to the ECL input buffer will be the -5V level attached to 
pull-down resistor R2. Since VR2 is set to detect voltages below -2V (to detect the 
first stated open-circuit condition) this type of open-circuit is detected by Damp2. 

When either of the above faults occurs, the non-inverting output of Damp2 is set to a 
logic 1. This logic 1 output is routed to the exclusive-OR gate in Figure 16-3 and causes 
the logic level output to the test logic to be inverted. By using this type of ECL input 
buffer, it is possible to differentiate between an ECL logic 0 input level and an 
open-circuit input level. Therefore, conformance to the IEEE Std 1149.1 specification for 
undriven TAP inputs is achieved. 
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16.4: Summary 

These solutions offer ways to incorporate the TAP into ECL components. Option 2 
needs to be implemented carefully to insure that noise spikes that may occur during input 
transition between a logic 1 and 0 do not cause Damp2 to temporarily switch on. 
However, this is probably not a problem for the TAP because the TDI and TMS inputs 
are basically data inputs and will be in a stable state by the time the rising edge of the test 
clock (TCK) arrives. If a 5 volt power supply pin is already implemented in a device of 
mixed technologies, option 1 is probably the most logical choice to implement. 
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Chapter 17. Cell Designs that Help Test 
Interconnect Shorts 

Dilip K. Bhavsar 
Digital Equipment Corporation 

Semiconductor Design and Engineering 
Hudson, MA, U.S.A. 

This chapter describes a problem that may, under some circumstances, arise when using 
a boundary-scan register to test interconnection shorts on loaded boards. A remedy to 
overcome the problem is proposed. 

17.1: Introduction 

One of the major test problems addressed by IEEE Std 1149.1 is that of testing 
interconnection faults on densely populated printed wiring boards. With the advent of 
surface-mount components and the use of buried and blind vias for mounting chips on 
these boards, the access available to in-circuit-testers is rapidly disappearing 

Interconnection defects are introduced during the printed wiring board manufacture and 
assembly processes. In general, these defects fall into two categories: 

1. Opens: These include defective solder joints and open-circuits in the 
interconnection tracks of the board. 

2. Shorts: These include shorts between adjacent pins on the same chip and shorts 
between adjacent interconnecting tracks on a board. In either case, the defect 
manifests itself as a short between two signals or nets. 

A simple and straight-forward test for both fault categories can be achieved by using 
the boundary-scan register. 

This chapter will focus on the testing of shorts and will point out a problem that may 
occur in certain semiconductor technologies, such as complimentary metal-oxide 
semiconductor (CMOS) and transistor-transistor logic (TTL). The case to be examined is 
that in which output buffers are not designed to withstand a short to another output 
driving the opposite logic state. We must point out that the severity of the problem 
highlighted in this chapter depends significantly on the implementation details of a chip's 
output buffers and, in many cases, will be minimal. 

17.2: The Problem 

Consider that we are testing the interconnection between two chips (chip A and chip B) 
on a board. Assume that the chips are implemented in CMOS technology, that both 
implement the IEEE Std 1149.1 boundary-scan architecture, and that both are connected 
in the same boundary-scan ring on the board. Now consider the simple interconnection as 
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shown in Figure 17-1 where a short occurs between the two adjacent output pins PI and 
P2 fed from ordinary drivers Dl and D2. The tests that detect this fault consist of driving 
a differential pattern. One of the patterns, "10" or "01", must be applied to the shorted 
pins. Applying one of these tests requires several steps. 

S = Shifter Latches 
H = Hold Latches 

Figure 17 -1 : Testing a pin short with IEEE Std 1149.1. 

Assuming that the appropriate instruction has been loaded in the instruction register and 
that the test access port (TAP) controller has been appropriately initialized, then a portion 
of the steps involved and the corresponding TAP controller state transitions are shown in 
Table 17-1. 

During Step 3, if the pins have no short, the receiving boundary scan cells in chip B 
observe the response pattern "01." However, if the pins are shorted, then the receiving 
boundary scan cells will sense a "00" pattern and the fault will be detected. Notice that to 
successfully detect and diagnose the presence of shorts via the boundary scan it is essential 
that the receivers in chip B must have their switch-over voltages away from the voltage 
expected to be reached by the shorted drivers. In our analysis, we arbitrarily chose that the 
receivers should sense "0." All arguments hold true if "1" were to win and the observed 
pattern were to be "11." 
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Table 17-1: Steps for testing for shorts. 

Step 

1 

2 

3 

4 

Action 

Shift in the 
[...01...] pattern 

Apply the [01] 
pattern to the 
shorted pins. 

Capture the 
response 

Shift the response 
out 

Remarks 

Say 0 is applied to PI 
and 1 to P2. 

Boundary scan cells at 
input pins of chip B 
capture the response. 

The duration of this 
operation depends on the 
total length of the 
boundary scan registers on 
the board. 

The problem is that, whereas the above test procedure succeeds in detecting the short, it 
may cause permanent damage to the drivers Dl and D2. This is because the differential 
pattern "01" enables a power-to-ground path via the turned-on P and N transistors and 
the shorted P1 and P2 pins. This is shown in Figure 17-2. 

Notice that this short will persist for the duration of the entire shift operation and until 
a safe pattern ("00" or "11") can be shifted in and applied to the pins. This period can be 
arbitrarily long because it depends on the total length of the boundary-scan registers in 
the board-level path containing chips A and B, the frequency of the test clock (TCK) and 
on any interruptions (e.g., pause cycles) to the shift operation. Whereas a short on pins is 
generally considered a repairable fault, in some cases the above test procedure may destroy 
the high-price chip, making the repair meaningless. 
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Figure 17-2: Power-to-ground path enabled during shorts test. 

17.3: A Proposed Solution 

The above problem can be overcome by using a special boundary-scan cell design at the 
output pins and by slightly modifying the test steps used. A proposed cell structure that is 
compliant with IEEE Std 1149.1 is shown in Figure 17-3. Notice that the cell has a 
second observation tap taken from the output of the driver via a dedicated receiver. 
During application of a board interconnect test using the EXTEST instruction, the 
instruction register will set the multiplexer controls on the shift latch such that the data 
are captured from this special observation tap. The rest of the controls and operations 
remain as usual. 
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Figure 17-3: Proposed boundary-scan cell for output pins. 

With this cell structure in place at the drivers Dl and D2, the test operation will use 
slightly different test steps as shown in Table 17-2. 

By virtue of the boundary-scan cell design, during Step 3a the response pattern at the 
output of the drivers is captured and loaded into the shifter latches of the cell. If the pins 
PI and P2 are not shorted, then the pattern captured will be the same as the pattern 
applied, namely, "01." If the pins are shorted, the captured pattern will be "00" (per the 
previous assumptions). 

The additional Steps 3b, 3c, and 3d re-apply the captured pattern to pins PI and P2. 
Thus, if the pins P1 and P2 were indeed shorted, the differential pattern "01" is removed 
and the safe pattern "00" will be applied. The power-to-ground path will be disabled. 
With this test sequence, the power-to-ground short is enabled only for a fixed duration 
of 4 clock cycles of TCK, independent of factors such as the duration of the shift 
operation and the total length of all the boundary scan registers on the board-level path. 
The test operation for detecting shorts is thus made very safe for the drivers, assuming 
that the clock applied at TCK is sufficiently fast. 
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Table 17-2: Testing for shorts when using the proposed cell design. 

Step 

1 

2 

3a 

3b 

3c 

3d 

4 

Action 

Shift in a [...01...] 
pattern 

Apply the [01] pattern 
to the shorted pins 

Capture the response 

Move through the 
Capture-DR controller 
state to Exitl-DR 

Exit the scan cycle 

Re-capture the 
response. 

Shift the response out 

Remarks 

As before 

Passage through the 
Update-DR controller 
state is required. In 
consequence, PI and P2 
will be fed [00]. 

Exit immediately, without 
shifting. 

P1-P2 fed [00] if shorted 
or [01] if healthy. 

Response pattern is re­
captured without any 
modifications. 

As before. 

17.4: Conclusion 

In this chapter, we have indicated a potential danger in using boundary-scan for testing 
interconnection shorts among components in certain technologies, such as CMOS and 
TTL. We have proposed a solution that uses a special design for boundary-scan cells used 
at output pins and a slightly modified test operation. We used simple output pins to 
illustrate the application. However, the same solution is applicable to 3-state output and 
bi-directional pins and can handle shorts to power or ground. 

Besides overcoming the potential danger to the drivers, the proposed boundary-scan cell 
also offers the following advantages: 
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1. Because the cell uses a dedicated receiver, this receiver can be especially designed to 
guarantee the success of the interconnection short test without any adverse impact 
on system operation. 

2. Shorts on output pins (or nets) can be tested on chips whose outputs do not feed 
any chip or whose outputs feed chips that do not have boundary scan implemented 
in them. This also means that the ability of the proposed scheme to test pin shorts 
on a board is unaffected by the presence of chips that implement boundary-scan 
cells differently, although the test procedure becomes more complex. 

3. During testing of an integrated circuit (e.g., in various stages of chip 
manufacturing), the cell structure provides convenient observability of output 
drivers for detecting defects in the drivers. 

4. This cell, when used on 3-state output and bi-directional pins, provides additional 
visibility into busses to facilitate isolation of bus problems. 

In the end, it must be emphasized that the severity of the problem caused by shorted 
output drivers is not clear. At best, it is highly dependent on processing technology and 
may vary considerably from one chip manufacturer to another. 

If the threat is serious, a key question is still left unanswered by the solution presented. 
Could the powering up of a board leave drivers of shorted pins (especially, 2-state output 
pins) at opposite logic states? If so, how likely are the drivers to survive the short before 
testing begins? If damage is possible, it can only be avoided by careful design of the 
power-up initialization routines for a board — the solution presented in this chapter is 
limited to test-operation-induced contention between shorted output drivers.† 

Finally, note that if the method described in this chapter is used in a catalog IC, the 
specification must clearly indicate the cell design and the test strategy required to make 
best use of it. Further, if the cell can be damaged by inappropriate test sequencing, chip 
specifications should include a clear and conspicuous warning of this fact. 

† Note that such problems can occur on any board, with or without boundary-scan., 
They will be encountered equally frequently in cases where functional or power-up 
in-circuit tests are applied without prior screening of a board for short-circuit faults 
(e.g., by using a manufacturing defects analyzer). 
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Chapter 18. Integrating Internal Scan Paths 

Colin Maunder 
British Telecom Research Labs 

Martlesham Heath, Ipswich IP5 7RE, U.K. 

At first sight, integration of the scan path for the internal (system) logic of a 
component with the IEEE Std 1149.1 test logic appears straight-forward. The internal 
scan path could, for example, be connected into the test logic as a user-defined test data 
register so that it could be accessed through the test data input (TDI) and test data output 
(TDO) pins when an appropriate instruction was present. Further examination, however, 
shows a number of technical, commercial, and logistic problems. The objective of this 
chapter is to discuss these problems and to show how they can be resolved. 

18.1: Problems at the Chip Level 

There are two key technical problems at the chip level. 

18.1.1: Dead States 

The state diagram for the test access port (TAP) controller includes at least three dead 
states (states in which no activity occurs) between completion of the inward shifting of a 
test pattern and the time when the results of the test are captured into the shift-register 
path from its parallel inputs. In the optimum case, the controller must sequence through 
Exitl—DR, Update—DR, and Select—DR—Scan as shown by the highlighted path in Figure 
18-1. 

The need to cycle through these dead states has several effects: 

1. There is a marginal impact on test length, because three additional clocks need to 
be applied for every scan cycle. 

2. The scannable registers used to build the internal scan path must have the ability to 
enter a "hold" state, in addition to "shift" and "load." This will increase the size of 
the registers in cases where the "hold" operation is not needed for normal system 
operation, as shown in Figure 18-2. 

3. Faults that cause increased propagation delays through the combinational logic 
between the scannable registers cannot be detected. While the larger delays may 
cause failure when the capture clock occurs immediately following the last shift 
clock (as would be the case for conventional scan testing), it is extremely unlikely 
that the increased delay will span three clock cycles. 
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Figure 1 8 - 1 : TAP controller state diagram. 

Figure 18 -2 : Provision of a hold mode on a scannable register. 

78.1.2: Multiple Scan Paths 

At the integrated circuit level, it is common to connect scannable registers within a 
component into several independent scan paths, each of which has its own serial input and 
output connections. Such use of multiple scan paths in a chip allows test times to be 
reduced, since the number of clocks-per-scan-cycle is reduced. It also allows a scan 
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implementation to be achieved at lower cost in cases where several different clocks are 
used within the chip design. For example, all registers controlled by clock CKl may be 
connected into the first scan path, those controlled by clock CK2 into the second, and so 
on (Figure 18-3). This avoids the need for clock signals to be switched between the chip's 
normal and test modes of operation. 

S01 S02 S03 S0N 

Figure 18-3: Use of multiple scan paths. 

In contrast, IEEE Std 1149.1 dictates a single serial path between TDI and TDO. If the 
internal scan paths were to be accessed through the test access port, they would need to 
be connected in series and controlled by a common clock during testing. 

18.2: Problems at the Board Level 

Logistic and commercial problems come to light at the board level, as discussed below. 

18.2.1: Volume of Test Data 

An internal scan path may contain many hundreds of shift-register stages. To permit use 
of the scan test once the chip has been assembled onto a board, this would need to be 
extended by the chip's boundary-scan path and (at a minimum) the bypass registers for all 
other chips on the board-level serial path. 

The volume of test data to be stored on an automated test equipment (ATE) system for 
a board populated entirely with scannable chips would therefore be very large. 
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18.2.2: Version Dependence 

The scan test data for a component will change from one version of the design to the 
next due to the impact of design modifications. Because of this, severe logistic problems 
could result through the use of internal scan test data at the board level. 

As an example, consider a board populated with 100 scan testable components. If an 
average of three versions of a component is used during the production and operational 
life of the board design, then there could be a need for as many as 31 ° ° versions of the 
board test program. This need would arise even if no functional change could be detected 
for the assembled board. 

The problem is further complicated by the need for the tester to determine the version 
of each chip used before testing can start. While this could be achieved by using the device 
identification register defined by IEEE Std 1149.1, it is not guaranteed that every chip will 
have such a register. 

18.2.3: Protecting Proprietary Information 

A key goal of IEEE Std 1149.1 is to allow a systems company to acquire components 
for its products from many sources. In many cases, therefore, the supplier of an integrated 
circuit may very likely be a different company (not another division of the same company). 

Under these circumstances, there may be commercial issues that limit the availability of 
scan test data to the component purchaser and, in consequence, limit the board 
assembler's ability to test the loaded board. For example, it may be possible (with effort) 
to create a copy of the original design by examining the scan test data (assuming that fault 
coverage is high). 

18.3: A Solution 

A solution to these problems is to combine scan testing (for use by the chip 
manufacturer) and self-test (for use by the purchaser). 

78.3.7: The Chip Level 

The objective of IEEE Std 1149.1 is to ensure that integrated circuits from multiple 
vendors can cooperate during the process of testing a loaded board. As long as the 
standard can be met with regard to the operation of the defined test features (e.g., the 
boundary-scan path, the instruction register, and the bypass register) and with regard to 
any other test feature that is to be offered for "public" use, there is no reason why 
additional "private" test features should be designed while fully complying with the 
standard. 

Bearing this in mind, a solution to the use of scan test techniques for stand-alone 
integrated circuit testing can be obtained. First, the instruction register can be used as a 
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means of selecting scan test operation of the integrated circuit. Second, the manufacturer 
can provide a private SCANTEST instruction for this purpose†. Entry of this instruction 
would be done in accordance with the operation of IEEE Std 1149.1. 

When the SCANTEST instruction is present, certain states of the TAP controller can be 
redefined as shown in Figures 18-4 and 18-5: 

1. Exitl—DR and Exit2-DR cause data to be captured into the scan paths in the same 
way as would normally occur in the Capture-DR controller state. 

2. Pause-DR causes data to be shifted in the same way as Shift—DR. 

Figure 18-4: Basic scan state 
diagram. 

Figure 18-5: Scan state diagram 
when SCANTEST is selected. 

Note that the effect of this redefinition is to make test mode select (TMS) (which 
controls movement between controller states) almost equivalent to the test mode control 

† The SCANTEST instruction described could not be offered for use by the component 
purchaser, because it requires dynamic alteration of the TAP controller state machine and, 
thus, does not conform to IEEE Std 1149.1. 
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for a conventional scan circuit (which causes movement between "shift" and "load") while 
the SCANTEST instruction is selected. When TMS = 1 (which lasts for only one clock 
cycle), data are loaded into the scan path and while TMS = 0 data are shifted. The bold 
paths in Figure 18-5 show the cycle that would be followed during scan testing. In 
contrast to the conventional operation of IEEE Std 1149.1, the transition from "shift" to 
"load" (i.e., capture) can be effected without leaving the data register scan states of the 
TAP controller. Therefore, there are no dead states and the need to provide "hold" 
operation on the scannable registers is avoided. 

In components that have a single internal scan-path, the TDI and TDO pins could be 
used for "scan-in" and "scan-out." Note that this would require the control of the TDO 
driver to be modified to allow it to be active in the Pause—DR controller state (redefined 
to behave as Shift—DR) whenever the SCANTEST instruction is present — normally, it 
would be inactive in this state. 

Multiple internal scan paths can be provided by multiplexing the serial inputs and 
outputs onto normal package pins when TMS = 0 and SCANTEST is selected. At outputs, 
this requires that the design of the boundary-scan cell is extended as shown in Figure 
18-6. 

Figure 18-6: Multiplexing of an internal scan path onto a system output pin. 

Using this approach, internal scan testing can be achieved in almost the same way as it 
would without IEEE Std 1149.1. Again, it must be emphasized that the SCANTEST 
instruction is intended only for the private use of the integrated circuit manufacturer 
because it does not comply with IEEE Std 1149.1. 

18.3.2: The Board Level 

It is clear from the problems highlighted earlier that internal scan testing is not the ideal 
basis for an hierarchical chip-through-system test approach. Further, if the solution just 
proposed is adopted to allow stand-alone scan testing of the integrated circuit, then there 
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may be problems in reusing the scan test data at the board level. For example, the 
multiple scan paths would need to be connected into a single path to allow access through 
the TDI and TOO pins. 

These problems can, however, be overcome by combining the internal scan design with 
self-test facilities. IBM's LSSD† on-chip self-test (LOCST) approach [2], for example, 
shows how linear feedback shift-registers and signature analyzers can be used to convert a 
scan/boundary-scan design into a self-testing circuit at moderate cost (Figure 18-7). The 
paper also shows how, a self-testing circuit can be created when multiple internal scan 
paths are used. 

Boundary Scan Path 

Figure 18-7: The LOCST scan and sel f- test approach. 

The combination of scan and self-test allows the requirements of both the integrated 
circuit manufacturer and the component purchaser to be met. The manufacturer can use 
the scan test facilities through the private SCANTEST instruction as defined in the 
previous section; the purchaser can use the self-test operation through a public RUNBIST 
instruction. 

From the purchaser's viewpoint, this has the following advantages: 

1. The test is compact and can be run easily when the component is mounted on the 
board. For example, there is no need to store and shift large amounts of test data. 

† Level-sensitive scan design (LSSD). 
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2. The manufacturer can arrange that all versions of a component will yield the same 
results from self-test execution. Where linear feedback shift-registers (LFSRs) are 
used to produce the self-test signature, this can be achieved by choosing the initial 
state of the linear-feedback shift-register (LFSR) such that the final state will be 
the required constant value. 

The use of self-test to provide a manufacturer-supported test of the component will 
also allow the manufacturer to limit access to detailed design information. 

18.4: Further Reading 

The papers by Komonytsky [1] and LeBlanc [2] discuss how level-sensitive scan design 
circuits can be converted into self-testing designs as outlined in this application note. In 
both cases, pseudo-random test patterns are generated by LFSRs provided as an extension 
to the functionality of boundary-scan register cells located at input pins. The signature is 
generated using single- or multiple-input signature analyzers formed by extending the 
functionality of boundary-scan register cells at component outputs. 

The paper by Gloster and Brglez [3] discusses a similar approach based on cellular 
automata instead of linear-feedback shift-registers. 
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Chapter 19. Testing Mixed Analog/Digital ICs† 

J. Hirzer 
Siemens AG 

Munich, West Germany 

This chapter discusses the design and use of boundary-scan in mixed analog/digital 
integrated circuits. 

While the prime thrust of the boundary-scan path defined by IEEE Std 1149.1 is to 
reduce the complexity (and hence the cost) of testing miniaturized digital circuits, there 
are also benefits to be gained through provision of such a path in mixed analog/digital 
circuits. Test costs can be high for such designs unless design-for-test features are 
included and, as will be described in this chapter, boundary-scan can be a valuable tool 
for simplifying the creation and application of parametric and functional tests. 

19.1: The Location of the Boundary-Scan Path 

In mixed analog/digital integrated circuits the boundary-scan path must be designed to 
visit each purely digital pin — other than the test access port (TAP) pins — and each 
digital signal received from, or supplied to, the analog block within the design. Figure 
19-1 illustrates this in a component that contains a large digital block and an A - t o - D 
converter. 

Figure 19-1: The location of a boundary-scan path at the analog/digital interface. 

† The work described in this chapter was performed within the AIDA collaborative 
project of the ESPRIT research programme, supported by the Commission of the 
European Community. 
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The provision of access to the analog/digital interface separates the analog and digital 
blocks and allows them to be tested individually using the test techniques and strategies 
best suited to the block designs: 

• tests for the digital block can be performed without having to propagate signals 
through the analog block 

• the analog block can be tested functionally without having to propagate signals 
through the potentially complex digital block. 

Some of the complexity in testing a complete mixed-signal integrated circuit arises due 
to the tolerances inherent in the A - t o - D converter. Due to these tolerances any given 
voltage applied at the analog input can give rise to one of a range of digital codes at the 
converter's outputs. During testing, such uncertainty in the pattern applied to the digital 
circuit block is difficult to accommodate (digital testing requires precise knowledge of the 
pattern being applied at any test step). 

19.2: Boundary-Scan Cell Design 

Two types of boundary-scan cell are required at the analog/digital interface: an A - t o - D 
type and a D - t o - A type. The A - t o - D cell is placed at the analog/digital boundary on 
any unidirectional digital signal that feeds from an analog block into a digital block, while 
the D - t o - A cell is placed on any signal from a digital block that feeds into an analog 
block. The design of each cell type, and the reasons for differences between them, are 
discussed below. 

19.2.1: The A-to-D Cell 

Figure 19-2 gives a schematic for an A- to -D cell that is compatible with the clocking 
and control scheme generated by the example TAP controller shown in Figures 4-8 and 
4-9. 

Note that this cell design meets all the rules specified by the standard for cells to be 
placed at system input pins. Selection of the instructions defined in the standard gives the 
following results: 

1. the EXTEST instruction causes signals from the analog block to be captured into 
the boundary-scan cell so that they can be examined by shifting; 

2. the INTEST instruction causes signals supplied through the boundary-scan path to 
be applied to the digital block on-chip; and 

3. the SAMPLE/PRELOAD instruction allows signals flowing across the analog/digital 
boundary to be examined without interfering with normal circuit operation. 

200 



Figure 19-2: An A - t o - D cell. 

Note that no provision is made in the example cell design to prevent the signals (applied 
to the digital block when the INTEST instruction is selected) from rippling as data are 
shifted into or out of the boundary-scan path. If such rippling signal values were likely to 
cause unwanted operation of the digital block (e.g., because they were fed to 
asynchronous or clock inputs), then additional holding latches or registers would need to 
be provided at the parallel output from the shift-register stage. 

79.2.2; The D-to-A Cell 

In general, it is impossible to preserve the state of an analog circuit if the signals at its 
inputs are allowed to change. This situation also occurs for some digital circuits (for 
example, asynchronous state machines), but not for others (for example, synchronous 
sequential circuits change state only when clocked; changes at data inputs between clocks 
have no effect). 

Consequently, it is necessary to ensure that no interruption occurs to a test sequence 
and that input signals applied to an analog block change only from one valid value to 
another. Therefore, during shifting of the boundary-scan register, it is vital that the 
signals driven to the analog/digital block from D - t o - A cells do not ripple. The value at 
the cell's data output must be held until the shift operation is complete. 
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The requirements for the D - t o - A cell design are identical to those of boundary-scan 
cells to be placed at 2-state digital pins of the component. A suitable design is shown in 
Figure 19-3. 

Figure 19-3: A D-to-A cell. 

Selection of the instructions defined in the standard gives the following results: 

1. the INTEST instruction causes signals from the digital block to be captured into 
the boundary-scan cell so that they can be examined by shifting; 

2. the EXTEST instruction causes signals supplied through the boundary-scan path to 
be applied to the analog block; and 

3. the SAMPLE/PRELOAD instruction allows signals flowing across the analog/digital 
boundary to be examined without interfering with normal circuit operation. 

19.3: Testing Analog Blocks Using Boundary-Scan 

This section gives an example of how a test on an analog block in a mixed analog/digital 
mtegrated circuit design can be achieved by using a mixture of direct connections through 
the chip pins and indirect connections through a boundary-scan path placed at the 
analog/digital interface. 

The example is based on the use of digital signal processing (DSP) test techniques [1] in 
which analog signals applied to the circuit are generated by digital programmable function 
generators, and those received from the circuit are analyzed by using DSP techniques. 
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Figure 19-4: Test system configuration for analog test. 

Figure 19-4 shows the design of a test system that couples DSP test techniques with 
support for the boundary-scan path. With this test system, dynamic analog measurements 
are performed in the time domain by application of continuous waveforms or digital 
pattern sequences. In some cases (e.g., filters), it is useful to describe the analog function 
in the frequency domain, in which case the inverse fast Fourier Transform (IFFT) 
technique can be used to create the test signals. The function generators can be loaded 
with the array of real numbers representing the amplitude values of the required waveform 
at discrete points in time. 

The serial buffer memory is used to scan digital vectors onto the digital/analog interface. 
Each of these vectors is related to a single point of time and to one distinct input signal. 
Clearly, the boundary scan path at the analog/digital interface may be split up logically 
into one or more input and output vectors. Also, layout optimization and other 
requirements may lead to scrambling of the boundary-scan register cells, so test vector 
conversion may be required to map the test vectors onto the actual structure of the 
boundary scan path. For example, the order bits at a digital-to-analog converter's input 
lines may be reversed such that it is not consistent with the binary number representation 
of the fast Fourier transform (FFT) and inverse FFT (IFFT) operations of the array 
processor. 

Analog measurements are performed in a similar manner. Analog output signals are 
digitized and recorded in the digitizer's random-access memory (RAM) and the scan-out 
signal (which is again a serial digital data stream) is selectively analyzed. Only one analog 
output signal is evaluated at a time, with the binary vector representing this signal being 
strobed bitwise to the data buffer memory. The bit strobe signal originates from the serial 
buffer memory that generates the scan-in signal to achieve synchronization. 
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As for the serial input patterns, vector conversion may be required. To allow evaluation 
of the recorded output signals, they may be transformed from the time domain to the 
frequency domain by using FFT. After computing the characteristic parameters (e.g., gain, 
attenuation, and signal-to-noise ratio) the test procedure will be completed. 

19.4: Further Reading 

Further discussion of the use of boundary-scan techniques to ease the testing of mixed 
analog/digital circuits is contained in [2]. 
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Chapter 20. Adding Parity and Interrupts to IEEE Std 1149.1 

Patrick F. McHugh Lee Whetsel 
Electronics Technology and Defense Systems and 

Devices Lab. Electronics Group 
US Army LABCOM Texas Instruments Inc. 

Fort Monmouth, NJ 07703, U.S.A. Piano, TX 75086, U.S.A. 

Trends within the U.S. Department of Defense (DoD) are forcing system integrators to 
use industry standard interfaces to fulfill DoD system requirements. The test access port 
and boundary scan architecture defined by IEEE Std 1149.1 meets many of the 
requirements set forth by the DoD for the testability of very high-speed integrated circuit 
(VHSIC) components, with the exception that it does not support parity checking of 
instructions and test data or the flagging of interrupts to the device controlling test 
operations (the bus master). These capabilities are considered important in both military 
and commercial systems where high operational reliability is required. 

In this chapter, a method is proposed whereby parity checking and interrupt capability 
can be provided within the framework of IEEE Std 1149.1 that could be implemented to 
meet the DoD's requirements. 

20.1: Introduction 

The principal application of the proposed parity checking method is verification of 
instruction data input to a component's test logic. The parity checking scheme can be 
extended to cover test data input and output data from the test logic. Both these 
applications will be discussed in this chapter. 

There must be a means of flagging parity errors to the data source (i.e., the bus master 
or automated test equipment (ATE)). To achieve this, an additional signal must be added 
to the test access port defined by the standard. The relationship between parity coding of 
instruction data and the additional interrupt signal, the test interrupt (TINT*), is also 
described. A method for using the TINT* signal to flag other types of error to the master 
device is also proposed. 

The cost of implementing the proposed extensions to the standard is modest. A small 
amount of logic must be added to the instruction register and instruction codes must be 
extended to include a parity check bit. Finally, one signal, TINT*, must be added to the 
test access port. 

20.2: Why Use Parity? 

Where highly reliable operation is required, the coding of instructions and data (for 
example, by adding a parity bit) is a valuable means of detecting any data corruption 
involving an odd number of bits that might arise during transmission. 
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For example, in Figure 20-1 a circuit is shown that consists of two slave devices (each 
compatible with IEEE Std 1149.1) interfaced to a test bus master controller. When the 
master transmits information (e.g., an instruction) to the slave devices, it assumes this is 
correctly received. However, in actual practice there could be corruptions to the 
serially-transmitted information caused by external electrical or mechanical interference. 
When the corrupted information is acted on by the receiving slave, an incorrect test 
operation may be performed, possibly causing malfunction of the complete system. For 
example, a transmitted BYPASS instruction could be corrupted into an instruction that 
would cause the slave to enter a self-test mode of operation. 

M a s t e r S l a v e S l a v e 

Figure 20 -1 : A basic master-slave system. 

By adding a parity check bit to each item of information transmitted, the slave devices 
can check the received data for corruptions that effect odd numbers of bits (e.g., single 
bit errors). Figure 20-2 shows how the master-slave system of Figure 20-1 could be 
enhanced to allow parity encoding and checking. 

M a s t e r S l a v e S l a v e 

Figure 20-2: A master-slave system with parity coding and interrupts. 
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In Figure 20-2, each slave device has been enhanced to include parity checking of 
received instructions. Detected errors are flagged back to the bus master by using an 
additional interrupt signal, TINT*. In the example, the TINT* signals from the two slave 
devices are capable of wire-AND operation, so the master receives an interrupt when an 
error is detected by either slave. Other methods of combining the interrupts generated by 
the various slave devices controlled by a single master could also be used (e.g., a priority 
encoder). 

By the means illustrated, the master receives confirmation that valid information has 
been received by the slave(s). When an error is detected, the information transmission can 
be repeated until the information is transmitted and received correctly. 

20.3: Adding Parity to Instructions 

The most critical information items transmitted to a component compatible with IEEE 
Std 1149.1 are the instructions which control the operation of the test logic and, in 
particular, the way that the test logic can alter or impede the operation of the on-chip 
system logic. Transmission errors can convert a public instruction into a public one or a 
BYPASS instruction into RUNBIST. In some cases, such a change can have a significant 
impact the functional integrity of the complete board. 

This section proposes changes to the test logic defined by the standard which will permit 
parity coding of instructions. Enhancements to this basic scheme will be introduced in 
later sections. 

20.3.7: The Test Interrupt Signal, TINT* 

As mentioned earlier, a signal must be added to the test access port to allow a slave 
component to bring parity errors to the attention of the master. 

TINT* should be an active-low output from the test logic capable of wire-AND 
connection to the TINT* outputs of other components that offer parity checking. TINT* 
would normally be held at 1, and should be set to 0 when a parity error is detected. When 
the TINT* outputs of several components are wired together, the resultant signal should 
be 0 whenever any of the connected components sets its TINT* output to 0. To allow 
different technologies to be used, the output characteristics of TINT* must be defined to 
allow an output buffer to be connected to buffers constructed in different logic 
technologies (e.g., open collector or emitter-coupled outputs). 

20.3.2: The Instruction Register and Instruction Coding 

IEEE Std 1149.1 requires that: 

• the BYPASS instruction must have the all-Is value; and 

• the EXTEST instruction must have the all-Os value. 
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Because the parity bit must be decoded as part of the instruction, it must be a 0 in the 
encoded EXTEST instruction. This implies that even parity is required. Again, because it 
will be decoded as part of the instruction, the parity bit must be a 1 in the encoded 
BYPASS instruction. If we add to this requirement the necessity of even parity, we find 
that an instruction register with parity must have a total length that is an even number of 
bits. The unencoded instruction (without the parity bit) must be an odd number of bits in 
length (Figure 20-3). 

Figure 20-3: Instruction register with parity bit. 

Note that it is proposed that the parity bit is the most significant bit of the complete 
instruction (i.e., that it is the last bit shifted into the chip). Note also that, where parity 
coding is used, the minimum length of the instruction register is four stages. This is 
because a component must support at least three instructions if it is to conform to the 
standard: BYPASS, EXTEST, and SAMPLE/PRELOAD. 

Figure 20-4 gives an example implementation for an instruction register that includes 
even parity detection logic and associated interconnections. This figure does not show the 
connection of the clock and control signals to the shift-register stages. 

Figure 20-4: An enhanced instruction register design. 
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An instruction register that complies with the standard consists of a shift-register 
section which is connected between the test data input (TDI) and test data output (TDO) 
pins, logic to decode the received instruction, and an output holding latch that retains the 
previous instruction until a new instruction has been latched in the Update—IR controller 
state. 

To achieve even parity checking, a parity checker must be connected between the 
shift-register stages and the instruction decoding logic. This checker might consist of an 
array of exclusive-OR gates, for example. The output of the parity checker is fed to a 
flip-flop that is clocked only on the rising edge of the test clock (TCK) in the Exitl—IR 
controller state. This latch is included so that the resulting output does not change while a 
new instruction is shifted into the instruction register. It is reset when in the Shift—IR 
controller state. The design should also cause TINT* to be released to its inactive state on 
entry into the Test—Logic—Reset controller state. 

The parity latch output must feed both to the TINT* output and to the instruction 
decoding logic. This latter connection is necessary to prevent the received instruction from 
being applied to the test data registers in the event that a parity error is detected. It is 
recommended that, when a parity error is detected, the instruction decoder's output 
should be forced to the state that would normally result when the BYPASS instruction is 
received. In this way, a non-damaging instruction is presented to the test data registers if 
the user should cause the test logic to pass through the Update—IR controller state. 

Additionally, the output of the parity checker may be latched and fed back to a data 
input of the instruction register, thus allowing the bus master to interrogate slave 
components to determine which had received the corrupted instruction. Note that, to 
allow the parity flag to be examined, it is necessary to move through the Update—IR 
controller state to the Capture—IR state where the data will be loaded into the instruction 
register. 

If desired, the scheme shown in Figure 20-4 can be extended to allow masking of 
interrupts. In this case, instructions for enabling and disabling interrupts must be 
provided. The addition of these two instructions will not increase the length of the 
instruction register beyond the size required by the three mandatory instructions. Since the 
minimum length for the instruction register with parity is four stages, there are unused 
opcodes when the minimum instruction set is implemented. Note that, if the capability to 
mask interrupts is provided, it must be possible to read the state of the interrupt mask 
register within the component. This could be achieved in a number of ways, for example, 
by making it a user-defined register in the standard architecture. 

20.3.3: A Typical Operating Sequence 

The sequence of operations for a IEEE Std 1149.1 interface with parity coded 
instructions and a non-maskable interrupt for a parity errors is described below. 

The bus master would first control the test mode select (TMS) and TCK signals to 
initiate scanning of the instruction register. When the Capture—IR controller state is 
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entered, the required "10" pattern is loaded into the least significant bits of the instruction 
register. When a design allows the state of the parity checker output latch and the status 
of the interrupt mask to be loaded, then this will also occur in the Capture—IR controller 
state. 

The captured data are shifted out through TDO during the Shift—IR state while an 
instruction with even parity is shifted in through TDI. Note that the data being shifted 
out through TDO (captured during Capture—IR) need not be parity coded — in fact, they 
may have odd parity if they happen to be data from a failed attempt at loading an 
instruction. When shifting of the captured data and new instruction is completed, parity 
of the received instruction will be checked. If the received data does not have even parity, 
TINT* will be asserted (i.e., set to 0). 

The bus master would typically cause the slave components to enter the Pause—IR 
controller state to allow time to sample its TINT* input and determine its next action. If 
a parity error is detected, the master can return the slaves to the Shift—IR controller state, 
whereupon the TINT* signal will be released. The instruction sequence can be transmitted 
to the slaves again. 

If a parity error has been detected and the slaves are moved into the Update—IR 
controller state, then the instruction decoder will be forced to operate as if the BYPASS 
instruction had been received. The BYPASS instruction is a safe default instruction in the 
event that a parity error cannot be corrected by repeated transmission. The recovery action 
by the master, in this case, would require initiating the instruction scanning sequence 
again. During this second instruction scan operation, the test bus master would be able to 
identify which slaves were flagging the parity error. 

20.4: Extending Parity to Received Test Data 

The parity scheme can, dependent on the application, be extended to include test data 
received by a component as well as instructions. As for the instruction register, the most 
significant bit of the test data register would be required to be the parity bit. In contrast 
to the instruction register, no matter what the implementation details there is no 
requirement for the length of the test data registers to be even for the restriction to even 
parity coding. It is, however, suggested that even parity coding is used since this maintains 
consistency with the instruction register. 

The operation of the component when shifting in parity coded test data would be 
analogous to that described above for encoded instruction loading. If a parity error were 
detected, TINT* would be asserted in the Exitl—DR controller state and released in the 
Shift—DR or Test-Logic-Reset controller states. Note that, in contrast to the instruction 
register case, the updating of any latched parallel output should be inhibited on entry into 
the Update-DR controller state when incorrectly encoded data are present in the selected 
test data register. Note that, in general, there will be no guaranteed safe state for the 
output latches of a data register. 
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20.5: Parity Coding of Output Data 

The previous sections have addressed only the application of parity coding to instructions 
and test data received by a component. The data output by a component could also be 
parity coded such that the receiving device could determine its validity. However, there are 
more limitations to the usefulness of this application than in the previous cases (see 
below). This would require the most significant bit of the data shifted out to be the parity 
bit. 

An encoder would need to be provided to generate the parity code from the data 
presented to the other inputs to the instruction register or selected test data register. The 
encoder's output would then be loaded into the register in the Capture—IR or Capture—DR 
controller state, respectively. 

A limitation of this scheme is that, unless specific provision is made within a component 
or in the operation of the master device, it will not be possible to request retransmission 
of the information should it be found to be corrupt on receipt. This is because it is 
necessary to terminate the register scanning operation (i.e., enter the Update—IR controller 
state) to revisit the Capture—DR or Capture—IR controller state. 

In the case of the boundary-scan register where the EXTEST instruction is used solely 
to test interconnections to adjacent components compatible with the standard, it is 
possible to make a repeat attempt to read the test results by feeding the original test 
pattern in again before exiting from the scan operation through the Update—DR controller 
state. Note, however, that this cannot be done where stored-state circuitry outside the 
component is being tested, since it is not possible to "undo" previous tests. 

20.6: Other Uses of TINT* 

In addition to its use to flag errors in received instructions or test data, the TINT* 
output could be used to indicate other error conditions within the component to a master 
device. Examples of such "error" conditions might include 

• completion of a test task; or 

• an abnormal event in the system operation of the component (e.g., memory 
overflow). 

If the TINT* is to be used to flag such interrupts in addition to its use to flag parity 
errors, then it is important that the master device is able to distinguish between the 
different types of interrupt being transmitted. 

To allow parity errors in received information to be distinguished, it is suggested that 
specific test access port (TAP) controller states be reserved for this application. While 
scanning of instructions or test data is in progress (i.e., between Capture—IR and 
Update—IR, or between Capture-DR and Update—DR), TINT* should indicate parity 
errors in the received data as discussed in the previous sections. In the other controller 
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states {Test-Logic-Reset, Run-Test/Idle, Select-DR-Scan, and Select- IR- Scan) TINT* 
may be used to indicate other error conditions. Figure 20-5 shows how this could be 
achieved by inclusion of a multiplexer. 

Figure 20-5 : Multiplexing of interrupts onto TINT* 

It is also necessary to allow the master to determine which component has generated an 
error condition interrupt and, where a component is able to flag several error conditions, 
which specific condition exists. It is recommended that this is achieved by inclusion of an 
interrupt conditions register whose outputs feed the data inputs of the instruction register. 
Appropriate data bits in this register would be set when the interrupt was generated and 
be reset either following the rising edge of TCK in the Capture-IR state or when the test 
logic reset (TRST*) pin is asserted. (If TRST* is not provided, then the interrupt 
conditions register must reset on power-up). 

20.7: Conclusion 

The addition of parity checking capability to IEEE Std 1149.1 in the manner described 
allows a component to quickly check received instructions and, where appropriate, to test 
data for transmission errors. The TINT* output is added to the TAP to allow the 
component to notify the bus master that data corruption has occurred. Both these features 
are added in a manner that ensures that the component design remains fully compatible 
with the standard. 

The TINT* signal can also be used to indicate that other error conditions have occurred, 
provided that diagnostic information is available to explain why TINT* has been asserted. 
Interrupts can also be masked if instructions to enable and/or disable interrupts are 
provided and if it is possible to externally determine the interrupt enable status. 
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Together, these capabilities will allow DoD systems integrators to use a commercial 
interface to fulfill DoD requirements for a chip level test interface. 
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Part V: Further reading 

Part V provides an annotated bibliography and contains reprints 
of papers that either discuss the general topic of boundary-scan 
or provide specific examples of applications and developments 
based on IEEE Std 1149.1. 

Readers should be aware that several of the reprinted papers 
discuss boundary-scan testing in general, or applications of the 
various versions of the Joint Test Action Group (JTAG) 
proposals that preceded the development of IEEE Std 1149.1. 
Some papers may therefore provide implementation examples that 
are not compliant with the standard. 
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Chapter 21. Bibliography 

The following is an annotated bibliography of papers covering the development and 
application of boundary-scan test techniques and, in particular, IEEE Std 1149.1. 
Reprints of papers marked REPRINT are included following this bibliography. 

[1] P. Goel and M.T. McMahon, "Electronic Chip in Place Test," IEEE International 
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 
1982, pp. 83-90. 

In ECIPT, a chip designed according to Level-Sensitive Scan Design (LSSD) 
principles is enhanced such that a shift-register latch (SRL) is connected directly to 
each package pin. Where an SRL is available at the input or output as a part of the 
normal functional design, no additional SRL is added. However, where a pin feeds 
or is fed by combinational logic, an SRL is added purely for test purposes. 
Together, these SRLs can be used to perform boundary-scan-like tests of 
chip-to-chip interconnections. 

[2] D. Komonytsky, "LSI Self-Test Using Level Sensitive Scan Design and Signature 
Analysis," IEEE International Test Conference Proceedings, IEEE Computer 
Society Press, Los Alamitos, Calif., 1982, pp. 414-424. 

[3] J.J. Zasio, "Shifting Away from Probes for Wafer Test," IEEE COMPCON, IEEE 
Computer Society Press, Los Alamitos, Calif., 1983, pp. 395-398. 

This paper discusses the use of boundary-scan as a means of reducing the number 
of probe contacts that must be made during wafer testing. In the particular 
implementation described, a small number of probes is sufficient to give access to 
power pins, the boundary-scan path, and the internal scan path of each chip. Note 
that the boundary-scan cells are placed outside the bonding pads for the integrated 
circuit (IC) so that the integrity of the signal paths from the bonding pads to the 
circuitry is checked. 

[4] S. das Gupta, M.C. Graf, R.A. Rasmussen, R.G. Walther and T.W. Williams, 
"Chip Partitioning Aid: A Design Technique for Partitionability and Testability in 
VLSI," ACM/IEEE Design Automation Conference Proceedings, IEEE Computer 
Society Press, Los Alamitos, Calif., 1984, pp. 203-208. 
REPRINT 

This paper describes IBM's proprietary implementation of boundary-scan that is 
based on Level-Sensitive Scan Design (LSSD). 
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[5] J.J. LeBlanc, "LOCST: A Built-in Self-Test Technique," IEEE Design and Test 
or Computers, Vol. 1, No. 4, Nov. 1984, pp. 45-52. 
REPRINT 

This paper describes an IC architecture that combines boundary-scan, on-chip test 
control, and self-test. 

[6] R. Lake, "A Fast 20K Gate Array with On-Chip Test System," VLSI Systems 
Design, Vol. 7, No. 6, June 86, pp. 46-65. 
REPRINT 

This paper describes the architecture and operation of a gate-array family that 
includes boundary-scan and self-test. 

[7] F.P.M. Beenker, "Systematic and Structured Methods of Digital Board Testing," 
IEEE International Test Conference Proceedings, IEEE Computer Society Press, 
Los Alamitos, Calif., 1985, pp. 380-385. 

It was this paper that started the drive toward a standard boundary-scan 
architecture. The paper reviews the problems faced by companies attempting to use 
advanced surface-mount interconnection technologies and considers the value of 
boundary-scan as a solution to the problems identified. 

[8] D. Laurent, "An Example of Test Strategy for Computer Implemented with VLSI 
Circuits," IEEE International Conference on Computer Design: VLSI in Computers 
and Processors, IEEE Computer Society Press, Los Alamitos, Calif., 1985, pp. 
679-682. 

This paper discusses Bull's implementation of boundary-scan. Note two key 
features. First, the boundary-scan cells at output pins are not able to drive signals 
through the pins — they can only monitor the signal values driven through the 
pins by the system logic. Second, the cost of implementing boundary-scan is 
reduced by placing the boundary-scan cells beneath power distribution busses 
around the periphery of the chip. 

[9] P.T. Wagner, "Interconnect Testing with Boundary-Scan," IEEE International Test 
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1987, 
pp. 52-57. 
REPRINT 

This paper discusses how tests may be generated for a board populated with 
boundary-scannable chips and provides formulae that can be used to compute the 
overall test length. 

[10] C M . Maunder and F.P.M. Beenker, "Boundary-Scan — A Framework for 
Structured Design for Test," IEEE International Test Conference Proceedings, 
IEEE Computer Society Press, Los Alamitos, Calif., 1987, pp. 714-723. 
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This paper discusses the JTAG version 1.0 architecture. 

[11] L. Avra, "A VHSIC ETM-Bus Compatible Test and Maintenance Interface," 
IEEE International Test Conference Proceedings, IEEE Computer Society Press, 
Los Alamitos, Calif., 1987, pp. 964-971. 

This paper describes the U.S. DoD's VHSIC ETM and TM busses. Many ideas 
from the ETM-bus were incorporated in the design of the IEEE Std 1149.1 test 
logic. Other papers included among these reprints show how board-level test 
busses formed by interconnecting chips compatible with IEEE Std 1149.1 can be 
interfaced to a system-level test and maintenance bus (the TM-bus). 

[12] M.M. Pradhan, R.E. Tulloss, H. Bleeker, and F.P.M. Beenker, "Developing a 
Standard for Boundary-Scan Implementation," IEEE International Conference on 
Computer Design: VLSI in Computers and Processors, IEEE Computer Society 
Press, Los Alamitos, Calif., 1987, pp. 462-466. 

A review of the development of the JTAG standard proposal up to the middle of 
1987. 

[13] IBM, TRW, and Honeywell, VHSIC Phase 2 Interoperability Standards: TM-Bus 
Specification —— Version 3.0, November 9 1987 (available from LP. Letellier, 
Naval Research Lab., Code 5305, Washington DC 20375, U.S.A). 

The TM-bus is a test and maintenance bus intended for use at the system level. 
For example, the bus may be used to convey test data to and from a printed wiring 
board (PWB) in a rack of equipment. The TM-bus is the basis of the IEEE 
P1149.5 project. 

[14] P. Barton and C. Dolan, "ASICs and Testability Devices Revolutionize Testability 
Design," Texas Instruments Technical Journal, Vol. 5, No. 4, July/August 1988, 
pp. 86-97. 
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ABSTRACT 

This paper presents a structured partitioning 
technique which can be integrated into the design 
of a chip. It breaks the pattern of exponential 
growth in test pattern generation cost as a 
function of the number of chips in a package. In 
one of its forms, it also holds the promise of 
parallel chip testing, as well as migration of 
chip-level tests for testing at higher package 
levels. 

INTRODUCTION 

Level Sensitive Scan Design (LSSD) [1, 2] is one 
method to solve controllability and observeability 
problems in sequential networks and hence, ease the 
problem of test pattern generation. This is 
achieved by incorporating all memory elements in a 
sequential network in shift register latches (SRLs) 
and then connecting all SRLs into one or more shift 
registers so that the internal state of the network 
can be controlled or observed at any time through 
the shift register path. LSSD also permits 
software-based partitioning techniques [3] to 
divide a large network into manageable, independent 
networks, each of which is separately addressed by 
test pattern generators. This LSSD-based approach 
to partitioning will be discussed in the next 
section prior to the main topic of this paper. 
While this partitioning approach was adequate for 
large scale integration (LSI), it is inadequate for 
networks in very large scale integration. (VLSI) [4] 
due to the rapid increase in test generation 
complexity. Several solutions have been suggested 
to solve this partitioning problem. Hsu, et al [5] 
, and Tsui [6] have recommended ad hoc techniques 
for controlling and observing the outputs of chips, 
and, hence, inputs of other chips fed by the former 
on a common package. Goel and McMahon [7] have 
proposed another method where extra circuitry in 
system latches and multiplexors on chip outputs are 
required to control and observe chip boundaries. 

This paper presents a structured, logical 
partitioning technique called Chip Partitioning Aid 
(CPA) that can be designed into a VLSI chip 
technology. In its simplest form, called Half-CPA 
(HCPA), it is a structured technique that 
partitions a network into nearly disjoint, physical 

segments that are approximately a chip's worth of 
logic in size. Thus, test generation cost, at 
higher package levels, drops from the normal 
exponential cost function to a straight multiple of 
the number of chips in the package. In the 
complete version of CPA, called Full-CPA (FCPA), 
the logic network is partitioned into subnetworks 
virtually along chip boundaries with built-in latch 
isolation around chip inputs and outputs (I/O's) 
that allows the potential reapplication of chip 
level test data and, more importantly, the 
potential for simultaneous testing of the internal 
logic of all chips. This latter version is, of 
course, the ultimate in the "divide and conquer" 
approach to test generation. The only addition at 
each package level is the incremental set of tests 
for interconnection faults at that package level 
which can be derived from a considerably simpler 
model of the network. 

Next, we will define the rules associated with the 
two versions of CPA, and, finally, there will be a 
discussion on the effect of CPA on sytem design and 
how it can be mitigated by proper implementation of 
CPA. 

HALF-CPA (HCPA) 

Figure 1 shows a conceptual diagram of HCPA. It 
shows that in this version of CPA, all logic 
outputs of a chip are buffered by shift register 
latches (SRLs), called CPA-SRLs here, before being 
driven off-chip. CPA-SRLs are similar to standard 
SRLs, an example of which is shown in Figure 2. 
However, control outputs, such as clocks, are 
treated differently. They feed off-chip drivers 
unimpeded as required by system function. However, 
to ensure that this control function can be tested 
properly, it is required to also feed a CPA-SRL 
which is left to the side, out of the system path. 

The HCPA structure at the chip boundary described 
above does not play any significant role in test 
pattern generation at the chip level. The only 
difference from a chip without CPA-SRLs is that 
measurements at chip outputs can be made only after 
the data has been clocked into the CPA-SRLs. The 
HCPA structure, however, has a considerble 
influence in test pattern generation at higher 
package levels, forcing creation of partitions of 
approximately a chip's worth of logic. 
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Figure 1. Half-CPA (HCPA) Structure 

Figure 2. Example of CPA-SRL 

An understanding of some partitioning concepts [3] 
is necessary here to appreciate the effect of HCPA. 
In an LSSD environment, SRLs, like package outputs, 
are considered observable nodes since the values in 
SRLs can be shifted out and observed. Therefore, 
to divide a network into smaller, independent 
subnetworks, a back-trace is performed from each 
observable node, stopping only at package inputs or 
SRLs, since the latter can be considered as a 
controllable input. All logic encountered in this 
back-trace constitutes an independent partition 
since it contains all the logic that can ever 
affect this SRL or primary output (PO). An example 
of this partitioning approach is shown in Figure 3. 
The unfortunate problem with this approach is that 
once the design is done, there is no way to bound 
or change the sizes of these partitions without a 
redesign; in fact, experience has shown that in 
many cases a significant segment of the entire 
network may be accounted for in a single partition. 

Figure 3. Examples of Partitioning Backtraces 

A particularly good example of this is a 
bus-architected design where backing up from the 
bus, one can pack up just about the entire network 
in a single partition. A second problem is 
partition overlap in which a gate appears in more 
than one partition back-trace. This gate is 
considered at least for signal propagation during 
test generation and fault simulation, thus, 
effectively increasing the total number of gates 
that are evaluated by test generation/fault 
simulation programs. 

The HCPA structure of Figure 1 changes the above 
situation. Figure 4 shows a module with several 
chips with HCPA structure. Since the CPA-SRLs also 
satisfy the property that they are 
controllable/observeable points, they serve both as 
"start points" and "stop points" of partitioning 
back-traces. Thus, starting from any HCPA-SRL, a 

Figure 4. Partitioning with HCPA 
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back-trace propagates backwards through the logic 
on that chip and, in the worst case, stops at 
CPA-SRLs on the outputs of chips feeding the chip 
from where the back-trace started. Thus, each 
partition contains a network about the size of a 
chips's worth of logic, hence, putting an upper 
bound on the size of the partition. The question 
now is: how does this concept break the trend of 
an exponential rise in test generation cost as a 
function of chip count? To answer that, consider a 
package of n chips with m circuits on each chip. 
Assume that without HCPA, the worst case partition 
is approximately the size of the entire package. 
Also, assume that test generation cost is 
proportional to the square of the circuit count. 
Then, for a package without HCPA, test generation 
cost for a chip is: 

T c = km
2 

i .e. m2 = Tc/k ' 

Test generation cost at package level, Tp is given 
by, 

partitioning in HCPA relates to control outputs of 
chips. It is possible to back-trace through 
multiple chips, starting from a control output, but 
experience has shown us that these paths, while 
they may traverse multiple chips, are sparse in 
logic content. These outputs, therefore, are not 
expected to have large partitions, even in dense 
VLSI networks. The CPA-SRLs, that are fed by 
control outputs and sit on the side, aid in testing 
the logic since these SRLs act like intermediate 
observation points for the logic. 

FULL-CPA (FCPA) 

This is the complete version of CPA and is built on 
the benefits of HCPA. Unlike in HCPA where only 
system logic outputs are buffered by CPA-SRLs, in 
FCPA, both system logic inputs and outputs are 
buffered by CPA-SRLs, as shown in Figure 5. The 
only exceptions are control inputs and outputs. In 
the case of control inputs, they are required to 
feed CPA-SRLs on the side along with the system 
logic they are designed for, while control outputs 
are treated the same way they are treated in HCPA. 
The FCPA structure has two benefits over HCPA: 

or, 

Tp = k(nm)2 

= kn2 m2 

T = kn2 Tc /k P 

= Tc n
2 

1. Though a FCPA chip needs at least two test 
clocks, they can be shared with all chips at 
higher package levels. 

2. Latches on all system logic inputs/outputs 
effectively isolate the internal logic of chips 
allowing all chips with the potential to be 
tested simultaneously (hence, saving time on 
the tester) along with the potential to apply 
tests that were generated for the individual 
chip. 

For a fixed chip size, Tc can be considered to be 
fixed. Hence, Tp varies as the square of n, i.e., 
the square of the number of chips. 

With HCPA, partitions are limited to approximately 
a chip's worth of logic. Hence, 

Tp = (km
2) n 

= (kTc/k)n 

Tcn 

Once again, the assumption that Tc is fixed for a 
fixed chip size makes Tp directly proportional to 
the number of chips. Thus, HCPA creates, for a 
given chip size, a linear relationship between the 
cost of test generation and the number of chips and 
hence, network size on a high level package. 

Once these HCPA partitions are determined, test 
generation is done as in ordinary LSSD networks 
[8,9] with package wiring being tested along with 
on-chip circuitry. 

The only exception to what has been said about Figure 5. Full-CPA (FCPA) Structure 
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Test generation in the FCPA environment is now done 
in two stages: 

CPA RULES 

1. Test generation of the internal logic of chips 
which is done either at the chip level and 
migrated up through the packaging levels or are 
generated again at the package level. 

2. Test generation for stuck-at-faults in the 
package wiring and drivers/receivers on chips 
for which a simple model is created (see Figure 
6) since they are bounded by SRLs. If any 
logic is performed at this package level, with 
wire-ORs or wire-ANDs, the number of test 
required is (r+1) where r is the maximum number 
of wires that is tied together to perform the 
largest AND or OR. If no such functions are 
performed, the package wiring can be tested 
with two tests. 

The rules for HCPA are as follows: 

1. Each chip "data output" signal feeding a chip 
output driver must be fed directly from a 
single CPA-SRL. 

2. Each chip control output (for example, RAM 
control, shift clocks, tri-state inhibits) must 
feed a CPA-SRL, as well as it's off-chip 
driver. 

In addition to the above rules, FCPA has the 
following additional rules: 

1. Each chip "data input" must directly feed a 
CPA-SRL. 

TEST PATTERNS 
APPLIED HERE 

TEST RESULTS 
CAPTURED HERE 

Figure 6. Simplified Model for Wiring Test on 
FCPA Module 

Note that in FCPA, as in HCPA, test generation cost 
can be shown to be a linear function of the number 
of chips. 

The real advantage offered by FCPA over HCPA is in 
parallel testing of the internal logic of all chips 
in a package. While in an idealized environment, 
all chips can be tested simultaneously, in a more 
realistic environment, parallel chip testing is 
affected by the way clocks are shared between chips 
and the order in which they need to be sequenced 
during a test. For example, if a particular test 
for one chip requires a C1-C2 sequence, while 
another chip requires the opposite order, these 
patterns cannot be merged into one common pattern 
for the package, even if everything else in the two 
patterns match. This limitation, however, is not 
expected to be a serious problem. 

2. Each chip control input must feed directly to a 
CPA-SRL, as well as the system logic that it 
normally drives. 

SYSTEM CONSIDERATIONS 

From a system viewpoint, the choice of HCPA and 
FCPA is dependent upon density, system architecture 
and performance. At sufficient densities, latches 
naturally migrate to chip boundaries. In an LSSD 
environment, these latches would be embodied in 
SRLs, thus, satisfying the CPA requirements. 
However, there will be situations where an SRL will 
be required for CPA only, that is, a test-only SRL 
with no system application. In this situation, the 
clock(s) to that SRL will be used to control or 
observe a chip boundary during test. 

When test-only SRLs are required for CPA, several 
steps can be taken to mitigate the real-estate and 
delay penalty of CPA-SRLs. In the case of HCPA, 
the CPA-SRL can be merged with its output driver to 
minimize both real-estate and delay. Also, the 
output from the CPA-SRL is taken from its L1 latch 
to the driver, thus saving the delay of the L2 
latch. Figure 7 shows an example of an integrated 
CPA-SRL and driver where the performance detractor 
is the loading of the wired-AND function in the 
CPA-SRL. Estimates have shown that the above 
techniques can be used to limit real-estate 
overhead to less than 10% of the chip area and the 
delay penalty to a fraction of the delay of a logic 
circuit. And, finally, the test clock that sets 
data into the L1 latch of the CPA-SRL can be held 
"on" during system operation so that data can be 
flushed through it. Note that this test clock 
would constitute an overhead and at higher level 
packages, in a worst case situation, each chip 
might require a separate test clock for race-free 
testing. However, in a typical multi-chip package, 
it is possible to have many chips share the same 
test clock and still have race-free testing. 

In the case of FCPA, the above ideas can be applied 
for the CPA-SRLs on both chip inputs and outputs. 
Additionally, the latches at the inputs and outputs 
can be merged into a single SRL with the L2* latch 
[10] , as shows in Figure 8, so that the LI latch 
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CONVENTIONAL GATED DRIVER 

SYSTEM DATA D 

HCPA CLOCK C 

SCAN-IN I 

SHIFTCLOCK A 

SHIFT CLOCK B 

ADDITIONAL CIRCUITRY FOR HCPA-SRL 

Figure 7. Example of Integrated HCPA-SRL/Driver 

SYSTEM DATA 

SYSTEM CLOCK 

SCAN DATA i 

SHIFTCLOCK A 

CHIP PAD 

SYSTEM DATA D2 

SYSTEM CLOCK C2 

SHIFTCLOCK B 

Figure 8. Example of CPA-SRL with L2* Latch 
Integrated with Receiver and Driver 

could serve as the CPA boundary for an output and 
the L2* latch could serve as the CPA boundary for 
an input (see Figure 9). This provides a further 
reduction in the real-estate overhead for FCPA. 
The two test clocks that set data into these CPA 
latches are now part of the CPA overhead. However, 
at higher package levels, these two clocks can be 
shared between other chips. Figure 10 shows an 
example of a CPA-SRL implementation from [11] to 
show the delay impact on a system data path. 

One final note on CPA! Whether the latches at chip 
boundaries are system usable or not, CPA-SRLs can 
be used to trap machine states when desired and in 
the event of an error/fault, can, in most cases, be 
used to pinpoint the failing chip [12] . 

NOTE: SCAN PATHS & CLOCKS NOT SHOWN 

Figure 9. FCPA Chip with CPA-SRL Built with 
L2* Latch Integrated with Driver and Receiver 

SYSTEM CLOCK 

SYSTEM DATA D1 
SHIFT CLOCK A 

TO OFF-CHIP 
DRIVER 

+V 

SCAN DATA I 

SYSTEM DATA D2 

TO SYSTEM LOGIC 

Figure 10. Example of CPA-SRL Implementation 
for FCPA 

CONCLUSIONS 

In this paper, we have described a partitioning 
technique that removes the uncertainty of 
partitioning sizes, since each partition is forced 
around chip boundaries and contains approximately a 
chip's worth of logic. Test generation, at higher 
package levels, now increases as a linear function 
of the number of chips and, in one of the versions, 
allows parallel chip testing which saves time on 
the tester during manufacturing. We have also 
defined the design rules and discussed system 
design aspects of CPA. 
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LOCST: 
A Built-in Self-Test 
Technique 
With its low hardware cost, simple implementation and excellent 
coverage, this technique promises to meet the needs of a variety 
of VLSI environments. 

Johnny J. LeBlanc, IBM Federal Systems Division 

The advent of very large scale 
integration technologies has in­

creased interest in built-in self-test as a 
technique for achieving effective and 
economical testing of VLSI compo­
nents. As used in this article, the term 
"built-in self-test" refers to the capa­
bility of a device to generate its own 
test pattern set and to compress the test 
results into a compact pass-fail indica­
tion. Many buit-in self-test techniques 
have been proposed over the past 10 
years, ranging from self-oscillation to 
functional pattern testing of 
microprogrammed devices to random-
pattern testing (for examples, see 
papers by Mucha et al.,1 Sedmak,2 

Summary 
A built-in self-test technique utilizing on-chip pseudorandom-pattern 

generation, on-chip signature analysis, a "boundary scan" feature, and 
an on-chip monitor test controller has been implemented on three VLSI 
chips by the IBM Federal Systems Division. This method (designated 
LSSD on-chip self-test, or LOCST) uses existing level-sensitive scan 
design strings to serially scan random test patterns to the chip's com­
binational logic and to collect test results. On-chip pseudorandom-
pattern generation and signature analysis compression are provided via 
existing latches, which are configured into linear-feedback shift registers 
during the self-test operation. The LOCST technique is controlled through 
the on-chip monitor, IBM FSD's standard VLSI test interface/controller. 
Boundary scan latches are provided on all primary inputs and primary out­
puts to maximize self-test effectiveness and to facilitate chip I/O testing. 

Stuck-fault simulation using statistical fault analysis was used to 
evaluate test coverage effectiveness. Total test coverage values of 81.5, 
85.3, and 88.6 percent were achieved for the three chips with less than 
5000 random-pattern sequences. Outstanding test coverage (>97%) was 
achieved for the interior logic of the chips. The advantages of this tech­
nique, namely very low hardware overhead cost (<2%), design-
independent implementation, and effective static testing, make LOCST 
an attractive and powerful technique. 

and McCluskey et al.3). These various 
techniques provide different capabili­
ties for defect detection and self-test 
execution time. They also impose dif­
ferent requirements for implemen­
tation and control. 

Benefits to be gained from self-test, 
however, are common to all imple­
mentation techniques and include 

• reduced test pattern storage re­
quirements, 

• reduced test time, and 
• defect isolation to the chip level. 

Since test patterns are generated auto­
matically, only self-test initialization, 
control, and pass-fail comparison pat­
terns need be stored, significantly re­
ducing pattern storage requirements. 
Test time is reduced because one can 
use simple hardware devices (e.g., 
counters or linear-feedback shift 
registers) to control test execution, 
rather than retrieving test patterns 
from storage devices (e.g., disks) and 
applying them to the component under 
test. When components with built-in 
self-test are mounted on higher-level 
packages, the self-test pass-fail indica­
tion provides defect isolation to the 
chip level (e.g., during card repair 
testing). 

At the IBM Federal Systems Divi­
sion we have implemented a VLSI 
built-in self-test technique, which can 
be incorporated at very low hardware 
cost into any chip conforming to level-
sensitive scan design (LSSD) rules, on 
three VLSI signal-processing chips. 
Our method (designated LSSD on-
chip self-test, or LOCST) uses on-chip 
pseudorandom-pattern generation 
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and on-chip signature analysis result 
compression. This is not a new self-test 
method; LOCST utilizes the serial-
scan, random-pattern test technique 
pioneered by Eichelberger et al.4,5 and 
Bardell et al.6 of IBM. This article (1) 
details the adaptation of this technique 
to our existing chip testability architec­
ture, (2) details the implementation of 
LOCST on three VLSI chips designed 
and fabricated by IBM FSD, and (3) 
discloses the results of the test coverage 

evaluations performed on these three 
chips. (For a thorough understanding 
of the principles of serial-scan, ran­
dom-pattern testing, I strongly rec-
commend a review of references 4, 5, 
and 6 and also a very comprehensive 
paper by Komonytsky.7) 

standard FSD VLSI 
testability features 

For a better understanding of the 
self-test architecture chosen for 

Figure 1. Standard VLSI features. 

Figure 2. On-chip monitor. 

LOCST, a discussion of design fea­
tures typical to IBM FSD's products is 
warranted. Figure 1 illustrates the 
three standard testability features in­
corporated in our VLSI products. 
They include 

• level-sensitive scan design, 
• "boundary scan" latches, and 
• a standard maintenance interface, 

the on-chip monitor, or OCM. 
All chips are designed following 

IBM's LSSD rules (see Eichelberger 
and Williams8) to ensure high test 
coverage and high diagnostic resolu­
tion during chip manufacture testing. 
"Boundary scan" is a requirement 
that all primary inputs (Pis) feed 
directly into shift register latches 
(SRLs, or LSSD latches) and all pri­
mary outputs (POs) are fed directly 
from SRLs. Boundary scan greatly 
simplifies chip-to chip interconnect 
testing and also provides an ideal buf­
fer between LSSD VLSI products and 
non-LSSD vendor components, there­
by reducing the complexity of testing 
"mixed-technology" cards. 

The OCM is a standard main­
tenance interface for our VLSI chips 
(Figure 2). It consists of seven lines: 
two for data transfer, four for control, 
and one for error reporting. The OCM 
maintenance bus can be configured as 
either a ring, a star, or a multidrop net­
work, depending on system mainte­
nance requirements. The four major 
functions of the OCM are 

• scan string control, 
• error monitoring and reporting, 
• chip configuration control, and 
• clock event control: run/stop, 

single cycle, and stop on error. 
During LSSD testing (chip manu­

facture testing), scan strings are ac­
cessed via either dedicated or shared 
Pis and POs. (Note: The OCM is not 
used as a test aid during LSSD testing; 
it is simply logic to be tested by LSSD 
test patterns.) During card and system 
test, however, chip scan strings are ac­
cessed via the OCM interface. 

The error detection hardware de­
picted in Figure 1 consists of on-chip 
error checkers used for on-line system 
error detection and/or fault isolation 
(described by Bossen and Hsiao9). 
When these checkers are triggered by 
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an on-chip error, an attention signal is 
sent to the system maintenance pro­
cessor through the OCM interface. 
The system maintenance processor 
reads internal chip error registers (or 
writes internal chip mode control 
registers) via OCM "instructions." 

LOCST architecture 
The basic self-test methodology 

used in LOCST is to (1) place pseudo­
random data into all chip LSSD 
latches via serial scan, (2) activate 
system clocks for a single cycle to cap­
ture the results of the random-pattern 
stimuli through the chip's combina­
tional logic, and (3) compress the cap­
tured test results into a pass-fail signa­
ture. With the existing testability fea­
tures (LSSD, boundary scan, OCM) 
on each chip, it was a simple matter to 
incorporate a self-test capability. 

To perform the pseudorandom-pat­
tern-generation and signature-com­
pression operations while in LOCST 
self-test mode, functional SRLs are 
reconfigured into linear-feedback shift 
registers, or LFSRs. The pseudoran­
dom-pattern generator, or PRPG, is 
20 bits in length, and the signature ana­
lyzer (SA) is 16 bits in length (see 
Figure 3). It should be noted that the 
devices shown in Figure 3 operate as 
normal serial-scan latches and as 
linear-feedback shift registers. The 
transformation from normal serial-

scan mode to LFSR mode is controlled 
by multiplexing the scan inputs with a 
self-test enable signal (controlled via 
the OCM interface). The parallel data 
ports of these latches are not modified 
in any way. During self-test the data 
port clocks (system clocks) are dis­
abled to prevent outside data from 
disrupting the deterministic sequences 
of the LFSRs. 

The feedback polynomial for the 
PRPG was chosen because it is the 
least expensive "maximal-length" 
20-bit LFSR implementation in terms 
of XOR gates required. For the 
LOCST implementation, the charac­
teristic polynomial of the PRPG and 
the SA is fixed. Differing test pattern 
sequences can be obtained by altering 
the initial value (or "seed") of the 
PRPG. The feedback polynomial for 
the SA was chosen because of its 
proven performance (see Frohwerk10 

and Smith,u for example). The result 
of using a 20-bit PRPG and a 16-bit 
SA is a self-test capability with 220 - 1 
possible random-pattern sequences 
and a very low probability of signature 
analysis fault masking (approximately 
1/216 or 0.0015 percent). 

A high-level block diagram of the 
LOCST implementation structure is 
shown in Figure 4. In self-test mode 
the initial 20 SRLs of the chip's scan 
strings are configured into a PRPG 
LFSR, and the last 16 SRLs are con­

figured into an SA LFSR. For normal 
LSSD chip manufacture testing, a chip 
usually contains several scan strings 
—each accessible from chip input and 
output pins. During LOCST testing, 
however, all scan strings except the one 
containing the OCM latches are con­
figured into a single scan string. (Note: 
Random test patterns are scanned into 
the single scan string under OCM con­
trol. SRLs that are part of the OCM 
and any chip clock generation circuitry 
cannot be included in the LOCST scan 
string since self-test control and clock 
control cannot be disrupted by ran­
dom data.) 

The following is a description of the 
LOCST sequence: 

(1) Initialize all internal latches: 
scan known data into all SRLs; this in­
cludes scanning "seeds" into PRPG 
and SA registers. 

(2) Activate self-test mode: enable 
PRPG and SA registers; disables sys­
tem clocks on input boundary SRLs 
and LFSRs. 

(3) Perform self-test operation: 
(a) Apply scan clocks until entire 

scan string (up to the SA LFSR) if 
filled with pseudorandom patterns. 
This step also scans test data into the 
SA LFSR for test result compres­
sion. 

(b) Activate system clocks for 
single-cycle operation. 

Figure 3. Linear-feedback shift register implementations. 
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(c) Repeat (a) and (b) until fin­
ished. 
(4) Read out test result signature 

and compare with known "good" 
value. 

The "good" value from step 4 can 
be obtained in two ways; (1) simula­
tion of the entire self-test sequence, or 
(2) the "golden chip" approach (that 
is, determine what the "good" value is 

by performing the LOCST self-test 
operation on chips which have passed 
all other forms of manufacture and 
functional testing). Due to the high 
cost of the first method, the second is 
currently being used. If the correct 
"good" signature value were known 
(via simulation) during the chip design 
phase, a hardware comparator could 
be placed on the chip to provide an im-

Figure 4. LOCST architectures. 

Figure 5. LOCST effectiveness. 

mediate pass-fail indication. Our im­
plementations of LOCST require that 
the 16-bit signature be read by an ex­
ternal processor for comparison 
against the stored 16-bit "good" 
value. 

The entire LOCST self-test opera­
tion is controlled by an external pro­
cessor via the OCM interface. The ex­
ternal processor may be a chip or card 
tester or a system maintenance proces­
sor, depending on the testing environ­
ment. The OCM provides the follow­
ing self-test control functions: 

• PRPG and SA enable control, 
• scan access to internal SRLs for 

random-pattern insertion and test 
result compression, 

• chip clock control for single-cycle 
operation (if on-chip clock gener­
ation is used), and 

• access to self-test results via direct 
register read or via scan. 

If a chip does not have an OCM, con­
trol of these functions must be pro­
vided by some other means. 

The data port clocks of input SRLs 
(i.e., boundary scan LSSD latches fed 
directly by primary inputs) are in­
hibited during self-test mode to pre­
vent unknown data from corrupting 
the self-test sequence. If the input latch 
clocks are not disabled, known values 
must be ensured on chip PIs during 
self-test execution. 

LOCST limitations 
Like all on-chip self-test techniques, 

LOCST is incapable of testing the en­
tire chip. In considering on-chip self-
test effectiveness, we can divide chip 
logic into two basic categories: interior 
logic and exterior logic. Figure 5 il­
lustrates the effectiveness of LOCST 
for the various chip regions. Since self-
test patterns are applied via serial scan 
into chip latches, only the logic fed by 
latches will have random test patterns 
applied to it and test results will be cap­
tured only for logic which feeds 
latches. Chip logic whose inputs are 
fed by latches and whose outputs feed 
latches is designated "interior logic," 
and combinational logic whose inputs 
are fed by chip PIs and whose outputs 
feed chip POs is designated "exterior 
logic." 
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Obviously, external logic is com­
pletely untestable by the LOCST 
technique. The importance of bound­
ary scan to on-chip self-test also 
should be obvious. The larger the per­
centage of exterior logic on a chip, the 
less effective on-chip self-test be­
comes. In the ideal case with 100 per­
cent boundary scan, the only exterior 
logic would be I/O drivers and receiv­
ers (and with 100 percent boundary 
scan, I/O drivers and receivers would 
be very easy to test!) 

Types of chip logic that do not clear­
ly fall into the categories of interior or 
exterior are the OCM logic and em­
bedded RAMs. Since the OCM con­
trols the self-test operation, internal 
OCM logic is not tested by random 
patterns during self-test. Rather, the 
OCM is tested to the extent that all 
OCM functions needed to perform the 
self-test operation will have been exer­
cised (i.e., scan control, clock control, 
loading self-test registers, etc.). Re­
maining OCM functions are tested by 
exercise of the OCM's remaining in­
struction set. RAMs embedded in a 
chip will not be completely tested by 
the LOCST self-test technique. Special 
RAM self-test circuitry would be 
needed to provide effective testing 
with random patterns. This topic is not 
addressed here. 

The locations of the PPG and SA 
LFSRs are not illustrated because this 
would require a detailed scan string 
diagram. As mentioned previously, 
the PRPG and SA LFSRs utilize ex­
isting functional latches. The two 
other chips, B and C, when configured 
with a vendor multiply chip, perform 
digital filtering functions. Like Chip 
A, Chips B and C are primarily arith­
metic data pipelines. All three chips 
are now incorporated in signal-pro­
cessing systems. 

To determine the testing effective­
ness of the LOCST technique on these 
three chips, we performed fault simu­
lation of the self-test procedure. Fault 
simulation provides a test coverage 
value upon which self-test effective­
ness is based. The fault simulation was 
based on the classical stuck-fault 
model. Full fault simulation of the 
LOCST operation would have been 

too costly, so we followed this meth­
odology: 

• We used a statistical random sam­
ple of the full stuck-fault list. Test 
coverage results therefore have a 
95 percent confidence level. 

• Since no significant (<< 1 %) error 
masking occurs due to the LFSR 
compression of the test results,10-12 

simulation of the serial compres­
sion activity of the SA LFSR was 
not performed. If the detection of 
a fault is observed at an SRL, it is 
assumed that this fault will be 
detected after LFSR compression. 

We generated pseudorandom pat­
terns placed in the latches during fault 
simulation via a PL/I program, using 
the same characteristic polynomial as 
the PRPG LFSR implemented on the 
chips (see Figure 3). A plot of test 

coverage vs. the number of self-test se­
quences for Chip A is presented in 
Figure 7. A total chip test coverage of 
88.6 percent was achieved (with 95 per­
cent confidence) with 3000 self-test se­
quences. Figure 8a displays the cover­
age evaluation results for Chip A in a 
different manner. Here Chip A's logic 
is divided into three categories (interior 
logic, exterior logic, and OCM logic) 
to highlight the LOCST testing effec­
tiveness for each. LOCST test effec­
tiveness for all three chips is summariz­
ed in Figure 8. 

implementions and 
coverage evaluation 

The LOCST technique has been im­
plemented on three VLSI chips used 
for signal-processing applications. The 
three chips—hereafter called Chip A, 

Figure 6. Signal-processing Chip A. 
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Chip B, and Chip C—were designed 
and fabricated in 1982. The addition 
of the LOCST capability (i.e., LFSRs 
for PRPG and SA functions and 
OCM self-test control logic) represents 
a hardware overhead of less than two 
percent. (Note: This figure does not in­
clude LSSD overhead or OCM over­
head, as these features are included 
whether or not LOCST is imple­
mented. Total testability overhead is in 
the 10-15 percent range.) 

One of the three chips, Chip A, per­
forms front-end signal-processing 
functions requiring high-rate, multi­
ply-intensive algorithms such as finite-
impulse response filtering, linear 

beam-forming, and complex band-
shifting operations. Chip A performs 
these functions by utilizing a simple 
add-multiply-add pipelined data struc­
ture. A high-level diagram of Chip A is 
shown in Figure 6. 

Overall test coverage values of 88.6, 
81.5, and 85.3 percent (mean values of 
a 95 percent confidence interval) were 
obtained for the three chips respective­
ly. Very good coverage (>97%) was 
obtained for the interior logic of all 
three chips with relatively few random-
pattern loads (<5000). Test coverage 
obtained by deterministic LSSD test 
pattern generation was greater than 99 
percent for all three chips. Whether or 

Figure 7. Test coverage results for Chip A. 

Table 1. 
LOCST test time. 

NO. OF 
RPs 

NO. OF 
SRLs 

TEST 
TIME 

Chip A 
ChipB 
ChipC 

2K 
500 
3K 

213 
230 
223 

0.43s 
0.12s 
0.67s 

Test time = (No. of RPs/scan rate) x No. of SRLs 
Scan rate = 1 MHz 

RP = random-pattern sequence 

not test coverage comparable to that of 
LSSD testing could be obtained if 
more random-pattern loads were 
simulated (e.g., 10K, 100K, or 1M) 
was not evaluated because of the 
limited budget of this evaluation task. 

LOCST execution time 
In addition to providing high test 

coverage, a self-test technique should 
execute in a relatively short period of 
time. Table 1 presents the equation for 
calculating LOCST execution times 
and the predicted test times for the 
three FSD chips. For the assumed scan 
rate (based on existing FSD scan con­
trollers) and the number of self-test se­
quences (based on the presented test 
coverage evaluation), subsecond ex­
ecution times are achieved for all three 
chips. 

If a large number of random-pat­
tern loads is required to achieve ade­
quate test coverage results, if the scan 
rate is slow (e.g., 1 MHz or less), or if a 
chip contains a large number of SRLs, 
LOCST self-test times may become 
quite large (minutes). An alternative to 
the basic LOCST implementation is to 
use many parallel scan strings feeding 
a multiple-input signature register, or 
MISR. This modification, illustrated 
in Figure 9, reduces the number of 
serial shifts required to fill all chip 
SRLs with random test data, thereby 
reducing the overall LOCST test time. 

Self-test environments 
One of the greatest potentials of 

self-test is the possibility of eliminating 
the need to produce a unique test pat­
tern set for each test environment. The 
major test environments are 

• chip manufacture test, 
• card test, 
• operational system test, and 
• field return test (repair test). 

The lack of defect diagnostic informa­
tion is the key reason that self-test is 
not considered a viable technique for 
chip manufacture testing. But on­
going research is investigating the use 
of self-test techniques for LSI devices 
in the chip manufacture environment. 
A very promising technique using ran­
dom-pattern testing for diagnosing 
failures has been developed by F. Mo-
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tika et al.13 of IBM Kingston. Present­
ly, LOCST does not replace LSSD 
testing in the FSD chip manufacture 
test environment but is used as a sup­
plemental chip-testing technique. As a 
minimum, since it provides a rapid 
pass-fail indication, self-testing would 
be useful in a production test environ­
ment to provide efficient preliminary 
screening of product. 

The inclusion of several 10,000-gate 
VLSI components onto cards that 
have historically contained 5000 to 
8000 gates of logic posed a serious 
problem to traditional card test meth­
odologies. On-chip self-test offers a 
very effective solution. LOCST is used 
to verify that the FSD VLSI compo­
nents on a card are defect-free. All 
FSD VLSI components are accessed 
via their OCM interface, requiring 
only seven card connector pins. Chip 
boundary scan latches (accessed via Figure 9. LOCST modification for faster execution. 
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the OCM) are used to apply and cap­
ture data for chip-to-chip interconnect 
testing. Boundary scan also effectively 
isolates FSD VLSI components from 
vendor components, enabling the use 
of traditional methods for testing the 
vendor logic on the card. 

On-chip self-test supports the fol­
lowing types of operational system 
testing: 

• system initialization test, 
• system on-line periodic test, and 
• system off-line fault localization 

test. 

The objectives of implementing an 
on-chip self-test capability in our 

VLSI chips were to substantially re­
duce the plethora of unique test pat­
tern sets for the differing test en­
vironments, reduce the volume of test 
vectors required to test our VLSI prod­
ucts, and eliminate the need for man­
ual test pattern generation. Priorities 
of low hardware overhead, simple im­
plementation, simple self-test control, 
high test coverage, and short self-test 
execution time were of prime impor­
tance. The implementation of LOCST 

on our VLSI products has enabled us 
to meet these objectives without violat­
ing any of the priorities. • 
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A Fast 2OK Gate Array with 
On-Chip Test System 

Son Lake, Honeywell Inc., Colorado Springs, CO 

High performance VLSI system design is demanding 
advances in ASIC technology from IC vendors. Pro­
cess development must provide dense circuits capa­

ble of efficient high-speed performance. Test techniques must 
verify chip functionality at all levels of integration, from 
wafer sort to in-system diagnostics, without requiring expen­
sive high-pin-count testers or exhaustive test development. 

In response to these demands, ETA Systems Inc. (St. Paul, 
MN) has designed a high-performance CMOS gate array with 
an on-chip self-test system known as BEST, for Built-in 
Evaluation and .Self Test. Derived from Control Data Corp. 's 
On-Chip Maintenance System (Resnick, 1983), the BEST 
system provides the designer with an effective method of 
verifying chip functionality and ac performance using output 
signature analysis. The BEST system provides this test func­
tion with little input from the designer—effectively removing 
the time-consuming effort of test vector generation for fault 
coverage from the design cycle. The gate array product is 
licensed to Honeywell for commercial sale and is referred to 
as the HC20000 (HC20K). 

The HC20K is a CMOS gate array with a density of 20,000 
NAND gates (Figure 1). The chip is fabricated in CMOS-III, 
a 1.25-micron, dual n-well epitaxial process with oxide 
isolation and double-level metal interconnect. The array con­
tains 12,065 internal logic cells of six transistors each, 
arranged in a matrix structure. This equates to 18,097 internal 
2-input NAND gates; 80% utilization is recommended. Typi­
cal 2-input NAND gate delay is 450 ps at 25 °C (fan-out of 
one). Worst-case performance is 600 ps over the commercial 
temperature range and 900 ps for military temperatures. A 
two-tier structure of 284 I/O pads rings the periphery of the 
internal matrix. The BEST self-test network is incorporated 
into this I/O structure, and requires 2,000 gates of internal 
logic. 

HC20K I/O Structure 

The 284 I/O pins on the HC20K are divided into several 
functions: 40 pins for power and ground, four pins for the 
BEST system, one system clock pin, one hold-off function 
pin, and 238 data I/O pins. The data I/O pins are further 
subdivided into 140 bidirectional pins and 98 input-only pins. 
Each of the 238 possible input buffers may be selected for 
either TTL or CMOS trigger levels; all contain an input 
protection network. All output buffers contain dedicated 
force-active (FAC) and force-off (FOF) pins, which permit 
the BEST network to force all outputs active or tristate for 

FIGURE 1. HC20K die photograph. 

parametric testing. The hold-off pin (HOF) is used to syn­
chronize chip-to-chip data transfer within a system. 

The 40 power and ground pins help minimize the effects of 
current spikes. Separate power and ground buses for internal 
array logic and I/O buffers maintain internal logic integrity 
even with large transient currents. Output buffers are further 
subdivided into three groups of 20, four groups of 18, and one 
group of eight, each with a separate power and ground bus. 
This subdivision maintains output buffer performance even 
when large numbers of these outputs switch simultaneously. 

The system-clock pin brings the clock signal through an 
input buffer and distributes it to four separate sets of program­
mable clock drivers, which are distributed one to each side of 
the die. The clock drivers all drive a clock bus network, 
which surrounds the internal matrix and distributes the clock 
signal with minimum skew to each cell of the array. Each 
programmable driver contains transistors of three different 
sizes: the transistor selected for a given application depends 
upon the total capacitive load that must be driven by the clock 
bus. 

Providing for data synchronization in a system environ­
ment, the hold-off pin tristates outputs from a single chip for a 
user-specified duration before allowing active data to pass. 
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FIGURE 2. Built-in Evaluation and Self Test: input block (a) and output block (b). 
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FIGURE 3. Output register in the checksum 
mode. 
This feature is particularly useful in high-performance sys­
tems running at or near maximum operating frequency. Small 
skews in interchip communication caused by fast data paths 
can be corrected by hold-off without affecting system 
performance. 

The BEST maintenance system requires four pins: test 
clock enable, test strobe, test data in, and test data out. 
Because the BEST network is crucial to HC20K applications, 
several later sections are devoted to explaning its capabilities 
and the interaction of these four system pins. 

HC20K Macrocell Functions 
A macro function library supports application design on the 

HC20K. All macros are optimized first for performance and 
then for logic density. Macros are constructed using double-
level intra-macro metal interconnect, which increases array 
mutability by freeing external channels for inter-macro con­
nections. Speed-critical macro primitives (NAND, NOR, 
NOT) are constructed with different speed-power-size op­
tions to allow designers to optimize critical logic paths while 
minimizing system power. 

Register and multiplexer macros are extensible to allow for 
variable-length logic functions without wasting logic gates. 
Stackable functions are provided by defining separate control 
block and element macros instead of a fixed-length combina­
tion. This separation of control provides users with the 
flexibility of an n-bit register, for example, without wasting 
extra storage bits or duplicating the control function. 

CMOS transmission gates have been used to develop both 
dynamic and static flip-flop macros. Because dynamic flip-
flops require no feedback, they take fewer devices to imple­
ment. Fewer devices leads to less capacitance on critical 
nodes, thereby giving dynamic flip-flops better performance. 
Dynamic flip-flops have transmission gates wired in master-
slave fashion with insulator gates at each output. Insulator 
gates draw no dc current. Gate capacitance therefore acts as a 
temporary storage mechanism, holding a valid logic level 
until leakage currents eventually destroy it. As long as the 
clock runs at a minimum frequency of 10 kHz, however, 
leakage currents will not have time to upset operation, and the 
flip-flops will perform properly. 

If the minimum clock rate constraint cannot be met, static 
flip-flops with feedback are available. With a static flip-flop, 
the clock may be stopped high or low and data integrity will 
be maintained as long as power is supplied to the chip. 

Built-in Evaluation and Sell Test 
The BEST system provides the logic designer with special 

features to aid in testing a design during wafer probe, pack­

aged IC test, system test, and in-system field maintenance. 
The system permits probing and testing with only 30 I/O pins 
connected, PC board interconnect testing, standardization of 
test programs for different array designs, and on-line integrity 
checking during normal system operation. With BEST, de­
velopment of long test programs is not required: the designer 
must merely initialize the chip logic and then access the BEST 
system through the control and data pins. The BEST logic 
generates a final output signature by summing all logic 
outputs during the pseudo-random test sequence. The design­
er need only check this final result to verify chip 
functionality. 

The BEST system comprises a 24-bit control register, a 
242-bit input register with operand generation capability, and 
a 148-bit output register with checksum capability (Figure 2). 
These three components are arranged into a serial shift 
register configuration. To access the BEST logic, four I/O 
pins are required. These are the control pins, test clock enable 
(TCE) and test strobe (TS); and the data transfer pins, test 
data in (TDI) and test data out (TDO). TCE gates the system 
clock to the maintenance registers, while TS engages the 
maintenance function. If TS is low, the maintenance registers 
are separated from the array logic, so that data may be serially 
shifted through the maintenance registers with no effect on 
system operation. When TS goes high, a function code is 
frozen in the control register, and the contents are gated to the 
array control nodes. TDI is used to shift data serially to the 
first bit of the control or input registers in order to provide the 
input register with an initial seed value and to define the 
function in the control register. TDO serially shifts data from 
the last bit of the output register to the outside world, allowing 
the designer to examine the output register results. 

The use of these four control pins along with system clock, 
hold-off, 12 of the VDD pins, and 12 of the Vss pins provides 
full functional testing of this array at low pin count. Function­
al tests may be performed at system speed up to a maximum 
frequency of 100 MHz (at room temperature). 

BEST Registers 

The input register contains one bit for every input buffer on 
the array, plus four extra bits to multiplex data for vector 
generation. It serves as either a data source or destination for 
nodes between the input buffers and the internal gates of the 
logic array. The register may be loaded either in parallel from 
the input buffers or serially through the TDI pin. When in test 
mode, the logic-array gate inputs may be isolated from the 
input buffers, and receive instead the contents of the input 
register. When this input register is subsequently clocked, 
pseudo-random operands are generated and applied to the 
array inputs at the system clock rate. 

Similar in operation to a cyclic redundancy code generator, 
the pseudo-random generator is formed by feeding back the 
input register's output at selected intermediate points, and 
half adding this result to the previous state value at this bit. 
Given a user-defined seed value, the number generator will 
define a unique set of patterns that begins to repeat after 
approximately 1035 patterns. Thus, a designer may develop a 
unique test sequence merely by specifying an initial seed 
value and a number of clock iterations. The BEST circuitry 
will then generate the vectors required to provide a particular 
level of fault coverage. 
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FIGURE 4. BEST in the sell-test mode 

FIGURE 5. BEST in the interconnect test mode. 
The output register contains one bit for every output buffer 

on the array plus an extra bit for data multiplexing, and may 
source or sink data. When sourcing, the logic-array gate 
outputs are separated from the output buffers, and the output 
register data is substituted. This allows known data to be 
forced through the outputs in order to verify buffer functiona­
lity. When sinking data (in checksum mode), data is loaded 
into the output register from either the logic-array gate out­
puts or the output buffers, at the user's choice. Again, this 
gives the user the flexibility to test separately the functionality 
of the logic array and the output buffers. In this mode, each 
bit loaded into the output register is half-added to the contents 
of the previous bit of the register. The result is reloaded into 

the output register with the data shifted by one bit. The shift is 
circular in that the data from the last bit is loaded into the first 
bit, ensuring that an error at any pin is kept in the checksum 
(Figure 3). 

The 24-bit control register is partitioned into a 10-bit 
system portion and a 14-bit user portion. The individual bits 
in the system portion each control a distinct function in the 
BEST system. The first eight bits connect and disconnect data 
paths between the registers and internal logic gates; they also 
enable the input operand generation and output checksum­
ming. Bits 9 and 10 are used to tristate or force active all 
output buffers. Outputs of the 14 user bits are available for 
definition by the designer. Several uses for these bits could be 
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FIGURE 6. BEST in the system checksum mode. 
to initialize the internal logic, set all flip-flops high or low, 
control a set-scan network, or multiplex internal logic nodes 
out the TDO pin. 

BEST System Operation 
The BEST maintenance system is configured to not affect 

system performance. Maintenance registers lie in parallel 
with the I/O pins instead of in series; thus, data will not pass 
through an input register bit when it passes from an input 
buffer to the logic array. The BEST system supports self test, 
interconnect test, ac test, and provides a logic-analyzer mode 
and a system checksum mode. 

For self test (Figure 4), the control register must set the 
following conditions: 

• Input register set to random generator mode; 
• Output register set to checksum mode; 
• Output register sinks data from either the logic-array 

outputs or the output buffers. 

The designer must then provide: 

• A chip initialization sequence, perhaps using a bit in 
thecontrol register; 

• A seed value for the pseudo-random number generator, 
which is shifted in serially; 

• The number of clock cycles to iterate; 
• The expected checksum result. 

If errors occur in the final checksum, the self test could be 
repeated with intermediate checksum values observed in 
order to isolate the test cycle that first demonstrates the error. 

For the interconnect test (Figure 5), the control register 
must set the following conditions: 

• A known operand in the output register; 
• Output register sourcing data to the output buffers; 
• Input register sinking data from the input buffers. 

in a system, a quick check can be performed to find faults 
such as opens, shorts, or grounded lines, which exist in the 
PC board configuration for the system. 

For ac test, the control register must be set to select the ring 
oscillator in the ring periphery to be gated on, and to connect 
the oscillator output to the TDO pin. 

In logic-analyzer mode, the control register must set the 
input register to sink data from the input buffers, and the 
output register to sink data from the output buffers. The 
designer must then bring TS low at predefined times during 
system operation. This captures I/O data in the input and 
output registers whenever TS toggles low. The resulting 
timing "diagram" for the chip may be serially shifted off chip 
for comparison to expected values. 

For system checksum (Figure 6), the control register must 
set the output register to checksum mode, and connect it to 
either the logic-array outputs or me output buffers. After a 
system diagnostic program is run, the final checksum can be 
checked for validity. This diagnostic can be scheduled during 
normal operation to perform on-line checking. Due to the 
parallel configuration of the maintenance registers, this 
checksum operation has no effect on either system operation 
or performance. If no diagnostic program is available, normal 
system operation can be performed with several arrays and 
the resulting data compared for corroboration. The user must 
ensure that the test sequence in normal system operation is 
fully deterministic. There can be no undefined data in storage 
elements at the beginning of the test, and no interrupts can 
occur during the test. These constraints will generate a unique 
checksum that will remain consistent for all gate arrays of a 
given design. If an error is apparent from the final checksum 
in a gate array, diagnostic or system programs can be rerun 
and intermediate checksums compared to isolate the first 
point of error. 

Control Nodes 
By checking input register bits in the various receiving chips The HC20K provides 42 internal control nodes for use at 
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the designer's discretion. These control nodes may be con­
nected within the design netlist to increase a design's testabi­
lity beyond that automatically achieved by the BEST mainte­
nance circuitry. The control nodes may be divided into two 
separate cases: nodes that are outputs of the BEST logic, and 
nodes that are inputs to the BEST logic. Output nodes (N30-
N43, N50-N52, and N54) provide the designer with access to 
the 14 user-defined bits in the control register, the BEST 
control signals (TCE and TS), TDI, and the hold-off bus. 
These nodes are intended to give the designer access to 
critical internal control signals, but may be ignored if the 
function provided is not required to increase testability. 

Input nodes (N2-N23, N60, and N61) must be defined, and 
fall into three groups. Nodes N2-N23 are used to overwrite 
the contents of the control register whenever the TS toggles 
low. These nodes are intended to give the designer the ability 
to encode a chip type and revision level into the netlist. The 
nodes are connected to either the power or ground bus by user 
assignment, and their values may be observed by shifting the 
control register data through the maintenance registers and 
out the TDO. Node N60 provides hold-off control of the 
TDO. If hold-off is not used, this signal should be tied high. 
Node N61 provides a path for alternate on-chip data to be 
observed through the TDO pin. This node must be tied high if 
the alternate data function is not used. 

Summary 

The HC20K offers the density, efficiency, and perfor­
mance demanded by VLSI system design. High pin-count I/O 

reduces the need for data multiplexing while incorporating 
discharge protection and parametric testing into the buffers. 
Macro functions are optimized for high performance and 
logic density. Power, ground, and clock bus distributions 
support high-performance applications while maintaining 
data integrity. The hold-off capability allows for fine-tuning a 
system after prototype delivery. 

The BEST maintenance network reduces the burden of test 
development by providing an on-chip facility capable of 
verifying the performance of the array at clock rates up to 100 
MHz. The system permits probing and testing with only 30 
I/O pins connected. • 
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INTERCONNECT TESTING WITH BOUNDARY SCAN 

Paul T. Wagner 

Honeywell, Inc. 
Solid State Electronics Division 

12001 State Highway 55 
Plymouth, Minnesota 55441 

ABSTRACT 

Boundary scan is a structured design technique which can be 
used to simplify the testing of digital circuits, boards, and 
systems. With boundary scan, test patterns can be generated 
which provide 100% stuck-at and bridging fault coverage of 
board interconnections. The paper describes the advantages 
and disadvantages of boundary scan along with the application 
and implementation of boundary scan circuitry. Algorithms for 
generating interconnect test patterns for stuck-at and bridging 
fault coverage are also presented. 

Besides simplifying testing fixturing, boundary scan also 
reduces test equipment requirements. Since the boundary scan 
path provides access to the primary I/O, the testing process is 
reduced to serially shifting the test pattern into place, executing 
one or more clock operations, and serially shifting out the 
results as the next pattern is shifted in. Thus a small, 
inexpensive testing computer can be used to perform chip 
testing. This simple setup is shown in Figure 1. 

INTRODUCTION 

Advances in VLSI technology have increased the density and 
speed of integrated circuits. Thus, the complexity and cost of 
testing digital integrated circuits, boards, and systems have also 
increased. By providing a simple means to access the 
periphery of digital circuits, boundary scan can greatly simplify 
the task of testing and maintaining systems which use these 
circuits. This advantage allows boundary scan to reduce the 
costs of wafer-level IC testing, board and system testing, and 
system field maintenance. 

Wafer-Level Testing 

At the wafer level, boundary scan can be used to reduce the 
need for complex probing fixtures and high-pin-count testers . 
By using boundary scan to access the primary chip I/O, a 
simple probe card consisting of power, ground, and serial test 
interface signals can be used to test chips with hundreds of I/O 
pads . The decrease in fixturing complexity simplifies test 
setup, reduces test fixturing costs, and reduces the possibility 
of damaging the device-under-test during probing. 

Figure 1: Wafer-Level Testing With Boundary Scan 

Board-Level Testing 

At the board level, boundary scan can be used to resolve testing 
difficulties introduced by new packaging technologies 
associated with surface mount devices and multi-chip 
packages. Traditional methods for digital board testing include 
through-the-hole probing to gain access to the primary 
component I/O with a "bed-of-nails" testing fixture. 
Difficulties with the "bed-of-nails" approach include degraded 
reliability due to over-driving connections from other board 
components, physical limitation of through-the-hole 
accessibility, difficulty of reproducing tests, and expenses 
involved with developing the "bed-of-nails" testing fixture3,4 . 
These problems, combined with the increasing use of 
surface-mount technology5 and the need for high speed and 
high pin count testers, have resulted in extremely expensive 
board-level testing costs. 

Boundary scan can reduce the problems associated with 
board-level testing. As shown in Figure 2, boundary scan 
provides serial access to the primary component I/O and their 
interconnections. This allows any component to be partitioned 
from the rest of the board during testing and eliminates the need 
for a "bed-of-nails" testing fixture. Also, boundary scan 
reduces the time and cost associated with test pattern generation 
because test patterns used on the component at wafer level can 
be modified and applied through the boundary scan path. This 
can be useful when components are purchased from outside 
vendors and knowledge of the internal circuitry is limited. 
Since board interconnections are easily accessed, simple 
algorithms can be used to generate test patterns which provide 
100% stuck-at and bridging fault coverage. 

As was the case at wafer-level testing, boundary scan greatly 
simplifies the setup required for board testing as shown in 
Figure 2. This setup reduces testing costs because the test 
patterns can be applied serially with an inexpensive test 
computer through a simple test interface consisting of the 
boundary scan-in signal, boundary scan-out signal, and 
necessary control lines. 
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Figure 2: Board-Level Testing With Boundary Scan 

Field Testing 

•Boundary scan can also reduce the cost of system field 
maintenance. Since boundary scan tests the input buffers, the 
output buffers, and all component interconnect, it provides 
excellent coverage of the most common field failures. 
Furthermore, the procedure for testing with boundary scan in 
the field is nearly identical to that described for board-level 
testing. Thus field testing can be performed using a simple 
testing computer accessing a serial test interface. Since very 
few interconnect test patterns are required, the testing 
computer can be as simple as a lap-top personal computer, 
which is ideally-suited for field maintenance. 

Boundary scan can be used to test the system interconnections 
and to partition the system into separately-tested modules. In 
this case, testing will isolate the fault to a single module or to a 
faulty interconnection(s) if the individual modules can 
themselves can be adequately tested. If boundary scan is 
extended to the component level, the fault can be isolated to the 
individual component. Thus, cost-effective repair of the 
module is possible since the faulty component or 
interconnection can be easily identified for replacement or 
repair. 

Boundary scan can also be used as part of a system self-test 
strategy. By allowing a system test processor to access the 
boundary scan paths in the system, boundary scan can be used 
to test the system interconnections and to partition the system 
into smaller self-testable units. The easy execution of self-test 

and improved fault isolation provided by boundary scan reduce 
the mean-time-to-repair; thereby increasing system availability. 

IMPLEMENTING BOUNDARY SCAN 

In general, boundary scan provides a method for accessing all 
application inputs and outputs from an external test controller. 
As shown in Figure 3, this can be accomplished by including 
boundary scan registers, which are selected during the test 
mode, to shift in test patterns and shift out results. The 
boundary scan registers consist of individual flip-flops 
associated with each application input and output. These 
registers are designed to support both a parallel and a serial 
mode. The registers interface to both the application and its I/O 
during the parallel mode and can be read from and written to by 
means of a serial interface during the serial mode. Selecting the 
boundary registers can be accomplished using either MOS 
transmission gates2 or the multiplexers shown in Figure 3. 

Before actually implementing boundary scan, a number of 
options must be considered which affect both the design and 
capabilities of the boundary scan circuitry. These options 
include: the use of application registers as boundary scan 
registers, the control of output buffers, the selection of a test 
interface, and the implementation of the boundary registers. 
These options and others are addressed in the following 
sections on implementing the components of a boundary scan 
technique. 

Figure 3: A Conceptual Diagram For Boundary Scan 

249 



Dedicated Boundary Scan Registers 

Boundary registers can either be dedicated for boundary scan 
testing or they can be used in both functional and test modes. 
When implementing boundary scan on high-speed bipolar 
integrated circuits, we found that there were a number of 
advantages to using some functional registers for boundary 
scan testing. First, the high-speed of the system mandates that 
most of the chip inputs and outputs be registered directly at the 
I/O buffer. Since we already incorporate serial scan" in our 
chip designs, these registers were easily added to the boundary 
scan path. Dedicated boundary "shadow" registers are then 
added to any I/O which are not directly registered. A 2:1 
multiplexer is used to make the shadow registers visible during 
the test mode and invisible during the functional mode. This 
approach of exploiting existing registers substantially reduces 
both the circuit and power overhead associated with boundary 
scan and eliminates a 2:1 multiplexer delay from the path of 
critical signals. 

If boundary scan is to be implemented on a gate array product, 
associating dedicated shadow scan registers with the I/O 
buffers at the periphery of the array has a number of 
advantages. First, the user of the gate array can utilize 
boundary scan with little or no design effort. Furthermore, 
array cells are not consumed when implementing boundary 
scan and numerous signal routings are eliminated. Finally, 
implementing dedicated boundary scan registers on a CMOS 
gate array product2 will not significantly increase the chip 
power (contrary to bipolar designs). 

buffers to change state at the same time; resulting in excessive 
noise on power and ground busses. For these reasons, a 
global output buffer disable signal is included in our 
implementation of boundary scan and can be controlled by the 
test interface circuitry. 

If the testing of asynchronous sequential logic is necessary, a 
latch must be added to between the flip-flop and output buffer 
to hold the output state during shifting operations. A similar 
latch would also be required at the input boundary register if 
the application logic array contained asynchronous sequential 
logic to be tested with the boundary scan circuitry. Typically, 
we do not include this latch because we infrequently use 
asynchronous sequential logic in our digital system designs. 

Another implementation concern involves connecting the 
boundary scan bit-slices as inverting serial shift registers or as 
non-inverting serial shift registers. The advantages of an 
inverting serial shift path include the easy identification of 
faults in the shift path. To test the shift path, the entire path is 
reset to either a logic 0 or a logic 1 and the contents are shifted 
out. The serial output pin is men examined for an alternating 
pattern of ones and zeros. If the data remains at a logic 1 or 0 
after k clocks, then we know that a fault exists k bits back 
from the output pin. With mis information, we can quickly 
isolate the cause of the fault Without the inverting boundary 
scan path, finding the fault could be tedious and difficult task. 
For this reason, we frequently make use of inverting serial shift 
paths when implementing boundary scan. 

The Boundary Scan Bit-slice 

The boundary scan registers consist of bit-slices that are 
attached to each application input and output. Our 
implementation of this bit-slice is shown in Figure 4. This 
consists of a 3:1 multiplexer which allows data to be loaded in 
the functional mode, serial data to be shifted in the test mode, 
and a reset operation to be performed. The output of the 
multiplexer is then fed to the scan flip-flop which in turn drives 
the scan out signal and the chip output. 

Figure 4: The Boundary Scan Bit-slice 

As data is shifted through the boundary scan path, the chip 
outputs must be latched or disabled to prevent unwanted and 
possibly damaging output conditions. For example, the scan 
operation could damage output buffers by forcing two separate 
output drivers on the same net to different logic levels. Also, 
the shifting operation may cause a large number of output 

The Test Interface 

Selecting an appropriate test interface is a very important part of 
the boundary scan implementation. A common interface will 
allow the boundary scan paths of multiple chips on a complex 
circuit board to be easily accessed. Without this common 
interface, many of the advantages of using boundary scan at the 
board level are diminished due to the difficulty in using the 
technique. 

To resolve this problem, we are using the VHSIC standard 
Element Test and Maintenance Bus ' (ETM-Bus) as our serial 
test interface for boundary scan and other on-chip 
design-for-test techniques8. If the serial test bus is to be 
connected solely to on-chip boundary scan, a simplified 
version of this interface logic can be used. 

INTERCONNECT TEST PATTERN GENERATION 

When testing interconnection nets on a digital module, both 
stuck-at and bridging faults must be considered. Since the 
boundary scan path provides direct access to these nets, test 
patterns can be generated which provide 100% coverage of 
these faults. The following sections discuss algorithms we use 
for the generation and application of boundary scan test 
patterns which detect all possible stuck-at and bridging faults. 

Stuck-at Fault Test Pattern Generation 

Because stuck-at faults occur on a variety of bus 
configurations, different test pattern generation algorithms are 
required for wired-AND, wired-OR, and three-state 
interconnect nets. 
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Testing wired-AND interconnection nets. As the name implies, 
the values forced on a wired-AND interconnection net are 
logically ANDed to obtain the resulting value. Thus, the 
wired-AND net can be treated in the same way as an AND gate 
where 100% of all the stuck-at faults can be detected with k + 
1 test patterns where k is the number of inputs. The test 
patterns can be divided into k patterns which test for stuck-at 
'1' faults and a single pattern which tests for all stuck-at '0' 
faults. Figure 5 shows the steps we use for testing 
wired-AND interconnection nets. 

1) The driver to be tested is set to a logic '0' 
2) All other drivers on the net are set to a logic '1' 
3) The data is clocked into the receivers 
4) All receivers on the net are examined for a logic '0' 
5) Repeat steps 1-4 until each driver is tested 
6) Every driver is set to a logic '1' 
7) The data is clocked into the receivers 
8) Every receiver is examined for a logic '1' 

Figure 5: S-A Faults Testing Steps for Wired-AND Nets 

Testing wired-OR interconnection nets. Generating test 
patterns for a wired-OR interconnection net is nearly identical 
to the wired-AND case. For a wired-OR net with k drivers, 
100% of all stuck-at faults can be detected with k + 1 test 
patterns. In this case, the test patterns can be divided into k 
patterns which test for stuck-at '0' faults and a single pattern 
which tests for all stuck-at '1' faults. Figure 6 shows the 
steps we use for testing wired-OR interconnection nets. 

1) The driver to be tested is set to a logic 1' 
2) All other drivers on the net are set to a logic '0' 
3) The data is clocked into the receivers 
4) All receivers on the net are examined for a logic '1' 
5) Repeat steps 1-4 until each driver is tested 
6) Every driver is set to a logic '0' 
7) The data is clocked into the receivers 
8) Every receiver is examined for a logic '0' 

Figure 6: S-A Faults Testing Steps for Wired-OR Nets 

Figure 7: A Three-state Interconnection Net 

Testing three-state interconnection nets. When a three-state 
interconnection net is used, multiple drivers control one or 
more receivers as shown in Figure 7. Since only a single 
driver can be enabled at any one time, a special restriction is 
imposed on the generation of the three-state interconnect test 
patterns. In order to achieve 100% stuck-at fault coverage, 
each driver on the net must be individually for stuck-at '1' and 
stuck-at '0' faults while the remaining drivers are disabled. 
Since this requires 2 test vectors per driver, 100% stuck-at 
fault coverage can be achieved using 2 • k test vectors where 
k is the number drivers on the net. The steps we use for 
testing three-state interconnect nets are shown in Figure 8. 

1) The driver to be tested is enabled and set to a logic '1' 
2) All other drivers are set to a logic '0' and disabled 
3) The data is clocked into the receivers 
4) The receivers are examined for a logic '1' 
6) Repeat steps 1-5 until all drivers have been tested 
7) The driver to be tested is enabled and set to a logic '0' 
8) All other drivers are set to a logic ' 1' and disabled 
9) The data is clocked into the receivers 
10) All receivers are examined for a logic '0' 
11) Repeat steps 7-11 until all drivers have been tested 
Figure 8: S-A Fault Testing Steps for Three-state Nets 

Bridging Fault Test Pattern Generation 

In addition to testing for stuck-at faults, we also test the 
interconnects for bridging faults. A bridging fault occurs when 
two nets are electrically connected as shown in Figure 9. A 
procedure which detects this fault is described in Figure 10. 

1) Enable the drivers on each net 
2) Apply a logic '1' to all drivers on the first net 
3) Apply a logic '0' to all drivers on the second net 
4) Clock the data into the receivers 
5) Examine at least one receiver on each net 
6) If the data at the receiver of either net does not 

correspond with the data applied at the respective 
driver, then a bridging fault exists between the nets 

Figure 10: The Procedure for Detecting a Bridging Fault 
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The procedure described in Figure 10 operates on two nets. 
Since a digital module may contain hundreds of interconnection 
nets, this procedure must be applied to every possible pair of 
nets to achieve. 100% bridging fault coverage. Since separate 
pairs of nets can be tested at the same time, 100% bridging 
fault coverage can be achieved with log2(n + 2) test vectors 
where n is the number of nets on the board". 

Bridging fault test generation example. The algorithm we use 
to generate the log2(n + 2) test patterns for bridging fault 
detection is best illustrated through a simple example. The 
example given below uses a board with 8 interconnect nets. 

Step 1 - Determine the total number of nets on the board. In 
this example, n = 8 which requires log2(8 + 2) or 4 test 
vectors. 

Step 2 - Assign each interconnect net a unique number. 
Assignments should begin with the number 1 and continue in 
increments of 1. In this example, the first net is given the 
number 1, the second net is given the number 2, and the last 
net is given the number 8. 

Step 3 - Assign binary values to each net. Since 4 test 
vectors are required, assign each net the 4-bit binary 
equivalent of the net number assigned in the previous step as 
shown in Figure 11. 

interconnect net 1 -
interconnect net 2 -
interconnect net 3 -
interconnect net 4 -
interconnect net 5 -
interconnect net 6 -
interconnect net 7 -
interconnect net 8 -

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 

Figure 11: The Binary Numbers Assigned to the 8 Nets 

Step 4 - Determine the test vectors. The first test vector is 
comprised of all the bits in the least significant position of the 
binary numbers. The second test vector is comprised of the 
bits in the second least significant position. This is continued 
until all bit positions of the binary numbers have been used. 
The resulting test vectors are shown in Figure 12. 

test vector 1 - 10101010 
test vector 2 - 01100110 
test vector 3 - 00011110 
test vector 4 - 00000001 

Figure 12: The Bridging Fault Test Vectors for the 8 Nets 

Isolating the faulty interconnects- The bridging fault test 
pattern generation scheme described in the previous section 
provides a quick and easy method of bridging fault detection. 
Although this scheme determines if any bridging faults exist, it 
does not isolate every interconnection net with a bridging fault 
If repairing interconnection nets with bridging faults is 
possible, all of the faulty interconnects need to be identified. 
This can be accomplished using the test patterns generated by 
the algorithm described in the previous example along with an 
additional log2(n + 2) test patterns. Thus, 2 • log2(n + 2) 

test patterns can be used to provide complete bridging fault 
isolation of the interconnection nets. 

test vector 5 - 01010101 
test vector 6 - 10011001 
test vector 7 - 11100001 
test vector 8 - 11111110 

Figure 13: Additional Test Vectors for Isolating Faulty Nets 

The additional log2(n + 2) test patterns are generated by 
simply inverting the binary values of the first log2(n + 2) test 
vectors. For the previous example, the these test vectors are 
shown in Figure 13. To identify those interconnects with 
bridging faults, a list of the faulty nets can be maintained 
during testing. When a bridging fault is detected, the 
corresponding interconnect net can be identified and added to 
this list. After all the test patterns have been applied, the list 
will contain all of the faulty interconnection nets. 

CONCLUSIONS 

Boundary scan simplifies the testing of digital circuits, boards, 
and systems. Since boundary scan provides easy access to the 
periphery of digital circuits through a serial shift path, the setup 
needed for testing is simplified to an inexpensive computer and 
a simple test interface. This reduces the complexity and costs 
of wafer-level testing, board-level testing, and field 
maintenance. 

Boundary scan allows easy partitioning of board components 
and interconnects, thus wafer-level test patterns can be 
modified and used to test the components on the board. Also, 
the simple algorithms presented generate test patterns which 
provide 100% stuck-at and bridging fault coverage of board 
interconnects. These advantages allow boundary scan to 
significantly reduce test and maintenance ccsts while 
maintaining a high percentage of fault coverage at the circuit, 
board, and system level. 
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Abstract 
This paper proposes a new approach to built-in self-test 

of interconnects based on Boundary Scan Architecture. De­
tection and diagnosis schemes are proposed which provide 
minimal-size test vector set, I/O scan chain order indepen­
dent test vector set and walking sequences. Properties like 
ease of test vector generation, structure independent detec­
tion and diagnosis, local response compaction have made the 
developed schemes suitable for BIST implementation. An ex­
ample board interconnect test session is described using one 
of the proposed schemes. 

Key Words : Interconnect, Boundary Scan Architecture, De­
tection, Diagnosis. Walking Sequence. 

1. Introduction 

In recent years, structured design-for-testability at the 
printed circuit board (PCB) level has become an activity of 
major interest. This is a natural evolution following a wide 
acceptance of the structured DFT (i.e. scan) at the IC level 
and the realization that the costs associated with implement­
ing scan cannot be justified unless it can be used to simplify 
the testing efforts at the PCB and higher levels as well. This 
combined with the emergence of the very high density pack­
aging technology at the PCB level, in particular that of sur­
face mount interconnections, made it essential to develop the 
concept of boundary scan, as detailed in Boundary Scan Ar­
chitecture Standard Proposal, Version 2.0. produced by JTAG 
[1J. 

The boundary scan concept allows one to access and con­
trol all the primary input and output pins on the PCB from 
outside. This is done by connecting all the primary inputs and 
outputs of an IC into a shift register which has a boundary 
scan input and a boundary scan output. A simple boundary 
scan cell is shown in Figure 1. The shift registers on all the 
IC's of a PCB can be connected together to form a larger 
shift register with a single scan in edge and a single scan out 

This work was supported in part by the Commonwealth Scholarship 
Plan of Canada and in part by the Natural Science and Engineering 
Research Council of Canada. 

Figure 1 A Simple Boundary Scan Cell Design 

Board Under Test 

Figure 2 A Boundary Scan Board 

edge, as shown in Figure 2. Thus in effect, the boundary scan 
concept provides a sort of electronic in-circuit testing facility. 

Using this concept at the PCB level, it should be possible 
to confirm that each IC performs its required function, that 
the IC's are interconnected in the correct manner, and that 
the IC's interact correctly and that the complete PCB per­
forms its intended function. The problem of interest in this 
paper is that of using this concept to verify that the IC's are 
interconnected in the correct manner. 

Interconnection of IC's and other discrete components on 
a PCB is a complex maze of multi-layer electrical conductors 
which are likely to be failed by the presence of shorts, stuck-
ats and stuck-open faults. In order to test such a structure in 
a cost-effective way structured techniques are required which 
can be easily automated, possibly BISTed. At the outset, it 
does not appear to be a simple problem when one realizes 
that on a single PCB there may be thousands of I/O pins 

EH0321-0/90/0000/0254$01.00 © 1988 IEEE 
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f r o m all di f ferent IC's wh ich are connected to each other 

in many di f ferent ways (un id i rect ional , b id i rect ional , one- to -

many, many- to -one, f o rm ing chains and c lusters, e tc . ) . In 

add i t ion , since repair at the PCB level is a necessary act iv i ty , 

i t is no t suff ic ient to know i f the in terconnect is fau l t y ; one 

also has to determine where the fau l t m igh t be i f indeed the 

board is fau l ty . 

Th is paper a t t emp ts to develop a fo rma l set of s t ruc tu red 

tes t generat ion and tes t diagnosis techniques for in terconnect 

fau l ts on PCB 's w i t h boundary scan. These techniques are 

easily implemented in a B I S T manner. Th i s lat ter require­

men t impl ies t h a t the B I S T imp lementa t ions should not re­

quire any in fo rmat ion abou t the actual topo logy of wh ich pin 

is connected to wh i ch . Such techniques are the mos t impor ­

t a n t con t r i bu t i on o f th is paper. 

The remainder of the paper is organized as fo l lows. In 

sect ion t w o , various basic not ions related to boundary scan, 

di f ferent types of in terconnects, and fai lures of interest are 

descr ibed. Many tes t generat ion and tes t diagnosis schemes 

are developed in sect ion three. An example tes t session to tes t 

t he in terconnects on a boundary scan PCB us ing one of the 

proposed tes t schemes is descr ibed in sect ion four. Research 

d i rect ions and conc lud ing remarks are made in sect ion f ive. 

2. Basic Model 

The tes t access po r t ( T A P ) concept o f the boundary scan 

arch i tecture fac i l i ta tes s tandard tes t commun ica t ion p ro toco l 

between IC's on the same PCB manufac tured by di f ferent 

vendors. In the J T A G proposal [1 ] , the T A P consists of a 

tes t data in ( T D I ) p in, a tes t data ou t ( T D O ) p in . a tes t 

c lock ( T C K ) p in , and a tes t mode select ( T M S ) p in . These 

pins are used to access (i) an ins t ruc t ion register in T A P ; (i i) 

the boundary scan register; or ( i i i) some user defined data 

registers. Mo re detai ls can be found in [1 ] , 

As seen in Figure 1, the basic cell of the boundary scan 

arch i tecture for an input p in a l lows one to either load data 

in to the scan register f r o m the input po r t , or drive data f r o m 

the register th rough the ou tpu t po r t o f the cell in to the core of 

t he IC design. Boundary scan cells associated w i t h ou tpu t or 

b id i rect ional connect ions can be designed in a s imi lar manner. 

In a typ ica l in terconnect ion tes t ing scenario, all the 

boundary scan cells associated w i t h o u t p u t connect ions of 

all the IC's wou ld be f i rs t loaded w i t h tes t data using the 

boundary scan register. In the second step, th is tes t data 

wou ld be appl ied and col lected at the corresponding bound ­

ary scan cells associated w i t h t he inpu t connect ions. In o ther 

words , in terconnect tes ts are appl ied by ou tpu t cells and re­

ceived by inpu t cel ls. In the f inal s tep, the response col lected 

at the inpu t cells is shi f ted ou t and ver i f ied. The example in 

Figure 3 i l lustrates all these three steps. T h e actual con t ro l 

sequence required to carry ou t these steps is executed w i t h 

the help of the tes t access po r t and is detai led in [1 ] . 

2 . 1 S t ruc ture o f the Interconnects 

To convenient ly describe various tes t ing and diagnosis 

schemes, we w i l l use the t e r m Inet to refer to any group of 

Figure 3 Inets Testing using Boundary Scan 

two or more I/O boundary scan cells and the electrical con­

ductors connecting these cells. Different Inet structures are 

shown in Figure 4. The simplest type of Inet is a pair of I/O 

cells connected by a single wire, as shown by AB in Figure 4a. 

When an output cell, such as G in Figure 4b, is connected to 

two or more input cells, fanout results. A more complex Inet 

is formed when multiple drivers are connected to the same 

bus, as shown in Figure 4c. In such a case, of course only 

one output cell is connected to the bus input cell at any given 

time. However, due to the common driving point, detection 

and diagnosis schemes for such Inets are slightly different for 

certain fault types as will be discussed later in the follow­

ing. A combination of these three types of Inets can result in 

cluster type Inet shown in Figure 4d. 

Figure 4 Different Inet Structures. 

A few observat ions about the way the t e r m Inet w i l l be 

used in the remainder of th is paper are in order here. W h e n 

we refer to an Inet as a un i t under tes t , the Inet mus t be such 

t h a t under faul t - f ree cond i t ions all the I /O cells of the Inet 

f o r m a single connected graph. T h u s for instance. Figure 4a 

conta ins three dif ferent Inets, A B , C D , and EF; Figure 4b has 

one Inet, GHI ; also each of Figures 4c and 4d shows a single 

Inet, respectively, K L M N and P Q R S T . The second observa­

t i on is about b id i rect ional cells. Each of the b id i rect ional cells 

on a PCB has to be tested b o t h as an input cell and as an 

o u t p u t cel l . Th i s choice is of course contro l led by the tes t 

access po r t [1 ] . In the fo l low ing , we wi l l assume t h a t dur ing 
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testing each cell of each Inet has been controlled to be an 
input or an output cell, but not both simultaneously. In other 
words, the testing of Inets is not done with bidirectional cells 
floating with high impedance. Finally we will refer to a path in 
an Inet as any connection between two I/O cells. However, an 
independent path associated with an output cell in an Inet is 
the group of I/O scan cells and interconnection wires formed 
by connecting this output scan cell to all the input scan cells 
in that Inet. For instance, in Figure 4c, the interconnection 
wires 'kx' and 'xn' connect one output scan cell K to the in­
put scan cell N. Thus, kx-xn is one independent path in the 
Inet KLMN. Similarly, Ix-xn and mx-xn are the independent 
paths associated with output scan cells L and M respectively. 
In Inet PQRST (Figure 4d). there are two output scan cells. 
The two independent paths associated with these scan cells 
Q and R are qv-vu-up-vw-ws-wt and ru-up-uv-vw-ws-wt re­
spectively. Thus, by definition, the number of independent 
paths associated with any Inet equals the number of output 
scan cells in that Inet. 

2.2 Fault Model 

The fault model of interest in Inets has to be based on 
the likely failures observed in interconnects on PCB's. It is 
well known [7,9] that the most common failure mode is shorts 
between any two or more Inets. These shorts can be classified 
as being 

• AND short(where logic 0 dominates) 
« OR short (where logic 1 dominates) 

• weak short (where the resulting value is between logic 0 
and logic 1) 

• short between strong and weak drivers (where the outputs 
follow the strong drivers) 
Of the first two types of shorts, depending upon the tech­

nology used in the individual IC component, either AND type 
or OR type but not both will occur. However, IC components 
with different technologies can be used on the same PCB. 
Thus, to make the testing schemes technology independent, 
we will, in this paper, consider the simultaneous presence of 
both AND and OR type of shorts on a single PCB. These 
two short types are treated extensively in this paper. Weak 
shorts and shorts between strong and weak drivers are not 
considered here. 

Beside shorts, the following additional fault types are con­
sidered significant : 

• stuck-at-one fault 

• stuck-at-zero fault 

• stuck-open fault 
« delay fault 

The schemes to be described consider single as well as 
multiple faults in the system. Moreover, the schemes for 
shorts testing allow the shorts to occur between a pair of 
Inets as well as among multiple Inets. 

Different Inet structures and the concept of independent 
path have been introduced in the previous sub-section. It is 
interesting to note that the number of test vectors to be ap­
plied for shorts and stuck-ats testing does not depend upon 

the complexity of any individual Inet or the number of inde­
pendent paths in any Inet. For example, if any interconnec­
tion wire 'kx'. 'Ix', 'mx' or 'xn' in Inet KLMN (Figure 4c) is 
shorted to any other Inet, then enabling only one driver, say 
the driver at K, will test for that short. Drivers at L and M 
will be kept disabled throughout the test. So. it is assumed 
that controls are provided for independent enable/disable of 
the output drivers in multiple driver Inets. The same is true 
for stuck-at testing. 

However, this is not true for stuck-open testing. For ex­
ample, in Figure 4c, if a test vector is applied, by enabling 
the driver at K (and disabling drivers at N and 0) then any 
stuck-open fault in the branches 'Ix' and 'mx' will remain un­
detected. So. by enabling the drivers at N and O. only one at 
a time, (and hence, enabling every independent path) all the 
stuck-open faults in KLMN can be detected. Thus, the test­
ing of stuck-open faults is structure dependent. The number 
of vectors to be applied depends upon the number of inde­
pendent paths in any Inet in the system. 

3. Fault Detection and Diagnosis 

This section describes some existing schemes and pro­
poses some new schemes for testing of different types of 
faults in inets. It will be seen that the existing schemes are 
not very efficient from implementation point of view. None 
of these schemes is structure independent. Thus, fault-free 
simulation of the Inets is required to obtain the expected re­
sponse. Moreover, huge overhead is required to store this 
expected response for comparison with the test output. We 
will introduce a number of detection and diagnosis schemes 
to overcome the shortcomings of the existing schemes. Em­
phasis is given on efficient BIST implementation of these pro­
posed schemes. Different types of deterministic vectors are 
used as test patterns in these schemes. Finally, some re­
sults are also presented on the detection capability of random 
vectors. 

3.1 Detection of Shorts and Stuck-ats 

3.1.1 Minimal-Size Test Set for Shorts Detection 

It has been shown in [10] that a set of [log2 n] vectors 
is necessary and sufficient to detect all possible shorts in 
a network of 'n ' unconnected terminals. The terminals are 
checked by physical contact using multiple probe continuity 
test. This set of [log2 n] vectors can be shown to be sufficient 
for testing all shorts in 'n ' Inets [2,8]. 

The scheme is described with an example. Three vectors 
are required for 8 Inets as shown in Table 1. Each bit 'i' in 
each vector is applied to the output cell (input port) of Inet 
'i', and the resulting output is collected at the corresponding 
input cell(s) of Inet 'i'. In the case when Inet 'i' has more than 
one output cell, any one output cell is arbitrarily enabled and 
the others are dasabled. Bit 'i' is then applied to the enabled 
cell. 

It can be seen from the table that by applying [log2 n] 
vectors to 'n' Inets. each Inet is assigned a unique binary 
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V3 

0 
0 
0 
0 
1 
1 
1 
1 

V2 

0 
0 
1 
1 
0 
0 
1 
1 

VI 

0 
1 
0 
1 
0 
1 
0 
1 

Inets 

Inet 1 
Inet 2 
Inet 3 
Inet 4 
Inet 5 
Inet 6 
Inet 7 
Inet 8 

Table 1 Minimal-Size Vector Set for Shorts Detection 

number. Due to this assignment each Inet input bits differ 
from those of all the other Inets at least by one-bit position. 
For example, the input assignments to Inets 1 and 2 (see Table 
1) differ in V1. So. the corresponding output bits are also 
bound to be different in the fault free case. But in case of a 
short between this pair of Inets, the output bits corresponding 
to V1 are not different any more. Thus the short is detected 
at the output. This is true for every pair of Inets in the set. 
The same argument holds for multiple Inets shorted together. 

3.1.2 Minimal-Size Test Set for Stuck-ats Detect ion 

An Inet stuck-at-one (s-a-1) can be detected by applying 
a '0 ' as one of the input bits. Similarly a s-a-0 can be detected 
by applying a '1'. For example, if a bit-set '001' is applied 
to an Inet which is s-a-1, the faulty output is '111' . So, 
the s-a-1 in that Inet is detected. For this reason, stuck-
at faults in most of the Inets can be detected by the set of 
[log2n] vectors used for shorts detection in sub-section 3.1.1. 
However, notice that '000' and '111' are assigned to Inet 1 
and 8 respectively in that example. Clearly. '000' will not 
detect a s-a-0 and '111' will not detect a s-a-1. So, instead 
of [log2n] vectors, if [log2(n + 2)] vectors are applied (thus 
avoiding all-zero and all-one) to 'n ' Inets, all possible stuck-ats 
(SAs) and shorts are detected. Thus, [log2{n + 2)] vectors 
are necessary and sufficient to detect all possible (single and 
multiple) shorts and SAs in a system of 'n ' Inets. 

3.1.3 Order Independent Test Set Scheme for Shorts 
and SAs Detect ion 

To implement the minimal size test set scheme for shorts 
and SAs detection, each test vector is loaded through the 
scan chain, applied to the Inets and the obtained response 
is shifted out (Figure 3). Recall here that the I/O scan cells 
of different components are connected in a single scan chain. 
Let us assume that the total number of output scan cells in 
this scan chain is 'n ' . the total number of input scan cells 
is 'm ' and the total number of I/O cells is (n+m) = N. In 
the minimal size test set scheme, [log2(n + 2)] vectors are 
generated based on the number V. Each of these vectors 
has (n+2) bits. These (n+2) bits of each vector are shifted 
in and applied through a scan chain which is N cells long. So. 
after the generation of each input vector of (n+2) bits, the 
vector is padded with N-(n+2) '0's, to make it compatible 
with the length of the scan chain. The '0's are padded in the 
proper order depending upon the order of the input and out­

put scan cells in the scan chain. Thus, the generated vector 
is restructured or reformated before loading. This requires 
structural information about the scan chain as well as extra 
hardware and control for reformating of the input vectors. 

These problems can be solved by generating [ log2(N + 2)] 
vectors for a scan chain N cells long. N bits from the (N+2) 
bits of each vector are loaded through the scan chain. The 
detection process works as before. But no reformating or 
structural information is required for test vector generation 
and loading. Since no information is required related to the 
order of the I/O cells in the scan chain, this can be termed 
as the order independent test set. This test set is not min­
imal size any more. [ log2(N + 2)] vectors are required in­
stead of [log2n] vectors. So. the time complexity becomes 
O (N log 2N) compared to O(Nlog 2n) of the minimal-size test 
set. But order independent test vector set is more suitable 
for BIST implementation due to its order-free test generation 
and loading property. 

Test Generation Hardware : 
In a BIST environment test vectors are generated on site. 

Thus, the test generation hardware is required to be sim­
ple and small in size to keep the BIST overhead reasonable. 
The test generation hardware to generate [ log2(N + 2)] vec­
tors is shown in Figure 5. In this scheme. [ log2(N + 2)] 
bit counter generates the [ log2(N + 2)] test vectors. No­
tice that each test vector consists of (N+2) bits and is being 
generated serially from one of the stages of this counter. A 
[ log2(N + 2)] : 1 MUX is then used to select which test vec­
tor should be applied during one scan cycle. The MUX is 
controlled by a [log2(log2(N + 2))] bit counter. The state 
of this counter is changed after counting through (N+2) in 
the [ log2(N + 2)] bit counter. So the control bits are ap­
pended with the data bits in the counter. Thus, the hardware 
is a [ log2(N + 2)] + [ log2(log2(N + 2))] bit counter with the 
[ log2( log2(N + 2))] MSBs become the control bits and the 
[ log2(N + 2)] LSBs become the data bits. N bits of output 
(excepting the first and the last bits) coming from the first 
LSB are chosen as the first vector by the [ log2(N + 2)] :1 
MUX. It can be shown that these bits form the first vector in 
the set of [ log2(N + 2)] vectors. In the same way the output 
of the second LSB register forms the second vector and so 

Figure 5 Generation of Order Independent Vector Set. 
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Response Analysis : 
After loading and application of each test vector, the re­

sponse is shifted out for detection of faults. The obtained 
response is compared with the expected response. The ex­
pected response can be determined by fault-free simulation 
of the system of Inets under test. This requires structural 
information about these Inets. Thus, fault detection is struc­
ture dependent both for minimal-size test set and order in­
dependent test set schemes. Moreover, minimal-size test set 
scheme requires N[log2n] bits of storage for expected re­
sponses and N[log2N] bits of expected response are stored 
for the latter scheme. Thus, although, the order independent 
vector set scheme makes the test generation and loading order 
independent, response analysis is structure dependent. Also, 
the storage requirement is high. 

3.1.4 Walking Sequence 

In order to overcome the disadvantages of minimal-size 
test set and order independent test set schemes, a different 
type of deterministic vector set is considered here. Consider 
a bit stream of a single ' 1 ' followed by all 'O's which is shown 
below : 

1 0 0 0 0 0 0 0 . . . 
This bit stream can be loaded through the scan chain as 

the first test vector. Then by gradually shifting this vector 
through the scan chain the rest of the vectors can be obtained. 
Since the vector set is obtained by gradually shifting the single 
' 1 ' along the stream, this sequence is termed as a walking one 
sequence. 

If the original bit stream (i.e., 1000...) of the walking 
one sequence is shifted (N- l ) times, the single ' 1 ' gradually 
passes along all the scan cells, one at a time. Thus, in the 
fault-free case, the expected output on each input scan cell of 
each Inet is a single ' 1 ' . But in case the of a fault, number of 
'1's is changed (increased or decreased) at the output. Thus, 
by counting the total number of '1's, a faulty Inet can be 
detected. 

A walking zero sequence (single '0' followed by all ' l ' s , 
i.e.. 0111... . shifted N-l times) can also be used in the same 
way for detection of shorts and SAs. 

Test Generation Hardware : 
A walking one (or, a walking zero) sequence is very easy 

to generate. The outputs from the flip-flops of N-bit counter 
are fed to an NOR (OR) gate (see Figure 6). The resulting 
vector becomes 1000... (0111... ). 

3.1.5 Walking Sequence Scheme for Shorts and SAs 
Detect ion 

In this scheme every input vector is shifted-in individually 
through the scan chain, applied and the response is shifted 
out. Walking one sequence described above is used as the 
input sequence. The response is taken out and fed to a com­
pactor which is a '1's counter in this scheme. The scheme 
is shown in Figure 7. It can be shown that for the complete 
set of input vectors, expected number of ones is exactly N in 
the fault-free case where N is the total number of input and 
output scan-cells connected along the scan chain. However, 

To Scan Path 

Figure 6 Generation of Walking Sequence. 

in the case of a faulty Inet in the system, the total number 
of ones is increased or decreased depending upon the type of 
fault. SA-1 and OR-short increase the count whereas SA-0 
and AND-short decrease the count. 

'1's counter 

Figure 7 Walking Sequence Scheme for Shorts & SAs 
Detection 

This scheme detects all single faults in the system. How­
ever, multiple faults can mask each other. As for example, 
if the count increased by an OR-short is exactly equal to 
the count decreased by an AND-short, then these two shorts 
mask each other. Similarly, a SA-1 fault can be masked by a 
SA-0 fault. In general, the faults can be grouped into two 
types. OR-short and SA-1 are the increasing count type 
whereas AND-short and SA-0 belong to the decreasing count 
type. As long as multiple faults belong to the same type, 
there is no masking. But multiple faults from different types 
can mask each other. 

The scheme requires N-bits to be shifted-in and shifted-
out for each vector. So, for N vectors, the time required for 
the complete procedure is O (N 2 ) . The response analyzer is 
a [ log2N] bit '1's counter. 

This walking sequence detection scheme is independent 
of the order of the I/O scan cells in the scan chain for test 
vector generation. Moreover, structural information about the 
Inets and expected response storage are not required for fault 
detection. However, for multiple faults there are chances of 
masking. 
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3.2 Diagnosis of Shorts and Stuck-Ats 

3.2.1 Existing Schemes 

Goel and McMahon [8] have described a diagnosis scheme 
which is divided into two steps. In the first step. [log2(n + 2)] 
vectors used for detection in sub-section 3.1.1 are applied to 
identify a subset W of the faulty Inets. The shorts must in­
volve these Inets as well as some other Inets. In the second 
step, a unique test is applied to each member w' of W. In 
this test "w" is assigned a '0' (or '1') and the remaining (n-1) 
Inets a ' 1 ' (or '0'). This indicates which Inets are shorted to 
'w'. Thus all the shorted Inets can be identified. 

Wagner [2] has proposed a diagnosis scheme which re­
quires 2[log2(n + 2)] vectors. [log2n] vectors used for shorts 
and SAs detection together with its complementary set forms 
the complete set of vectors for diagnosis, [log2(n)] vectors 
identify at least one of the Inets involved in each short. The 
complementary vectors then isolate the other Inets which were 
not identified by the first set. 

None of these two schemes has addressed the implemen­
tation issues like input vector formating and loading. Inet 
structure dependence of response analysis, overhead required 
for storing the expected responses. Thus, these schemes are 
analytical treatment of diagnosis problem and are rather in­
complete from a practical point of view. 

3.2.2 Order Independent Test Set Scheme for Shorts 
and SAs Diagnosis 

2[ log2 (n + 2)] vectors used in [2] are sufficient to diag­
nose all possible shorts and SAs in 'n ' Inets. However, for 
a scan chain N cells long, 2[log2(n + 2)] vectors are refor-
mated as was described in sub-section 3.1.3. The diagnosis 
scheme can be made I/O scan chain order independent and 
the need of reformating can be avoided by using 2\logiN] 
vectors. The [ log2N] vectors are similar to [ log2(N + 2)] 
vectors described in sub-section 3.1.3. Here, all '0' and all '1' 
bit-sets can also be included as valid assignments. That is 
why [ log2N] vectors are used instead of [ log2(N + 2)] vec­
tors. These [ log2N] vectors and their complements form the 
complete vector set for the proposed diagnosis scheme. 

For N=6. the 6 vectors in Table 2 form the complete set. 

V5 
0 
0 
0 
0 
1 
1 

V3 
0 
0 
1 
1 
0 
0 

VI 

0 
1 
0 
1 
0 
1 

Scan Cell 
Cell l 
Cell 2 
Cell 3 
Cell 4 
Cell 5 
Cell 6 

V6 
1 
1 
1 
1 
0 
0 

V4 
1 
1 
0 
0 
1 
1 

V2 
1 
0 
1 
0 
1 
0 

Table 2 2[log2N] vectors for Shorts & SAs Diagnosis. 

The vectors are applied in the following sequence. One vec­
tor (say V1) is applied from the set of [ log2N] vectors fol­
lowed by its complement (say V2) from the complementary 
set. This is repeated until all the vectors are applied. The 

output bits are treated in pairs. In each pair there is a '0' 
and a '1' (because the components of the pair are coming 
from two complementary vectors). So in a non-faulty bit-
pair, there is always a '0 ' followed by a ' 1 ' or a ' 1 ' followed by 
a '0 ' . For a s-a-1 (or, a s-a-0), the bit-pair are changed to two 
'1's (or, two '0's). Now let us see what happens in the case 
of a short. The input bit-pairs applied to two Inets can have 
the four different possible combinations shown in Table 3. 

CI 

01 
01 

C2 

10 
10 

C3 

01 
10 

C4 

10 
01 

Inets 

Inet 1 
Inet 2 

Table 3 Possible combinations of input bit-pairs. 

In the first two cases, CI and C2, the inputs to the two 
Inets are the same. So no change can be observed due to a 
short. For set C3, if the two Inets are shorted, the output is 
changed to either '00' or ' 11 ' . The same is true for set C4. 
Thus if any two Inets differ in input bit-pair combination (and 
they do differ for [2log2N] vectors at least in one bit-pair), 
the short can be diagnosed as a pair of '0's (or '1's) at the 
output. 

Implementation Issues : 
In this scheme, diagnosis can be done in-place or exter­

nally. In-place diagnosis is done by comparing, for each pair 
of input vectors, the pair of output bits obtained from each 
Inet within the associated input scan cell. For external di­
agnosis, the output bits are shifted out of the scan chain, 
stored in an external register and compared outside the scan 
chain. Notice, however, that both of these are implemented 
in a board level BIST environment. 

For in-place diagnosis, boundary scan input cells of JTAG 
[1] at the output end of the Inets will have to be modified (see 
Figure 8). Two one-bit registers are needed to store the bit-
pair at each input scan-cell. One single-bit register is already 
provided with the boundary scan cell. Thus, one extra one-bit 
register is needed per input scan cell. A two-input comparator 
is also added to the register pair to compare the bit-pairs. 
Thus 'q ' input scan-cells requires 'q ' extra one-bit registers 
and 'q ' two-input comparators. 

Inet ou tput 

Figure 8 In-place Diagnosis using Order Independent 
Vector Set. 

The first input vector is loaded individually through the 
scan chain and applied to the Inets. The output response of 
each Inet is stored in the one-bit register of the associated in­
put scan cell. Then the second input vector is applied and the 
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responses are stored in the second one-bit registers. These 
two bits are then compared in the comparator and the out­
puts of all the comparators are shifted out for diagnosis. This 
procedure is repeated for all the [ log2N] pairs of vectors in 
the set. 

So, for each vector N bits are shifted in through the scan 
chain and for each pair of vectors N bits of comparator results 
are shifted out. 
Thus, for in-place diagnosis. 
Loading Time. Tl = N.2[log2N] = O(N. log2N) 
Shift-Out Time, T0 = N.[log2N] - 0(N.log2N) 

The arrangement for external diagnosis is shown in Fig­
ure 9. The output response of the first vector is shifted out 
of the scan chain and loaded in an N-bit shift register. The 
complementary vector is then applied and while this response 
is shifted out it is compared with the response stored in the 
external register, bit by bit. through a two-input comparator. 
This procedure is repeated for every pair of input vectors. Ex­
ternal diagnosis requires N-bit shift register and a two-input 
comparator external to the scan chain. No modification of 
the I/O scan cells is necessary. 

Figure 9 External Diagnosis using Order Independent 
Vector Set. 

For each input vector, N bits are loaded and N bits of 
response are shifted out through the scan chain. 
Thus, for external diagnosis. 
Loading Time. 2} = N.2\log2N] =0{N.log2N). 
Shift-out Time. T0 = N.2\log2N] =0(N.log2N). 

So. the order of complexity remains the same for in-place 
and external diagnosis. For in-place diagnosis, when the com­
parator output bits are coming out of the scan chain, one has 
to distinguish between the bits coming from input scan cells 
and those coming from output scan cells. Thus, the order of 
I/O scan cells should be known. However, external diagnosis 
does not require any such information. The fault-free com­
parator output is a '0' independent of whether the bits are 
coming from input cells or from output cells. 

Order independent vector set diagnosis scheme can diag­
nose all possible shorts and SAs. The scheme is independent 
of Inet structure and complexity and test generation is inde­
pendent of the order of I/O scan cells. Diagnosis is local for 
each Inet which means that the diagnosis bits obtained from 
each Inet are sufficient to identify that Inet as fault-free or 
faulty. Diagnosis can be done in-place or externally. In-place 
diagnosis requires less time (although the order of complexity 

is the same) whereas external diagnosis requires no modifi­
cation of the given architecture. 

3.2.3 Walking Sequence Scheme for Shorts and SAs 
Diagnosis 

As mentioned in sub-section 3.1.4. the advantage of using 
a walking sequence is that only a single test vector is gener­
ated and loaded through the scan chain. By gradually shifting 
this vector within the scan chain, the rest of the vectors can 
be obtained. Thus, a walking sequence is very time-efficient 
in terms of loading the test vectors. In the following a diagno­
sis scheme is described using such walking sequences. This 
scheme is time efficient not only in terms of loading but also 
from the response analysis point of view. 

V4 

0 
0 
0 
1 

V3 

0 
0 
1 
0 

V2 

0 
1 
0 
0 

VI 

1 
0 
0 
0 

Inets 

Inet 1 
Inet 2 
Inet 3 
Inet 4 

Table 4 Walking One Sequence for Diagnosis. 

Table 4 shows the complete sequence for 4 Inets. The 
input scan cells have the following modifications. A single 
bit register and a two-input EX-OR gate is included in each 
input scan cell at the output or receiving end of each Inet 
(Figure 10). The single-bit register provided by boundary scan 
architecture is used only for loading and shifting of the output 
vectors. The second single-bit register (a shadow register) 
together with the EX-OR gate compacts the output response 
for diagnosis. No modification of the output scan cells is 
necessary. 

Fron Ine-t 

Figure 10 Diagnosis using Walking Sequence. 

The first output bit coming from an Inet is stored in the 
shadow register R2 (Figure 10). The next bit coming from the 
Inet is EX-ORed with the stored bit to get a new output bit. 
This new bit is stored in the register and EX-ORed with the 
next bit coming. The procedure is repeated N times for the N 
vectors and finally a one-bit compacted response is obtained 
in the register R2. This bit is shifted out for diagnosis. For 
even N, following are the compacted responses : 
' 1 ' : Fault-free, OR short (odd no. of Inets). 
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'0 ' : SAs. OR short (even no. of Inets), AND short (odd and 
even). 

Similar compacted responses can be obtained for odd N. 

It can be observed from the above list that OR short 
among odd number of Inets has the same compacted response 
as the fault-free compacted response. Thus, this type of short 
cannot be diagnosed using only a walking one sequence. In 
order to diagnose this type of short as well as other OR and 
AND shorts and SAs a walking zero sequence is applied fol­
lowing a walking one sequence. In this scheme. N vectors of 
the walking one sequence are applied as before and the com­
pacted bits are shifted out. Then the N vectors of the walking 
zero sequence are applied and a second set of compacted re­
sponse is obtained. For even N. compacted responses for the 
walking zero sequence are : 
'1': Fault-free. AND short (odd no. of Inets). 
'0 ' : SAs, AND short (even no. of Inets). OR short (odd and 

even). 
By combining the two sets of compacted responses, the com­
plete diagnosis becomes : 

"11' : Fault-free. 
'10': OR short (odd no. of Inets). 
' 01 ' : AND short (odd no. of Inets). 
'00': SAs, OR short (even no. of Inets). AND short (even 

no. of Inets). 

Time Requirement : 
Complete diagnosis requires 2N vectors. For N vectors of 

the walking one sequence, only the first vector is loaded and 
shifted (N- l ) times. This requires N-bits of loading and (N- l ) 
shifts. Walking zero sequence requires the same operation's. 
So. altogether, there are 2N bits to be loaded and (2N-2) 
shifts. At the output end, N bits are shifted out twice (once 
after every N vectors are applied). So, 2N shift-outs are done. 
Thus, the test time required is O(N). 

Let us compare the time requirements of order indepen­
dent vector set scheme and walking one/zero sequence scheme 

For order independent vector set scheme (External Diag­
nosis): 

Loading time Tl = 2Nlog2N 
Test application time Ta = 2log2N 
Shifting-out time T0 = 2Nlog2N 
For walking one/zero sequence scheme : 

Ti = 2N + 2N 
Ta = 2N 
T0 = 2N 
So. 2Nlog2N + 2log2N + 2Nlog2N >AN + 2N + 2N 
~ for, N > 4 
Thus, although the number of vectors applied is small in 

the order independent vector set diagnosis scheme, walking 
one/zero sequence diagnosis scheme (for N > 4) requires 
less time. 

Walking sequence diagnosis scheme does in-place diag­
nosis with time complexity of O(N). Order of I/O scan cells 
should be known to identify the diagnosis bits. An external 
diagnosis implementation is possible with the time complexity 
of 0(N2). 

3.2.4 Modifier Sequence Scheme for Shorts and SAs 
Diagnosis 

In the walking sequence diagnosis scheme, each input 
scan cell has one extra single-bit register. This shadow reg­
ister is used to store the compacted response so that it is 
not lost due to shifting of the input vectors along the scan 
chain. A different arrangement is possible where no shadow 
register is required for compaction and at the same time the 
compacted response obtained in each input scan cell is not 
affected due to the shifting operation. 

In this scheme, after application of each vector and com­
paction of the corresponding response, the contents of all the 
scan cells are shifted out and modified by using a modifier 
vector. The objective of this modification is to generate a 
new vector and at the same time to not lose the compacted 
responses. 

The arrangement is shown in Figure 11. The modifier 
sequence is shown in Table 5. The first input vector ( V I 
in Table 5) is shifted in through the scan chain and applied. 
Compaction is done locally in each input scan cell as was 
described in sub-section 3.2.3. The bit stream is then shifted 
out and passed through the EX-OR gate together with the 
next modifier vector (V2) to generate a new input vector. 
This procedure is repeated for all the N vectors in the modifier 
sequence. To explain how this works, consider the modifier 
sequence in Table 5. Vector VI has a single ' 1 ' . When VI is 
shifted in. this ' 1 ' goes to one of the scan cells in the scan 
chain. If this cell is an output scan cell then the ' 1 ' is applied 
to the associated Inet as the input. However, if the cell is an 
input scan cell, the ' 1 ' is passed through the corresponding 
EX-OR gate A (Figure 11) and stored back. After this, the 
contents of the scan chain is shifted out and passed through 
the EX-OR gate B together with V2. The first ' 1 ' in V2 
cancels the first ' 1 ' in VI due to the EX-OR operation. The 
second ' 1 ' in V2 is shifted in along the scan chain and acts in 
the same way as the ' 1 ' in VI did before. This is repeated for 
all the modifier vectors. Thus, every output scan cell in the 
chain gets a single ' 1 ' . one output scan cell at a time. This T 
is canceled by another ' 1 ' from the following modifier vector 
outside the scan chain. Similarly, the two Ts corresponding 
to each input scan cell cancel each other due to two EX-OR 
operations. Therefore, the net effect of the procedure is to 
apply a single ' 1 ' to each output scan cell one at time and to 
keep the contents of input scan cells unchanged due to shift 
in operations. 

... 

... 

... 

... 

... 

... 

V7 

0 
0 
0 
0 
0 
1 

V6 

0 
0 
0 
0 
1 
1 

V5 

0 
0 
0 
1 
1 
0 

V4 

0 
0 
1 
1 
0 
0 

V3 

0 
1 
1 
0 
0 
0 

V2 

1 
1 
0 
0 
0 
0 

VI 

1 
0 
0 
0 
0 
0 

Table 5 Modifier Sequence for Diagnosis of Shorts & 
SAs. 
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Figure 11 Diagnosis using Modifier Sequence. 

Test Generation Hardware : 
The modifier sequence is similar to the walking one se­

quence. V1 is the same as the first vector of the walking 
one sequence. However, starting from V2. each vector has 
two consecutive Ts instead of a single ' 1 ' . Thus this can be 
treated as a walking sequence with two consecutive T s . So 
similar type of hardware can be used to generate these vec­
tors. However, the vector V2 is to be stored somewhere and 
gradually shifted to get the complete sequence. Thus, the 
same N-bit counter (Figure 6) can be used for the generation 
of VI and V2 as well as for shifting of V2 to get the rest of 
the sequence. 

Implementat ion : 
A two-input EX-OR gate is connected along the shift path 

of the scan-chain to generate the 'effective' input sequence. 
Moreover, each output scan-cell has a two-input EX-OR gate 
for local compaction and diagnosis. 

Time Requirement : 
In this scheme shift-in and shift-out-modification opera­

tion take place simultaneously. Thus, for N vectors of N bits 
each, the scheme has the time complexity of 0(N ). 

As mentioned in Section 3.2.3, N vectors of the modifier 
sequence diagnose all the shorts and SAs except odd number 
of Inets OR-shorted together. To take care of this type of 
faults, the complementary set of the modifier sequence should 
be applied. 

This scheme can diagnose all possible shorts and SAs. 
Diagnosis is local and structure independent and does not 
require any shadow register. However, the test time is longer 
(O(N2) compared to O(N) or O (N[ log 2 N]) ) due to shift in 
and shift-out-modification operation. 

Let us give an example of the time requirement of this 
scheme. For a board with 100 IC's each having 100 I/O 

pins, the number of I/O scan cells connected in the boundary 
scan chain, N = 10.000. So for a 10 MHz test clock, the 
time required (N2 = 100,000.000) is 10 sec. This is quite 
reasonable for board-level testing. 

3.3 Detection and Diagnosis of Stuck-Open Faults 

Stuck-Open faults can be tested by checking for a con­
ducting path from each output scan cell to all the input scan 
cells in an Inet. To do this, the input cells are initialized to 
a known logic value. The opposite logic value is applied from 
the output scan cell. In the fault-free case, the values in input 
cells should be changed through the conducting paths. 

For detection of stuck-open faults, a single vector is shifted 
in through the scan chain. All the input scan cells are initial­
ized to '0' and all the output scan cells are loaded with ' 1 ' 
using this vector. The vector is then applied and the response 
is shifted out. Since, all the output scan cells are loaded with 
T s . the number of Ts in the fault-free case is exactly N 
where N is the number of scan cells in the scan chain. Thus, 
a [log2N] bit Ts counter can do detection of all single and 
multiple stuck-open faults. 

It was mentioned in section 2 that testing of stuck-open 
faults is structure dependent. Thus, a single vector is suffi­
cient for detecting stuck-open faults in simple Inets without 
multiple drivers. For multiple driver Inets and cluster Inets, 
each independent path is to be tested separately. Thus, only 
one output driver in each Inet is enabled at one time and one 
test vector is applied. This vector tests one independent path 
in every Inet simultaneously. Thus, the number of vectors ap­
plied equals the maximum number 'p' of independent paths 
in any Inet in the system. The expected number of Ts is 'N ' 
for each input vector. Thus, in the fault-free case, total ex­
pected number of Ts is 'pN' for all the 'p' vectors. However, 
for diagnosis each response bit coming out of the scan chain 
is to be checked for a fault-free value of T. 

3.4 Summary of the Test Schemes 

Table 6 is a brief summary of the proposed and existing 
detection and diagnosis schemes discussed in this section. 

3.5 Testing with Random Vectors 

Some experiments were done using the random vectors to 
test the Inets. In a random vector, the probability of getting 
a '0 ' or a T on each input bit is exactly 0.5. Thus, the prob­
ability of detecting any short is 0.5. Using this information 
and analyzing the complete set (2n) of random vectors for 'n ' 
Inets it can be shown that on the average 50% of all possible 
shorts are detected by a single random vector. Experiments 
were carried out using these average random vectors (each of 
which covers 50% of all possible shorts). Experimental re­
sults have shown that a very small number of random vectors 
(comparable to [log2(n)] ) can give close to 100% cover­
age of all possible shorts. However, detection and diagnosis 
schemes to use these random vectors are yet to be developed. 
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Scheme 

(i) Minimal 

Size 

(Detection) 

(ii) Order 

Independent 

(Detection) 

(Hi) Walking 

* Sequence 

(Detection) 

(iv) Goel and 

McMahon 

(v) Wagner 

(vi) Order 

Independent 

(Diagnosis, 

In-Place) 

(vii) Order 

Independent 

(Diagnosis. 

External) 

(viii) Walking 

Sequence 

(Diagnosis) 

(ix) Modifier 

Sequence 

(Diagnosis) 

(x) Stuck-open 

(Detection) 

(xi) Stuck-open 

(Diagnosis) 

Number 

of 

Vectors 

[log2(n + 2)] 

[log2(N + 2)] 

N 

[log2n] 

+ W 

2[log2(n + 2)] 

2[log2N] 

2[log2n] 

2N 

2N 

p 

p 

Detection/ 

Diagnosis 

Capability 

Multiple 

Shorts 

and SAs 

Detection 

Multiple 

Shorts 

and SAs 

Detection 

Multiple 

Shorts 

and SAs 

Detection 

(Chance 

of masking) 

Multiple 

Shorts 

Diagnosis 

Multiple 

Shorts 

Diagnosis 

Multiple 

Shorts 

& SAs 

Diagnosis 

Multiple 

Shorts 

and SAs 

Diagnosis 

Multiple 

Shorts 

and SAs 

Diagnosis 

Multiple 

Shorts 

and SAs 

Diagnosis 

Multiple 

Stuck-open 

Detection 

Multiple 

Stuck-open 

Diagnosis 

Time 

Requirement 

BIST 

Hardware 

O(Nlog2n) 

Extremely 

Large 

O(Nlog2N) 

Extremely 

Large 

O(N2) 

Simple 

XX 

Extremely 

Large 

XX 

Extremely 

Large 

O(Nlog2N) 

Simple 

O(Nlog2N) 

Simple 

0(N) 

Simple 

O ( N 2 ) 

Simple 

pN 

Simple 

pN 

Simple 

Table 6 Summary of Inet Test Schemes. 

4. Example of Inets Testing using Order 
Independent Vector Set Diagnosis Scheme 

In this section, an Inets testing session is described using 
the external diagnosis scheme proposed in sub-section 3.2.2. 
This scheme is chosen because it requires no modification of 
the I/O scan cells as well as the time complexity, O(Nlog2N). 
is reasonable. 

The board-under-test is chosen as an arbitrary example. 
There are 3 components. A, B, C, on the board each having 
24 I/O pins. Seven of these 24 pins are used as VDD, GND, 
CLOCK and TAP (see section 1). Scan cells of the remaining 
17 I/O pins form the boundary scan chain of each component. 
The scan cells are named as A l . B l , CI etc.. where Al is the 
first cell of component A and so on. Scan chains of the three 
components are connected in series to form the scan path on 
the board. Out of the 51 I/O pins. 22 are output pins and the 
remaining 29 are input pins. 16 Inets are formed arbitrarily 
using these I/O pins. Actual connections and types of Inets 
are shown in Table 7. Table 8 gives the injected fault list. 

Inet 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Output 

Scan Cell 

(Input Port) 

A2 

A14 

A5 

B9 

B12 

B17 

C1 

C9 

CIO 

B15 

A4 

Bl 

A7. B6 

C2, C12. B4. A16 

A l l , C3 

C17, C14 

Input 

Scan Cell 

(Output Port) 

BIO 

C15 

B l l 

C4 

C l l 

C5 

A3 

B2 

A6, B3 

A12. C7 

B3. B16. C16 

C6. A8, A9 

C13 

A15 

A10, B5. B14, C8 

A l , A13. A17, B7, B8 

Type 

of 

Inet 

Simple 

(one output 

cell connected 

to one input 

cell, i.e., 

one-to-one) 

Fan-out 

(one-to-two) 

Fan-out 

(one-to-three) 

Multi-driver 

(two-to-one) 

Multi-driver 

(four-to-one) 

Cluster 

(two-to-four) 

Cluster 

(two-to-five) 

Table 7 Inets on the Board-Under-Test. 

2[log2N] vectors are required to test the 16 Inets. Since. 
N equals 51 in this example. 2|[log251] = 12 vectors shown 
in Table 9 are applied to the Inets. Finally Table 10 shows 
the compacted response and diagnosis. Columns C I , C2,... 
are the compacted responses obtained from the comparator. 
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Fault 

Type 

S-A-l 

S-A-0 

AND Short 

(between 

Inet pair) 

OR Short 

(between 

Inet Pair) 

OR short 

(among 

3 Inets) 

No. of 

Faults 

2 

1 

1 

1 

1 

Faulty 

Inet 

No. 

3 

13 

7 

5 

14 

1 

8 

9 

11 

15 

I/O Scan 

Cells 

Involved 

A5, B11 

A7. B6. C13 

C1, A3 

(B12. C11) 

(C2. C12. B4, 

A15, A16) 

(A2. BIO) 

(C9. B2 ) 

(C10, A6, B13) 

(A4. B3. B16. C16) 

( A l l , C3, A10, B5, 

B14, C8) 

Scan Cell 

used for 

Input 

A5 

A7 

C1 

B12 

C2 

A2 

C9 

C10 

A4 

A l l 

Table 8 Injected Fault List. 

I/O 
Scan 
Cell 

Al 

A2 

A3 

A17 

Bl 

B17 

CI 

C17 

V1 

0 

0 

0 

0 

0 

1 

1 

1 

V2 

1 

1 

1 

1 

1 

0 

0 

0 

V3 

0 

0 

0 

1 

1 

0 

0 

1 

V4 

1 

1 

1 

0 

0 

1 

1 

0 

V5 

0 

0 

0 

0 

0 

0 

0 

0 

V6 

1 

V7 

0 

0 

0 

0 

1 

0 

0 

0 

V8 

1 

1 

1 

1 

0 

1 

1 

1 

Vil 

0 

1 

0 

1 

1 

1 

0 

0 

V12 

1 

0 

1 

0 

0 

0 

1 

1 

Table 9 Input Vectors applied to the Inets. 

The number of IC components or the number of Inets on 
the board is not important in this example. The objective is 
to show what are the various steps involved in applying the 
tests and diagnosing the faulty Inets. Diagnosis is done based 
on the comparator results without requiring any structural 
description of the Inets. 

5. Conclusion 

The various problems and complexities of interconnect 
testing are addressed in this paper. Schemes have been pro­
posed for detection and diagnosis of different types of faults 
in the interconnects. |7o92n1 vectors are minimal for detec­
tion of shorts in n' Inets. But for N I/O scan cells in the 
scan chain. \l0g2N] vectors are easier to apply. External di­
agnosis scheme using 2\log2N] vectors does not require any 
modification of the scan cells. Walking sequence scheme is 
shown to be very time efficient for diagnosis of shorts and 

I/O 

Scan 

Cell 

Al 

A2 

A3 

A6 

A10 

A15 

B2 

B3 

B5 

B10 

Bl l 

B13 

B14 

B16 

C8 

Cll 

C16 

VI 

1 

0 

0 

1 

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1 

V2 

0 

1 

0 

1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 

1 

CI 

0 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

V3 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

V4 

1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 

1 

C2 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

... 

Vll 

1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 

1 

V12 

0 

0 

0 

1 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 

1 

C6 

0 

0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Diagnosis 

Fault-free 

Fault-free 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Faulty 

Table 10 Diagnosis of Faulty Inets. 

SAs. Modified sequence diagnosis scheme requires simple 
modification of the input scan cells. 

One interesting feature about the schemes is that these 
are Inet structure independent. Based only on the number of 
I/O scan cells, test vector sets can be developed. Detection 
and diagnosis procedures are also not based on or restricted 
to any particular topology or structure of the Inets. 

All these schemes are based on a Boundary Scan archi­
tecture on the board. The schemes are developed to be used 
in a BISTed environment. But these can be used in a non-
BISTed DFT environment as well. Moreover, all the ideas and 
schemes presented here are equally applicable for testing the 
interconnects in a large area chip, WSI system etc. However, 
the modules in those systems should be isolated from each 
other, in the test mode, to make the design testable. Fur­
ther research is being done on various unsolved problems like 
testing of the glue logic, testing of special I/O pins, structural 
testing of the Inets etc. 
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BOUNDARY SCAN 
WITH 

BUILT-IN 
SELF- TES T 

CLAY S. G L O S T E R 

Mic roe lec t ron ic s C e n t e r of 
N o r t h C a r o l i n a 

FRANC BRGLEZ 

Be l l -Nor the rn R e s e a r c h * 

The authors propose a way to merge 
boundary scan with the built-in self-

test of printed circuit boards. Their 
boundary-scan structure is based on 

Version 2.0 of the Joint Test Action 
Group's recommendations for bound­
ary scan and incorporates BIST using 
a register based on cellular automata 

techniques. They examine test pat­
terns generated from this register and 
the more conventional linear-feedback 

shift register. The advantages of the 
CA register, or CAR, are its modular­

ity, which allows modification without 
major redesign; higher stuck-at fault 
coverage; and higher transition fault 

coverage. 

*Also with Microelectronics Center of North 
Carolina 

Today's IC manufacturers typically use in-circuit and 
functional board-test systems to detect defects in their 
products. As designs grow more complex, however, and 
as we rely more on surface-mount technology, tradi­

tional testing techniques become less cost-effective. One solution 
to this complexity is to turn to more advanced methods, such as 
boundary scan. Boundary scan allows the circuit to be tested via 
the board-edge connector plus it introduces a shift register that 
is logically, and often physically, adjacent to the I/O pins of every 
chip on the board. Because the shift register allows test data to 
be shifted, applied, or captured, it can be used to test not only 
individual chips but also board interconnections. 

There has been an industry-wide effort to standardize bound­
ary scan techniques. The Joint Test Action Group has presented 
a proposal for a standard " in which boundary-scan modes are 
defined and guidelines are offered for implementation. The pro­
posed standard does not explicitly address built-in self-test, but 
it provides for establishing a framework that would merge bound­
ary scan and BIST. It is this type of framework that we discuss 
here. 

BOUNDARY SCAN WITH BIST 
The idea of incorporating built-in self-test with boundary scan 

is not new. LeBlanc, Bardell and McAnney, and Komonytsky 
have introduced approaches that merge the two concepts. We also 
proposed a boundary-scan template at the 1988 International 
Test Conference,7 which we are updating in this article to reflect 
the latest JTAG recommendations (Version 2.0).3 

Figure 1 shows a block diagram of a boundary-scan template 
with BIST and its primary interfaces to the chip's interior. The 
template consists of an input register, an output register, and a 
controller with its own internal registers. Two additional control 
pins, TMS (test mode select) and TCK (test clock), are required 
along with two scan pins, TDI (test data in) and TDO (test data 
out). The registers in this template accommodate all the basic test 
modes proposed by JTAG along with a built-in self-test mode. 
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The boundary-scan template has three principal tasks. It allows 
the circuit to function normally, it allows data to be shifted in or 
results to be shifted out, and it conducts several circuit tests. The 
template supports the following modes: 

1. External test. This mode tests the interconnections of the 
printed circuit board. Data is applied to the board from the 
output register. The input register latches the data flowing 
from another chip via the board. Data can then be shifted out 
and verified. 

2. Internal test. This mode tests the internal logic of the design. 
Data is applied from the input register to the circuit. The corre­
sponding responses are latched in the output register. Once 
again, the results can be shifted out and verified. 

3. Sample test. In this mode, the test engineer can take a snap­
shot of the circuit in time. Data is latched in both the input 
and output registers. The boundary-scan input and output 
registers are configured in this manner during the circuit's 
normal operation as well. The TCK pin must be asserted to 
capture the snapshot. 

4. Bypass. This mode uses an output multiplexer to bypass the 
chip's lengthy boundary-scan path. Without this feature, test­
ing a board with 100 chips, each with 100 I/O pins, would 
take too long. The data on the chip travels from the TDI pin, 
through one latch, and directly to the TDO pin. 

5. Built-in self-test. In this mode, the input register is reconfigured 
to a pseudorandom pattern generator, while the output regis­
ter functions as a signature analyzer. Random patterns are 
shifted serially into the internal scan register and are applied 
synchronously with patterns from the input register. The re­
sponses from these random patterns are compressed in the 
output register. The resulting signature can be checked to en­
sure proper circuit operation. 

HARDWARE COMPONENTS 
The modes just described require several hardware compo­

nents: an input register, an output register, and a controller sec­
tion. Input and output registers share similar characteristics. In 
fact, they operate in the same way except that the input register 
generates patterns while the output register analyzes the signa­
tures of multiple inputs. The controller section has its own inter­
nal registers. We have captured a complete description of the con­
troller specified by JTAG 2.0 using a Pascal-like programming 
language, called Logic-Ill, which we compile automatically into a 
netlist of standard cells. We discuss all the proposed hardware 
in more detail in an earlier report.9 

Figure 2 shows how the input register is reconfigured during 
various test modes. The register must meet the following require­
ments: 

Figure 1. Structured template for bound­
ary scan with built-in self-test; TDI=test 
data in, TDO=test data out 

Random pattern 
generator 

Figure 2. Input register modes four-bit 
example). 
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-BOUNDARY SCAN WITH BIST 

Several of the 
register's functions 
are similar to those 

of the register in 
Koenemann's built-in 
logic-block observer, 

although our 
implementation is 

different. 

Figure 3. Input register design (four-bit example); PI = pin input, CAI = 
cellular automata input, CAO = cellular automata output, PO = pin output. 
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• It must appear transparent in the normal mode of operation. 
• It must latch the data during external and sample mode. 
• It must form a scan chain during scan mode. 
• It must be able to apply data in the internal mode. 
• It must generate pseudorandom patterns in the BIST mode. 
The register implements boundary-scan input cells as recom­
mended by JTAG while incorporating cellular automata prin­
ciples for built-in self-test. Several functions are similar to those 
of the register in Koenemann's built-in logic block observer,11 al­
though our approach differs in implementation. 

Approaches that generate pseudorandom patterns using cellu­
lar automata principles are relatively new. A cellular automaton, 
or single-cell, finite-state machine, evolves in discrete steps. The 
next value of each cell depends on the previous value of the cell 
to its left and the cell to its right. Cellular automata either are cy­
clically connected or have null boundary conditions. We used the 
null boundary condition in our research because it allowed us to 
remove the long feedback loop between the first and last cells. 
Hortensius has shown that by combining cellular automata rules 
90 and 150, we can generate binary sequences of maximum 
length from each site. Rule 90 is 

where i is the index of cell a. Combining these two rules gives us 
a sequence of maximum length, 2s - 1, where s is the number of 
cells or the length of the cellular automata. Table 1 lists the con­
struction rules that produce this sequence. We can compare 
the results from this table with registers that have maximum-
length configurations that are based on linear-feedback shift reg­
isters.1 2 - 1 4 



Table 1. Construction rules for two configurations of a cellular automata 
register. In configuration 1, 0 represents a Rule-90 cell, 1 represents a 
Rule-150 cell In configuration 2,0 represents a Rule-150 cell, 1 represents 
a Rule-90 cell The period of the sequence for either configuration is 2s-1. 

Length 
(s) 

4 
5 
6 

7 

8 
9 
10 
11 
12 
13 
14 

15 
16 
17 
18 

19 
20 
21 
22 

23 
24 
25 
26 
27 

28 
29 
30 

31 

32 

Construction 
Rule 

0101 
11001 
010101 
1101010 
11010101 
110010101 
0101010101 

11010101010 
010101010101 
1100101010100 
01111101111110 

100100010100001 
1101010101010101 
01111101111110011 
010101010101010101 

0110100110110001001 
11110011101101111111 
011110011000001111011 
0101010101010101010101 

11010111001110100011010 
111111010010110101010110 
1011110101010100111100100 

01011010110100010111011000 

000011111000001100100001101 
0101010101010101010101010101 
00011000100011000111111100101 
000001100010000110000100111110 

0000110100100000110000001100101 

00011111100100011001110110110000 

Figure 3 shows an input register design. In this example, the 
input register is between the input pins and the circuit logic. We 
get a maximum-length sequence for four inputs by alternating 
Rule 90 (odd) and Rule 150 (even) cells. Figure 4 shows the 
boundary-scan cell recommended by JTAG in more detail. The 
original cell consists of two multiplexers and two flip-flops. To in­
corporate built-in self-test, we added an additional control sig­
nal, BIST, to the multiplexer and the Exclusive-OR tree for pat­
tern generation. The cell implements cellular automata Rule 150, 
but we can convert it to a Rule 90 cell simply by removing the Ex­
clusive-OR gate that feeds back the previous value of the cell. 

A pattern generator 
based on the 

principles of cellular 
automata is a viable 

alternative to the 
more conventional 

LFSR-based 
generator in terms of 
pattern coverage as 
well as for transition 

fault testing. 

Figure 4. Realization of a Rule 90/150 
cell; TDI = test data in, TDO = test data 
out 
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-BOUNDARY SCAN WITH BIST 

While the 
implementation 
overhead of a 

cellular automata 
register is generally 
higher than that of 

an LFSR, a CAR has 
the advantage of 

modularity. 

Figure 5. An effective location for bound­
ary scan with BIST. 

COSTS 
In determining the overhead involved in adding boundary scan 

with BIST to an existing design, we used the largest unidirectional 
cell. To verify the functions of this cell, we used three Exclusive-
OR gates, two multiplexers, one demultiplexer, and a scannable 
flip-flop. The implementation required 13 logic gates or standard 
cells. The design used 91 transistors and, with loose wiring, oc­
cupied 255 x 255 sq. (µm in a 3-p.m CMOS technology. After we 
optimized the largest cell, we decreased the number of transis­
tors to 68. Custom design of these cells will decrease the area 
also, but we believe that the resulting need for feedthroughs will 
offset any decrease. For this reason, we used the conservative 
area estimate of 255 x 255 sq. µm in analyzing the chip area re­
quired. 

Since there will be a boundary-scan cell for each primary I/O, 
we suggest placing the cells adjacent to the pins of the design. 
The cells are then on the periphery of the design. 

Figure 5 shows the projected location of all required hardware 
to enable boundary scan and BIST. The template consists of the 
boundary-scan cells as well as some additional control logic. In 
some instances, part of the area in the shaded region, nominally 
reserved for boundary-scan cells, will accommodate additional 
control logic. If we include the boundary scan cells in the gray re­
gion of Figure 5, we must ensure that the width of the cells is less 
than the distance between adjacent pins. This requirement is not 
difficult to satisfy. Even our largest cell fits beside a pin with area 
left for routing. 

We analyzed several pad frames to estimate the cost of testabil­
ity in terms of chip area. Table 2 gives the results. The maximum 
usable area before boundary scan is the frame area minus the 
area of the pads. We calculated our maximum usable area after 
boundary scan by placing our largest cell beside each I/O pin. 
For large frames, the decrease in usable area is relatively small. 

Table 2. Projected overhead including built-in self-test for pad frames of 
different sizes. 

Pins Frame 
Size 

Usable Area 
Before 

Boundary Scan 
(mm2) 

Usable Area Calculated 
After Overhead 

Boundary Scan (%) 
(mm2) 

28 
40 

40 
40 
64 
64 

64 
84 

84 

S 
S 
M 
L 
M 
L 

XL 
L 

XL 

11.8 
11.8 
25.7 
40.2 
25.7 
40.2 

64.3 
40.2 

64.3 

10.1 
10.1 

23.2 
37.0 

23.2 
37.1 

60.2 
37.1 

60.2 

16.96 
16.96 

11.15 
8.55 
11.15 
8.55 
6.70 
8.55 

6.70 
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By merging an input and output cell, we can get a bidirectional 
cell. Because of the constraint in pin spacing, however, these cells 
would have to be rectangular and would thus increase overhead. 

As we mentioned earlier, all our projections are based on a 3-
µm CMOS technology. With a l-µm CMOS technology, we can 
place even the most complex cell on the chip boundary. 

EVALUATING OPTIONS WITH BIST 
We experimented with using a register based on cellular auto­

mata principles, called CAR, and a traditional linear-feedback 
shift register as sources to generate random patterns. We used 
the two CAR configurations in Table 1 and several LFSR polyno­
mials tabulated in work by Bardell et al. 

Table 3. Trial pattern generation for pa­
rameters n=3, m=2, s=4. 

THE BIST MODEL 
In the BIST mode, the boundary-scan input register is recon­

figured into a CAR or a LFSR of length s. Either register can serve 
as a source of s-bit wide 2s - 1 random patterns. These patterns 
are distributed in parallel to n primary inputs and serially to m 
interior scannable latches, as Figure 6 shows. In fact, n of the s 
latches from the source register are primary inputs. We add s -
n register latches to the input register only when the random pat­

tern testability of the circuit under test requires such an addi­
tion. Given that the number of uniformly distributed random 
patterns required to test the circuit in the scan mode is NT E S T . 
then we need to maintain s > log(NTEST+l)/log(2) with some mar­
gin. 
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TEST-PATTERN GENERATION 
We formed a pattern n+m wide by clocking the source register 

for m cycles to serially load the interior register. We then applied 
the pattern in a single clock cycle to the circuit under test (Figure 
7). Table 3 shows an exhaustive set of trial patterns that the CAR 
source register (configuration 1 in Table 1) can generate for pa­
rameters (s=4, n=3, m=2). 

In generating trial patterns, we traversed 2s - 1 source patterns 
m times. In this example, the period of the trial patterns is the 

Figure 6. Characteristic parameter set (n,m,s); NTEST = the number of ran­
dom patterns to cover 100% of stuck-at faults. 
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Figure 7. Test-pattern generation. 
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Table 4. Trial pattern coverage for a set 
of cellular automata registers and linear-
feedback shift registers. 

n m s 

4 2 6* 
4 3 6 
4 4 6 
4 5 6 
4 6 6 
4 7 6 
4 8 6 

4 3 7 
4 4 7 
4 5 7 
4 6 7 
4 7 7 
4 8 7 

4 3 8* 
4 3 9* 
4 3 10* 
4 3 11* 

16 1 17* 
16 2 17* 
16 3 17* 
16 4 17* 

16 6 18 
16 6 19 

Period 

A 
63 
21 

6 3 

6 3 

21 

9 

6 3 

B 

127 

127 

127 

127 

127 

127 

C 
255 
511 

1,023 
2,047 

D 
131,071 
131,071 
131,071 
131,071 

E 
87,381 

524,287 

Maximum 
Coverage 

CAR LFSR 

100 

33.3 
100 

100 

33.3 
14.3 
100 

50.4 
50.4 
50.4 
100 

4 0 0 

100 

27.3 
25.04 
12.5 
6.25 

100 

100 

100 

100 

33.3 
100 

50.8 
28.6 
50.8 
100 

33.3 
14.3 
100 

25.2 
25.2 
25.2 
100 

100 

100 

27.3 
12.5 
12.3 
6.25 

50 

50 

100 

100 

20.7 
100 

same as that of the source, but this is not always the case. If the 
number of interior latches, m, and the source period 2s - 1 have 
a common prime factor, say r, then the period of trial patterns be­
comes (2s - l)/r. Trial patterns begin repeating after the first tra­
versal of the source patterns. The source period in Table 3 is 15, 
so by choosing m=3, for example, we reduce the period of trial 
patterns to 5. 

Note also that only eight of the 15 patterns in the table are 
unique. If we change the source to a cellular automata register 
with configuration 2 (see Table 1) or to an LFSR, we would 
generate 15 unique trial patterns. For this reason, we compare 
trial pattern generation on the basis of trial pattern coverage, 
which is 

trial pattern coverage = 
no. of unique trial patterns 

•CAR configuration 1 from Table 1 (all others 
are CAR configuration 2). 

We exhaustively analyzed trial patterns for coverage with several 
values of s, n, and m, using both CARs and LFSRs as the source 
register. Table 4 summarizes the results. We divided the data into 
five groups to represent the aspects of pattern generation. Group 
A represents a case in which the period of the source is 63. The 
period has several prime factors in common with several choices 
of m, so the period of trial patterns varies. In Group B, pattern 
coverage starts at less than 100% when m<s. When the source is 
based on a CAR instead of an LFSR, pattern coverage rises toward 
100% much faster. Group C shows the requirements for an ex­
haustive test, given these values of m and n. To achieve 128 
unique patterns, we need a CAR source with value of s=9 and an 
LFSR source with a value of s= 11. Group D conveys the same 
message as Group B except that register lengths are in a some­
what more practical range. Group E uses the source register that 
relates to an actual design. 

WHY DISTINCTIVE PATTERN COVERAGE? 
As Table 4 shows, trial patterns repeat at different rates for a 

CAR or an LFSR source. A plot of pattern coverage as a function 
of trial patterns is shown in Figure 8 for a set of parameters. Trial 
patterns repeat for a number of reasons. First, a pattern from the 
n-bit segment, illustrated in Figure 7 repeats itself 2 s - n times. The 
exception is the (000...00) pattern, which repeats 2s-n - 1 times. 
This repetition does not depend on the order of patterns, and we 
can verify it by sorting the patterns in ascending binary order. 

Second, for the m-bit segment, we have two cases. When m< s, 
we can have 2m unique patterns from a total of 2s - 1 patterns. 
We cannot predict the distribution of these patterns as readily as 
we can for the patterns of the n-segment. For m > s, all 2s - 1 pat­
terns in the m-bit segment are unique, so all trial patterns are 
unique. Thus, we can generate fewer than 2s - 1 unique trial pat­
terns only when m < s. 

The pattern distribution of the m-bit segment for the CAR is 
similar to that for the LFSR. Therefore, we conclude that the single 
most important influence on pattern coverage is the order in 
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which the n-bit and m-bit segments combine into 2s - 1 trial pat­
terns. Trial patterns generated with a CAR as a source register 
more readily produce trial patterns with higher coverage. We 
believe this higher coverage occurs because the adjacent bit cor­
relation with a CAR is lower than that with an LFSR. 

ON PATTERN AND FAULT COVERAGE 
For some circuits, we must generate many random patterns 

before 100% of the stuck-at faults are covered. The effectiveness 
of BIST depends on how well we can match the source of random 
patterns to the testability requirements of the circuit under test. 
We must ensure that BIST hardware will deliver patterns that 
have sufficient coverage. 

We applied boundary scan and BIST techniques to an existing 
scan-based chip design that has a small number of interior 
scannable latches (m=6) relative to the number of inputs (n=16). 
Let NTEST be the number of random tests we must apply to fully 
test the circuit. In fault simulation with computer-generated ran­
dom patterns, we found that JVTEST = 131,040 covers 100% of 
the single stuck-at faults in this design. 

We chose a source register of s=18 to match the random testa­
bility requirements of this design. However, we did not realize at 
that time that m=6 and 2s - 1 = 262,143 have a common prime 
factor, 3. This factor reduced the period of the trial patterns to 
87,381. Despite this shorter period, the pattern coverage of the 
CAR was higher than that of LFSR, 33.3% vs. 20.7%, as shown 
in Table 4. 

This pattern coverage correlates well with the fault coverages 
we attained when we simulated CAR-based and LFSR-based pat­
terns. Figure 9a shows the results of this simulation. With 41,888 
CAR-based trial patterns, we reached 100% coverage, but the 
LFSR-based test flattened at 98.28% after about 40,000 trials. 

The last entry in Table 4 shows that for (s= 19, n= 16, m=6), both 
CAR and LFSR achieve 100% pattern coverage. We also easily 
covered 100% of the single stuck-at faults in both cases. How­
ever, if we consider a two-pattern test and measure transition 
fault coverage, the test patterns are not equivalent between the 
CAR and the LFSR. As Figure 9b shows, when we use a CAR as 
a pattern source, we cover 99.7% of the transition faults in 
500,000 patterns. With an LFSR as a pattern source, we cover 
only 93.4% of the faults in the same number of patterns. 

W e can realize boundary scan with a variety of test 
modes for high-performance boards, including a 

mode for built-in self-test, while keeping overhead to 
an acceptable level. A pattern generator based on the 

principles of cellular automata is a viable alternative to the more 
conventional LFSR-based generator in terms of pattern coverage 
as well as for transition fault testing. While the implementation 
overhead of a CAR is generally higher than that of an LFSR, a 
CAR has the advantage of modularity. Since only adjacent neigh­
bor communication is required, we can readily change the length 

Figure 8. Trial pattern coverage with a 
cellular automata register and a linear-
feedback shift register for (n=4, m=2, 
s=6). 

Figure 9. Fault coverage curves for the 
CAR and LFSR: stuck-at fault coverage 
(a) and transition fault coverage (b). 
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of the generator by simply adding or removing adjacent cells. 
Thus, we do not have the major redesign effort involved with 
LFSR-based generators. 

We have begun work on a tool to automate boundary-scan lay­
out. The tool characterizes a universal mask-programmable reg­
ister that we can reconfigure into either a CAR or an LFSR. We 
are also investigating properties of CARs and LFSRs in weighted 
random test-pattern generation and test-pattern compaction. 
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Abstract 

This paper first introduces the concept and motivations 
for developing Boundary Scan (BS), then explains the input 
BS cell, the output BS cell, and the bidirectional BS cell. 
Then the paper explains the application of Boundary Scan 
to the testing of analog-digital ASICs in a board/system 
environment. An example is given to illustrate the concept 
and the application. 

1. Introduction 

Design For Testability (DFT) at the chip level for the 
purpose of making sure that the chip can be tested in a 
stand-alone manner is not new. Companies have been 
using this approach for some time. However, DFT used at 
the chip level by itself does not mean that such chips when 
used on a board will make it easier for the board or for 
that matter the system to be tested. The reason is that new 
packaging technologies for ICs, while allowing more ICs to 
be mounted on a given size of board, have made it difficult 
or impossible to use current in-circuit board testing 
techniques. Examples of new packaging technology of this 
type are surface mounted package and pin-grid array. The 
former requires no plated through holes on the printed 
circuit board (PCB), and the latter has its pins inaccessible 
from the device side of a PCB. One additional problem is 
that the spacing between adjacent pins has decreased to 
the point that physical probing of package pins is 
impossible or requiring too expensive probes. To solve this 
problem, the Joint Test Action Group (JTAG) developed a 
specification that became a proposed IEEE standard 
(P1149.1) test interface and Boundary Scan architecture for 
increasing the testability of PCBs, and hence systems, by 
adding a scan path around the periphery of ICs. 

2. The Boundary Scan Concept 

Circuit in a serial manner via the Test Data Input (TDI) pin. 
Likewise the response from the Application Circuit can be 
captured info the BS ceil on the output port and serially 
shifted out via the Test Data Output (TDO) pin. Figure 1 
shows only one Mission Input pin and one Mission Output 
pin. However, the concept can be extended whereby the IC 
may have n Mission Input pins and m Mission Output pins, 
where n and m are some arbitrary numbers. In that case, 
the IC would have n BS cells on the input port and m BS 
cells on the output port. The IC needs to have, however, 
only one TDI and only one TDO. The TDO of the first BS cell 
on the input port would be connected to the TDI of the 
second BS cell on the input port, etc. Likewise the TDO of 
the first BS cell on the output port would be connected to 
the TDI of the second BS cell on the output port, etc. The 
general concept of Boundary Scan as seen from the board 
level is depicted in Figure 2. Note that the TDI of the first 
IC in the BS path is connected to the signal called Scan In 
on the edge of the PCB, and the TDO of the last IC in the 
BS path is connected to the signal called Scan Out on the 
edge of the PCB. From the above information, one sees 
that functionally there is a need to distinguish those BS 
cells on the input port from those on the output port. 
Hence the BS cells on the input port are called input BS 
cells, and those on the output port are called output BS 
cells. For bidirectional signals, bidirectional BS cells are 
needed. Likewise, for Tri-state output signals, Tri-state 
output BS cells are needed. 

Boundary scan is the application of a scan path to the 
internal periphery of the signal pins of an IC to provide 
controllability and observability to the pins when the IC is 
mounted on a PCB and the pins are not physically 
accessible for probing. Figure 1 shows an IC with BS cells 
placed next to the signal pins. During normal application 
or mission function, a signal travels from the Mission Input 
through the BS cell into the Application Circuit. The 
response from the Application Circuit travels out to the 
Mission Output pin through a second BS cell. When the IC 
is mounted on a PCB and if the pins are not physically 
accessible, test data can be applied to the Application 

FIGURE 1. BOUNDARY SCAN IN AN INTEGRATED CIRCUIT 

3. Input BS Cell, Output BS Cell, & Bidirectional BS Cell 

Figures 3, 4, and 5 show the block diagrams of one 
implementation of the input BS cell, the output BS cell, and 
the bidirectional BS cell, respectively. JTAG also specifies 
a Test Access Port (TAP) controller which generates the 
various control signals used in the boundary scan 
architecture (1). The BS cells for each of the signal pins of 
an IC are interconnected to form a scan path around the 
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border of the design, and this path Is provided with serial 
input and output connections and appropriate clock and 
control signals. For further information on the BS concept, 
specification, and applications, see references (1 - 6). 

FIGURE 2. A BOUNDARY-SCAN BOARD 

FIGURE 5. BIDIRECTIONAL BOUNDARY-SCAN CELL 

FIGURE 3. INPUT BOUNDARY-SCAN CELL 

FIGURE 4. OUTPUT BOUNDARY-SCAN CELL 

4. Analog-Digital ASICs 

Some semiconductor companies offer analog as well as 
digital circuits in their ASIC libraries (7). This type of mixed 
signal ASICs are difficult to test even when they are 
stand-alone devices (8). When placed on a PCB, the testing 
problem becomes more difficult. The reason is due to the 
fact that analog signals do not lend themselves to shifting 
via scan paths as digital signals do, and mixed-signal 
simulators are not yet capable of providing a complete set 
of analog and digital input and output data for testing as in 
the case of purely digital circuit simulator. 

5. Application Of BS To Analog-Digital ASIC Testing 

To manage the testing problem of analog-digital ASICs, 
the following procedure is suggested: 

A. Partition the analog circuit from the digital circuit 

B. Add demultiplexers (DMUX) to observe the digitized 
analog input signal(s) via output BS cells during testing 

C. Add multimplexers (MUX) to control the digital circuit 
with digital test patterns applied during testing via the 
input BS cells 
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D. Perform logic simulation of the digital circuit without 
using the analog input signal(s) but use the digital test 
patterns applied during simulation (and testing) via the 
input BS cells 

E. Test the analog and digital circuits separately by 
applying analog test signals at the analog input pins and 
observing the digitized analog outputs at the output BS 
cells; and by applying digital test patterns to the digital 
circuit via the input BS cells and observing the digital 
circuit outputs via the output BS cells associated with the 
digital circuit output pins. 

F. With one or two analog input values, check the overall 
behavior of the ASIC chip to make sure that the link 
between the analog circuit and the digital circuit is not 
faulty. This particular step is not meant to be an 
exhaustive test but only to ensure that the analog-digital 
link is not broken. 

• Note that the above procedure is useful even when the 
IC is not mounted on a PCB because each BS cell has the 
property that it aids in performing an external 
interconnection test or as a scan element to allow internal 
testing of the application circuit or simply a transparent 
(buffer) element. So when an IC is in a stand-alone mode, 
meaning not mounted on a PCB, its BS cells can be 
controlled so that they are in the transparent mode and 
allow the testing procedure described above to be 
performed. 

6. An Example 

Figure 6 shows an example of an analog-digital ASIC 
with DMUXs, MUXs, input BS cells, and output BS cells 
added for the purpose of making the IC testable both at 
the chip level as well as at the board or system level. In 
this example, the analog circuit consists of an amplifier 
and an analog-to-digital (A/D) converter. The analog input 
is a primary input pin to the ASIC chip. When mounted on 
a PCB, this analog primary input pin needs to be 
connected to a dedicated analog signal pin (finger) on the 
edge of the PCB containing this ASIC chip. The output BS 
cells associated with the DMUXs allow the digitized analog 
signal to be observed when the ASIC chip is in a 
stand-alone mode as well as when the ASIC chip is 
mounted on a PCB. In the stand-alone mode, these output 
BS cells can be placed in the transparent mode, and the 
digitized outputs from the DMUXs can be observed in 
parallel at their corresponding output pins. When the ASIC 
chip is mounted on a PCB, these output BS cells can be 
controlled such that they are linked together to form a 
scan path around the border of the ASIC chip, and the 
digitized analog-signal bits can be captured into these BS 
cells and then shifted along the boundary scan path on this 
ASIC chip, and via other boundary scan paths in other ICs 
if the PCB is so designed, and finally to the Scan-Out pin 
(finger) on the edge of the PCB on which this ASIC chip is 
mounted. In the stand-alone mode, the digital circuit can be 
tested by applying, in parallel, the digital patterns used in 
the logic simulation of the digital circuit at the pins 
associated with the input BS cells which feed into the 
MUXs. The responses from the digital circuits can be 
observed in parallel at the pins associated with the output 
BS cells on the output port of the digital circuit. When 
mounted on a PCB, the digital circuit can be tested by 
having the input test pattern bits shifted in serially from 
the Scan-In pin (finger) on the edge of the PCB, and via 
other boundary scan paths in other ICs if the PCB is so 
designed, and then loaded from the input BS cells into the 

MUXs and then into the digital circuit. The responses from 
the digital circuit are captured into the output BS cells on 
the output port of the digital circuit and then serially 
shifted along the boundary scan path in this ASIC chip, and 
via other boundary scan paths in other ICs if the PCB is so 
designed, and then to the Scan-Out pin (finger) on the edge 
of the PCB. Note that under normal mission mode, the 
DMUXs and the MUXs would be controlled in such a way 
that the BS cells associated with these DMUXs and MUXs 
would not be selected. To make Figure 6 simple to follow, 
various control signals such as system clock, test clock, 
and boundary scan shift and update signals are not shown. 

7. Conclusions 

New IC packaging technologies which allow more ICs to 
be mounted on a given size of PCB also make it 
increasingly difficult to gain physical access to the pins of 
the ICs for testing purposes. JTAG whose membership 
includes some 30 to 40 systems companies as well as 
semiconductor companies developed a concept and 
specification to address this particular issue of testing 
boards/systems containing state-of-the-art ICs. The JTAG 
solution is known as boundary scan. The boundary scan 
concept entails embedding a BS cell next to each signal pin 
on an IC to, in effect, emulate electrical in-circuit testing 
without requiring physical access to each signal pin of an 
IC when mounted on a PCB. For ASIC chips with both 
analog and digital circuits, partitioning the whole circuit so 
that the analog circuit is separate from the digital circuit 
and adding DMUXs, MUXs, and BS cells make the chip 
testable both in the stand-alone chip environment as well 
as in a board/system environment. 
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A Universal Test and Maintenance Controller for 
Modules and Boards 

JUNG-CHEUN LIEN, STUDENT MEMBER, IEEE AND MELVIN A. BREUER, FELLOW, IEEE 

Abstract—The design of a Module test and Maintenance Controller 
(MMC) is presented. Driven by structured test programs, an MMC is able 
to test every chip in a module or PCB via a test bus, such as the JTAG 
boundary scan bus. More than one test bus can be controlled by an 
MMC. The proposed MMC is quite versatile. It can support several bus 
architectures and many modes of testing. The differences between 
MMC's on different modules are the test programs which they execute, 
the number of test buses they control, and the expansion units they 
employ. A simple yet novel circuit, called a test channel, is used in an 
MMC. The MMC processor can control a test channel by reading/writing 
its internal registers. Once initialized by the MMC processor, a test 
channel can carry out most of the testing of a chip. Thus the processor 
need not deal with detailed test-bus control sequences since they are 
generated by the test channel. This strategy greatly simplifies the 
development of test programs. The proposed MMC can be implemented 
as a single-chip ASIC or by off-the-shelf components. Some self-test 
features of the MMC are also presented. 

I. INTRODUCTION 

DESIGNING testable chips which can be connected to 
standard test buses has recently drawn much attention 

[l]-[3], [12], [16]-[18]. This is due primarly to two major 
initiatives dealing with testable designs, which have emerged 
over the last few years. One is the ETM-BUS protocol 
proposed by the VHSIC committee [13]; another is the 
boundary scan protocol proposed by the JTAG committee 
[21], which has attracted considerable industrial support. 
Recently, the IEEE Testability Bus Standard Committee 
(TBSC) developed several test-bus protocols for board-level 
testing, known as P1149.X (x = 1, 2, 3, 4) [22]. The serial 
test bus, namely PI 149.1, was adopted from the JTAG 
proposal. As a result of these IEEE proposals, the ETM-BUS 
protocol will probably be abandoned. 

The main objective of these efforts is to support the design 
for testability (DFT) of a module (or a board). An acceptable 
degree of testability is not always achievable by simply using a 
set of testable chips unless they are properly integrated at the 
module level. Similar problems exist at both the subsystem 
level and system level. For a system to have a high degree of 
testability and maintainability, the system must be testable at 
every level of integration. Examples of such systems are 
described in [7] and [11]. 
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A hierarchical system design methodology to support test 
and maintenance, known as an HTM, has recently been 
reported [7]. In this methodology, a hierarchy of test control­
lers is embedded into a target system's physical hierarchy. In 
an HTM system, each testable chip contains an on-Chip test 
and Maintenance Controller (CMC); each testable module 
contains a Module test and Maintenance Controller (MMC); 
each testable subsystem contains a Subsystem test and Mainte­
nance Processor (SuMP); and each system has a System test 
and Maintenance Processor (SMP). These controllers partici­
pate in all system test and maintenance activities and commu­
nicate via test buses. Fig. 1 shows part of the test hierarchy 
with these four levels of controllers. Different buses may be 
used for communcation at different levels. The SMP commu­
nicates with SuMP's through a Level-2 bus (L2-bus); a SuMP 
communicates with MMC's through a Level-1 bus (Ll-bus); 
and an MMC communicates with CMC's through a Level-0 
bus (LO-bus). 

Bus interfaces are required for both the controlling party 
(master) and controlled parties (slaves) on a bus. For example, 
each CMC contains an LO-slave to interface to an LO-bus. 
Each MMC contains an LO-master to control an LO-bus and an 
Ll-slave to communicate with an Ll-bus. If MMC's, SuMP's, 
and SMP's are all designed to be testable chips, they each 
should contain a CMC. It is possible for an MMC to have 
more than one LO-master and thus control more than one LO-
bus. 

Suitable LO-bus designs are the JTAG boundary scan bus, 
the VHSIC ETM-BUS, and the IEEE P1 149.x (x = 1,2,3,4) 
bus. The TM-BUS [14] is suitable for an Ll-bus design. The 
TM-BUS or a system functional bus, such as the pi-bus, can be 
used for the L2-bus. In this paper, we employ the JTAG bus 
and the LO-bus; hence, every LO-slave contains a test access 
port (TAP) controller. This bus consists of a data line input 
(TDI) to the chip, a data line output (TDO), a control input 
(TMS), a clock (TCK), and an optional interrupt output line 
(INT). 

This paper deals primarily with the design of an MMC. An 
MMC is able to control the self-test process of a module (or 
board) by accessing each chip's BIT structures through an LO-
bus. The proposed MMC is universal in that the same basic 
design is used for all modules. MMC's differ by the test 
programs they execute, the number of these buses they 
control, and the expansion units they employ. Test programs 
direct-the processor in an MMC in the execution of the built-in 
self test (BIST) process for the entire module. The test results 
are then reported to a SuMP via an Ll-bus. A SuMP can 
initiate the self-test process of a module by sending a "begin 
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Fig. 1. Test hierarchy for a module. 

test" commmand to the MMC on that module. The MMC then 
reports the "health status" of that module to a SuMP. 

An MMC contains bus interface units, such as an LI-slave 
and an LO-master, a processing unit such as a processor, a 
memory unit consisting of RAM's and ROM's, one or more 
test channels, a bus driver/receiver, one or more expansion 
units such as testability registers and analog test interface, and 
a CMC. Only bus interface units are shown in Fig. 1. 

A simple yet novel design, called a test channel, is used in 
an MMC. Since every testable chip has an LO-slave in its 
CMC, a test channel, which contains an LO-master, can 
communicate over an LO-bus with a CMC. The MMC's 
processor can control a test channel by reading or writing its 
internal registers. Once initiated by the processor, a test 
channel can completely control an LO-bus and the testing of a 
chip. The separation of processor and test buses provided by 
test channels prevents the processor from dealing with detailed 
bus timing activities. A test channel translates processor 
instructions into proper timing sequences for an LO-bus. A test 
process can now be represented as high-level processor 
instructions. 

Budde reported on the design of the Testprocessor [9], 
which is similar to our MMC. The Testprocessor is intended 
to carry out some of the functions of the CMC and the MMC. 
Since it may be part of an application chip, it must be simple. 
The Testprocessor is programmed at the microinstruction 
level. All peripherial devices are controlled directly by the 
control signals provided by the microinstructions. The number 
of expansion units is limited by the total number of control 
signals the control unit can provide. Data can be moved 
directly between the test-pattern RAM and the test interfaces 
without going through the processor register. Obviously, this 

is an efficient approach for data movement. However, due to 
the limitation of the bus, only one serial interface can run at a 
time. Comparisons are done by a fault-secure comparator. 
There is no other data processing unit in the Testprocessor. 
Due to the limited processing capability, diagnostic programs 
cannot run on the Testprocessor. 

In Section II a control model for a testable chip is presented. 
The design requirements of an MMC are presented in Section 
III, followed by its architecture in Section IV. Major building 
blocks such as a test channel, processor, and memory are 
described in turn. Some self-test aspects of the MMC are 
presented in Section V. 

II. A CONTROL MODEL FOR TESTABLE CHIPS 

A test controller for the DFT and/or BIST hardware on a 
chip must be able to: 1) provide data to the circuit under test 
(CUT), such as test vectors or seed values; 2) switch between 
test and functional clocks; 3) provide required control signals; 
4) count the number of tests executed; and 5) execute and 
process test results. More details on DFT and BIST test 
controllers can be found in [5] and [6]. Both control signals 
and data required to test a chip are supplied, to some extent, by 
the MMC. Thus the hardware for carrying out this test process 
can be distributed between the MMC and the CMC. 

An MMC can transmit two types of information to a chip, 
namely instructions and data. Instructions are sent to the 
instruction register in the LO-slave to control and/or configure 
the test function of a chip, while data are set to a selected scan 
chain in the chip. Two types of information are sent from a 
chip to an MMC, namely status and results. The status consist 
of the values of important signals monitored by the chip, while 
results come from a selected scan chain in the chip. 

Fig. 2(a) shows a typical testable chip employing the JTAG 
boundary scan architecture. Components within dashed boxes 
are optional. The original portion of the chip, denoted as the 
application circuit, has been modified to have n scannable data 
registers. Everything outside of application circuit, which is 
added for the purpose of testing the chip, is called the CMC. 
The CMC consists of an LO-slave and a BIT controller (see 
Fig. 2(b)). Assuming the LO-bus is a JTAG boundary scan 
bus, then the LO-slave consists of a TAP controller, an output 
buffer, an instruction register, two multiplexers, a bypass 
register and, optionally, an interrupt circuit. 

In the control of the CMC by the MMC, two control 
schemata exist, namely centralized and distributed. In the 
centralized control schema, the MMC and CMC are tightly 
coupled during the entire test process of a chip, and the test 
bus is thus tied up during this time. The CMC cannot execute a 
test process without the help of the MMC. In the distributed 
control schema, the test bus is used only to initialize the test 
process. The CMC then executes the test process without any 
help from the MMC. During this time, the test bus can be used 
to communicate with other CMC's. At the termination of the 
test, the bus is used for the transmission of test results from the 
CMC to the MMC. 

III. MMC DESIGN 

An MMC must be able to respond to request from a SuMP, 
to carry out tests for every chip on the module, and to report 
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Fig. 2. Control model for a testable chip: (a) JTAG architecture, and (b) 
abstract model. 

test results to a SuMP. The requirements for an MMC are 
outlined next, followed by a description of its architecture in 
Section IV. 

A. Requirements for an MMC 

Based on the test control model presented, one can design an 
MMC to satisfy all requirements for testing a module 
containing testable chips. An MMC should be able to support 
the following functions: 

1) access the on-chip BIT structures via an LO-bus; 
2) provide proper control sequence for the execution of a 

chip's BIT structures; 
3) provide test data and collect test results if necessary; 
4) analyze test results to decide on the health status of 

chips; 
5) test the interconnection among different chips on the 

module via the boundary scan registers; 
6) provide controllability and observability for nontestable 

chips and analog circuits; and 
7) interface with a SuMP or the control console. 

An MMC must have memory to store test data and/or test 
results if deterministic test data are used. For random or 
exhaustive test methodologies, much less memory is required 
since only seed data and signatures need to be stored. 

IV. MMC ARCHITECTURE 

Fig. 3 shows the architecture of an MMC. It consists of a 
16-bit general- or special-purpose processor, a ROM, a RAM, 
a test channel, a CMC with an LO-slave, an Ll-slave, and a 

Fig. 3. Architecture of an MMC. 

bus-driver/receiver (BDR), which support an expansion bus. 
Extra units can be added to the MMC via the BDR. For 
example, a functional bus interface, two testability registers, 
an analog test interface, several test channels, an expansion 
ROM, a control console interface, and a disk interface are 
shown in the figure. The components shown within the dashed 
line box are required for every MMC. This unit can be 
implemented as a single ASIC chip. All other units on the 
expansion bus can be designed for one or more ASIC chips. 
CMC's for these chips are not shown. 

All units on the local and expansion bus are accessed by the 
processor in a memory-map schema. That is, every accessible 
register of each unit occupies one location in the global 
address space. The processor can read from or write into these 
registers by first addressing the appropriate registers. Each 
unit must be able to decode the address lines. Once a register is 
selected, an enable signal is generated to initiate a READ or 
WRITE operation. 

A. Test-Channel Design 

A CMC may have a pseudorandom test-pattern generator 
(TPG) and a signature analyzer (SA), which can be imple­
mented using linear feedback shift registers (LFSR's) [19]. In 
this case, only control signals need be supplied by a test bus 
during self-test. An example of such a design is presented in 
[1]. However, if the chip does not have these registers and is to 
be tested using pseudorandom test data, then a TPG and an SA 
must be made a part of the MMC. For chips tested by 
deterministic test vectors, an MMC must be able to provide 
test vectors and obtain test results via a test channel. 

Once initialized by the processor, the primary function of a 
test channel is to control an LO-bus autonomously. The 
processor can then be used for other tasks. Thus, high test 
parallelism can be achieved through running several test 
channels at the same time. 

The major functions of a test channel are listed below: 

1) serve as an LO-master; 
2) transmit instructions to and receive status from chips; 
3) generate and transmit pseudorandom test data and 

receive and compact test results; 
4) transmit deterministic test vectors to and receive test 

results from chips; 
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Fig. 4. Architecture of a test channel. 

5) generate interrupts and also direct interrupts from chips 
to the processor; and 

6) keep count of the number of tests applied and the number 
of bits of each test or instruction transmitted. 

Organization of a Test Channel: Fig. 4 shows a block 
diagram of a test channel. Solid lines represent data flow 
paths, and dashed lines represent control flow paths. A test 
channel consists of a transmitter register (TxR) for transmit­
ting data over the TDI line; a receiver register (RxR) for 
receiving data on the TDO line; two polynominal control and 
buffer registers PA and PB; a control register (CR), which 
specifies operation mode, selection, and function enabling 
information; a status register (SR), which contains the current 
chip status; three counters, namely a test counter (TC), which 
stores the total number of test vectors to be sent, a scan counter 
(SC), which keeps track of the number of bits in a test vector 
which have been transmitted, and a delay counter (DC), which 
keeps track of the elapse idle time between two vectors; a 
register count number register (CNR), which contains the 
initial values for SC and DC; a register select circuit for 
processor READ/WRITE control; an interrupt circuit to request 
service from the processor; and a control unit FSM1, which 
implements the LO-master protocol and is used to send and 
receive information via an LO-bus under the control of the CR 
and the three counters. If a test channel is implemented as a 
stand-alone unit, then it should also have a CMC. 

Output signals, such as TDI and TMS, are all driven 
through a tri-state buffer thus allowing two or more test 
channels to be connected to an LO-bus. This enhances the 
reliability of the test process and makes external testing of a 
module by another MMC feasible [7]. A more detailed 
description of the major blocks follows. 

1. TxR (Transmitter Register): The TxR is a 16-bit 
register with parallel LOAD, SHIFT, and TPG capabilities. It 
is used to transmit data over the TD/line. During pseudoran­
dom data transmission, the TxR acts as a TPG. The feedback 

polynominal of the TPG is controlled by PA. Any feedback 
polynominal can be realized since PA is directly writable by 
the processor. The seed value for the TPG also can be loaded 
by the processor. During instruction or deterministic data 
transmission, TxR acts as a shift register. It must be loaded 
with a new word of data before transmission is initiated. The 
PA serves as a buffer for transmission. Once TxR is empty, 
the next word of data, which is already PA, is copied into 
TxR. Processor service is then requested in order to load a 
new word of data into PA. Transmission over the LO-bus is not 
interrupted during the 16-clock-cycle window in which PA 
may receive a new data word. If the data transfer rate is not 
fast enough, or when TxR is empty and PA does not contain a 
new word of data, the LO-bus enters a pause state until PA is 
loaded. 

2. RxR (Receiver Register): The RxR is a 16-bit register 
with parallel READ, SHIFT and SA capabilities. It is used to 
receive data from the TDO line. Received data are either read 
by the processor or compressed into a signature. During' 
pseudorandom data transmission, RxR acts as an SA. The 
feedback polynominal is controlled by PB. The final signature 
in RxR can be read out via a processor READ operation. During 
transmission of status or deterministic results, data on the 
TDO line are shifted into RxR. PB serves as a buffer. Once 
the RxR is full, its content is copied into PB. A service request 
is generated to signal the processor to read PB and store the 
data in the RAM. If the previous results in PB have not yet 
been read, the LO-bus enters a pause state. Transmission 
cannot start again until PB is read and RxR transfers its data to 
PB. 

3. PA, PB (Polynominal Control Registers): Both regis­
ters are 16 bit and have parallel LOAD capability. They can be 
accessed by the processor via the data bus. Their functions 
have already been described. 

4. CR (Control Register): CR is a 7-bit register. Symbolic 
names used for the CR bits are FSMen, INTen, MSO, MSI, 
BS0, BSl, and Scan. FSMen and INTen are used to enable 
FSM1 and the interrupt circuit, respectively, MSO and MSI 
are used to specify operation modes; BSO and BSl address one 
of the TMSi (i = 0, 1, 2, 3) signals, and Scan is. for the 
selection operation type. 

5. SR (Status Register): SR is a 4-bit register consisting of 
bits Finish, IRQ, Ready, and Wait. The Ready bit is cleared 
whenever the content of PA is copied into TxR and is set 
whenever the processor loads new data into PA. The Finish bit 
is set only when the required information has been transferred 
or TC reaches 0. The IRQ bit is set when the INT line from 
the test bus is active. The Wait bit is set when both the TxR 
and PA are empty and is cleared when the TxR is loaded. A 
processor SR READ operation also reads the contents of CR, 
i.e., 11 bits are read. This operation can be performed 
independent of the state of the FSM1. Bits Finish and IRQ are 
cleared whenever the SR is read. 

6. TC (Test Counter): TC is used to keep count of the 
number of test vectors transmitted during the execution of one 
test session. The TC is a 22-bit down counter and requires two 
processor WRITE operations to load. One of the WRITE opera­
tions loads part of this counter and part of the CR. This 
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counter is able to count down to 0 from any number between 1 
and 4 194 303. 

7. SC (Scan Counter): SC is used to keep count of the 
number of bits of a test vector or instruction which have been 
transmitted. SC is a 10-bit down counter and can count down 
to 0 from any number from 1 to 1023. Its initial value is loaded 
from the CNR. A terminal count signal will be activated 
whenever the value in SC reaches 0, and the value s in CNR 
will be copied into SC. In transmitting t test vectors to a chip 
during one test session, SC must be re-initialized (to the value 
s) t times. 

8. DC (Delay Counter): DC is a 5-bit down counter and is 
used to count the number of clock cycles between the 
transmission of two consecutive test vectors.. Its initial value 
can be loaded from the CNR. The DC can count down to 0 
from any number from 1 to 31. A terminal count signal will be 
activated whenever DC reaches 0, and the value d in CNR will 
be copied into DC. 

9. CNR (Count Number Register): This buffer is used to 
store the initial value of the constants for both SC and DC, 
i.e., s and d referred to above. These counters destroy their 
original contents after a test vector is transmitted. Thus, this 
register is used to restore the value of both SC and DC so that 
the next vector can be transmitted. The CNR is 15 bits long. It 
can be loaded by a single processor WRITE operation. 

10. Register Select Circuit: This circuit is driven by the 
processor and is used so that the processor can write into and/ 
or read from various registers in the test channel. Registers 
CNR, TC, CR, SR, TxR, RxR, PA, and PB are accessible to 
the processor. When the Direct signal here is inactive, the 
registers are selected by address. When the Direct signal is 
active, this circuit interprets a processor READ operation as a 
WRITE to PA operation, thus ignoring the address lines. In 
addition, the address and READ signals are used to read a word 
from the memory unit. Thus, a word of data is transferred 
from the memory unit to the PA of the selected test channel. 
Similarly, when Direct is active, a processor WRITE operation 
is interpreted as a READ from PB operation. The address and 
WRITE signals are used to write the contents of PB into the 
memory unit. 

11. FSM1: This circuit controls the operation of a test 
channel and acts as an LO-master. It receives control signals 
from CR and conditional signals from counters. TC, SC, and 
DC. When the FSMen bit is set, a processor-generated WRITE 

operation is used to generate a Start signal, which in turn 
initiates the FSM1. 

Operation of the Test Channel: The operation of a test 
channel is controlled by its FSM1. The FSM1 controls the 
state of a test bus via signal line TMS (see Fig. 4). For the 
possible JTAG bus states, the reader is referred to [21]. 

A test channel provides for two types of operation, namely 
RunTest and Scan. During RunTest, die test bus enters die 
Idle/RunTest state for a predetermined number of clock 
cycles. The TC counter keeps tracking of this number. No data 
is transmitted on either the TDI or TDO lines. This type of 
operation is used when a CUT has BIST capability, and the 
BIST hardware has been properly initialized through the test 
bus. The chip's BIST controller runs the self-test as long as the 
bus stays in the Idle/RunTest state. 

TABLE I. 
COUNTER USAGE 

TC 
SC 
DC 
TxE 
RxR 

PTD 
no. of tests 
no. of bits 
elapsed clock cycles 
TPG 
SA 

DTD 
no. of tests 
no. of bits 
set to 15 
SHIFT 
SHIFT 

DRC 
no. of tests 
no. of bits 
set to IS 
SHIFT 
SA 

INS 
set to 1 
no. of bits 
set to 15 
SHIFT 
SHIFT 

RunTest 

no. of clock cycles 

— 
— 
— 
— 

During Scan operation, the test channel tranfers either 
pseudorandom test data (PTD), deterministic test data without 
results compression (DTD), deterministic test data with results 
compression (DRC), or instruction (INS). The operation of the 
test channel is controlled by the CR and three counters. These 
counters are used for all types of information transfer. During 
different operations, a counter may be used for different 
purposes. For example, in PTD transmission, TC keeps track 
of the number of test vectors applied, SC keeps track of the 
number of bits transmitted, and DC keeps track of the number 
of elapsed clock cycles between two consecutive test vectors. 
Table I indicates how these counters are used. The operation 
modes of the TxR and RxR are also shown in the table. 

Fig. 5 shows the state transitions carried out by a test 
channel. Dashed rectangles represent a wait for processor 
service. The operations indicated in the solid rectangles 
execute in one clock cycle. The protocol corresponding to this 
state-transition diagram is consistent with the JTAG boundary 
scan protocol. 

The FSMen bit is cleared during the power-up process, and 
the test channel enters the idle state at this time. The processor 
can read from and write into internal registers of a test channel 
while in tfiis state. After initializing the appropriate set of 
registers, setting the Start signal and FSMen bit will initiate 
the operation of the FSM1. Depending on the setting of bits 
Scan, MSO, and MSI, the FSM1 follows one of the five major 
branches as shown in Fig. 5(a). 

The branch labeled PTD is followed when pseudorandom 
testing is used. Registers PA, PB, TxR, RxR, CNR, and TC 
are assumed to have been initialized to appropriate values, 
such as pa, pb, seedl, seed2, (s, d) and t. The TxR acts as a 
TPG with pa selecting die feedback polynominal and seedl as 
its initial value; RxR acts as an SA with pb selecting die 
feedback polynominal and seed2 as its initial value. The test 
channel then autonomously transmits t random test vectors 
generated by TxR to TDI and compresses t test results in the 
RxR. Each test result is s bits long, and d clock cycles of delay 
exist between two consecutive test vectors. No service from 
the processor is required during pseudorandom testing. The 
Finish bit is set to signal the processor that the process has 
completed. The processor then reads the signature stored in 
RxR to determine the test result. 

The branch labeled DTD (see Fig. 5(b)) is used when 
deterministic test data are employed. Registers CNR and TC 
contain the values (s, d) and t. Note that d is always equal to 
15 for the DTD process. Its purpose is to clear the Ready bit 
after every 16 bits transmitted. For a test vector longer than 16 
bits, TxR is loaded with the first 16 bits of deterministic test 
data before the Start signal is activated. After 15 shift 
operations, TxR contains the last bit of the test data. One clock 
cycle later, RxR is full. Two possible situations exist. After 
these shift operations have occurred, it is possible diat PA is 
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Fig. 5. State transition diagram for a test channel: (a) overall diagram, and 
(b) the DTD case. 

full {Ready = 1). Then the content of PA is copied into TxR 
and one clock cycle later the content of RxR is copied into PB. 
The Ready bit is cleared, and transmission over TDI and TDO 
is not interrupted. The processor then has another 16 clock 
cycles to load PA, read PB, and set the Ready bit. 

Another possibility is that PA is empty (Ready = 0). 
Transmission is then interrupted, and the Wait bit is set to 
request service from the processor. Waiting for the processor 
to read the RxR and load TxR is indicated by a dashed 
rectangle in Fig. 5(b). The test bus is in the pause state during 

the wait period. Once the processor finishes the READ/WRITE 

process, it clears the Wait bit to allow the FSM1 to transfer 
another 16 bits of information. The Finish bit is set upon the 
completion of the DTD test, i.e., when TC reaches zero. 

The branch labeled DRC is followed when deterministic test 
data are used and test results are compressed in RxR. The 
volume of information flow between the memory unit and test 
channel is reduced by half over the DTD operation. 

The branch labeled INS is followed when transmitting 
instructions. The content of TC is set to 1. The operation of the 
test channel is similar to that for DTD operations. The only 
difference is that the sequence of values on the TMS line is 
different. 

The branch labeled RunTest is followed when the RunTest 
operation is used. The test channel transmits a specific 
sequence as specified by the JTAG protocol over the TMS line 
such that all LO-slaves connected to the selected signal TMSi 
will enter the Idle/RunTest state for t clock cycles. The 
Finish bit is set before returning to the idle state again. 

The loop conditions depend on condition signals (TC = 0, 
SC = 0, DC - 0, and DC > 1) generated by counters TC, 
SC, and DC, respectively. The processor can stop or disable 
the operation of the FSM1 by loading a new word into CR 
through a processor write operation. Resetting the FSMen bit 
will halt the operation of the FSM1. In order to maintain 
consistent operation, modification of all other registers, except 
PA, PB, TxR and RxR, is prohibited until the Finish bit is 
set or an interrupt has occurred. 

B. Bus Driver/Receiver 

The BDR is a bidirectional interface to the local bus of the 
MMC. It provides driving capability for the signals to/from 
the expansion bus. Fig. 6 shows the basic architecture of the 
BDR. Signals IN and OUT control the flow of information 
between the local bus and the expansion bus. These two 
signals are decoded from the address and control buses, which 
are subbuses of the local bus. When the addressed unit is not 
directly tied to the local bus, the BDR is used to allow 
searching for the appropriate unit on the expansion bus. To 
allow interrupts from units tied to the expansion bus to reach 
the local bus, the expansion bus interrupt signals can also 
assert the IN signal. 

C. Functional Bus Interface 

The funtional bus interface (FBI) allows communications 
between the module's functional bus and the MMC's expan­
sion bus. Through the FBI, the MMC can execute functional 
tests for the module. Details of this interface will not be 
presented here. Further information on related interfacing 
techniques can be found in [4]. 

D. Testability Register 

This is a 16-bit register used to increase the testability of 
modules containing chips which are either not designed to be 
testable or do not have a test bus interface. The boundary scan 
registers on testable chips can be used to increase the 
testability of nontestable chips. However, in many cases, no 
boundary scan registers can be found to access signals between 
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Fig. 6. Bus driver/receiver. 

nontestable chips. The testability register can be used to 
increase the testability of these chips and their signals in the 
following way. Signal points which need to be controlled (C) 
and/or observed (O) are cut and fed into the testability 
register. The O signals are connected to the C signals during 
normal operation (see Fig. 7). In test mode, the processor 
writes a word to the testability register which in turn applies 
this data to the C signals. O signals are loaded into the 
testability register and then read by the processor. Thus, both 
the controllability and observability of these cut points are 
enhanced. A technique for selecting these signal points is 
presented in [10]. 

E. Analog Test Interface 

This circuit is used when there are analog circuits on the 
module under test (see Fig. 8). To generate an analog signal, 
the processor writes a word to the analog test interface, and the 
D/A converter then converts this data into an analog signal. 
For observability, an analog signal is converted into a digital 
word, which can then be read by the processor. 

F. Ll-slave 

The MMC communicates with its higher level SuMP 
controller via an LI-bus; thus, it must have an Ll-slave. The 
design of a TM-slave is given in [8]. 

G. Processor 

Processor functions can be classified into five categories: 1) 
transfer data between memory and test channels; 2) transfer 
data between memory and an Ll-slave; 3) compare test results 
with good results; 4) transfer data between memory and 
expansion units; and 5) execute test and/or diagnostic pro­
grams. 

A general- or special-purpose 16-bit processor can be used 
in the MMC. It controls all other units in the MMC. Through 
READ/WRITE operations, the processor can access internal 
registers of a peripheral device, such as the Ll-slave and test 
channels. Operations of a peripheral device can thus be 
controlled by a processor WRITE to the CR of the peripheral 
device. Data exchange between memory and a peripheral 
device are controlled by processor READ/WRITE operations. Any 
processor having the following instructions is powerful 
enough for the application of an MMC. 

instruction 
LDA Ri 

LDA M 
STA Ri 

STA M 

meaning 
Load Ace with Ri. 
Load Ace from memory location M. 
Store Ace to Ri 

Store Ace to memory location M. 

Fig. 7. Testability register: (a) block diagram, and (b) circuitry for bit i. 

ADD Ri 

AND Ri 
CMP Ri 
NEG 
CLA 
BRZ Ri 
JMP Ri 
PUSH 
POP 
NOOP 
HALT 

enable 

Fig. 8. Analog test interface. 

Add Ri to Ace. 
Bitwise AND Ri, with Ace. 
Compare Ace with Rj. 
Complement Ace. 
Clear Ace. 
Branch to location Ri, if Ace not zero 
Jump to location Ri. 
Push Ace onto stack. 
Pop Ace from stack. 
No operation. 
Halt the processor. 

The minimal architecture for a processor which is able to 
execute the above instruction set consists of an accumulator, 
four general-purpose registers, an ALU, a program counter, a 
program status word, a stack with at least four words, an 
interrupt circuit, and a microprogrammed control unit. 
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If an MMC is implemented as a single-chip ASIC, two 
additional instructions are useful to increase the data transfer 
efficiency between the memory unit and a test channel. The 
added instructions are MULTIPLE READ (MR) and MULTIPLE READ 

and MULTIPLE WRITE (MRMW). The signal lines Direct, Finish, 
and Ready are used exclusively to support these two instruc­
tions (see Fig. 9). Signal Direct is active when the microcon­
troller is executing any one of these two instructions. Signals 
Finish and Ready are used as conditional signals for the 
microcontroller of the processor. All Ready (Finish) signals 
from test channels are wired-ORed together. 

When executing an MR instruction, the processor waits 
until the Ready signal is cleared and then issues a READ 

operation to the memory location addressed by general-
purpose register R0. Meanwhile, the test channel with FSMen 
bit set and operation mode being either DTD, DRC, or INS 
can generate a load PA signal using signals Direct and Read. 
Thus, a data word is moved directly from memory to a test 
channel. The value of R0 is increased by one after each READ. 

The processor waits for the Ready signal to be activated and 
then issues another READ operation. This process is repeated 
until the Finish signal is set. Thus, a block of information can 
be moved from the memory unit to the selected test channel 
and transmitted to a chip without any interruption. 

When executing an MRMW instruction, the processor waits 
until the Ready signal is deactivated and then issues a READ 

operation to the memory location addressed by R0; mean­
while, the enabled test channel generates a load PA signal, and 
the data word from memory is loaded into the PA. The value 
of R0 is incremented by one. The processor then issues a WRITE 

operation to the memory location addressed by Rl; mean­
while, the enabled test channel generates a READ PB signal, and 
a data word is read out of the PB and sent to the memory. The 
value of R1 is incremented. The processor waits for the Ready 
signal to be deactivated again and then issues another READ/ 

WRITE operation. This process is repeated until the Finish 
signal is set. Thus, a block of deterministic test data is moved 
from the memory unit to the selected test channel, and a block 
of test results is moved from the selected test channel to the 
memory unit. 

H. Memory 

The memory unit in an MMC is composed of a RAM unit 
and a ROM unit. The ROM unit contains test programs to test 
the entire module. These programs are compiled separately 
before testing. Some crucial information about the chips on the 
module is stored here such as the number of chips to be tested, 
ordering of chips along the test bus ring, number and length of 
scan chains for each chip, number of random test vectors to 
apply to each chain, test instructions for each chip's CMC, 
TPG seeds, and good signature for each test session. MMC 
functional self-test programs can also be stored in this unit. If 
the MMC is implemented using commercial IC's, then these 
programs are essential for MMC self-test. The expansion 
ROM can be added where a module requires a large test 
program. 

The RAM unit provides scratch pad memory for test 
program execution. Response signatures are stored here for 

Fig. 9. Control signals for MR and MRMW instructions. 

latter evaluation. The RAM also provides storage for the Go/ 
NoGo status for all chips, as well as for the entire module. 

/. Stand-alone MMC 

The MMC can be used as a stand-alone mini ATE, provided 
extra storage and console capabilities are added. For this 
application, a console control interface and disk interface can 
be added to the MMC. 

V. MMC SELF-TEST 

If the MMC is implemented with an off-the-shelf "nontest-
able" processor, ROM, and RAM, then some form of 
functional self-test is required. After finishing self-test, the 
MMC then reports its status to the control console or to a 
SuMP. 

An MMC can also be tested by either an ATE or by another 
MMC. In the first case, an ATE can access the expansion bus 
of the MMC under test. The ATE invokes the self-test 
program of the MMC under test and waits until its completion. 
The test results, which are stored in the RAM, are then read by 
the ATE. In the second case, an MMC uses its FBI to access 
the expansion bus of the MMC under test. Again, self-test 
programs can be invoked. Test results can be read and 
interpreted by the monitoring MMC. 

If the MMC under test is implemented as a custom testable 
ASIC, then we assume it has a CMC. The MMC can thus be 
tested by another MMC. All units in the MMC, such as the 
processor, RAM, ROM, test channel, and Ll-slave must be 
designed to be testable, and their BIT structure must be 
accessible via the LO-slave. 

The testable design features of a test channel are shown in 
Fig. 10. Major combinational logic blocks are indicated by 
rectangles having dotted lines. Registers are indicated by 
rectangles having solid lines. Some logic is associated with 
these registers, since some are counters and LFSR's. Normal 
functional connections are not shown. Instead two scan chains 
formed during self-test are shown. Scan chain 1 is the 
boundary scan chain. All I/O signals can be controlled and 
observed by shifting test data or results along this chain. All 
other registers make up scan chain 2. The state of the test 
channel is controlled by shifting data along this scan chain. If a 
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Fig. 10. Testable design features for a test channel. 

functional clock is then activated, the next state of the test 
channel also can be observed by shifting out the content of this 
chain. 

During testing, scan chain 1 is first loaded with test data 
which is held in place while the logic associated with scan 
chain 2 is tested. The module I/O is tested using the boundary 
scan chains of this chip and those to which it is connected. 

VI. CONCLUSIONS AND DISCUSSIONS 

We have described an MMC design suitable for controlling 
the self-test process of a module. The design uses the concept 
of test channels, which can run a test autonomously (in PTD 
case) once it is initialized by the processor. Because of the test 
channel, the processor need not deal with detailed control 
sequences over the JTAG boundary scan bus. Test execution 
sequences for chips can be generated in terms of processor 
READ/WRITE operations, which greatly simplifies the develop­
ment of test programs. 

The MMC architecture is expandable. More test channels 
can be added so that more chips can be tested in parallel. In 
addition, the MMC supports the functional testing of a 
module, the testing of clusters of chips which are not designed 
to be testable, and the testing of analog devices. 

Clock Synchronization: Four or more clocks may be 
applied to an MMC, viz. TCK for the CMC, FCKl for the 
Ll-slave, FCKl for each test channel connected to an LO-bus, 
and FCK3 for the operation among processor and other 
peripheral devices. Synchronization problems will occur in a 
test channel where both FCKl and FCK3 may access the same 
component, such as TxR and RxR. Techniques to solve this 
problem can be found in [4] and [15]. In the design presented 
here, a common clock is used to drive all the clocks mentioned 
above, thus avoiding the clock synchronization problem. 

Portable tester. The proposed MMC is designed to be part 
of an HTM system. It is assumed that each module contains an 
MMC, which under request from a SuMP can test all chips on 
the module and report back test results. However, it is possible 

to build an MMC as a portable stand-alone unit. In this case, 
the Ll-slave can be replaced by a control panel. A stand-alone 
MMC can test any module having an LO-bus. The module's 
built-in MMC is tested first through its LO-slave. Application 
chips on the module can be tested either by the built-in MMC 
or by the stand-alone MMC. For the latter case, the built-in 
MMC must be disabled to allow the stand-alone MMC to take 
control the module's LO-bus. An operator can start the test 
process via the control panel. Test programs stored in the 
ROM then take over control. After all chips have been tested, 
test results are shown on the control panel to indicate the Go/ 
NoGo status of the module under test. 

Overhead: There are several ways of implementing an 
MMC. One or more test channels can be built on an ASIC 
chip. The processor, RAM, and ROM can be implemented 
using standard chips. The other functions, which are optional, 
can be implemented using standard parts or an ASIC chip, 
excluding the expansion ROM. The application chip requires 
overhead to support testability, such as scan registers, as well 
as a LO-slave. For double-latch designs, scan area overhead 
usually varies from 2.8 to 6.3 percent, depending on the ratio 
of gates to latches [20]. The overhead for the LO-slave 
depends on the length of the instruction register and the 
number of I/O pins. Assuming each shift register latch (SRL) 
is equivalent to ten gates, an LO-slave with a 16-bit instruction 
register and a 60-bit boundary scan register requires about 
1600 gates. For a 50 000-gate ASIC chip, the total overhead 
for testability will typically be between 5 and 10 percent. 

The JTAG bus consists of four wires. Assuming 60 pins/ 
chip prior to adding the bus, the routing overhead to support 
testability will be at least 4/60*100 = 6.7 percent. This is a 
lower bound since most pins on a chip are tied to only two to 
three point nets, while the JTAG bus goes to all IC's. We 
estimate the wiring overhead to be closer to 10 percent. 

Fault Isolation: One of the important attributes of bound­
ary scan is the ability to test the interconnect between chips. 
Assuming chips are also designed to be testable via DFT or 
BIST techniques, the MMC should be able to accurately 
isolate hardware faults to a chip or interconnect. 

Analog Performance: Since the A/D and D/A conversion 
time is much smaller than the data transfer rate over the bus, 
the speed of observing or controlling an analog signal is 
determined by the data-bus bandwidth. For example, an Intel 
80186 processor running at 8-MHz clock rate can transfer 4-
MByte of data from memory to the analog interface in 1 s. 

CAD Tool Support: Clearly, a great deal of binary data 
flows between an MMC and test application chips. It is not 
feasible to develop these data manually. Thus, CAD tools are 
required so that test programs for chips can be written in a 
high-level language and these programs compiled into code 
which is executed by an MMC. We are currently working on 
developing such tools and associated test languages. 
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THE IMPACT OF 
BOUNDARY SCAN 

ONBOARD TEST 

KENNETH P. PARKER 
Hewlett-Packard 

Boundary scan, which began as a 
proposal from Joint Test Action 

Group, is now IEEE proposed 
standard PI 149.1. This technology for 

incorporating design for testability 
into ICs can actually benefit several 

levels of manufacturing from IC 
fabrication through boards and into 

system test. Boundary scan's impact 
seems particularly noticeable in 
production-board testing. Pure 

boundary-scan implementations, in 
which all ICs are scannable, are not 

likely to appear in the near future, but 
the benefits of partial implementations 

are still significant. While definitely 
not a replacement for ATE, boundary 
scan can still reduce test complexity 

and cost, and increase accuracy. 
Those not willing to incorporate 

boundary scan at the IC level must be 
prepared to balance costs at that level 
with the costs of board test, which are 

escalating in the face of growing 
complexity. 

This article is based on the keynote presenta­
tion given at the BIST Workshop, Kiowah 
Island, South Carolina, March 1989. 

Testing technology h a s been examined formally a n d in 
depth for m a n y years . This year m a r k s the 2 0 t h Inter­
nat ional Test Conference, the 12th Design for Testability 
Workshop, a n d the Eighth Built-in Self-Test Workshop. 

However, despite the fact t h a t design-for-testability technology 
h a s been widely disseminated, the indus t ry overall—except for 
large, vertically integrated companies—has t aken remarkably 
little advantage of it. ' There are only a few examples of indust r ia l 
DFT and built-in self-test applications, s u c h as the level-sensitive 
s can design approach developed by IBM. 

One source of th is res is tance is designers, who tend to be 
offended by the overhead of extra circuitry and possible perfor­
mance degradat ion from adding testability. When t aken in t he 
nar row view, tha t of designing a small pa r t of a product , t he 
overhead does appear onerous . If, however, we look at t he larger 
view, t ha t of the entire des ign /manufac tur ing process, the costs 
a re made up in reduced test ing costs a t all levels, a n d decreased 
development t ime. Thus , as Dave Ballew of AT&T p u t it, we m u s t 
avoid being "silicon wise a n d system foolish." 

Manufacturers of ICs have also been re luc tant to provide tes­
tability features for u s e r s even though for VLSI it is absolutely 
manda tory to incorporate testability to economically produce 
such par t s . Some reasons for their hesi tancy are 

• Testability features m u s t be documented a n d main ta ined j u s t 
like any other IC feature. 

• Security of designs may be compromised. 
• Faul t coverage may be embarrassingly low (if known at all). 
• An implied warran ty could be a t tached to these features making 

the IC vendor liable if the device conta ins an uncovered fault. 
• Test requi rements conflict from cus tomer to customer . 

An article in a 1986 i ssue of D&T, examined these a n d other 
sources of res is tance to testability. At t ha t time, ano ther reason 
w a s the lack of s t anda rds . Since t hen we've seen a p u s h for 
boundary scan, once referred to as the JTAG proposal now called 
IEEE proposed s t anda rd PI 149.1 . This effort began as an 
a t t empt to develop a s t anda rd t h a t c an be embraced a t m a n y 
levels of digital-circuit test, from IC fabrication th rough system 
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test. It has been so well-received that the proposed standard, as 
of publication date, has been issued for balloting. 

A standard such as PI 149.1 relieves many of the problems that 
have caused resistance to design for testability. The IC vendor is 
free to use this boundary-scan standard as a gateway to public 
BIST features while leaving proprietary tests undisclosed. Bound­
ary scan allows board and system designers to more easily test 
their respective products independently of the content of the ICs. 
It lets IC vendors off the hook legally, since all they have to do is 
adhere to an official standard and then blame it if the users 
complain. 

There is a great deal of interest now in integrating the design 
and test phases of a product-development cycle.7 The implemen­
tation of boundary scan within ICs will have a two-fold effect: It 
will make digital designs more testable and producible, and it will 
take pressure off designers who might otherwise have to pursue 
ad hoc testability modifications to their designs. This will make 
cooperation between design and test departments easier to 
achieve. 

We must look at 
savings in the larger 

view and avoid 
being silicon wise 

and system foolish. 

BOARD-TEST PHILOSOPHIES 
It's fair to ask why we go to the trouble of testing boards at all. 

The main reason is economics. It is relatively easy to test boards 
and much more difficult to test systems. If boards used to build 
systems are nearly perfect, then system turn-on success rates 
will be acceptable. If boards are somewhat less than perfect, 
system turn-on success decreases very rapidly. 

What are some of the approaches to board test in manufacturing 
today? Broadly categorized, they are 

• board test as a sorting process 
• board test as a repair driver 
• board test as a process monitor 

In the following discussion, bear in mind that any approach to 
board test is heavily influenced by such factors as product mix, 
volume, complexity, reliability requirements, quality require­
ments, capital budgets, and available skills as well as inertial 
factors such as "it's always been done this way" and "we have to 
use existing processes and equipment." 

A SORTING PROCESS 
Sorting in this context means to separate good boards from 

faulty boards. It is a go/no-go approach. Essentially, only one bit 
of information is generated about a board during test. Finding 
and repairing faults in such an environment can be quite difficult, 
but we can justify this approach if we simply discard faulty 
boards. For example, if a board-manufacturing process enjoys 
very high yields, then why invest in diagnostic test and repair 
processes when it costs less to discard the few bad boards? In 
another case, seen in military applications, extremely high tech­
nology boards are built in very low quantities and are technically 
challenging to repair without introducing new failures (some 
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BOUNDARY SCAN-

An all-too-familiar 
practice is to sort 
good boards for 

immediate shipment, 
leaving piles of dog 
boards to be dealt 

with later. 

latent). Consequently, manufacturers simply discard bad boards, 
while taxpayers cringe, and keep making new ones until they 
accumulate enough good boards. 

In yet another scenario, schedule pressures dictate simply 
sorting good boards for immediate shipment, leaving piles of dog 
boards behind to be dealt with later. This result is unfortunately 
all too familiar across the electronics industry. It is yet another 
indication of how forces other than testing issues can Influence 
efficiency. 

A REPAIR DRIVER 
Using board test as a repair driver is perhaps the most common 

board-test approach today. Here, testing is more thorough and 
delivers more bits of information about failures, which forms the 
basis for a failure diagnosis. More sophisticated techniques are 
used during test, such as in-circuit isolation, guided probes, 
current tracing, and fault dictionaries. Information about faults, 
in the form of symptoms such as failed outputs and test numbers, 
is collected into a fault syndrome that can be interpreted to help 
repair. This information is important because we need enough 
correct data on the fault to enable a complete repair. It is 
unproductive to send a bad board back without complete infor­
mation, since partially repaired boards inevitably return for 
rework. 

A PROCESS MONITOR 
The newest view of board test is as a process monitor. A 

well-conceived and thorough board test that emphasizes diagno­
sis can provide a wealth of information about the various pro­
cesses that go into a board's manufacture. For example, soldering 
is a well-known point for faults. Solder problems show up at board 
test as shorts in the form of blobs, opens in the form of SMT 
tombstones (small low-mass SMT components like resistors and 
capacitors that have moved during soldering because of the 
surface tension of the liquid solder) or incomplete flow, or therm­
ally damaged devices. When such problems are exposed, we 
know, in the long run it will be more fruitful to fix the soldering 
process than to fix the solder defects after the fact. 

We can use this type of board test to change the structure of 
the manufacturing process. For example, we may discover fabri­
cation errors, like a wayward solder process, or errors in the 
design of the board. We can also improve the tests themselves to 
get a better diagnosis. With time, we gain expertise in the board's 
manufacture and can begin to improve diagnosis by correlating 
data from independent tests and previous repairs. 

Another use of this type of board test is to observe and control 
all the system-level process changes. Machines wear out and 
require calibration. Different people are involved, depending on 
the shift and who's on vacation. Vendors of components may 
change what they send, perhaps because their own process 
changes. Manufacturers may add new people and machines, 
update production technology, or change the locale of production. 
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The design group may implement changes to the board's design. 
All these changes have an impact on the manufacturing process, 
and using board test as a process monitor provides a way of 
controlling them efficiently. 

This philosophy of board test is not easy to implement quickly, 
however. It requires skill, experience, and teamwork to a degree 
that some organizational structures will not readily allow. Man­
agement involvement is a key ingredient. Managers need to 
recognize that process control is becoming more and more impor­
tant with each new round of technical evolution in board manu­
facture, and is becoming the dominant reason for using board 
test. Without process control, a manufacturer cannot hope to 
attain world-class quality. 

Managers need to 
recognize that 

process control is 
becoming the 

dominant reason for 
using board test. 

WHAT ARE THE COSTS? 
Everyone knows that testing is costly and that it is grabbing a 

larger percentage of manufacturing costs every year. It is phe­
nomenally expensive to let a failure escape to later stages of 
product manufacture or support. The rule is fix it now or suffer 
far costlier problems downstream. 

Each board-test philosophy has an associated cost. In general, 
more testing for better coverage and diagnosis implies more 
test-development costs in time and talent and more time actually 
spent testing on test heads. Testers themselves become more 
expensive. The driving forces here are increased tester versatility, 
complex test-preparation software, increased operating frequen­
cies and higher active tester channel counts. It is not unusual 
today to see board testers with five times more channels operating 
10 times faster than they did just a few years ago. Ironically, while 
boards are often the same size, many board testers have increased 
in volume, mass, and power consumption. Especially in the IC 
test world, mass ratios between the tester and the IC are nearly 
unbelievable. Channel counts and operating frequencies are two 
main contributers to this trend. 

As mentioned earlier, controlling a process requires teamwork. 
The people involved have many disciplines. Purchasing agents 
enforce quality controls on vendors. Inspectors inspect incoming 
parts that must meet precisely identified parameters. Stock/in­
ventory personnel need to take care that parts are not damaged 
before they are used—even if it's in today's Just-In-Time manu­
facturing process. Those controlling phases of fabrication must 
be alert to their own controls. The test department has to correlate 
and communicate failures to points upstream in the process. The 
design team has to have design for manufacturability as a 
measured goal. And finally, management has to see how these 
disciplines interrelate. Teamwork is a challenge. 

INTERNAL THREATS TO SUCCESS 
A number of elements in the overall testing and manufacturing 

process can sabotage the success of a board-test operation, which 
depends on sophisticated monitoring and control techniques. 
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Figure 1. The resistor network in (aj with 
an extreme ratio of component values is 
tested using the six-wire guarding 
scheme in (b), where error impedances, 
labeled Zx, are sensed at points A, B, and 
Lfor mathematical correction. Accuracy 
to 2% is easily achieved. 

Figure 2. In (a), three stuck-at-0 faults at 
A, B, or C will have identical behavior to 
the output D stuck-at-1 during test. We 
need to consider only one fault (usually 
D) when developing the test, but we must 
consider all four faults when attempting 
to diagnose a failing circuit. In (b), a sim­
ulator analyzes single stuck-at faults at 
nodes U through Z, but none will produce 
the syndrome caused by an open at point 
F. Though it is likely (but not guaranteed) 
that we will detect F during testing, its 
syndrome will be missing from the fault 
dictionary producedfrom the simulation, 
so diagnosis will be poor. 

When these factors intrude on the control procedures, the object 
of board testing—the exchange of diagnostic information to pre­
vent future failures—is greatly impaired. Elements that can 
sabotage a successful board-test operation include test inaccu­
racy, misdiagnosis, loops in the test-repair process, and failures 
from extra handling. 

Another threat, which is very real but not always taken into 
account, is the psychological factor of confidence in the control 
procedures. If we lose confidence in our control of a process, 
regardless of reality, matters will rapidly degenerate from tight 
control to a bare-minimum position of simply sorting good boards 
from bad. Like biological homeostasis, a well-controlled process 
requires the coordinated balance of myriad variables and feed­
back relations. Without this balance, a system enters shock. 

Accuracy. If a test is not accurate, it will not give results that 
we can trust in monitoring and controlling the process. For 
example, look at the analog test in Figure 1. A three-resistor 
network has a delta configuration of two 10-ohm resistors and a 
10,000-ohm resistor. In-circuit testers find this circuit challeng­
ing because of the ratio of resistances and the need to remove 
error terms. A simple three-wire guarding scheme can measure 
the 10,000-ohm resistor in this configuration, but without proper 
consideration of error sources, the measurement can yield 900 
ohms. This error is large enough to invalidate testing the 10,000-
ohm resistor altogether. A six-wire guarding scheme can account 
for errors due to voltage drops in the measurement setup (Zg, Zu 
and Zs) and mathematically reduce their effects to achieve a 2% 
accuracy on the measurement. 

This analog example illustrates that real-world board-test is not 
simply for digital testing problems. Harder problems may actually 
be more prevalent, and not just in the analog domain. The digital 
bus-fault problem has a number of complexities, for example. We 
don't know which driver sources a bus at any time, so we have 
to isolate the source(s) of current on the bus. Test measurement 
must then move from voltage measurement to current measure­
ment, or we are forced to make complex deductions about the 
states of the drivers on the bus. Such interactions can profoundly 
affect digital testing accuracy. 

Misdiagnosis. This problem occurs when we detect a failure 
but do not properly resolve it. For example, we may make an 
invalid assumption in fault modeling (Figure 2), or several failure 
modes with identical syndromes may be represented by only one 
mode. Misdiagnosis leads to erroneous and unnecessary repairs 
that pollute the information stream we are using to observe the 
process. The box on the righthand page elaborates on fault 
isolation. Misdiagnosis also makes the other structural threats 
even more damaging. 

Test-repair looping. Looping occurs when testing is not able to 
completely or accurately resolve all the faults on a board in one 
pass across the test head. This inability could be due to tester 
inadequacies but more often is due to poorly designed or imma­
ture test programs. Looping can also be due to handling-induced 
failures. A loop occurs when the board is sent to repair with an 
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incomplete or inaccurate list of defects. Subsequen t test ing will 
fail, a n d another repair cycle will s tar t . This cycling consumes 
t ime and talent. Even though paperless test-repair networks have 
reduced some of the bookkeeping overhead associated with mul ­
tiple repairs, repair looping still was tes tester t ime and u s e s 
skilled technicians to poor advantage. 

Handling-induced failures. Failures can resul t from the extra 
handl ing and rework in a repair cycle. Clearly, each additional 
repair cycle compounds t he r isk of new failures. But another kind 
of r isk is of even greater concern. Handling may weaken the 
circuitry enough to accelerate t he t ime to failure. Thus , handl ing 
increases the risk of infant mortality, the failure of the board in 
early stages beyond manufactur ing. 

Repair looping 
wastes tester time 
and uses skilled 

technicians to poor 
advantage. 

EXTERNAL THREATS TO SUCCESS 
Industry t rends can th rea ten a manufacturer ' s ability to control 

the board-manufactur ing process. Some of these are ASICs, 

ISOLATING INTERCONNECTION FAULTS 
One of the prime advantages of boundary scan at 

board test is the ability to test board interconnections 
for integrity. (Algorithms and analysis for this will be 
presented in detail at the 1989 International Test 
Conference, held in Washington D.C. August 27-31.) 
In a pure boundary-scan implementation, in which 
every IC is scannable, each source and destination 
of a node is connected to a scannable point. The 
figure below shows a simplified circuit of six bound­
ary-scan devices with a node driven by point U and 
received at points V through Z. This figure is simply 
a scannable version of the circuit in Figure 2b on the 
facing page. We no longer show the NAND gates since 
these are not relevant. We also do not need a simu­
lator to help us develop an interconnection test for 
this circuit. 

We can test any single stuck-at fault on the six 
labeled points, U through Z by driving U to 1 (through 
the scan path) and latching bits V through Z for scan 
out, followed similarly with U set to 0. If a single bit 
in V through Z is incorrect, it indicates a single stuck 
value at the corresponding receiver. If all five bits, V 
through Z are incorrect, there may be a stuck prob­
lem with driver U. Suppose a circuit is open at point 
F, and the test of V and W pass and X, Y, and Z fail 
(say to 1). We then know that the problem with the 
interconnection affects only part of the net, and we 
can deduce the significant topological clues neces­
sary to isolate the physical defect. 

The simulator-based test for the circuit in Figure 
2b may misdiagnose the fault at point F because its 
effects were not modeled. Because of this, the test 
fails but the observed syndrome does not match any 

syndromes predicted by the simulation. When this 
occurs, we must supply meaningful diagnostic infor­
mation with additional measurements. For example, 
with a handheld probe guided by the actual syn­
drome data and deductions on the cause of the fault 
derived from circuit topology, we can backtrace to the 
region of the physical defect. However, we've invested 
a great deal in the simulation for nothing. Moreover, 
physical access constraints may apply to the guided 
probe as well, which may limit its effectiveness. 

This circuit is the same as the circuit shown in Figure 2b, 
except NAND gates are replaced with scannable NAND 
gates. The output U and inputs V through Z are scannable 
cells. We do not have to know that the devices are NANDs. 
The complexity is arbitrary. The open-circuit defect is at 
point F. 
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In-circuit testing, 
probably the most 
popular board-test 
methodology, is the 
most threatened by 

access problems. 

surface-mount technology/tape automated bonding, miniatur­
ized components, and node counts. 

ASICs. Each application-specific IC—unique as a fingerprint— 
is an adventure in test. There is nothing inherently untestable 
about ASICs, although a conjunction of forces makes them seem 
that way. They are often developed in parallel with the board they 
will be placed on, which constricts test-development time. Along 
with this, the ASIC design database is commonly either nonexis­
tent or incompatible with the board test. ASICs are often used to 
garbage collect random gating or glue logic into one package, 
which makes their function appear random and undecipherable 
to a test engineer. Last-minute design changes often destroy any 
test written for the ASICs—and you can bet that the ASICs will 
be affected. 

SMT/TAB. Surface-mount technology and tape automated 
bonding are two newer packaging technologies that present new 
board-test problems. They introduce severe test-access problems 
and are difficult to rework in repair situations. Repairing such 
boards is a time-consuming task that requires a lot of skill and 
may elevate the risk of collateral damage that could result in 
scrapping the board entirely. Also, these technologies are more 
sensitive to physical damage. Their fragile nature makes them 
particularly vulnerable to misdiagnosis and test-repair looping. 
Each pass through the loop increases the probability of irrepara­
ble damage. 

Access problems. Boards are becoming much more densely 
laden with higher complexity devices. But even generic resistors 
and capacitors are presenting test problems, all because of 
miniaturized packaging and surface-mount configurations. In-
circuit testing, probably the most popular board-test methodol­
ogy, is the most threatened, since it relies heavily on direct 
electrical access to all nodes through bed-of-nails probing. In 
talking about access, an important distinction is that access is 
required to all nodes (also known as nets or circuits), not to each 
device pin on each node. 

We are now seeing boards with components on both sides 
without the through-holes that enabled test nails to see every 
node from one side of a board. This packaging technology is also 
producing components with large numbers of pins on much 
closer centers. Some boards that are SMT redesigns of existing 
through-hole boards are 30% to 50% of the original size. New 
designs are often done on familiarly sized boards to reduce board 
count in products or to add functionality without increasing 
physical size. 

Two problems arise with this increased number of components 
and absence of through-holes. First, we may need to place nails 
much closer together, which means they will be much smaller, 
more fragile, and more expensive. Second, the targets the nails 
must hit are much smaller. Since boards are not vastly smaller 
(on average) today, we need tight control of mechanical tolerances 
for these nails across thousands of square centimeters. Other 
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access problems are presented by hybrids on ceramic substrates, 
conformal coatings, and similar applications. 

Node counts. Because of these packaging technologies, the 
node counts of boards are rising, although node counts per board 
can actually fall if the level of integration within packages is high 
enough to reduce interpackage data flow on parallel buses. An 
example is the recently introduced microprocessors that contain 
on-chip memory management and floating-point units. 

Generally, though, node counts are rising. Entire systems now 
fit on single boards. For in-circuit testing, this trend means 
adding more nails to ensure access to all nodes. For functional 
testing (based on edge connectors), the ratio of functions per I/O 
pin increases. The already difficult problem of test preparation 
for functional test will become legendary in the future. 

Boundary scan 
promises to enhance 

fault diagnosis, 
reduce test-repair 

looping, and enable 
standardized testing, 
and the reuse of tests. 

THE IMPACT OF BOUNDARY SCAN 
Boundary scan promises to relieve at least some of the difficul­

ties in board test, regardless of the philosophy adopted—in-cir­
cuit, functional, or combined (called combinational) testing. 
These benefits Include enhanced diagnosis', reduced test-repair 
looping, standardized testing, and reuse of tests. 

Enhanced diagnosis. The scan port provides access to hun­
dreds of additional control and observation points. We can access 
the publicly available BIST features of the ICs in the scan chain, 
for example. The BIST functions run independently from the 
board and do not require tedious programming. There is also less 
sensitivity to the initial state of the board. Of course, this access 
is not without cost. Because it is serialized, we have to consider 
the impact on test length and time, which could be considerably 
greater. 

The scan chain allows us to perform many tests without great 
concern about synchronizing or homing sequences, since we can 
effectively ignore the logic within scanned ICs. In doing so, 
however, we are assuming a certain amount of luck as to the 
integrity of the scan chain itself. 

Another benefit to diagnosis is the increased stability of fault 
syndromes, which is due to the insensitivity of tests to initial 
states. A syndrome becomes unstable when it depends on an 
initial state that cannot be reliably achieved. It is difficult to 
isolate faults with unstable syndromes when we must run a test 
several times to collect isolation information, as in backtracing. 

Reduced test-repair looping. Because the scan path offers 
additional control and observation points, we can isolate more 
faults per pass across a test head. Thus, we need to make fewer 
passes across the test head, and we decrease the time and 
handling involved. The improved immunity to initial-state prob­
lems and more stable fault syndromes makes each pass yield 
higher quality diagnoses, again resulting in fewer passes. 

Standardized tests. Tests in a boundary-scan environment are 
prewritten, or they are easily derived from the topological struc­
ture of the circuit. The content of ICs within the boundary-scan 
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Analog components 
are a reality, and the 

large number of 
analog or hybrid 

boards being tested 
is not going to get 

any smaller. 

perimeter may not be exhaustively tested as is true today at 
board-level test. Of course, if the scanned ICs possess BIST 
functions, they can be accessed with a standard RUNBIST pro­
tocol without much programming effort. The problem of last-min­
ute changes to ASICs is no longer of great concern because the 
internal workings of the ASIC have been removed from consider­
ation in developing the board test. 

Reuse of tests. Tests that work in concert with the scan 
protocol, such as BIST functions, will be accessible at several 
stages of manufacture. This is not true in a non-scan environ­
ment. For example, we may not be able to use an IC test developed 
along with the IC during in-circuit board test if there are simple 
constraints such as tying some pins to ground. 

Reduced access problems. Fixturing, that is, connecting the 
tester to the board for testing, is traditionally troublesome. This 
problem is particularly true for in-circuit testing, in which we use 
hundreds or thousands of nails to access a board's internal 
nodes. This access gives exceptional test control, observability, 
and fault isolation. Further, it allows comprehensive analog 
testing along with digital testing. For this reason alone, in-circuit 
testing will remain popular. Analog components are a reality even 
on so-called digital boards, and the large number of analog or 
hybrid boards being tested is not going to go away. The access 
problems described earlier are indeed a threat to board test, and 
particularly aggravating to in-circuit access. Boundary scan of­
fers some relief, even though not all the ICs will be scannable 
initially. 

IN-CIRCUIT TEST 
Boundary scan implementations—even partial ones—will have 

a number of benefits to in-circuit testing. They will reduce the 
need for a 1:1 nail-to-node ratio, for example. We can test any 
digital node composed completely of scannable sources and 
destinations from the scan port without a nail. Another benefit is 
less need for close-centered probing, which is done with thin, 
fragile, expensive nails necessitating small target pads and fine 
mechanical tolerances. By reducing the number of nails on a 
device, even if we don't eliminate them entirely, we reduce the 
crowding, which is the reason we do close-centered probing in 
the first place. 

Boundary scan will also reduce the need for two-sided probing. 
If devices mounted on the nonprobed side of a board are testable 
through scanning, we can avoid nails on this side, but we must 
consider this strategy in the design-for-testability specifications. 
Reducing the nail count will, in turn, reduce the flexing of boards 
caused by the uneven concentrations of closely spaced nails. 
Each nail presses against the board with roughly two newtons of 
spring force. When the nails are spaced too closely—that is, 
concentrated in groups—the force is no longer uniform across the 
board, which causes it to flex. Flexing can cause the board to 
misalign with the nails, which may make vacuum-activated 
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fixtures unreliable without some mechanical augmentation. 
Worse, flexing may cause open connections to close during test, 
masking their existence and making the test inaccurate. 

FUNCTIONAL TEST 
Boundary scan will also benefit functional (edge-connector) 

testing. The ability to observe and control the circuit is greater, 
which helps mitigate the unfavorable impact of high gate-to-pin 
ratios. Boundary scan also allows us to conduct topologically 
derived tests for interconnection faults. These faults are currently 
modeled as single stuck-at faults at the IC pin level, when 
preparing functional tests. 

The ability to conduct topologically derived tests is perhaps 
boundary scan's greatest potential contribution because it re­
duces the pressure to do board-level simulation to develop tests 
for common manufacturing faults. Of course, the success of this 
strategy will depend on how pure (what percentage of the ICs are 
scannable) the boundary-scan implementation is in the board 
design. 

There is some hope that scannable devices can incorporate aids 
for performance testing, also known as at-speed testing. This 
testing attempts to run a board at its native clock speed during 
test to excite timing problems or other marginal conditions. We 
can use the INTEST and SAMPLE modes of PI 149.1 to set up test 
experiments and examine the results. As is true today, the 
technical challenges of such testing are likely to be high. 

Pure boundary-scan 
may never be 

widespread because 
the increase in fault 

diagnosis isn't 
enough to justify the 
expense of putting 
testability in every 

chip. 

FUTURE TRENDS 
Partial boundary-scan implementations are beginning to crop 

up in board designs. Partial implementations are likely to be the 
most we can expect for some time because the number of ICs 
available using the discipline is limited. Actually, pure implemen­
tations may never be the rule because the increase in fault 
diagnosis isn't significant enough to justify the expense of incor­
porating testability in every chip. 

The big question is will boundary scan die out before reaching 
its potential because of a lack of critical mass? I am confident 
that the discipline will achieve acceptance in short order. But 
today's board-level ATE will not be disappearing. Indeed, some 
people equate boundary scan with the total absence of ATE, but 
this is a fallacy. We should avoid overselling the impact of this 
new technology, which will only create credibility problems. 

In fact, ATE and boundary scan are mutually beneficial. In the 
real world of manufacturing, we have to test economically, so we 
still need the enhanced diagnosis that our current ATE systems 
can give. Boundary scan, in turn, allows ATE to reduce the testing 
cost, since the nail count goes down. The nice thing about 
boundary scan is that we don't need it in every chip to make it 
effective. We can use this technology with ATE to get a more 
in-depth fault diagnosis without an impossible rise in cost and 
complexity. We still get the additional test capability, but bound-
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Board-level ATE in 
its present form will 
not vanish. It will 

span the gap 
between current test 
problems and the 

new boundary-scan 
test environment. 

ary scan allows us some flexibility in determining how far we want 
to take the implementation. 

In digital testing, the upward spiral of board-level ATE costs will 
slow and even decline with the advent of boundary scan, and the 
cost of test preparation will be less. The capital (purchase) cost 
of an ATE system is heavily driven by the cost of its electronics 
and the cost of the software. With unconstrained board designs, 
both these costs will escalate as board circuitry becomes denser. 

Boundary scan will also improve hybrid analog/digital testing 
because the digital portion will have greater testability. Analog 
testing problems will remain largely unaffected, however, so 
in-circuit approaches must solve new analog test problems 
without it. Thus, board-level ATE in its present form will not 
vanish because we still need it to span the gap between current 
test problems and the new boundary-scan test environment. 

IN-CIRCUIT TEST 
With boundary scan, in-circuit test will see the nail-to-node 

ratio drop below one, (see box at right on in-circuit testing) 
because some tests can be accomplished without nails on the 
scannable nodes. As a result, many of the aforementioned fixtur-
ing difficulties will be relieved. Also, the number of simulta­
neously active nails (connected to independent drive/receive 
channels) will stabilize or decline. An advantage to test serializa­
tion (there is one) is that we can examine connectivity between 
high pin-count devices with just four active channels. This de­
cline allows higher nail-to-channel multiplex ratios which means 
more nails can be serviced with fewer active (expensive) electron­
ics channels. Test preparation is eased since scanned nodes can 
be tested with software-derived tests based on board topology, 
and there is no need to write IC interconnect tests that sensitize 
pathways through the internal regions of the ICs. 

FUNCTIONAL TEST 
For functional test, we see control and observability rise for 

internal areas of a board. This makes test preparation easier, and 
may reduce or even eliminate the requirement for fault simula­
tion. (Simulation for design verification may still be required, but 
that is a very different problem.7) Each scannable IC is a candi­
date for elimination from simulation which is attractive if simu­
lation models are unavailable or inadequate, or if the IC is 
complex and expensive to simulate. As a result, the cost of test 
preparation is reduced. Hardware costs for functional testers has 
been increasing due to the depth of pattern storage required 
behind all pins. With higher levels of boundary scan adherence, 
only those tester channels dedicated to scanning may actually 
generate long bit streams with the general I/O channels only 
active a small fraction of time. 

In whichever case, in-circuit or functional or the combined 
approach, the Increased usage of boundary scan will have a cost 
savings impact that can be readily demonstrated. This savings 
will make it easier to measure the value of a level of adherence to 
the boundary scan discipline. 
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SETTING UP ANIN-CIRCUIT TEST 
How does one set up an in-circuit test for a digital 

circuit that has some boundary scan components? 
Consider the simple circuit in the figure below. This 
circuit has two scanned components [71 and [72 and 
three glue gates, which are not scannable. For sim­
plicity, the figure shows NAND gates, but the devices 
could be much more complex. The nodes are labeled 
in alphabetical order from A to T. The triangular 
pointers show the location of in-circuit test nails. 

We need nails A through I at the circuit's main 
inputs to test for connectivity to [71 and to drive tests 
for gates [73 and [75. We need nails P through T at 
the circuit's main outputs to test for connectivity to 
[72 and to monitor gate [75. We need nail JV to test the 
second input to gate [74. The channel driving this nail 
requires overdrive capability. We need nail O to test 
the first input to gate [75 and to monitor gate [74. The 
channel driving this nail also requires overdrive ca­
pability. Nails A, E, F are the boundary-scan inputs 
TDI, TCK and TMS. Nail P is the scan-chain output 
TDO. These nails allow us to control the entire chain. 

Nodes B, C, D, K, L, and M on [71 are scannable 
through the boundary scan chain, as are nodes K, L, 
M, Q, R, and S on [72. Therefore, all interconnections 
to [71 and [72 are completely testable without any 
knowledge (or concern) for the internal logic of these 
devices. Interconnection here includes printed trace 
integrity, solder integrity, the existence of IC bond 
wires, and bare-bones silicon integrity—that is, the 
devices can at least perform boundary-scan proto­
cols. U2's input node JV, however, is not scannable 
because gate 03 is not a boundary-scan device. 
Instead, we use nail N to overdrive gate [73 as if node 
TV were a primary input. 

Gate [74 has nails on nodes JV and O, but we can 
control node M only by scanning through [71. Think 
of node M as a virtual nail that we can control from 
[71 to provide inputs while directly driving node JV and 
receiving on node O. It is this idea of a virtual nail 
that allows the nail-to-node ratio to drop below one. 

Nail J is an interesting case. It sits on the scan data 
(TDI-TDO) path between [71 and [72 and must have 
overdrive capability. This path is supposedly tested 
by the procedure to test boundary-scan integrity run 
first to ensure that the path works. But what if a fault 
has damaged the path? Say, for example, that device 
U2 is completely dead. We can still test [73, [74, and 
[75, plus all board-input interconnections because 
nail J lets us see the results scanned by [71. 

Stopping the test because the scan path is faulty 
can cause test-repair looping, especially if a large 
board with many scannable devices fails the test for 
scan-path integrity. In this case, there may be several 
faults on the scan path, which ruins our ability to 
isolate the culprits. The result is misdiagnosis, which 
may cause several iterations through the test-repair 
loop before real testing can begin. To reduce distress 

due to a faulty scan path, we can add a TDI-TDO nail 
on every package. 

When the board is 100% scannable, we need the 
nails on all of the following: all board inputs, I; all 
board outputs, O, all TDI-TDO signals (one per device 
pair), D; and all analog nodes, A. The nail count is 
then 1+ O + D + A, which has essentially saved us 
placing nails on all the internal digital-only nodes. 
When not all the ICs on a board are scannable, we 
need to add nails for all nonscanned glue-gate inputs 
and outputs such as nodes O and N in the figure. 

Thus, we begin to see the benefits of putting bound­
ary scan into a device. If we balk at the cost of 
incorporating boundary scan in ICs, we must be 
prepared to balance the savings at the IC level against 
the costs of fixturing at board test. There are also the 
benefits to test preparation. Either [71 or [72 can be 
horribly complex internally, but we don't care. 
Boundary scan has isolated us from this complexity. 
Likewise, if either device is difficult to initialize inter­
nally, we are not affected. If either device has a public 
BIST function for self-test, we use the RUNBIST 
instruction and read out the result using canned 
routines. This simplicity is understandably exciting 
for test programmers. 

An example of a circuit with mixed standard and 
boundary-scan components showing the location of 
nails for in-circuit test. Note that not all nodes need a 
nail. 
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ome prognostications for boundary scan have been nothing 
less than euphoric. Some say boundary scan will eliminate 
the need for today's testers in manufacturing. A new gener­
ation would appear consisting of a four-wire interface I/O 

card for a personal computer and a few floppy discs of software. The 
reality lies somewhere between the past and this happy outcome. 
Jus t as a carpenter, upon receiving a new power saw, does not 
discard his collection of older tools, ATE systems that control a 
board-production process will not discard the capabilities they have 
today. The future can bring many pleasant developments if bound­
ary scan (as well as other BIST/DFT technologies) is accepted, and 
we could all enjoy the reduced cost and complexity. This hesitancy 
should go away as we quantify the benefits of this new technology, 
and its use should become more widespread. Perhaps the largest 
obstacle will then be deciding how to use what we have developed, 
and that will be up to management. 

s 
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ABSTRACT 

A test sequence is given for the Test Access Port (TAP) 
controller portion of the boundary-scan architecture proposed 
by the Joint Test Action Group (JTAG) and IEEE Working 
Group PI 149.1 as an industry-standard design-for-testability 
technique. The resulting test sequence, generated by using a 
technique based on Rural Chinese Postman tours and Unique 
Input/Output sequences [1], is of minimum cost (time) and 
rigorously tests the specified functional behavior of the con­
troller. The test sequence can be used for detecting design 
faults for conformance testing or for detecting manufacture-
time/run-time defects/faults. 

I. Introduction 

The Joint Test Action Group (JTAG), an ad hoc com­
mittee comprised of major semiconductor users in Europe 
and North America, together with IEEE Working Group 
PI 149.1, has proposed a framework for standardized design-
for-testability of integrated circuits for module-level (e.g., 
board-level) testing. The so-called boundary-scan architec­
ture consists of circuitry which allows the inputs and outputs 
of the digital logic of the integrated circuit to be accessed 
from outside the module [10]. The advantage of the 
boundary-scan approach is that the controllability and obser­
vability of a module containing many components is vastly 
improved while the input/output overhead of the module con­
sists of only three extra inputs and one extra output. 

In most cases, boundary-scan components which have 
been designed and produced by different manufacturers reside 
within the same module. Thus, it is paramount that the 
implementation of the boundary-scan portion of each com­
ponent conforms to the set JTAG/IEEE PI 149.1 standard to 
ensure that the component can be successfully integrated into 

a module-level design-for-testability scheme. While design 
verification is necessary at virtually every step of the design 
process, it is ultimately desired to check that, in the physical 
implementation of the component, the functionality of the 
boundary-scan portion is as expected, based on its 
specification. 

Of course, any test sequence which checks the confor­
mance of many different designs must, by its nature, be 
implementation-independent. This means that test sequence 
generation techniques which are based on logic-level infor­
mation such as stuck-at-faults are of little value. Further­
more, since it is applied to a physical implementation, the 
test sequence must be able to overcome the severe observa­
bility and controllability constraints which arise. As a result, 
a high-level approach is required for generating a test 
sequence which is 1) implementation and fault-model 
independent, 2) of compact length, and 3) able to detect an 
extremely high percentage of faults which occur as a result 
of design faults. 

In this paper, a minimum-cost (time) conformance test 
sequence, based upon such a high-level approach, is 
presented for checking the joint functional behavior of the 
TAP controller and associated registers in a boundary-scan 
implementation. The test sequence has been derived using 
optimization techniques for managing the observability and 
controllability limitations which arise in testing in a "black 
box" environment such as this. While the test sequence has 
been designed for conformance testing (design verification), 
it is also an effective manufacture-time and/or run-time test 
for the boundary-scan portion of an implementation. 

In Section II, the JTAG/IEEE PI 149.1 architecture is 
described. The model used to derive the test sequence is 
given in Section JH. In Section IV, the test sequence genera-
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tion technique is discussed. Finally, the resulting test 
sequence is described and the fault coverage results for an 
implementation of the boundary-scan architecture are 
presented in Section V. 

II. JTAG/IEEE P1149.1 Architecture 

The boundary-scan technique consists of placing a 
boundary-scan cell adjacent to each component input/output 
pin in order to observe and control the component's signals 
at its boundaries [10]. Each boundary-scan cell is able to 
either capture data from an input pin or from the component 
logic, and can load data either into the component logic or 
onto a component output pin. The boundary-scan cells are 
interconnected as a shift-register chain and, if desired, several 
components can be connected as a single chain. The 
boundary-scan cells can be used to test the interconnections 
among various components (external test) or to isolate a 
component while an internal test is performed. Also, the 
boundary-scan cells can be used to sample values at a 
component's input and output pins. 

The overall JTAG/IEEE PI 149.1 boundary-scan archi­
tecture is shown in Figure 1. The primary elements are as 
follows: 

Test Access Port (TAP) controller: a sixteen-state cir­
cuit (Figure 2) which receives the test clock signal 
(TCK) and test mode select (TMS) control input and 
generates clock and control signals for the remainder of 
the architecture. The actions initiated by the TAP con­
troller occur on the rising edge of TCK, when the con-

Figure 2. State diagram of the TAP controller [10]. 

troller leaves the corresponding state, except for the 
reset operation (state 0000), which occurs asynchro­
nously. A block diagram of the TAP controller is 
shown in Figure 3. 

Instruction Register (IR): stores an instruction, shifted 
into it through the TDI input, which selects the test to 
be performed (external, internal, sample) and/or the data 
register (boundary-scan, bypass, or device identification) 
to be accessed. 

Boundary-Scan Register (BSR): a multiple-bit shift-
register consisting of the boundary-scan cells intercon­
nected in serial fashion with access to the component's 
input/output pins and internal logic. 

Bypass Register (BPR): a single-bit connection from 
TDI to TDO to allow test data to flow through to other 
components with a single TCK period delay. 

Figure 1. The JTAG/IEEE PI 149.1 boundary-scan architec­
ture [10]. 

Figure 3. Block diagram of the TAP controller. 

303 



Device Identification Register (IDR): an optional 
multiple-bit shift-register which contains a device-
dependent binary identification code. 

In this paper, two configurations of the boundary-scan 
architecture, with and without the optional device 
identification register, are considered. Optional features, such 
as additional registers, are not included, although the test 
generation technique is also applicable. For more details on 
the JTAG/TEEE PI 149.1 architecture, the reader is referred to 
[10].. 

The detailed operation of the IR, BSR, BPR, and 
optional IDR in the design under consideration is as follows. 

Instruction Register 

The IR consists of three IR cells, IRO, IR1, and IR2, 
each consisting of a shift-register stage and a latch stage 
(Figure 4). The latch stage of an IR cell is loaded with the 
corresponding shift-register value upon receiving an 
UpdateJR (UP_IR) signal from the TAP controller (Figure 
3). Upon receiving a CaptureIR (CAP_IR) signal from the 
TAP controller, IRO retains its previous value, the shift-
register stage of IR1 is loaded with a "0", and the shift-
register stage of IR2 is loaded with a "1". Upon receiving a 
ShiftIR (SHIR) signal from the TAP controller, the value 
on the TDI input is stored in the shift-register portion of IRO, 
the old value of the shift-register portion of IRO is shifted to 
IR1, and IRl's old value is shifted to IR2, which is then 
observable on the TDO output. Upon receiving a Test-Logic 
Reset (TRST) signal from the TAP controller, 1) in the 
configuration without the IDR, the latch stages of IRO, IR1, 
and IR2 are each loaded with a "1", which corresponds to the 
"bypass-select" instruction, and the shift-register portions of 
the cells retain their previous values; 2) in the configuration 
with the IDR, the latch stages of IRO, IR1, and IR2 are each 
loaded with a design-specific bit corresponding to the "IDR-
select" instruction and the shift-register portions of the cells 
retain their previous values. In this study, the two instruc­
tions of relevance are that in which the latch stages of the 
three IR cells are loaded with "0" (000), which selects the 
boundary-scan register and places it in the external test 
mode, and that in which the latch stages of the three IR cells 
are loaded with "1" (111), which selects the bypass register; 

Figure 5. Functional diagram of the boundary-scan register. 

in addition, the implementation-specific "IDR-select" instruc­
tion is relevant in a design which includes the IDR. 

Boundary-Scan Register 

The considered design consists of three cells in the 
BSR: an input cell (BS0), an output cell (BS2), and an output 
enable control cell (BS1) which enables the POO pin of the 
output cell (Figure 5). Each cell consists of a shift-register 
stage and a latch stage. Upon receiving a Capture_DR 
(CAP_DR) signal from the TAP controller and when the 
BSR is selected in the IR (instruction 000), the shift-register 
stage of BS0 is loaded with the value of input pin PIO; BS1 
and BS2 retain their previous values. Upon receiving a 
ShiftDR (SHDR) signal from the TAP controller when the 
IR is in external test mode (instruction 000), the values of 
the shift-register portions of the BSR cells shift one cell to 
the right (from BS0 to BS1 to BS2), the value on the TDI 
input is stored in the shift-register portion of BS0, and the 
new value of the shift-register portion of BS2 is then observ­
able on the TDO output. Upon receiving a Test-Logic-Reset 
(TRST) signal from the TAP controller, the latch stage of 
BS1 is loaded with a "0" to disable the POO signal and BSO 
and BS2 retain their previous values. In the external test 
mode and upon receiving an Update_DR (UP_DR) signal 
from the TAP controller, the latch stages of BSO, BS1, and 
BS2 are loaded with the values of their corresponding shift-
register stages. 

Bypass Register 

The bypass register consists of a single-stage shift-
register cell (Figure 6). Upon receiving a Capture_DR 
(CAPDR) signal from the TAP controller and when the IR 

Figure 4. Functional diagram of the instruction register. Figure 6. Functional diagram of the bypass register. 
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is in bypass mode (instruction 111), a "0" is stored in the 
BPR cell. Upon receiving a ShiftDR (SHDR) signal from 
the TAP controller when the IR is in bypass mode, the value 
on the TDI input is stored in the BPR cell and is conse­
quently observable on the TDO output. An UpdateDR 
(UPDR) signal from the TAP controller when the IR is in 
bypass mode produces no effect on the bypass register or any 
other register. Finally, a Test-Logic-Reset (TRST) signal 
from the TAP controller produces no effect on the BPR. 

Device Identification Register (optional) 

The IDR consists of N (normally N=32) single-stage 
shift-register cells (Figure 7). Upon receiving a Capture_DR 
(CAPDR) signal from the TAP controller and when the IR 
is in "IDR-select" mode (an implementation-specific instruc­
tion), each bit of the device identification code is stored in 
the corresponding IDR cell. Upon receiving a Shift_DR 
(SHDR) signal from the TAP controller when the IR is in 
"IDR-select" mode, the the values of the IDR cells shift one 
cell to the right (from IDR1 to IDR2, and so on, to IDRN), 
the value on the TDI input is stored in IDR1, and the new 
value of IDRN is then observable on the TOO output. An 
Update_DR (UPDR) signal from the TAP controller when 
the IR is in "IDR-select" mode produces no effect on the 
IDR or any other register. Finally, a Test-Logic-Reset 
(TRST) signal from the TAP controller produces no effect on 
the IDR. 

The instruction stored in the IR ("000", "111", or the 
optional implementation-dependent "IDR-select" instruction) 
controls the multiplexer determining which of the shift-
register outputs of the data register cells (BS2, BYPASS, or 
IDRN, respectively) is to be observable at the TDO output. 
The appropriate data register value is observable at the TDO 
output only when the TAP controller enables the output 
buffer (Figure 1) in states DRCAPTURE, DRSHIFT, 
DREXITl, DRPAUSE, and DREXIT2 (Figure 2). The value 
of the shift-register portion of the IR2 cell is observable only 
when the TAP controller enables the output buffer in states 
IRCAPTURE, IRSHIFT, IREXITl, IRPAUSE, and IREXIT2 
(Figure 2). 

III. Finite-State Machine Model of the JTAG/IEEE 
P1149.1 Architecture 

As described in the previous section, the TAP controller 
is a sixteen-state finite-state machine (FSM); since its output 
depends solely on its present state, it is a Moore circuit [6]. 
If the values on the TAP controller outputs could be directly 
measurable then several of its states would be essentially 
directly observable. For instance, if the SH_DR line is active 
(Figure 3) and all other lines are inactive, then, by definition, 
the TAP controller is in the DRSHIFT state (state 0010 in 
Figure 2). 

BI (CAPTURE) B2 (CAPTURE) BN (CAPTURE) 

Figure 7. Functional diagram of the device identification 
register (optional). 

In fact, however, the implementation of the complete 
JTAG/IEEE PI 149.1 boundary-scan architecture is such that 
the TAP controller outputs are not directly measurable, but 
control the instruction register, decoding logic, boundary-
scan, bypass, and (optional) device identification registers, 
multiplexers, and buffers (Figure 1). The contents of the 
instruction register control the behavior of the data (BS, BP, 
and optional ID) registers. Thus, determining the levels of 
the TAP controller outputs consists of observing the effects 
of these outputs on the TDO and primary outputs as a func­
tion of the contents of the instruction, boundary-scan, bypass, 
and optional device identification registers and the values 
applied to the TMS, TDI, and primary inputs. The FSM 
representation of the control portion of the JTAG/IEEE 
PI 149.1 boundary-scan architecture, therefore, describes the 
joint behavior, or composition of the TAP controller with the 
contents of the instruction register. This composition is 
shown in Figure 8 for a design which does not include a dev­
ice identification register, and in Figure 9 for an implementa-

TO DRSCAN/000 

Figure 8. Finite-state machine showing the joint behavior of 
the TAP controller and instruction register. 
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Figure 9. High-level view of the FSM showing the joint 
behavior of the TAP controller and IR (IDR included). 

tion which does. For instance, in Figure 8, the 
DRSHIFT/000 state corresponds to the TAP controller 
SH_DR line active and "000" in the instruction register 
(external test mode); in this state, the value on the TDI input 
is shifted through the boundary-scan register. On the other 
hand, in the DRSHIFT/111 state, the value on the TDI input 
is shifted through the bypass register. 

In this model, the operation consisting of capturing, fol­
lowed by shifting several bits through any of the registers, is 
represented by a single directed edge, and is said to be a 
capture-shift sequence (CS-sequence). For example, in Fig­
ure 8, the operation consisting of capturing a "0" in the 
bypass register, followed by shifting through a certain 
sequence of bits and then completing the operation by apply­
ing a " 1 " to the TMS input, thereby putting the TAP con­
troller in die DREXIT1/111 state, is represented by a directed 
edge from the DRCAPTURE/111 state to the DREXIT1/111 
state with the label C-S. 

Similarly, the operation consisting of entering the 
DRSHIFT or IRSHIFT state from DREXTT2 or IREXIT2, 
respectively, and shifting several bits through the correspond­
ing register and then completing the operation by applying a 
"1" to the TMS input, thereby putting the TAP controller in 
the DREXTTl or IREXTTl state, respectively, is represented 
by a directed edge with the label S (for Shift) and is said to 
be a shift sequence (S-sequence). The issue of determining 
an appropriate sequence of values to shift through the various 
registers in CS-sequences and S-sequences is addressed in 
Section V. 

Note that, as intended to be used in this paper, the 
IRCAPTURE state (CAP in Figure 9) is entered with the 
intention of placing either "000" or "111" (or the "IDR-
select" instruction) in the instruction register latch, which 
occurs when either the IRUPDATE/000 or IRUPDATE/111 

states (or TRUPDATE/TDR), respectively, are exited. Thus, 
there are three states, IREXTTl/?, IRPAUSE/?, and 
IREXIT2/?, which may be entered from the IRCAPTURE 
state but which may not lead directly to the IRUPDATE/000 
or IRUPDATE/111 (or IRUPDATE/IDR) states without plac­
ing a "000" or "111" (or the "IDR-select" instruction) in the 
instruction register cells. 

IV. Test Generation Technique 

Verifying that the boundary-scan portion of a given 
implementation of a component conforms to the JTAG/TEEE 
PI 149.1 boundary-scan standard is equivalent to verifying the 
functional behavior of the underlying sequential logic circuit. 
Several techniques for automatically generating test 
sequences for sequential logic circuits have been published in 
the literature and, for the most part, can be categorized into 
structural testing for logic-level fault coverage and functional 
testing for design verification. 

Structural testing approaches, including the D-algorithm 
[7] and its variants [3],[4], aim at detecting gate-level faults 
such as single stuck-at-1 and stuck-at-0 faults in an electronic 
device. While these techniques can be adapted to generating 
test sequences for sequential circuits, they are 
implementation-specific; furthermore, they are designed to 
detect only a very limited subset of the possible faults that 
can occur in the design, manufacture, and operational stages 
of a device. 

The classical functional testing approach consists of the 
design of so-called checking experiments [5], which produces 
a set of input and output test sequences which are used to 
verify that the behavior of the "black box" under test is 
exactly as specified by the given state transition table. A 
checking experiment tests the implementation of an m-state 
finite-state machine (FSM) for the correctness of every 
specified transition; that is, it verifies that each specified 
input for state s,, i=l,...,m, in the implementation produces 
the expected output and takes the implementation to the 
expected state. 

In the past, checking experiments were based on the 
existence of an input sequence called a distinguishing 
sequence, which produces a distinct output sequence for each 
initial state of the FSM [5]. Unfortunately, only a very lim­
ited number of FSMs have a distinguishing sequence [2,5]. 
A new approach was proposed in [1], based on the concept 
of Unique Input/Output (UIO) sequences [8]: a UIO sequence 
of a given state Si in an FSM is an input/output sequence of 
minimum length starting from state s, which could not be 
produced by starting at any other state. Thus, a UIO 
sequence can be used to verify that the initial state of an 
input/output sequence is that which is expected. The differ­
ence between a UIO sequence and a distinguishing sequence 
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is that if the FSM is not in the expected initial state, the 
actual initial state can be deduced from the output sequence 
of a distinguishing sequence but not from that of a UIO 
sequence; however, this information is unnecessary for the 
purposes of testing. 

The advantage of UIO sequences over distinguishing 
sequences is twofold. First, while few FSMs have a distin­
guishing sequence, almost all FSMs have a UIO sequence, or 
a variant described below, for each state. Second, the length 
of a UIO sequence is at most that of a distinguishing 
sequence and usually much less, so that UIO sequences are 
the method of choice for checking that an implementation is 
not in an expected state. 

In the technique described in [1], after computing the 
UIO sequences for each state of the FSM specification, a test 
is formed for each transition of the FSM. The test of a tran­
sition consists of placing the FSM in the initial state of the 
transition, applying the appropriate input for the transition 
and observing that the output is that which is expected, and 
then applying the UIO sequence for the final state of the 
transition to ensure that the final state of the given transition 
under test is that which is expected. 

The set of tests is then assembled in an optimal manner, 
using a network flow algorithm based on the Chinese Post­
man problem of graph theory [9], such that the resulting test 
sequence is a continuous tour of the FSM which 1) contains 
a test for each transition of the FSM, 2) begins and ter­
minates at a designated start state of the FSM, and 3) is of 
minimum total cost. In the case of the TAP controller, each 
transition requires the same time to realize, so that the test 
sequence generated, described in the following section, con­
sists of the minimum number of transitions necessary to 
rigorously test the FSM in the manner described above. (For 
more information on the UIO sequence/Chinese Postman test 
sequence generation approach, the reader is referred to 
[1],[2],[8],[9]). 

V. Test Sequence Description 

UIO Sequences 

For the implementation with no device identification 
register, a UIO sequence was computed for 28 of the 33 
states shown in Figure 8. For example, the UIO sequence 
for the DRSCAN/000 state consists of the following: 1) start­
ing in the DRSCAN/000 state, apply a "0" to the TMS input 
and observe the previous value of the shift-register portion of 
BS2 on the TDO output; 2) apply a "0" to the TMS input, 
hence capturing the value of PIO in BSO; 3) shift a CS-

signature (for capture-shift signature) to be described below, 
during the capture-shift sequence, from the TDI input, 
through the boundary-scan register, to the TDO output so that 

it may be deduced that the values from the TDI input are 
actually shifted through the boundary-scan register. It can be 
observed that this output behavior could have been produced 
only if DRSCAN/000 had been the initial state. Similar UIO 
sequences exist for all of the other states except for 
IREXIT1/?, DREXIT1/000, DREXTTl/lll, IREXTT1/000, 
and IREXITl/ll l . These five states are considered in the 
following. 

It is easily observable that state IRPAUSE/? is weakly 
equivalent [2] to state IREXIT1/? in that there is no effect on 
the functionality of the boundary-scan architecture if the TAP 
controller and instruction register composition is in the 
IRPAUSE/? state when it is expected to be in the IREXTTl/? 
state. This is because applying a "0" to the TMS line when 
the TAP controller is in the IREXIT1/? state has the same 
effect as applying a "0" to the TMS line when the TAP con­
troller is in the IRPAUSE/? state. Note that a "1" input to 
the TMS when the TAP controller is in the IREXTTl/? state 
is undefined since that would ultimately place an undefined 
instruction in the instruction register. 

For the last four of the states, a set of input/output 
sequences, henceforth called a set of partial UIO sequences, 
is used instead of UIO sequences, since the four states do not 
initiate any unique input/output behavior themselves and yet 
are not weakly equivalent to any other states. For example, 
note that the result of applying a "0" to the TMS input when 
the TAP controller is in state DREXIT1/000 is identical to 
that produced when the TAP controller is initially in state 
DRPAUSE/000; from that point on, all actions are identical 
since the two transitions lead to the same state. Also, the 
result of applying a " 1 " to the TMS input when the TAP 
controller is in state DREXIT1/000 is identical to that pro­
duced when the TAP controller is in state DREX3T2/000 and 
the two transitions also lead to the same state, so that further 
actions are identical. The first partial UIO sequence for 
DREXIT1/000 distinguishes DREXITl/000 from all other 
states except DRPAUSE/000. The second partial UIO distin­
guishes DREXITl/000 from all other states except 
DREXTT2/000. Each transition leading to DREXITl/000 is 
tested twice as in the manner described in the previous sec­
tion, once using each partial UIO sequence. Together, the 
partial UIO sequences yield the same diagnostic power as a 
UIO sequence. Analogously, sets of partial UIO sequences 
can be easily derived for the other three states. 

For the implementation with an IDR, 34 of the 41 states 
have UIO sequences and six have partial UIO sequences as 
described above. Also, state IRPAUSE/? is weakly 
equivalent to state IREXIT/?. 

CS-Signatures and S-Signatures 

The process of capturing and shifting a sequence of 
values through the boundary-scan, bypass, instruction, or dev-
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ice identification register during a capture-shift sequence or 
shift sequence must serve two functions: 1) to ensure that the 
shift operation is occurring by means of the intended register, 
and 2) to exercise as fully as possible the targeted register. 
Such a sequence is said to be a CS-signature (if the shift 
operations are preceded by a capture operation) or S-
signature (if there is no capture operation before shifting) of 
the appropriate register. 

In addition, specific logic values must be placed on all 
of the input lines to ensure that the proper operation is taking 
place. For example, when the BSO cell captures a value 
from the PIO primary input, the complement of that value is 
placed at the TDI input to distinguish the capture operation 
from an ordinary shift. Also, the complement of each CS-
signature and S-signature is used at least once in the test 
sequence to exercise the register adequately. 

The CS-signatures and S-signature chosen are as fol­
lows, where each bit corresponds to a TMS input on con­
secutive TCK pulses. Note that capture operations apply 
only for CS-signatures, and are omitted for S-signatures: 

boundary-scan register: (capture 0 in BSO register), 
1,0,0,1,1, followed by 0,1,1; 

bypass register: (capture 0 in BP register), 1,0,0,1,1; 
device identification register (optional): (capture ID), 
1,0,0,1,1, followed by complement of ID; 

instruction register (external test mode): (capture 0 in IR1 
register, capture 1 in IR2 register), 1,0,0,1,1, followed by 
0,0,0; 

instruction register (bypass mode): (capture 0 in IR1 regis­
ter, capture 1 in IR2 register), 0,1,1,0,0, followed by 1,1,1; 
instruction register ("IDR-select" mode): (capture 0 in IR1 
register, capture 1 in IR2 register), 1,0,0,1,1, followed by 
"IDR-select" instruction. 

The left-most five bits of the signatures, which are the first to 
be applied to the respective register, exercise the register 
logic. Note that each value (0 and 1) is stored at least once 
in each register cell and that each transition (0—»0, 0—»1, 
1—>0, and 1—>1) occurs at least once in each register cell. 
Finally, the right-most bits, which remain in the correspond­
ing register after the signature is applied, are such that when 
they are ultimately shifted out, it is evident which of the 
registers is being exercised. The CS-signatures and S-
signatures can easily be generalized for use with boundary-
scan architecture implementations consisting of arbitrary-
length boundary-scan, device identification, and instruction 
registers; in general, only the right-most bits which remain in 
the register must be changed. 

Length of Test Sequence 

The generated test sequence for the implementation 

under consideration without the device identification register 
consists of 694 input/output operations, corresponding to 694 
pulses of TCK, including CS-sequences. The boundary-scan 
CS- and S-sequences are used 12 times, the bypass register 
CS- and S-sequence is used 20 times, the instruction register 
CS- and S-sequence (external test mode) is used 12 times, 
and the instruction register CS- and S-sequence (bypass 
mode) is used 11 times. In general, given that the number of 
cells in the boundary-scan register is Nbs and that the number 
of cells in the instruction register is Nir, the overall length of 
the test sequence for the implementation without the device 
identification register is 

589 + i2Nbs + 23Nir; 

for an implementation which includes the device 
identification register, where the number of cells in the dev­
ice identification register is Nid, the overall length of the test 
sequence is 

986 + l2Nbs + 44Nir + 21Nid. 

As an example, for a device with 200 I/O pins, a four-cell 
instruction register, and a 32-cell device identification regis­
ter, the test sequence is of length 4234. 

Coverage 

The test sequence for the implementation without the 
device identification register was evaluated by means of a 
fault simulator, using a gate-level description of the 
boundary-scan architecture. Recall that the goal of the test 
sequence is to be a conformance test for the TAP controller 
portion of the boundary-scan architecture. Any faults 
detected beyond the boundaries of the TAP controller is a 
desirable, yet optional, feature. The test sequence detected 
100% of the non-redundant single stuck-at-faults associated 
with the TAP controller (151 out of 151); with the judicious 
selection of the CS- and S-signatures, it also detected a very 
high percentage (85%-95%) of the 546 single stuck-at-faults 
associated with the registers, multiplexers, and buffers. It is 
not possible to give an exact figure for the fault detection in 
the circuitry external to the TAP controller because: 1) many 
of the faults can only be detected by entering the sample or 
internal test modes, which do not have standard, reserved 
instructions, and 2) the number of undetectable faults outside 
the TAP controller are design-dependent and therefore, 
unpredictable. 

Discussion 

The figures for the single stuck-at-fault coverage do not 
adequately quantify the capabilities of the test sequence 
because the UIO sequence/Chinese Postman test generation 
technique, unlike other approaches for testing sequential cir­
cuits, is designed to detect functional faults, of which stuck-
at-faults are but a small subset. Therefore, it seems reason-

308 



able to believe that the robustness of the test sequence using 

UIO sequences should exceed that of other known techniques 

based on the stuck-at-fault model. At present, however, there 

is no way to verify this using simulation techniques. 

The test sequence generated by the UIO 
sequence/Chinese Postman technique avoids needlessly 
detecting so-called operationally redundant faults, that is, 
faults which do not affect the specified operation of the 
implementation. This further reduces the overall length of 
the test sequence. An example of an operationally redundant 
fault is a fault in the TAP controller which can only be 
detected by updating the instruction register with an 
undefined instruction. 

Finally, another advantage of the UIO Sequence/Chinese 
Postman-generated test sequence is that it is not circuit-
dependent. Unlike other techniques, the test sequence gen­
erated here is based solely upon a functional description of 
the circuit. Therefore, the same test sequence can be used as 
a manufacture-time and/or run-time test as well as a confor­
mance (design-time) test for the many different boundary-
scan gate-level implementations expected to be designed by 
the various manufacturers that plan to incorporate the 
JTAG/IEEE PI 149.1 boundary-scan architecture into their 
chip designs. 

VI. Conclusions 

In this paper, a novel technique for generating test 
sequences has been applied to the TAP controller portion of 
the JTAG/IEEE PI 149.1 boundary-scan architecture. The 
resulting test sequence is based on a functional-level, finite-
state machine description of the circuit and has in its initial 
analysis indicated impressive capabilities in detecting design 
inconsistencies and run-time faults in boundary-scan imple­
mentations. 
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Abstract 

Increasing complexity of circuit boards and surface mount 
technology has made it difficult to test them using traditional 
in-circuit test techniques. A design-for-testability framework 
has been proposed as the IEEE Standard 1149.1* Test Access 
Port and Boundary-Scan Architecture. This architecture 
simplifies board test by providing an electronic bed of nails. It 
also provides access to other test features that may be present 
on a chip. 

Because of the serial nature of the tests that use Boundary-
Scan, it is important to minimize the test size while 
maintaining diagnosability. This has renewed interest in 
exploring efficient test algorithms and implementation 
techniques. This paper presents a new framework for analyzing 
the algorithms proposed for testing and diagnosing wiring 
interconnects. Using this framework, the algorithms proposed 
in the literature are analyzed, clearly identifying their 
capabilities and limitations. A new optimal adaptive algorithm 
that can reduce test and diagnosis complexity is also 
presented. 
Keywords: Boundary-Scan, Board Test, Test Generation, 
Diagnosis, Interconnect Test. 

1. Introduction 

Higher levels of system integration have resulted in circuit 
boards shrinking onto devices, while systems are packed onto 
circuit boards. The increase in both the number of integrated 
circuits and their complexity has made testing circuit boards 
difficult and expensive. Traditionally, manufacturers use two 
techniques to test boards: in-circuit test and functional test. In 
the in-circuit test technique, the devices on a board are 
accessed by a "bed-of-nails" — probes on the ATE that 
directly make contact with the device I/O pins from pads on 
the surface of the circuit board. This makes it possible to test 
each device and the interconnects between devices. Note that 
this technique requires extensive access to the circuit under 
test. 

Functional tests are applied through a board's normal 
terminations—for example, edge connectors. The objective is 
to test the board as a single entity. However test generation, 
fault simulation, and test application costs are excessive to 
achieve acceptable fault coverage. For some products it may 
be impossible to either verify or achieve the desired fault 
coverage. 

Design-for-testability (DFT) and Built-in Self-Test (BIST) 
make the test problem more tractable. ATE's have also 
evolved to cope with the growing complexity of circuit boards. 
However surface mount technology, silicon-on-silicon, etc. 
further reduce the access that the in-circuit test methodology 
needs. 

1.1 Review of the Boundary-Scan Architecture 

To solve the problems discussed above, IEEEStd. 1149.1 has 
proposed the Boundary-Scan Architecture. This architecture 
basically consists of a Test Access Port (TAP) which consists 
of a four or five signal interface, a controller, an instruction 
register, and two or more test data registers (Figure 1). One of 
these test data registers is the Boundary-Scan (B-S) Register. 
This register is formed by serially linking latches (each of 
which is part of a B-S cell) that are placed at each device I/O 
so that the signals at the I/O can be controlled and observed. 
The B-S data registers in the parts of a board are linked into 
one or more serial paths through the assembled product. Such a 
path allows one to test the interconnects, apply tests to each 
device on this path, apply tests to clusters of logic that are not 
on the B-S path, access BIST and other testability features 
within devices, and take "snapshots" of the system state in 
real time. More details about this architecture can be obtained 
from [3]. 

Figure 1. IEEE Std. 1149.1 Boundary-Scan Architecture. 

1.2 Testing Circuits with Boundary-Scan 

If all the devices on a board implement B-S, then the board test 

Reprinted from IEEE Proceedings 1989 International Test Conference, 
pages 63-70. Copyright © 1989 by The Institute of Electrical and 
Electronics Engineers, b e . All rights reserved. 
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procedure can be divided into the following test sequence: 

• Test B-S chain integrity 

• Test board interconnects 

• Activate BIST and scan out the resultant signatures 

Testing the integrity of the B-S chain is supported by the B-S 
architecture standard and is described in detail in [3], 
Activating BIST is done by scanning in the RUNBIST 
instruction, waiting for it to complete, and scanning the 
signature out of the B-S Register. Testing the board 
interconnect is the subject of the remainder of the paper. While 
the emphasis of this work is testing in the IEEE Std. 1149.1 
scan environment, the algorithms and results discussed here are 
also applicable to the general problem of testing wiring 
interconnects. 

Section 2 presents the notations and definitions that will be 
used in the remainder of this paper. Section 3 defines the fault 
model which is followed by a review of fault detection 
algorithms in Section 4. Section 5 discusses fault diagnosis. 
In this section the faulty response is analyzed and classified, 
and the new framework is presented. The diagnostic 
capabilities and limitations of existing algorithms are analyzed 
under this new framework. Section 6 proposes a new, optimal 
adaptive test and diagnosis algorithm. Sections 7 and 8 discuss 
stuck-at faults and opens on wire/3-state nets respectively. 
Section 9 reviews some implementation issues, and Section 10 
offers conclusions. 

2. Notations and Definitions 

In this section we present the notations and definitions that will 
be used in the remainder of the paper. 

Net: A net on a circuit board is defined as an equipotential 
surface, formed by a physical wire connecting a set of input 
buffers and a set of output buffers. 

The most general form of a net is shown in Figure 2. 

Figure 2. A Wire or 3-state Net. 

A net can be driven by one or more buffers. Each net can be 
fanned out to one or more buffers. If a net is driven by a single 
buffer, we refer to it as a simple net. A net which is driven by 
more than one buffer is either a wire-AND/OR or 3-state and is 
referred to as a wire net or a 3-state net respectively. 

Net Degree: The degree of a wire net, denoted by k, is defined 
to be the number of buffers that drive that net. The degree of a 
3-state net, denoted by z, is also defined to be the number of 
buffers that drive that net. 

Let: 

• L: Length of the B-S chain 

• N: Number of nets 

• ni: A net identified by a unique number (ID), i 

• ni
*: A wire net identified by a unique number, i 

• ki. Degree of a wire net ni
* 

• K: max(ki) 

• ni
t: A 3-state net identified by a unique number i 

• zi: Degree of a 3-state net ni
t 

• Z: max(zi) 

We also review the following definitions: 

Union of Vectors, denoted by U(v1,v2, • • • ), is the vector 
that results from a bit-wise OR of the component vectors. 
Example: v1 = 0 0 0 l ;v2 = l 100. U(v1,v2)= 1101. 

Intersection of Vectors, denoted by n (v1,v2, • • • ), is the 
vector that results from a bit-wise AND of the component 
vectors. 
Example: v1 = 1 0 0 1 ; v2 = l 1 0 0. n1(v1,v2)= 1 00 0. 

Parallel Test Vector (PTV), is the vector applied to all nets 
of an interconnect network in parallel. 

Sequential Test Vector (STV), is the vector applied to a net, 
over a period of time, by a number of PTVs. 
Note that the STV also represents a net ID. In Table 1, the 
PTVs are represented by the columns while the STVs are 
represented by the rows. 

Sequential Response Vector (SRV), is the response of a net to 
an STV. If the net is fault free, its STV and SRV will be 
identical. A faulty net will differ in its STV and SRV. 

Fault Syndrome, denoted by sf, is the serial response of faulty 
or potentially faulty net(s). It is a SRV that is either different 
from its corresponding STV or a SRV that is common to two 
or more nets. 

Vector Set, denoted by S is the set of all STVs. Note that 
|S| =N. 

3. Fault Model 

We consider the following classes of faults: 

Multi-Net Faults. These are bridging faults that create a short 
between two or more nets. The behavior of the nets is a 
function of the driver characteristics of the individual nets 
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involved in the short. This behavior can be either deterministic 
or non-deterministic. Deterministic behavior can be 
characterized as follows: 

• OR-type Short. If the drivers are such that a ' 1 ' dominates, 
then the resultant logic value is an OR of the logic values 
on the individual nets. 

• AND-type Short. If the drivers are such that a '0' 
dominates, then the resultant logic value is an AND of the 
logic values on the individual nets. 

• Strong-Driver Short. If a specific driver in the short 
dominates, then the value of the net follows that of the 
driver regardless of the output of the other drivers. 

The logic value on the net can also be non-deterministic or 
undefined. This behavior is not included in this fault model and 
is not considered in the remainder of this paper. 

Single-Net Faults. These are stuck-at-one, stuck-at-zero, and 
open faults on single nets. Note that in the case of wire or 3-
state nets, stuck-at faults affect the net as a whole while open 
faults may affect only part of the net. 

The fault model allows for single or multiple occurrences of 
either multi-net faults and/or single-net faults with 
deterministic behaviour. 

4. Fault Detection 

In this section we discuss detection of stuck-at faults, shorts 
between nets and opens on simple nets. Note that opens on 
simple nets are equivalent to a stuck-at '0' or stuck-at ' 1 ' at the 
receiving buffer(s), depending on the technology. Opens on 
wire and 3-state nets are more complex and are dealt with in 
section 8. 

Counting Sequence Algorithm 
Some of the earliest work in this area was reported by Kautz 
[5]. In this paper he showed that [ log(N)] PTVs are optimal 
for detecting all shorts in a network of N unconnected 
terminals. The test requirement for detecting shorts is very 
simple; a unique STV must be applied to each net. If the board 
is fault-free, each response must be unique. In case of a short, 
the nets involved will have the same response and hence the 
short will be detected. The requirement of applying a unique 
STV to each net can be easily met by following a simple 
counting sequence. 

Modified Counting Sequence Algorithm 
The vector set proposed by Kautz contained the all '0' and all 
' 1 ' STVs. This was extended to [ log(N+2)] PTVs by Goel 
and McMahon. This vector set eliminated the all '0' and all 
' 1 ' STVs so that every STV has at least one '0' and one ' 1 ' . 
This modification permits stuck-at fault testing. This vector set 
is also a counting sequence with the all '0' and all '1' vectors 
excluded. 

Nets 

« i 

n2 

"3 

« 4 

« 5 

"6 

n7 

«8 

n, 

"10 

Parallel Test Vectors 
I,T i.T" n^ « r 
V, V2 V3 V4 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 

0 
0 
0 
1 
1 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
1 
1 
0 
0 
1 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

Sequential 
Test Vectors 

Vl 

V2 

v3 

V4 

V5 

v6 

V7 

V8 

v9 

VlO 

TABLE 1. Test Set defined by Modified Counting Sequence Algorithm.. 
Consider a circuit with ten nets. The four test vectors that 
would be applied are shown in Table 1. As defined previously, 
the Parallel Test Vectors are represented by the columns of 
Table 1 and the Sequential Test Vector are represented by the 
rows of Table 1. Each STV applies at least a '0' and ' 1 ' to each 
net so that stuck-at faults can be detected. Also every STV is 
unique so that a short between any pair of nets can be detected. 

Structure Independent Algorithm 
The test proposed by Hassan et al. [2] further generalizes the 
test proposed by Goel and McMahon. Their goal is to generate 
a test that is independent of the structure of the scan path so 
that test generation is simplified. To do this they propose using 
f log(L+2)l test vectors (JL is the length of the B-S path) 
instead of f \og(N+2)~\ . The logic is that while this is non-
optimal, it does not need formatting and is more suitable for 
BIST implementation. This test, however has a serious 
limitation: It only works if there are no 3-state nets. This 
constraint is not realistic for complex, bus-oriented circuit 
boards. In general, for scan paths based on the IEEE Standard 
1149.1, order independent test sets are not possible. This is 
because the 3-state control signals and the outputs they control 
lie on the same scan path; and, to prevent conflicts, the 
relationship between the control signal and the outputs must be 
deterministic. 

Walking One's Algorithm 

Nets 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

n8 

n9 

n10 

1 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 
0 
0 
0 
0 

Walking One's Sequence 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

0 
0 
0 
0 
1 
0 
0 
0 
0 
0 

0 
0 
0 
0 
0 
1 
0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
1 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

TABLE 2. Walking One's Test Sequence. 
This is a very common test sequence used for testing 
memories, etc (Table 2). This has also been discussed by 
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Hassan et al. [2]. We consider the properties of the original 
sequence without response compression. The sequence has N 
PTVs. Each PTV is applied and the response stored for 
analysis. If applied in parallel this sequence is O (N). In a scan 
environment this test is O(N2). Note that this sequence 
satisfies the minimum requirement for stuck-at and short 
detection as discussed above. This sequence also has a unique 
property that guarantees diagnosis, as discussed in the next 
section. 

5. Diagnosis of Short Faults 

In this section we discuss diagnosis of short faults. Diagnosis 
of stuck-ats and detection/diagnosis of other single-net faults 
will be discussed in sections 7 and 8. 

Diagnostic resolution is of two types: The first identifies, 
•without ambiguity, a list of nets that have a fault. The second 
type further identifies the sets of nets affected by the same 
short, the nets that are stuck-at zero or one, or the net that is 
open. When we use the term diagnose, we refer to the second 
type of diagnosis. This is important for rapid repair during 
manufacture. 

Further, there are two test and diagnostic techniques. The first 
we call the One Step Test and Diagnosis where a set of test 
patterns are applied and the response is analyzed for fault 
detection and diagnosis. The other technique we call 
Adaptive Test and Diagnosis where the test is applied, 
response analyzed and then one or more additional tests may 
be applied to aid diagnostics. The implication of these 
techniques and their suitability for different test and repair 
environments is discussed in the Section 4. 

Traditional testing applies PTVs to a circuit-under-test, 
receives a response and then analyzes one or more failing 
PTVs for diagnosis. We use a different approach. We assign a 
unique ID (STV) to each net and then consider the test 
procedure as 'requesting' each net to respond with its ID. Fault 
free nets respond with their correct IDs; faulty nets with IDs 
that differ from their assigned IDs. These incorrect IDs (or 
SRVs) have been defined earlier as fault syndromes and their 
analysis leads to diagnosis. 

5.1 Syndrome Behavior 

We analyze the relationship of the syndrome to the STVs of 
the nets involved in a short. 

Let vi represent the STV applied to net ni. The SRV for a fault 
free net is same as the STV applied — vi. Let the faulty 
response be represented by vi

f. This notation implies that net ni 

has responded with an ID f instead of i. All nets involved in a 
short will have the same faulty SRV. This SRV is called the 
fault syndrome sf If nets ni, nj, nk,-•• are shorted together, 
then each will have the response sf = vi

f,vj
f, v k

f , . . . 

Let (vi
f,vj

f, vk
f, . . . ) be the STVs that were assigned to the nets 

involved in a short. Based on the type of short the syndrome 
can be characterized as follows: 

• If sf = U(vi
f,vj

f, vk
f, ...), then the short is of OR-type and 

the syndrome is called a Disjunctive Syndrome. 

• If sf = n(vi
f,vj

f, vk
f , . . .), then the short is of AND-type 

and the syndrome is called a Conjunctive Syndrome. 

• If the syndrome is neither conjunctive nor disjunctive and 
sf € (vi

f,vj
f, vk

f, ...) then the short is strong-driver short and 
the syndrome is called an Identity Syndrome. 

5.2 Syndrome Classification 

Based upon the above characterization, we classify a syndrome 
into two types: 

• Aliasing Syndrome. 
Let SF be the set of nets which respond with the syndrome 
sf. If sf € S (S is the set of STVs) and sf=U(SF-sf) or 
sf=n(SF-sf), then the syndrome sf is called an aliasing 
syndrome. If this happens then the faulty response of a set 
of failed nets is the same as the fault-free response of 
another net. It cannot be determined whether or not this net 
is also involved in the short. 

Consider the test in Table 1. Assume all shorts are of type 
OR. If nets n3, and n4 are shorted then both will have a 
syndrome 0 111. However the fault-free response of net 
n7 is also the same. Therefore it is not possible to 
distinguish whether n3, n4, n7 are shorted or only nets 
n3, n4 are shorted. The syndrome 0 1 1 1 is an aliasing 
syndrome. Clearly, if nets n 1 ,n 2 and n7 were shorted then 
the syndrome would be 0 111. However this syndrome 
would not be aliasing because sf != u(n1,n2) (Note that it 
is possible for a syndrome to be conjunctive or disjunctive 
and the corresponding short be a strong-driver short. For 
example, if net n5, n6, n7 are shorted and the driver 
associated with n7 is a strong driver, then the syndrome 
will still be disjunctive and aliasing. However for 
diagnosis, this situation is not relevant and will not be 
considered further.) 

• Confounding Syndrome. 
A syndrome is called a Confounding Syndrome if the 
syndromes that results from multiple independent faults are 
identical, that is si =sj = . . = sk. Therefore it cannot be 
determined if these faults are independent. 

Consider (Table 1) two independent faults: nets n4,n10 are 
shorted and nets n6,n8 are also shorted. Both shorts have 
the same syndrome 1110. Consequently it cannot be 
determined if the faults are independent or one fault, a 
short between n4,n10,n6,n8 has occurred. The syndrome 
1 1 1 0 is a confounding syndrome. 

313 



Degree of Confounding, denoted by c, of a syndrome is 
defined as the maximum number of potentially independent 
faults which all have the same syndrome. In the above 
example the syndrome 1 11 0 has c = 2. 

Note that a syndrome can be both confounding and aliasing. 
Full diagnosis (as defined earlier) is possible if and only if no 
aliasing or confounding syndromes can exist. 

S3 Diagnostic Capabilities of One-Step Algorithms 

Using the syndrome analysis framework introduced in the 
previous section, we now analyze the diagnostic capabilities 
and limitations of the algorithms proposed in the literature. 

Modified Counting Sequence Algorithm 
This algorithm can diagnose all short faults, provided the 
syndromes are neither aliasing nor confounding. It is 
impossible to predict the nature of the syndrome and 
consequendy Algorithm 2 has very limited diagnostic 
capability. 

True/Complement Test and Diagnosis Algorithm 
To resolve the ambiguity caused by aliasing syndromes, 
Wagner [6] proposed a technique that we refer to as the 
True/Complement Test sequence. 

Nets 

n1 

n2 

n3 

n4 

n5 

n6 

n7 

n8 

n9 

n10 

True Vectors 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 

0 
0 
0 
1 
1 
1 
1 
0 
0 
0 

0 
1 
1 
0 
0 
1 
1 
0 
0 
1 

1 
0 
1 
0 
1 
0 
1 
0 
1 
0 

Complement Vectors 
1 
1 
1 
1 
1 
1 
1 

0 
0 
0 

1 
1 
1 
0 
0 
0 
0 
1 
1 
1 

1 
0 
0 
1 
1 
0 
0 
1 
1 
0 

0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

TABLE 3. True/Complement Test Sequence. 

The technique applies 2[ log(N+2)] patterns. The additional 
[ log(N+2)] patterns are obtained by complementing the first 
set of patterns. This test can diagnose all shorts with unique 
syndromes which are not confounding. Consider Table 3, 
which shows the 2\ log(iV+2)] patterns applied to the same 
ten nets. If now nets n3,n4 are shorted, the complement test set 
gives a syndrome of 1 1 1 1 while the fault free response of n7 

is 10 00. Therefore the combined syndrome is no longer 
aliasing and the short can be diagnosed. However confounding 
syndromes cannot be diagnosed. This can be seen by analyzing 
the pairs of shorts, n8,n6 and n10,n4. The diagnostic 
capabilities of this technique is summarized by the following 
lemma: 

Lemma 1. The True/Complement Test and Diagnosis 
algorithm will not generate aliasing syndromes. It cannot 
diagnose syndromes that confound. 

Proof: Obvious. • 

Walking One's Algorithm. 
This algorithm is unique in that it is the only known algorithm 
that guarantees complete one step diagnosis of shorts for 
unrestricted faults. It has a property that we call Diagonal 
Independence. (Note that the definition that follows applies for 
OR-type shorts, that is the definition is actually for Disjunctive 
Diagonal Independence. Its dual, Conjunctive Diagonal 
Independence would apply to AND-type shorts. For clarity, 
OR-type shorts are assumed in the discussion that follows.) 

Diagonal Independence of a Vector Test Set. 

Let SNxM . M>=N denote the matrix of the vector test S. Let 
bij, 0<=i<=N-1, 0<=j<=M-l be an element of S. If S, or the 
matrix obtained from S by successive row and/or column 
interchanges, has the form: 

bij = 

1 for all i=j 
0 for all i>j 
x for all i<j 

where x € {0,1), then S is said to be Diagonally Independent. 

The general form of a matrix of test vectors that is Diagonally 
Independant is: 

1 x x x x x 

0 1 x x x x 
0 0 1 x x x 
0 0 0 1 x x 

The following are two other examples of Diagonally 
Independant test vector matrices: 

Theorem 1: Unrestricted shorts of the nets whose STVs e S 
are diagnosable if S is Diagonally Independent. 

Proof: Let Q be the matrix that is obtained from S after 
successive row and/or column interchanges, so that Q is in the 
form defined by the Diagonal Independence property. Let 
V1,V2, . . . ,VN represent the N rows of the matrix Q or the N 
STVs of the corresponding test set. Let each STV be 
represented by vi,=bi0,bi1, ... ,bi(M-1). Consider any two 
STVs vi, vj € Q. Let bil and bjn be the lowest bit positions 
that are ' 1 ' , of the two vectors vi, vj respectively. From the 
definition of Diagonal Independence, it is clear that 
i!=j => l != n. In other words, no two row vectors of a matrix 
that is Diagonally Independent can have identical lowest bit 
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positions that are ' 1 ' . 

Further, diagnosis is possible if and only if the syndromes do 
not alias or confound. 

Let us assume that the syndromes qan alias. Therefore there 
exists a set of vectors R = {vi,vj, vk,}, R c Q such that 
U(vi,vj, vk,) = v/, vl !€ R, vl € Q. This implies that there is 
at least one vector in R which has a ' 1 ' in the same lowest bit 
position as v;. This implies that the matrix Q has two unique 
vectors that have the same lowest bit position as ' 1 ' , and 
consequently cannot be Diagonally Independent. This 
contradicts the given fact that Q is Diagonally Independent and 
hence it is impossible for the syndromes to alias. 

Similar it can be shown that the syndromes cannot confound. 
For two syndromes to confound, there must exist two 
independent vector sets, such that their respective unions result 
in the same vector. This implies that each vector set must have 
at least one vector which has ' 1' in the same lowest bit position 
as the syndrome. This further implies that the matrix has at 
least two unique vectors with a ' 1 ' in the same lowest bit 
position which leads to the same contradiction as above. Hence 
syndromes cannot confound. 

Since syndromes can neither alias nor confound, full diagnosis 
is possible. • 

Note that this condition is sufficient, but not necessary, for a 
test vector set to avoid aliasing and confounding. However this 
leads to a systematic method of generating vector sets that 
guarantee diagnosability. 

Corollary 1: The Walking One's algorithm can diagnose 
unrestricted shorts with N test vectors. 

Proof: The Walking One's test set is Diagonally Independent 
and consequently the proof follows directly from Theorem 1. 
• 
5.4 Diagnostic Capabilities of Adaptive Algorithms 

As defined previously, adaptive test refers to the process of 
applying test vectors to a CUT, analyzing the response and 
then applying one or more tests to perform diagnosis. Note that 
each of the previous one-step algorithms has its adaptive dual. 
We present a new algorithm, called the One-Test Adaptive 
Algorithm, that is the dual of the True/Complement Algorithm. 
We then analyze the W-Test Adaptive algorithm, proposed by 
Goel and McMahon [1], which is the dual of the Walking 
One's Algorithm. 

One-Test Adaptive Algorithm 
This algorithm is the equivalent of the True/Complement 
Algorithm. That is, they have the same diagnostic capability. 
The algorithm is as follows: 

1. Apply the [ log(iV+2)] tests for fault detection. 

2. Analyze the syndromes. If the syndromes are neither 
aliasing nor confounding, then diagnosis is immediate. 

3. If the syndromes are aliasing (but not confounding) then 
we need to resolve whether or not the vector, which is 
aliased to, has also failed. This can be accomplished by 
one additional test. A PTV is applied to the interconnects 
in which the bits applied to the nets whose STVs are 
aliased to, are set to ' 1 ' . The remaining bits are set to '0'. 
Clearly if a net is part of a short, then the response bits 
of the nets in the same short will be driven to ' 1 ' . 
Otherwise they will remain '0'. This test can be 
performed for all unique aliasing syndromes in parallel 
and hence only one additional test is required. 

Note that like the True/Complement Algorithm, One-Test 
Adaptive Algorithm also cannot diagnose confounding 
syndromes. 

Lemma 2. The One-Test Adaptive Algorithm can diagnose 
shorts with syndromes that are aliasing but not confounding 
with no more than l+[ log(N+2)] tests. 

Proof: Follows from the discussion above. • 

W-Test Adaptive Algorithm 
Goel and McMahon [1] have proposed a two-step test and 
diagnosis procedure. This algorithm is equivalent to the 
Walking One's Algorithm and, in the limit, reduces to the 
Walking One's Algorithm. In the first step they apply the 
[ log(N+2)] vectors discussed in the Modified Counting 
Sequence Algorithm. From analyzing the response, it is 
possible to identify a set of vectors R c= S which have 
produced faulty response vectors. Let W= |R|. In the second 
step the procedure applies a Walking One Test to the set R to 
diagnose the failures. This algorithm has requires 
W + [ log(N+2)] PTVs. 

In case there are a large number of faults, W —> N. However in 
practice W << N and so this will require fewer vectors than the 
Walking One's Sequence. 

Lemma 3. The W-Test Adaptive Algorithm can diagnose all 
unrestricted shorts with W +[log(n+2)] vectors, where W is 
the number of faulty nets. 
Proof: Follows directly from discussion above. • 

6, Optimal C-Test Adaptive Algorithm 

This section describes a new, optimal diagnostic algorithm. It 
has the same capability as the Walking One's Algorithm, 
however the analysis stage uses the analytical framework 
developed earlier to avoid the potential inefficiency the W-
Test Adaptive Algorithm. Instead of looking at the set of all 
faulty nets, this algorithm analyzes the syndromes to determine 
their nature and then decides if additional tests are required. 

The Algorithm is as follows: 
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1. Apply the [ log(N+2)] tests for fault detection. 

2. Analyze the syndromes. If they are neither aliasing nor 
confounding, then, diagnosis is immediate. 

3. If syndromes are only aliasing, then full diagnosis 
requires one additional test, as described in the One-Test 
Adaptive Algorithm. 

4. The remaining syndromes are either confounding, or 
both aliasing and confounding. The confounding is 
resolved as follows: Let C = max(c;) be the largest 
degree of confounding of these syndromes. No more 
than C-l tests are required to resolve the confounding of 
the fault whose syndrome has a degree of C. Since the 
diagnosis of faults with unique syndromes can be done 
in parallel, C-l tests suffice to completely resolve all 
confounding syndromes. 

5. Finally aliasing (if exists) needs to be resolved. This 
requires one more vector. Therefore if the syndromes are 
confounding and aliasing, then C-l tests suffice to 
resolve confounding and one more test resolves aliasing. 
Therefore, in general, at most C tests suffice to 
completely diagnose all shorts. 

Lemma 4. The C-Test Adaptive Algorithm can diagnose 
unrestricted shorts with no more than C+[log(N+2)] tests, 
where C is the highest degree of confounding. 

Proof: Follows directly from the discussion above. • 

7. Diagnosis of Stuck-at Faults 

Diagnosis of a stuck-at fault is relatively simple, since the 
affected receiving buffer reads a constant value. However to 
achieve complete diagnosis, care must be taken to ensure that 
the resultant all-one or all-zero syndrome is not disjunctive or 
conjunctive respectively. If that is the case then the set of nets 
reporting a constant '0' or ' 1' syndrome could all be stuck-at 
or shorted together. This can be a potential problem for one-
step diagnosis. For example, consider a short of nets n7,n8 in 
Table 1. The SRV of both these nets will be 1 1 1 1, which is 
same if both the nets had been stuck at ' 1 ' . This ambiguity can 
be resolved by adding a all-zero (for OR-type shorts) and all-
one (for AND-type shorts) PTV to the test vector set. If 
Table 1 had another all PTV, vTs, which is all '0', the the last 
bit of the SRVs of n7 and n8 will distinguish between a stuck-
at-1 fault and a short. A stuck-at-1 fault will drive this bit to a 
'1' while a short will result in this bit having a value '0'. This 
will clearly distinguish between a stuck-at and short. 

8. Testing and Diagnosing Opens on Wire and 3-State Nets 

Wagner [6] presents detailed algorithms for testing wire nets. 
There are three types of wire-nets: wire-AND, wire-OR and 3-
state nets. Testing wire-AND and wire-OR nets is simple and 
is equivalent to testing an AND or OR gate. Note that stuck-at 

and bridging faults affect the net as a whole and are detected 
by the previous test procedures. The principle interest in these 
tests is to test for and diagnose opens which affect only a 
subset of the pins in a net. 

Wire-AND/OR Nets Test and Diagnosis Algorithm 
Consider a wire-AND net of degree k. Testing it is analogous 
to testing a k input AND gate and the test set consists of k tests 
formed by 'walking' a '0' across the k output buffers (the 
remaining k-1 output buffers are held at '1') and one 
additional test which consists of all ones. The dual applies to 
wire-OR nets. Therefore a net of degree k can be tested with 
k + 1 tests. Since multiple wire-nets can be tested in parallel, 
K+1 tests suffice to test all AND/OR wire nets. 

3-State Nets Test and Diagnosis Algorithm 
To test a 3-state net, we have to ensure that each buffer can 
independently drive the net to both a '0' and a ' 1 ' and that this 
value is correctly received by the receiving buffers. This 
implies that both a '0' and a ' 1 ' has to walked across the input 
of the output buffers, (with the other output buffers being held 
at the complementary state and disabled). Therefore a 3-state 
net of degree z can be tested with 2z test vectors. Further since 
multiple 3-state nets can be tested in parallel, 2Z tests suffice to 
test all 3-state nets. 

Lemma 6. All stuck-ats and open faults in 3-State, Wire-AND 
and Wire-OR nets can be detected and diagnosed by the 
Wire-AND/OR and 3-State Test and Diagnosis Algorithms 
using at most max(K + 1, 2Z) test vectors. 

Proof: Follows directly from the observation that all wire-
AND, wire-OR and 3-state nets can be tested in parallel. Note 
that by observing the output response, it is trivial to diagnose 
which driver or receiver is isolated from the net by an open. • 

9. Implementation Issues 

There are several implementation issues that are important 
when generating tests for a circuit board. The objective is to 
minimize the test/repair time (and consequendy the cost) while 
achieving high fault coverage and diagnostic resolution. Some 
of the parameters to be considered are: 

• ATE Capabilities 

• Test/Repair Environment 

• Board Yield 

9.1 ATE Capabilities 

One of the motivations for using B-S is that low cost ATE's 
(e.g. one that is PC-based) can be used for board test. These 
ATE's may have some limitations. Of principal concern is the 
maximum length of the test sequence that the ATE can apply 
between successive disk accesses. This may constrain the 
algorithm that can be used. An ATE with limited test length 
capability may make it impractical to use the Walking One's 
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Algorithm. Another limitation concerns the 'openness' of the 
architecture. In some cases it is not possible for a test engineer 
to gain direct access to the response for the purpose of 
diagnosis; in other cases, the ATE provides a compressed 
failure report. Other factors are the ATE's handling of the 
failed response and the number of failures permitted before test 
termination. If few such failures are permitted, then insufficient 
failure information might be obtained and this may impact 
diagnostic resolution. 

Another important consideration is the computational 
capability of the ATE and the ease of generating and applying 
test vectors in real time. These factors determine the feasibility 
of adaptive testing. Some ATE's may have very limited 
computational capabilities making diagnosis difficult. Others 
may require extensive processing before test vectors can be 
generated making it impossible to apply tests in real time. 

9.2 Test/Repair Environment 

A good understanding of this factor is crucial in designing 
efficient tests. Frequently this may be pre-determined by 
existing equipment and practices. If a shop set-up initially 
performs a go/no-go test and failing boards are sent to a repair 
station, then to maximize throughput, the Modified Counting 
Sequence algorithm can be used for the initial test, and the C-
Test Adaptive Algorithm for diagnosis and repair. If however 
test and repair are done at the same station, and the ATE does 
not have the capability to do adaptive testing, then the Walking 
One's Algorithm may be required. This problem is addressed 
in another paper by the authors [4], where design and process 
information is used to constrain the size of the test produced by 
one-step algorithm without sacrificing diagnostic resolution. 

9.3 Board Yield 

If the process is mature and high yields are being obtained, 
even the Modified Counting Sequence or the 
True/Complement Algorithms may provide enough diagnostic 
resolution. On the other hand for a new product/process the 
number of failures are likely to be large and and consequently 
the Walking One or C-Test Adaptive may be required. Note 
that in such an environment the W-Test Adaptive Algorithm 
may suffer reduced effectiveness 

10. Conclusions 

This paper makes several contributions. A new framework for 
analyzing test generation and diagnosis algorithms for wiring 
interconnect have been presented. A property of test vector 
sets, called Diagonal Independence, has been identified which 
guarantees the diagnostic resolution of the vector test set. The 
failing responses or syndromes have been classified into 
aliasing and confounding syndromes, and this classification 
permits precise analysis of the diagnostic capabilities of 
different test algorithms. Using this framework, all the 
algorithms that have been proposed for board interconnect test 

are analyzed. Their capabilities and limitations are clearly 
defined. A new, optimal adaptive test and diagnosis algorithm 
is proposed. 

An important aspect of test design is to take into account the 
test/repair environment and its relationship with the product 
being tested. This relationship is not static and it changes as the 
process matures. Ideally we need a design procedure that takes 
into account the ATE capabilities, test/repair strategies, 
product yield and the fault data from Failure Mode Analysis so 
that an efficient, cost-effective test can be developed. To do 
this we not only need a good understanding of the entire 
test/repair process but we also need good test algorithms that 
permit a tradeoff between diagnostic resolution and test 
complexity. Presently, if adaptive tests are not possible, then 
we basically have two choices: The Modified Counting 
Sequence Algorithm with O(logN) test size or the Walking 
One's Algorithm with O (N) test size. If Boundary-Scan is used 
to apply the test vectors then the test time, because of the 
serialization of the PTVs, is O(2NogN) and O(N2) 
respectively. In this environment, the difference between 
O (N logAO and O (N2) test application times may be too high 
to make the algorithm with 0(N2) complexity practical. 

Using the framework established in this paper, the authors 
propose [4] a family of One-Step diagnosis algorithms that use 
design and process information to generate tests of O (logN) 
without sacrificing diagnostic resolution. The algorithms 
(Modified Counting Sequence, Walking Sequence) that are 
discussed in this paper are shown to be special cases of the 
general theory that is used to generate these new algorithms. 
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Abstract 

To test wiring interconnects in a printed circuit board, 
especially one equipped with boundary-scan devices, it is 
important to minimize the test size while maintaining 
diagnostic capability. This has provided the motivation for 
research work that explores efficient test generation and 
diagnosis algorithms. In this paper, we propose a unified theory 
for designing various types of interconnect test algorithms. We 
demonstrate that the algorithms proposed in the literature are 
special cases of the general algorithms presented in this paper. 
The new algorithms are shown to be optimal or near-optimal 
for a given set of design and process parameters. They increase 
the designer's flexibility by offering a full range of solutions 
(i.e. test vector sets) based on various trade-off criteria such as 
test compactness and diagnostic accuracy. Parameters for 
quantifying the quality of the tests are described. The 
significance and limitations of the proposed algorithms are also 
discussed. 

Key Words: Board testing, boundary-scan, interconnect test, 
design-for-testability. 

1. Introduction 

The problem of test generation for wiring interconnects has 
been extensively studied. Several algorithms have been 
proposed which assure detection of all opens, shorts, and 
stuck-at faults [1-4]. Some of them [1, 2] are optimal in the 
sense that they produce tests that are most compact. That is, the 
test size is 0(logN), and, in the boundary-scan environment, 
the test time is 0(NlogN). However, as described in the 
accompanying paper [5], these tests are inadequate in terms of 
their diagnostic capability. An algorithm based on the walking 
patterns [4] has been proposed for fault diagnosis. Although it 
guarantees complete diagnosis, the test size and the test time 
are O (N), and O (N2) respectively. This may be intolerable for 
high-density boards. 

Clearly, it is advantageous to develop a general approach for 
designing test generation and diagnosis algorithms which 
enable the designer to gradually give up compactness while 
still maintaining maximal diagnostic resolution. In this paper, 
we present a unified theory which will allow us to accomplish 
this goal. In particular, the designer will have the freedom to 
choose from a wide variety of tests, ranging from those 
primarily designed for fault detection to those primarily 
designed for fault diagnosis. 

We assume that the reader is familiar with the boundary-scan 
test architecture [6], as well as some basic interconnect test 
algorithms. (Detailed review and analysis of these algorithms 
can be found in the accompanying paper.) In addition, this 
work is based on the framework and some basic concepts 
described in the accompanying paper from which we also 
adopt all the necessary notations and definitions. For clarity, 
we assume throughout this paper that all shorts exhibit wire-
OR behavior. By duality, all results presented can be easily 
extended to handle shorts with wire-AND behavior. 
Additionally, strong-driver shorts [5] exhibiting deterministic 
behavior can also be handled easily. 

In the following section, we present the unified theory for 
designing test generation and diagnosis algorithms. Two new 
algorithms are proposed. It is shown that both algorithms 
produce the fault-detection test (the Modified Counting 
Sequence) and the fault-diagnosis test (the Walking-1 
Sequence) as special cases. Section 3 discusses some important 
characteristics of the proposed algorithms. Some directions for 
future work are given in Section 4. The last section provides 
some concluding remarks. 

2. A Unified Theory 

In this section, we generalize the results from the previous 
works [1-4] by proposing a unified theory for designing 
optimal test generation and diagnosis algorithms. This theory is 
based on a general concept: Suppose, for an iV-net board, that 
the number of parallel test vectors (PTVs) which we can 
"afford" to apply is p, where p > [log(iN-2)]. Then, the 
problem of generating a test vector set with optimal diagnostic 
capability is equivalent to that of "intelligently" assigning a 
unique (p-bit) sequential test vector (STV) to each of the N 
nets such that the overall diagnostic ambiguity of the test is 
minimized. Since, excluding the all-0 and all-l STVs, there are 
2p-2 possible STVs, the solution space is defined by 

To circumvent combinatorial explosion, we will describe the 
optimality of a solution in heuristic terms only. Among 
possible solutions, we will propose two heuristic algorithms. 
These algorithms can generate test vectors with complete fault 
detection capability, and also "good" fault isolation 
capability. Since both algorithms produce test vectors with full 
fault detection capability, we will describe their "goodness" 
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only in terms of their fault isolation capability. In general, we 
attempt to increase the diagnostic capability of a test vector set 
by reducing its potential for producing aliasing and/or 
confounding syndromes [5]. 

All algorithms proposed in the literature provide the designer 
with individual, ad hoc solutions which fall within two 
extremes—the test generated by the Modified Counting 
Sequence Algorithm [2], which is most compact, but least 
helpful to diagnosis (p =[log(N+2)] ); and the test generated 
by the Walking-One Algorithm [4], which is most helpful to 
diagnosis, but least compact (p=N). In contrast, both of our 
algorithms share an important property: They enable the 
designer to select from a full range of solutions 
([log(N+2)l <p <N) based on such trade-off criteria as test 
compactness and diagnostic capability. 

Now, we will describe the two heuristic algorithms in detail. 
The first one assumes that no physical design information is 
available; while the second one assumes that certain design and 
process information can be used. 

2.1 The Min-Weight Algorithm 

This algorithm can be used when no design and process 
information is available. Typically, the designer specifies the 
total number p of parallel test vectors (PTVs) to be produced in 
advance. During test generation, the Min-Weight Algorithm 
sequentially assigns a unique (p-bit) STV of minimum weight 
to each of the N nets (hence the name Min-Weight Algorithm). 
Since, the number of unique STVs which can have a weight of 

the maximum weight wmax of the N assigned STVs is given by 
the minimum value of k for which the following is true 

(1) 

A necessary consequence of the Min-Weight Algorithm is that 
wmax is always greater than or equal to the weight of any of 
(2p-2)-N unassigned STVs (excluding the all-1 STV). Also 
observe that if N=2p-2, then wmax=p-l and all (2p-2) 
possible STVs will be assigned. A sample test produced by 
this algorithm is shown in Table 1, where p = 4 and N = 12 

Intuitively, one can see that if all shorts exhibit wire-OR 
behavior, the test generated by the Min-Weight Algorithm is 
less likely to produce aliasing syndromes than that by the 
counting methods [1,2]. This follows from the observation that 
shorting of two or more nets often produces a syndrome whose 
weight is greater than those of all the STVs assigned to the 
shorted nets. Since all assigned STVs have minimum possible 
weights, the (heavy) syndrome is less likely to alias with one of 

Nets 
ni 

n2 

n3 

n4 

n5 

n6 

n7 

n8 
n9 

n10 

n11 

n12 

P 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 

-Bit STVs 
0 0 0 
1 0 0 
0 1 0 
0 0 1 
1 0 0 
0 1 0 
0 0 1 
1 1 0 
1 0 1 
0 1 1 
1 1 0 
1 0 1 

Weights 
1 
1 
1 
1 

2 
2 
2 
2 
2 
2 
3 
3 

TABLE 1. Test Vectors Produced by the 
Min-Weight Algorithm 

them. 

It is interesting to observe the lower and upper boundary 
conditions of this algorithm: If p = [log(N+2)] , the test is 
spatially most compact, but diagnostically least helpful; its 
diagnostic capability is marginally better than, or even 
identical to, that generated by the counting methods. On the 
other hand, if p = N, the test is diagnostically most helpful, but 
spatially least compact; it is the same as that generated by the 
Walking-One Algorithm. 

2.2 The Max-Independence Algorithm 

The Max-Independence Algorithm minimizes the size of a test 
without sacrificing its diagnostic accuracy. This is achieved by 
using net adjacency (i.e. wire routing) information as well as 
certain process-related information—in particular, the 
maximum size of expected shorts or solder defects. (The size a 
of a short or solder defect is the number of nets affected by the 
defect.) The following definitions are needed before 
describing the Max-Independence Algorithm. 

Definition 2.1. Given a binary vector v = (bo,b\,...,b„), let i 
and j be the lowest and highest bit positions respectively such 
that bi=bj=l. The potential weight w of v is equal to j-i+l for 
all non-zero v; otherwise, w = 0. For example, vectors 
(0,1,1,1,0) and (0,1,0,1,0) both have a potential weight of 3. 
Further, the number N$ of unique (p-bit) STVs that can have a 
potential weight of w is given by 

(2) 

Definition 2.2. A set of N nets {n1,n2,...,nN) is an 
adjacency-ordered set if ni is more adjacent to, or more likely 
to be shorted with, ni+1 than ni+2 for l<=i<=N-2, and if ni is 
more adjacent to ni-1 than ni-2 for 3<=i<=N. Note that a net on a 
circuit board can be physically adjacent to its neighboring nets 
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in more than one dimension. Therefore, only a partial, or 
approximate, adjacency-ordering is achievable in practice. 
Fortunately, bare board testing eliminates many faults (e.g. 
inter-layer shorts) which weaken the "net-adjacency 
assumption." We will show that even a partial ordering is 
more useful than a random one. A "good" partial adjacency 
ordering can be easily obtained by approximating net 
adjacency with device pin adjacency. (Here, we assume that 
most common shorts are caused by solder bridges affecting 
physically adjacent device pins.) 

Definition 2.3. Given an adjacency-ordered set of nets, let ni 

be the lowest ordered net, and nj the highest ordered net 
affected by a given short. The extent e of the short is then 
defined as j-i+l. In a physical sense, e is related to <sig> the 
number of nets affected by a short (e.g. the number of nets 
shorted together by a single "solder blob"), and to the 
ordering of the nets: for a complete adjacency-ordering, e = a; 
for a partial adjacency-ordering, e >= <sig>. Clearly, e is bounded 
by 2<= e <=N. 

Finally, we assume that the reader is familiar with the diagonal 
independence property of a test vector set which is detailed in 
the accompanying paper. Having provided sufficient 
background material, we are ready to describe the Max-
Independence Algorithm in detail. 

The Max-Independence Algorithm consists of the following 
steps: 

1. Find the minimum number p of PTVs that are required 
for unambiguous diagnosis of all expected shorts, given 
that the extents of these shorts will never exceed some 
predetermined limit E. (As seen in Theorem 2.1 below, p 
is given by 

\E + log(W+l) - logB - ll if E > 2 or log(A/+l) < f log(W+l)l 

P=\ 
riog(A/+2)l if£ = 2and log(N+l)= Clog(AM-l)l 

where 2<E<N). 

2. Generate an adjacency-ordered list of all N nets. (Partial 
adjacency-ordering is acceptable if complete adjacency-
ordering is impractical.) 

3. Form unique subsets of p-bit STVs (excluding the all-0 
and all-1 STVs) such that each subset is made of all 
possible STVs which have the same potential weights 
and the same Hamming weights. (Observe that each 
STV subset contains a maximum number of unique 
STVs that are diagonally independent—thus the name 
Max-Independence Algorithm.) 

4. Use the STV subset with the smallest potential weights 
(i.e. 1) to form an initial ordered set of STVs. 

5. Concatenate, repeatedly, a new STV subset with the next 
smallest potential weights to the ordered STV set until it 

contains at least N STVs. (If two or more STV subsets 
have equal potential weights, pick the subset with the 
smallest Hamming weight.) 

6. Assign, sequentially, an STV from the ordered STV set 
to the next unassigned net in the adjacency-ordered net 
list until all N nets have been assigned a unique STV. 

A sample test generated by this algorithm is shown in Table 2, 
where p = 4 and N =12. 

Adjacency-
Ordered Nets 

n1 
n2 

n3 
n4 

n5 

n6 

n7 

n8 
n9 

n10 

n11 

n12 

1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 

STVs 
{p bits) 

0 0 0 
1 0 0 
0 1 0 
0 0 1 
0 0 0 
1 0 0 
1 1 0 
0 1 1 
0 0 1 
0 1 0 
1 0 1 
0 1 0 

0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 

Potential 
Weights 

1 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 

TABLE 2. Test Vectors Produced by the 
Max-Independence Algorithm 

It is important to point out a unique property of the STV set 
produced by the Max-Independence Algorithm. First, notice in 
Table 2 that the vector set exhibits a very regular pattern. 
Specifically, it is made of (successively smaller) STV subsets 

which are 
diagonally independent. Also, the unique ordering of the STVs 
guarantees that as long as the extent of any given short (see 
Definition 2.3) never exceeds a certain upper bound (4 in this 
case), the fault can always be unambiguously diagnosed. This 
is because any 4 consecutive STVs in the vector set possess the 
diagonal independence property. One can be easily convinced 
of this assertion by observing a number of examples. The most 
obvious example involves the STVs assigned to nets n1, n2, 
n3 and n4. A less obvious example consists of the STVs 
associated with nets n4, n5, n6 and n7, whose diagonal 
independence property becomes evident upon realizing that the 
STVs of n4 and n5 and the STVs of n6 and n7 can be 
interchanged [5]. 

Table 3 summarizes some important characteristics associated 
with the Max-Independence Algorithm. As seen in this table, 
STVs of successively larger potential weights are assigned to 
each of the N nets, and the maximum potential weight of all 
assigned STVs is denoted by k (column 1). In addition, as the 
potential weight w-t of an STV subset increases, the maximum 
defect extent ei for which full diagnosability is still maintained, 
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t The all-0 and all-l STVs are excluded to detect all stuck-at faults. 

TABLE 3. The STV Assignment Sequence of the 
Max-Independence Algorithm 

decreases (column 2). Specifically, upon completion of test 
generation, the maximum allowable defect extent E of the test 
vector set becomes min{ei,} or p-(k-2). Finally, since the total 
number of STVs to be assigned is N, we should be able to 
equate N to the sum of the terms in column 3. 

At this point, it has become apparent that the larger the 
maximum defect extent E, the larger the number p of PTVs 
that are required to guarantee unambiguous diagnosis of all 
expected shorts. Obviously, given E, it is desirable to compute 
the minimum p which still assures complete diagnosis. The 
following theorem enables us to do precisely that. 

Theorem 2.1. Let E be the maximum extent of all expected 
shorts on a board with N adjacency-ordered nets, and let the 
test generation algorithm be the Max-Independence Algorithm. 
Then, the minimum number p of parallel test vectors required 
to unambiguously diagnose all expected shorts is given by 

where 2<=,E<=N. 

Proof: Obviously, the total number of STVs assigned by the 
Max-Independence Algorithm (i.e. the sum of the terms in 
column 3 of Table 3) must equal N. Therefore, 

Table 3), is equal to E. Since min{e,} =p-(k-2), 

E =p-(k-2) (6) 

must hold. Solving (5) and (6) forp, we obtain 

p = [E + log(N+1) - logE - 1] (7) 

p = [E + log(N+2) - logE - 1] (8) 

Note that the term log(N +2) in (8) reflects the omission of both 
the all-0 and all-l STVs from the test vector set. Finally, 
putting E = 2 in (8), we get 

p = [log(.N+2)] (9) 

a 
Note in (3) that p is a function of N and E. While N is always 
known, E can only be estimated or empirically obtained for a 
given board and manufacturing process. Also, it can be verified 
that p satisfies the two well-known boundary conditions. That 
is, for 2<= E <=N, 

[log(N+2)] <=p <=N 

Further, as seen in Figure \,p is essentially a linear function of 
E for a given N. 

p 
(number 
of PTVs) 

Figure 1. The Effect of Maximum Defect Extent 
on the Number of PTVs 

Note that although in the worst case (i.e. when all possible 
shorts are considered, including that which affects all N nets) 
E = N, in practice, E << N holds for most of the faults that will 
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Simplifying the two series on the right hand side of (4), we get 

(4) 

or 

(5) 

We know that unambiguous diagnosis of all expected shorts is 
guaranteed if the minimum of e,-, the maximum allowable 
defect extents associated with the STV subsets (column 2 of 

Note that the term log(N+l) in (7) clearly signifies the 
exclusion of the all-0 STV from the test vector set. The Max-
Independence Algorithm automatically avoids assigning the 
all-1 STV to the last net nN as long as E > 2 or 
log(iV+l) < [log(N+l)] . Otherwise, when the boundary 
condition that E = 2 and log(iV+l) = [log(N+l)l is true, we 
must subtract 1 from the right hand side of (4) to account for 
the exclusion of the all-1 STV. This, after solving for p again, 



actually occur. For example, E = 20 maybe an upper bound on 
the extents of, say, 99% of the actual shorts encountered by a 
particular board. 

We now illustrate the significance of Theorem 2.1 with a 
simple example. Given that a board has 1000 nets (N = 1000), 
which are (completely) adjacency-ordered, and that the number 
of nets affected by any given short never exceeds 20 (E = 20), 
the minimum number of PTVs required to fully diagnose all 
expected shorts, according to Eq. (3), is p = 25. Note that p is 
significantly smaller than the upper bound N = 1000, and that 
full diagnostic capability of the test is still maintained. Of 
course, this is possible only because we have prior information 
regarding net adjacency and the maximum size of expected 
short/solder defects. 

3. Discussion 
In this section, we will discuss some important aspects of die 
algorithms proposed in the last section. 

3.1 The Min-Weight Algorithm 

The characteristics of this algorithm will be described in terms 
of its trade-off criteria, measure of goodness, and diagnostic 
capability. 

Trade-off Considerations: Virtually no design and process 
specific information is needed by the Min-Weight Algorithm. 
Moreover, the fault model includes all theoretically possible 
shorts. The primary trade-off criterion offered by the algorithm 
is p, the number of PTVs that the test engineer is willing to 
apply to the board under test, given certain spatial and 
temporal constraints (i.e. vector storage space and test 
throughput). Once p is determined, the algorithm generates an 
STV set whose maximum Hamming weight is minimal 
(assuming only OR-type shorts are possible). 

Measure of Goodness: The qualitative justification for the 
Min-Weight Algorithm is that the probability of the test to 
produce aliasing syndromes (whose weights are generally 
greater than the constituent STVs) is likely to diminish if the 
weights of the assigned STVs are minimized. In general, the 
larger the p (where [ log(N+2)] <=p <=N), the smaller the 
chance of aliasing, and thus the "better" the test vector set. 

Diagnostic Capability: The Min-Weight Algorithm does not 
totally prevent the test vector set from producing aliasing and 
confounding syndromes although the probability of their 
occurrence is reduced. Therefore, when unambiguous 
diagnosis is desired, the optimal adaptive diagnostic algorithm 
presented in the accompanying paper [5] can be used to resolve 
any ambiguity. 

3.2 The Max-Independence Algorithm 

Our discussion on the Max-Independence Algorithm will 
cover four aspects: trade-off criteria, measure of goodness, 
diagnostic capability, and test complexity. 

Trade-off Considerations: This algorithm typically requires 
the knowledge of net adjacency and maximum defect extent. 
Using this knowledge, the size of a test can be minimized 
without compromising its diagnostic capability. Similar to the 
Min-Weight Algorithm, this algorithm allows the test engineer 
to use the maximum allowable p as the trade-off criterion. 
Given a predetermined value of p, a set of p-bit STVs is 
generated. This test set is less likely to cause diagnostic 
ambiguities because it consists of maximum STV subsets 
which are diagonally independent. 

The Max-Independence Algorithm gives the designer another 
trade-off option. Assuming that unambiguous one-step 
diagnosis [5] is required for all shorts whose extents do not 
exceed a predetermined upper bound E, this algorithm allows 
one to compute the corresponding minimum value of p which 
guarantees the full diagnosis of those shorts. Typically, the 
trade-off parameter E can be estimated using accummulated 
statistical data pertaining to the sizes of solder defects. 

Measure of Goodness: In most applications, the designer uses 
die Max-Independence Algorithm to derive p from E, die 
maximum extent of all (or most of) the expected shorts. 
Therefore, the larger the E (and hence the p), the "better" the 
test vector set. This is because the probability that the extent of 
a short exceeds E (or equivalendy the probability of diagnostic 
ambiguity) decreases as E increases. (Recall that aliasing 
and/or confounding syndromes can be encountered only when 
the extent of a short is greater than E.) 

Diagnostic Capability: As mentioned previously, as long as 
the extent of a short does not exceed E, the Max-Independence 
Algorithm guarantees complete diagnosis. Strictly speaking, 
however, the only value of E that assures full diagnosis of all 
possible shorts is N, the total number of nets on the board. 
Fortunately, in reality, the "equi-probable assumption" about 
all shorts never holds. That is, realistic shorts do not occur 
with the same frequency. For example, a 5-net short is far more 
likely to occur than a 50-net short. This implies that it is 
possible to select a proper E (e.g. 50) which is greater than the 
extents of a great majority of realistic shorts. Of course, in the 
unlikely event where the extent of a short exceeded E, and 
aliasing and/or confounding syndromes were encountered, we 
can always resort to the optimal adaptive algorithm described 
in [5] to achieve full diagnosis. 

Test Complexity: Previously, we have shown that p, die 
number of PTVs generated by the Max-Independence 
algorithm varies almost linearly with E, the maximum defect 
extent (Figure 1). Fortunately, E in reality is much smaller than 
N the total number of nets, and can be treated as a constant 
parameter indicative of a particular character of the 
manufacturing process (e.g. maximum solder blob size). 
Therefore, we can assume that p is essentially O(logN), 
especially when E is small relative to logN (see the upper 
diagram in Figure 2). However, as E gets much larger than 
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Figure 2. The Effect of Total Net Count 
on the Number of PTVs 

logN, p becomes almost insensitive to variations in N. That is, 
p remains nearly constant in spite of changes in N (see the 
lower diagram in Figure 2). Note that in Figure 2 each solid 
line plots p as a function of TV for a typical value of E (e.g. 12). 
The dotted lines represent p=N. The values of p are plotted 
only to the right of the dotted line, where N>=E. (Clearly, the 
maximum defect extent should never exceed the total number 
of nets.) 

To summarize, in terms of test compactness, the Max-
Independence Algorithm is comparable to the Modified 
Counting Sequence Algorithm; however, in terms of diagnostic 
capability, it is equivalent to the Walking-One Algorithm. 

4. Future Work 
The unified theory proposed in this work has transformed test 
generation for wiring interconnects into a more general 
problem. This problem involves assigning unique p-bit vectors 
(STVs) to a set of N nets such that the diagnostic capability of 
the resultant test is maximized. As mentioned previously, the 
solution space of this problem is extremely large, and various. 

heuristic techniques must be employed to make the problem 
computationally tractable. Potentially, families of heuristic 
algorithms can be developed. We have proposed two such 
algorithms which are based on different assumptions about the 
availability of certain information (e.g. design and process 
information). In the future, we intend to explore other heuristic 
algorithms including those based on the techniques of binary-
tree search. 

We are convinced that the Max-Independence Algorithm is a 
very powerful test generation technique for wiring 
interconnects. However, its effectiveness directly depends on 
our ability to obtain a "good" adjacency-ordered net set. For 
such a net set, the extent of a short tracks very closely to the 
size of the short (e.g. the size of the solder blob). On the other 
hand, for a poorly adjacency-ordered net set, the maximum 
defect extent E could become proportional to the total number 
of nets TV. As a result, p, the number of required PTVs may 
become O (N) instead of O (logN). Therefore, we intend to 
develop effective schemes for obtaining good, partially 
adjacency-ordered net sets. Realizing that most solder bridges 
affect the adjacent pins of the same device, an obvious and 
good approximation of net-adjacency-ordering is pin-
adjacency-ordering. Note that the latter can be easily derived 
from existing device libraries. 

5. Conclusion 
In this paper, we addressed the need of minimizing the test size 
while maintaining its diagnostic capability. This need is 
particularly pressing if the board under test is equipped with 
boundary-scan devices, and the interconnect test vectors have 
to be applied through the serial scan chain. We proposed a 
unified theory which reduces interconnect test generation to a 
more general problem. This problem involves assigning unique 
sequential test vectors (STVs) to all the nets on the board so 
that the overall diagnostic accuracy of the test is maximized. 
With this new approach, it is possible to develop families of 
interconnect test algorithms. We demonstrated that the 
algorithms reported in the literature are special cases of the two 
new algorithms proposed in this paper: the Min-Weight 
Algorithm and the Max-Independence Algorithm. These 
algorithms were shown to be optimal or near-optimal for a 
given set of design parameters. In particular, the Max-
Independence Algorithm can achieve virtually full diagnosis of 
shorts with O(logN) parallel test vectors (PTVs). The new 
algorithms increase design flexibility by providing a full range 
of solutions (i.e. test vector sets) based on various trade-off 
criteria such as test compactness and diagnostic accuracy. We 
also described some of the trade-off parameters as means for 
quantifying the quality of the tests. Finally, we discussed the 
significance and the limitations of the proposed algorithms, and 
provided some directions for future work. 
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ABSTRACT 

Progress in Wafer Scale Integration (WSI) has 
brought the problem of electronic system testing into the 
semiconductor manufacturing arena. The problem is 
complicated by the reduced controllability and observability 
implicit at the full wafer integration level. Structured 
methods must be employed to generate and apply tests in a 
hierarchical fashion at the function, chip, and system levels. 
This paper describes a methodology under development 
within the WSI program at the University of South Florida 
which addresses these problems for both the manufacturing 
and field test environments. A uniform testing interface is 
defined for each functional chip (cell), with built-in self-test 
incorporated whenever possible on all new designs. Use of 
a standard interface will reduce test complexity and costs by 
allowing entire wafer probing by a common standardized 
probe card, irrespective of the number of different species of 
functional cells. Details are provided for the function (cell), 
chip, and wafer level testing standards as well as for the 
procedures to be followed at wafer level restructuring and 
test. The proposed methods will allow current generation 
wafer restructuring methods to be applied to the next 
generation of WSI designs requiring numerous cell types 
and increasing on-wafer complexity. 

I. Background 

As Very Large Scale Integration (VLSI) technology 
grows at a rapid rate, the problem of testing state-of-the-
art devices is growing even faster. Difficulties associated 
with chip testing (cost, time, test data volume, tester 
complexity) have grown because advances in IC technology 
must slightly precede advances in test technology. 
Furthermore the trend toward larger levels of on-chip 
integration have not been matched by increasing package 
pin count, worsening the accessibility of on-chip circuitry. 
The size of monolithic integrated circuits has generally 
been limited by the acceptable yield loss associated with 
defects within the manufacturing process. Thus while 
advancing technology has reduced feature size and defect 
densities to allow higher levels of on-chip integration, the 
defect, yield, and cost relationships always place a physical 
limit on the maximum economical chip size. Traditional 
large scale system designs continue to be implemented 
using multiple packaged chip assemblies. 

This research is being supported by the 
Defense Advanced Research Projects Agency 
under DARPA Grant No. MDA 972-88-J-1006. 

An alternative to traditional assembly methods is to 
develop an IC design and fabrication technology which is 
capable of tolerating defects. This is accomplished through 
the careful use of redundant components, along with a 
means to restructure each fabricated device to circumvent 
its unique defect pattern. One successful method for 
providing defect avoidance at the wafer level has been 
demonstrated at the MIT Lincoln Laboratories. This 
Restructurable VLSI (RVLSI) technique uses a laser to 
configure wafer level interconnections, following wafer 
probe tests which identify defective components [1]. Both 
additive and deletive interconnections can be made using 
this technology through the use of fuse and anti-fuse 
connections on the wafer. Under DARPA support, this 
technology is being transferred to the University of South 
Florida in support of wafer scale research which includes 
technology, architecture, and test activities. 

Recent progress in WSI at Lincoln Labs and 
elsewhere has brought the problems of system level testing 
into the semiconductor manufacturing arena. The problem 
is complicated by the reduced controllability and 
observability implicit at the full wafer integration level. 
Structured methods must be employed to generate and 
apply tests in a hierarchical fashion at the function, chip, 
and system levels. Extensive CAD tool support is 
mandatory because each manufactured wafer is potentially 
unique due to its personal defect map. Cells must be 
tested prior to restructuring to determine the cell level 
defect map. For WSI designs containing multiple species 
of cells, this requires multiple probe cards and extensive 
wafer handling during test. During the restructuring 
process, the interconnections must also be tested to assure 
proper connectivity. Only after the restructuring task has 
been completed can traditional system level functional 
testing be performed. Failures found at the final system 
test level are traditionally the most expensive to find and 
repair, and this becomes even more expensive for RVLSI 
and WSI because of the inherent difficulties associated 
with repair at the wafer level. 

II. Reconfigurable WSI System 
Test Requirements 

Many of the inherent test problems associated with 
Wafer Scale Integration could be reduced through 
limitations upon allowable system designs. It is well 
accepted that there are substantial benefits associated with 
restricting the system building blocks to one or a few 
simple cells [2], For example, a totally homogenous design 
(only a single building block) could be wafer probe tested 
using only a single probe card. Furthermore, the 
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assignment of logical functions to physical cells is 
simplified because all cell instances are functionally 
interchangeable. Unfortunately such homogeneity in 
system design is virtually unattainable. For even the 
simplest homogenous processor system design, several 
different cell types will be required to account for input 
and output requirements. Restructurable WSI designs 
currently under development have as many as five cell 
types [3], and it is easy to envision system requirements 
for even larger numbers of cell species. Obviously the 
system level design must balance the requirements of 
efficient overall design using many function specific cell 
designs, against efficient wafer level layout and redundant 
resource utilization which dictates only a few unique cells. 
This problem will become more acute as the development 
and acceptance of WSI ushers in an era of application 
specific wafer scale designs, which will likely require 
numerous cell species to allow for a wide range of 
customization. 

Given the previously identified problems and 
requirements for restructurable WSI, the following 
subsections outline the procedures which must be followed 
during the three testing phases: i.) silicon 
processing/manufacturing test; ii.) reconfiguration and 
restructuring test; iii.) system test (field test and 
verification / fault tolerance). 

i.) Processing/manufacturing test: Silicon processing 
for WSI is generally performed in much the same manner 
as that for conventional VLSI chip fabrication. The ability 
to create WSI by placing multiple chip types on a single 
wafer follows the Mead and Conway pioneered multi-chip 
project wafer methodology [4]. This technology is readily 
available to universities and defense contractors through 
the DARPA funded MOSIS silicon foundry. Upon 
completion of processing, each unique chip or cell must be 
independently verified on a VLSI tester. This requires a 
separate probe card and test vector set for each cell type. 
A typical procedure would involve setting up a probe card 
and test program for a particular chip, and then probing all 
instances of that chip on all untested wafers. Once this 
test is complete, a new probe card and test vector set is 
loaded for the next cell type, and the defective devices of 
this type are identified. This process must be repeated 
until a complete wafer defect map is obtained. The 
extreme amount of wafer handling (and corresponding yield 
loss) associated with designs containing multiple cell 
species should be obvious. Following the cell tests, a wafer 
scale interconnect verification test must be performed to 
identify the defective wafer level tracks which cannot be 
used for global interconnections. 

ii.) Restructuring test: Following test step i.) 
described above, those wafers with sufficient cell and track 
yield are packaged to enable electrical circuit connections 
to be monitored during the laser restructuring process. 
Given the defect map of a specific wafer and the logical 
description of the target system design, a logical to 
physical mapping must be performed to route the wafer 
scale interconnections. This process is typically assisted 
by a CAD tool [5] which makes the assignment of logical 
cells to good cells on the wafer, and then performs the 
routing of required cell-to-cell interconnections. Once this 
assignment has been made, the laser restructuring process 
is used to physically attach all the required system 
interconnections. Because there is less than 100% yield 
associated with this restructuring process, it is desirable to 

perform incremental tests during the restructuring process. 
Such testing allows defective interconnection links to be 
quickly identified and re-routed while the capability and 
wiring resources still exist to perform such an operation. 
This is currently done in the RVLSI system by using the 
laser to illuminate a junction within a cell, and then 
measuring the generated photo-current at an external pad 
which must pass through the link or cut under test [2]. 
For interconnection signals which are completely internal 
to the wafer, extra links and wires must be connected to 
temporarily route these signals to a wafer pad for test 
purposes. Following a successful test, these extra 
connections are deleted using the laser to blow link fuses. 

iii.) System test: In a conventional WSI system, 
complete wafer functional tests are performed totally under 
external I/O control. Where provisions are made to use 
extra internal redundancy for field level fault tolerance, 
the testing and identification of bad cells (and the 
swapping in of good cells), must be done under the control 
of off-wafer resources. 

III. WSI Self-Test System Architecture 

In an attempt to reduce the number and magnitude 
of wafer scale test problems (as described in sections I and 
II of this paper), a WSI self-test system architecture is 
under development at the University of South Florida. 
This architecture utilizes standardized system test 
interfaces for Wafer Level test coordination within the 
framework of a system level Built-in Self-Test (BIST) 
strategy. Several maintenance network standards have 
been developed which potentially address the wafer scale 
test coordination problem. These include the Test & 
Maintenance (TM) and Element Test & Maintenance 
(ETM) networks [6], developed primarily for military 
applications, and the Test Access Port (TAP) defined in the 
Joint Test Action Group (JTAG) boundary-scan 
architecture standard proposal [7], endorsed by commercial 
manufacturers. Under the auspices of the Test Technology 
Committee of the IEEE Computer Society, a testability bus 
standardization committee has been formed to develop an 
IEEE standard for a testability bus. The minimum serial 
signal subset of this proposed standard (P1149.1) 
corresponds to the current JTAG test access port (version 
2), and provides a standardized serial interface for ATE 
(automatic test equipment) as well as BITE (built-in test 
equipment) access. Work is already underway at 
Honeywell [9], Texas Instruments [10] and elsewhere, to 
develop chips which can provide a standardized test-bus 
interface based upon the VHSIC, JTAG, and/or IEEE 
PI 149.1 test bus standards. 

Utilizing the P1149.1 (JTAG TAP) standard, an 
evolutionary path has been defined within our WSI self-
test architecture to allow existing components to be added 
to a WSI design by adding only a simple set of boundary 
scan I/O pads in addition to the standardized self-test 
interface. However, supplemental BIST circuitry is 
recommended for all new cell designs. The basic elements 
and requirements of this architecture are summarized in 
section III.a. below. Several WSI cell designs are currently 
in development which incorporate this architectural 
standard, and their functional architecture and test 
features are briefly summarized in the results (section IV). 
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A. Elements of the WSI Self-Test Architecture B. Application of the WSI Self-Test Architecture 

All WSI cell designs include a standardized test 
interface {based upon the proposed IEEE P1149.1 
(JTAG v.2) standard [8]} 

A common probe pattern is defined for all cells, 
utilizing a standardized placement of probe pads and 
test interface signals. This allows a single probe 
card to be used to test an entire wafer irrespective 
of the number of different cell species. 

All cells incorporate boundary scan [7] to facilitate 
internal and inter-chip testing. Where possible, 
Built-in Self-Test (BIST) will be incorporated on new 
designs to reduce testing time, cost, and data 
volume; and to simplify the test generation problem. 

A "standardized" maintenance processor is proposed 
for future wafer level system designs to facilitate 
laser restructuring testing and system verification 
testing. This maintenance processor could also 
provide the basic support necessary for field level 
fault tolerance given an appropriate underlying 
system architecture. 

This section describes how the features defined in 
section HI A.) will be used to facilitate wafer level testing 
and system verification. Figure 1 illustrates the overall 
WSI self-test system concept. As indicated, a common 
seven pin interface is included on each wafer level cell (or 
chip). By placing the test interface in the corner of the 
chip layout, a common probe card can be used to probe 
this interface, irrespective of the actual cell dimensions. 
Thus a complete wafer test can be performed without 
physically removing the wafer from the tester or having to 
interchange multiple probe cards. Naturally, the test 
process must be organized as a sequence of tests of 
individual cell types, with delays between these tests to 
load the unique test program associated with each cell 
type. Note that the incorporation of BIST within cells can 
drastically reduce the test time, test program length, test 
cost, and test data storage requirements. 

As indicated, the standard interface includes both power 
and ground pins for the unit under test. This is because 
the physical power and ground connections are made 
during the restructuring process, so that devices with 

Figure 1. Wafer Level Self-Test Concept 
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catastrophic Vdd - Gnd shorts do not disable an entire 
wafer. For the simple WSI cells currently being developed 
(<10K devices), a single pair of Vdd and Gnd pins will be 
adequate to provide power during wafer probe testing. 
However, for more complex devices which require high 
power / high speed testing, multiple Vdd and Gnd pins will 
be required at wafer probe. This can be accommodated 
within the standard by placing additional power pin pairs 
adjacent to the existing power pins at the edge of the 
standard test probe card. The signal designations on the 
self-test interface follow the proposed IEEE P1149.1 
standard, with signal definitions as given in Table 1 below. 

TABLE 1. Self-Test Interface Pin/Signal Definitions 

In addition to a standardization of the self-test 
interface itself, there are several other advantages 
associated with the use of this interface. It is not 
uncommon for a VLSI design to have its overall chip 
dimensions dictated by the pad size and pitch, especially 
where large numbers of I/O are required on designs of 
moderate complexity. Reductions in pad size and pitch are 
limited by the accuracy and repeatability limitations of 
wafer probing. However, in the WSI self-test strategy just 
defined, only those seven self-test interface pads need to 
be full size probe pads, with the remaining I/O connections 
only directly connected to global wafer interconnections 
and the boundary scan path. Thus in some cases there 
would be a substantial wafer area savings associated with 
the use of the standardized self-test interface. 

An additional advantage is found in the potential for 
performing closer to at-speed testing using this 
architecture. Output drivers for WSI designs are typically 
sized to drive the worst case on-wafer capacitance. 
However the capacitive loading associated with driving a 
probe card and test head can be orders of magnitude larger 
than that encountered on-wafer. In the WSI self-test 
architecture, only the five common self-test interface 
signals must logically communicate with the probe card. 
Furthermore, only one of these signal is an output, and its 
driver can be appropriately sized to drive the test head 
load. Consequently, the on-chip test / built-in self-test can 
proceed at operational speeds, or as limited by the test 
clock generation and distribution circuitry. Furthermore, 
additional area and power can be saved through the 
reduced size of off chip drivers, which no longer need to 
drive off-wafer capacitances during test. 

Figure 2 provides a block diagram level illustration 
of the complete standard test interface, which is comprised 
of registers, decoding logic and a sequential state machine 
controller. The five registers are: instruction, boundary-
scan, bypass, pattern generator, and signature analyzer. 
The individual register functions are defined as follows: 

Instruction register - a shift-register stage and a parallel 
output register. The instruction register allows an 
instruction to be shifted in through the TDI pin. The 
instruction is used to select the test to be performed 
and/or the test data register to be accessed. 

Boundary-Scan register - a single shift-register-based 
path containing cells connected to all module inputs 
and outputs. 

Bypass register - a single shift-register stage between 
TDI and TDO. It provides a short circuit route for the 
test-data during a scanning cycle. 

Pattern Generator - the Pattern Generator is constructed 
using a 17-bit Linear Feedback Shift Register (LFSR) 
which is configured to generate test patterns for the 
built-in self-test mode. It may also be configured into 
a shift-register so that an initial seed value may be 
shifted in through TDI. 

Signature Analyzer - forms a signature for the test 
results during the built-in self-test mode using an LFSR 
circuit. A seed can be shifted in through TDI and the 
final signature may be shifted out through TDO after 
the self-test is completed. 

The scan path connections provide access to the 
internal registers of the circuit, allowing all internal 
parallel registers to be operated as shift-registers. The 
number of scan paths may vary according to the structure 
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Signal 

GND* 

TCK1 

TMS1 

TD01 

TDI1 

Vdd* 

* 

Functional Description:(including P1149.1 -
JTAGv.2 standard signal definitions) 

GND provides a ground connection for the entire 
chip under test. Note that after restructuring, this 
(and other pins around the periphery of logically 
assigned good chips) will be permanently connected 
to ground. 

TCK1 is the test clock input to the chip under 
test. This signal not only provides the clock 
control for the test circuitry itself, but under 
control of the test interface circuitry also provides 
those chip level system clock signals necessary for 
test / self-test. 

TMS1 is the test mode select input for the chip 
under test. This signal is used to control the 
modes of operation of the testability circuitry 
incorporated in the self-test interface. In 
particular, it is used to enable boundary scan for 
interconnect testing, on-chip test pattern input and 
result output, as well as for initiation of built-in 
self-tests for those devices which include such 
modes of operation. 

TDOl is the test data output from the chip under 
test. This line is activated in conjunction with the 
TCK1 and TMS1 lines to provide a serial test data 
output. This test data may come from the 
boundary scan registers within the chip, or from 
the test interface circuitry itself (eg. the signature 
resulting from a BIST operation). 

TDI1 is the test data input to the chip under test. 
This input is used in conjunction with TCK1 to 
load either functional test patterns into the 
boundary scan path; or to load test instructions into 
the self-test interface circuitry (eg. a BIST 
initiation command). Note that for each cycle of 
TCK1, one input bit is accepted by TDI1 and one 
output bit is produced on TDOl. 

Vdd is a power supply input voltage to the chip 
under test. Note that after restructuring, this (and 
other pins around the periphery of logically 
assigned good chips) will be permanently connected 
to Vdd. 

note: multiple GND and Vdd pins are permitted to 
accommodate high speed / high power cells 



Figure 2. Standard Self-Test Interface 

of the design and the total number of on-chip registers. 
Decoding logic identifies a selected test data register 
according to the instruction in the instruction register. 
The unselected registers maintain their previous values. 
The controller is a synchronous finite state machine which 
sequences through its various operations under the control 
of the TMS and TCK signals. This design follows the 
JTAG Test Access Port Controller specification [7]. 

The contents of the mstruction register and the state 
of the test interface controller determine the mode of 
operation of the cell and test circuitry. The various 
operating modes are generically defined as follows: 

Functional - On power-up reset, the mstruction register 
is initialized to the functional command mode. This 
mode continues until a different instruction is 
clocked in. Pulling the TRST low for one clock 
cycle, or holding TMS high for more than 5 clock 
cycles will also force the controller into the 
functional mode of operation. 

External test - In this mode the interconnects of the 
wafer scale system design are tested by means of the 
boundary-scan registers. This is accomplished by 
scanning data into the output boundary cells of a 
module, and then observing the inputs of all attached 
modules using their boundary scan input features. 

Sample test - This may occur during the functional mode 
of operation. The boundary-scan registers sample the 
input and/or output of the module without 
interfering with functional operation. 

Internal test - In this mode the module is isolated from 
the other modules on the wafer by means of the 
boundary-scan registers, and the internal circuitry is 
tested. This test may be conducted by means of 
BIST or by shifting in external data scan path data. 

Serial Scan - Instructions or test-data are shifted through 
the 'daisy chain' connection of TDOs to TDIs. 
However, the destination of the data may be 
different in each module. 

Using the self-test system architecture and interface 
just described, the WSI manufacturing, restructuring, and 
system level test procedures, as previously denned in 
section II, are modified and enhanced as follows: 

i.) Processing/Manufacturing test: The 7-pin 
standardized wafer probe card will be loaded onto the 
probe station, and the test vector set for the first chip type 
will be loaded into the ATE memory. For the case of a 
chip containing BIST, the test program could be as simple 
as providing a test initiation command, and then reading 
back the good - bad test result. Optionally, the tester 
could be required to check the resultant BIST signature 
against a known good value. In the worst case of a device 
containing only boundary scan circuitry on each I/O pad, 
conventional ATPG test data would be loaded in serial 
fashion into the boundary registers to exercise the device. 
In this case, the worst case test time would be N times 
longer that of a conventional broadside (parallel) I/O test; 
where N is the maximum of the number of bits in the 
input / output boundary registers. At the completion of 
a test, the chip position is marked as either good or bad, 
and thewafer table is stepped to the next instance of the 
cell whose test program is currently loaded in the tester. 
Following completion of a particular cell type, the test 
program for the next cell type is loaded into the tester, 
and the procedure is repeated for the wafer sites 
corresponding to that particular cell type. This entire 
process is repeated until all cell types have been tested 
and a complete wafer map has been obtained. The defect 
map for wafer scale interconnections would be created at 
this time using conventional capacitance measurements, as 
is currently done [2]. 

ii.) Restructuring test: Testing during the laser 
restructuring phase could be performed in a similar fashion 
to that described in section II. However, an evolutionary 
goal of the WSI self-test architecture is to allow logic 
driven interconnect testing concurrent with the 
restructuring process. This would be performed through 
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coordination of the restructuring laser with an off-chip 
ATE controller or an on-chip maintenance processor. The 
process sequence would be as follows: First, a wafer wide 
test bus would be configured which, interconnects the self-
test interfaces of each chip to either an external ATE or 
an on-chip maintenance processor. The Maintenance 
Processor would be included on the wafer as a special chip 
instance. This chip would be assigned responsibility for 
control of the testability bus connections to all other chips, 
and have direct off-wafer connections for diagnostic and 
maintenance purposes. An example of a maintenance 
processor test interface is given in the single chip test-bus 
interface unit under design reported by Honeywell [9]. 
Using the boundary scan capabilities of each chip on the 
wafer, the maintenance processor can be utilized to test 
each chip-to-chip interconnection as it is restructured. A 
more realistic and efficient method might be to perform 
this interconnect testing in a staged fashion, first 
restructuring logical groups of signals, and then testing the 
individual groups. These signal groups would be 
partitioned in such a way as to maximize the probability of 
being able to reroute a faulty signal interconnection. 

iii.) System test: The incorporation of the 
Maintenance Processor chip as defined in ii.) above can 
also be used to facilitate system level testing. For an 
advanced system containing all self-testing chips, the 
maintenance processor would be used to initiate a self-test 
of all chips, collect the self-test responses, and signal 
complete wafer self-health assessment to the external 
world. Furthermore, if given sufficient intelligence, it 
could be used to generate test patterns and compress 
results for those chips which do not have on-chip BIST. 
In addition, it could be used as a repository for 
supplemental patterns which would be applied to BIST 
devices as a means to improve the fault coverage provided 
by the self-tests. 

A complete wafer scale system containing the above 
described features would be an ideal candidate for the 
incorporation of field level fault tolerance. Given that 
redundancy of components is implicit in the wafer scale 
concept, intelligent partitioning of hard restructured and 
soft restructured (electrically switchable) redundant 
resources could be made. If all redundant resources are 
not consumed during the initial restructuring process, then 
appropriate architectures could permit the extra resources 
to be available for field level fault tolerance. If an error 
is observed (for example, via parity), the entire wafer 
system could be configured into the self-test mode by the 
maintenance processor. Following a self-health assessment, 
the maintenance processor could determine if all assigned 
resources are functioning correctly (the error was 
transient), or whether an assigned resource was actually 
faulty (permanent error). In the later case, if a redundant 
resource is available via soft switching to replace the failed 
resource, then this reconfiguration would be performed 
under the auspices of the maintenance processor. Such an 
operation could happen at power-on self-test time in a 
manner which is totally transparent to the system user. 

IV. Summary and Status 

Under the design, architecture, and applications task 
of our WSI research project, we are developing cells to 
support Fast Fourier Transform (FFT) and related signal 
processing operations. Figure 3 provides a system block 

diagram of our reciprocal cell which provides one of the 
fundamental operations required in a high speed array 
architecture for LU decomposition (a common signal 
processing task). This is the first of our chip designs 
targeted specifically for WSI system implementation, and 
it includes both on-chip Built-in Self-Test and standardized 
self-test interface circuits. As indicated in the figure, the 
15-bit input register includes a pseudo-random 15-bit linear 
feedback shift register pattern generator mode of 
operation. This provides exhaustive self-testing by 
generating all (32K - 1) possible input sequences (the 
reciprocal of zero is considered separately as a special 
case). At the output boundary register, a 20-bit multiple 
input signature register (MISR) mode of operation is 
included for test result compression (again using LFSR 
techniques). The figure also indicates the inclusion of the 
standard test interface circuitry which provides for test 
control and observation via the test bus. Design 
complexity for this cell is approximately 7000 transistors, 
and speed is predicted to be 120ns for a 3 micron CMOS 
fabrication process. Additional details of this chip design 
are provided in [11]. 

Application of the WSI self-test, interface to a 
radically different cell type is illustrated in the block 
diagram of Figure 4. This MSA (Multiply-Subtract-Add) 
component provides the primitive computation necessary 
for the implementation of a pipelined FFT algorithm. Due 
to the large number of inputs and pipelined nature of this 
design, exhaustive self-test cannot be practically 
implemented. Thus a serial self-test is provided which is 
initialized and controlled from the standard test interface. 
Additional details of the MSA cell design and on-chip self-
test circuitry can be found in [12] and [13] respectively. 

Summarizing the costs and benefits of the proposed self-
test system architecture for WSI: 

• As with all structured test and self-test 
methodologies, additional circuitry is required on 
each chip. For the levels of integration 
characteristic of WSI cells (on the order of 10K 
devices), the self-test interface represents a 
minimum percentage overhead (generally < 4%), 
and the boundary scan register requirements should 
only add approximately 3% additional penalty [14]. 

• The addition of boundary registers in all inter-chip 
signal paths could reduce system throughput, 
especially in asynchronous data driven system 
designs. However, all candidate WSI systems 
currently under evaluation involve synchronous 
sequential design techniques. In such designs, the 
use of boundary register is commonplace to provide 
synchronization and re-timing for global wafer level 
signals, and no time penalty is incurred. 

• Use of a common 7-pin probe card for all WSI 
designs will significantly reduce the probe card cost 
( $0 for new designs after the initial investment ). 
While the use of a serial test interface can produce 
a test slow-down by a factor of N over conventional 
wafer probe parallel testing, this can easily be offset 
in future designs by the incorporation of a 
significant fraction of self-testing devices on the 
wafer. Equally important is the reduction in wafer 
handling (complete wafer probe testing without 
replacement of probe card) which could have a 
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X INPUT (Normalized 2's Comp. Fractional Data) 

Figure 3. High Speed Reciprocal Cell 

Figure 4. MSA (multiply-subtract-add) Cell 
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substantial impact on final wafer yield. Additional 
benefits include area savings (due to I/O pad and 
driver area reductions), and the potential for higher 
speed testing because test head capacitances need 
not be driven by the off-chip drivers. 

• The on-wafer standardized testability bus and 
maintenance processor provide for efficient logical 
interconnect testing during restructuring. They 
additionally provide an easy migratory path for 
including fault tolerance in fielded systems. This is 
very appealing because of the built-in redundancy 
implicit in WSI for defect tolerance. 

In addition, future work will be directed toward more 
efficient use of wafer resources in support of field level 
fault tolerance. For example, previous work has identified 
optimal amounts and types of system level BIST using 
computational performance measures [15,16]. Extensions 
of this work have considered the optimal number of 
maintenance processors for a self-testing architecture using 
similar performance measures [17]. Related work has also 
considered the use of redundant maintenance network 
connections (redundant standardized test interfaces) to 
improve overall system reliability and performance 
[15,16,17]. Results from each of these previous research 
activities could be included in a second generation WSI 
self-test system architecture targeted for highly reliable, 
fault-tolerant digital system applications. 

References 

[1] Wyatt, P. A., & Raffel, J. I., "Restructurable VLSI - A 
Demonstrated Wafer Scale Technology", Proceedings 
of the 1989 International Conference on Wafer Scale 
Integration, January 3-5, 1989, pp. 13-20. 

[2] JesshOpe, C. ed, Wafer Scale Integration, section 5.3, 
Anderson, A. H., "Computer Aided Design and Testing 
for RVLSI",pp.216-222, Taylor and Francis 
Publications, Inc, 1987. 

[3] Anderson, A. H. & Berger, R., "RVLSI Applications 
and Physical Design", Proceedings of the 1989 
International Conference on Wafer Scale Integration, 
January 3-5, 1989, pp. 39-45. 

[4] Mead, C. and Conway, L., Introduction to VLSI 
Systems. Addison Wesley, 1980 

[5] Frankel, R. et. al., "SLASH - An RVLSI CAD System", 
Proceedings of the 1989 International Conference on 
Wafer Scale Integration, January 3-5, 1989, pp. 31-38. 

[6] IBM, Honeywell and TRW, "VHSIC Phase 2 
Interoperability Standards TM / ETM Bus 
Specifications," version 2.0, Dec. 31, 1986. 

[7] The Technical Sub-Committee of the Joint Test 
Action Group (JTAG), "A Standard Boundary Scan 
Architecture", version 2.0, 30 March, 1988. 

[8] P1149 T-Bus Standardization Committee (TBS© 
Working Group of the IEEE Computer Society's Test 
Technology Technical Committee, "IEEE Standard for 
a Testability Bus", IEEE Std PU49-1989/D8 (Draft 
Version 8), January 31, 1989. 

[9] Brown, D. et. al, "A Single-Chip Test-Bus Interface", 
Proc. 1988 GOMAC Conference, pp 565-568. 

[10] Mokhoff, N. & Weitzner, S., "TI Boosts Testability in 
Standard Cell ASICs", Electronic Engineering Times, 
May 8, 1989, pp. 1,8. 

[11] Jain, V.K., Landis, D.L., and Alvarez, C. "A Wafer 
Scale L-U Decomposition Array with a new Reciprocal 
Cell", Proceedings of the 1989 IFIP Workshop on 
Wafer Scale Integration, Milano Italy, June 6-8,1989 

[12] V. K. Jain, H. A. Nienhaus, D. L. Landis, S. A. Al-
Arian, and C. E. Alvarez, "Wafer scale architecture for 
an FFT processor," Proc. IEEE International 
Symposium on Circuits and Systems, May 7, 1989. 

[13] S. A. Al-Arian, "The BIST Structure of the WSI MSA 
Cell", Univ. of South Florida - CMR Technical 
Report, WSI-T8, May 1989. 

[14] Ohletz, M.J., Williams, T.W., & Mucha, J.P., 
"Overhead in Scan and Self-Testing Designs", 
Proceedings of 1987 International Test Conference, pp. 
460-470. 

[15] Landis, D., Check, W., & Muha, D., "Influence of 
Built-in Self-Test on the Performance of Fault 
Tolerant VLSI Multi-Processors", Proc. 1987 Intl. 
Conference on Parallel Processing, Aug. 17-21, 1987, 
St. Charles, Illinois, pp. 114-116. 

[16] Landis, D. and Muha, D., "Evaluation of System BIST 
using Computational Performance Measures", Proc. 
1988 Intl. Test Conference, Sept. 1988, pp 531-536 

[17] Muha, D. "Built-in Self-Test Resources for Fault 
Tolerant VLSI Environments", Ph.D. Thesis in 
Electrical Engineering, Penn State University, 
December 1988. 

[15] Landis, D. and Check, W., "Essential Maintenance 
Network Issues for Highly Reliable System Level 
Built-in Self-Test", Proc. of 1987 IEEE Intl. 
Conference on Computer Design, Oct 5-8, 1987, Port 
Chester, New York, pp. 458-461. 

[16] Landis, D. and Check, W., "Built-in Self-Test 
Mamtenance System Impact on VLSI Computer 
Performability", Proceedings of the 1988 IEEE VLSI 
Test Workshop, March 22, 23 1988, Atlantic City, N.J., 
pp. 31-40. 

[17] Check, W. "Fault-Tolerant Maintenance Networks for 
Highly Reliable Self-Testing Systems", Ph.D. Thesis 
in Electrical Engineering, Penn State University, Aug. 
1988. 

332 



DESIGNING AND IMPLEMENTING 

AN ARCHITECTURE 
WITH BOUNDARY SCAN 

Reprinted from IEEE Design & Test of Computers, February 1990, pages 9-
19. Copyright © 1990 by The Institute of Electrical and Electronics 
Engineers, Inc. All rights reserved. 

The problems of testing increasingly complex digital integrated 
systems continue to challenge the design and test commu­
nity. At the printed-circuit-board, or PCB, level, these prob­
lems led to the formation of JTAG, short for Joint Test Action 

Group, a collaborative organization of major semiconductor users in 
Europe and North America. JTAG subsequently developed the 
boundary-scan standard1 with the goal of improving the controlla­
bility and observability of an IC's primary inputs and outputs. 
Because of this standard, which is now IEEE proposed standard 
PI 149.1, we can now easily implement testability hardware using 
computer tools, which reduces overall design time. 

However, boundary scan does not address testability at the IC 
level—primarily because there is no standard for designing BIST 
circuits. At this level are many approaches to adding testability, but 
the one that seems most promising for future VLSI and ULSI circuits 
is built-in self-test, or BIST.2 In BIST, test data is generated and 
evaluated on the chip. 

In this article, we present an architecture called hierarchical test­
able, or H-testable, architecture for integrating boundary scan at the 
PCB level and BIST at the IC level. We believe that this integration is 
important because the boundary-scan standard defines access to the 
IC during the IC test. The extra test pins let us control on-chip 
testability hardware. 

A digital system has several levels of hierarchy. First, we have the 
PCB level, which contains such items as a Winchester control board. 
The second level is the IC level, where we have units such as a 
microprocessor chip. The third level, called the macro level, allows 
us to make finer distinctions between functional modules like PLAs 
and ALUs, for example—the so-called macros. We use these three 
levels to define the H-testable architecture. With this hierarchical 
structure, we can use BIST for a macro at the higher levels and so 
more completely integrate the testability features at the IC and PCB 
levels. 

As we show in more detail later, the H-testable architecture can be 
implemented using a self-test compiler.4 This compiler automatically 
generates the layout of a macro, including hardware to generate data 
for and evaluate the results of self-test. 
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A. KLOPPENBURG 

University of Twente, The Netherlands 

The authors describe a standardized, 
structured test methodology based on 
the boundary-scan proposal from the 

Joint Test Action Group, which is now 
IEEE proposed standard PI 149.1. The 
architecture ensures testability of the 

hardware from the printed-circuit- board 
level down to integrated-circuit level. In 

addition, the architecture has built-in 
self-test at the IC level. The authors have 

implemented this design using a 
self-test compiler. 
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CHIP-LEVEL SELF-TEST 

Test interface elements 
are located at the 

primary inputs and 
outputs of both macros 

and ICs. Each TIE 
contains boundary-scan 
cells and serial control 

registers. 

ARCHITECTURAL REQUIREMENTS 
To be H-testable, an architecture must have certain characteristics. 

First, it must be hierarchical because, as we just mentioned, the 
hierarchical approach allows us to use test results from a lower level 
in higher levels. The results of a macro test can be used for the IC 
test, for example. Second, the architecture has to be standard 
because PCB manufacturers use ICs from different vendors on a 
single board. If we have well-defined test-interface rules and control 
definitions for every level of hierarchy, we can use standard test 
approaches. Third, the architecture has to be structured also to 
reduce extra design time. With a structured approach, test hardware 
is developed only once and is reusable. A structured approach also 
facilitates the design by allowing us to use computer tools. Finally, 
to be H-testable, the architecture must incorporate the BIST facilities 
of different macros. 

INTEGRATION WITH BOUNDARY SCAN 
Figure 1 shows the JTAG boundary-scan architecture for PCB 

testing. The behavior and architecture of all blocks in this figure are 
defined in the standard. We use this architecture to define our 
H-testable architecture. 

Figure 2 is a schematic block diagram of the H-testable architecture 
at the IC level. In this diagram, we can distinguish two levels of 
hierarchy: the macro level and the IC level. At the IC level are 
(self-)testable macros, connections between these macros, and addi­
tional testability hardware. The macro level consists of a (self-)test-
able macro with additional testability hardware. Both levels of the 
testability hardware incorporate test interface elements, or TIEs; a 
test processor; and a scan path. 

The TIEs separate a macro (IC) from the connections with other 
macros (ICs). Therefore, TIEs are located at the primary inputs and 
primary outputs of both macros and ICs. Each TIE contains bound­
ary-scan cells and serial control registers. Test processors provide 
parallel control of the TIEs. 

Figure 1. Architecture of the Joint Test Action Group boundary-scan standard. 
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The IC test processor provides the TIEs at the IC level and the macro 
test processors with parallel control. The macro test processor 
provides the TIEs at the macro level with parallel control. The macro 
test processor can also control a macro self-test. 

ARCHITECTURE AT THE IC LEVEL 
At the IC level, the H-testable architecture is compatible with the 

boundary-scan architecture and its behavior. Therefore, we have in 
effect merged the H-testable architecture with the JTAG boundary-
scan architecture as evidenced by the following structural character­
istics: 

• The JTAG boundary-scan path in Figure 1 is part of the boundary-
scan cells of the TIEs at the IC's input and output in Figure 2. 

• The JTAG instruction-register path is implemented in the IC-level 
test processor. The registers in this path provide the serial control 
data for the IC-level TIE. 

• The JTAG test-access port (TAP) controller is implemented in the 
IC-level test processor of the H-testable architecture. The TAP 
controller generates the parallel control signals for the IC-level TIEs 
and the macro-level test processors. 

• The JTAG user-defined register path is used to implement the local 
scan path in Figure 2. 

We can merge the architecture of the JTAG boundary-scan standard 
and the H-testable architecture without any changes to either. 
Consequently, at the IC level, the H-testable architecture has already 
been defined. 

ARCHITECTURE AT THE MACRO LEVEL 
The test hardware for the H-testable architecture at the macro level 

consists of TIEs and a macro test processor, as Figure 2 shows. 
A TIE in the local scan path forms the link between a macro and 

the macro interconnection. We add this element only to enhance 
testability. The TIEs are located at both inputs and outputs of a macro 
and do not affect the functional behavior of the IC during normal 
operation. 

We can merge the JTAG 
boundary-scan and 

H-testable architectures 
ivithout any changes to 

either. Thus, the 
H-testable architecture 

is already defined at the 
IC level. 

Figure 2. Block diagram of the hierarchical testable (H-testable) architecture at the IC level 
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CHIP-LEVEL SELF-TEST 

Data-register cells form 
the interface of the 
macro and macro 

interconnections. DRC 
modes vary according 
to the control signals 

applied to the 
multiplexers. 

During an IC test however, the TlEs are able to separate macros 
from their interconnections, which allows an independent test of 
both. Test pat terns are shifted serially into the TIE via the local scan 
path, and the TIE applies the pat terns in parallel to the macro or to 
the interconnection of macros. Results from a macro self-test are 
loaded in parallel into the TIEs at the output of the macro. Results 
from the macro interconnection test are loaded in parallel into the 
TIEs at the input of a macro. Next, data m the TIE's will be shifted 
out serially via the local scan path. Control signals for the TIE are 
applied serially via the local scan path and in parallel via the control 
signals from the macro-level test processor. 

Figure 3 shows the implementation of the TIE. A TIE consists of 
data-register cells D, two control-register cells (M and S), a bypass 
path, and a multiplexer. 

Data-register cells form the interface of the macro and the inter­
connections to other macros. Figure 4a is a block diagram of one of 
these cells. This cell consists of two multiplexers and a master-slave 
register. The macro-level test processor provides the signals Mode, 
DRC1, and DRC2. The data-register cell is used in different modes, 
which vary according to the control signals applied to the multiplex­
ers. Figure 4b shows the t ru th table of multiplexer 2. The first mode 

Figure 4. Block diagram off a data-register cell (a) and the truth table ffor 
data-register multiplexer 2 (b). 
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of the data-register cell is the hold mode (DRC1 =0, DRC2=0), in which 
data in the register remains unchanged. The second mode (DRC 1=1, 
DRC2=0) is the test mode, in which the input Test is used for BIST. 
The third mode (DRC 1=0, DRC2=1) is the scan mode, in which the 
cell is placed in the local scan path at the IC level. Figure 2 shows 
this path. We can now shift data into input TDI and towards output 
TDO. The fourth mode (DRC 1=1, DRC2=1) is the normal functional 
operation. Data enters the cell via the input Data-in and propagates 
through the cell with minimal delay to Data-Out. 

The control-register cells in the instruction path of a TIE (M and S 
in Figure 3) provide its serial control. These registers consist of a shift 
register (L2) and an output latch (LI). Figure 5a is a block diagram 
of an instruction-register cell. The TAP controller of the IC-level test 
processor supplies the control signals Update-IR, IRC1, and IRC2. 
At the rising edge of Update-IR, the contents of shift register L2 are 
loaded into the output latch LI. The signals IRC 1 and IRC2 control 
which input is selected by the multiplexer. Figure 5b shows the truth 
table of this multiplexer. The input Hold (IRC 1=0, IRC2=0) is selected 
to retain the data in the output latch LI. The input Status (IRC 1=1, 
IRC2=0) is required to load a signal into the shift register. The input 
Shift (IRC 1=0/1, IRC2=1) is the serial scan input. This input is 
connected to the output TDO of the previous shift-register cell. 

Because TIEs are at both the input and output of a macro, there 
are two mode registers—Ml at the input, M2 at the output—and two 
select registers—SI at the input and S2 at the output. These four 
instruction registers can define 16 modes for the data-register cells. 

The select register S in Figure 3 controls the bypass of the data-
register cells. The data-register cells in a TIE are placed in the local 
scan path if S=l. If S=0 the scan path of a TIE contains only the 
instruction-register cells. 

The value in the mode register Mis decoded in the macro-level test 
processor and, together with parallel control signals from the IC-level 
test processor, controls the two functions of the data-register cells. 
In Figure 4a the data-register cells transmit data if mode=l and 
receive data via input Data-in if mode=0. 

Figure 3 shows, in contrast with the JTAG architecture, that the 
boundary-scan path and the instruction path are connected serially. 
With this architecture at the macro level, we can use a simple 
multiplexer to select either the bypass mode or the boundary-scan 
mode. Because both modes include the instruction path, a data scan 
will always contain data bits and instruction bits. We need only one 
scan operation to initialize the TIEs for a macro test. At the PCB level, 
the JTAG boundary-scan architecture requires two scan operations 
to initiate the TIEs. In the first stage, the instruction bits are shifted 
in. In the second stage, the data bits are shifted in. 

Another difference between the macro-level TIE and the IC-level TIE 
is the number of modes that a data-register cell has. The boundary-
scan data-register cell at the IC level has three modes of operation. 
At the macro level, it has four modes. As we mentioned earlier, this 
additional mode is the test mode, which allows the data-register cell 
to be used for BIST. This mode does not require an extra control signal 
as compared with the boundary-scan register cell. 

At the PCB level, the 
JTAG boundary-scan 
architecture requires 

two scan operations to 
initiate the test interface 

elements: shift in 
instruction bits and 
shift in data bits. 

Figure 5. Block diagram of an instruction-
register cell (a) and the truth table for the 
instruction-register multiplexer (b). 
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Central to the 
H-testable architecture 

is the self- testable 
macro, which has only 
combinational logic. 

THE MACRO-LEVEL TEST PROCESSOR 
The test processor forms the control part of the H-testable archi­

tecture. At the macro level, the processor has to perform a macro 
self-test and apply the parallel control signals to the data-register 
cells of the TIEs at both the input and output of the macro. 

To carry out BIST, we mus t generate test pat terns and compact 
them using some hardware implementation of a test-pattern gener­
ation/compaction algorithm. Test patterns are applied in parallel to 
the macro inputs by loading the test pat terns in the data-register 
cells via the extra Test input, as Figure 4a illustrates. The test result 
is loaded in parallel into the TIE at the output of the macro. 

During the self-test, the macro test processor generates the par­
allel control signals for the data-register cells of the TIE. Figure 6 is 

Figure 7. Example of the hierarchical testable, or H-testable architecture. 
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a block diagram of the macro-level test processor. We briefly describe 
the main parts of the test-processor architecture. A more detailed 
description is available elsewhere. 

Parallel and serial control logic supply the data-register cells with 
control signals. The signals DRC11, DRC12, and Model form the 
signals DRC1, DRC2, and Mode for the TIE at the input of a macro. 
The signals DRC21, DRC22, and Mode2 form the signals DRC1, 
DRC2, and Mode for the TIE at the output of a macro. These signals 
depend on the state of the controller and on the state of the IC-level 
TAP controller (BSH-dr, BAH-dr).1 

A decoder signals the controller to start a macro self-test. The 
self-test is activated by the contents of the registers in the instruction 
path at the input (SI and Ml) and the output (S2 and M2) of the 
macro. A controller, which is, in fact, a synchronous state machine 
controls the macro self-test. We can, however, implement a macro 
self-test in many ways, depending on the type of macro. Therefore, 
we have a dedicated controller for each macro. Every controller must 
be able to start the self-test, indicate the end of a self-test, and control 
the registers involved. 

A pattern generator, which is governed by the controller, generates 
the test pat terns for the macro. The pattern generator uses the TIE's 
data-register cells at the input of the macro. The generated patterns 
(Data-Out) are applied to the Test inputs of the data registers. The 
pat tern generator generates a signal (Ready) for the controller to 
indicate the completion of a self-test. 

A pattern generator, 
which is governed by 

the controller, generates 
the test patterns 
for the macro. 

AN H-TESTABLE ARCHITECTURE 
The best way to illustrate the features of the H-testable architecture 

is to describe an actual implementation. Figure 7 shows the example 
we have used. Our intent is primarily to show the integration of 
boundary-scan hardware with BIST at the IC level. Our example 
incorporates two TIEs, a macro test processor, one TAP controller, 
and a simple macro. 

The central part in the architecture is the self-testable macro, which 
has four inputs and four outputs. This macro contains only combi­
national logic and is tested with pseudorandom patterns. A signature 
analyzer compacts the test results. We have added some hardware 
to the data-register cells of the TIEs so that we can use the data 
register as a building block for pseudorandom pattern generation 
and signature analysis. Figure 8 illustrates the additional hardware. 

We form the pattern generator/compactor by connecting a number 
of modified data-register cells as a linear-feedback shift register. To 
do this, we feed Data-Out of the last register cell back to the Feedback 
terminal of specific data-register cells. The connections are deter­
mined by the feedback polynomial. We can use the structure as a 
pseudorandom pattern generator when (DRC1, DRC2)=(1,0) and 
mode=l. The circuit operates as a signature analyzer when (DRC1, 
DRC2)=(1,0) and mode=0. 

In our example, the TIEs form an LFSR during the test mode that 
has a feedback polynomial of 1+X+.X4. Figure 9 shows the data 
register of a TIE realizing this LFSR. 

The macro-level test processor also incorporates the logic to start 
and complete the self-test. The Ready signal, which indicates the 
completion of the self-test, is true when a specific test pattern is 
generated. 
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We have added some 
hardware so that we 

can use the data register 
as a building block for 
pseudorandom pattern 

generation and 
signature analysis. 

Figure 8. Block diagram of a modified data register. 

Data in 

Data out 

Figure 9. Block diagram of the data register part of the test interface element, or TIE, that forms a four-bit linear feedback shift 
register (LFSR) with feedback polynomial I+X+X4. 
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The TAP controller is identical to the TAP controller as described in 
version 2.0 of the boundary-scan standard. 

SIMULATION OF THE SAMPLE CIRCUIT 
Table 1 shows the scan actions applied to the example circuit 

during simulation. Scan action 1 initializes the instruction-register 
cells. Four clock cycles shift the values for the initialization path into 
the instruction-register cells: (M1,S1,M2,S2) = (1,1,0,1). Because 
S l = l and S2=l, we can initialize the data-register cells at both the 
input and output. 

Scan action 2 initializes the data-register cells for a macro self-test. 
Both data-register cells are initialized with the value (1,1,0,0). Scan 
action 3 indicates that during a macro self-test, we can still shift data 
through the TIEs. While the two TIEs perform a macro self-test, a 
pat tern is shifted via the input TDI to the output TDO. 

We need scan action 4 to place the data-register cells in the scan 
path after the macro self-test has been completed, Finally, with scan 
action 5, the signature in the output TIE appears at the serial output 
TDO. 

We simulated the test process for this sample circuit using a 
switch-level description. The results of the simulation show the 
correct operation of the H-testable architecture. A layout for the 
individual blocks of the H-testable architecture has since been 
designed and will be used in our self-test compiler. 

With the self-test 
compiler, designers 

define only the type and 
size of the macro to be 
realized and the fault 

coverage they desire for 
the self-test. 

A SELF-TEST COMPILER 
As we mentioned earlier, the purpose of the H-testable architecture 

is to develop a standard, hierarchical test approach to ease the 
burden of test development. Towards that end, we implemented our 
architecture in a self-test compiler. The compiler automatically 
generates the layout of the most appropriate on-chip test hardware 
for self-testing along with the functional macro. Designers define only 
the type and size of the macro to be realized, along with the fault 
coverage they desire for the self-test. Using the described architec­
ture, the compiler generates self-testable macros that we can control 
in a standardized format. The H-testable architecture defines the 
signals to initialize, control, and verify a macro self-test from the 
macro level to the PCB level. 

Table 1. Tests applied to the sample circuit in Figure 9. 

No. Scan Action Instruction 
Ml SI M2 S2 

1 Select initialization path 

2 Initialize data and instruction register 

3 Scan operation during self-test 

4 Select result path 

5 Verify test result and scan in 
pattern for external test 

1 

1 

1 

0 

0 

1 

0 

0 

1 

1 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 
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For small macros of say, 
10 to 20 I/O ports, the 

controllers will probably 
determine the overhead 

of the extra test 
hardware. 

Figure 10 shows part of the layout of a self-testing carry-save array 
multiplier, which was generated by the self-test compiler. The self-
test, performed in this particular structure, is an exhaustive test. We 
used a signature analyzer to evaluate the test responses. The bottom 
row of cells in the figure shows the layout of some data-register cells 
used for data compaction. 

The overhead needed for the extra test hardware varies with the 
size of the array multiplier. For a 16xl6-input carry-save array 
multiplier, for example, the overhead is about 20%. For a 32x32-bit 
array multiplier, the overhead is about 12%. 

T
he H-testable architecture we have described will ease the 
problems of testing ICs on printed-circuit boards. It is hier­
archical, structured, and compatible with the JTAG bound­
ary-scan standard for PCB testing. Using this architecture, 

we can initialize, control, and verify a macro self-test from the IC level 
up to the PCB level. During a macro self-test, the IC-level scan path 
can still be used, which implies that we can test different macros in 

'lSr,",r,M;' 
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Figure 10. Part of the layout of a self-testing carry-save array multiplier, which 
was generated by the self-test compiler. The bottom row of cells shows the 
layout of some data-register cells used for data compaction. 
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parallel with the H-testable architecture. We have implemented this 
architecture in a self-test compiler. An example circuit, generated by 
this compiler, shows the possibilities of this architecture. 

The overhead of the extra test hardware remains a problem that 
needs more research. For small macros of say, 10 to 20 I/O ports, 
we expect the controller parts of the H-testable architecture to 
determine the overhead. Therefore, we advise the use of only one 
macro test processor for a set of small self-testable macros. 
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ABSTRACT 

Boundary-Scan (IEEE Standard 1149.1-1990) technology 
is beginning to be embraced in chip and board designs. 
One key need is a way to simply and effectively describe 
the feature set of a Boundary-Scan compliant device in a 
manner both user friendly and suitable for software to util­
ize. A language subset of VHDL is proposed here for this 
purpose. As with any new standard, the industry is learning 
how to apply its rules and mistakes will occur. A derivative 
effect of the language proposed here is that if a device is 
not describable by the language, then that device does not 
comply with the 1149.1 standard. While the converse is not 
true, the language still allows a syntactic check for compli­
ance as well as a number of semantic checks. 

INTRODUCTION 

IEEE Standard 1149.1-1990111 was approved in February 
1990, and is now available from the IEEE. The Boundary-
Scan concept was formally investigated by the Joint Test 
Action Group, a consortium of European and North Amer­
ican companies starting in 1985, and is often refered to as 
the JTAG Standard. The standard is rich in options and is 
open-ended in that user defined features are provided for. 
This richness can be a source of complication that must be 
accounted for while utilizing the standard. The testability 
enhancing attributes of the standard are quite powerful. 
Many of the barriers that have slowed the adoption of tes­
tability technology!21 are directly overcome by Boundary-
Scan131. For these reasons, expect to see widespread appli­
cation of the standard. In this paper it is assumed the 
reader has a passing knowledge[1][2][3][4] [5] of Boundary-Scan. 

As new products become available to support Boundary-
Scan designs, each will have the problem of how to describe 
a designer's unique application of the standard. Some sort 
of description will be necessary for each device containing 
Boundary-Scan. This paper describes a language that cap­
tures the essential features'61 of an implementation. This 
language is called the Boundary-Scan Description Language 
(BSDL) and is written within a subset of the VHSIC 
Hardware Description Language (IEEE Std 1076-1987 
VHDL171). It has two criteria to meet: first that it be 'user 
friendly', since people will have to create the files; and 
second, it should be simply and unambiguously parsable by 
computer. This proposal is intended to be a 'straw man' or 
'Version 0.0', illustrating a structure and illuminating needs. 

It is important to note that the language described here is 
necessarily evolving. However, it represents a consensus 
developed from discussions'61 with many individuals within 
various sectors of the electronics industry as noted in the 
acknowledgements. Several groups had already begun their 
own development efforts on proprietary languages suited to 
their individual needs; of note, AT&T, Hewlett-Packard, 
Philips, and Texas Instruments. In particular, the Philips 
work is part of an effort supported by the multinational 
European Commission ESPRIT Project 2478. It is now the 

intention that this European activity will merge with this 
proposal. This process is now underway and in this respect, 
this proposal reflects both North American and European 
thinking. While this language definition is expected to 
change as applications develop, it is our hope that the 
resulting evolution will differ in minor ways, with a goal of 
upward compatibility. Thus, software tool developers can 
make use of this proposal now rather than continue to wait. 
In so doing they will benefit from compatibility with other 
segments of the industry. Ultimately, this language should 
be taken over and maintained by a body devoted to stan­
dards, such as the IEEE. 

THE SCOPE OF THE LANGUAGE 

The BSDL language allows description of the testability 
features in IEEE Std 1149.1-1990 compliant devices. This 
language can be used by tools that make use of those testa­
bility features. Such tools include testability analysis, test 
generation and failure diagnosis. Note that BSDL itself is 
not a general purpose hardware description language. With 
a BSDL description of a device and knowledge of the stan­
dard, it is possible for tools to completely understand the 
data transport characteristics of the device. With additional 
capabilities provided by VHDL, it is possible to perform 
simulation, verification, compliance analysis, and synthesis 
functions. Support for these functions is beyond the scope 
of BSDL alone. 

A key characteristic of a BSDL description of the param­
eters of an implementation is orthogonality to the rules of 
the standard. As a result, elements of a design absolutely 
mandated by the standard are not included in BSDL 
descriptions. For example, the BYPASS Register is not 
described in BSDL because it is completely described by 
the standard itself, without option. This eliminates both 
redundancy and the opportunity for error. 

BOUNDARY-SCAN CHARACTERISTICS 

What are the characteristics of any Boundary-Scan device 
that need description? All such devices must have two 
major features; a Test Access Port (TAP) and a Boundary 
Register. The parameters of these features are described 
by BSDL. 

The parallel/serial Boundary Register is made up of 
Boundary Cells which are associated with device inputs, 
device outputs, device bidirectional signals, and specific 
embedded device control signals. A great deal of the flexi­
bility of the standard is reflected in the Boundary Register 
rules. 

The TAP possesses either four or five dedicated signals, 
familiarly labeled TCK, TMS, TDI, TDO and, optionally, 
TRST*. It must contain an instruction register and a 
BYPASS register. The TAP implements a minimum set of 
mandatory instructions which control operation of the 
Boundary-Scan facility. These instructions operate in con­
junction with the dedicated TAP signals in a precisely 
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prescribed way. The TAP may also contain optional data 
registers and optional instructions as specified by the 1149.1 
standard. Additionally, the TAP may also be endowed by a 
device designer with additional user-specified data registers 
and instructions beyond those specified by the standard, but 
governed by rules of implementation within the standard. 

Notice by conspicuous absence that the TAP state 
diagram is not described here. This information is inherent 
in the 1149.1 standard itself and does not need to be speci­
fied as part of a device adhering to the standard. In 
essence, stating "1149.1-1990" implies a great deal of infor­
mation common to any such device. The proposed 
language is intended to specify those parameters necessarily 
unique to a given Boundary-Scan device implementation. 

As further context, a device should be thought of as a 
black-box with terminal connections. Inside is the TAP and 
the system logic1 surrounded on its perimeter by the Boun­
dary Register logic. We want to describe the properties of 
the Boundary Register and terminal connections without 
need for describing the system logic. This independence 
recognizes a major contribution of Boundary-Scan; we can 
decouple problems such as board test from the system logic 
of the ICs. 

LANGUAGE ELEMENTS 

The language consists of a case-insensitive free-form mul­
tiline terminated syntax which is a subset of VHDL[7] Com­
ments are any text between a "--" symbol and the end of a 
line, syntactically terminating that line. Some of the infor­
mation is conveyed in VHDL strings; sequences of charac­
ters between quote marks. This information is associated 
with a VHDL attribute and has a BSDL syntax require­
ment. Obviously, this is not checked by VHDL itself, but 
by applications that consume this information. (This is one 
reason the BSDL name is retained.) In practice, this infor­
mation will be used in two environments. The first is a full 
VHDL-based system. It passes a BSDL description 
through its VHDL analyser into a compiled design library. 
From there, VHDL design library based tools can extract 
Boundary-Scan data by referencing the appropriate attri­
butes. The second environment is a non-VHDL system 
capable of parsing a limited set of VHDL syntax (simply 
skipping items it doesn't recognize) to find and parse the 
BSDL information. In support of these systems, we con­
strain the full power of VHDL into a standard practice. 
Standard practices will be indicated as they are used in this 
text. Thus, BSDL is a "subset and standard practice" of 
VHDL. 

BSDL is composed of three sections. These are: Entity, 
Package, and Package Body. An entity is the basis for 
describing a device within VHDL and an example for a real 
device is shown in Appendix A. Within the entity, the 
Boundary-Scan parameters of a device are described. The 
1149.1 related definitions come from a pre-written, standard 
VHDL package (and related package body). The defini­
tions for a 1149.1-1990 package and package body are given 

1. The 'system logic' is the same refered to by the 1149.1 document. How­
ever, important 'null' logic cases must also be treated as will be discussed. 

in Appendix B. The package information is directly related 
to the 1149.1 standard and is only expected to change when 
the standard itself is changed. Typically, this information 
would be write-protected. The development of new stan­
dards in the future would require new packages to be 
created. 

A user may add an additional package (and package 
body), to contain user-specific design information. An 
example of this would be to contain a library of cell defini­
tions unique to the users application, perhaps dependent 
upon the silicon technology in use. The reason for breaking 
out package bodies as seperate units is to allow the updat­
ing of the data within these without causing the need for 
recompilation of all entities that reference the correspond­
ing package. 

A simple Backus-Naur Form (BNF)[8] is used to describe 
the syntax of BSDL data within VHDL strings (see also 
Appendix C). Where the meaning is obvious without the 
use of BNF, the description is given by example. Since 
many of these strings are potentially long, the concatenation 
operator '&' is used to break them into managable pieces. 
The syntax descriptions will not show this, and, the concate­
nation operation may be thought of as a lexicographical 
pre-processing step before parsing. 

THE ENTITY DESCRIPTION 

An entity describes a device's I/O port and important 
attributes of the device. For BSDL, an entity has the fol­
lowing structure: 

entity My_IC is -- an entity for my IC 

[generic parameter] 
[logical port description] 
[use statement(s)] 
[package pin mapping] 
[scan port identification] 
[TAP description] 
[Boundary Register description] 

end My_IC; -- End description 

The order of the elements within the entity as shown above 
is a required standard practice to simplify non-VHDL 
applications. The next few sections will examine each ele­
ment of the entity. 

Generic Parameter 

The generic parameter is a VHDL construct used to pass 
data into a VHDL model. In BSDL it is intended as a 
method for selecting among several packaging options that 
a device may have. Each option may have a different 
mapping between the pins of the package and the bonding 
pads of the device. Even devices manufactured in a single 
package will be tested before packaging, with a different 
mapping possible. We call this the logical-to-physical rela­
tionship of the signals of the device. The description of the 
Boundary-Scan architecture of the device is done with the 
logical signals. Applications such as board testing will need 
to know how the logical structure of the device maps onto a 
set of physical pins. A VHDL generic parameter is used 
for this. It must have the name shown in order for 
software to seperate it from other parameters that might be 
passed to the entity. It has this form: 
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generic(PHYSICAL_PIN_MAP:string: = "undefined"); 

Note the string is initialized to an arbitrary value ("unde­
fined") that will not allow a package selection if the param­
eter is not bound to a value, i.e., not passed. The use of 
this parameter will become clear shortly. 

Logical Port Description 

The port description uses the VHDL port list in a stan­
dard practice. Here, we are assigning meaningful symbolic 
names to the device's system terminals. These symbolic 
names are used in subsequent descriptions. This allows the 
majority of the statements to be 'terminal independent'; 
that is for example, independent of a renumbering or other 
reorganization of the terminals of the device. It also allows 
description of devices which may be packaged in several 
different forms. It is optional to include non-digital pins 
such as power, ground, no-connects, or analog signals, but 
these should be included for completeness. Non-digital pins 
will not be referenced later in the description, but all pins 
referenced in the description must have been defined here. 
The form is: 

port( <PinID>; <PinID>;... <PinID>); 

<PinID> ::= <IdentifierList>: <Mode> <PinType> 

<IdentifierList> ::= <Identifier> \ 
<IdentifierList> , <Identifier> 

<PinType> ::= <PinScaler> | <PinVector> 

<PinScaler> :: = <Identifier> 

<PinVector> ::= <Identifier>(<Range>) 

<Mode> ::= in | out | inout | buffer | linkage 

<Range> :: = <nutnber> to <number> | 
<number> downto <number> 

The <Mode> identifies the system usage of a device pin, 
with in for a simple input pin, out for an output pin that 
may participate in buses, buffer for an output pin that may 
not participate in buses, inout for a bidirectional signal pin, 
linkage for other pins such as power, ground, analog, or 
no-connect. A <PinVector> is a shorthand for grouping 
related signals. For example, Data(l to 8) indicates there 
are 8 signals named Data indexed from 1 to 8, like Data(3). 
A <PinScaler> is a single signal. Note, every pin must 
have a unique name, so if there are several ground pins for 
example, they must have different names such as GND1, 
GND2, etc, or be expressed as a vector. An example of a 
port statement for a 22 pin device is; 

port(CLK:in bit; CLEAR:in bit; Qtout bit_vector(l to 8); 
DATA:in bit_vector(l to 8); VCC, GND:linkage bit); 

Bit and bit_vector are type names known to VHDL. 

Use Statement(s) 

The use statement identifies a VHDL package needed 
for defining attributes, types, constants, and other items that 
will be referenced. The following statement is mandatory 
in BSDL. Others may also be added to support user 
defined Boundary Register cells. The content of this pack­
age and its associated package body is shown in Appendix 
B. 

use STD_1149_l_1990.all; - Get 1149.1 information 

Package Pin Mapping 

VHDL attribute and constant statements are used to 
show the package pin mapping. These are shown by exam­
ple: 

attribute PIN_MAP ofMy_IC:entity 
is PHYSICAL_PIN_MAP; 

constant dw_package:PIN_MAP_STRING: = 
<MapString>; 

Attribute PIN_MAP is a string that is set to the value of 
the parameter PHYSICAL_PIN_MAP, already described. 
VHDL constants are then written, one for each packaging 
variation, that describe the mapping between the logical 
and physical pins of the device. (The BSDL syntax for 
<MapString> is given in Appendix C.) In a VHDL design 
library, the value of PIN_MAP can be used to identify the 
constant (by name) that contains the mapping of interest. 
In a non-VHDL implementation, the parse phase would 
look for the constant with a name matching the value of 
PIN_MAP. Note, the type of the constant must be 
PIN_MAP_STRING. This allows such parsers to ignore 
constants of other types. An example of a mapping is: 

"CLK:1, DATA:(6,7,8,9,15,14,13t12), CLEAR:10, "& 
"Q:(2,3,4,5,21,20,19,18), VCC:22, GND.11" 

Notice it is the concatenation of two smaller strings. This 
is arbitrary; a string is the result after all concatenations are 
performed. A BSDL parser will read the content of the 
string. It matches signal names like CLK with the names in 
the port definition. The symbol on the right of the colon is 
the physical pin associated with that port signal. It may be 
a number, or an alphanumeric identifier because some 
packages such as Pin-Grid Arrays (PGAs) use coordinate 
identifiers like A07, or H13. If signals like DATA are 
<PinVector>'s in the port definition, then a matching list 
of pins enclosed in parenthesis are required. The physical 
pin mapped onto DATA(5) is pin 15 in the above example. 

Scan Port Identification 

Next we give the 5 attributes that define the scan port of 
the device. These are shown by example: 

attribute TAP_SCAN_IN of TDI:signal is true; 
attribute TAP_SCAN_OUT of TDO: signal is true; 
attribute TAP_SCAN_MODE of TMS: signal is true; 
attribute TAP_SCAN_RESET of TRST: signal is true; 
attribute TAP_SCAN_CLOCK of TCK:signal 

is (17.5e6, BOTH); 

Here, signal names TDI, TDO, TMS, TRST and TCK must 
have appeared in the port description. The names chosen 
here match the 1149.1 standard, but may be arbitrary. The 
TAP_SCAN_RESET attribute is optional but the others 
must be specified for a correct implementation. The 
boolean assigned is arbitrary, the statement is used to bind 
the attribute to the signal. The TAP_SCAN_CLOCK attri­
bute is a record with a real number field (the first) that 
gives the maximum operating frequency for TCK. The 
second field is an enumerated type with values LOW and 
BOTH which specify which state(s) the TCK signal may be 
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stopped in without data loss in Boundary-Scan mode. 

TAP Description 

The next major piece of Boundary-Scan functionality that 
must be described is the device dependent characteristics of 
the TAP. It may have four or five control signals, already 
identified. It may have a user specified instruction set 
(within the rules) and a number of data registers and 
options. The following sections show how this is described. 

The TAP Instruction Register may have any length 2 bits 
or longer and is required to support certain opcodes and 
some (but not all) of these have mandatory bit patterns. A 
designer may add 1149.1-identified optional instructions 
and/or new instructions with completely dedicated func­
tions. An instruction may have several bit patterns. Unused 
bit patterns will default to the BYPASS instruction. Upon 
resetting the TAP or passing through the Test-Logic-Reset 
state, the instruction register is jam-loaded with a specific 
instruction. The standard provides for 'private' instructions 
which need not be documented except if their access could 
create an unsafe condition such as a board level bus con­
flict. Our language must easily denote these characteristics 
and take advantage of opportunities for semantic checks. 

The characteristics of the instruction register that we cap­
ture with the language are length, opcodes, capture, disable, 
private and usage. Since these are basically simple, they are 
introduced by example. 

attribute INSTRUCTION _LENGTH of My_IC:entity 
is <integer>; 

attribute INSTRUCTION_OPCODE of My_IC:entity 
is <OpcodeTable>; 

attribute INSTRUCTION_CAPTURE of My_IC: entity 
is <Pattem>; 

attribute INSTRUCTION_DISABLE of My_IC: entity 
is <OpcodeName>; 

attribute INSTRUCTION_PRIVATE of My_IC: entity 
is <OpcodeLisf>; 

attribute INSTRUCTION_USAGE ofMy_IC: entity 
is <UsageString>; 

Example: 

attribute INSTRUCTION_LENGTH of My_IC:entity is 4; 

attribute INSTRUCTION_OPCODE of My_IC:entity is 
"Extest (0000), " & 
"Bypass (1111), " & 
"Sample (1100, 1010), " & 
'Preload (1010)," & 
"Hi_Z (0101), " & 
"Secret (0001) "; 

attribute INSTRUCTION_CAPTURE of My_IC:entity is 
"0101"; 

attribute INSTRUCTION_DISABLE of My_IC: entity is 
"Hi_Z"; 

attribute INSTRUCTION_PRIVATE of My_IC: entity is 
"Secret"; 

The instruction_length attribute defines the length that all 
opcode bit patterns must have. The instruction_opcode 
attribute is a BSDL string (syntax defined in Appendix C) 
containing the opcode identifiers and their associated bit 

patterns. The rightmost bit in the pattern is closest to 
TDO. The standard mandates the existence of EXTEST, 
BYPASS, and SAMPLE instructions, with mandatory bit 
patterns for the first two. Note that other bit patterns may 
also decode to these same instructions. 

The instruction_capture attribute string states what bit 
pattern is jammed into the shift register portion of the 
instruction register when the TAP passes through the 
Capture-IR state. This bit pattern is shifted out whenever a 
new instruction is shifted in, and the standard mandates the 
least 2 significant bits must be a "01". Note, this bit pattern 
may be design-specific data. Since it is possible, by travers­
ing from Capture-IR to Exitl-IR to Update-IR, to cause this 
pattern to become the effective instruction, it will act as 
some instruction (if not simply BYPASS) when it becomes 
effective. This bit pattern is not the instruction loaded into 
the instruction register when passing through the Test-
Logic-Reset state. The standard states that on passing 
through the reset state, the effective instruction is jammed 
either to BYPASS, or IDCODE if it exists. 

The optional instruction_disable attribute identifies an 
opcode that makes a Boundary-Scan device "disappear". In 
this mode, the 3-state outputs are disabled and the 
BYPASS register is placed between TDI and TDO. This is 
not (yet) a specified behavior in the 1149.1 standard, but 
many devices have this capability today because it is very 
useful for testing purposes. This attribute allows the 
opcode to be identified for software use. 

The optional instruction_private attribute identifies 
opcodes that are private and potentially unsafe for access. 
By definition, the results of these instructions are undefined 
to the general public and should be avoided. Software can 
monitor the instruction register to issue warnings or errors 
if a private instruction is loaded during run time. 

The optional instruction_usage attribute is a BSDL 
string with the syntax given in Appendix C. The usage con­
cept will be covered in its own section later. 

ID Register Values 

Next, we need to identify standard prescribed optional 
registers. These are the IDCODE and USERCODE regis­
ters. Note, if an IDCODE instruction exists, an IDCODE 
register must also exist. Further, the existence of USER-
CODE implies the existence of IDCODE. To describe 
these instructions we need two attributes. 

attribute IDCODE_REGISTER ofMy_IC:entity is 
"0011" & -4 bit version 
"1111000011110000" & -16 bit part number 
"00000000111" & - 11 bit manufacturer 
"1"; - mandatory LSB 

attribute USERCODE_REGISTER ofMy_IC: entity is 
"10xx" & "0011110011110000" & 
"00000000111" & "1"; 

The bit patterns must be 32 bits long. The rightmost bit is 
closest to TDO. In the examples above, concatenation is 
used to delimit fields within the codes. The "X" values 
specify a don't-care for that bit position. This is used to 
nullify subfields within a code that are not important for 
testing purposes. 
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Register Access 

All TAP instructions must place a shiftable register 
between TDI and TDO. User-defined instructions may 
access data registers mandated by the standard; the Boun­
dary Register, the IDCODE register, and the BYPASS 
register. The standard allows a designer to place additional 
data registers in the design. These are referenced by user-
defined TAP instructions. It is important for software to 
know the existence and length of these registers and then-
associated instruction(s). Therefore we need to express 
these associations in the language. The attribute for this is: 

attribute REGISTER_ACCESS ofMy_IC: entity 
is <RegisterString>; 

The syntax for <RegisterString> is in Appendix C. Exam­
ple: 

attribute REGISTER_ACCESS ofMyJCentity is 
"Boundary (Secret, Userl), " & 
"Bypass (Hi_Z, User2), " & 
"MyReg[7] (LoadSeed, ReadTest)"; 

In this example, Secret, Hi_Z, Userl, Userl, LoadSeed and 
ReadTest must be previously defined user instructions. 
Note that a seven bit user-register MyReg has been added 
to the TAP, with two instructions that access it. The 1149.1 
standard itself defines the following relationships implicitly, 
so these need not be given. 

attribute REGISTER_ACCESS of My_IC:entity is 
"Boundary (Extest, Sample, Intest)," & 
"Bypass (Bypass), " & 
"Idcode (Idcode, Usercode)"; 

This ability to identify register access allows software to 
know the length of a scan sequence, which is dependent on 
the currently effective instruction. The mandatory Boun­
dary Register, Bypass Register and Instruction Register are 
known from other statements, as well as their relationship 
to TAP instructions. Note that a semantic check can be 
made here ensuring that each instruction has an associated 
data register as required by the standard. Exceptions to 
this are the instructions marked 'private' since they are not 
to be accessed, nor do their target registers need to be 
identified. 

The standard also allows user-instructions to reference 
several registers at once in a concatenated mode, but also 
requires them to have a new name in this mode. Here, we 
would treat this concatenation as if it were a new register 
with a distinct name and length. The reason is that in any 
case, the data flowing out of any register after passing 
through the Capture-DR state is not known to BSDL 
because it is not a simulation language. We are not 
attempting here to completely characterize the entire design 
so that its behavior is simulatable. This is more properly 
the domain of VHDL itself. We are simply trying to cap­
ture the relevant characteristics of Boundary-Scan devices 
so that we can intelligently manipulate chains of such dev­
ices. Other software can predict what must be coming out 
of various registers. This allows us to divide testing prob­
lems into two parts: calculating tests at an abstract level 
and manipulating the chain to deliver them. The language 
described here deals mainly with this second task. This 
division is important since there are several configurations 

(even proposed within the standard itself) for setting up 
Boundary-Scan chains. The abstracted test can be indepen­
dent of these configurations. 

Boundary Register Description 

The Boundary Register is an ordered list of Boundary 
Cells, numbered 0 to AT where N+l is the number of cells 
in the register. Cell 0 is closest to TDO. There are cells of 
varying design and purpose. The standard, in chapter ldP-\ 
shows fifteen such designs as examples. Others are possible 
as well. In discussing cell structures we will make heavy 
use of reference to the standard and its figures depicting 
cell designs to save space in this paper. To avoid confusion 
with figure references, a symbol such as f10-16[1] will refer 
to figure 10-16 in the standard. Symbols such as fl0-19[1] 

and f10-19d[1} refer to the control and data cells that make 
up the structure shown in figure 10-19 of the standard. 

Cells must be identified before they are referenced in the 
Boundary Register description that follows. However, since 
the standard does give a number of examples that will likely 
be adopted in a design, we have constructed the language 
to have intrinsic or predefined cells that may be referenced 
via a simple nomenclature. Cell names are listed in Table 
1 and their definitions are shown in the VHDL package 
body given in Appendix B. However, there will still be a 
need to define other cells not covered by the intrinsics. 
The details of these definitions are defered until later. If 
the intrinsic definitions contain the cells one needs for a 
description, then no cell definitions are required at all. 
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Table 1. List of intrinsically defined cells and the figures 
covered in the standard. 

Numerous rules must be observed when using the cells to 
create a Boundary Register as covered in chapter 10!1) of 
the standard. Some of these may be checked during compi­
lation of a device's description. For example, some cell 
designs may only be used on a device input. Some will not 
support the INTEST instruction, which is allowable if the 
device TAP description does not list that instruction. Some 
cells require the aid of another cell to control 3-state 
enables. Checks can be performed and problems 
discovered as soon as a device's Boundary-Scan behavior 
has been specified and described, which may be well in 
advance of device fabrication. 

A very general cell design from the standard (f10-16[1]) is 
shown in Figure 1. In Figure 2a we show a symbol that 
captures the essence of this cell needed for discussion. The 
design in Figure 1 is comprised of a. parallel input, a parallel 
output, a multiplexer controlled by a Mode signal, and two 
flip-flops. The Mode signal is a function of the currently 
effective instruction. Yes, there are other elements such as 
the signals shifted in from the last cell and to the next cell. 
Yes, there is a second multiplexer controlled by signal 
ShiftDR. Yes, there are two clock signals ClockDR and 
UpdateDR. But, all these additional elements are always 



Figure 1. Cell design from fl0-16m. 

precisely prescribed by 1149.1 and as such, may be omitted 
from our consideration in this language. This leads us to 

, the symbol in Figure 2a which is simple. 

Figure 2. Two symbols for a typical Boundary Cell, one (a) 
with an UPD flip-flop and one without (b). 

The parallel input and output are shown, and these are con­
nected to various places depending on the application. The 
two flip-flops are labeled CAP and UPD to symbolize then-
use; the CAP flip-flop captures data in the Capture-DR 
state. The UPD flip-flop captures data in the Update-DR 
state. The shift path is shown because many such cells will 
be linked together in a shift chain that makes up the Boun­
dary Register. The shift path links only the CAP flip-flops. 
Now, one cell design shown in f10-11ll] has a symbol (Fig­
ure 2b) with no UPD flip-flop. 

Figure 3. Symbols for a Boundary Cells with preset (a) 
and clear (b) on the UPD flip-flop. 

The symbols in Figure 3 show bubbles on the top or bottom 
of the UPD flip-flop to indicate that flip-flop may be preset 
(1) or cleared (0) when passing through the Test-Logic-
Reset state, as the standard allows in f10-2111). No signal 
connection is made to these bubbles. 

Now we show the three attributes needed to define the 
Boundary Register: 

attribute BOUNDARY_CELLS of My_IC: entity is 
<CellList>; 

attribute BOUNDARY_LENGTH of My_IC: entity is 
<integer>; 

attribute BOUNDARY_REGISTER of My_IC: entity is 
<CellTable>; 

The <CelUist> and <CellTable> are strings with syntax 
given in Appendix C. An example of a 3 cell Boundary 
Register is: 

attribute BOUNDARY_CELLS of My_IC: entity is 
"BCJ, MyCell"; 

attribute BOUNDARY_LENGTH of My_IC: entity is 3; 
attribute BOUNDARY_REGISTER of My_IC: entity is 

-- num cell port function safe [ccell disval rslt] 
" 0 (BCJ, IN, input, X), " & 
" 1 (BCJ, *, control, 0), " & 
" 2 (MyCell, OUT, output3, X, 1, 0, Z)"; 

The first attribute shows the cells used in the register; BCJ 
from the standard package, and MyCell, which must have 
been described in a user defined package. A semantic 
check can occur here; do these cells support the standard 
instructions that are listed for the TAP opcodes? For exam­
ple, the TAP may support INTEST, but does MyCell? 

The second attribute defines the number of cells in the 
Boundary Register. This number must match the number 
actually found in the third attribute, the register itself. This 
attribute is a string containing a list of elements, each with 
two fields. The first field is merely the cell number, which 
must be between 0 and LENGTH-1. (They may be listed 
in any order.) The second is a set of subfields within 
parentheses. There are either four or seven subfields. 
They are labeled, as in the comment above, cell, port, func­
tion, safe, ccell, disval, and rslt. All cells have the first 
four subfields. Only cells providing data for device outputs 
that can be disabled have the remaining three subfields. 
These three specify how to disable the output. 

The cell subfield identifies the cell design used. It must 
match a cell given in the boundary_cells attribute. 

The port subfield identifies the port signal actively driven 
or received by this cell. A cell serving as an output control 
or internal cell will have an asterisk in this position. 

The function subfield shows the primary function of the 
cell. Table 2 shows the values this subfield may have: 

input a simple input pin receiver (fl0-8rl1) 
clock a cell at a clock input (flO-ll1'1) 
output2 supplies data for a 2-state output (fl0-16f1]) 
output3 supplies data for a 3-state output (flO-18dM) 
control controls 3-state drive or cell direction (fl0-18c{1]) 
controlr a control, disables at Test-Logic-Reset (f!0-21c111) 
internal captures internal constants (see page 10-7!1J) 
bidir reversible cell for a bidirectional pin (fl0-22dlll) 

Table 2. Function subfield values, meanings, and a figure 
reference of a representative cell in the standard111. 

Shortly, we discuss cells with more than one function. Note 
that the function is with respect to the boundary cell and 
not the device pin. This reflects the fact that two cells may 
service a single pin, for example, one serving as an input 
receiver and the other serving as an output driver, on a 
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bidirectional pin (f10-211*1). Internal cells are used to cap­
ture 'constants' (O's and l's) within a design. They are 
specifically not allowed to be 'surrounded by system logic 
(f10-7111). One proposed use of this is to capture an 
encoded value (perhaps in the first few bits of the Boundary 
Register) as an informal identification code. Another was 
proposed in[9! where sense amplifiers monitor redundant 
power connections and place the measured results in inter­
nal Boundary Register cells. If the power connections are 
good, the data loaded will be constant. Finally, there may 
be "extra" cells unused in a programmable device (see page 
10-7 of the standard'1'). 

The safe subfield gives the value that a designer prefers 
to be loaded into the UPD flip-flop of the cell when 
software would otherwise choose a value randomly. Two 
examples are; the value that an output should have that is 
safe to overdrive during In-Circuit testing; or, the value to 
present to on-chip logic at a device input during EXTEST. 
An 'X' signifies that it doesn't matter. 

The ccell subfield identifies the cell number of the cell 
that serves as an output enable. The disval subfield gives 
the value the ccell must have to disable the output driver. 
The rslt subfield gives the state the disabled driver goes to; 
a high impedance state (Z), a weak '0' (WeakO), or a weak 
'1 ' (Weakl). The last two values correspond to asymetrical 
drivers such as TTL open-collector drivers or ECL open-
emitters. The functions in effect when these three subfields 
exist must be output!, output3 or bidir. If it is bidir, then 
disabling the driver implies the cell is a receiver. 

An Example Boundary Register Description 

We now use the device shown in Figure 4 to illustrate a 
Boundary Register description and how special cases are 
handled. These special cases arise because the standard 
allows cells to be merged when the system logic between 
them is null. (See for example, fl0-41], fl0-51''.) Cells may 
be merged if the logic between them is simply a non-
inverting data path, like a wire or buffer. When merging is 
done, the resulting cell must obey a combination of the 
rules of the merged cells. Here is the definition of the 
Boundary Register for Figure 4. 

attribute BOUNDARY_CELLS of Figure4:entity is 
"BC_1, BCJ, BC_6"; 

attribute BOUNDARY_LENGTH of Figure4:entity is 10; 
attribute BOUNDARY_REGISTER of Figure4:entity is 
— num cell port function safe [ccell disval rslt] 

"0 (BCJ, * control, 0)," & 
"1 (BCJ, OUT2, output!, 1, 1, 1, Weakl),"& 
"2 (BC_6, BIDIR1, bidir, X, 3, 0, Z)," & 
"3 (BCJ., * control, 0)," & 
"4 (BCJ, * control, 0)," & 
"5 (BCJ, BIDIR3, input, X)," & 
"5 (BCJ, BIDIR2, output3, X, 7, 1, Z)," & 
"6 (BCJ, BIDIR2, input, X)," & 
"6 (BCJ, BIDIR3, output3, X, 4, 0, Z)," & 
"7 (BCJ, * control, 1)," & 
"8 (BCJ, IN2, input, X)," & 
"9 (BCJ, INI, input, X)," & 
"9 (BCJ, OUT1, output3, X, 0, 0, Z)"; 

Cell 0 is simply a control cell between the system logic 
and the enable for signal OUT1. Cells 4 and 7 are similar. 

BIDIR2 BIDIR3 

BIDIR1 

OUT2 

OUT1 

TDO 

Figure 4. A device illustrating several merged cell situa­
tions. 

Notice the safe bits are assigned to cause the associated 
drivers to disable. Cell 3 is the control for the reversible 
cell (f10-22d[1]) used on the bidirectional signal BIDIR1. 

Cell 1 is a 2-state output data cell. Note that it has the 
three extra fields indicating that it controls its own open-
collector asymetrical driver. Placing a ' 1 ' in cell 1 will dis­
able OUT2 by putting it into the 'Weakl' state. 

Cell 2 is the reversible cell of figure fl0-22dfl]. This cell 
serves as an input if the control cell has turned off the out­
put driver, meaning cell 3 produces a '0'. This cell serves 
as the data for the driver if the output is enabled. It cannot 
serve both functions. This is a drawback during test, since 
the value of BIDIR2 cannot be observed while the driver is 
turned on. A board level fault could not be seen by this 
device. Note that the structures for BIDIR2 and BIDIR3 
(or fl0-21lll) would allow observation of the driver, thus 
allowing a simple consistancy check. 

Cell 5 (and similarly for cells 6 and 9) has merged 
behavior; it serves as the input receiver for BIDIR3 and as 
the data source for BIDIR2. It has two lines of description 
in the Boundary Register definition as a result. The first 
gives its behavior as an input cell while' the second 
describes its characteristics as an output cell. Note that cell 
BC_1 used in this capacity must support both input and out­
puts functions. This is reflected in the definition of BC_1 
(see appendix B) where both functions are seen to exist for 
all instructions. 
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This example is extreme in dwelling on odd cases. Most 
device implementations will be quite simple and routine, as 
the example in Appendix A, the Texas Instruments 
74BCT8374[10], illustrates. 

PACKAGE DESCRIPTION 

The package that describes the Std 1149.1-1990 informa­
tion needed for BSDL is given in appendix B. This package 
cannot be modified without changing BSDL itself. 

There may be occasion for users to define their own 
packages for use in conjunction with the 1149.1 package. 
This is the way to add user-specific Boundary Cell defini­
tions. By placing these in a package, they may be refer­
enced by many entities. While it is possible to place an 
entire cell description in a package, it is standard practice 
to place the actual cell description in a package body 

. (described next) associated with the package. All that then 
remains in the user-defined package is the names of the 
cells. For example, say a user wants to define two new 
cells for reference in a boundary-scan description. Here is 
what the package would look like: 

package My_New_Cells is 

constant MNC_1 : CELLJNFO; - My new cell 1 
constant MNC_2 : CELLJNFO; - My new cell 2 

end My_New_Cells; 

Of course, to reference these cells, a use statement must 
appear in an entity description that references 
MyJVewjCells.all, and the cell names must appear in the 
BOUNDARY_CELLS attribute string. The definition of 
these deferred constants goes into the related package body. 

PACKAGE BODIES FOR DEFINING BOUNDARY CELLS 

Now it is time to discuss the description of Boundary 
Register cells. We have already skimmed this subject in 
examining the description of the Boundary Register itself, 
and, we have benefitted from intrinsic cell definitions pro­
vided by the 1149.1 package body. 

What are the important aspects of a cell we need to 
describe for BSDL to meet its statement of scope? In 
looking at the variety of possible cell designs given in the 
standard and the long list of rules governing these designs, 
this might seem to be a daunting task. It turns out that all 
of the cells shown in the standard (excepting fl0-22d{1}) 
could be modeled as shown in Figure 5, for the purposes of 
BSDL scope. 

For the case of cell fl0-22d[1], its reversible nature can be 
represented as if it were two cells; one that is left-to-right 
and the other that is right-to-left, each modeled by Figure 
5. The one to choose is defined by the value of the control­
ling cell. When enabled to drive, the cell works left-to-right 
and vice versa. 

In BSDL, any cell consists of a Parallel Input (PI), a 
Parallel Output (PO), CAP and UPD flip-flops and connec­
tions to/from CAP flip-flops of other cells. Note, the UPD 
flip-flop may not exist in certain input cell configuration as 
allowed by the standard. The CAP flip-flop has eight 
choices of data source as shown. In looking at any particu­
lar cell design, usually only two or three of these choices 
are actually implemented. The '0' and 1' constants may be 

Figure 5. A general BSDL model of a Boundary Register 
Cell. 

loaded into the CAP in certain situations. For example, an 
output cell design during EXTEST may load a constant into 
the CAP. The 'X' value denotes a don't-know or don't-care 
about what is loaded. An example of this is an output cell 
design during RUNBIST that loads a Linear Feedback Sig­
nature bit into the CAP. BSDL alone is not capable of 
simulating what this value could be. Also, proprietary 
information about a cell design may be hidden by "X-ing" 
out the activities of an instruction. 

Context is another important factor in analysing Boun­
dary Cells. What is the cell function? When a cell is an 
input cell, then PI must be connected to a device pin and 
PO must be connected to the system logic (ignore cell 
merging here). Now, add the context of the effective 
instruction. If EXTEST is in effect, then CAP must 
receive PI data. What we are defining here is a triple of 
data: 

<function> <instruction> <CAP data source> 

A cell description is a collection of these triples in the form 
of a VHDL array of records. Each triple tells us a piece of 
a cell behavior; for a given cell function, while a certain 
instruction is in effect, what data is loaded into the CAP 
when passing through the Capture-DR state. Since the CAP 
flip-flop data is what is eventually seen when scanning out 
data, it is important to know what the CAPs will contain. 
This data is simple to derive. One simply fixes the cell 
function, and then for each instruction supported, traces 
the data flowing to the CAP flip-flop. 

What about other details? For example, input cell f 10-
101'1 in the standard produces a ' 1 ' on PO while EXTEST 
is in effect. BSDL does not model this because, during 
EXTEST on an input, we are looking outward from the 
device, not inward. Essentially, we do not care what is 
being fed to PO during EXTEST on input pins. The device 
designer did which is why the ' 1 ' is being injected; probably 
to satisfy some requirement internal to the device. During 
and after an EXTEST operation, the 1149.1 standard does 
not specify the what the state of the system logic will be so 
there is no point in trying to describe inputs to the system 
logic during EXTEST. There are similar arguments about 
what it is necessary to model during INTEST, SAMPLE 
and RUNBIST. 
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Many details are prescribed by the standard itself. The 
UPD flip-flops always get the CAP data transfered during 
the Update_DR state, so we need not describe this. If an 
UPD flip-flop is missing from a design, it can only be used 
as an input cell. If it still supports INTEST, then the CAP 
flip-flop will supply data to the system logic (and data rip­
ple due to shifting is guaranteed by design not to matter), 
or, the input has been specifically designated as a clock 
function as the rules allow. 

Defining a Boundary Cell 

A cell is defined as a VHDL constant. It is an array of 
records with the range of the array unspecified, but implicit 
from the number of records given in the constant definition. 
Each field of each record must be filled. A standard prac­
tice is that these are filled using positional association 
rather than named association, as shown, to simplify 
development of non-VHDL based applications. 

We give an example of a Boundary Cell C_Ex_l that 
supports EXTEST, SAMPLE and INTEST. It loads a ' 1 ' 
into the CAP during EXTEST if the cell is used as an out­
put or control function. The cell may be used as a simple 
input function. During INTEST as an input, it reloads the 
CAP with the data value that was shifted into the cell. Its 
description is: 

constant C_Ex_1 : CELL_INFO : = 
C (Output!, Extest, One), (Output3, Extest, One), 

(Output!, Sample, PI), (Output3, Sample, PI), 
(Output!, Intest, PI), (Output3, Intest, PI), 
(Control, Extest, One), (Input, Extest, PI), 
(Control, Sample, PI), (Input, Sample, PI), 
(Control, Intest, PI), (Input, Intest, CAP) ); 

The values allowed for function are the same as shown in 
Table 2 with the exception that bidir is replaced by two 
functions; bidir_in and bidir_out. A reversible cell such as 
fl0-22d111 is described only with these functions, with both 
required for every supported instruction as in cell BC_6 of 
Appendix B. The control cell, when enabling or disabling 
the cell as a driver, chooses between the bidir_out or 
bidirjn functions respectively. This is the only function 
with this complication. 

The values allowed for an instruction are EXTEST, 
INTEST, SAMPLE and RUNBIST. Others such as 
BYPASS have no effect on the Boundary Cells. The values 
allowed for CAP data are PI, PO, UPD, CAP, ZERO, 
ONE, and X 

OTHER BSDL FUNCTIONS 

There are some other features in BSDL, some of which 
we defered in previous discussion. 

Instruction Usage 

Generally, BSDL is a means for describing static design 
parameters of an 1149.1 implementation. However, the 
standard contains two instructions with details of operation 
that are not statically defined. These are RUNBIST and 
INTEST. The instruction_usage attribute gives additional 
information about the operation of an instruction. While 
targetted at the two standard instructions, it could be used 
to document details about a user-defined instruction as 
well. The types of information needed are; register 

identification, result identification and clocking information. 
This information is placed in string <UsageString> with 
syntax given in Appendix C. Here are examples for 
describing RUNBIST and INTEST and a user-defined 
instruction MYBIST: 

attribute INSTRUCTION_USAGE ofMy_IC: entity is 
"Runbist (registers Boundary, Signature;" & 

" shift Signature;" & 
" result 0011010110000100;" & 
" clock TCK in RunJTestJdle;" & 
" length 4000 cycles)," & 

"Intest (clock SYSCLK shifted)," & 
"MyBist (registers Seed, Boundary, Bypass;" & 

" initialize Seed 001110101;" & 
" shift Bypass;" & 
" result 1;" & 
" clock SYSCLK in RunJTestJdle;" & 
" length 125.0e-3 seconds)"; 

The RUNBIST usage shows two registers used. Note, 
the standard states that only the Boundary Register may be 
initialized for test operation. A second register Signature is 
also used, and will be placed between TDI and TDO for 
shifting. When the test is completed, the result shifted out 
from Signature should match the given pattern (length must 
match length of Signature register), where the rightmost bit 
is closest to TDO. The test is run by clocking TCK 4000 
times while in state RunJTestJdle. 

The INTESTusage tells us that clocking is accomplished 
by shifting the clock states to signal SYSCLK. This implies 
a cell structure for input signal SYSCLK that supports 
INTEST. If this cell had been a clock function rather than 
input, then the description would read (clock SYSCLK) and 
we would have to supply the clocking externally. 

The MYBIST usage tells us that registers Seed, Boun­
dary, and Bypass are involved in the test and that Seed 
requires initialization to a pattern. This will have to be 
done using another instruction since MYBIST places the 
Bypass register between TDI and TDO. Software could 
look in the register_access attribute for such an instruction. 
When the test is done, the Bypass register should contain 
the result ' 1 ' . Clocking is done with the TAP in 
RunJTestJdle, with SYSCLK freerunning for 125 mil­
liseconds. 

Design Warnings 

A device designer may know of situations where the sys­
tem usage of a device can be subverted via the Boundary-
Scan feature to cause circuit problems. As a simple exam­
ple, a device may have dynamic system logic which requires 
clocking to maintain its state. Thus, clocking must be 
maintained when bringing the device out of system mode 
and into test mode for INTEST. The design_warning attri­
bute can be assigned a string message to alert future consu­
mers to the potential for problems. For example: 

attribute DESIGN_WARNING of My_IC: entity is 
"Dynamic device, " & 
"maintain clocking for INTEST." 

This warning is for application specific display purposes 
only. It is a textual message with no specified syntax and is 
not intended for software analysis. 
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CONCLUSION instrumental in the development of the VHDL subset. 

BSDL is an extensible language for defining the basic tes­
tability features of a device implemented under the IEEE 
1149.1-1990 standard. It is specifically designed for describ­
ing the numerous options that may be exercised in such 
implementations, in a way useful for humans and comput­
ers. It is also a subset and standard practice of IEEE Std 
1076-1987 VHDL and as such may be contained within a 
larger VHDL description of a device used for modeling or 
simulation. An added benefit is that a number of compli­
ance violations in a design may be discovered either in 
attempting to code the device features, or, in semantic 
checks possible during analysis. 

Integrated circuit vendors have been reluctant121 to embed 
user accessible testability features within their devices, and 
are now responding to market pressures for it. The 1149.1 
standard makes it much easier to add testability in a 
prescribed way. However, without a simple, complete, and 
automated way of describing implementations, these ven­
dors rightfully fear that new support difficulties will result. 
The concept of a standardized description offers them a 
way of transfering the support burden to the proper seg­
ments of the industry, most notably, the ATE vendors. 
These same ATE vendors will benefit from the assurance 
that the descriptions they receive are complete, accurate, 
and uniform across the IC vendors. 

Very recently, a new interest has been expressed for 
BSDL. ASIC vendors could use a BSDL description of a 
device in conjunction with the description of its system logic 
to automatically add the Boundary-Scan logic during layout. 
This offers 1149.1 testability to their customers who may be 
unfamiliar with the details of the standard and, of course, 
the BSDL description is available immediately. 

The advantages of the 1149.1 standard can be more 
widely enjoyed if there is some commonality in the descrip­
tion of Boundary-Scan devices across tasks and disciplines. 
We believe BSDL fills this need. 
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Appendix A, An Example: This example is the Texas Instruments 74BCT8374 Octal D-Type Flip-Flop1101 (see Figure 6). This 

device has an unusually rich set of user defined instructions. 

entity ttl74bct8374 is 

generic (PHYSICAL_PIN_MAP : string := "UNDEFINED"); 

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to 8); G N D , VCOlinkage bit; 

OC_NEG:in bit; TDO;out bit; TMS, TDI, TCRin bit); 

use STD_1149_l_1990.all; - Get Std 1149.1-1990 attributes and definitions 

attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP; 

constant D W _ P A C K A G E : PIN_MAP_STRING := "CLK:1, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," & 

"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12, TCIC13, TDI:14"; 

constant F K _ P A C K A G E : PIN_MAP_STRING := "CLK:9, Q:(10,ll,12,13,16,17,18,19), D:(6,5,4,3,2,27,26,25)," & 

"GND:14, VCC28, OC_NEG:7, TDO:20, TMS:21, TCR23, TDI:24"; 

attribute TAP_SCAN_IN of TDI: signal is true; 

attribute T A P _ S C A N _ M O D E of T M S : signal is true; 

attribute TAP_SCAN_OUT of T D O : signal is true; 

attribute TAP_SCAN_CLOCK of T C K : signal is (20.0e6, BOTH); 

74BCT8374 D W P A C K A G E 

Figure 6 

-- outputs controlled from cell 16 set to 0 are Hi-Z. 

-- cell 16 has a merged function, both input and control. 
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entity ttl74bct8374 is 

generic (PHYSICAL_PIN_MAP : string:= "UNDEFINED"); 

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to 8); G N D , VCC:linkage bit; 

OC_NEG:inbit; TDO;outbit; TMS,TDI,TCK:inbit); 

use STD_1149_l_1990.all; - Get Std 1149.1-1990 attributes and definitions 

attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP; 

constantDW_PACKAGE:PIN_MAP_STRING:="CLK:l, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," & 

"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12,TCK:13, TDI:14"; 

constantFK_PACKAGE:PIN_MAP_STRJ[NG:="CLK:9, Q:(10,ll,12,13,16,17,18,19), D:(6,5,4,3,2,27,26,25)," & 

"GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCR23, TDI:24"; 

attribute TAP_SCAN_IN of TDI: signal is true; 

attribute T A P _ S C A N _ M O D E of T M S : signal is true; 

attribute TAP_SCAN_OTJT of T D O : signal is true; 

attribute TAP_SCAN_CLOCK ofTCK : signal is (20.0e6, BOTH); 

attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8; 

attribute INSTRUCTCON_OPCODE of ttl74bct8374 : entity is 

" B Y P A S S (11111lll, 10001000, 00000101,10000100, 00000001)," & 

"EXTEST (00000000,10000000)," & 

"SAMPLE (00000010, 10000010)," & 

"INTEST (00000011, 10000011)," & 

"TRIBYP (00000110,10000110)," & -BoundaryHi-Z 

"SETBYP (00000111, 10000111)," & -Boundaryl/O 

" R U N T (00001001,10001001)," & -Boundaryruntest 

" R E A D B N (00001010,10001010),"& ~Boundaryreadnormal 

"READBT (00001011,10001011)," & -Boundaryreadtest 

"CELLTST (00001100, 10001100)," & - Boundary selftest normal 

"TOPHIP (00001101,10001101)," & ~Boundarytoggleouttest 

"SCANCN (00001110,10001110)," & - B C R Scan normal 

"SCANCT (00001111,10001111)," & ~BCRScantest 

attribute INSTRUCTION_CAPTURE of ttl74bct8374 : entity is "01010101"; 

attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is 'TRIBYP"; 

attribute REGISTER_ACCESS of ttl74bct8374 : entity is 

" B O U N D A R Y (READBN, READBT, CELLTST)," & 

"BYPASS (TOPHIP, SETBYP, R U N T , TRIBYP)," & 

"BCR[2] (SCANCN, SCANCT)"; - 2-bit Boundary Control Register 

attribute B O U N D A R Y _ C E L L S of ttl74bct8374 : entity is "BC_1"; 

attribute B O U N D A R Y _ L E N G T H of ttl74bct8374 : entity is 18; 

attribute B O U N D A R Y _ R E G I S T E R of ttl74bct8374 : entity is 

-- num cell port function safe [ccell disval rslt] 

"17 (BC_1, CLK, input, X)," & 

"16 (BC_1, OC_NEG, input, X)," & - Merged Input/Control 

"16 (BC_1, *, control, 0)," & - Merged Input/Control 

"15 (BC_1, D(1), input, X)," & 

"14 (BC_1, D(2), input, X)," & 

"13 (BC_1, D(3), input, X)," & 

"12 (BC_1, D(4), input, X)," & 

"11 (BC_1, D(5), input, X)," & 

"10 (BC_1, D(6), input, X)," & 

"9 (BC_1, D(7), input, X)," & 

"8 (BC_1, D(8), input, X)," & 

"7 (BC_1, Q(1), output3, X, 16, 0, Z)," & 

"6 (BC_1, Q(2), output3, X, 16, 0, Z)," & 

"5 (BC_1, Q(3), output3, X, 16, 0, Z)," & 

"4 (BC_1, Q(4), output3, X, 16, 0, Z)," & 

"3 (BC_1, Q(5), output3, X, 16, 0, Z)," & 

"2 (BC_1, Q(6), output3, X, 16, 0, Z)," & 

"1 (BC_1, Q(7), output3, X, 16, 0, Z)," & 

"0 (BC_1, Q(8), output3, X, 16, 0, Z)"; 

end ttl74bct8374; 



Appendix B, IEEE Std 1149.1-1990 VHDL Package/Package Body definition. 

This is the definition of the VHDL package and supporting package body for IEEE Std 1149.1-1990 attributes, types, subtypes, 
and constants of BSDL. 

package STD_1149_1_1990 is 

— Give pin mapping declarations 
attribute PIN_MAP : string; 
subtype PIN_MAP_STRING is string; 

— Give TAP control declarations 
type CLOCK_LEVEL is (LOW, BOTH); 
type CLOCK_INFO is record 

FREQ : real; 
LEVEL: CLOCK_LEVEL; 

end record; 

attribute TAP_SCAN_IN : boolean; 
attribute TAP_SCAN_OUT : boolean; 
attribute TAP_SCAN_CLOCK : CLOCKJNFO; 
attribute TAP_SCAN_MODE : boolean; 
attribute TAP_SCAN_RESET : boolean; 

— Give instruction register declarations 
attribute INSTRUCTION_LENGTH: integer; 
attribute INSTRUCTION_OPCODE : string; 
attribute INSTRUCTION_CAPTURE: string; 
attribute INSTRUCTION_DISABLE: string; 
attribute INSTRUCTION_PRIVATE: string; 
attribute INSTRUCTION_USAGE: string; 
— Give ID and USER code declarations 
type ID_BITS is ('0', ' 1 ' , V, 'X'); 
type ID_STRING is array (31 downto 0) of ID_BTTS; 
attribute IDCODE_REGISTER : ID_STRING; 
attribute USERCODE_REGISTER : ID_STRING; 

-- Give register declarations 
attribute REGISTER_ACCESS : string; 

-- Give boundary cell declarations 
type BSCANJNST is (EXTEST, SAMPLE, INTEST, 

RUNBIST); 
type CELLJTYPE is (INPUT, INTERNAL, CLOCK, 

CONTROL, CONTROLR, OUTPUT2, 
OUTPUTS, BIDIRJN, BIDIR.OUT); 

type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE); 
type CELL_DATA is record 

CT : CELL_TYPE; 
I : BSCAN_INST; 
CD : CAP_DATA; 

end record; 
type CELL_INFO is array of CELL_DATA; 

-- Boundary Cell defered constants (see package body) 

constant BC_1 : CELLJNFO; 
constant BC_2 : CELLJNFO; 
constant BC_3 : CELLJNFO; 
constant BC_4 : CELLJNFO; 
constant BC_5 : CELLJNFO; 
constant BC_6 : CELLJNFO; 
— Boundary Register declarations 

attribute BOUNDARY_CELLS : string; 
attribute BOUNDARY_L.ENGTH : integer, 
attribute BOUNDARY_REGISTER : string; 

— Miscellaneous 
attribute DESIGN_WARNING: string; 

end S T D J 1 4 9 J J 9 9 0 ; - End of 1149.1-1990 Package 

package body STD_1149_1_1990 is - Standard Boundary Cells 

- Description for fl0-12, fl0-16, fl0-18c, fl0-18d, fl0-21c 

constant BC_1 : CELLJNFO : = 
((INPUT, EXTEST, PI), 
(INPUT, SAMPLE, PI), 
(INPUT, INTEST, PI), 
(INPUT, RUNBIST, PI), 
(OUTPUT3, EXTEST, PI), 
(OUTPUT3, SAMPLE, PI), 
(OUTPUT3, INTEST, PI), 
(OUTPUT3, RUNBIST, PI), 
(CONTROL, EXTEST, PI), 
(CONTROL, SAMPLE, PI), 
(CONTROL, INTEST, PI), 
(CONTROL, RUNBIST, PI), 

(OUTPUT2, EXTEST, PI), 
(OUTPUT2, SAMPLE, PI), 
(OUTPUT2, INTEST, PI), 
(OUTPUT2, RUNBIST, PI), 
(INTERNAL, EXTEST, PI), 
(INTERNAL, SAMPLE, PI), 
(INTERNAL, INTEST, PI), 
(INTERNAL, RUNBIST, PI), 
(CONTROLR, EXTEST, PI), 
(CONTROLR, SAMPLE, PI), 
(CONTROLR, INTEST, PI), 
(CONTROLR, RUNBIST, PI) ); 

(INTERNAL, EXTEST, PI), 
(INTERNAL, SAMPLE, PI), 
(INTERNAL, INTEST, PI), 
(INTERNAL, RUNBIST, PI) ); 

-- Description for fl0-8, f10-17, fl0-19c, fl0-19d, fl0-22c 

constant BC_2 : CELLJNFO : = 
((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD), 
(INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI), 
(INPUT, INTEST, UPD), -- Intest on output2 not supported 
(INPUT, RUNBIST, UPD), (OUTPUT2, RUNBIST, UPD), 
(OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI), 
(OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI), 
(OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD), 
(OUTPUT3, RUNBIST, PI), (INTERNAL, RUNBIST, UPD), 
(CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD), 
(CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI), 
(CONTROL, INTEST, PI), (CONTROLR, INTEST, PI), 
(CONTROL, RUNBIST, PI), (CONTROLR, RUNBIST, PI) ); 

-- Description for fl0-9 

constant BC_3 : CELLJNFO : = 
((INPUT, EXTEST, PI), 
(INPUT, SAMPLE, PI), 
(INPUT, INTEST, PI), 
(INPUT, RUNBIST, PI), 

- Description for fl0-10, fl0-ll 

constant BC_4 : CELLJNFO : = 
((INPUT, EXTEST, PI), - Intest on input not supported 
(INPUT, SAMPLE, PI), - Runbist on input not supported 
(CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI), 
(CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI), 
(CLOCK, INTEST, PI), (INTERNAL, INTEST, PI), 
(CLOCK, RUNBIST, PI), (INTERNAL, RUNBIST, PI) ); 

-- Description for fl0-20c, a combined Input/Control 

constant BC_5 : CELLJNFO : = 
((INPUT, EXTEST, PI), 
(INPUT, SAMPLE, PI), 
(INPUT, INTEST, UPD), 
(INPUT, RUNBIST, PI), 

-- Description for fl0-22d, a reversible cell 

constant BC_6 : CELLJNFO : = 
((BIDIRJN, EXTEST, PI), (BIDIR_OUT, EXTEST, UPD), 
(BIDIRJN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI), 
(BIDIRJN, INTEST, UPD), (BIDIR_OUT, INTEST, PI), 
(BIDIRJN, RUNBIST, UPD), (BIDIR_OUT, RUNBIST, PI) ); 

end STD_1149_1_1990; - End of 1149.1-1990 Package Body 

(CONTROL, EXTEST, PI), 
(CONTROL, SAMPLE, PI), 
(CONTROL, INTEST, UPD), 
(CONTROL, RUNBIST, PI)) ; 
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Appendix C, BSDL Syntax Specification 

The BNF syntax descriptions are shown in this appendix. The items described are those contained within VHDL strings and 
as such, are not part of VHDL syntax. Syntactic items are shown in italics, surrounded by ' < ' and ' > ' .characters. Keywords 
such as 'Extest' or 'Outputs' are in normal font. Boldface items are BSDL terminals such as INTEGER, VHDL IDENTIFIER, 
or other description. The symbol NULL is the empty expansion. All BSDL elements contained within VHDL strings are 
treated as single, contiguous strings even though they may be expressed as the concatenation of smaller strings. All concatena­
tions should be removed during lexicographical analysis. An asterisk in the leftmost column marks the start of an BNF expres­
sion promised in the text of this paper. 

* <MapString> ::= <PinMapping> | <MapString> , <PinMapping> 

<PinMapping> ::= <PortName> : <PhysicalPinDesc> 

<PortName> ::= VHDL IDENTIFIER 

<PhysicalPinDesc> ::= <PhysicalPin> | ( <PhysicalPinList> ) 

<PhysicalPinList> :.= <PhysicalPin> \ <PhysicalPinList> , <PhysicalPin> 

<PhysicalPin> .:= INTEGER | VHDL IDENTIFIER 

* <OpcodeTable> ::= <OpcodeDesc> | <OpcodeTable> , <OpcodeDesc> 

<OpcodeDesc> ::= <OpcodeName> ( <PattemList> ) 

<PattemList> ::= <Pattern> \ <PattemList> , <Patten> 

* <Pattem> :.= BINARY STRING 

* <UsageString> ; .= <UsageDesc> | <UsageString> , <UsageDesc> 

<UsageDesc> ::= <OpcodeName> ( <UsageList> ) 

* <OpcodeName> .:= Extest | Sample | Intest | Runbist | VHDL IDENTIFIER 

< UsageList> :: = < Usage> | < UsageLisO ; < Usage> 

<Usage> :.= <RegisterDecl> | <InitializeDecl> \ <ShiftDecl> \ <ResultDecl> \<ClockDecl> \ <LengthDecl> 

<RegisterDecl> ::= Registers <RegisterList> 

<RegisterList> ::= <Register> \ <RegisterList> , <Register> 

<Register> ::= VHDL IDENTIFIER 

<InitializeDecl> ::= Initialize <Register> <Pattem> 

<ShiftDecl> ::= Shift <Register> 

<ResultDecl> ::= Result <Pattem> 

<LenghDecl> :: = Length <LengthSpec> 

<LengthSpec> :: = INTEGER cycles | REAL seconds 

<ClockDecl> .:= Clock VHDL IDENTIFIER <ClockSpec> 

<ClockSpec> .:= in <TapState> \ shifted | NULL 

<TapState> ::= Run_Test_Idle 

* <RegisterString> ::= <RegisterAssoc> \ <RegfsterString> , <RegisterAssoc> 

<RegisterAssoc> ::= <Register> ( <OpcodeList> ) 

* <OpcodeList> ::= <OpcodeName> | <OpcodeList> , <OpcodeName> 

* <CellList> .:= <CellName> | <CellList> , <CellName> 

<CellName> ::= VHDL IDENTIFIER 

* <CellTable> :.= <CellEntty> \ <CellTable> , <CellEntry> 

<CellEntty> ::= <CellNumber> ( <CellInfo> ) 

<CellInfo> .:= <CellSpec> \ <CellSpec> , <DisableSpec> 

<CellSpec> ;:= <Cel!ID> , <PortID> , <Function> , <SafeValue> 

<CellNumber> ::= INTEGER 

<CellID> ..= VHDL IDENTIFIER 

<PortID> :: = <PortName> \ * 

<Function> ::= Input | Output2 | Ourput3 | Control | Controlr | Internal | Clock | Bidir 

<SafeValue> .:= 0 | 1 | X 

<DisableSpec> :: = <DisableCell> , <DisableVal> , <DisableResult> 

<DisableCell> ::= <CellNumber> 

<DisableVal> ::= 0 | 1 

<DisableResult> ::= Z | Weak0 | Weakl 

356 



Functional Test and Diagnosis: A Proposed 
JTAG Sample Mode Scan Tester 

Mark F. Lefebvre 

Digital Equipment Corporation 
100 Minuteman Road 

Andover, Massachusetts 01810 

ABSTRACT 

Emerging trends in physical interconnect tech­
nologies have made many of the conventional func­
tional test and diagnosis tools difficult, if not impossi­
ble, to utilize in today's manufacture and test 
processes. The IEEE Standard 1149.1 boundary scan 
implementation provides the internal access required 
for analyzing nodal test data. This paper describes a 
JTAG Sample Mode Scan Tester being developed for 
diagnosis of at-speed failures in modules . 

INTRODUCTION 

Advances in physical interconnect technology, 
made necessary to meet increasing speed and packag­
ing density requirements, are making physical access 
to the internal networks of a module (populated 
printed circuit board) increasingly difficult and in 
many cases, impossible. The traditional method of 
testing a module for functional defects has been with 
a functional tester and an edge-connector type fixture. 
Diagnosis has been typically performed through a 
combination of limited bed-of-nails access and a 
band-held probe, which may or may not have been 
guided under program control. 

This method has worked well for many years on 
through-hole modules utilizing 100 mil pitch compo­
nent leads, or with modules of limited complexity. 
However, with the advent of surface mount technol­
ogy and high pin count components with a lead pitch 
of 25 mils or less, the bed-of-nails and guided probe 
approaches to test have become impractical without 
the addition of test pads. 

Recognizing the limitations of physical access to 
the internal networks and device leads, product de­
signers are beginning to use boundary scan latches as 

a testability feature in product designs. Boundary 
scan latches allow for the capture of electrical stimu­
lus and response data without the loading caused by 
physically probing the MUT (Module Under Test). 
Specifications defining a standard implementation for 
boundary scan have been developed by an industry 
sponsored committee called the Joint Test Action 
Group (JTAG) in the IEEE Standard 1149.1, herein 
referred to as JTAG. It is assumed that the reader is 
familiar with the IEEE standard. The details of the 
JTAG boundary scan implementation are provided in 
IEEE Standard 1149.1 [1]. 

This paper describes a Sample Mode Scan Tester 
that is currently being developed for the purpose of 
diagnosing at-speed functional faults on modules that 
incorporate the JTAG testability standard. The term 
"at-speed functional test" refers to the process of 
sampling response data at MUT speed. However, 
the JTAG Sample Mode process allow for the data to 
be shifted to the tester at a much slower speed. This 
is significant, as it provides a means of performing 
functional test without the need for the tester to keep 
pace with product clock speeds. 

The tester, with the appropriate software tools, 
can also be used as a data acquisition system. This 
capability also facilitates the debug of engineering 
prototypes, similar to that of a logic analyzer. 

PROBLEM STATEMENT 

Functional Test Trends 

The traditional functional test process can be 
categorized under one of two scenarios. The first 
concerns the use of traditional functional automatic 
test equipment (ATE) and involves stimulus being 
applied from the tester to the MUT through the edge 
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connector. The MUT response (ACQUISITION data) 
to the stimulus is captured by the tester, again 
through the edge connector. The results are then 
compared against a known good data base (EXPECT 
data), and a determination is made on whether the 
MUT passed or failed the test Diagnosis is achieved 
by comparing the EXPECT data with the ACQUISI­
TION data via a guided probe algorithm. In some ap­
plications, a fault dictionary is used in place of, or in 
addition to, the guided probe. 

The second scenario is the use of product to test 
product In mis application, the MUT is plugged into 
a known good system box, and stimulus is applied 
via disk- or ROM-based diagnostics. Diagnosis is 
achieved through a combination of custom diagnos­
tic routines, program direaed probing, and the use of 
electronic instrumentation such as a logic analyzer or 
an oscilloscope. Fault diagnosis at such a test station 
is a very complicated process and requires an experi­
enced technician or engineer. In both scenarios, diag­
nosis would be further complicated without any 
means of probing the MUT. 

Because of the aforementioned physical access 
restrictions due to emerging module technologies, 
these traditional functional test methods have begun 
to break down. Without physical access, guided 
probe methodologies are no longer feasible. Simi­
larly, the use of test pads for interfacing test instru­
mentation such as logic analyzers to the MUT is also 
limited. Due to these restrictions, it is clear that alter­
native methods of accessing MUT nodal test data are 
required. Sampling data via boundary scan latches 
is one such method. 

Application Requirements 

There are several application requirements that 
must be addressed to perform Sample Mode testing. 
The overall objective is to sample deterministic nodal 
test data in a repeatable fashion. 

• Deterministic - the ability to sample predictable 
data (i.e. sample cycle n). 

• Repeatable - given a program that samples cycle 
n, the ability to sample the same data each time 
the test program is executed. 

In order to meet these objectives a number of 
provisions must be made, both from the tester and the 
MUT perspectives. The first involves synchronizing 
the execution of the test sequence to the operation of 
the tester. To achieve synchronization, the Sample 
Mode process must be triggered by some event on the 
MUT that is synchronous with the MUT clock. 

The second requirement involves me execution 
of a repeatable test sequence on the MUT. This will 
allow test data to be captured in multiple executions 
of the test sequence and requires a provision for the 
test sequence to be initiated asynchronously by the 
tester. 

The third requirement is mat the tester must have 
physical access to the JTAG Test Access Port (TAP) 
interface in order to control the operation of the TAP, 
and to transfer data between the tester and the bound­
ary scan devices. For the purposes of this applica­
tion, the JTAG signal pins, in addition to any signals 
required for synchronization, are brought out to the 
MUT edge connector. 

Finally, in order to effectively diagnose MUT 
failures to the failing component the majority of 
MUT networks must be accessible via a boundary 
scan latch. As more MUT networks become con­
nected to boundary scan latches, the level of diagnos­
tic resolution increases accordingly [2]. 

Synchronization Requirements 

A means of synchronizing the execution of the 
MUT test sequence must be developed that will allow 
deterministic sampling of test data while the MUT is 
operating at system speed. This usually requires the 
tester to initiate the test sequence and the tester to 
trigger off some event that is synchronous with the 
execution of this test sequence [3]. 

Once synchronization is achieved, any cycle of 
test data may be sampled by delaying the JTAG cap­
ture sequence such that it aligns with the desired cy­
cle of me test sequence. This process may be re­
peated under tester control in order that multiple 
"snapshots" of test data are sampled and ultimately 
analyzed for diagnostic purposes. 

JTAG SAMPLE MODE OPERATION 

JTAG Overview 

Boundary scan latches allow for the sampling of 
electronic stimulus and response data without imped­
ing MUT functional performance. The set of bound­
ary scan register latches can be considered as a very 
wide parallel load, serial shift register. The parallel 
inputs to the register are physically connected to the 
device I/O, thereby providing access to the internal 
networks of the MUT. At the module level, each 
boundary scan device is daisy-chained to form a scan 
chain comprised of the individual devices.. 
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The 4 TAP signals (TDI, TDO, TCK, and TMS) 
are accessible to the Sample Mode Scan Tester via 
the module edge connector. Figure 1 illustrates how 
individual JTAG-companble components can be con­
nected at the module level and brought to the edge 
connector. Note that the scan output TDO from one 
device is connected to scan input TDI of the next de­
vice in tiie scan chain. TMS and TCK are connected 
in parallel to each device in this implementation. A 
brief description of the TAP signals is also given be­
low. 

Figure 1 Module-level JTAG Scenario 

Test Data Input (TDI): TDI is the serial input 
to the JTAG device by which test or instruction 
data are loaded. 

Test Data Output (TDO): TDO is the serial out­
put of the JTAG device by which test or instruc­
tion data are shifted from a given device. 

Test Mode Select (TMS): The logic state of 
TMS controls and distinguishes the functionality 
of the TAP controller. The value of TMS is 

clocked into the TAP controller on the rising 
edge of TCK. 

• Test Clock (TCK): TCK is a dedicated test 
clock input that is normally free-running. The 
frequency of TCK will determine the speed at 
which we shift test data from the MUT to the 
tester. 

The JTAG state diagram is shown below in Fig­
ure 2. Note that the functionality of tihe state machine 
is controlled by manipulating TMS and TCK. The 
values of TMS are shown. 

Figure 2 : JTAG TAP State Diagram 
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JTAG Sample Mode Operational Description 

The JTAG Sample Mode sequence is a 3-step 
process involving the execution of a test, the capture 
of test data, and the transfer of that test data to the 
Sample Mode Scan Tester. 

TEST - Execute test sequence at MUT speed. 
The test sequence could be either diagnostics or 
self-test. 

CAPTURE - Sample test data without affecting 
MUT performance. 

SHIFT - Shift nodal data to tester at tester speed. 

In JTAG terms, this could be algorithmically de­
scribed as follows: 

1. Load the Sample Mode instruction into the JTAG 
device Instruction Registers. A Sample instruc­
tion must be loaded for each of the devices in the 
scan chain, so for a module with six JTAG de­
vices, the instruction would be 48 bits long since 
the Instruction Register has eight bits per device. 

2. Manipulate TMS and TCK such that the TAP 
controller is looping in the RUN-TEST/IDLE 
state (see Figure 2). 

3. Initiate the execution of the MUT test sequence 
which is operating at the speed of the MUT clock. 

4. Capture die nodal response of the desired cycle of 
the test sequence. This is accomplished by further 
manipulating TMS and TCK such that the TAP 
controller of each JTAG device transitions from 
the CAPTURE state during the test sequence cy­
cle to be sampled. Once in the CAPTURE state, 
the next rising edge of TCK will cause the MUT 
nodal test data to be captured at each of the device 
boundary scan latches. 

5. Shift the test data to the tester for analysis. This 
shift step does not have to take place immediately 
after the capture, nor does it have to be performed 
at MUT speed. 

6. Repeat steps 4 and S as required. Since the MUT 
clock is free-running, the test sequence continues 
to execute during the SHIFT process. We must 
therefore take into account the elapsed MUT cy­
cles occurring during the SHIFT process before 
we perform additional samples. 

In order to control the JTAG boundary scan 
latches for Sample Mode operation, die appropriate 
JTAG protocol must be programmed by the Sample 
Mode Scan Tester. This process is presented later in 
greater detail relative to an actual module that is util­
ized as a test case. 

TESTER DESCRIPTION 

In response to the JTAG approach to the 
testability problems presented in the Introduction, a 
test system has been developed for the purpose of 
overcoming these difficulties. What follows is a de­
scription of the Sample Mode Scan Tester and associ­
ated software tools, and a discussion of an application 
that has been developed for a custom test module. 

Hardware Overview 
The Sample Mode Scan Tester is comprised of 

two major subsystems, the Scan Subsystem and the 
Host Processor. 

The Scan Subsystem contains die necessary 
control hardware for manipulating die MUT inter­
face, and for controlling the operation of the JTAG 
components on the MUT. It also contains the actual 
scan memory hardware for die storage of scan data. 
The MUT interfaces to the Scan Subsystem through a 
custom designed test head that includes the necessary 
logic for synchronizing the test system to die opera­
tion of the MUT logic and the test sequence. 

The Host Processor acts as a controller for the 
scan subsystem by hosting and executing the various 
software modules utilized for the Sample Mode Scan 
Tester. Likewise, the application program is loaded 
and executed from me Host Processor, a VAXStation 
3500. All software operates in the VMS environment. 

Software Overview 

The Sample Mode Scan Tester software package 
provides a comprehensive suite of tools that supports 
die entire spectrum of the test process, from test pro­
gram generation to the graphic display of diagnostic 
data. These tools are integrated into a menu-driven 
platform that serves as a front end to the test engineer 
or manufacturing technician. The list of die software 
modules developed for the Sample Mode Scan Tester 
includes me following: 

• Pattern Converter 

• Pattern Editor 
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• Tester Control Module 

• Boundary Scan Interconnect Test Generation 
Module 

• Waveform Display Module 

• Diagnostic Module 

Pattern Converter 

The test stimuli have been simulated using a pro­
prietary simulator. The resulting response data must 
be converted into the format required by the Sample 
Mode Scan Tester. 

The function of the Partem Converter is to trans­
late these simulation-generated response patterns 
(called EXPECT patterns) into the correct binary for­
mat used by the Scan Subsystem. The pattern con­
verter reads in multiple types of simulator-generated 
patterns, translates the patterns into an intermediate 
binary format, and then renders the patterns into the 
specified tester format. Specific output software 
modules can be written to tailor the output format to 
other testers. 

Pattern Editor 

The Pattern Editor is a tool used for editing and 
manipulating the EXPECT pattern database. The 
Editor also has programmable software triggering ca­
pability which allows the user to search and trigger 
on the data based on a sequence of events, as speci­
fied by the user. The data can then be displayed or 
manipulated under program control. 

For example, the test engineer may wish to mask 
indeterminate ACQUISITION data during a scan op­
eration. The Pattern Editor would allow the engineer 
to specify a sequence of data for the Pattern Editor to 
"watch for" during the scan operation. When the Edi­
tor sees this sequence, the specified bits in the EX­
PECT database would then be masked by the Editor. 
Other functions include the ability to edit the data­
base by commands specified through the Waveform 
Display module. 

U a m Module 

Two methods of data generation and testing are 
being developed for the Sample Mode Scan Tester. 
The first involves generating EXPECT data via simu­
lation and converting this data to the tester format as 
mentioned above. The second involves 'learning" the 
EXPECT data from a known-good MUT. The latter 
scenario requires the tester to sample the nodal test 
data via the JTAG interface much like the normal op­
eration of the tester. However, instead of performing 

a test on the ACQUISITION data, a nodal database 
will be constructed that will serve as the EXPECT 
database. 

The Learn Module is an extension of the func­
tions in the Pattern Editor. Its purpose is to compare 
multiple databases generated from sampling and op­
erate on that data (change states or mask data) based 
on certain conditions. 

The function of this "programmable" Pattern 
Editor is to compare multiple databases generated 
from sampling, and then to operate on that data based 
on conditions defined by the user. The resulting da­
tabase will serve as the EXPECT data for future tests 
of that MUT. 

Tester Control Program 

The function of the Tester Control Program is to 
interface to the tester hardware, control the testing 
functions, and allow links to other tools that comprise 
the tester tools suite. The Tester Control Program is 
responsible for controlling all system functions such 
as synchronization, JTAG protocol and data acquisi­
tion. It also serves as a front end for test program 
generation, fault diagnosis and any other applications 
for the tester. 

Interconnect Test Generation Module 

In addition to Sample Mode testing, the tester 
also has the capability to perform boundary scan in­
terconnect testing. A test generation process has 
been developed to provide test patterns for the pur­
pose of detecting MUT interconnect failures such as 
shorts and opens. An output module adds the JTAG 
scan protocol in addition to translating the test pat­
terns from simulator output into tester format 

Waveform Display Module 

For the purposes of debug and fault diagnosis, a 
waveform display tool is being developed for the 
Sample Mode Scan Tester. The display will have 
similar functions to those of a logic analyzer. The 
tool will draw a waveform from the test data that has 
been sampled from the MUT. MUT failures will be 
highlighted on the display. 

Diagnostic Module 

The tester hardware currently performs a real-
time hardware compare of the EXPECT data and the 
ACQUISITION data sampled from the MUT during 
the execution of the test program. The system passes 
to the Host Processor the test cycle number and bit(s) 
which do not match. The Diagnostic Module utilizes 
this information together with the MUT CAD infor-
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mation to determine the earliest failing cycle. The 
Diagnostic Module then isolates the fault to a single 
component and gives a level of confidence of the di­
agnosis. 

MUT DESCRIPTION 

The MUT is an internally developed test module 
designed and fabricated to demonstrate the prototype 
capabilities of the Sample Mode Scan Tester. The 
module has been simulated and the resultant EX­
PECT data has been converted into tester format. A 
block diagram of the MUT is shown in Figure 3. 

NOTE: The 74BCT373 and 74BCT374 are TI SCOPE 

Octals that incorporate the JTAG standard. 

TM 

Figure 3 : MUT Block Diagram 

The counter's parallel output serves as the stimu­
lus to the module. Therefore, a new "test pattern" is 
applied to the module for every counter cycle. Since 
the counter is synchronous with the clock, a test pat­
tern exists for every clock cycle. The test sequence is 
initiated by the signal MR (Master Reset), which trig­
gers the counter. When the counters count to terminal 
count, the signal REF is asserted, indicating the com­
pletion of the test sequence. When the test sequence 
is looping, this provision allows for synchronization 
of the Sample Mode Scan Tester to the test sequence. 

The boundary scan ring is comprised of 6 TI 
SCOPE™1 Octals, each having 18 bits of scan data. 
With this configuration, the boundary scan ring is 
108 bits long. 

The interface between the tester and the module 
is also shown in Figure 3. The following is a descrip­
tion of the signal names. 

REF: This signal will serve to synchronize the 
tester to the execution of the test sequence. REF is a 
trigger signal mat is asserted at the completion of the 
test sequence, synchronously with the system clock. 

CLK: This is the system clock and is asserted 
on the rising edge. The frequency of CLK is 50 MHz 

MR: This signal is a Master Reset which origi­
nates from the tester. MR allows the tester to 
asynchronously restart the test sequence. 

TDO: Test Data Out is the JTAG serial output of 
the module under test 

TDI: Test Data In is the JTAG serial input to 
the module under test 

TCK: Test Clock is the clock used to synchro­
nize the JTAG operations. The speed of TCK is 25 
MHz and is provided by the tester. 

TMS: Test Mode Select is used by the tester to 
control the JTAG state machine. 

The logic necessary to ensure accurate and pro­
grammable synchronization of the Sample Mode 
process is implemented on an interface between the 
tester hardware and the MUT. 

TEST METHODOLOGY 

Overview 

Programmable sampling is achieved by program­
ming the Sample Mode Scan Tester to manipulate the 
JTAG state machine of each of the JTAG devices. 
Controlling the Sample Mode process involves loop­
ing the tester while the TAP Controller is in die 
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RUN-TEST/IDLE state, then manipulating TMS and 
TCK to arrive at the CAPTURE state within the ap­
propriate MUT test cycle to be sampled. Refer to the 
JTAG state diagram in Figure 2. 

The specific provisions of this application are as 
follows: 

• Initial Capture: Determines when the initial 
CAPTURE occurs, based on the delays associ­
ated with the MUT interface, the tester, and the 
amount of MUT clock cycles elapsing between 
the trigger signal and the MUT cycle being 
tested. This delay will determine the time be­
tween REF and the first CAPTURE. 

• Capture Interval: Determines the interval be­
tween successive CAPTURES by accounting for 
SHIFT overhead. At a minimum, this provision 
must take into account the number of MUT test 
cycles that have elapsed during the shift process. 
In other words, since the MUT clock is still oper­
ating, and since the test sequence is still execut­
ing unimpeded by the Sample Mode process, the 
tester must take the elapsed MUT time into ac­
count when detennining the next cycle to be 
sampled. This provision allows multiple samples 
of boundary scan data to be captured during a 
given pass through the test sequence. 

• Multiple Pass Sampling: Allows multiple 
passes of the test sequence to be executed. This is 
accomplished by programming the tester to restart 
the test sequence after a given sample, or by hav­
ing the test sequence continuously loop in a free-
running mode. The latter simply requires the 
tester to track the test cycles, which occurs by de­
fault via the synchronization process. This proc­
ess is illustrated below in Figure 4. 

This process provides the capability to sample 
any cycle of test data during any pass of the test se­
quence. Subsequently, this sampling procedure is re­
peated until all desired cycles are sampled, or until the 
scan tester pattern memory is filled. 

For cases where the MUT clock is operating at 
the same frequency as the JTAG test clock, there will 
be a one-to-one correspondence between MUT cycles 
and the tester cycles. If, however, these clocks do not 
operate at the same frequency, one must account for 
the difference when performing Sample Mode testing. 
It is recommended that TCK be programmed to be an 
integer divisor of the MUT clock. For instance, if the 
MUT clock is operating at 50 MHz, the test clock 
should be programmed at 25,10, or 5 MHz. 

Figure 4 : Multiple Pass Sampling 
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Tester Setup 
Prior to loading and executing the JTAG proto­

col to perform Sample Mode testing, the appropriate 
tester parameters must be assigned. These parame­
ters include power supply levels, logic levels and tim­
ing values, and the assignment of tester scan re­
sources to the appropriate MUT signals. 

JTAG Setup 

Once the appropriate tester parameters have been 
assigned, the boundary scan devices must be loaded 
with the Sample instruction. Assuming the TAP 
Controller is initially in the Run-Test/Idle state, the 
sequence for setting up the state machine to perform 
Sample Mode testing is as follows [4]: 

1. Select-ER-Scan - This will select the Instruction 
Register of each boundary scan device in order 
that the Sample instruction can be loaded. When 
TMS is held low in this state, a scan sequence for 
the Instruction Registers is initiated. 

2. Shift-IR - While in this state, the tester will shift 
the Sample instruction into the Instruction Regis­
ter via TDI. Since there are 6 boundary scan de­
vices on the MUT, the instruction is 48-bits long 
(6x8 bits). 

3. Update-IR - During this state, the Instruction Reg­
ister contents become a valid instruction. 

4. Return to the Run-Test/Idle state for the appropri­
ate rime specified by the delay sequence. 

In this sequence, the Sample instruction would 
assume the binary value of 10000010 for each of the 
6 devices in the boundary scan chain. 

Sample Procedure 
Now that the JTAG devices have been set up to 

capture nodal test data, the tester initiates the MUT 
test sequence by asserting MR (Master Reset). 
Again, the test patterns are simply the output of the 
counter circuit When the tester sees the trigger sig­
nal (KEF) asserted, it interprets the next clock cycle 
as cycle 1 of the test sequence. 

All samples will be relative to REF. For exam­
ple, if we wish to capture data from the 4th cycle of 
the test sequence, we must program the tester such 
that the INITIAL CAPTURE occurs after 4 MUT 
clock cycles, relative to REF. 

For successive captures, we have to account for 
the 5 (EXIT1-DR, UPDATE-DR, RUN-TEST/IDLE, 
SELECT-DR-SCAN, and CAPTURE-DR) TAP state 
transitions when calculating the amount of tester de­
lay to perform the next sample. This TAP overhead 
is added to the time elapsed while shifting data to the 
tester, and must also be accounted for when specify­
ing the next cycle of the test sequence to be sampled. 
This value is the CAPTURE INTERVAL. 

Using the previous example and keeping in mind 
that the scan chain is 108 bits long for our MUT, 
since we have captured data from cycle 4, the next 
potential cycle to be sampled would be cycle 117 
(cycle 4 + 108 cycles of shifting + 5 JTAG state tran­
sitions). This sequence is illustrated in Figure 5. In 
situations where the test clock, TCK, and the system 
clock are not operating at the same frequency, this 
CAPTURE INTERVAL would account for the dif­
ference. 

For each ensuing pass of the test sequence, the 
tester delays each sample by one cycle in order to 
create a contiguous database. Such a database would 
facilitate fault diagnosis by providing a means of de­
termining the earliest failing test cycle. 

Figure 5 : Sample Mode Example 

MR 

JTAG Instruction 
Load 
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Using the previous example, the resulting test 
database would resemble the structure shown in Fig­
ure 6. Other software tools, such as the Waveform 
Display or the Diagnostic Module, could then access 
this database for diagnostic or display purposes. It 
should be noted that the Sample Mode Scan Tester is 
not restricted to this pattern sequencing format 

RESULTS 

The Sample Mode Scan Tester prototype system 
is fully capable of sampling nodal test data via the 
JTAG boundary scan protocol. Using an internally 
developed test module as a test case, applications 
have been developed that successfully sample the re­
sponse data from the MUT, and diagnose MUT fail­
ures to the failing scan bit(s) in the scan chain. 

A Diagnostic Module, which is currently being 
developed, will analyze this ACQUISITION data in 
addition to the corresponding MUT CAD data to fur­
ther isolate the failure to the failing device. Other 
tools, such as the Waveform Module, display the AC­
QUISITION data for further analysis. 

CONCLUSIONS 

Initial results indicate that Sample Mode testing 
is a viable means of diagnosing module faults in 
cases where lack of physical access prevents tradi­
tional functional test methods from being used. Us­
ing boundary scan latches at device boundaries, and 
connecting these devices to bring the resulting scan 
chain to the module edge-connector, provides the in­
ternal observation points necessary to diagnose func­
tional test failures. 

There axe, however, certain limitations with this 
application. For instance, the MUT must contain the 
signals and logic necessary to ensure synchronization 
of the MUT test sequence and the operation of the 
tester. Also, the relationship of the MUT clock and 
the test clock will determine how effective the Sam­
ple Mode process is for a given application. Assume, 
for instance, that the test clock is operating at half the 
speed of the system clock. Since mere would be two 
system cycles for each tester cycle, this relationship 
would then require that the test clock be variable in 
order to sample data from both system cycles. 

Figure 6 : Example of a Sample Mode Test Database 
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Finally, unless the MUT has a large percentage 
of devices incorporating the JTAG standard, diagnos­
tic resolution will be lacking, thereby limiting die 
usefulness of the Sample Mode application. 

The Sample Mode Scan Tester has demonstrated 
that a low cost test system can be utilized to sample 
data from modules operating at much higher speeds. 
This is a significant achievement, as it reduces the 
need for test equipment to keep pace with product 
speeds. 
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