
THE TEST ACCESS
PORT AND BOUNDARY-
SCAN ARCHITECTURE

Colin M. Maunder and Rodham E. Tulloss

IEEE Computer Society Press Tutorial

The Test Access Port and
Boundary Scan

Architecture
Colin M. Maunder and Rodham E.Tulloss

IEEE Computer Society Press
Los Alamltos, California

Washington • Brussels • Tokyo

ynh
Library of Congress Cataloging-ln-Publication Data

The test access port and boundary-scan architecture / [edited by]
Colin M. Maunder, Rodham E. Tulloss.

p. cm.
Includes bibliographical references and index.
ISBN 0-8186-S070-4
1. Electronic circuits—Testing—Data processing. 2. Computer

architecture. I. Maunder, Colin M. II. Tulloss, Rodham E.
TK7867.T39 1990
621.381—dc20 90-39682

CIP

Published by IEEE Computer Society Press
10662 Los Vaqueros Circle
P.O. Box 3014
Los Alamitos, CA 90720-1264

Copyright © 1990 by the Institute of Electrical and Electronics Engineers, Inc.

Cover design from The Institute, November 1989, page 1

Sponsored by IEEE Test Technology Technical Committee

Printed in United States of America

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limits of U.S. copyright law for private
use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through the Copyright
Clearance Center, 29 Congress Street, Salem, MA 01970. Instructors are permitted to
photocopy isolated articles for noncommercial classroom use without fee. For other
copying, reprint or republication permission, write to Director, Publishing Services, IEEE,
345 East 47th Street, New York, NY 10017. All rights reserved.

IEEE Computer Society Press Order Number 2070
Library of Congress Number 90-39682

IEEE Catalog Number EH0321-0
ISBN 0-8186-9070-4 (case)

ISBN 0-8186-6070-8 (microfiche)
SAN 264-620X

Additional copies can be ordered from:

IEEE Computer Society Press

Customer Service Center

10662 Los Vaqueros Circle

P.O. Box 3014

Los Alamitos, CA 90720-1264

IEEE Computer Society

13, Avenue de I'Aquilon

B-1200 Brussels

BELGIUM

•

IEEE Computer Society

Ooshima Building

2-19-1 Minami-Aoyama,

Minatc-Ku

Tokyo 107, JAPAN

THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS, INC.

IEEE Service Center

445 Hoes Lane

P.O. Box 1331

Piscataway, NJ 08855-1331

IV

The individuals presenting information on IEEE
Standards are participants in the development of
the standards under discussion, and they are
presumed to have expert knowledge on the
subject. However, it must be understood that an
IEEE Standard represents a consensus developed
from many differing viewpoints. Comments of any
individual may represent a somewhat different
perspective from that of the IEEE and should be
considered as the views of an individual expert,
rather than the formal position taken by the IEEE.

' Extract from the IEEE Standards Manual

Foreword

During a visit to an exhibition on the history of Chinese technology, I learned of the
existence of the very first tester. Two centuries after the birth of Christ, Chinese farmers
had developed a hand-operated mill to separate chaff from grain. Amazingly enough, this
equipment was not introduced into Europe for more than 16 centuries! There could be
several reasons for this. Perhaps the agricultural industry in Europe was not sufficiently
developed to require the equipment, or perhaps the ubiquitous "not invented here"
syndrome was already hampering the progress of technological change. More likely,
however, is that there was no communication on the development and transfer of
technology between workers within the same industry — in this case, between Chinese
and Europeans.

In today's world, testers are needed to separate the bad from the good. However, the
complexity of our electronic circuit designs and the continuing miniaturization of the
finished product have made the difference between good and bad more subtle and more
difficult to detect. Now, testing can be an expensive process, but fortunately we have the
freedom to design the product to improve its testability. The Chinese farmers didn't.

Recently, we have come to realize the value of discussing approaches to
design-for-testability between companies and countries and, as a result, the standard
described in this book has been created. The development of the IEEE Standard Test
Access Port and Boundary—Scan Architecture began in 1985 when representatives from a
small group of European electronics companies met in The Netherlands to discuss
problems caused by the increased use of surface-mount technology and very large-scale
integration (VLSI). At that first meeting, a consensus was reached about the problems and
a willingness emerged to cooperate in solving them. More meetings were organized and, to
identify the activity, a name was chosen: the Joint European Test Action Group. Later,
as companies from North America joined the group, the name was changed to the Joint
Test Action Group (JTAG).

JTAG started to define a test methodology that would address the foreseen problems
and to describe the methodology in a technical proposal. This proposal, which became the
JTAG Test Access Port and Boundary-Scan Architecture, was promoted at technical
conferences and workshops to raise the interest and awareness of other companies,
especially the integrated circuit manufacturers and the automatic test equipment vendors.
The reaction from the electronics industry was very enthusiastic, with support coming
from the test community and the management of many companies. Letters of endorsement
were provided by the senior management of major electronics companies, demonstrating
the benefit that adoption of the JTAG proposal would have for their businesses. This, in
turn, increased the motivation of the JTAG members involved in the technical
development.

By the summer of 1988, the JTAG proposal had matured into a specification that met
many requirements of the electronics industry, and the support of the IEEE was sought to

vii

^^B^msmmmammmmmmimMmmmmimmmim wit. f T T H i l l I T T I

convert the ad-hoc JTAG proposal into a formal standard. Also at that time, the
designers of the companies involved in JTAG began to develop the first integrated circuit
designs for production and inclusion in their products. Commercially-available integrated
circuits (ICs) and application-specific integrated circuit (ASIC) cells followed shortly
afterwards.

Looking back, it is surprising that so much interest in boundary-scan techniques
developed so rapidly. This achievement was only possible through the cooperation and
support of all the companies involved, and through the significant contributions made by
those involved in the technical development activities.

I hope that the examples contained in this book will give you some idea of the range of
applications of the standard that JTAG created, as well as the potential value of the
standard for your business. If you have a need for the solutions described in this book,
don't wait 17 centuries before you use them!

Harry Bleeker
JTAG Chairman
Philips Telecommunications and Data Systems
Hilversum, The Netherlands

viii

TABLE OF CONTENTS

Chapter Page

Part I Background 1

1 Test Technology Prior to IEEE Std 1149.1 3
1.1 Test Technology for Loaded Boards 3
1.2 Trends in Design-for-Testability 5
1.3 The Effect of Miniaturization 6
1.4 The Need for a New Approach 7
1.5 References 8

2 An Introduction to Boundary-Scan 11
2.1 Scan Testing at the Board Level 11
2.2 The Value of Boundary-Scan 14
2.3 Testing a Board with Boundary-Scan 15
2.4 Boundary-Scan for ICs That Are Not Themselves Scannable 18
2.5 Boundary-Scan Compared to In-Circuit and Functional Test 19
2.6 Reference 21

3 The Development of IEEE Std 1149.1 23
3.1 The Joint Test Action Group 23
3.2 JTAG Version 0 23
3.3 JTAG Version 1.0 26
3.4 JTAG Version 2.0 27
3.5 IEEE Std 1149.1 28
3.6 References 29

Part H Tutorial 31

4 IEEE Std 1149.1: The Top-Level View 33
4.1 The IEEE Std 1149.1 Architecture 33
4.2 The TAP 35
4.3 The TAP Controller 37
4.4 The Instruction Register 43
4.5 The Test Data Registers 46
4.6 Reference 49

5 The Bypass and Device Identification Registers 51
5.1 The Bypass Register 51
5.2 The Device Identification Register 52
5.3 Learning the Structure of an Unknown Board 55
5.4 Reference 57

IX

The Boundary-Scan Register 59
The Provision of Boundary-Scan Cells 59
The Minimum Requirement 63
The INTEST Instruction 70
The RUNBIST Instruction 75

Applications to Loaded—Board Testing 79

Taking Advantage of Boundary-Scan 81
Loaded-Board Testability Problems and Traditional Test
Techniques 81
100 Percent Boundary-Scan Testing 84
Test-Access Strategies for Mixed-Technology Boards 87
Conclusion 94
References 95

A Test Program Pseudocode 97
Introduction 97
Initialization 100
Test Circuitry Check 101
Interconnect Check 107
BIST Part Check 110
The Remaining Chips 111
Comments on Diagnosis 111
Conclusion 112
Acknowledgment 112
References 112

Diagnosing Faults in the Serial Test Data Path 115
Objective 115
A Basic Path Test 115
Use of the Device Identification Register 116
More Complex Methods 117
Reference 121

In-Circuit Testing 123
Mixed In-Circuit and Boundary-Scan Testing 123
Method 1 125
Method 2 126
Method 3 126
Conclusions 126

Chapter Page

6
6.1
6.2
6.3
6.4

Part III

7
7.1

7.2
7.3
7.4
7.5

8
8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

9
9.1
9.2
9.3
9.4
9.5

10
10.1
10.2
10.3
10.4
10.5

x

Chapter Page

Part IV Implementation Examples and Further Applications 127

11 Applications of IEEE Std 1149.1: An Overview 129
11.1 Test Cost Reductions: Chip-to-System, Womb-to-Tomb 129
11.2 Applications During Design and Development 130
11.3 Applications During the Production Cycle 133
11.4 Completing the Leverage into Field Test 137
11.5 Conclusion 139
11.6 Reference 140

12 Benefits and Penalties of Boundary-Scan 141
12.1 Benefits 141
12.2 Penalties: Additional Circuitry 143
12.3 Other Penalties 146
12.4 Conclusion 148
12.5 References 148

13 Single Transport Chain 151
13.1 Introduction 151
13.2 The STC Architecture 152
13.3 The Transport Chain 153
13.4 Capture Element Design 154
13.5 Update Element Design 155
13.6 Transport Element Design 155
13.7 A Complete STC Register Cell Design 156
13.8 Conclusions 157

14 Boundary-Scan Cell Provision: Some Dos and Dont's 159
14.1 Clock Pins 159
14.2 Logic Outside the Boundary-Scan Path 160
14.3 Special Cases 162
14.4 Components with Inverting Input and Output Buffers 165
14.5 Complex Boundary-Scan Cells 168
14.6 Conclusion 170

15 Providing Boundary-Scan on Chips with Power or 171
Output-Switching Limitations

15.1 Problem Statement 171
15.2 Provide More Power Pins 173
15.3 Preventing Simultaneous Switching of Output Pins 173
15.4 Do Not Allow Pins to be Enabled Simultaneously 175
15.5 Acknowledgments 176
15.6 References 176

XI

111 f 11 if i r i i t i t i i i i T i I 11 T 111 II n i i i i i i i i f i in i i t f i n f i l l

Chapter Page

16 Tapping into ECL Chips 177
16.1 The Problem 177
16.2 Incorporating TTL/CMOS TAP Connections on ECL Chips 178
16.3 Using a Special ECL Input Buffer for TDI, TMS, and TRST* 179
16.4 Summary 181

17 Cell Designs that Help Test Interconnect Shorts 183
17.1 Introduction 183
17.2 The Problem 183
17.3 A Proposed Solution 186
17.4 Conclusion 188

18 Integrating Internal Scan Paths 191
18.1 Problems at the Chip Level 191
18.2 Problems at the Board Level 193
18.3 A Solution 194
18.4 Further Reading 198
18.5 References 198

19 Testing Mixed Analog/Digital ICs 199
19.1 The Location of the Boundary-Scan Path 199
19.2 Boundary-Scan Cell Design 200
19.3 Testing Analog Blocks Using Boundary-Scan 202
19.4 Further Reading 204
19.5 References 204

20 Adding Parity and Interrupts to IEEE Std 1149.1 205
20.1 Introduction 205
20.2 Why Use Parity? 205
20.3 Adding Parity to Instructions 207
20.4 Extending Parity to Received Test Data 210
20.5 Parity Coding of Output Data 211
20.6 Other Uses of TINT* 211
20.7 Conclusion 212
20.8 Acknowledgments 213

Part V Bibliography and Reprints 215

21 Bibliography 217
Reprints 228

"Chip Partitioning Aid: A Design Technique for
Partitionability and Testability in VLSI" 228
"LOCST: A Built-in Self-Test Technique" 234

xii

Chapter Page

Reprints, continued
"A Fast 20K Gate Array with On-Chip Test System" 242
"Interconnect Testing with Boundary-Scan" 248
"Testing and Diagnosis of Interconnects Using
Boundary-Scan Architecture" 254
"Boundary-Scan with Built-in Self-Test" 266
"ASIC Testing in a Board/System Environment" 275

. "A Universal Test and Maintenance Controller for
Modules and Boards" 279
"The Impact of Boundary-Scan on Board Test" 289
"An Optimal Test Sequence for the JTAG
Boundary-Scan Controller" 302
"A New Framework for Analyzing Test Generation and
Diagnosis Algorithms for Wiring Interconnects" 310
"A Unified Theory for Designing Optimal Test
Generation and Diagnosis Algorithms for Board
Interconnects" 318
"A Self-Test System Architecture for Reconfigurable
WSI" 325
"Designing and Implementing an Architecture with
Boundary-Scan" 333
"A Language for Describing Boundary-Scan Devices" 344
"Functional Test and Diagnosis: A Proposed JTAG
Sample Mode Scan Tester" 357

INDEX 367

xm

I i 1 1 1 1 J ¥ T T T T T T T 1 T ? I T T T T T 1 7 I "

LIST OF ILLUSTRATIONS

Number

1-1
1-2
1-3
2-1
2-2
2-3
2-4
2.-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4

4-5

4-6
4-7
4-8
4-9
4-10
4-11
4-12
4-13
4-14
4-15
5-1
5-2
5-3

5-4
5-5
5-6
6-1
6-2
6-3

Title

In-circuit test using a bed-of-nails
Functional test using the board connector
Sequential use of in-circuit and functional test
Scan design at the board level
Testing a board-level bus by using embedded scan paths
Inclusion of boundary-scan cells in an IC
A basic boundary-scan cell
Testing for interconnect faults
Testing on-chip logic
Test coverage using an in-circuit tester
Test coverage using boundary-scan
The development of IEEE Std 1149.1
JTAG version 0.1 architecture
JTAG version 1.0 architecture
JTAG version 2.0 architecture
IEEE Std 1149.1 test logic
Test data registers
Simple serial connection of IEEE Std 1149.1-compatible ICs
Hybrid serial/parallel connection of IEEE Std
1149.1-compatible ICs
Use of a bus-master chip to control ICs compatible with
IEEE Std 1149.1
State diagram for the TAP controller
The timing of events within a controller state
An example implementation of the TAP controller: Part 1
An example implementation of the TAP controller: Part 2
Daisy-chain connection of instruction registers
The instruction register
An example instruction register cell
Loading a new instruction
Sharing of circuitry between test data registers
Loading new test data
An example design for the bypass register
Use of the bypass register
An example implementation of a device identification register
cell
Structure of the device identity code
Output sequence following 'blind' access
Flow chart for decoding output identity code sequence
Provision of boundary-scan cells
A board-level bus connection
Control of multiple 3-state outputs from a single source

Pape

4
5
5
11
12
14
15
16
17
20
20
24
25
26
28
33
34
36

36

37
38
40
41
42
44
44
45
46
47
49
51
52

53
54
56
57
60
61
63

XIV

Number Title Page

6-4
6-5
6-6
6-7
6-8
6 „ 9

6-10
6-11
6-12
6-13
6-14

6-15
6-16
6-17
7-1
7-2
7-3
7-4
7-5
7-6
7-7
8-1
9-1
9-2
10-1
10-2
11-1
11-2
12-1
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
14-1
14-2
14-3
14-4
14-5

Basic boundary-scan cell for an input pin
Basic boundary-scan cell for an output pin
Using the boundary-scan path to test external logic
Basic boundary-scan cells for a 3-state output pin
Basic boundary-scan cells for a 3-state bidirectional pin
Basic boundary-scan cells for a 2-state open-collector
bidirectional pin
Enhanced boundary-scan cell for an input pin: Example 1
Enhanced boundary-scan cell for an input pin: Example 2
A circuit where bus contention might occur
Enhanced boundary-scan cell for an output pin
Control of the signal supplied to a clock input during
INTEST
Generation of a system logic clock from TCK during INTEST
Generation of a "HOLD*" pulse
Control of on-chip system logic during RUNBIST
The fault spectrum
Interconnect testing using EXTEST
Standard in-circuit testing
Virtual interconnect testing
Virtual in-circuit testing
Standard cluster testing
Virtual cluster testing
Board level interconnection of components
Testing for an open-circuit fault in the serial path
Board level connection of TAP pins for Method 2
Control of outputs into an overdrivable state
In-circuit test application
Low-cost debug/test station
Boundary-scan approach
A boundary-scan cell for an output pin
IEEE Std 1149.1 architecture
Capture then transport
Transport then update
The single transport chain architecture
Single transport chain with various outputs
Multiplexor with built-in IDENT value
Update element design
Transport element design
A complete cell design
A boundary-scan cell for a clock input pin
Boundary-scan cells for clock inputs
"Illegal" logic outside the boundary-scan path
Boundary-scan cells for a 3-state pin
Input used only to control an output enable

64
64
66
68
69

70
71
72
73
73

74
74
75
76
82
86
89
90
91
92
93
99
116
l l o

124
126
131
136
144
151
152
152
153
153
154
155
156
156
159
160
161
162
163

XV

ITIIUlillTITITlTTTTTTTITIITTrflTTtlllfltti

Number

14-6
14-7
14-8
14-9
14-10
14-11

14-12

14-13
14-14

14-15
14-16
15-1
15-2
15-3
15-4

15-5
15-6
15-7
16-1
16-2
16-3
17-1
17-2
17-3
18-1
18-2
18-3
18-4
18-5
18-6

18-7
19-1

19-2
19-3
19-4
20-1
20-2
20-3
20-4
20-5

Title

"Illegal" design: Example 1
"Illegal" design: Example 2
A correct design
A bidirectional buffer: Example 1
A bidirectional buffer: Example 2
A boundary-scan cell for an input pin with an inverting input
buffer
A boundary-scan cell for an output pin with an inverting
output buffer
An inverter chip with boundary-scan
Boundary-scan cells for 2-state open-collector bidirectional
pins
A complex chip-to-chip connection
An alternative approach
Example component with three output busses
Normal component operation: Case 1
Normal component operation: Case 2
Possible component operation during a boundary-scan
interconnect test
Adding delays to prevent simultaneous switching of outputs
Circuit that allows simultaneous enabling of outputs
Circuit that does not allow simultaneous enabling of outputs
A TDO-to-TDI connection between ECL components
Current flow for an ECL TDO-to-TDI connection
A special ECL input buffer design
Testing a pin short with IEEE Std 1149.1
Power-to-ground path enabled during shorts test
Proposed boundary-scan cell for output pins
TAP controller state diagram
Provision of a hold mode on a scannable register
Use of multiple scan paths
Basic scan state diagram
Scan state diagram when SCANTEST is selected
Multiplexing of an internal scan path onto a system output
pin
The LOCST scan and self-test approach
The location of a boundary-scan path at the analog/digital
interface
An A - t o - D cell
A D - t o - A cell
Test system configuration for analog test
A basic master-slave system
A master-slave system with parity coding and interrupts
Instruction register with parity bit
An enhanced instruction register design
Multiplexing of interrupts onto TINT*

Pace

163
163
164
164
165

166

166
167

168
169
170
172
172
172

173
174
175
176
178
179
180
184
186
187
192
192
193
195
195

196
197

199
201
202
203
206
206
208
208
212

XVI

LIST OF TABLES

Number

2-1
2-2
4-1
5-1
6-1
8-1
8-2
9-1
9-2
12-1
13-1
17-1
17-2

Title

Example tests for interconnect faults
Example tests for the NAND gate
State assignments for the example TAP controller
Result of decoding the received sequence
Tests for the board-level bus
Terms used in this chapter
Coordination of TMS lines
Coordinated TMS values for method 2
Detection of a stuck-at fault
Gate requirement for a semi-custom implementation
Cell function versus position
Steps for testing for shorts
Testing for shorts when using the proposed cell design

Page

16
17
43
57
62
101
103
119
120
145
157
185
188

fi 111 i 111II IIITIII l i l l ! TIIII1TT71I

Preface

...denn da is keine Stelle,
die dich nicht sieht. Du musst dein Leben aendem.
[...for there is no place at all
that isn't looking at you. You must change your life.]

R. M. Rilke, "Archaischer Torso Apollos"

Pasteur's was the most enviable life I had yet encountered. It
was his privilege to do things until they were done.

A. Dillard, An American Childhood

We are able to witness achievements in the arts and everything
else, not because of those who adhere to the established order, but
because of the innovators, who dare to change or move things that
need change or correction.

Isocrates, Evagore

It has been our pleasure, as well as that of our colleagues, to witness changes in the art
of electronic testing. We know that it is not given to everyone to witness and participate
in such things. We know we have been party to a rare experience — something bound to
be matched by few other experiences in our professional lives. We witnessed and served
during the birth and development of an international standard for testing — IEEE Std
1149.1. We had the opportunity to work with a set of international, expert volunteers on a
critical task, and, like Pasteur, to work on our job until it had been completed — until a
standard was successfully described and promulgated.

There is no question that the situation in electronic testing is in need of change; indeed,
significant change is inevitable whether or not it is promulgated with an accompanying,
technically sound, supportive test technology. We believe that such change is being forced
on us today caused (at least in large part) by the following factors:

• the constant pressures for greater integration;

• the widespread adoption of surface mount technology (SMT) employed on both
one-sided and two-sided printed wiring boards (PWBs);

• the shrinking feature sizes of these PWBs;

• the decreasing distances between pins of SMT devices;

• the consequent difficulties of continuing to test PWBs via physical contact by
spring-loaded nails;

xix

• the growing gap in speed between product and automatic test equipment (ATE);

• the increasing cost of acquiring capital equipment such as ATE and the increasing
cost of developing associated test fixtures;

• the significant difficulty of rapidly developing accurate, automated diagnoses for
loaded boards and systems;

• the desire to have a test methodology compatible with assembly processes that are
rapidly reconfigurable through software and aimed at lot~size-of-one
manufacturing;

• the continuing, if not increasing, consumer demand for high reliability and
maintainability; and

• the need for generic solutions that can be repeatedly reused in a variety of digital
products.

The engineers who formed the ad-hoc group known as the Joint Test Action Group
(JTAG) were all aware of the impact on product quality that would arise if solutions to
these needs were not found.

The continuous process of increasingly greater integration never gives a process engineer
time to congratulate himself/herself on nearing perfection before process and product
change again. We cannot expect perfect processes — process engineers have to expect to
be working on process improvement and alteration throughout their careers. What is the
best source of guidance to them? It is the carefully analyzed results of testing. The widely
accepted concept of quality through continuous improvement is not possible if one cannot
assess causes of failure and their frequency. The results of testing and subsequent failure
mode analysis form a treasure trove for the engineer concerned with quality. When testing
is threatened, quality is threatened. And this is a threat to an electronics firm's ability to
manufacture — a threat to its existence.

IEEE Std 1149,1 was not only developed to contain testing costs. Basically, it was
developed because the ability to perform tests and to learn from test results was perceived
to be under dire threat.

Once IEEE Std 1149.1 was well along the way in its development, it became clear that
application notes and other supportive information that could not be properly considered
part of the standard document were going to be needed. More than a dozen application
notes were sketched to some degree of completion by members of JTAG, but there was a
need for much more than that. There was a need to provide a teaching vehicle that would
provide motivation, history, and theory as well as application suggestions and records of
successful use. The result of evaluation of these needs is this book.

xx

The book is composed of five parts:

I. "Background." Chapter 1 describes the situation giving rise to the development of
the IEEE Standard Test Access Port and Boundary-Scan Architecture. Chapter 2
introduces the boundary-scan technique and shows how it can provide a solution
to the problems identified in Chapter 1. The technology that was available in the
literature when JTAG first set to work and the steps in the development of the
standard are reviewed in Chapter 3.

II. "Tutorial." Chapters 4 to 6 contain a tutorial introduction to the circuitry defined
by the standard.

III. "Applications to Loaded Board Testing." In Parts HE and IV, we have gathered
material for this tutorial book especially written or rewritten by authors from
companies that contributed to the creation of the standard. The chapters in Part
HI discuss the application of IEEE Std 1149.1 to the testing of loaded boards —
that is, applications in the problem area originally targeted by JTAG. The topics
discussed in this part of the book include:

• the structure of a typical board test program;

• testing and diagnosis of the standardized test logic; and

• the testing of boards containing components that are incompatible with IEEE
Std 1149.1.

IV. "Implementation Examples and Further Applications." In Part IV, we discuss the
implementation of IEEE Std 1149.1 and give a view of the range of applications of
the standard beyond board testing. A sampling of topics includes:

• silicon implementations and related costs;

• interfacing to scan design and built-in self-test;

• analog and mixed-signal applications;

• applications to systems debugging and emulation; and

• testing throughout the assembly hierarchy: integrated circuit (IC) to system.

V. "Bibliography and Reprints." The final part of the book contains an extensive
annotated bibliography and reprints of selected papers. The papers selected describe
key steps in the development of boundary-scan prior to IEEE Std 1149.1 and
continue the discussion of applications for the standard.

IEEE Std 1149.1 was developed for your use. As more engineers and more firms use it,
it will become more valuable. The more expertise in ATEs, circuit design, catalog ICs,

xxi

application-specific ICs (ASICs), etc. that is developed collectively, the more we all can
benefit from reuse of generic solutions to common technological problems. As Harry
Bleeker did in his foreword to this book, we urge you to use the standard, we urge you to
participate in its further evolution, and we urge you to do so in the superbly constructive
and cooperative spirit that has infused JTAG.

Guard the mysteries.
Constantly reveal them.

L. Welch, "Course College Courses: Religion"

Colin M. Maunder
British Telecom Research Labs
Design Technology Division
Martlesham Heath, Ipswich, UK

Rodham E. Tulloss
AT&T Bell Labs
Engineering Research Center
Princeton, New Jersey, U.S.A.

xxn

Part I: Background

In Part I, the trends in product and test technology that
motivated the development of IEEE Std 1149.1 are discussed and
the concept of standardized test-support features at the
integrated circuit and loaded printed wiring board levels is
introduced.

Chapter 1 outlines "traditional" test techniques for loaded
boards and examines the effects of trends in design-for-test and
circuit miniaturization. Readers familiar with this material may
want to move to Chapter 2 where the boundary-scan technique is
introduced. Chapter 3 concludes Part I with an overview of the
work of the Joint Test Action Group and, subsequently, of the
IEEE P1149.1 Working Group.

1

Chapter 1. Test Technology Prior to IEEE Std 1149.1

1.1: Test Technology for Loaded Boards

Over the years, the automatic test equipment (ATE) used to test electronic products has
evolved to cope with continued increases both in the number of integrated circuit packages
used on, say, a printed wiring board (PWB) and in the complexity of the integrated
circuits (ICs) themselves. Typically, manufacturers of loaded boards will use high pin
count in-circuit and functionalf board test systems, either separately or in sequence, to
detect defects and to enable high quality levels to be achieved in shipped products.

Using the in-circuit test technique, tests are applied directly to individual components
by backdriving their connections from other devices in the product. The objective is to
apply an appropriate test sequence for the component type regardless of the environment
in which it is used. Direct access is made to the component's outputs to monitor the test
results, enabling the function of each component in the circuit and the interconnections
between the various components to be checked. This method reduces the expense of test
development for each circuit design since, as long as an ICs functionality is not modified
by externally wired connections (e.g., by direct connection to power or ground), the same
test can be applied irrespective of where the IC is used. Clearly, the process requires
extensive access to the circuit, because every connection must be driven and monitored
directly to apply the tests to the individual components. This access is provided through a
bed-of-nails interface in which spring-loaded probes are used to make contact with the
interconnections on the PWB (Figure 1-1).

In the functional test technique, the principal interface for applying test stimuli and for
observing circuit responses is that provided by the board's normal terminations — for
example, the edge connector (Figure 1-2). Access may also be made to connections
internal to the loaded board, but this is on a more limited scale than that required by an
in-circuit test system; frequently such access is limited to monitoring, rather than to
driving, the connection. In contrast with in-circuit testing, the functional test technique is
able to confirm that the various components used to construct the product interact
correctly and that the overall required function is achieved. In the process, the correctness
of both the components in the circuit and their interconnections is verified. However, the
achievement of a thorough test is a difficult task since tests must be generated separately
for each board design. This task can be both time-consuming and extremely expensive,
sometimes prohibitively so [1].

f The term "functional" is used to describe test systems that do not require the use of
backdriving. This includes edge-to-edge functional testing, structural testing, or a
modular test approach.

EH0321-0/90/0000/0003$01.00 © 1990 IEEE 3

4

Figure 1-2: Functional test using the board connector.

Due to the differences in operation and failure detection capability between the
in-circuit and functional test techniques, a common approach is to use the two techniques
in sequence to achieve a high-quality test (Figure 1-3). Initial product screening is
performed by using an in-circuit test system since this is able to rapidly detect and
diagnose the most common failures in newly assembled boards — for example, those due
to soldering errors or to incorrect or wrongly-inserted components [2]. Once a loaded
board has passed the screening test, it is passed forward to a functional test system where
checks are made for more complex (and less frequent) failures caused by faulty interaction
between components. To allow the mix between the two test techniques to be more easily
optimized for a given product, test equipment that supports both techniques within a
single system has more recently become available.

Figure 1-3: Sequential use of in-circuit and functional test.

1.2: Trends in Design-for-Testability

We have already remarked on the expense of generating tests, especially for use on
functional test systems. Because of this, the past decade has seen the development of
many circuit structures and design techniques that can be used to improve the testability
of digital circuits, thus reducing the cost of the various test tasks [3]. Perhaps the most
prominent among these have been scan-design [4], data generation and compaction circuits
based on linear-feedback shift-registers (e.g., [5,6]), and the development of built-in

5

self-test (BIST) techniques based around the built-in logic block observer (BILBO) [7]
and other building blocks. For use at the board level, families of components offering
proprietary test-support features have become available (e.g., [8, 9]). Today, these and
other techniques are being used to restrain the costs of test development and application
as the complexity of loaded boards continues to increase.

Unfortunately, however, many of the techniques are applicable only in situations where
an organization has the capability to adopt a consistent design-for-testability approach at
all design levels, from IC to system. For example, the scan-design technique can be used
at the board level if a complete set of scan-design components is available from which the
board can be constructed. Typically, however, board designs are constructed from catalog
ICs obtained from a variety of sources on the open market. Almost without exception,
these ICs fail to offer the board designer facilities that will assist him to develop tests for
his circuit.

For this reason design-for-testability at the board level has been a less structured
activity than for many complex IC designs. Also, there has been less need for structured
approaches because of the extensive use of in-circuit test techniques in industry. At the
board level, the ease of making access through a bed-of-nails fixture has obviated or, at
least, has significantly delayed the need for more structured techniques to gain access to
circuit nodes such as those essential in IC testing.

1.3: The Effect of Miniaturization

The test techniques for loaded boards discussed in Section 1.1 evolved steadily during a
period when, although circuit complexity increased rapidly, interconnection technology
remained relatively static. Thus, automatic test systems began to rely heavily on the
established dual-in-line package (DIP) and the associated plated-through-hole (FIH)
PWB. DIP/PTH technology provided the extensive access to component interconnections
needed by bed-of-nails fixtures or for guided probing during fault diagnosis.

Recently, however, there has been an increasing trend toward the use of surface-mount
package designs and PWBs that no longer rely on through-hole connections between their
layers of printed interconnections [9] and it is now clear that such technology will become
the norm for the production of complex digital boards in the 1990s. This trend is the
result of a number of factors, among them the need to produce packages that can
accommodate high pin-count components and the pressures for continued product
miniaturization.

The new interconnection technology has had a considerable impact on current
loaded-board test techniques primarily due to reduced pin spacings on packages, the fact
that package pins may no longer be directly accessible during test, and the increased
density with which packages may be mounted onto the host PWB. As a result, the cost of
bed-of-nails fixtures for surface-mount boards is high and probing of component
interconnections can be impossible where components are densely packed. Further, the
test heads of current board test systems are optimized toward an assumed even distribution
of test contacts over a large area on one side of a board as required for DIP/PTH

6

technology, whereas surface-mount products may require contact to both sides through
"toaster" and "clam-shell" style fixtures (e.g., as described in [11]).

So far, the established test techniques have succeeded in meeting the challenges of
surface-mount technology (SMT). For example, test fixtures can be constructed to permit
the use of in-circuit test techniques for surface-mount boards if care is taken in the
design of the PWB artwork and if components are spaced sufficiently apart from one
another [12]. However, such fixtures are extremely expensive and the technical problems in
producing them are increasing as SMT continues to develop. Further, the need to design
the loaded boards so that they can be probed acts against the area-conserving thrust of
SMT.

Looking to the future, the lack of a test methodology that can be applied
cost-effectively to products formed by surface-mount interconnection of complex
functions will be a major obstacle to the adoption of the very high-density packaging
techniques currently under development. Examples of high-density packaging techniques
include silicon-on-silicon and direct-chip-attach (e.g., [13-16]).

1.4: The Need for a New Approach

To summarize, two key factors are having an increasingly adverse effect on the cost of
testing loaded boards.

First, the ICs used in such products are becoming increasingly complex and this
complexity contributes significantly to the difficulty in testing the loaded board. Generally,
ICs available on the open market do not offer the test support facilities that the board
producer needs, although some do contain design features (such as self-test capability)
that could be of considerable interest to the purchaser (e.g., [17,18]). For in-circuit
testing, it is difficult to perform a comprehensive test of the function of a complex IC due
to the need to keep the test length sufficiently short that surrounding ICs will not be
damaged by the backdriving techniques employed during test application [19]. Also, board
wiring may tie together component inputs — severely restricting the set of usable test
patterns.

Second, increasing use is being made of surface-mount interconnection technology,
where access to connections is considerably more limited than for the established
dual-in-line technology. It is clear that existing test techniques — particularly in-circuit
test — will be faced with increasing difficulties as this technology continues to develop.
In effect, use of SMT is increasing the similarity between ICs and loaded boards from the
test viewpoint; access to connections is becoming increasingly difficult to achieve.
Therefore, loaded-board testing must be done increasingly through the normal input and
output connections in a "functional" manner as is already the case for ICs.

While the functional test technique is better able to cope with the results of advanced
surface-mount technology, the technique carries the penalty of requiring generation of
comprehensive test programs for each separate design. This process is extremely expensive
for complex boards due to the complexity of controlling and observing individual

7

components through the others on the board. For ICs, where functional testing is the only
technique that can be used, structured design-for-test techniques (e.g., scan design,
BIST) are often used to make all parts of a design sufficiently testable by improving either
controllability or observability or both at critical circuit connections.

Arguably, therefore, the way forward is to use a structured technique similar to scan
design or self-test at the board level, rather than through continued evolution of existing
board test techniques. As we will see in Chapter 2, a version of scan design called
boundary-scan provides the functionality that would be required. In fact, the
boundary-scan technique has been used for some time by several companies to solve
precisely the problems highlighted in this chapter. The advantage that these companies had
was that they designed their boards entirely (or predominantly) from application-specific
ICs (ASICs) developed to their own requirements. They were able to design features into
these ASICs to help solve their board test problems.

The opportunity of being able to design every board entirely out of ASICs is, however,
comparatively rare. In most companies, boards are designed primarily using the
off-the-shelf ICs advertised in vendor catalogs. Therefore, most companies will be able to
move to use of structured board-level design-for-test techniques only when both ASICs
and off-the-shelf ICs include the facilities that this requires. Further, it is essential that
ICs offered by different manufacturers can interact with each other appropriately and
predictably during the testing of the loaded board.

A widely-supported standard is therefore essential if the electronics industry at large is
to make progress in solving the increasing test problems that it faces. The prime objective
of IEEE Std 1149.1 is to meet this requirement.

1.5: References

[1] P. Goel, "Test Costs Analysis and Projections," IEEE Design Automation
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1980, pp. 77-82.

[2] Factron Schlumberger, The Primer of High—Performance In—Circuit Testing,
Factron Schlumberger, Wimborne, Dorset, UK, 1985.

[3] T.W. Williams and K.P. Parker, "Design for Testability — A Survey," IEEE
Transactions on Computers, Vol. C-31, No. 1, January 1989, pp. 2-15.

[4] E.B. Eichelberger and T.W. Williams, "A Logic Design Structure for LSI
Testability," Journal of Design Automation and Fault—Tolerant Computing, Vol. 2,
No. 2, May 1978, pp. 165-178.

[5] R.A. Frohwerk, "Signature Analysis: A New Digital Field Service Method,"
Hewlett Packard Journal, Vol. 28, No. 9, May 1977, pp. 2-8.

8

[6] P.H. Bardell and W.H. McAnney, "Self-Testing of Multi-Chip Logic Modules,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1982, pp. 200-204.

[7] B. Konemanh et al., "Built-in Logic Block Observation Techniques," IEEE Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1979, pp. 37-41.

[8] Advanced Micro Devices Inc., On —Chip Diagnostics Handbook, Advanced Micro
Devices Inc., Sunnyvale, Calif., 1985.

[9] J. Turino, "Enhancing Built-in Test on SMT Boards," Evaluation Engineering,
June 1985.

[10] C. Maunder, D. Roberts, and N. Sinnadurai, "Chip Carrier Based Systems and
Their Testability," Hybrid Circuits, No. 5, Autumn 1984, pp. 29-36.

[11] R.N. Barnes, "Fixturing for Surface-Mounted Devices," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1983, pp. 72-74.

[12] M. Bullock, "Designing SMT Boards for In-Circuit Testability," IEEE
International Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1987, pp. 602-613.

[13] R. Keeler, "Chip-on-Board Alters the Landscape of a PC Board," Electronic
Packaging and Production, Vol. 25, July 7th 1985, pp. 62-67.

[14] G.L. Ginsberg, "Chip and Wire Technology: The Ultimate in Surface Mounting,"
Electronic Packaging and Production, Vol. 25, August 8th 1985, pp. 78-83.

[15] K. Gilleo, "Direct Chip Interconnect Using Polymer Bonding," Electronic
Components Conference Proceedings, IEEE, New York, 1989, pp. 37-44.

[16] C.J. Bartlett, J.M. Segelken, and N.A. Teneketges, "Multichip Packaging Design
for VLSI Based Systems," Electronics Components Conference Proceedings, IEEE,
New York, 1987, pp. 518-525.

[17] J.R. Kuban and J.E. Salick, "Testing Approaches in the MC68020," VLSI Design,
Vol. 5, No. 11, 1984, pp. 22-30.

[18] P.P. Gelsinger, "Design and Test of the 80386," IEEE Design and Test of
Computers, June 1987, pp. 42-50.

[19] L.J. Sobotka, "The Effects of Backdriving Digital Integrated Circuits During
In-Circuit Testing," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1982, pp. 269-286.

9

Chapter 2. An Introduction to Boundary-Scan

This chapter provides an introduction to boundary-scan. It shows how the technique
can provide an answer to the problems identified in Chapter 1.

2.1: Scan Testing at the Board Level

At the chip level, the scan-design technique can be used to guarantee testability and to
permit use of automatic test pattern generation (ATPG) tools [1]. Many companies have
used the technique, some to the extent that every chip on a board is scan testable. In such
cases, the board can be made scan testable by daisy-chain interconnection of the scan
paths in the individual integrated circuits (ICs) (Figure 2-1).

Figure 2 - 1 : Scan design at the board level.

In these cases, the board design has the same structure as each individual chip — it is
formed from a combinational logic block and one or more shift-register paths. Test
generation for the loaded board can, in principle, be approached in exactly the same way
as for a chip.

Several problems arise, however. First, the combinational logic block will be many times
larger than for any individual chip. This will result in increased test generation costs and,
as the complexity of the product increases, may cause the capacity of the ATPG software
to be exceeded. Second, test generation costs for the loaded board would be considerably
reduced if the tests created for stand-alone chip testing could be reused in the board
environment. Unfortunately, however, this is far from straightforward. Whereas for the
chip a test may require that a logic 1 is applied at a package pin, at the board level this

EH0321-0/90/0000/0011$01.00 © 1990 IEEE u

logic value must be applied by scanning appropriate patterns into the chips that drive the
signal. Consider, for example, the process of applying a logic 1 to the input of chip D in
Figure 2-2. This requires that the board-level bus is set to 1, which can be achieved by
setting the output of one of the driving chips (A, B, or C) to 1 while the others are set to
high-impedance. These conditions can be achieved by shifting appropriate Is and Os into
the scan paths of chips A, B, and C. The precise patterns to be shifted in can be
determined by analysis of the combinational logic network that controls the output of
each IC.

Similar problems arise when trying to observe an output from one IC on the board.
When the IC is tested using automatic test equipment (ATE), the output can be observed
directly; however, to apply the same test when the chip is on the board the output signal
must be observed using the scan paths in the ICs that receive the signal. This requires that
a path is set up through the combinational logic between the inputs of the receiving ICs
and their internal scan paths, such that the signal can be examined by loading the scan
path and then scanning the contents out of the board to the ATE.

Figure 2 - 2 : Testing a board- level bus by using embedded scan paths.

Consider, for example, the case where a test of component A in Figure 2-2 produces a
0 at its output. The following actions are necessary to allow the board-level ATE to
check this result:

12

1. All other ICs that can drive the bus must have their outputs set to
high-impedance. In this case, this is achieved by controlling the scan paths in
components B and C.

2. The signal received at the input to component D must be observed using the
component's scan path. The combinational logic between the input and the scan
path must therefore be controlled such that a change at the input from the bus
produces a corresponding change in the value loaded into one or more scan path
stages (i.e., so that a sensitive path is set up between the input pin and the scan
path). This may require conditions to be established at the outputs of other
components on the board or in the scan path within component D.

The consequence of the problems just discussed is that a chip test cannot be used
directly once the IC has been assembled onto a board. A significant amount of
computation is required to compute the values that must be scanned into and out of the
other ICs on the board to apply the test. As shown in Figure 2-2, there may be a
significant amount of logic in the combinational logic networks that drive or are driven by
any chip pin, particularly where board-level bus structures are involved, such as on a
microprocessor board.

The final problem is a practical one — diagnosing the cause of any failures detected so
that repair is possible. That is, what is the cause of a particular error in the data scanned
out of the board? Referring to Figure 2-2 again, if an incorrect value is scanned out of
one of the shift-register stages in chip D, this could be caused by a fault in one of the
following locations:

• the shift-register stage in chip D;

• the combinational logic in chip D;

• the chip-to-board connections of one of the chips connected to the bus (e.g., an
open-circuit joint);

• the board level bus (e.g., a short-circuit to another signal or a broken
printed-circuit track);

• the combinational logic in a chip that drives the bus (A, B, or C); or

• one of the shift-register stages in a chip that drives the bus.

A more accurate diagnosis can be achieved only by careful analysis of the data scanned
out of chip D in response to a number of tests. In some cases, further tests may need to
be generated to achieve an acceptable level of diagnostic accuracy.

13

2.2: The Value of Boundary-Scan

The problems reviewed above can be overcome by placing a scan shift-register stage
adjacent to every input or output pin of each chip — that is, at the component
boundaries. To achieve this, specialized test circuitry may need to be added to an IC
design between the pin and the logic to which it is connected, as shown in Figure 2-3.
These test circuits, called boundary-scan cells, are connected into a shift-register path
around the periphery of the IC. This is called the boundary-scan path.

Boundary-Scon
Cells

Figure 2 - 3 : Inclusion of boundary-scan cells in an IC.

An example design for a boundary-scan cell is shown in Figure 2-4. Note that the
boundary-scan cells defined by IEEE Std 1149.1 are more complex than the cell shown
here. The simplified cell designs used in this chapter only illustrate the processes involved
in boundary-scan testing. (Chapter 6 describes the constraints within which
boundary-scan cells compatible with the standard must be designed.) Note also that
throughout this book (as in IEEE Std 1149.1), signal names that end in an asterisk (e.g.,
Load*) are active-low, while others (e.g., Shift) are active-high.

Data can flow directly through the boundary-scan cell (from Data_In to Data_Out)
when normal operation of the component is required. During testing, the cells at output
pins can be used to drive signal values onto the external network, while those at the input
pins can capture the signals received.

14

Figure 2-4: A basic boundary-scan cell.

2.3: Testing a Board with Boundary-Scan

With boundary-scan cells of the form shown in Figure 2-4, testing could proceed in
two stages:

1. Testing interconnections between chips: Test patterns are shifted into the
boundary-scan cells at component output pins and driven onto the board-level
interconnections by setting their Test/Normal* inputs to 1. The responses that
arrive at chip input pins are loaded into their boundary-scan cells (while
Shift/Load* is 0) and shifted out for examination (while Shift/Load* is 1). By
careful selection of the test patterns, the interconnections can be tested for
stuck-at, short-circuit, open-circuit, and other fault types. Figure 2-5 shows a
circuit that contains a short-to-ground (stuck-at-0) fault and a wire-OR
short-circuit fault in the board interconnect (e.g., a solder bridge). Table 2-1
shows some test vectors for these faults.

2. Testing the chip: Figure 2-6 shows a simple IC that contains a NAND gate. To
apply tests to this gate, the Test/Normal* control signals for the cells at input pins
(i.e., pins that drive into the on-chip logic) would be held at 1, while those at
output pins are held at 0. Test vectors are shifted into the boundary-scan path and
applied to the gate. The result is then loaded into the cell at the output pin
(Shift/Load* = 0) and shifted out for examination (Shift/Load* - 1). For the
NAND gate, test vectors would be as shown in Table 2-2.

If the target chip is scan testable, then operation of its internal scan path can be
synchronized to that of the surrounding boundary-scan path during application of the chip
test. Note that, in contrast to the situation without boundary-scan, the process for
converting the stand-alone chip tests into a test that can be used on the loaded board is
simple. It requires only that the correct sequences of Is and 0s are scanned through the
boundary-scan path.

Because the board-level interconnections can be tested independently of the circuitry
within any chip, the problem of fault diagnosis is eased considerably .

15

Figure 2-5: Testing for interconnect faults.

Table 2 - 1 : Example tests for interconnect faults.

Input

xOxOxlxxxxxx

Output

Expected

xxxxxxxx01x1

xxxxxxxxl0x0

Actual

xxxxxxxxllxO

xxxxxxxx11x0

NOTE: The rightmost bit of the above data values is shifted into the
serial input, or out of the serial output, first. Bold type is used to
highlight the output data bits that are changed by the faults.

16

S e r i a l
I n p u t

B o u n d a r y - Scan
C e l l

Serial
O u t p u t

Figure 2-6: Testing on-chip logic.

Table 2-2: Example tests for the NAND gate.

Input

xlOxxxxx
xOlxxxxx
xllxxxxx

Expected Output

xxxxx1xx
xxxxxlxx
xxxxxOxx

NOTE: The rightmost bit of the above data
values is shifted into the serial input, or out of
the serial output, first.

17

2.4: Boundary-Scan for ICs That Are Not Themselves Scannable

There will be an increasing number of ICs that are themselves too complex to test
efficiently via scan testing. Boundary-scan can still handle interconnect testing in such
situations, but a different chip test strategy is required — hopefully one that produces
tests that are able to be used at chip, board, and system levels of assembly, both in the
factory and in the field.

Testing of board-level interconnections can proceed in exactly the same manner as
previously described — the boundary-scan cells at output pins apply the test stimulus,
while those at input pins capture the results. To allow the boundary-scan cells at the
component's output pins to determine the signals driven from the IC, the Test/Normal*
controls for those cells are set to l. †

For the test of the chip, the boundary-scan path assumes the role of the pin electronics
on a chip tester. Each test pattern that would have been applied to the IC's inputs is
shifted into the boundary-scan path. When the pattern is in place, the chip is clocked
once. The test response is then captured into the boundary-scan cells at the IC's output
pins and shifted out for examination.

There is a problem that may be significant. The test is applied at a greatly reduced rate
compared to the stand-alone chip test because of the need to shift patterns and responses
through the boundary-scan paths. At best, the speed will be reduced by a factor close to
the number of non-test signal pins on the chip under test; typically, the speed will be tens
or hundreds of times slower than the maximum possible during chip testing.

This significant reduction in test application rate can make it impossible to test certain
types of logic. Even when a test is possible using this approach, the test length may be
undesirable. Consider the following cases:

1. An IC that does not contain dynamic logic: ‡ In this case, a slow-speed static test
can be applied. Static faults (e.g., stuck-at faults or short-circuits) will be
detected, while other faults that require "at-speed" testing will not be found. As
already mentioned, the run time for a high coverage test may be significant for a
complex, high pin-count chip and, as a result, the amount of testing that can be
achieved economically may be limited. In practice, it may only be possible to apply
an "are-you-alive?" test of limited fault coverage.

† Note that it may be advisable to ensure that the signals arriving at the IC's input pins
during the test do not place the on-chip system logic in a state where damage to the IC
might occur. For example, if inputs to the on-chip logic are set to conditions that would
not arise normally, several drivers within the IC may be enabled simultaneously onto a
single bus. Such problems can be avoided in a number of ways, for example by disabling
the clock.

‡ Dynamic logic circuits contain stored-state logic elements (e.g., latches, flip-flops,
etc.) that do not hold their state indefinitely. Typically, a clock must be applied at a
specified minimum frequency to prevent the stored-state elements from "forgetting" their
state.

18

2. A self—testing IC: Here, the surrounding boundary-scan paths can be used to
trigger execution of the self-test, apply any required starting patterns at the chip's
input pins, and examine the test results. The chip is tested to the same extent as
when the self-test is executed; there need be no reduction in test quality. The
relatively low test throughput of the boundary-scan path is not a problem because
data are shifted only at the beginning and end of the test.

As we will see from the application examples in Parts HI and IV of this book,
boundary-scan and self-test together provide an excellent solution to chip and
loaded-board testing. The boundary-scan path isolates the on-chip logic from
neighboring ICs while the self-test runs in addition to allowing chip-to-chip
interconnections to be tested. Self-test can provide a high-quality test of the
on-chip system logic. A standard boundary-scan architecture and protocol
provides a gateway to reusable self-test and, by providing added leverage for
system-house purchasers, encourages development and use of self-test technology
by IC suppliers.

3. An IC that contains dynamic logic: Due to the low test application rate, it is not
practical to use the boundary-scan path to test a chip that contains dynamic
circuitry unless self-test features are available. The operation of dynamic circuitry
depends on the ability to store a charge on internal chip connections. After a
relatively limited period of time, this charge will decay, resulting in incorrect
operation of the component. Therefore, a minimum clock rate is generally specified
for dynamic logic circuits, and it might be impossible to achieve this clock rate
where test patterns are being shifted in and out by using the boundary-scan path.
An exception would be where the chip could be placed in a "hold" mode while
each test was shifted such that the clock could continue to be applied to the
on-chip logic without changing its state.

In summary, boundary-scan can be used to test board interconnections whether or not
the chips themselves are designed to be scan testable. Self-test and scan testable ICs can
be tested on the board by using their boundary-scan paths just as effectively as they can
be stand-alone tested. Without scan or self-test, some limited tests can be performed on
static logic designs, but, in such cases, on-board testing of dynamic logic might be
impractical.

2.5: Boundary-Scan Compared to In-Circuit and Functional Test

As was discussed in Chapter 1, the motivation for producing a standard form of
boundary-scan was to address the problems of increasing IC complexity and of reducing
product size. We have seen that boundary-scan techniques can be used to apply tests to
digital circuit boards without the necessity of extensive physical access (e.g., using a
bed-of-nails), but how effective are these tests? What is the fault coverage and diagnostic
resolution of these tests?

Figure 2-7 illustrates the region tested by using an in-circuit test system. Typically, the
loaded board is tested for shorts between interconnections (i.e., between bed-of-nails

19

probes of which there is often only one per net) before power is applied. For complex
interconnections, the number of potential faults that is tested during each test will be
quite large, and may include faults in segments of interconnect that are provided solely for
test purposes (e.g.,, branches leading only to test pads). When power has been applied,
tests are applied by using backdriving techniques on a chip-by-chip basis to the various
ICs on the board. These tests detect many faults in the board interconnections
(open-circuits, stuck-ats, etc.) and some defects in the chips. The precise coverage will
depend on the quality of the test applied, and the speed of application.

Bed-of-Noiis
Probe

Region Tested for
Opens, Faulty or Wrong ICs, etc.

Region Tested for Shorts, Stuck-ots

Figure 2-7: Test coverage using an in-circuit tester.

Virtual Probe Points

Region Tested
for Faulty ICs, etc.

Region Tested for Opens,
Shorts, Driver/Receiver Faults

Figure 2-8: Test coverage using boundary-scan.

Figure 2-8 shows the regions tested by the interconnect and component boundary-scan
tests. As for the in-circuit test, the quality of the test performed on each component will
vary — in this case, depending on the type of chip concerned. For example, ICs that
offer a self-test facility will probably be tested more thoroughly than those tested by
shifting patterns in and out through the boundary-scan path. Note that the chip-to-chip
interconnect test will detect faults both in the interconnection itself and in the drivers and
receivers of the chips at each end, covering those parts of the chips and the board that are

20

most likely to be incorrectly manufactured or damaged during either chip or board
assembly, or later in the product's life.

Regardless of whether in-circuit test or boundary-scan is used, errors in "at speed"
interactions between chips will not be thoroughly tested — each IC on the loaded board
is tested in isolation from all others. Therefore, it might be necessary to follow both
in-circuit and boundary-scan tests with a further test that exercises the complete loaded
board in its normal operating mode. This test could be applied by using a functional test
system, or it could be a board-level self-test (e.g., applied by a microprocessor on the
board running some specially-designed test firmware). Note, however, that this functional
test can normally be accomplished without the necessity for extensive bed-of-nails contact
with the board; contact through the board connector, etc. is usually sufficient. In cases in
which it is possible, another option is to design ICs so that they form groups that can be
treated as self-testing "meta-components" or clusters during board test.

2.6: Reference

[1] E.B. Eichelberger and T.W. Williams, "A Logic Design Structure for LSI
Testability," Journal of Design Automation and Fault—Tolerant Computing, Vol. 2,
No. 2, May 1978, pp. 165-178.

21

Chapter 3. The Development of IEEE Std 1149.1 f

The effort of establishing IEEE Std 1149.1 began with the creation of an ad-hoc group
of systems electronics companies. This group became the Joint Test Action Group
(JTAG) and, subsequently, the core of the IEEE Working Group that developed IEEE
Std 1149.1.

In this chapter, we will review the steps in the technical development of IEEE Std
1149.1, from the formation of the JTAG through publication of the IEEE Standard. As
shown in Figure 3-1, the technical activity developed in four key steps and each will be
reviewed in turn in the following sections. Note that the development of the standard has
continued since its approval, with the aim of extending the functionality of the circuitry
described and of improving the clarity of the document.

3.1: The Joint Test Action Group

JTAG was set up following a paper by Frans Beenker of Philips Research Labs in 1985
[1,2]. He discussed the need for a structured approach to loaded-board testing and
considered the value of boundary-scan as a solution to the problems he identified.

The initial JTAG meeting was attended by representatives from several major European
electronics companies. By the end of 1986, however, JTAG had become an international
group involving both European and North American companies, all of whom were seeking
solutions for the test problems in hybrid and loaded-board products created by the
combination of complex integrated circuits (ICs) and surface-mount technology. During
1986, JTAG members decided the problems they were facing could be solved if a
standardized form of boundary-scan was available that allowed correct test interaction
between various vendor's ICs.

3.2: JTAG Version 0

The initial JTAG proposal [3] was created by Frans Beenker (Philips Research Labs, The
Netherlands), Chantal Vivier (Bull Systemes, France), and Colin Maunder (British
Telecom Research Labs, UK) in June 1986, based on their understanding of work done
with boundary-scan in their respective companies and of other material published
internationally. Among the developments reviewed were the following:

• IBM: Chip partitioning aid (CPA) [4].

• IBM: Electronic chip in place test (ECIPT) [5]

• Control Data Corporation: On-chip maintenance system (OCMS) [6]

f The text of this chapter is derived from a segment of the IEEE Satellite Seminar
Chip-to-System Testability transmitted March 1, 1989.

EH0321 -0/90/000Q/0023$01.00 © 1990 IEEE 23

Figure 3 - 1 : The development of IEEE Std 1149.1.

• STC Computer Research Corporation: Shift test control logic (STCL) [7].

• Bull Systemes [8].

• Control Data Corporation: Built-in evaluation and self-test (BEST) [9].

• Hewlett-Packard [10].

The proposal was for an architecture based on a single serial shift-register path and was
targeted solely at boundary-scan testing, as shown in Figure 3-2.

24

C o n t r o 1
C e l l s

B o u n d a r y - S c a n
C e l l s

Figure 3-2: JTAG version 0.1 architecture.

The serial path was constructed from two control register cells and a number of
boundary-scan register cells — one for each system input or output of the chip. The
control cells allowed the boundary-scan cells to be set into three operating modes:

• the exterior test mode that allowed the interconnections between chips on a loaded
board to be tested;

• the interior test mode that allowed slow-speed static testing of the logic within the
chip; and

• the normal operation mode where the boundary-scan cells were configured to allow
the system function of the chip to occur unimpeded.

Five pins were required for this architecture:

• A test mode control, boundary-scan enable (BSE), that enables the boundary-scan
circuitry.

• A test clock, boundary-scan clock (BSC).

• A signal to select between loading and shifting of the boundary-scan path —
boundary apply/scan (BAS).

• A serial data input, boundary-scan input (BSI).

• A serial data output, boundary-scan output (BSO).

25

This architecture was very simple, but its functionality was limited. It was soon clear
that a more complex design would be needed.

3.3: JTAG Version 1.0

Over the following year, JTAG members worked on this straw-man proposal —
eventually forming the Technical Sub-Committee to focus on the technical development
activities. During this period, Lee Whetsel from Texas Instruments (TI) joined the
Technical Sub-Committee, bringing with him the initial designs for TI's SCOPE
architecture [11] — a boundary-scan design developed in TI's Military Products Division.

The JTAG proposal was improved and extended to include a number of inputs from the
SCOPE design and other sources, resulting in the JTAG version 1.0 proposal [12] — the
first document to be widely mailed in Europe and North America.

Figure 3 -3 : JTAG version 1.0 architecture.

The version 1.0 architecture (Figure 3-3) included two key features in addition to those
of the initial design:

The design allowed the serial path through the chip to be short-circuited under
control of one or more select bits placed at the head of the path. This feature
allows a chip to be bypassed when it is not involved in a particular test, with the
result that the volume of test data can be significantly reduced. The control and
boundary-scan segments of the path are accessed only when necessary.

26

2. The design allowed the serial path to be extended by adding shift-register stages at
its tail end, between the boundary-scan cells and the multiplexer shown in Figure
3-3. This feature allows design-for-test features other than the boundary-scan
register to be accessed, increasing the scope and value of the proposal considerably.
For example, access to embedded self-test features in a design is now possible by
using the same pins as those provided for boundary-scan.

3.4: JTAG Version 2.0

The version 1.0 proposal was discussed widely both in Europe and North America and
was the subject of a paper at the 1987 IEEE International Test Conference (ITC) [13].
Also, at ITC in 1987 an evening meeting was arranged to allow discussion of the JTAG
proposal. This was attended by more than 100 engineers from many electronics companies.

At that evening meeting, and at working meetings hastily arranged later during the
conference week, a number of key suggestions for improvements and extensions to the
proposed design were made. These included input from Digital Equipment Corporation
(DEC) and from a number of people involved in the development of the United States
Department of Defense's VHSICt Element Test and Maintenance Bus — the ETM-Bus
[14].

The principal suggestion was that the design should be altered to allow efficient access
to any serial design-for-test circuitry embedded in a chip. Simply, given that a number of
package pins need to be dedicated to test to provide access to the boundary-scan cells,
the objective is to exploit these pins to the fullest extent possible.

The JTAG version 2.0 architecture [15,16,17] (Figure 3-4) is structurally identical to the
design embodied in IEEE Std 1149.1. Since the detail of the standard is presented in Part
II, the discussion here is intended only to highlight the changes between JTAG version 1.0
and JTAG version 2.0.

In contrast to the earlier architectures, the JTAG version 2.0 design was based on
parallel instruction and test data registers located between common serial input and output
pins.

The instruction register provides the functions of the select and control registers of the
earlier designs and is also extensible to meet the particular needs of any chip. The
alternative path consists of a parallel bank of test data registers, each of which can be
accessed when an appropriate instruction is loaded into the instruction register. The bank
of test data registers can support a whole range of test, maintenance, and other functions
embedded in the chip design — in addition to the boundary-scan test capability that was
the prime focus of JTAG activity from the outset.

f VHSIC - Very high-speed integrated circuit

27

Figure 3-4: JTAG version 2.0 architecture.

Also, the minimum requirement for dedicated test pins has been reduced from five to
four compared to the earlier designs. This change reflects the widely-held view that the
number of pins dedicated to test must be kept to the absolute minimum.

3.5: IEEE Std 1149.1

Late in 1987, JTAG decided to approach the IEEE to discuss the possibility of
formalizing their technical proposal as an IEEE Standard. As a result of this approach,
the JTAG proposal became one of a range of testability approaches being developed by
the IEEE Testability Bus Standards Committee. At the same time, the JTAG Technical
Sub-Committee became the core of the working group responsible for the further
development of the JTAG proposal as IEEE Draft Standard P1149.1.

Technical changes made by the Working Group prior to approval of the standard
concentrated on the detailed design of the boundary-scan register, the instruction set, the
device identification register, and on the integration of built-in self-test features within
the overall design.

28

3.6: References

[1] F.P.M. Beenker, "Systematic and Structured Methods for Digital Board Testing,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., Vol. 6, 1985, pp. 380-385.

[2] F.P.M. Beenker, "Systematic and Structured Methods for Digital Board Testing,"
VLSI Systems Design, Vol. 8, No. 1, January 1987, pp. 50-58.

[3] The Joint Test Action Group, A Standard Boundary-Scan Architecture — Draft
3, September 1986.

[4] S. DasGupta et al, "Chip Partitioning Aid: A Design Technique for Partitionability
and Testability in VLSI," IEEE Design Automation Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1978, pp. 203-208.

[5] P. Goel and M.T. McMahon, "Electronic Chip-in-Place Test," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1982, pp. 83-90.

[6] D.R. Resnick, "Testability and Maintainability With a New 6K Gate Array," VLSI
Design, Vol. 4, No. 2, March/April 1983, pp. 34-38.

[7] J.J. Zasio, "Shifting Away From Probes for Wafer Test," IEEE Compcon
Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1983, pp.
395-398.

[8] D. Laurent, "An Example of Test Strategy for Computer Implemented with VLSI
Circuits," IEEE International Conference on Circuits and Computers Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1985, pp. 679-682.

[9] R. Lake, "A Fast 20K Gate Array with On-Chip Test System," VLSI Systems
Design, Vol. 7, No. 6, June 1986, pp. 46-55.

[10] D. Weiss, "VLSI Test Methodology," Hewlett-Parkard Journal, September 1987,
pp. 24/5.

[11] L. Whetsel, communication to JTAG, 1986.

[12] The Joint Test Action Group, A Standard Boundary—Scan Architecture —
Version 1.0, June 1987.

[13] C. Maunder and F. Beenker, "Boundary-Scan: A Framework for Structured
Design-for-Test," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1987, pp. 714-723.

29

[14] L. Avra, "A VHSIC ETM-Bus-Compatible Test and Maintenance Interface,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1987, pp. 964-971.

[15] M.M. Pradhan, R.E. Tulloss, H. Bleeker and F.P.M. Beenker, "Developing a
Standard for Boundary-Scan Implementation," IEEE International Conference on
Computer Design: VLSI in Computers and Processors, IEEE Computer Society
Press, Los Alamitos, Calif., 1987, pp. 462-466.

[16] L. Whetsel, "A View of the JTAG Port and Architecture," ATE and
Instrumentation Conference, January 1988, pp. 385-401.

[17] The Joint Test Action Group, A Test Access Port and Boundary-Scan
Architecture — Version 2.0, March 1988.

30

Part II: Tutorial

Part II provides a tutorial introduction to the circuitry defined
by IEEE Std 1149.1. The material is a considerably reduced
description compared to that given in the standard itself. It is
therefore strongly recommended that readers intending to build
an integrated circuit that conforms to the standard consult a copy
of IEEE Std 1149.1 before doing so.

Copies of the standard may be obtained from: IEEE Standards
Department, P.O. Box 1331, 445 Hoes Lane, Piscataway, New
Jersey 08855-1331, U.S.A.

Acknowledgment

Acknowledgment is made to the IEEE Standards Department
for permission to use several figures from IEEE Std 1149.1 in this
part of the book.

31

fSfps*1-'

Chapter 4. IEEE Std 1149.1: The Top-Level View

This chapter provides an introduction to the test circuitry defined by IEEE Std 1149.1
and shows how it can be used to perform a number of basic test operations. The chapter
also indicates how further test circuitry can be added to that specified by the standard to
allow access to test functions beyond the minimum required.

4.1: The IEEE Std 1149.1 Architecture

The top-level schematic of the test logic defined by IEEE Std 1149.1 includes three key
blocks (Figure 4-1):

Figure 4 - 1 : IEEE Std 1149.1 test logic.

The TAP controller: This responds to the control sequences supplied through the
test access port (TAP — see below) and generates the clocks and control signals
required for correct operation of the other circuit blocks.

The instruction register: This shift-register-based circuit is serially loaded with the
instruction that selects a test to be performed.

• The test data registers: This is a bank of shift-register based circuits (Figure 4-2).
The stimuli or conditioning values required by a test are serially loaded into the test

EH0321 -0/90/0000/0033$01.00 © 1990 IEEE 33

data register selected by the current instruction. Following execution of the test, the
results can be shifted out for examination.

Clock and Control Signals
from Instruction Register,

TAP Controller, etc.

Figure 4-2: Test data registers.

These circuit blocks are connected to a TAP which includes the four or, optionally, five
signals used to control the operation of tests and to allow serial loading and unloading of
instructions and test data. The role of the TAP on an integrated circuit (IC) is directly
analogous to the "diagnostic" socket provided on many automobiles — it allows an
external test processor to control and to communicate with the various test features built
into the product.

In addition, the test data registers can be connected to the system circuitry within the
chip (i.e., the circuitry that performs the particular function, other than test, for which
the chip was designed) or to the pins that are connected to the system circuitry. These
connections allow tests of the system circuitry to be performed. The operation of the test
data register is described in Section 4,5.

The following sections discuss the TAP and the main circuit blocks in more detail.

34

4.2: The TAP

The TAP contains four or, optionally, five pins. These are:

• The test clock input (TCK): This is independent of the system clock(s) for the chip
so that test operations can be synchronized between the various chips on a printed
wiring board. Both the rising and falling edges of the clock are significant: the rising
edge is used to load signals applied at the TAP input pins (test mode select(TMS)
and test data input (TDI)), while the falling edge is used to clock signals out
through the TAP test data output (TDO) pin. As will be discussed in Chapter 6,
the boundary-scan register defined by the standard is controlled such that data is
loaded from system input pins on the rising edge of TCK while data are driven
through system output pins on the falling edge.

• The test mode select input (TMS): The operation of the test logic is controlled by
the sequence of Is and Os applied at this input, with the signal value typically
changing on the falling edge of TCK. As will be discussed in Section' 4.3, this
sequence is fed to the TAP controller which samples the value at TMS on each
rising edge of TCK and which uses this information to generate the clock and
control signals required by the other test logic blocks. TMS is either equipped with
a pull-up resistor or otherwise designed such that, when it is not driven from an
external source, the test logic perceives a logic 1.

• The test data input (TDI): Data applied at this serial input are fed either into the
instruction register or into a test data register, depending on the sequence previously
applied at TMS. Typically, the signal applied at TDI will be controlled to change
state following the falling edge of TCK, while the registers shift in the value
received on the rising edge. Like TMS, TDI is either equipped with a pull-up
resistor or otherwise designed such that, when it is not driven from an external
source, the test logic perceives a logic 1.

• The test data output (TDO): This serial output from the test logic is fed either from
the instruction register or from a test data register depending on the sequence
previously applied at TMS. During shifting, data applied at TDI will appear at TDO
after a number of cycles of TCK determined by the length of the register included
in the serial path. The signal driven through TDO changes state following the falling
edge of TCK. When data are not being shifted through the chip, TDO is set to an
inactive drive state (e.g., high-impedance).

• The optional test reset input (TRST*): The need to be able to initialize a circuit to a
known starting state (the "reset" state) is crucial in testing. As will be discussed in
Section 4.3, the TAP controller is designed so that this state can be quickly entered
under control of TCK and TMS. The standard also requires that the test logic can
be initialized at power-up independently of TCK and TMS. This can be achieved
either by building features into the test logic itself (e.g., a power-up reset circuit)
or by adding the optional TRST* signal to the TAP. Application of a 0 at TRST*
asynchronously forces the test logic into its reset state. Note that, in this state, the

35

test logic cannot interfere with the operation of the on-chip system logic, so TRST*
can also be viewed as a "test mode enable" input.

By loading the signals applied to the test logic through chip input pins (e.g., through
TMS and TDI) on the rising edge of TCK, while using the falling edge to clock signals out
through chip output pins (such as TDO), operation of the IEEE Std 1149.1 test logic can
be made race-free. For example, when chips compatible with the standard are serially
connected (e.g., as in Figure 4-3) data are applied to TDO by the first chip one half cycle
of TCK prior to the time when they are loaded from the TDI input of the second. This
allows time to account for delays in the serial path, skew between the clocks fed to the
neighboring ICs, and other factors.

Figure 4-3: Simple serial connection of IEEE Std 1149.1-compatible ICs.

Since TDO is set to an inactive drive state when no data are being shifted, the TAPs of
individual chips can, if required, be connected to give parallel serial paths at the board
level (e.g., as shown in Figure 4-4). In such cases, a different TMS signal is required for
each serial path. These signals should be controlled such that no two paths attempt to
shift data simultaneously.

Figure 4-4: Hybrid serial/parallel connection of IEEE Std 1149.1-compatible ICs.

36

At the board level, the test signals can be controlled either by external automatic test
equipment (ATE) or by an on-board bus-master chip. In the latter case, the bus-master
chip might provide an interface between the interface defined by the IEEE Std 1149.1
TAP and some higher level test and maintenance messaging system (Figure 4-5) [e.g., [1]).

Figure 4 -5 : Use of a bus-master chip to control ICs compatible with IEEE Std
1149.1.

4.3: The TAP Controller

A key goal during the development of IEEE Std 1149.1 was to keep the number of pins
in the TAP to a minimum, based on the knowledge that many ICs are pin- (rather than
silicon-) limited. As test engineers are only too aware, designers are always reluctant to
allocate pins for test purposes.

The TAP controller allows us to meet this goal. It is a 16-state finite state machine that
operates according to the state diagram shown in Figure 4-6. Note that in the states
whose names end "—DR" the test data registers operate, while in those whose names end
"-IR" the instruction register operates. A move along a state transition arc occurs on every
rising edge of TCK. The Os and Is shown adjacent to the state transition arcs show the
value that must be present on TMS at the time of the next rising edge of TCK for the
particular transition to occur.

37

NOTE: The value shown adjacent to eoch state transition in this
figure represents the signal present at TMS at the time of a
rising edge at TCK.

Figure 4-6: State diagram for the TAP controller.

Eight of the 16 controller states determine operation of the test logic, allowing the
following test functions to be performed:

• Test—Logic—Reset: In this controller state, all test logic is reset. As mentioned
earlier, when the test logic is reset, it is effectively disconnected from the on-chip
system logic, allowing normal operation of the chip to occur without interference.
Regardless of the starting state of the TAP controller, the Test—Logic—Reset
controller state is reached by holding the TMS input at 1 and applying five rising
edges at TCK. Further, this controller state must be entered automatically when
power is applied to a chip that does not have the optional TRST* input.
Alternatively, where TRST* is provided, it can be used to force the controller
asynchronously into the Test—Logic—Reset controller state both at power-up and at
any desired point during circuit operation.

• Run—Test/Idle: The operation of the test logic in this controller state depends on
the instruction held in the instruction register. When the instruction is, for example,

38

one that activates a self-test, then the self-test will be run when the controller is in
this state.t In another case, if the instruction in the instruction register is one that
selects a data register for scanning, then the test logic is idle in the Run — Test/'Idle
controller state.

• Capture—DR: Each instruction must identify one or more test data registers that are
enabled to operate in test mode when the instruction is selected. In this controller
state, data are loaded from the parallel input of these selected test data registers
into their shift-register paths on the rising edge of TCK.

• Shift-DR: Each instruction must identify a single test data register that is to be
used to shift data between TDI and TDO in the Shift-DR controller state. Shifting
allows the previously captured data to be examined and new test input data to be
entered. Shifting occurs on the rising edge of TCK in this controller state. In the
Shift-DR controller state, the TDO output is active (it is inactive in all other
controller states except the Shift—IR state).

• Update-DR: This controller state marks the completion of the shifting process.
Some test data registers may be provided with a latched parallel output to prevent
signals applied to the system logic, or through the chip's system pins, from rippling
while new data are shifted into the register. Where such test data registers are
selected by the current instruction, the new data is transferred to their parallel
outputs on the falling edge of TCK in this controller state.

• Capture—IR, Shift—IR, and Update—IR: These controller states are analogous to
Capture—DR, Shift—DR, and Update—DR respectively but cause operation of the
instruction register. By entering these states, a new instruction can be entered and
applied to the test data registers and/or other specialized circuitry. This instruction
becomes "current" on the falling edge of TCK in the Update—IR controller state.

The actions of the instruction and test data registers in each of these controller states
will be described in more detail in the following sections of this chapter. Figure 4-7 shows
where the actions described occur in each controller state.

In the remaining eight controller states, no operation of the test logic occurs - that is,
the test logic is "idle." The "pause" states {Pause-DR and Pause-IR) are provided to allow
the shifting process to be temporarily halted, for example while an ATE or other
equipment controlling the test logic fetches more test data from backup memory (e.g.,
disc).

f Note: An important goal in the development of IEEE Std 1149.1 was to allow
built-in self-test (BIST) functions to be integrated within the test logic. As was discussed
in Chapter 2, the combination of BIST and boundary-scan is especially powerful —
allowing effective testing of ICs once they have been mounted on a board.

39

State
Entered

Actions Occurring
on the Rising
Edge of TCK In
the S to te

Actions Occurring
on the Foiling
Edge of TCK in

the Stote

Figure 4-7: The timing of events within a controller state.

The final six controller states (Select-DR-Scan, Select-IR—Scan, Exitl-DR, Exitl-IR,
Exit2-DR, and Exit2-IR) are decision points that allow choices to be made as to the
route to be followed around the controller's state diagram. For example, in the Exitl—DR
controller state a choice is made, depending on the signal applied at the TMS input,
between entry into the Pause—DR state or entry into the Update—DR state.

Without the TAP controller, the nine functions fulfilled by the states previously
described (Test-Logic-Reset, Run-Test, and Idle plus Capture, Shift, and Update for the
two register types) would need to be selected by using at least four control inputs. With
the TAP controller, only one control input (TMS) is required. The penalties are that a
certain amount of logic must be built into every component to decode the signals received
at TMS and that the ability to move between the functions is slightly constrained. Neither
of these penalties is severe, however. As shown by the example controller implementation
in Figures 4-8 and 4-9, construction of the controller requires only approximately 80
2-input NAND gates, † This is a small cost in the context of a complex very-large scale
integration (VLSI) IC that can contain upwards of 250,000 gates.

The restriction in the freedom to move arbitrarily between test operations is similarly
not a significant one since freedom would, in many cases, be removed as a result of
simplification of the software written to control the test logic.

The encoding of the controller states for the example controller implementation is
shown in Table 4-1 .

† For the remainder of this part of the book, implementation examples will be given
that are compatible with the TAP controller implementation included here.

40

Figure 4-8: An example implementation of the TAP controller: Part 1.

41

Figure 4-9: An example implementation of the TAP controller: Part 2.

42

Table 4-1: State assignments for the example TAP controller.

Controller state

Exit2-DR
Exitl-DR
Shift-DR
Pause-DR
Select-IR-Scan
Update-DR
Capture-DR
Select-DR-Scan
Exit2~IR
Exitl-IR
Shift-IR
Pause-IR
Run-Test/Idle
Update-IR
Capture-IR
Test-Logic-Reset

DCBA (hex)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

4.4: The Instruction Register

The instruction register provides one of the alternate serial paths between TDI and
TDO. It operates when the instruction scanning portion of the controller state diagram is
entered (i.e., the portion where state names end "—IR").

The instruction register allows test instructions to be entered into each component along
the board-level path. The instruction registers are daisy-chained together at the board
level in the Shift—IR controller state (Figure 4-10), so a different instruction can be
loaded into each chip on the path if required. Although it is unnecessary for each IC to
be executing the same instruction at any given time, because instructions are shifted into
all ICs on a single serial path at the same time, loading and execution of the instructions
for each IC must be synchronized. For example, all ICs controlled by a single TMS signal
must be simultaneously in the Shift-IR controller state.

43

Figure 4-10: Daisy-chain connection of instruction registers.

4.4.1: Instruction Register Design

At the core of the instruction register's design is a shift register that must contain at
least two stages (shown cross-hatched in Figure 4-11). No maximum length is defined,
since this will be determined by the number of test instructions provided by the particular
chip.

Optional Stages Mandatory Stages

— Status Data— G 1

Current Instruction

Figure 4-11: The instruction register.

The standard requires that stages I1 and I0 † must be set to 0 and 1 respectively on the
rising edge of TCK in the Capture-IR controller state. These fixed values assist in
detecting and locating faults in the serial path through chips on a board, as will be
discussed in Chapter 9. Instruction register stages numbered I2 or greater are optional and
can have a parallel input from which data (typically, status information) are loaded.

Each shift-register stage in the instruction register might be designed as shown in Figure
4-12.

† Note that, within IEEE Std 1149.1, the convention is used that the least significant
bit is that written or read from the shift-register stage closest to TDO. In addition, the
least significant bit is numbered 0. For example, if the instruction register is named I the
least significant stage is named I0 and a minimum instruction register design must have
stages I1 and I0.

44

ShiftIR

Data
From Lost Cell

ClockIR
UpdateIR

TRST*
Reset*

Figure 4-12: An example instruction register cell.

Each stage has a latched parallel output to which instructions are transferred when they
are valid (i.e., on the falling edge of TCK in the Update—IR controller state — at this
time, the example TAP controller changes the UpdateIR signal from 0 to 1). The provision
of a latched output means that the remaining test logic receives only valid instructions —
it does not see the changing contents of the shift-register while the new instruction is
shifted in. The reset input shown to the parallel output register in Figure 4-12 forces a 0
onto the instruction register's output when the TAP controller enters the
Test—Logic—Reset controller state (when the example TAP controller applies a 0 to
Reset*). If this state is entered as a result of signals received at the TCK and TMS inputs,
then the reset occurs on the falling edge of TCK. If, on the other hand, the state is
entered through use of the optional TRST* input (or on power-up), then the reset will
occur immediately on entry into the state. Note that some instruction register cells might
need to be designed to have preset, rather than reset, capability for the latched parallel
output. This is necessary because the standard requires that the instruction present at the
register's parallel output in the Test-Logic-Reset controller state must be the IDCODE
or, if the optional device identification register is not provided, the BYPASS instruction
(see Chapter 5).

4.4.2: Instruction Register Operation

Figure 4-13 gives a view of the sequence of events involved in loading a new instruction
into the test logic, starting from the Test-Logic-Reset controller state. This figure shows
the signals applied to and generated by the example TAP controller design included in
Section 4.3. The hexadecimal characters shown for signal "State" show the movement
between certain of the 16 TAP controller states as represented by the states of the four
state flip-flops in Figure 4-8 and summarized in hexadecimal encoding in Table 4 -1 .

I n s t r u c t i o n

To Next Ce l l

4S

Figure 4-13: Loading a new instruction.

In the example of Figure 4-13, the circuit begins in the Test—Logic—Reset controller
state. Instruction register scan is selected by manipulation of the signal applied to TMS.
The scanning is interrupted by a pause and then continued. (Note the two periods of
activity of ClockIR separated by a quiescent period.) Finally, instruction register scanning
is completed and the TAP controller is taken to the Run — Test/Idle controller state.

Note that the new instruction becomes current on the rising edge of the UpdatelR
signal from the TAP controller (i.e., on the falling edge of TCK in the Update—IR
controller state).

4.5: The Test Data Registers

The test logic design provides for a bank of test data registers as shown in Figure 4-2.
IEEE Std 1149.1 specifies the design of three test data registers, two of which must be
included in the design. The mandatory test data registers are the bypass and
boundary-scan registers. The provision of a device identification register is optional and
further design-specific test data registers can be added as appropriate to a given design.
The design-specific registers can be a part of the on-chip system logic and can have both
system and test functions.

46

The design of the three test data registers specified by the standard is discussed in
Chapters 5 and 6. In this section, the general design characteristics that apply to all test
data registers (including design-specific registers) are described.

4.5.1: The Control of Test Data Registers

The operation of the various test data registers is controlled according to the instruction
present at the output of the instruction register. An instruction can place several test data
registers into their test mode of operation, but it might select only one register for
connection as the serial path between TDI and TDO in the Shift-DR controller state.

IEEE Std 1149.1 requires that each named test data register must have a defined length
(number of shift-register stages) and a defined set of operating modes. Thus, it will
appear the same whenever it is accessed.

In practice, several test data registers can be constructed out of the same circuitry, for
example, as shown in Figure 4-14. This circuit contains three test data registers:

1. a six stage register formed by enabling shifting through all six stages;

2. a three stage register formed from stages 2, 1, and 0; and

3. a three stage register formed from stages 5, 4, and 3.

This is acceptable provided the three test data registers are given unique names and each
individually meets all the requirements of the standard. Therefore, some test data registers
within an IC might appear as identifiable, dedicated circuit blocks while others might be
"virtual" — that is, they only exist when they are required by the current instruction.

Figure 4-14: Sharing of circuitry between test data registers.

Decoded Signals from
Instruction Register

47

4.5.2: Test Data Register Operation

All test data registers operate according to the same principles:

• Registers that are not enabled for test operation by the current instruction are
configured so that they do not interfere with operation of the on-chip system logic.
Where a register can operate in either a system or test mode, the system mode will
be selected whenever the register is not required by the current test instruction.
Because test data registers might not actually exist as distinct circuit blocks when
they are not enabled (they can share circuitry with each other or with the system
logic), they should be considered to have been left in an undefined, but safe (with
respect to the system logic), state.

• The registers enabled for test operation by the current instruction will load data
from their parallel inputs (if any) on the rising edge of TCK in the Capture-DR
controller state, and will make any new data available at their latched parallel
outputs (if any) on the falling edge of TCK in the Update—DR controller state. In
other words, the results of a test are sampled in the Capture—DR controller state
and the new test stimulus is available, at the latest, in the Update—DR controller
state. Where test execution is required between the Update—DR and Capture—DR
controller states (e.g., execution of a self-test), this occurs in the Run —Test/Idle
state.

• The register selected by the instruction selects to be the serial path between TDI
and TDO will shift data from TDI towards TDO in the Shift-DR controller state.
Other test data registers enabled for test operation will hold their state while
shifting occurs.

Figure 4-15 gives a view of the sequence of events involved in loading new test data into
a selected test data register. We might imagine that Figure 4-15 is simply a continuation of
Figure 4-13 which left the TAP controller in the Run-Test/Idle controller state after an
instruction had been entered to select a data register. As in the earlier example, the
shifting is done in two parts separated by a pause. (Note the activity on ClockDR.) At
the completion of the shifting process, the UpdateDR signal goes active. This example
ends with the controller being returned to the Test—Logic—Reset controller state.

48

TMS

TDI/TDO

State

Reset*

ClockIR

ShiftIR

UpdotelR

ClockDR

ShiftDR

UpdateDR

Se leet

Enable

4.6: Reference

Figure 4-15: Loading new test data.

[1] IBM, Honeywell, and TRW, VHSIC Phase 2 Interoperability Standards: TM-Bus
Specification — Version 3.0, November 9, 1987 (available from J.P. Letellier,
Naval Research Laboratory, Code 5305, Washington DC 20375, U.S.A).

49

Chapter 5. The Bypass and Device Identification Registers

This chapter describes two of the test data registers defined by IEEE Std 1149.1: the
mandatory bypass register and the optional device identification register. The standard also
defines three instructions for these registers: BYPASS, IDCODE, and USERCODE. These
instructions are discussed below.

5.1: The Bypass Register

The bypass register must be present in all chips that conform to the standard. It
provides a minimum length path between the test data input (TDI) and test data output
(TOO) pins and can be accessed when there is no requirement to use another test data
register in the chip. This allows data to be shifted through the chip without interfering
with its system operation.

The bypass register consists of a single shift-register stage that loads a constant logic 0 in
the Capture-DR controller state when the BYPASS instruction is selected. IEEE Std
1149.1 defines the binary code for the BYPASS instruction to be "all-Is" (i.e., a logic 1
entered into each stage of the instruction register).

The bypass register might be implemented as shown in Figure 5-1.

From TDI
S h i f t D R

ClockDR

Figure 5 - 1 : An example design for the bypass register.

The bypass register does not have a parallel data output so there is no significance to the
data present in the register when shifting is completed. Its operation cannot interfere with
that of the on-chip system logic.

5.1.1: Use of the Bypass Register

As an example of an occasion when the bypass register might be used, consider a board
containing 100 integrated circuits (ICs), all with boundary-scan and connected into a
single serial chain, a small part of which is shown in Figure 5-2. Assume that a need arises
to access a test data register located in IC57, but that it is desired not to interfere with
the operation of the remaining 99 ICs. (An example of such a situation might be when the
target chip includes a "shadow" test data register that permits the state of its key internal
registers to be read.)

To TDO

EH0321-0/90/0000/0051 $01.00 © 1990 IEEE 51

IC56 IC57 IC58

Figure 5-2: Use of the bypass register.

In this case, the required instruction would be loaded into IC57, with the BYPASS
instruction being loaded into the other ICs. The serial bit stream shifted into TDI during
the instruction scanning cycle would be:

111 .1111CCC...CCC1111 I l l

where CCC...CCC is the instruction to be loaded into IC57. As a result of use of the
"all-Is" value for the BYPASS instruction, the complexity of the bit stream input to the
serial path is considerably reduced. This is an important consideration, since it reduces the
data storage requirement for the automatic test equipment (ATE) or bus master chip that
control the operation of the board during test.

Once the instructions are loaded, a minimum length serial path to and from the target
chip is set up. This allows access to the chip of interest in the minimum possible time,
increasing test throughput.

5.2: The Device Identification Register

The device identification register is an optional feature of the standard. Where included
in the test logic, it allows a binary data pattern to be read from the chip that identifies
the manufacturer, the part number, and the variant.

During testing, this information might be used to:

• adjust test program execution, depending on the source and/or variant of each chip
present on the board;

• verify that the correct IC has been mounted in each board location; or

• establish which member of a plug-compatible family of boards is being tested.

52

5.2.1: Construction

The register contains 32 parallel-in, serial-out shift-register stages, each of which might
be constructed as shown in Figure 5-3.

Figure 5-3: An example implementation of a device identification register cell.

Where a chip is programmed off-line (e.g., by blowing fuses or through some other
nonreversible process), it is useful if the programmed state can also be observed via the
device identification register. Therefore, where the function of the chip can be
programmed by the user, each cell must have a pair of alternative data inputs so that two
different 32-bit codes can be loaded — one to identify the device and one to identify its
programming. The former is loaded when the IDCODE instruction is selected, while the
latter is loaded when the USERCODE instruction is selected.

When the register is addressed from the instruction register, the data pattern at its
parallel input is loaded on the rising edge of the test clock (TCK) in the Capture—DR
controller state. (At this time, the example TAP controller generates a rising edge on
ClockDR while holding ShiftDR = 0.) These data are shifted toward TDO on the rising
edge of TCK in the Shift—DR controller state, while data are shifted in from the TDI pin.
(The example TAP controller changes ShiftDR to 1 and continues to generate clock edges
on ClockDR.)

The bypass register has no parallel output and cannot interfere with the operation of the
system logic in the chip. Therefore, when shifting is completed, the data present in the
register have no significance.

5.2.2: The IDCODE Instruction

The structure of the data loaded into the device identification register in response to the
IDCODE instruction is shown in Figure 5-4. As discussed previously, the data presented
are loaded into the register from inputs ID 3 1 -IDQ in the Capture—DR controller state.

There are four separate fields:

1. The header: TDQ loads a constant logic 1. Recall that the bypass register loads a

constant 0 in the Capture-DR controller state. Later in this chapter, the advantage
of this in determining the IC sequence for a given board will be explained.

53

MSB
ID ID
28 27

ID12 IQ11

LSB

ID1IDQ

Vers i on Port
Number

Manufacturer
I den t i ty

1

(4 Bits) (16 Bits) (11 Bits)

Figure 5 -4 : Structure of the device identity code.

2. The manufacturer code: ED1 1-ID1 load an 11-bit manufacturer code. This code is

derived from a scheme managed by the Joint Electron Device Engineering Council
(JEDEC) [1].

In the JEDEC scheme, each manufacturer is allocated a code consisting of one
or more 8-bit bytes. The most significant bit in each byte ensures odd parity, so a
maximum of 128 available manufacturers can be distinguished by a 1-byte JEDEC
code. Clearly, however, there are more than 128 manufacturers of integrated
circuits. To cater to those who cannot be allocated 1-byte codes, the code Hex 7F
is reserved as a continuation character. One hundred and twenty-seven
manufacturers are thus given codes consisting of just one byte, 127 are given 2-byte
codes (the first byte being Hex 7F), a further 127 get 3-byte codes (the first two
bytes being Hex 7F), and so on.

The scheme used in IEEE Std 1149.1 is a compressed form of this code
containing a fixed number of bits (11) and is better suited to a serial environment.
The 11 bits are derived from the JEDEC code as follows:

• Bits ID 7 - ID 1 are the same as the seven data bits of the final byte of the

JEDEC code.

• Bits ID11 - ID 8 contain a count of the number of continuation bytes in the

JEDEC code (i.e., the total number of bytes in the JEDEC code minus one).

This scheme can uniquely identify up to 2032 manufacturers, since the pattern
Hex 7F cannot occur in bits ID 7 - ID 1 . Section 5.3 will show how the 16 "invalid"

manufacturer codes can be used to advantage during board testing. If more than
2032 manufacturer codes are issued by JEDEC, then the scheme will result in reuse
of some code values within the manufacturer code field. However, the chance that
a component from an incorrect manufacturer will have the same code and the same
test functionality is acceptably low.

54

3. The part number code: I D 2 7 - I D 1 2 provide a 16 bit part number, chosen by the
manufacturer to distinguish a chip from the others that the company sells. In cases
where more than 21 6 chip types are offered by a manufacturer, part number codes
might have to be reused. The objective is to minimize the chance that an incorrect
chip in a given position on a board will have the same part number as the correct
chip type. Given that 21 6 codes are available, and that chip types will be further
distinguished by the number of pins and the position of the test access port (TAP)
pins, the chance of falsely receiving the expected part number code is extremely
small.

4. The version number code: For chips that are manufactured in several different
versions through their lives, bits ID31.-ID28 can be used to distinguish up to 16

variants. As a minimum, the version code should distinguish variants of a chip that
exhibit differences in the operation of the test logic — e.g., different behavior in
response to instructions or in the data to be sent or received through the TAP.

5.2.3: The USERCODE Instruction

In response to the USERCODE instruction, data are loaded from the alternative data
input to the register — USER31, - U S E R 0 . Unlike the data presented to ID31 - I D 0 , these

data can be programmed by the user at the same time (and in the same way) that the
function of the chip is programmed.

U S E R 0 must load a constant logic 1, while the structure of the data presented at

U S E R 3 1 - U S E R 1 could be identical to that of the device identification code (i.e.,

variant, part number, and company).

Note that this second data input is required only for chips whose function is "one-time"
programmed off-line (e.g., by blowing fuses or through some other irreversible process)
and cannot be modified through use of the test logic (e.g., by sending programming
instructions through the TAP). For "soft" programmable chips whose programmed
function is determined by instruction and data sequences entered through the TAP, the
USERCODE instruction is not required. In such cases, the chip can be set arbitrarily to
perform any desired function at the start of a test. Therefore, knowledge of the
previously-programmed function is not required.

5.3: Learning the Structure of an Unknown Board

There are occasions when it would be useful to be able to access the device
identification registers of chips to learn more about the precise mix of chips mounted on a
particular board. For example, a board can be configured to perform one of a range of
functions by including a different chip in some partipular location.

There are two problems that have to be solved to permit this kind of "blind"
interrogation:

55

• the device identification register is optional, so not every chip will include one; and

• because the value of the IDCODE instruction will vary from chip to chip — indeed,
the length of the instruction register can vary from component to component —
there is no way to know in advance what sequence of instructions to enter to select
the device identification registers.

Two features are included in IEEE Std 1149.1 to allow these problems to be solved.

First, it is required that the instruction register's latched parallel output is initialized in
the Test-Logic-Reset controller state to:

• the value of the IDCODE instruction if a device identification register is included in
the chip; or

• the value of the BYPASS instruction if the device identification register is not
provided.

Therefore, by moving from the Test—Logic—Reset controller state directly into the test
data register scan sequence (starting with the Capture—DR controller state) all available
identification codes on the board will be shifted out for examination. Referring to the
TAP controller state diagram in Figure 4-6, the application of the sequence
"111110100...0" to the TMS of all chips on a serial board-level path (one bit per cycle of
TCK) will cause all available identification codes to be output, regardless of the starting
states of the TAP controllers.

Second, because the standard requires that all identification codes have a logic 1 in the
least significant bit (the header bit) while the bypass register is required to load a logic 0,
it is possible to locate identification codes in the output bit stream. Consider, for
example, the output sequence shown in Figure 5-5. A flow chart for decoding such an
output sequence received is shown in Figure 5-6.

r I n«v»o l i d ' Code
f r o m RTE, E t c .

Manufacturer, Port,
and Version Codes

Figure 5-5: Output sequence following 'blind' access.

56

Figure 5-6: Flow chart for decoding output identity code sequence.

For the example sequence, this gives the result shown in Table 5-1. Note that by
injecting at the board's serial input an identification code containing an invalid
manufacturer code, it is possible to determine when the end of the sequence has been
reached.

Table 5 - 1 : Result of decoding the received sequence.

Bit(s)

0
1-32
33-64
65
66-98
99
100-111

Component

1
2
3
4
5
6

-

Comment

No ID code
ID code available
ID code available
No ID code
ID code available
No ID code
Invalid manufacturer
- end of sequence

5.4: Reference

[1] Joint Electron Device Engineering Council, "Standard Manufacturer's Identification
Code," JEDEC Publication 106-A,, July 1986. (Obtainable from JEDEC, 2001 Eye
Street. N.W., Washington, D.C. 20006, U.S.A)

51

Chapter 6. The Boundary-Scan Register

Every integrated circuit (IC) that complies with IEEE Std 1149.1 must include a
boundary-scan register, which can be used to allow interconnections between ICs to be
tested (the interconnect test described in Chapter 2). Optionally, it can also be used to
support testing of the logic within the component — either in conjunction with self-test
or by shifting patterns and results on a test-by-test basis (again, as described in Chapter
2).

While many different implementations of boundary-scan are possible that would provide
this level of functionality, the standard imposes a number of particular requirements.
These ensure that boundary-scan paths included in chips obtained from two or more
different vendors can be used reliably in concert to perform board interconnect testing.

Later in this chapter, we will describe the operation of the boundary-scan register and
will illustrate how it might be designed through a series of example circuits. As we did in
the introduction to Part II, we again stress that there are several features of the standard
that we will not be able to discuss in this tutorial. Readers are therefore strongly
recommended to consult the standard itself before implementing an IC design.

6.1: The Provision of Boundary-Scan Cells

Before discussing the provision of boundary-scan cells in an IC, two terms must be
defined:

1. The on—chip system logic: This is the circuitry contained in the IC to allow it to
perform the required "normal" function. For example, if the chip is intended to
operate as a counter, then the on-chip system logic would comprise all the
necessary circuitry to construct a counter.

2. The test logic: This is the circuitry built into the IC to assist either in testing of the
on-chip system logic (e.g., confirming that the counter is indeed able to count) or
in testing off-chip circuitry (e.g., board level interconnections).

Where design-for-test features are built into the on-chip system logic, these are
regarded as a part of the test logic in their test mode of operation; otherwise, they are a
part of the on-chip system logic.

To comply with IEEE Std 1149.1, an IC must contain boundary-scan cells at all
off-chip system inputs and outputst, as shown in Figure 6-1. That is, cells should be
located:

† Cells are not required at connections between the test logic and the on-chip system
logic or as the test access port (TAP) pins.

EH0321-0/90/0000/0059$01.00 © 1990 IEEE 59

• between each system input pin (clock or data) and the corresponding input to the
on-chip system logic;

• between each output from the on-chip system logic and the corresponding system
output pin; and

• between each 3-state enable or direction control output from the on-chip system
logic and the corresponding system pin output driver.

Note that, for chips that contain some analog circuitry between the on-chip logic and
the system pins, the connections to and from the analog circuit block are treated exactly
as if they were off-chip digital connections. This topic will be discussed further in
Chapter 19.

Figure 6 - 1 : Provision of boundary-scan cells.

Of particular note are the cells located at the output enable and direction control
outputs from the on-chip system logic to 3-state output and bidirectional pins,
respectively. Operating in conjunction with the cells at the data connections of the
on-chip system logic, these cells allow the state of the output driver (active or inactive),
as well as the data value driven when the driver is active, to be controlled. The reason for
the inclusion of these cells is illustrated in Figure 6-2.

60

Figure 6-2: A board-level bus connection.

61

Figure 6-2 shows a board-level 3-state bus connection that can be driven by one of
three chips: A, B, or C. To provide a test of the interconnection between these chips, it
is necessary to check that:

• the bus can be driven to both 0 and 1; and

• each chip can drive signals onto the bus independently of the others.

For the circuit in Figure 6-2, this will require a total of six tests as shown in Table 6-1.
Note that, in these tests, the data value fed to the output buffers of the components
whose drivers are inactive is the complement of that fed to the active driver. This increases
the chance of detecting a fault that would cause a driver to be active when it should be
inactive, regardless of whether a wire-OR or wire-AND combination of the contending
outputs results.

Table 6 - 1 : Tests for the board-level bus.

Stimulus applied to bus from:

Component A

0/on
1/off
1/off
1/on
0/off
0/off

Component B

1/off
0/on
1/off
0/off
1/on
0/off

Component C

1/off
1/off
0/on
0/off
0/off
1/on

Result seen at

component D

0
0
0
1
1
1

While it might seem that the cells provided to control the activity of the driver at a
3-state or bidirectional pin might form a significant fraction of those in the complete
boundary-scan register — particularly where a chip has many such pins — this will not
normally be the case. The reason is that chips often have groups of 3-state outputs or
bidirectional pins that are controlled from a single source. In such cases, all the outputs
that form an address bus would be active or inactive simultaneously. It would be a design
error if two or more such pin groupings were connected at the board level; therefore, it is
only necessary to provide one output enable or direction control cell for each group of
pins. Figure 6-3 provides an example to illustrate this point.

62

TDO

Figure 6-3: Control of multiple 3-state outputs from a single source.

6.2: The Minimum Requirement

Figures 6-4 and 6-5 show boundary-scan cell designs that meet the minimum
requirements of the standard for input and output pins, respectively. In these cell designs,
the signals ShiftDR, ClockDR, and UpdateDR are those generated by the example TAP
controller (see Figures 4-8 and 4-9).

63

Figure 6-4: Basic boundary-scan cell for an input pin.

Figure 6-5: Basic boundary-scan cell for an output pin.

These boundary-scan cells allow an IC to support the two mandatory instructions
defined by the standard: EXTEST and SAMPLE/PRELOAD. The Mode signal in Figure
6-5 is generated by decoding the current instruction and should be 1 when the EXTEST
instruction is present; otherwise it should be 0.

64

6.2.1: EXTEST

The EXTEST (external test) instruction allows the boundary-scan register to be used for
board-level interconnect testing in a similar manner to that presented in Chapter 2:

• Test stimuli shifted into the boundary-scan cells located at system output pins are
driven through the connected pins onto the board interconnections. This process is
started by first entering the EXTEST instruction and then moving to the Shift—DR
controller state. One bit of data is shifted into the boundary-scan register on each
rising edge of the test clock (TCK). The example TAP controller shown in Figures
4-8 and 4-9 enables shifting by setting ShiftDR to 1 and allowing TCK to propagate
through to ClockDR.

When entry of stimuli is concluded, the shifting process is completed by moving to
the Update-DR controller state. On the falling edge of TCK in this state, the
stimuli are transferred from the shift-register stages onto the latched parallel
outputs of each cell. Because the Mode input to the cells at system output pins is
set to 1 by the EXTEST instruction, the test is applied to the board
interconnections at this time. The example TAP controller generates a rising edge on
UpdateDR to cause the latched parallel outputs of the example boundary-scan cells
to be updated from the associated shift-register stages.

The test results are captured in the cells at the system input pins. This occurs on the
rising edge of TCK in the next Capture—DR controller state. The example TAP
controller causes data to be captured by holding ShiftDR at 0 and allowing TCK to
propagate through to ClockDR.

The test results are examined by moving back to the Shift-DR controller state. The
data held in the boundary-scan register move one stage towards the test data output
(TDO) on each rising edge of TCK. The data in cell number 0 (the cell nearest to
TDO) appear at TDO on the falling edge of TCK after it reaches the cell.

Note that the output pin cell contains an additional register between the shift-register
stage and the output to the connected system pin.f In Figure 6-5, this additional register
is clocked by the signal UpdateDR, generated by the example TAP controller in the
Update—DR controller state. This allows the data present in the shift-register stage to be
latched onto the parallel output of the cell when shifting has been completed. It is held
there until the next test stimulus has been completely shifted into the boundary-scan
path, ensuring that the data driven from the cell when Mode is 1 changes cleanly from one
serially-supplied stimulus to the next.

Provision of this latched output to the connected system pin allows the boundary-scan
cells at system output pins to be used to apply test stimuli to circuitry external to the chip

•

† The standard permits use of either an edge-triggered register or a level-operated latch
to fulfill this requirement. We have chosen to use an edge-triggered flip-flop in the
examples contained in this book.

65

in a carefully-controlled manner. For example, clocks or inputs to asynchronous circuits
can be included among the signals that feed into the external logic, as illustrated in Figure
6-6. These signals (as well as others — for example, see the discussion in Chapter 19
regarding signals that feed into analog circuits) must not change state between one test
pattern and the next. Any intervening changes will cause misoperation of the circuit under
test. Therefore, it is necessary to prevent the data from being applied to the external
circuitry as they pass along the boundary-scan path during shifting-in. The latched parallel
output is included to meet this requirement.

TDO

A TDI

Figure 6-6: Using the boundary-scan path to test external logic.

66

6.2.2: SAMPLE/PRELOAD

While the SAMPLE/PRELOAD instruction is selected, the Mode input to the cells at
system logic outputs is held at 0 — allowing the chip to continue its normal operation
without interference.

The instruction supports two distinct test operations.

In the first instance (SAMPLE), the boundary-scan cells at both inputs and outputs
load the state of the signal flowing through them between the system pin and the on-chip
logic:

• A snap-shot of the data flowing through the chip's system input and output pins is
taken by first selecting the SAMPLE/PRELOAD instruction and then moving to the
Capture—DR controller state. Data are sampled on the rising edge of TCK in this
state. (At this time, the example TAP controller holds ShiftDR at 0 and applies a
rising edge to CiockDR.)

• The captured data can be shifted out for examination in the Shift—DR controller
state. On each rising edge of TCK, the data held in the boundary-scan register
move one stage towards TDO. A data bit that arrives in cell number 0 (the cell
nearest TDO) is driven through TDO on the following falling edge of TCK. (The
example TAP controller holds ShiftDR at 1 and generates a rising edge on CiockDR
for each rising edge of TCK.)

Applications of the SAMPLE test include debugging of prototype boards and a
contactless form of the guided-probing process common on functional board testers.

In the second instance (PRELOAD), data can be shifted into the boundary-scan cells
without interfering with the normal flow of signals between the system pins and the
on-chip logic. This allows the latched parallel outputs in boundary-scan cells to be
primed with data before another boundary-scan instruction is selected:

• The desired data are shifted into the boundary-scan register by first selecting the
SAMPLE/PRELOAD instruction and then moving to the Shift—DR controller state.
On each rising edge of TCK, one data bit is shifted into the register. (The example
TAP controller generates clock transitions on CiockDR. ShiftDR is held at 0 for
one clock cycle and then changed to 1.)

• When all data have been entered, shifting is halted by moving to the Update—DR
controller state. On the falling edge of TCK, the data in each shift-register stage is
shifted onto the cell's latched parallel output. (At this time, the example TAP
controller generates a rising edge on UpdateDR.)

By loading suitable data when PRELOAD is selected, the user can ensure that all signals
driven out of the chip are defined as soon as the EXTEST instruction is selected. The
Mode input would change to 1 in response to the instruction change, allowing the data

67

held in the boundary-scan cell (rather than the data generated by the on-chip logic) to be
driven from the chip.

6.2.3: Cells for 3-state and Bi-directional Pins

Figures 6-7 and 6-8 show boundary-scan cells that could be used at 3-state output and
bidirectional system pins, respectively, of an IC. These figures include the additional cell
required to control the activity of the output driver. Both figures contain two
shift-register stages — one for data and one for output driver control. The signal
CHIP_TEST* is 0 when the INTEST or RUNBIST instruction is selected (see Sections 6.3
and 6.4).

Figure 6-7: Basic boundary-scan cells for a 3-state output pin.

68

Figure 6-8: Basic boundary-scan cells for a 3-state bidirectional pin.

The design in Figure 6-8 is, in effect, a merging of those in Figures 6-4 and 6-7. It
functions in the same way as the cell in Figure 6-7 when "output" operation is required
and as the cell in Figure 6-4 when "input" operation is required. In Figure 6-8, the
assumption is made that the bidirectional pin is either input or output at a given instant
— but never both simultaneously. This allows one shift-register stage to be used to
convey the data value for the pin; two stages would be necessary were the pin to always be
used as an input, allowing data to be driven out of the pin to be determined and data
received at the pin to be monitored.

Figure 6-9 shows how a boundary-scan cell might be constructed for a 2-state
open-collector bidirectional pin.

69

Figure 6-9: Basic boundary-scan cells for a 2-state open-collector bidirectional
pin.

Boundary-scan cells for other types of pins can be constructed in a similar manner by
correct combination of the cells for input and output pins.

6.3: The INTEST Instruction

The standard defines two optional instructions that can be used to perform tests of the
on-chip system logic. The first of these is the INTEST instruction. The operation of the
boundary-scan register when the INTEST instruction is selected is similar to that
described for internal logic testing in Chapter 2:

1. Test stimuli for the on-chip logic are shifted into the cells at system input pins.
Following the falling edge of TCK in the Update-DR controller state, the test
stimulus is in place and is applied to the inputs of the on-chip system logic.

70

2. Between the Update-DR and Capture-DR controller states, the test is applied. For
stored-state system logic designs, this will require entry into the Run—Test/Idle
controller state where appropriate clock transitions will be applied to the on-chip
system logic. This might require control of the clock signal(s) supplied to the clock
input pin(s) (see Section 6.3.2).

3. On the rising edge of TCK in the Capture—DR controller state, the results are
loaded into the cells at system output pins prior to being shifted out for
examination.

Because of the slow test application rate, the chip must be able to support single-step
operation where the INTEST instruction is offered. This requirement can be met in several
ways, for example, where:

• no dynamic logic is included in the on-chip system logic; or

• the on-chip system logic can be placed in a "hold" state between tests.

6.3.7; Boundary-Scan Cell Designs That Support INTEST

Input Pins: To support this instruction, the design of the boundary-scan cells at
non-clock system input pins must be extended beyond that of the cell shown in Figure
6-4. This is necessary to allow the data shifted into the cell to be driven to the connected
system logic input. Figures 6-10 and 6-11 show two options for doing this.

Figure 6-10: Enhanced boundary-scan cell for an input pin: Example 1.

71

Figure 6-11: Enhanced boundary-scan cell for an input pin: Example 2.

In the design in Figure 6-10, the data in the shift-register stage are applied directly to
the on-chip logic. This is acceptable provided the on-chip logic does not respond to the
data that is shifted through the cell as each test is loaded and each set of results is
examined. For example, the cell might feed the data input to a flip-flop whose clock was
constrained not to change state during the shifting process. Therefore, the data applied
from the boundary-scan cells become significant only when the flip-flop is clocked.

The design in Figure 6-11 is better than that in Figure 6-10 in cases where the circuitry
fed by the cell will respond to the shifting data. This cell design is identical to that shown
earlier for a system output pin (Figure 6-5) because it is targeted at the same problem. As
when the cell is used at a system output pin, the added register (or latch) holds the
stimulus data while new data are being shifted in, preventing the shifting data values from
reaching the logic under test.

Output pins: Among the functions performed by the boundary-scan register when the
INTEST instruction is selected is that of preventing output signals of the on-chip logic
from flowing through chip pins to external circuitry on the board. This is necessary
because the signals output during IC testing will probably not be representative of those
generated as a result of normal operation. They might contain illegal signal combinations
or sequences that cause damage to the off-chip circuitry. For example, the memory
controller shown in Figure 6-12 would normally operate such that only one of the
connected memories would be enabled to drive the output bus. During testing, however,
signals might be generated that enabled two or more of the memories onto the bus
simultaneously. The resulting contention between output drivers might cause damage to
either memory chip.

72

Figure 6-12: A circuit where bus contention might occur.

This problem is overcome by enhancing the design of bbundary-scan cells for output
pins when the INTEST instruction is to be supported. As shown in Figure 6-13, the
design is changed so that data can be fed off-chip independently of that received from the
on-chip system logic. This is not possible with the cell design in Figure 6-5, because of
the feedback loop through the cell. If the data received from the on-chip system logic is
to be captured into the cell, it will also be driven off-chip. The cell in Figure 6-13 is a
feed-forward design that allows the user to define the chip's output, independently of the
operation of the on-chip system logic, while the on-chip system logic test is in progress.

Figure 6-13: Enhanced boundary-scan cell for an output pin.

73

The cells presented earlier for 3-state output and bidirectional pins (Figures 6-7 and
6-8) support the INTEST instruction. For these cells, the output is set to an inactive state
while the INTEST instruction is selected (CHIP_TEST* is set to 0). This prevents data
leaving the chip. Note that it might be necessary to control external circuitry such that it
does not sample the bus driven from the 3-state or bidirectional pin while the chip is
undergoing test, because it might respond incorrectly when the bus is not driven by any
chip (i.e., when it is "floating").

6.3.2: Control of Clocks During Use of INTEST

The extended cell designs just described are required only at non-clock input pins. The
cell design of Figure 6-4 can still be used at clock input pins. Further design changes
might be required, however, depending on the way that clocking of the on-chip system
logic is to be controlled during testing. The following are three possibilities:

1. The system clock signal supplied to the chip can be externally controlled such that
action-causing transitions will occur only in the Run-Test/Idle controller state, for
example, as shown in Figure 6-14.

Figure 6-14: Control of the signal supplied to a clock input during INTEST.

A signal generated from TCK can be used in place of the externally-supplied signal
while the INTEST instruction is selected. This signal must be controlled so that
TCK pulses will be applied to the on-chip system logic only in the Run -Test/Idle
controller state. The example shown in Figure 6-15 provides a positive edge clock
to the on-chip system logic.

Figure 6-15: Generation of a system logic clock from TCK during INTEST.

74

A free-running clock could be supplied to the component and fed through to the
on-chip system logic. In this case, the system logic must be placed in a "hold" state
so that clock transitions received other than in the Run-Test/'Idle controller state
will not change the state of any of the stored-state devices contained in the
on-chip system logic. Where a component has a HOLD* input (e.g., as is common
on microprocessors to allow single-step operation), the signal fed to the on-chip
system logic while the INTEST instruction is selected can be modified to be pulsed
following entry into the Run —Test/Idle controller state. An example of how this
could be achieved is shown in Figure 6-16. In this figure, the RT/I signal is 1 when
the test logic is in the Run —Test/Idle state. The INTEST signal is true when the
INTEST instruction is selected.

Figure 6-16: Generation of a "HOLD*" pulse.

6.4: The RUNBIST Instruction

The purpose of the optional RUNBIST instruction is to provide a consistent,
straight-forward means of verifying the health of an IC through using embedded self-test
facilities. The objective is to allow a health check to be run simultaneously in every chip
on a board that supports the instruction without the need for complex control and/or data
sequences. In effect, the RUNBIST instruction allows the user to ask the chip "Are you
healthy?" and to receive the component's reply. As we will see in Section 6.4.2, when the
RUNBIST instruction is selected it is necessary for output pins to be set to defined states
independent of the operation of the on-chip system logic,

75

6.4.1: Execution of the Health Check

There are many different ways of building self-test features into an IC design. For
example, self-test can be based on the inclusion of linear-feedback shift-registers
(LFSRs), signature analyzers, or built-in logic block observers (BILBOs). The approach
taken for any particular chip will depend on the nature of the circuit, on the preference of
the circuit designer, and on many other factors.

The objective of the RUNBIST instruction is to provide users of ICs with a consistent
means of accessing self-test features that is independent of the type of self-test offered by
a chip and that requires only a very limited amount of data to be stored on the ATE
system, on-board bus-master chip, or other unit in control of the board-level test bus.

To meet the requirements of the RUNBIST instruction, the self-test must execute only
while the TAP controller remains in the Run —Test/Idle state. Typically, the logic involved
in the test will need to be set to an initial starting state before test execution can begin
and this must occur automatically within the chip. As shown in Figure 6-17, initialization
could occur in the first clock cycle following entry into the Run-Test/Idle controller state
and the test could execute in subsequent clock cycles.f In the figure, the RT/I signal is 1
while the test logic is in the Run-Test/Idle controller state; the RUNBIST signal is 1
when the RUNBIST instruction is selected.

Figure 6-17: Control of on-chip system logic during RUNBIST.

The self-test will run to completion provided the TAP controller remains in the
Run—Test/Idle state for a specified minimum period, for example, as measured by the
number of clock cycles applied to the on-chip system logic. By moving to the
Capture—DR controller state following this period, the result of the self-test can be
loaded into the test data register selected by the RUNBIST instruction and then shifted
out for examination.

To allow self-tests of different lengths to be run simultaneously in two or more chips
on a board, the standard requires that, as long as the TAP controller remains in the

f Note that, as in the case of the INTEST instruction, the clock(s) for the on-chip
system logic can be fed either from TCK or by an externally-generated clock source while
the RUNBIST instruction is selected.

76

Run-Test/Idle state for more than the manufacturer-specified minimum period, the result
loaded into the selected test data register must be invariant no matter how long the
controller remains in this state. To illustrate, consider a board containing two ICs, one of
which must receive 100 TCK cycles to complete its self-test and the other 1000 cycles.
Once 100 cycles have been applied, the test on the first IC will have been completed and
its result will be ready for inspection. After 1000 cycles have been applied, the results from
both ICs will be ready for inspection. Therefore, by entering the RUNBIST instruction,
moving to the Run-Test/Idle controller state for 1000+ clock cycles, and then moving
through the Capture-DR controller state into the Shift-DR state, a test on the health of
both ICs can be performed.

An additional benefit of this feature of the RUNBIST instruction is that it removes the
need to maintain one version of the board test program for each variant of a chip used on
the board. Should the length of the self-test change between variants, a board test
program, which allows at least the maximum specified number of clocks to be applied to
the on-chip system logic, will meet the requirements of both chip variants.

6.4.2: Control of the Boundary-Scan Register

While self-test execution is in progress, the boundary-scan register is used to hold the
component's outputs at fixed values. This prevents the signals generated by the on-chip
system logic during the test from propagating to neighboring components where they might
cause unwanted or hazardous operation. For 2-state outputs, the value to be driven can
be defined by the user. For 3-state outputs, some components might also allow the value
to be user-defined; alternatively, the output might be set to the high-impedance state
while the RUNBIST instruction is selected. Note that, in contrast to the other instructions
described in this chapter, the boundary-scan register does not have to be selected by the
RUNBIST instruction to form the serial path between TDI and TDO (although this is an
option).

Typically, the values to be placed on the component's output pins will be shifted into
place by use of the SAMPLE/PRELOAD instruction before the RUNBIST instruction is
entered. Once the RUNBIST instruction has been entered, the Mode inputs of the cells
connected to the chip's system output pins will change to 1, allowing the data held at the
latched parallel outputs of the cells to be driven onto the board interconnections.f The
latched parallel outputs of boundary-scan cells at system output pins are not updated in
the Update—DR controller state while the RUNBIST instruction is selected; their state is
held throughout the period for which the instruction is selected.

In some designs, the boundary-scan register can participate in the application of the
self-test and can, if required, be the test data register enabled to shift data between TDI
and TDO. For example, while the test is executing in the Run -Test/Idle controller state,
the shift-register stages within the boundary-scan register cells could be configured to
behave as LFSRs, multiple-input signature registers (MISRs), and other functions.

f In cases where the pin state cannot be programmed by the user, the output will be set
to high-impedance.

77

Part III: Applications to Loaded-Board Testing

Part III contains application examples to illustrate the use of
the IEEE Standard Test Access Port and Boundary—Scan
Architecture in testing loaded boards. These examples show how
boards composed purely of chips compatible with the standard
can be tested and how the provision of boundary-scan facilities
in some chips can help in the application of tests to others.

Further material on the application of boundary-scan
techniques to loaded-board testing is contained in the reprinted
papers in Part V.

79

Chapter 7. Taking Advantage of Boundary—Scan
in Loaded-Board Testing

Peter Hansen
Teradyne Inc

321 Harrison Avenue
Boston, MA 02118, U.S.A.

Until recently, design-for-test (DFT) circuitry built onto chips was the province of
large, vertically-integrated systems manufacturers. But that monopoly is fast disappearing
now that the IEEE Standard Test Access Port and Boundary-Scan Architecture has been
defined, as commercial parts incorporating that standard are being developed, and as
application-specific integrated circuit (ASIC) technology gives more and more designers
control over their own silicon.

Much of the drive towards DFT will focus on boundary-scan, which is implemented at
the chip level and which can ease and simplify board-level testing. Boundary-scan offers
test engineers a way around increasingly thorny testability problems that stem from
advances in very large-scale integration (VLSI) integrated circuit (IC) processing and
packaging technologies.

7.1: Loaded-Board Testability Problems and Traditional Test Techniques

VLSI processing advances have escalated IC gate counts; therefore, the number and
complexity of test patterns needed for IC and board-level testing have also escalated.
Meanwhile, device packaging advances such as surface-mount technology (SMT), tape
automated bonding (TAB), and high pin-count IC packages have increasingly restricted
the physical accessibility of device leads to fixtures and hand-held probes traditionally used
to test and diagnose faults on printed wiring boards (PWBs).

7.1.1: The Fault Spectrum

The faults present on a board can be categorized as either structural or performance
defects. A structural fault is created by a physical defect in a device or in an interconnect
on the board, and can be detected at low test speeds. Test coverage is often simulated or
thought about in terms of "stuck-at" faults measured at either the gate or device-pin
level. The detection of performance faults is much more demanding, as test speed and
operating modes might need to be close (if not identical) to actual system behavior.

Most faults that exist in manufacturing are structural faults. Performance defects are a
much smaller, although a very troublesome, class. Manufacturers usually report that
performance problems account for as much as 5 percent, to as little as a fraction of 1
percent, of all board failures. Unfortunately, however, performance faults require a
disproportionately large amount of time and effort to diagnose and repair. [1]

EH0321-0/90/0000/0081 $01.00 © 1990 IEEE 81

The distribution of faults between analog and digital circuitry depends primarily on the
make-up of the board. Good IC testing typically results in few bad chips being on boards,
with the exception of devices that are grossly damaged during assembly. The latter class of
faults is nearly always detected by a test that provides good coverage of pin-level stuck-at
faults.

Figure 7-1 shows a rough representation of the frequency with which various fault
classes occur on a predominantly digital VLSI board. Actual relative proportions depend
on the types of components used on the board, as well as the design and quality practices
used. Of utmost importance is the fact that structural faults dominate, and that structural
faults occur mainly at device pins. Even in field returns, structural faults far outweigh
performance failures, although a higher frequency of internal device faults would be
expected.

Digital Performance
Analog Performance
Analog Structural
Digital Internal Device Structural
Digital Pin Level Structural

Figure 7 - 1 : The fault spectrum.

To ship quality products, board manufacturers need to screen out both structural and
performance faults. Since performance tests and their associated diagnostic techniques are
far more expensive than structural testing, it is most important to eliminate virtually all
structural defects prior to performance test.

7.7.2; In-Circuit Testing

In-circuit board testing for structural faults traditionally has offered three major
benefits:

• fast, automated test generation;

• straightforward fault diagnosis; and

• relatively low capital equipment costs.

Escalating VLSI and ASIC complexity, however, is eroding these advantages.

82

Test generation, for example, is becoming more difficult as increasing gate counts
demand more patterns. At the same time, the custom nature of ASICs means that
engineers cannot pull in-circuit test sets ready-made from a pattern library.

Some patterns might be pulled directly from device test, although the ease and success
of this practice usually depend on whether these patterns were developed specifically
taking the target tester into account. Otherwise, test engineers might find that the
chip-test patterns are too numerous to be handled efficiently by the in-circuit system's
available pattern memory, and that some of the patterns conflict with the ASIC's wiring
constraints in the board environment [2].

As a result, manufacturing test engineers often bear most of the burden of test
development. Automatic test pattern generation (ATPG) tools, which can't handle circuits
of large sequential depth, are only of limited assistance.

Backdrive and access restrictions also hamper in-circuit testing. Large ASICs, along with
many advanced logic families, can be difficult or even impossible to backdrive,
complicating the task of isolating neighboring components for in-circuit tests. Large
pin-count ICs also can make board testing a highly channel-intensive proposition, thus
driving up the cost of in-circuit test equipment.

Meanwhile, dense SMT and TAB packaging restricts the accessibility of component leads
to conventional bed-of-nails fixtures. In some cases, the use of fine-pitch probes can
overcome this problem, but only at the expense of more costly and less reliable fixtures.

Probe point density on boards can make it impossible to use vacuum-based fixturing
techniques without causing excessive board flexing. And two-sided boards, packages with
completely inaccessible leads, or fixtures that deny manual access all prevent the use of
hand-held probes and make it impossible to diagnose even simple problems like open
etches or bad solder joints.

7.7.3; Functional Testing

Entailing far more difficult program generation and diagnostics than in-circuit testing,
functional testing typically is used to find simple structural faults only as a last resort.
Functional techniques are best reserved for performance testing in critical applications.

Defense-related programs, for example, frequently use functional testing in instances
where contractual agreements prohibit overdriving or conformal coatings preclude
in-circuit access to boards under test. Commercial manufacturers might also adopt a
functional strategy when device packaging so restricts access that in-circuit testing
becomes impractical.

The pattern-generation and accessibility issues that affect in-circuit testing, however,
impact functional test even more. Very large numbers of very complex patterns are needed
to test full-board functionality; and these patterns must be generated anew, using logic
and fault simulation, for each board design. Since structural faults are abundant and

83

concentrated at device pins, very high stuck-at pin-fault coverage is called for; attaining
this level of coverage with functional test patterns is extremely expensive.

Moreover, increasingly complex VLSI and ASIC components have sent board-level
modeling, pattern generation, simulation, and diagnostic costs soaring. Finally, the same
packaging technologies that restrict in-circuit access to a board also might block the
hand-held guided probes traditionally used for functional fault diagnosis.

As these problems grow more acute, many boards will become impractical to test using
either in-circuit or functional techniques. The way out of this dilemma is boundary-scan.

7.2: 100 Percent Boundary-Scan Testing

When boards incorporate boundary-scan components, the shift paths of these
components are connected to form a larger shift path on the board. Through this path, a
tester can access individual device leads, which serve as "virtual channels" providing control
and visibility that otherwise would have to come from physical ATE channels. Backdriving
is eliminated, test channel requirements are reduced, and access requirements for fixturing
are simplified. Boundary-scan also decreases or eliminates the need for hand probing of a
board to isolate faults, easing the diagnostic chore.

Boundary-scan, moreover, simplifies test development. By increasing the board's
controllability and observability, boundary-scan makes it possible to partition the board
test program to simplify test generation. The board test applications discussed in this
chapter use one of the boundary-scan instructions defined by the standard: INTEST,
RUNBIST, or EXTEST.

7.2.1: Checking Internal Logic with INTEST

Board test applications that require the highest possible fault coverage — such as system
test or field return testing — include a comprehensive check for defects in the internal
logic of the board's components. The INTEST instruction serves this function, allowing a
tester to use the boundary-scan path to check the structural integrity of internal device
logic. The tester can control the internal logic at device inputs and observe the results at
device outputs.

The INTEST instruction usually cannot provide a complete gate-level test, however,
because the quantity of data that would have to be clocked through the shift path to test
a complex sequential IC would bog down test times. INTEST therefore must be
augmented by other test-oriented circuitry in large, complex devices.

Sometimes the obvious choice is partial or full internal scan, which works very well for
the static logic structures embedded in gate arrays. An IC having both internal scan and
boundary-scan can be tested in the INTEST mode from the edge of the board, using
patterns from incoming inspection or device test to provide nearly perfect gate-level fault
coverage.

84

Boundary and internal scan techniques are not good for dynamic logic used in
microprocessors and their peripherals because patterns can't be applied fast enough to keep
dynamic devices alive. Moreover, adding scan capability in a highly repetitive logic
structure such as a memory chip would double or triple the size of the device. An
emerging alternative for these types of devices is built-in self-test (BIST), which designs
test circuitry into the chip itself.

7.2.2: Implementing Chip Self-Test Using RUNBIST

In a boundary-scan IC containing BIST, provision of the RUNBIST instruction allows
the test access port (TAP) to become the tester's means of accessing the BIST circuitry.
The tester instructs the BIST circuitry on how to initialize the self-test, which typically
uses pseudo-random pattern generation to create stimuli, and signature analysis for
checking device response. The results of the signature analysis then are read from the shift
path by the tester.

The internal fault coverage provided by BIST varies greatly. If coverage is very high, no
supplemental testing by the automatic test equipment (ATE) is required. If coverage is
reasonably good, a tester might supplement BIST with external patterns. Another
possibility is that the BIST circuitry is only intended to test pieces of logic buried deep in
the chip (logic that would otherwise be difficult for a tester to get at from the I/O pins),
leaving the rest of the chip to be tested by more conventional means.

7.2.3: Verifying Board Interconnects Using EXTEST

Production board testing usually assumes that incoming inspection already has screened
out nearly all components with internal defects and, therefore, concentrates on detecting
the most common process faults: shorts and opens in device interconnections and stuck-at
pin faults. If boards were composed entirely of boundary-scan parts, the EXTEST
instruction could be used to do all this.

Faults detectable when using EXTEST interconnect testing occur between
boundary-scan devices, and between these devices and primary inputs or outputs —
which must be connected to ATE channels. For digital portions of a board, EXTEST
interconnect testing can provide fault coverage and diagnostic resolution far superior to
that achieved through using manufacturing defect analyzers (MDAs) and in-circuit test
systems.

In contrast with the in-circuit approach, moreover, EXTEST doesn't require the tester
to have direct physical contact with individual device leads. Instead, a test system can
control and observe boundary-scan device leads by clocking data to and from their
associated shift-register cells (Figure 7-2). Thus, device pins along the boundary-scan
path become the tester's "virtual channels" on the board. The test system can apply test
patterns and capture response data through these virtual channels, much as it does through
conventional ATE channels.

85

Figure 7 -2 : Interconnect testing using EXTEST.

Pattern generation also is simplified when boundary-scan testing is used to verify board
interconnects, because failures don't have to be propagated through complex chips. Pattern
generation algorithms have been developed that provide 100 percent fault coverage with
minimal data size for both opens and shorts by using what are known as "counting"
patterns [3]. These patterns can be generated automatically by using information extracted
from netlist and boundary-scan configuration databases.

Since all boundary-scan device pins must be tested in both the logic-0 and logic-1
states to test the interconnect, 100 percent device-pin fault coverage is achieved during
these tests. Thus, much more than the board interconnect is being tested. Each IC is
shown to be basically functioning and the various interconnections — from silicon to lead
bonds, from solder bonds to the circuit board itself — are shown to be intact.

While the counting patterns are fast and efficient, they do not provide the basis for
good diagnosis. The reason is that many faults can cause tests to fail in an identical
manner, a phenomenon known as fault aliasing and confounding [4].

The best means of dealing with this limitation is to use the counting patterns to identify
failing networks and then to apply additional "walking" patterns (so called because they
"walk" through the circuit, testing it by setting all networks except the failing one to
logic-l or logic-0) to provide information from which a precise diagnosis can be drawn.
These patterns are also called "adaptive" patterns [4,5] because they are generated and
applied by the ATE to the board immediately after a failure occurs, based on the specific
nets that have failed.

86

A boundary-scan interconnect-fault diagnosis algorithm correlates the mass of serial
response data shifted out of the boundary-scan path with topological data to identify
physical defects and their locations on the board. Properly done, this method achieves
diagnostic resolution comparable to a bed-of-nails tester for identifying shorts. It also
gives superior resolution in pinpointing opens, because of the improved board visibility
achieved by having boundary-scan cells at each chip pin.

EXTEST will be the most extensively used of boundary-scan's various modes for
loaded-board testing — not only because it deals with the interconnect faults described
above, but also because it can be used to test mixed-technology boards containing both
boundary-scan and conventional components. This application will be detailed in the
remainder of this chapter.

7.3: Test-Access Strategies for Mixed-Technology Boards

Structural testing for an ideal board — one implemented exclusively by using
boundary-scan components — is a fairly simple matter. Such boards are and will likely
continue to be rare, however. Although boundary-scan is proliferating rapidly in gate
array and standard-cell ASICs, it will advance only gradually and over a period of years in
commercial components. In fact, the extra silicon or device leads required to implement
boundary-scan may preclude its ever being used in chips such as small logic devices and
some memory chips.

In consequence, mixed-technology boards populated by both boundary-scan and
conventional components will predominate for the foreseeable future. Testing of these
boards will combine boundary-scan testing with traditional in-circuit or functional testing
of the conventional circuitry.

Analog components are not generally applicable to boundary-scan, so their board
networks would require physical access if analog in-circuit testing is desired. Often, the
extra power of having the full capability of ATE channels available at specific points on
the board can make significant improvements in programming time, in test and diagnostic
throughput, and in quality.

For most mixed-technology boards, having physical access to some of the board's
networks will be the most critical factor in determining the economics of structural
testing. The decision on which networks have fixture access must be made with a
particular test strategy in mind during physical layout of the board.

Circuit designers must therefore convey to layout people both a knowledge of the virtual
access provided by the leads of boundary-scan chips on the board, and the access
requirements imposed by the specific test strategy to be implemented. This
"design-for-access" methodology guarantees full access to a board through a combination
of physical and virtual test channels.

The range of access strategies available for testing mixed-technology boards are listed
below, in order from simplest to most difficult. It should be noted that the more complex

87

strategies can contain one or more elements of simpler ones.

1. A standard in-circuit strategy is used when all the board's networks are fully
accessible via bed-of-nails fixturing, providing contact to boundary-scan
components and conventional logic on the board.

2. A virtual interconnect strategy combines nail-less testing of pure boundary-scan
networks with standard in-circuit testing of conventional components.

3. A virtual in-circuit strategy tests individual non-scan components one by one; the
leads of the device under test (DUT) are connected either to physical ATE
channels via a fixture or to the virtual channels provided by the I/O pins of
neighboring boundary-scan parts.

4. A standard cluster-test strategy groups non-scan devices together and tests them
functionally through test nails at the cluster's periphery.

5. A virtual cluster-test strategy is applied when nails cannot be placed around a
cluster; instead, the virtual channels associated with boundary-scan devices are
used to test the cluster.

7.3.1: Standard In-Circuit Testing

If all board networks are accessible to traditional fixturing, a full bed-of-nails in-circuit
test approach can be employed, as illustrated in Figure 7-3 (as in all the diagrams that
follow, the Xs in Figure 7-3 represent physical tester-access points). While this might
appear to be an overly conservative strategy (since a primary advantage of boundary-scan is
to permit nail-less networks), a full bed-of-nails environment provides significant
advantages. For one thing, all shorts testing can be done prior to powering up the board.
Further, device patterns that achieve 100 percent pin-fault coverage for complex
boundary-scan devices are made easy when ATE channels are used in conjunction with
the boundary-scan DUT through the EXTEST instruction.

Stimulus applied by ATE channels is captured by the boundary-scan input cells.
Stimulus shifted into boundary-scan device output cells is captured by ATE channels.

This procedure can be performed without requiring ATE channels to be simultaneously
presented to the DUT. Taking advantage of multiplexing, DUT leads can be split into
subsets that are tested independently, dramatically decreasing the channel count that
would otherwise be required; the benefits of this approach are most significant when
boundary-scan is present on the largest components on the board.

88

Figure 7-3: Standard in-circuit testing.

Diagnosis of open-circuit faults using boundary-scan devices is much better than with
conventional ones in a bed-of-nails environment. With boundary-scan, opens can be
isolated down to a single network without the aid of manual probing. Without
boundary-scan, an open that causes a device failure can be properly identified only
through manual probing. On double-sided SMT boards, this can be prohibited by device
packaging and by fixture designs that do not allow access for hand-held probes.

7.3.2: Virtual Interconnect Testing

Leaving probes off networks that consist only of boundary-scan device interconnects can
simplify in-circuit fixturing. In this virtual interconnect strategy, the only new element is
that the EXTEST mode is used to test boundary-scan networks via the virtual channels
provided by boundary-scan IC leads. Because all conventional chips are surrounded by
physical test channels, they are tested by using existing in-circuit techniques and tools
(Figure 7-4).

89

Figure 7-4: Virtual interconnect testing.

7.3.3: Virtual In-Circuit Testing

Virtual in-circuit testing, which accesses some or all of a DUT's leads via virtual
channels provided by boundary-scan device I/O pins (Figure 7-5), retains the
programming and diagnostic advantages of conventional in-circuit testing. Because it
further reduces nail counts, however, this approach eases in-circuit testability problems
stemming from physical access and overdrive restrictions.

A typical non-scan device tested by virtual in-circuit testing would be a small-,
medium-, or large-scale integration (SSI, MSI, or LSI) IC whose test can be pulled from
an in-circuit pattern library associated with the tester being used. These patterns are in
parallel format because that's the way in which they have traditionally been applied.

90

Figure 7-5: Virtual in-circuit testing.

While DUT pins connected to normal ATE channels are controlled conventionally using
these parallel-format channels, the DUT pins actually serviced by virtual channels must be
tested by using serial data. Many combinational testers can handle this requirement; thus,
special scan-test hardware might not be needed.

Special data serializing software, though, is needed both for pattern serialization and
fault diagnosis. Serialized patterns become a normal part of the automatic in-circuit
programming, test, and diagnostic process.

Virtual in-circuit testing consumes local memory rapidly. While a conventional,
parallel-format test pattern takes up only one location in a tester's channel memory, a
serialized pattern requires many memory locations because of the repetitive shifting
operations involved in testing through the boundary-scan path. Judicious use of hardware
looping capabilities is required to compress consecutive "don't-care" states into one
memory location to conserve space.

7.3.4: Standard Cluster Testing

In conventional cluster testing, chips that are inaccessible by using in-circuit techniques
can be handled by grouping them together with other chips and placing nails or special test
points around the cluster's periphery (Figure 7-6). A combinational test system can handle
these clusters by using current functional test techniques and existing functional diagnostic
tools such as guided probing, fault dictionary, or a combination of the two. Other parts
of the board can be tested using elements of access strategies already described.

91

Figure 7-6: Standard cluster testing.

Standard cluster testing is valid for mixed-technology boards as long as the clusters can
be accessed through nails or special test points. But a growing number of test applications
effectively block all physical access to a board. In such cases, test engineers can once again
resort to the board's boundary-scan path to get virtual access.

7.3.5: Virtual Cluster Testing

As is the case in the virtual in-circuit approach, virtual cluster testing uses a mixture of
real test channels and virtual access through the boundary-scan path. Employing virtual
access to test non-scan chips and device clusters as well as device interconnects (Figure
7-7), this strategy will be called upon often when edge-connector-based functional testing
is the only available option.

As in standard cluster testing, the program for a virtual cluster test is generated by using
logic and fault simulation. The test engineer creates a simulation model of the cluster, by
using netlist-editing tools to extract the requisite device and interconnect data from a
full-board netlist.

The engineer then writes test stimuli, which are applied to the cluster model in logic and
fault simulation. The virtual channels, supplied by boundary-scan device I/O pins, are
modeled as static ATE channels, which eliminates the need to simulate repetitive shifting
operations.

92

Figure 7-7: Virtual cluster testing.

Fault simulation grades the fault coverage provided by the test patterns written by the
programmer. Near-perfect coverage of stuck-at pin faults should be the goal here,
because faults that slip through this test will be more expensive to pinpoint in later test
stages. With tomorrow's VLSI clusters likely to rival today's VLSI boards in complexity,
achievement of this level of fault coverage will be an increasingly time-consuming task.

Board designers can help counter this trend by minimizing the size and sequential depth
of non-scan clusters on the board. One way of breaking up a large block of sequential
logic is to intersperse it with more boundary-scan components or physical access points to
improve cluster controllability and observability. Designers also must take into account the
basic static rate of virtual channels and must add physical access points or board-level
BIST for dynamic logic.

When fault simulation indicates that the desired level of fault coverage has been reached,
the stimulus and response data from the simulator is postprocessed for use by the target
board test system. Converting the simulator's parallel-format test patterns into the serial
data required for testing through the boundary-scan path, however, will require more than
the software serializer described earlier.

93

Virtual cluster testing is the most pattern-intensive test strategy yet discussed, requiring
a tester to clock many millions of bits through the boundary-scan path to functionally test
a large cluster. One reason for this is that the boundary-scan device I/O pins used as
virtual channels in this application are far less intelligent than real ATE channels. They
have neither the data formatting (i.e., return-to-zero, return-to-one) nor the complex
timing capabilities that an ATE channel routinely employs to convey large amounts of data
with each pattern.

Software serializers, adequate for the more limited needs of virtual in-circuit testing,
cannot produce efficiently the sheer volume of data required for a virtual cluster test due
to the limitations of ordinary ATE channels, which are optimized for applying relatively
shallow pattern depth across hundreds of channels. Instead, test engineers will need to
apply special scan-test hardware to the task.

Such hardware would be able to handle extremely long serial data streams and could
apply data-compression techniques to minimize testing times and storage requirements [6].
Scan hardware also can serialize a variety of test data for use in virtual cluster tests:
parallel-format patterns or truth tables output by simulators or manual programs for
testing most digital logic and possibly algorithmic patterns created by hardware number
generators for testing memory devices (including signature analyzers for response
compaction).

In addition to the problems associated with serializing patterns for go/no-go testing,
automated diagnosis of cluster failures is important. Guided probing in a scan environment
has been used for some time on boards with devices built by using internal-scan
techniques such as level-sensitive scan design (LSSD) [7] and is applicable to virtual cluster
testing through the boundary-scan path.

Guided probing can be integrated with fault dictionary diagnosis, which identifies likely
fault locations without requiring physical access to the board [8,9] and can therefore be
used even in situations where direct access to internal nodes of the loaded board is
limited. To supply virtual cluster test diagnostics, the guided probe and fault dictionary
tools must be adapted to accept serial response data clocked out of the boundary-scan
path, just as they now accept parallel response data from conventional ATE channels.

7.4: Conclusion

On boards implemented exclusively with components designed according to IEEE Std
1149.1, boundary-scan testing allows automated generation of patterns with 100 percent
coverage of digital structural pin-level faults, which account for the overwhelming
majority of board failures. But because most boards in the foreseeable future will mix
boundary-scan devices with conventional ICs, boundary-scan testing typically will be used
in conjunction with current in-circuit and functional cluster test techniques.

This chapter has described five strategies for accessing, testing, and diagnosing
mixed-technology boards. Where restricted physical access hampers traditional test
methodologies, virtual access provided by boundary-scan device leads might offer the only

94

means of assuring a comprehensive test of a complex board.

When a test application demands both physical and virtual access, these requirements
must be taken into account during board design and layout. The designer must concentrate
on breaking up the board's conventional circuitry as much as possible into isolated
individual ICs or into relatively small clusters, which might be interspersed with
boundary-scan chips for further improved visibility and controllability. Information about
both design (i.e., data about which chips are boundary-scan ones and which are
conventional) and test (i.e., the physical/virtual access requirements of the test strategy)
must be factored into board layout to guarantee successful implementation of the test.

7.5: References

[1] D. Hebert and J. Arabian, "Implications of the Technique for Dynamic High
Speed Functional Testing," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1982, pp. 548-556.

[2] P. Hansen, "Converting Device Test Vectors to an In-Circuit Board Test
Environment," IEEE International Test Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, Calif., 1985, pp. 972-978.

[3] P.T. Wagner, "Interconnect Testing with Boundary-Scan," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1987, pp. 52-57.

[4] C. W. Yau and N. Jarwala, "A New Framework for Analyzing Test Generation
and Diagnosis Algorithms for Wiring Interconnects," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 63-70.

[5] P. Goel, M.T. McMahon, "Electronic Chip-in-Place Test," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1982, pp. 83-90.

[6] P. Hansen, "Testing Conventional Logic and Memory Clusters Using
Boundary-Scan Devices as Virtual ATE Channels," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989,
pp. 166-173.

[7] P. Hansen, "New Techniques for Manufacturing Test and Diagnosis of LSSD
Boards," IEEE International Test Conference Proceedings, IEEE Computer Society
Press, Los Alamitos, Calif., 1983, pp. 40-45.

[8] J. Richman, K.R. Bowden, "The Modern Fault Dictionary," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1985, p. 696.

95

[9] V. Ratford, P. Keating, "Integrating Guided Probe and Fault Dictionary: An
Enhanced Diagnostic Approach," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1986, pp. 304-311.

96

8. A Test Program Pseudocode†

Rodham E. Tulloss and Chi W. Yau
AT&T Bell Laboratories

Engineering Research Center
Princeton, NJ 08540, U.S.A.

A product utilizing the IEEE Std. 1149.1 boundary-scan method, architecture, and
protocol [1] is hypothesized. The product is assumed to contain a significant number of
large- and very large-scale integration (LSI and VLSI) integrated circuits (ICs) equipped
with the standard architecture and test access port (TAP). The parts equipped with
boundary-scan are assumed to provide a single command activating all built-in self-test
(BIST) capability which is available to the purchaser of the part in question. The
pseudocode of a circuit board test program is laid out demonstrating:

• the initialization of the board for testing;

• the necessary steps to validate the test circuitry in those ICs equipped with
boundary- scan;

• the verification of board-level interconnect circuitry;

• the activation of self-test features in parts equipped with the TAP and included on
the boundary-scan path; and, very briefly,

• the testing of non-boundary-scan parts on the board.

The data available for diagnosis and its use in diagnosing the board are discussed briefly.

8.1: Introduction

This chapter describes pseudocode for a test program of a circuit board containing a
significant number of chips designed with BIST and boundary-scan. This format has been
chosen in order to present an operational view of the meaning of IEEE Std 1149.1.

Imagine that the "lines" of pseudocode become comments in the completed test
program. In order to highlight the portions of pseudocode, they are presented indented in
the COURIER font.

The boundary-scan standard provides for a 4-wire interface: test data input (TDI), test
data output (TDO), test mode select (TMS), and test clock (TCK). An additional test
logic reset (TRST*) line is optional and is predominantly used to provide protection
against bus conflict during power up. There is no restriction in the standard regarding
whether a single serial path is made up by connecting TDO and TDI lines of the chips

† An earlier version of this paper was presented at the First European Test Conference,
Paris, April 1989.

EH0321 -0/90/0000/0097$01.00 © 1990 IEEE 97

that have boundary-scan on a given board. A multiple ring configuration or a star
configuration can also be designed by using chips with the features of the standard.

The pseudocode below is written:

• as if there were a single 5-wire port on the board under test; and

• as if there were a single serial path through all the chips on which boundary-scan is
implemented.

For diagnostic purposes, we have assumed a duplication of the TMS line as shown in
Figure 8-1. (This structure is also used in Chapter 9).

One of the TMS lines (TMS1) should be used to apply the TAP protocol to the
even-numbered chips; and the other (TMS2), to apply the protocol to the TAPs of the
odd-numbered chips. The presence of the optional TRST* line in an actual
implementation is probable.

At the board level, one might assume that the first TDI on the ring, the last TDO on
the ring, TCK, and test mode select lines are all available at board connectors. In
multi-board systems, it is more likely that concerns over clock distribution and test mode
select line coordination would lead to a master bus-controller. This device might be a
stand-alone entity or it might be a peripheral to a programmable device that had other
system (non-test) functions. It would source and sink the boundary-scan signals and
provide protocol conversion between:

• commands arriving over a back-plane from a test and diagnostic processor; and

• the ICs constituting the boundary-scan ring.

In this paper it is not assumed that there is a master bus controller. If a master bus
controller is present, the program should be read as providing instructions to the master
bus-controller that then would generate the protocol necessary to do the various tasks. In
case there is more than one serial path (ring) or even more than one test port, the
program will become more complicated, especially in the case of interconnect testing
where coordination of events between rings with separate TCK and TMS lines will be of
great concern.

We assume that before this test begins, transistors, capacitors and other analog
components have been checked by a process tester or have such high in-coming and
process/assembly quality levels that such testing can be rationally eliminated. Alternative
methods of testing these components are not excluded: They could be included as part of
a lower level package and tested at that level rather than at the board level; or an
in-circuit tester could be fixtured in such a way as to do in-circuit testing on
non-boundary-scan parts and also to provide the necessary resources to carry out the
portion of the test that is dependent on boundary-scan.

98

ICl

IC2

IC3

IC4

ICeven

Figure 8 - 1 : Board level interconnection of components.

99

In the electronic industry as a whole, the time period in which there will be mixing of
boundary-scan and non-boundary-scan product on a single assembled unit is of
unpredictable length. On the other hand the introduction of products:

• implemented in chip-on-board, double-sided surface mount boards, and
silicon-on-silicon technologies;

• requiring encapsulation in controlled environment chambers; or

• requiring extensive, post-installation, diagnostic support features

are likely to require boundary-scan on all ICs involved — even today. Of course, it is one
goal of the engineers and firms who participated in the effort to establish IEEE Std 1149.1
that lower cost test facilities will be made possible as a result of successful standard
promulgation. In other words, part of the desired effect of standardization is to provide a
sufficiently simplified test interface so that the cost of board-level ATE could be reduced
by an order of magnitude without a loss of test effectiveness.

The following sections contain the pseudocode and its explanation. A number of
definitions of symbols and terms will be needed and these are defined in Table 8-1. By
"odd(even)-numbered chips" we mean those chips in the odd (even) numbered positions
on the boundary-scan path starting with the one nearest the TDI board-level input as the
first.

You should become familiar with IEEE Std 1149.1, especially the TAP controller state
diagram and the general operation of the standardized test logic, before reading further.

8.2: Initialization

First, the board is placed in the test fixture and powered up [2]. The parts, which
include the boundary-scan standard architecture and TAP, will offer protection against
damage caused by bus conflicts that might occur momentarily during the power-up [1].
This is done by a required reset capability that can be achieved by the use of an optional
reset line (TRST*) or by internal chip design features. Whichever method is used, the
finite state machine (FSM) of the TAP control circuitry is forced to the Test-Logic-Reset
controller state.

1. POWER UP ON BOARD. BOUNDARY SCAN TEST-CIRCUITRY GOES INTO

RESET STATE. WHERE POWER-UP RESET REQUIRES THE USE OF THE

BOUNDARY-SCAN OPTIONAL RESET LINE, THIS LINE IS ACTIVATED BY

TOGGLING FROM THE INACTIVE (HIGH) TO THE ACTIVE (LOW) STATE. IN

ADDITION, BEFORE RUNNING THE FOLLOWING TESTS, AN LBSR BIT LONG

SAFE VECTOR SHOULD BE LOADED INTO THE BOUNDARY-SCAN DATA

REGISTERS USING THE SAMPLE/PRELOAD INSTRUCTION. THIS WILL

ALLEVIATE POTENTIAL BUS CONTENTION PROBLEMS.

100

Table 8 - 1 : Terms used in this chapter.

L B S R T o t a l l e n g t h o f a l l bounda ry - scan d a t a r e g i s t e r s

on t h e boa rd
L E B S T o t a l l e n g t h o f a l l b o u n d a r y - s c a n d a t a r e g i s t e r s

i n even-numbered c h i p s
L O B S T o t a l l e n g t h o f a l l bounda ry - scan d a t a r e g i s t e r s

i n odd-numbered c h i p s
L I R T o t a l l e n g t h o f a l l i n s t r u c t i o n r e g i s t e r s o n

t h e boa rd
L E I R T o t a l l e n g t h o f i n s t r u c t i o n r e g i s t e r s i n

even-numbered c h i p s
L 0 I R T o t a l l e n g t h o f i n s t r u c t i o n r e g i s t e r s i n

odd-numbered c h i p s
MDR Maximum number of data registers per chip on

the board
N Number of chips with boundary-scan on the board
P Period (in TCK clock cycles) of single entry into

the Pause-DR or Pause-IR controller state
Tx Number of interconnect tests required by the board

8.3: Test Circuitry Check

A known bit pattern, available in the ICs equipped with boundary-scan, assists in
verifying that the serial path through the devices is intact. This technique was in use prior
to the development of I E E E Std 1149.1 [3,4]. In the case of I E E E Std 1149.1, the pattern
consists of a '01' in the two lowest order bits of the instruction register. This pattern is
required to be loaded automatically by the test circuitry when in the Capture—IR
controller state. When configured through the instruction registers of all the chips in this
controller state, the serial path will pass through a long composite register having '01' at
intervals known to the test programmer or to a test development tool used by the test
programmer. This is the case because it is a further requirement of the standard that
documentation of boundary-scan parts provide the lengths of all instruction and data
registers in the boundary-scan test logic.

2. USING THE BOUNDARY-SCAN CLOCK (TCK) AND THE 2 TEST MODE

SELECT LINES (TMS1 and TMS2), ALL BOUNDARY-SCANNABLE PARTS ARE

PLACED IN THE INSTRUCTION REGISTER SELECT CONTROLLER STATE

(SELECT-IR-SCAN).

101

Beginning with the test circuitry of all ICs in the Test—Logic—Reset controller state, this
is accomplished in three cycles of TCK. Both TMS lines must provide the sequence "Oil'
— one bit is shifted in during each clock cycle.

3. NOT CONSUMING ANY TCK CLOCK PULSES, CONFIGURE RECEIVER ON TDO

TO RECEIVE (LIR+2) BITS. EXPECTED VALUES WILL BE THE

CONCATENATED CONTENTS OF THE INSTRUCTION REGISTERS (EACH IR WILL

CONTAIN A VECTOR OF THE FORM [X...X01}) FOLLOWED BY {01}.

CONFIGURE DRIVER ON TDI TO SEND (LIR+2) BITS CONSISTING OF THE

SERIAL VECTOR {01} CONCATENATED WITH LIR IS.

There are a number of steps that we have expressed in the form used for step 3. Our
intent is to indicate that preparation for serial input/output of vectors can be done as an
ATE background activity. It is simply the case that the vectors must be ready when the
next shifting activity is set to begin.

Note that the trailing '01' pattern detected by the TDO receiver will check the TDI edge
connector pin for common defects such as opens, shorts, and stuck-ats.

4. USING 2 TCK CLOCK CYCLES PROCEED TO THE SHIFT-IR CONTROLLER

STATE: BOTH TMS LINES TAKE ON THE VALUE 0 DURING BOTH CYCLES.

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.]

5. APPLY 0 ON BOTH TMS LINES FOR (LIR+1) TCK CYCLES THUS

SHIFTING THE DRIVER SUPPLIED SERIAL INPUT VECTOR INTO THE

BOUNDARY-SCAN PATH AND DUMPING THE PREVIOUS CONTENTS OF THE PATH

FOLLOWED BY {01}.

/* THIS ALLOWS A CHECK FOR A BREAK IN THE SCAN PATH AND ALSO

TESTS MANY STUCK-AT FAULTS IN THE SCAN PATH. THE CONNECTIONS IN

THE CLOCK AND TEST MODE SELECT DISTRIBUTION NETS WILL ALSO BE

CHECKED. IN CASE OF FAILURE OF THIS TEST, THE POINT IN THE

SERIAL SCAN AT WHICH WRONG VALUES ARE FIRST DETECTED IS CRITICAL

TO DIAGNOSIS. */

The loading of '1...1' into all instruction registers preload the instruction that will force
selection of the bypass data registers in preparation for the next step of the test.

6. WITHOUT CONSUMING TCK CYCLES, CONFIGURE RECEIVER ON TDO TO

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN

PATH) THE EXPECTED CONTENTS OF THE INSTRUCTION REGISTERS (AS IN

STEP 3) OF THE ODD-NUMBERED CHIPS AND A 0 FOR EACH EVEN-NUMBERED

CHIP; FOLLOW THIS SEQUENCE WITH {01}. SIMULTANEOUSLY CONFIGURE

THE DRIVER ON TDI TO SUPPLY THE SERIAL VECTOR COMPOSED BY

CONCATENATING {01} WITH (L0IR + |N/2|) 1S.

102

Starting with Step 6, the trailing '01' pattern is included mainly for program simplicity.
By this time, the integrity of the TDI edge connector pin has been checked. Therefore, a
trailing pattern is needed only when the last IC on the boundary-scan path is in the
bypass configuration. In this case, the minimum trailing pattern is a single-bit "1,' which is
needed to detect the stuck-at-0 fault associated with the bypass data register of the last
IC.

7. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE

ODD-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY SELECT

THE BYPASS DATA REGISTER IN THE EVEN-NUMBERED POSITION CHIPS.

/* STEP 7 REQUIRES 2 COORDINATED TEST MODE SELECT LINES. */

This action requires a minimum of 4 TCK cycles. The values required on TMSn (n = 1
or 2) are given in Table 8-2.

Table 8-2: Coordination of TMS lines.

TCK Cycle

1
2
†3
4
5

TMS1

1
1
0
0
1

TMS 2

1
1
0
1
1

Next TAP States

In Even ICs

Exitl-DR
Update-DR
RunTest/Idle
RunTest/Idle
Select-DR-Scan

In Odd ICs

Exitl-DR
Update-DR
RunTest/Idle
Select-DR-Scan
Select-IR-Scan

When the FSMs of the test logic of the even-numbered chips enter the
Select—DR—Scan controller state, the selected data register will be the bypass data register
because all instruction registers contain vectors of the form ' l . . . l . '

8. USING 2 TCK CYCLES, TAKE ALL ODD (EVEN) CHIPS TO THE

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 ON BOTH TMS LINES

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS

OPERATION.]

† This cycle is optional. However, if time is needed to prepare an input/output vector
for shifting, the third clock cycle in the above table can be stretched into many cycles
because after the third clock cycle, the boundary-scan FSMs of all the chips will be in the
Run —Test/Idle controller state. Maintaining v0' on both TMS lines will keep all FSMs in
that controller state until the ATE is ready to proceed. This technique can be used in
many similar steps below.

103

9. SHIFT SERIALLY THE PREPARED INPUT VECTOR INTO THE

BOUNDARY-SCAN PATH BY SUPPLYING (L0IR + |
 N/2 | +1) TCK PULSES WHILE

HOLDING BOTH TMS LINES AT 0.

/* THE CONTINUITY THROUGH THE BYPASS REGISTERS IN THE

EVEN-NUMBERED CHIPS HAS NOW BEEN CHECKED. IN CASE OF FAILURE OF

THIS TEST, THE POINT IN THE SERIAL SCAN AT WHICH WRONG VALUES

WERE FIRST DETECTED IS CRITICAL TO DIAGNOSIS. */

Note that the instruction registers in odd-numbered chips have again been pre-loaded
with the instruction that will cause the bypass data register to be selected in those chips
when the FSMs of their test logic enter the Select—DR—Scan state.

10. WITHOUT CONSUMING TCK CYCLES, CONFIGURE RECEIVER ON TDO TO

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION

REGISTERS OF THE EVEN-NUMBERED CHIPS AND A 0 FOR EACH

ODD-NUMBERED CHIP; FOLLOW THIS SEQUENCE WITH {01}.

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL

VECTOR COMPOSED BY CONCATENATING [01] WITH (LEIR + [
N/2]) 0S.

Loading the instruction registers in even-numbered chips with '0...0' preloads them with
the instruction that will cause selection of the boundary-scan data register for continuity
checking once the bypass data register continuity is confirmed in all chips. Note that we
must be careful about the values to be shifted into the boundary-scan data register so that
potential problems such as bus contention are avoided (see Step 14).

11. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE
EVEN-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY
SELECT THE BYPASS DATA REGISTER IN THE ODD-NUMBERED POSITION
CHIPS.

/* STEP 11 REQUIRES 2 COORDINATED TMS LINES. */

This action requires 4 TCK cycles. The sequences of values in Table 8-2, Step 7 (above)
on TMS1 and TMS2 are swapped — the sequence previously applied to TMS1 is applied,
this time, to TMS2 and vice-versa.

12. USING 2 TCK CYCLES, TAKE ALL EVEN (ODD) CHIPS TO THE

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING THE 0 ON BOTH TMS

LINES DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED

BY THIS OPERATION.]

104

13. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE

BOUNDARY-SCAN PATH BY SUPPLYING (LEIR + [
N/2] +1) TCK PULSES WHILE

HOLDING BOTH TMS LINES AT 0.

/* NOW CONTINUITY OF THE TEST PATH THROUGH ALL BYPASS REGISTERS

HAS BEEN CHECKED. */

14. WITHOUT CONSUMING TCK CYCLES: CONFIGURE RECEIVER ON TDO TO

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION

REGISTERS OF THE ODD-NUMBERED CHIPS AND SEQUENCES OF {X. . .X} OF

THE LENGTH OF THE BOUNDARY-SCAN DATA REGISTERS IN THE

EVEN-NUMBERED CHIPS; FOLLOW THIS SEQUENCE WITH {01}.

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL

VECTOR COMPOSED BY CONCATENATING [01] WITH A (L0IR + LEBS)BIT

VECTOR WHICH, WHEN SHIFTED INTO THE BOUNDARY-SCAN PATH, WILL

LOAD OS INTO THE SELECTED INSTRUCTION REGISTERS, AND THE SAFE

VECTORS INTO THE SELECTED BOUNDARY-SCAN DATA REGISTERS (SEE STEP

1).

15. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE

ODD-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY

SELECT THE DATA REGISTER IN THE EVEN-NUMBERED POSITION CHIPS.

/* STEP 15 REQUIRES 2 COORDINATED TMS LINES. */

This action requires 4 TCK cycles with TMS line signals as in Step 7, above.

16. USING 2 TCK CYCLES, TAKE ALL ODD (EVEN) CHIPS TO THE

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 ON BOTH TMS LINES

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS

OPERATION.]

The placing of v0...0' in all instruction registers of odd-numbered chips prepares them
to cause selection of the boundary-scan data register the next time the FSMs of the
odd-numbered chips go into the Select—DR—Scan controller state. Note that we must be
careful about the values that are shifted into the boundary-scan data register to avoid
potential problems such as bus contention (see Step 18).

17. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE

BOUNDARY-SCAN PATH BY SUPPLYING (L0IR+LEBS+l) TCK PULSES WHILE

HOLDING BOTH TMS LINES AT 0.

/* CONTINUITY IN THE BOUNDARY-SCAN DATA REGISTERS OF THE

EVEN-NUMBERED CHIPS HAS NOW BEEN CHECKED. THE FIRST BIT IN THE

105

SERIAL STREAM AT WHICH A WRONG VALUE OCCURS IS CRITICAL TO

DIAGNOSIS. */

18. WITHOUT CONSUMING TCK CYCLES: CONFIGURE RECEIVER ON TDO TO

RECEIVE A SERIAL VECTOR COMPOSED AS FOLLOWS: CONCATENATE

(INTERLEAVED IN SEQUENCE OF CHIP POSITION ON THE BOUNDARY-SCAN

PATH) THE EXPECTED CONTENTS (AS IN STEP 3) OF THE INSTRUCTION

REGISTERS OF THE EVEN-NUMBERED CHIPS AND SEQUENCES OF {X. . .X} OF

THE LENGTH OF THE BOUNDARY-SCAN DATA REGISTERS IN THE

ODD-NUMBERED CHIPS; FOLLOW THIS SEQUENCE WITH {01}.

SIMULTANEOUSLY CONFIGURE THE DRIVER ON TDI TO SUPPLY THE SERIAL

VECTOR COMPOSED BY CONCATENATING {01} WITH A (l£iR+I<)BS) B I T

VECTOR WHICH, WHEN SHIFTED INTO THE BOUNDARY-SCAN PATH, WILL

LOAD OS INTO THE SELECTED INSTRUCTION REGISTERS, AND THE SAFE

VECTORS INTO THE SELECTED BOUNDARY-SCAN DATA REGISTERS (SEE STEP

1).

The input vector used here is somewhat arbitrary because we do not plan to give an
example of further checking of continuity through optional, user-defined data registers. If
user-defined data registers are present, then the input vector of Step 18 would be slightly
more complex. The positions in the vector representing values that would be in instruction
registers at the end of the shifting sequence would be manufacturer-defined instructions
selecting some set of user-defined data registers. The values that would end up in
boundary-scan data register cells should still be "safe" (i.e., contention-free).

19. SELECT THE INSTRUCTION REGISTER IN CHIPS OCCUPYING THE

EVEN-NUMBERED POSITIONS IN THE SERIAL PATH. SIMULTANEOUSLY

SELECT THE DATA REGISTER IN THE ODD-NUMBERED POSITION CHIPS.

/* THIS REQUIRES 2 COORDINATED TMS LINES AND FOLLOWS THE METHOD

OF STEP 11. */

20. USING 2 TCK CYCLES, TAKE ALL EVEN (ODD) CHIPS TO THE

SHIFT-IR(DR) CONTROLLER STATE BY APPLYING 0 TO BOTH TMS LINES

DURING BOTH CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS

OPERATION.]

21. SHIFT THE PREPARED SERIAL INPUT VECTOR INTO THE

BOUNDARY-SCAN PATH BY SUPPLYING (LIR+L0BS+1) TCK PULSES WHILE

HOLDING BOTH TMS LINES AT 0.

/* BY THIS OPERATION YOU WILL HAVE CONFIRMED CONTINUITY THROUGH

THE BOUNDARY-SCAN REGISTERS OF ALL PARTS IN THE SERIAL PATH. THE

FIRST BIT IN THE SERIAL STREAM AT WHICH A WRONG VALUE OCCURS IS

CRITICAL TO DIAGNOSIS. */

106

To save space in this discussion, no additional data registers that might be in chips on
the board will be checked for continuity in this pseudocode. It would be wise to check
those paths in a real board should any exist. Such paths might contain registers read in
determining the results of self-testing of ICs. They might also be used in deterministic
scan testing of the on-chip logic of an IC or of groups of ICs. The method of checking
them is analogous to that used to confirm continuity through the boundary-scan data
register and the bypass data register.

The number of TCK cycles that have been employed in our test to this point can be
obtained from the following formula:

L I R + N + L B S R + 35

In all probability, the dominating value will be L B S R . It is worth noting that L B S R is
not computed merely by counting the number of boundary-scan input and output cells on
all the chips with boundary-scan. On chips with 3-state and bidirectional leads, there will
be cells added to the boundary-scan data register to provide control of those leads.

8.4: Interconnect Check

A set of deterministic patterns of verification of the interconnections between chips on
the board is assumed to have been prepared in advance. Note that if no optional data
registers exist, Steps 22-25 can be skipped.

22. SELECT THE INSTRUCTION REGISTERS IN ALL PARTS, CONSUMING 4

TCK CYCLES.

23. WITHOUT CONSUMING TCK CLOCK CYCLES, PREPARE A SERIAL INPUT

STREAM OF L I R OS TO BE LOADED AT TDI. SET OUTPUT BUFFER ON TDO

TO DONT CARE.

24. GO TO THE SHIFT-IR CONTROLLER STATE CONSUMING 2 TCK CYCLES.

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.]

25. LOAD THE INSTRUCTION THAT WILL SELECT THE BOUNDARY SCAN DATA

REGISTER IN ALL PARTS BY LOADING THE INPUT PREPARED IN STEP 23.

THIS REQUIRES (LIR-1) TCK CYCLES.

26. WITHOUT CONSUMING TCK CYCLES, PREPARE TO LOAD THE FIRST

BOUNDARY-SCAN INTERCONNECT TEST VECTOR VIA TDI. THE LENGTH OF

THIS VECTOR AND ALL SUBSEQUENT INTERCONNECT TEST VECTORS IS LBSR

BITS. AT THE SAME TIME, SET THE OUTPUT EXPECT BUFFER ON TDO TO

DONT CARE. IT IS THE SAME LENGTH AS THE INPUT VECTOR.

27. PROCEED TO THE SHIFT-DR STATE. THIS CONSUMES 5 TCK CLOCK

CYCLES. [NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.]

107

28. LOAD THE PREPARED INTERCONNECT TEST VECTOR. THIS CONSUMES

(LBSR-1) TCK CYCLES.

29. PROCEED TO THE UPDATE-DR STATE TO PLACE THE LOADED VALUES ON

THE INTERCONNECT LINES. SIMULTANEOUSLY, PLACE ANY VALUES

REQUIRED ON PRIMARY CIRCUIT PACK EDGE CONNECTOR LEADS ON THOSE

LEADS. THIS REQUIRES 2 TCK CYCLES.

30. PROCEED TO THE CAPTURE-DR STATE TO COLLECT THE TEST RESULTS.

THIS REQUIRES 2 TCK CYCLES.

31. WITHOUT CONSUMING TCK CYCLES, PREPARE THE NEXT INTERCONNECT

TEST VECTOR FOR LOADING ON TDI. SIMULTANEOUSLY PREPARE THE

EXPECTED OUTPUT BUFFER ON TDO WITH THE EXPECTED OUTPUT OF THE

INTERCONNECT TEST JUST CARRIED OUT.

32. PROCEED TO THE SHIFT-DR STATE TO UNLOAD THE TEST RESULTS AND

SIMULTANEOUSLY LOAD THE NEXT TEST. THIS REQUIRES 1 TCK CYCLE.

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.]

/* UNLOAD RESULTS OF TESTt-1 AND LOAD INPUT OF TESTt

SIMULTANEOUSLY */

33. APPLY THE INTERCONNECT TEST PREPARED IN STEP 31 AND READ AND

COMPARE OUTPUT OF PREVIOUS TEST TO EXPECTED OUTPUT PREPARED IN

STEP 31. THIS REQUIRES (LBSR-l) TCK CYCLES.

34. PROCEED TO THE UPDATE-DR CONTROLLER STATE TO PLACE THE

LOADED VALUES ON THE INTERCONNECT LINES AND CONDITION PRIMARY

CIRCUIT BOARD INPUTS — AS IN STEP 29. THIS REQUIRES 2 TCK

CYCLES.

35. PROCEED TO THE CAPTURE-DR CONTROLLER STATE AS IN STEP 30 (2

TCK CYCLES).

36. WHILE THERE IS ANOTHER INTERCONNECT TEST TO DO, GO TO STEP
31.

37. WHEN LAST INTERCONNECT TEST HAS BEEN INPUT, WITHOUT

CONSUMING TCK CYCLES, PREPARE A SAFE/CONTENTION-FREE INPUT

VECTOR FOR TDI; AND, SIMULTANEOUSLY, PREPARE AN EXPECTED OUTPUT

VECTOR FOR THE LAST INTERCONNECT TEST FOR THE TDO OUTPUT BUFFER.

38. PROCEED TO THE SHIFT-DR CONTROLLER STATE. (1 TCK CYCLE.)

[NOTE: 1 SHIFT CYCLE IS ACCOMPLISHED BY THIS OPERATION.]

108

39. UNLOAD THE LAST INTERCONNECT TEST RESULTS. (LBSR-l TCK

CYCLES.)

All output data must be saved for use by the diagnostic program that will evaluate the
interconnect test results. This evaluation can be done during the testing or following the
interconnect testing section of the test program. Condensation of test results in this part
of the test by a signature analysis approach is not acceptable in diagnostic situations. It is
possible that a GO/NOGO situation might use a compacted signature; however, for
efficiency of the test process, it might be better not to have to run a test twice to get the
full data needed for diagnosis. The actual error bit position is used in the diagnosis.

If there are small- and medium-scale integration (SSI and MSI) ICs between chips on
which boundary-scan is implemented, deterministic vectors can be applied to SSI/MSI
clusters in a manner identical to that done in applying the interconnect test. In fact, if the
diagnostic package is properly developed, the two tasks can be carried out with some
(possibly considerable) overlap.

The number of TCK cycles required to carry out the interconnect test is:

LIR + (T X + 1) (L B S R + 4) + 5

If SSI and MSI parts are to be tested using the boundary-scan path, then replace Tx in
the above equation with T X + T S S I + T M S I in which TSSI is the number of tests beyond Tx

needed to get adequate fault coverage of SSI parts and TMSI is defined analogously for the
number of tests needed for MSI parts.

The expected values of Tx have been computed. The worst case situation requires 2k

tests for open and stuck-at faults (where k is the maximum number of boundary-scan
data register output cells on a given net) and 21og2 (n+2) tests for bridging faults including
diagnosis (where n is the number of nets on the circuit board).

It is very clear that test length is dominated by the value of L B S R . For this reason, it is
very probable that future interconnect testing could be complicated by requiring
synchronization of test application on more than one boundary-scan serial path per circuit
board.

It might be the case that ATE input and output buffers on TDI and TDO can be set up
for many vectors in advance. IEEE Std 1149.1 provides for a pause state even in the
middle of shifting should ATE test vector buffers require reloading. If ATE buffers need
to be reloaded r times during shifting, then the time of test application will be extended
by a period of r(P+4) TCK cycles.

109

8.5: BIST Part Check

At this point, the integrity of the boundary-scan path, the integrity of the interconnect,
and the possibility of faults in the MSI and SSI logic that is surrounded by boundary-scan
paths will have been checked. There remains the task of testing the non-surrounded MSI
and SSI chips and the LSI and VLSI parts on the board. First, we do all we can with the
boundary-scan interface by checking the parts that have it and have BIST. Sometimes a
group of parts might be considered as a single part for these purposes. This means that the
capability of seeing parts individually and as part of a single "cluster" is important in the
ATE system software.

In the following, we assume that a "safe" vector has been loaded into the boundary-scan
data register through the last scan operation of the interconnect check (Section 8.4, Step
37). This alleviates many potential problems, such as bus contention, during execution of
the BIST program.

40. SELECT THE INSTRUCTION REGISTER IN ALL ICS AND LOAD THE

RUNBIST COMMAND IN ALL ICS THAT HAVE BIST.

/* EVERY IC WITH PUBLICLY-ACCESSIBLE BIST IS REQUIRED TO HAVE A

COMMAND THAT RUNS (SERIALLY OR IN PARALLEL) ALL BIST FEATURES

AVAILABLE TO THE PURCHASER OF THE PART. */

41. SELECT THE RUN-TEST/IDLE STATE IN ALL ICS.

42. SUPPLY THE NUMBER OF SYSTEM CLOCK PULSES EQUAL TO THE

LARGEST NUMBER REQUIRED FOR SELF-TESTING OF ANY IC IN THE

BOUNDARY-SCAN CHAIN.

/* THE TEST LOGIC IS REQUIRED TO BE OF STATIC DESIGN SO THAT

PARTS THAT COMPLETE THEIR SELF-TESTS WILL HOLD THE RESULTS OF

THOSE TESTS UNTIL THEY ARE POLLED. */

43. SCAN THE RESULTS OF SELF-TEST OUT OF THE DATA REGISTERS
(WHICH ARE SIGNATURE REGISTERS AUTOMATICALLY SELECTED BY THE
RUNBIST INSTRUCTION).

/* THE TEST SOFTWARE MUST PARSE THIS TEST SEQUENCE SO THAT THE

SIGNATURES FOR EACH CHIP CAN BE READ AND CHECKED SEPARATELY BY

THE TEST/DIAGNOSTIC SYSTEM. */

It is important to note that the expected values of the self-test signatures that are
scanned out in the last step are required to be supplied to IC purchasers in the data sheet
of the IC.

It is possible that for some reason (e.g., power dissipation) not all the chips can be
self-tested at once or that the self-test is carried out on a group of chips excluding

110

others. If this is the case, Steps 40 through 43 would be modified to test groups of chips
while others have their bypass data registers selected to reduce the length of the scan path
when unloading the self-test results.

8.6: The Remaining Chips

At this point, the parts on the board that have not been tested are the parts without
boundary-scan and those SSI and MSI parts not surrounded by boundary-scan. In early
implementations, it might be s simplification to test these parts on an in-circuit tester
while checking the passive components. However, if these parts have very good quality
histories, it might be acceptable to test them only as part of a functional test following
the test represented above in pseudocode. In the future, octal parts containing the
boundary-scan TAP, boundary-scan path, and eight bits of signature analysis register or
pseudorandom pattern generating register will be available from companies such as Texas
Instruments [9]. These parts would allow the surrounding of all SSI and MSI parts with
boundary-scan, thus reducing the problem of lack of coverage if in-circuit test were to be
used only to check passive components on a partially assembled board.

8.7: Comments on Diagnosis

Full implementation of BIST and boundary-scan at board level can greatly improve the
accuracy in diagnosing complex, high-density boards. The potential improvement comes
from two board-level testability features realized through BIST and boundary-scan:

• The self-test capability of all or most of the components on a board allows for easy
isolation of complex components with internal faults.

• The TAP serves as the common medium through which the results of chip-level
self-tests are polled or scanned out for diagnosis.

Compact, effective interconnect test patterns can be easily applied to the board under
test without suffering from many constraints commonly encountered by conventional
in-circuit testers. Specifically, boundary-scan helps eliminate most problems associated
with backdriving and test access limitation.

To fully exploit these advantages, however, the complete test response must be captured
for examination. Specifically, one has to determine the locations of the erroneous bits
contained in the test results to isolate those components that have failed the self-tests. As
for board-level faults such as short-circuits and opens, the positions of the failed bits are
also vital in pin-pointing the physical locations of these faults. For instance, a simple
algorithm for identifying interconnect failures requires that all responses from the
board-under-test to the [21og2 (n+2)] test patterns (n = number of nets on the board) be
examined [6]. The entire test set consists of the well-known [log2(n+2)] test patterns (the
counting sequence), that detect all interconnect failures, and of their complements. It is
interesting to point out that for GO/NO-GO testing, only the responses, or (for added
throughput) the compressed signature, corresponding to the first [log2(n+2)] patterns

111

need to be perused. The signature analysis approach can be particularly attractive when
the first-pass yield of a board is relatively high, and when sufficient empirical repair data
are available to support diagnostic techniques based on statistical pattern recognition [10].
Otherwise, the uncompressed responses to both the [log2(n+2)] patterns and their
complements need to be examined to achieve more precise fault isolation.

Other sophisticated diagnostic algorithms have been published that can achieve higher
diagnostic resolution than the algorithm mentioned above. Please refer to the literature for
an in-depth discussion of the various boundary-scan diagnostic techniques [7,8].

8.8: Conclusion

We have presented the outline of a complete program for testing boards equipped with
BIST and boundary-scan. The test program is designed to deal with the initialization of
the board under test, the verification of the boundary-scan test circuitry, the application
of interconnect test patterns through the TAP, and the verification of components with
BIST. Issues related to testing components without boundary-scan have been briefly
addressed. Finally, with reference to some of the published diagnostic techniques, we have
offered some comments on issues concerning the diagnosis of a board equipped with BIST
and boundary-scan.

8.9: Acknowledgment

We want to thank Colin Maunder for reviewing an earlier version of this paper and for
providing us with many valuable comments and suggestions.

8.1 Q: References

[1] IEEE Std 1149.1, Standard Test Access Port and Boundary—Scan Architecture,
IEEE, New York, 1990.

[2] Joint Test Action Group, Boundary—Scan Architecture Proposal — Version 2.0,
March 1988.

[3] C. L. Hudson, "Integrating BIST and Boundary-Scan," National Communications
Forum, 1988, pp. 1796-1800.

[4] D. R. Resnick and A. G. Bell, "Real World Built-in Test for VLSI," IEEE
Compcon, IEEE Computer Society Press, Los Alamitos, Calif., 1986, p. 436-440.

[5] D. R. Resnick, "Testability and Maintainability With a New 6K Gate Array," VLSI
Design, Vol. 4, No. 2, March-April 1983, pp. 34-38.

[6] P. T. Wagner, "Interconnect Testing with Boundary-Scan," IEEE International
Test Conference, 1987 Proceedings, IEEE Computer Society Press, Los Alamitos,
Calif., pp. 52-57.

112

[7] C. W. Yau and N. Jarwala, "A New Framework for Analyzing Test Generation
and Diagnosis Algorithms for Wiring Interconnects," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989,
pp. 63-70.

[8] N. Jarwala and C. W. Yau, "A Unified Theory for Designing Optimal Test
Generation and Diagnosis Algorithms for Board Interconnects," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 71-77.

[9] Texas Instruments, Inc., Testability: Test and Emulation Primer, Texas Instruments
Inc., Austin, Tex., 1989.

[10] C. W. Yau, "ILIAD: A Computer-Aided Diagnosis and Repair System," IEEE
International Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1987, pp. 890-898.

113

9. Diagnosing Faults in the Serial Test Data Path

Rod Tulloss and Chi Yau Lee Whetsel
AT&T Bell Labs Texas Instruments

Engineering Research Center 6500 Chase Oaks Boulevard
Princeton, NJ 08540, U.S.A. Piano, TX 75086, U.S.A.

9.1: Objective

Before the serial test data path can be used to test the chips on a board and, through
the boundary-scan registers, their normal functional interconnections, it must itself be
tested for common production defects — for example, solder shorts and opens. The
design of the instruction register within the IEEE Std 1149.1 architecture includes facilities
to assist in this task.

9.2: A Basic Path Test

The first step is to initialize the test access port (TAP) and instruction register. This can
be achieved by holding the test mode select (TMS) signal (which is broadcast to all
devices) high and applying five rising edges to the test clock (TCK). Where provided, the
optional test logic reset (TRST*) inputs can also be used for this task. At the end of this
process the TAP controller in each chip will be in the Test—Logic—Reset controller state
which will cause other circuitry in the IEEE Std 1149.1 architecture to be initialized. For
example, the instruction register's latched parallel output will be set to either the IDCODE
or the BYPASS instruction, depending on the availability of a device identification register
within the chip.

The second step is to move through the Run —Test/Idle, Select—DR—Scan, and
Select—IR—Scan controller states and enter the instruction register scanning sequence. The
initial Capture—IR controller state will cause the instruction register to be loaded with the
{X...X01} pattern as specified by the standard.f Note that, so far, the only connections
that have been involved are TMS and TCK. No shifting is needed during initialization.

By entering and remaining in the Shift—IR controller state for a number of TCK pulses
equal to 2 plus the number of bits in all instruction registers of all chips, the constant
patterns loaded into the least significant bits of the instruction registers in each chip will
be observed at the serial output of a board with an error-free serial path. An additional
2-bit sequence {01} is shifted into the serial input of the first chip to check that
connection and the part of the serial data path in the first chip that is between the fixed
bits loaded into its instruction register and its test data input (TDI) pin. For example, the
pattern at the serial output of a fault-free board containing three chips each having a
4-bit instruction register would be:

t As in IEEE Std 1149.1, we will use the convention that the least significant bit of a
register is that nearest TDO. The convention that bit streams are shown with the least
significant bit on the right is also adopted, so the 1 in the pattern shown will be shifted
out first, the 0 second, etc.

EH0321 -0/90/0000/0115$01.00 © 1990 IEEE 115

01XX01XX01XX01

where the bit at the right is shifted out first.

In the event of faults, the patterns from several chips will be observed followed by
erroneous data — allowing the nearest fault to the board's serial output to be localized.
This allows faults to be diagnosed and removed from the board one at a time. Consider,
for example, the circuit shown in Figure 9-1, which contains an open-circuit fault
between chips IC2 and IC3.

O p e n - C i r c u i t F a u l t

Figure 9 - 1 : Testing for an open-circuit fault in the serial path.

Again, assume that the instruction register in each chip contains four shift-register
stages and that a 2-bit {01} shift-terminating sequence is shifted into the board's serial
input from the automatic test equipment (ATE) or bus master chip. In this case, the
output observed at the board's serial output would be:

111111XX01XX01

where, again, the bit at the right is shifted out first. The open-circuit fault can be
detected because the pull-up on the TDI input of IC2 causes a constant 1 to be shifted
into that chip instead of the expected pattern, which starts {01} (read from left to right).

9.3: Use of the Device Identification Register

If a device identification register is present in the design, it is possible to combine a
check of the assembly process with a test of the integrity of the board-level serial test
data path by shifting all device identification codes out of the board in one pass. This
approach is adopted in some proprietary boundary-scan implementations — for example,
as discussed in [1].

As described in Chapter 5, all available identification codes from chips on a board-level
serial path will be shifted out for examination if the sequence {1111101000...} is applied at

116

TMS, one bit for each cycle of TCK. This sequence causes the TAP controllers in the
driven chips to move first to the Test—Logic—Reset state and then through Run—Test/Idle,
Select-DR-Scan, and Capture-DR to Shift-DR. In the Test-Logic-Reset controller
state, the output of the instruction register is set to the IDCODE instruction in all chips
that have the device identification register and to BYPASS in all other chips. As a result,
the available identification codes will be shifted out, interspersed with strings of Os output
from chips that do not contain a device identification register.

A complete description of this process, and of a method for decoding the output data
stream, is contained in Chapter 5.

9.4: More Complex Methods

The above diagnostic method adequately deals with many of the faults in the serial test
data path (e.g., internal faults in the instruction registers and external faults resulting from
solder opens and shorts). However, it does not guarantee the diagnosability of internal
faults in the scannable test data registers. Next, we will describe two diagnostic methods
that can alleviate this problem.

9.4.1: Method 1

This method requires the test data registers to be designed so that, in each of the
registers except the single-bit bypass register, the two bits nearest to the serial test data
output (TDO) can be initialized to a binary {01} pattern upon Test—Logic—Reset. With
this added hardware provision, the method of testing the integrity of a serial test data path
consisting of cascaded test data registers can be easily derived from the preceding
paragraphs. Because the bypass register consists of only a single bit, we cannot locate a
fault in the bypass bit of an arbitrary chip with only one scan pass. (Method 2 can be
adapted here for locating a fault in the bypass register within two scan passes.)

9.4.2: Method 2

This method saves the hardware overhead required by Method 1 at the expense of
decreased diagnostic throughput. This method applies after the instruction registers have
checked out as good by using the method described in Section 9.2. In this method, a
board is set up so that alternating integrated circuits (ICs) on the serial test data path
between bus master TDO and bus master TDI receive TMS signals from two different, but
coordinated, sources. This allows one set of chips (for example, those in the
even-numbered spots along the serial path) to be set up for instruction register scanning
while the other set (those in the odd-numbered spots) are set up for test data register
scanning. The fixed bits of the instruction registers in the even-numbered ICs can then be
used to diagnose the integrity of the selected test data registers in the odd-numbered ICs.

As an example, we will apply this method to the diagnosis of a fault in the bypass
register of an IC. Any fault equivalent to a stuck-at fault on the input or output of an
ICs bypass register can be located in no more than two scan passes. Because the bypass
registers and the instruction registers are scanned in two different controller states —

117

Shift-DR and Shift—IR respectively — this approach requires that two separate TMS
wires (designated TMSl and TMS2) be distributed. TMSl controls the odd-numbered ICs,
while TMS2 controls the even-numbered ICs as shown in Figure 9-2.

IC1

IC2

IC3

IC4

I Ceven

Figure 9-2: Board level connection of TAP pins for Method 2.

118

In Figure 9-2, it is assumed arbitrarily that there is an even number of ICs on the
board-level serial path, and this assumption is carried forward through the example in this
section. Note that TMS1 and TMS2 can come directly from the TAP bus master or they
can come from a board-level controller.

To illustrate this approach, let us assume that all chips on a board's test data path have
been initialized to the Test—Logic-Reset controller state. Then we can apply the following
control sequences on TMS1 and TMS2 so that, on each of two separate scan passes, half
of the chips at a time will be bypassed and the other half will have their instruction
registers scanned.

At the start of the test, all instruction registers are set to the BYPASS instruction by
holding the board's serial input at 1 and completing an instruction scan sequence. This
must contain sufficient clocks in the Shift—IR controller state for all instruction register
stages in all chips to be set to 1. This requires that the same control sequences are applied
to the two TMS lines — TMSl and TMS2. At the end of the instruction scan sequence,
the TMS lines are controlled such that all chips enter the Run — Test/Idle controller state.
At this point, the bypass registers in all chips have been selected for a following data
register scan sequence. From this starting state, testing proceeds as shown in Table 9—1.

Table 9 - 1 : Coordinated TMS values for method 2.

Clock
Cycle

1
2
3
4
5
6
• • •

M-3
M-2
M-l
M
• • •

N
N+l
N+2
N+3
N+4
N+5

•

TMSl

0
0
1
0
0
0

0
1
1
0

0
1
1
0
0
0

•

Odd Chip Con­
troller State

Run-Test/Idle
Run-Test/Idle
Select-DR-Scan
Capture-DR
Shift-DR
Shift-DR

Shift-DR
Exitl-DR
Update-DR
Run-Test/Idle

Run-Test/Idle
Select-DR-Scan
Select-IR-Scan
Capture-IR
Shift-IR
Shift-IR

• • •

TMS 2

0
1
0
0
0
0

0
1
1
0

0
0
1
0
0
0

•

Even Chip Con­
troller State

Run-Test/Idle
Select-DR-Scan
Select-IR-Scan
Capture-IR
Shift-IR
Shift-IR

Shift-IR
Exitl-IR
Update-IR
Run-Test/Idle

Run-Test/Idle
Run-Test/Idle
Select-DR-Scan
Capture-DR
Shift-DR
Shift-DR

• • •

119

Note that, in the first scan pass, TMS1 holds the odd-numbered components in the
Run—Test/Idle state for one more cycle than the even-numbered components, so that
shifting of the data/instruction registers of all components is synchronized. In the second
scan pass (starting at clock cycle N), TMS2 holds the even-numbered components in the
Run-Test/Idle state for one more cycle than that of the odd-numbered components.
Also, note that a fault in the bypass register of an odd-numbered component will be
located in the first scan pass, and a similar fault in an even-numbered component will be
located in the second scan pass.

In Table 9-2, control sequences similar to those in Table 9-1 are applied to diagnose a
stuck-at-1 fault in the bypass register of IC4. As in the earlier example, all chips are
depicted as having instruction registers that are four bits long.f

Table 9-2: Detection of a stuck-at fault.

Chip

Bus master TDO

IClast
• • •

IC6

IC5

IC4

IC3

IC2

IC1

Test 1

Expected

n/a

XXOl

XXOl

[0]

XXOl

[0]

XXOl

[0]

Observed

n/a

XXOl

XXOl

[0]

XXOl

[0]

XXOl

[0]

Test 2

Expected

1

[0]

[0]

XXOl

[0]

XXOl

[0]

XXOl

Observed

1

[1]

[1]

1111
Lc

[1]
LB

XXOl
LA
[0]

XXOl

The first incorrect value of observed output 2 is the 1 from IC4. However, this error
only implies that a bad bit occurred between points A and B (marked on Table 9-2). The

f Brackets are used to delimit the single-bit serial outputs from those chips that are
bypassed.

120

bad bit must occur first at B because the instruction register of IC4 has previously been
tested and found fault-free when using the method described in Section 9.2. Similarly, the
bit in IC4 stuck-at-0 can be detected by finding a 0 at position C in the analog of
observed output 2. Note that a stuck-at-0 fault in a bypass register can be detected, but
not located, by scan operations using only one TMS line. This is because, in the
single-TMS-line case, there is no way to place Is in registers between the fault and the
board-level serial output.

Note: Because a test must be performed for the stuck-at-0 fault in the bypass register
of IClast. it is necessary to shift an additional 1 into the TDI input of that component
in the second test. Stuck-at faults on TDI itself will have been tested by the test
described in Section 9.2.

9.5: Reference

[1] R. Lake, "A Fast 20K Gate Array with On-Chip Test System," VLSI Systems
Design, Vol. 7, No. 6, June 86, pp. 46-65.

121

10. In-Circuit Testing

Bob Russell
Bull HN Information Systems

38 Life Street
Brighton, MA 02135, U.S.A.

In the immediate future, occasions will frequently arise in which not all the integrated
circuits used to construct a loaded printed wiring board contain the features defined by
IEEE Std 1149.1. For such boards, there may be a continued need to use in-circuit test
techniques as a part of the overall test process. This chapter discusses how integrated
circuits (ICs) compatible with IEEE Std 1149.1 may be designed so that such testing of
non-conformant chips can be reliably performed.

10.1: Mixed In-Circuit and Boundary-Scan Testing

During in-circuit testing of chips on a board, it is necessary for the tester to be able to
determine the signals fed into the chip under test. On occasions, tester signals will be
applied to the outputs of chips that conform to IEEE Std 1149.1. Where these outputs
can be placed in an inactive drive state (e.g., high-impedance) or can be set to a logic
level that can be safely and effectively backdriven, this is readily achieved without risk of
damage. In other cases, backdriving must be carefully controlled to ensure that no damage
is caused to the chips that normally determine the signals to be supplied to the chip under
test. Such controls place limits on the length of test that can be applied and may therefore
adversely impact test quality.

It is advisable, therefore, to provide a means for setting the outputs of all chips —
including those compatible with IEEE Std 1149.1 — to a state that can be safely
backdriven during in-circuit test.

Figure 10-1 consists of six examples of system output (Fl through F6) and shows how
each can be placed in a state that can be safely backdriven under control of a signal ICT*
(ICT* = 0 for in-circuit test):

• Fl and F2 are set to high-impedance during the in-circuit test mode by using a
single added AND gate (or, if the high-impedance control was previously driven
from an AND gate, by adding an additional gate input).

• F3 represents one or more 3-state drivers requiring an extra AND gate for
independent enabling in the system mode.

• F4 and F5 represent, respectively, outputs capable of being backdriven from zero
(but not from one) and from one (but not from zero).

• F6 represents an output that can be backdriven when at either logic level and,
therefore, requires no modification.

EH0321 -0/90/0000/0123$01.00 © 1990 IEEE 123

Figure 10-1: Control of outputs into an overdrivable state.

NOTE: The open squares in this figure indicate boundary-scan cells;
the dotted line is the serial "TDI-to-TDO" connection between
them.

The following sections discuss methods for allowing chips compatible with the standard
to be configured such that they can be safely backdriven.

124

10.2: Method 1

The first method described is based on an extension to the test logic functionality
defined by IEEE Std 1149.1. It allows signals supplied to the loaded board by the
in-circuit test system to place the chip in an "in-circuit-safe" state. This is achieved
through use of the test pins defined by the standard and, as will be discussed, has a
minimum impact on the test and system logic in an IC.

The method is based on two properties defined by the standard:

1. The driver for the test data output (TDO) pin is a 3-state device that is active only
when data or instructions are being shifted through the chip. As a result, the
connection from the TDO output of one chip to the test data input (TDI) of the
next on the board-level serial path will be floating (i.e., not driven) while the
chips are set for normal (i.e., non test) operation of the on-chip system logic.

2. The TDI input to a chip must be designed such that, when not externally driven, it
behaves as though a logic 1 was being applied. Typically, but not universally, the
latter requirement will be met through inclusion of an internal pull-up resistor.
The method described here assumes that a pull-up resistor is present at the TDI
input of the next chip on the serial board-level path. Where this is not the case, a
pull-up resistor must be added externally to the connected chips to ensure correct
operation of the method described.

Typically, then, the TDO-TDI connection between a pair of chips will be pulled to
logic 1 when the components are in their normal (i.e., non-test) mode of operation —
that is, when their test access port (TAP) controllers are in the Test—Logic—Reset state.
Thus, if a bed-of-nails probe were to be connected to this signal, its state could be
changed to 0 without the need for backdriving provided that the chips had previously been
configured for normal operation (e.g., through application of a 0 at the test logic reset
(TRST*) input).

As shown in Figure 10-2, the addition of a small amount of logic at the TDO output
allows the condition where the TDO driver is inactive, but the driven connection is at
logic 0, to be detected and used to control entry into an "in-circuit-safe" test mode (i.e.,
to generate the ICT* signal required in Figure 10-1).

Where no TRST* input is available, the "in-circuit-safe" test mode can be entered by
holding TMS high and applying five or more rising edges at the test clock input (TCK) so
that the Test-Logic-Reset controller state is reached. The TDO-TDI connections can
then be pulled low as required.

125

Figure 10-2: In-circuit test application.

10.3: Method 2

As an alternative to method 1, the "in-circuit-safe" test mode may be provided through
inclusion of a dedicated instruction for the purpose. Such an instruction could be serially
entered into the chip prior to the application of in-circuit tests to other chips on the
board. In this case, the ICT* signal would be generated by the instruction decoder.

10.4: Method 3

In IEEE Std 1149.1 it is recommended that the "in-circuit safe" test mode be attainable
by means of data loaded into the boundary-scan path while the EXTEST instruction is
selected. This requires that the user knows which state at each pin can be safely
backdriven and also that the automatic test equipment (ATE) is able to control the chip's
TAP interface.

10.5: Conclusions

Several means of placing a chip compatible with IEEE Std 1149.1 in a state where its
outputs can be safely backdriven during in-circuit testing have been discussed. These
methods vary in the complexity of their use. Method 1 allows the chip to be set into the
"in-circuit-safe" state simply by applying a voltage level to the board through a
bed-of-nails probe. In contrast, method 2 requires that the ATE first causes an
instruction to be entered into the TAP controller of each chip that is to be backdriven.
Method 3 additionally requires that the ATE enters data into the boundary-scan path that
will set each chip output such that it can be safely backdriven and that it will then select
the EXTEST instruction.

The advantage of simplicity in attaining pre-test set-up in practical in-circuit testing
should not be ignored.

126

Part IV: Implementation Examples and
Further Applications

The chapters in Part IV discuss the implementation of IEEE
Std 1149.1 and show how it can be applied to tasks other than
loaded-board testing. Our aim in bringing together this material
is to illustrate as wide a range of potential applications as possible
and to provide a balanced view of the costs and benefits of using
the standard.

127

Chapter 11. Applications of IEEE Std 1149.1: An Overviewt

Peter Fleming
Texas Instruments

6500 Chase Oaks Boulevard
Piano, TX 75086, U.S.A.

The original motivation for the development of IEEE Std 1149.1 was the increasing
difficulty of testing newly-assembled or field-returned printed wiring boards (PWBs).
Among the causes of this difficulty are increases in the complexity of integrated circuits
(ICs) and use of highly-miniaturized interconnection and assembly technologies such as
surface-mount.

However, loaded-board tests are by no means the only test tasks during a product's life
that can be more effectively or more economically performed if IEEE Std 1149.1 is
adopted at the integrated circuit level. In fact, the range of applications is very broad —
ranging from wafer to system test and from prototype debugging to maintenance and
repair.

This chapter provides an overview of these applications and gives an introduction to the
more detailed discussions contained both in subsequent chapters and in the reprinted
papers contained in Part V.

11.1: Test Cost Reductions: Chip-to-System, Womb-to-Tomb

IEEE Std 1149.1 provides the foundation of a hierarchical approach to testing in which
tests developed for use at one level in a product assembly hierarchy (for example, for an
IC) can be reused at the various higher levels of assembly (for example, for testing the
loaded PWB). The idea is to obtain the maximum return for each investment in
design-for-test features or test data and thus reduce the overall cost of testing.

Not only does the standard provide the basis for an hierarchical approach from chip to
system that allows efficient and economic testing at one stage during the product's life (for
example, at production testing), it also supports testing throughout the total life cycle of a
product — from womb to tomb. This gives the opportunity for further test cost savings.

Like any other design-for-test technique, of course, these savings cannot be achieved
without incurring costs. The objective is that, overall, the savings should significantly
outweigh the costs.

Unfortunately, both costs and savings are highly dependent on such features as the type
of product and the type of company; therefore, it is difficult to provide a detailed analysis
in this book. However, Chapter 12 discusses the various issues in more detail and provides
a basis for an in-depth economic analysis that might be performed. This chapter outlines

t This chapter is an updated extract from an article first published in the Texas
Instruments Technical Journal, Vol. 5, No. 4, July-Aug. 1988.

EH0321 -0/90/0000/0129$01.00 © 1990 IEEE 129

the costs that will be incurred in implementing IEEE Std 1149.1 and shows how these
might be reduced by careful design.

In the remainder of this introductory chapter it is assumed that IEEE Std 1149.1 is fully
exploited in a product — not only through implementation of the mandatory features
(e.g., the boundary-scan path), but also through provision of test access to key internal
registers in ICs. The aim is to describe what could ultimately be achieved when the
standard is widely adopted across the electronics industry.

11.2: Applications During Design and Development

11.2.1: Integrated Circuit Debug

Traditionally, the greatest resistance to design-for-testability has come from IC
designers, who feel they pay the most significant penalty for its inclusion while reaping the
least benefit. However, today these designers are paying far greater attention to testability
than ever before. They are also doing this voluntarily, with little pressure from the test
community.

The reason is that, while IC designs are approaching the complexity of boards, they do
not provide the probeability necessary to debug the design. Industry reports indicate that
half of the application-specific IC (ASIC) designs produced do not work on the first pass
because of inadequate testing and simulation. To successfully debug a complex design,
designers have begun to explore scan paths as a technique for improving observation and
control.

Unfortunately this has often been accomplished by multiplexing the scan path input and
output connections onto functional pins, precluding the use of the paths during later
testing (e.g., when the chip is mounted on a board). In some complex chips, however,
four to six pins are fully dedicated for testability to allow access to the serial scan paths
for test and debugging, for both stand-alone IC testing and chip-on-board testing.

The emergence of an industry-standard serial test data interface (the test access port
(TAP)) will allow for the development of robust debugging environments based on
personal computers or engineering workstations (Figure 11-1). Software tools provided on
these machines will allow designers to conduct register level transactions interactively and
to view the results on a personal computer or workstation in a graphic waveform format.
States of internal registers need no longer be hidden, since inclusion of optional test data
registers within the IEEE Std 1149.1 architecture will provide for test access and allow
faster debugging and confirmation of designs.

130

Chip or Board under Test

Figure 11-1: Low-cost debug/test station.

11.2.2: Loaded PWB Debug

Even with the greater accessibility afforded by loaded PWBs, design verification can
often be a long and tedious process. Special software may need to be written and use of
test equipment such as logic analyzers, oscilloscopes, and multimeters may be required.

For example, a major limitation of board debugging today is the difficulty of setting the
design into the state the designer needs. Many instruments are available to observe those
nodes that can be physically probed, but driving nodes to desired states is usually far more
difficult. The outputs of chips that normally drive the nodes must be inhibited so that the
nodes can be driven by the tester without risk of damage. An added complication is that
the critical points to be controlled and observed frequently do not exist as probeable chip
pins — consider the key internal registers of a microprocessor, for example.

The provision of a standard test interface eliminates the necessity for physically probing
the loaded board to control it. The designer can set up specific conditions (for example, in
internal registers that can be accessed through a chip's TAP) and can observe how the
design responds under software control via the serial test interface. Moving the points of
observation is achieved simply by typing in commands, as opposed to reconnecting the
logic analyzer to change the nodes being monitored. The designer can visualize the board
from a register level and can use diagnostic tools to query the state of the hardware. All
of the visibility provided during IC debugging remains available through the dedicated test
interface.

131

For the future, where designs may be based on advanced surface mount technologies,
physical access may be very limited, precluding the use of logic analyzers altogether.
However, access using the serial test interface will continue to be possible.

11.2.3: System Debug

At the system level, debugging is rarely performed by using a sophisticated test
environment. Techniques such as hot mock-ups, where systems are assembled and tested
by using functional tests that emulate the end-user environment, are employed. Special
test code is sometimes developed, but, typically, this code tests individual functions whose
logic may reside on multiple boards. Thus, when failures are detected, it is often a long
and tedious process to localize the fault. The problem is that no simple means exists to
access the core of the system to help identify the failing board — diagnosis must be done
based on externally-observable symptoms.

Use of a standard test interface provides a flexible debugging tool, again based on
personal computers or workstations. The designer is able to take advantage of the same
debug routines used for the chips and boards, and can observe states on multiple cards
simultaneously on the display. The hardware can be set into known states and its responses
to these tests can be observed. Boards do not have to be placed on card extenders for
probing, nor do special instruments have to be connected directly, avoiding the risk of
affecting the parameter being measured.

11.2.4: Hardware/Software Integration

For many complex systems, the hardware design effort is dwarfed by the magnitude of
the software development task. The most complex aspect of this task is the successful
integration of the hardware and software. In cases where the system does not perform as
anticipated, it is extremely difficult to resolve the failure between the hardware and
software because of the poor visibility and controllability of the integrated system.

A consistent platform for debugging ICs, loaded boards, and systems, that also supports
software testing tools, can significantly reduce the effort required to debug
hardware/software systems. Robust software running on cost-effective hardware provides a
single platform for downloading, uploading, and executing application software on target
designs.

Significant debugging capabilities exist that can be windowed-in to provide improved
knowledge of how the system performs, with the ability to access internal nodes that
cannot possibly be viewed by using current instrumentation. Registers, program counters,
arithmetic logic units, address and data busses, and other key areas become both
controllable and viewable at the terminal. Instruction op-codes can be traced and
converted by the debugging tool into mnemonics the programmer can more easily follow
and understand. In some cases, code patches can be interactively generated and checked
without the need to recompile.

132

For complex problems, hardware states can be captured and dumped to disc for off-line
analysis.

11.2.5: Environmental Testing

Often the final step in qualifying a design is to verify that it operates correctly under a
wide range of thermal, vibrational, and other environmental stresses.

During these tests, the instrumentation relied upon for design validation (e.g.,
oscilloscopes, logic analyzers) cannot be used because the system is enclosed by its case
and is housed in a "hostile" environment. Therefore, the instruments cannot easily be
connected to the desired points.

By making the standard test interface accessible on a connector of the fully assembled
product, internal nodes continue to be both controllable and observable under software
control. As at other test stages, the dependency on physical access is broken. Use of the
interface can allow downloading and execution of special test software, and for monitoring
of the system under external control. If failures occur, engineers may troubleshoot the
problem while the subsystem remains in the environmental chamber under the conditions
that caused the fault to occur. The added visibility may also provide useful data to system
engineers in learning how the hardware responds to environmental stresses. An example
would be in setting false alarm filter values for built-in test.

11.3: Applications During the Production Cycle

11.3.1: IC Testing

For relatively simple IC designs, testability features are sometimes included for design
validation that are accessed through special wafer-probe pads. These features are usually
not available for later test stages because the necessary connections are not bonded to pins
on the packaged chip. A new test must therefore be developed for the packaged chip that
accomplishes high detection without use of the test features.

This has grown to be unacceptable in complex designs. Often, the test features are
preserved only by creating access through multiplexed use of functional pins.
Unfortunately, the result is that the test developed for production testing of the IC is of
no further use for assembled board and system test. It cannot be used once the chip is
installed in a loaded board.

With the IEEE Std 1149.1 TAP, four (or five) pins are dedicated to ensure permanent
access to the test features. The design of the test for the packaged chip becomes more
straightforward because no multiplexing need be involved. If the IC has boundary-scan,
the static vectors used for packaged-chip tests can be reused when the chip has been
assembled onto the board.

The availability of the boundary-scan path also offers a simplified technique for
achieving a reasonable confidence level during wafer test with greatly simplified fixturing.

133

By using the four (or five) pin test interface instead of providing connections to every I/O
pin of the part, a significant portion of the logic can be exercised prior to packaging. This
assumes that the dropout rate caused by faults in the I/O region is acceptably small
enough to defer detection until the part is tested on a packaged part tester.

11.3.2; Parametric Testing of ICs

The boundary-scan register can be used to simplify the creation and application of
parametric tests for ICs.

To perform a parametric test by using the boundary-scan register, a test program loop is
entered. First, the boundary-scan register is set to test board interconnections by shifting
the EXTEST instruction into the instruction register. A data register scan cycle is then
entered, which causes the data applied at the system input pins to be captured in the
boundary-scan register. The logic signal value perceived at each input pin can be examined
by shifting the latched values through the test data output (TDO) pin. This load-shift
cycle is repeated for different input voltages until all required voltage levels have been
applied, The test program loop then ends.

Similarly, the boundary-scan register can be used to facilitate measurements on output
drive capability, slew rates, etc. Further, the inclusion of cells in the boundary-scan
register that allow each 3-state output pin or bidirectional pin to be forced to
high-impedance allows this aspect of chip performance to be tested easily.

A parametric test constructed by using the boundary-scan register may be significantly
shorter than that of a conventional equivalent. For example, a test of the input switching
thresholds of an IC would normally require paths to be set up through the circuit so that
each input can be observed by monitoring chip outputs. The resulting test sequence could
be extremely long — perhaps up to 50,000 vectors. When the boundary-scan register is
used, each test cycle contains roughly as many patterns as there are pins on the chip —
typically, many fewer test patterns than would be required to propagate signals through
the chip from input to output.

11.3.3: Incoming Goods Testing

Companies continue to test integrated circuits prior to introducing them into stock. This
usually requires a multi-million dollar capital investment in automatic test equipment
(ATE) and leads to demands for design data to be supplied by the chip vendor. Not
surprisingly, these vendors are not keen to support the multiple types of ATE used by
their customers or to part with their design data.

In some cases, the user has enough confidence in the foundry's quality levels to allow
"ship-to-stock" without incoming inspection. It can be very expensive, however, to isolate
even the limited number of faults that slip through when each echelon of test adds a
tenfold increase in cost.

134

Depending on the fault spectrum of chips after once successfully passing the
packaged-chip test, potential exists for a cost-effective static tester that could be used for
many chip types. If such a test were based on features accessible when using IEEE Std
1149.1, the personal-computer- or workstation-based test environment would be capable
of simultaneously directing the test of multiple ICs, reusing a subset of the vectors
developed for the packaged part test.

Assuming that the most severe faults would be detected in this relatively low-cost
environment, companies could feel more comfortable about "ship-to-stock." This highly
portable test environment would also support retest of chips thought to have subsequently
failed during the manufacturing process or field use.

11.3.4: In-Circuit Loaded-Board Test

The continued need for low-cost manufacturing defect test environments gave birth to
the Joint Test Action Group and the sudden momentum in the electronics industry
toward provision of standard test busses and boundary-scan.

Today, in-circuit test is used to detect the large majority of faults introduced during the
manufacturing process — damaged parts, wrong parts, misoriented parts, opens, and
solder shorts. However, many major companies shared concerns over the ability to
continue performing bed-of-nails testing when confronted with dual-sided surface mount
boards populated with complex ASICs packaged with 25 mil lead spacing. While this
suggested a need to give up this type of testing it was felt that the alternative of using
functional (edge-connector) testers was unattractive, because the equipment is generally
more expensive and can be far slower and more expensive for isolating typical production
faults.

Current technology for in-circuit testing has many undesirable shortcomings that make
it unattractive as a long-term solution. ATE vendors have attempted to overcome 50 mil
spacing with clamshell fixtures whose reliability over thousands of actuations in a high
volume environment remains unproven. Progression to 25 mil spacing will, in all
likelihood, exceed the mechanical capabilities of these fixtures.

The alternative is to provide special staggered probe pads that cause the board to
become larger, defeating the purpose of using surface mount technology. The effects are
far more drastic with pin grid arrays and where the connections that link the layers of the
PWB (the vias) are buried. Further, the parts themselves may be damaged from the lengthy
tests that are applied by backdriving.

Boundary-scan allows a "virtual probe" to access the node between the I/O buffer and
the core logic (Figure 11-2). Testing proceeds in two stages:

• Pins—in testing: A subset of the vectors developed for packaged-chip test are
applied via the boundary-scan path to exercise the core logic in each component.
These vectors are usually developed to validate the design but, hitherto, they have
not been able to be used in PWB/system test.

135

Pins-out testing: Simple vectors are propagated from scannable device output to
input to detect and isolate manufacturing and other connectivity-related problems.
This provides a capability superior to that of an in-circuit test, and without the
need for probing.

Printed Wiring Board

Figure 11-2: Boundary-scan approach.

No physical contact is required and backdriving is not necessary. Ones and zeroes are
easily generated and applied out of the devices (pins-out testing) to confirm the integrity
of the input or output (I/O) buffer, package lead, solder, and etch for the printed wiring
network. Subsets of the static packaged part test are applied from the inputs across the
core logic (pins-in testing) to confirm the functionality and integrity of the part.

Manufacturing faults typically detected by in-circuit testers can be localized when using
personal computers and a desktop fixture, in sharp contrast to the $250K+ test systems of
today. When the board design changes, the test is modified in software by linking in new
device test files and by describing the new configuration of the board. This flexibility is a
large improvement compared with generating a new fixture.

An important advantage of the test structures on the loaded boards is their ability to
partition the design into segments small enough for computer automated test pattern
generation. With proper levels of testability, the future may hold virtual turnkey test
generation for patterns that detect stuck-at-one and stuck-at-zero conditions.

This new, low-cost manufacturing defect test capability can be applied cost-effectively
to development efforts at far lower volumes than those required for in-circuit test
investments. The low capital investment and high portability allow manufacturing screening
to be introduced during design validation and leveraged across all phases of the product
life cycle. The manufacturing defect test, once developed, can be used for subsequent
board level tests in the factory, field, and depot.

11.3.5: Functional Loaded-Board Test

Functional testing today still relies on physical probing by the operator to isolate
detected faults. Sequencing of the probing may be fixed, left to the operator, or
determined on the fly by guided probe algorithms. Probing of very fine pitched pads

136

without glitching will be a challenge for even the most skilled of operators, potentially
necessitating robotic probing. Testing itself will be more complex if the additional
observation is limited because only chip I/O pins can be probed.

The boundary-scan path can provide a capability referred to as "virtual probing," where
the condition of nodes is retrieved by software without requiring instrumentation. A
straightforward software layer can intercept the normal directions to the user to probe a
node and can determine whether it is accessible via the scan path. If it is, the path can be
accessed and the value can be returned to the test program without the operator having to
participate. More importantly, the number of accessible nodes expands to include internal
points located along the scan paths.

The improved visibility and control, combined with at-speed test capabilities
incorporated into the design, can greatly improve the fault detection and isolation of
functional testing. Integrated circuit built-in self-test (BIST) and board/system level
built-in test (BIT) capabilities can enhance the performance of functional board testers.

11.3.6: Subsystem and System Test

The benefits provided to subsystem and system debugging may be leveraged against the
production test problems with great impact. More importantly, manufacturing tests
developed for the loaded boards may be reapplied and augmented to form the subsystem
test at reduced cost. Eliminating the need for physical contact allows these tests to be
reused in the testing of the fully assembled product, even when its enclosure prevents
physical contact with internal connections.

11.4: Completing the Leverage into Field Test

11.4.1: Built-in Test

Built-in test (BIT) features have become increasingly more complex as systems have
absorbed more and more functionality within a given constant volume. Software has
become more complex and hardware speeds have escalated. The ability to monitor and
detect system faults and to successfully isolate them has become a tremendous challenge.

The ability for firmware-based BIT to adequately exercise the full functionality of a
system through instruction execution is rapidly being reducing. It may soon become
unfeasible. Techniques that provide a more thorough test to smaller functional segments
are therefore required. A transition into pattern-oriented BIT offers opportunities to
improve BIT performance but it must be carefully measured against the impacts in terms
of timelines and test data storage.

BIT techniques using pseudo-random pattern generation (PRPG) and parallel signature
analysis (PSA) offer the ability to exercise hardware at full operating speed with minimal
throughput and storage impact. Connectivity tests of similar or better performance to
those generated for the in-circuit testers today can be algorithmically generated and
rapidly executed. Pattern-oriented testing is better suited for fault simulation, offering an

137

alternative for test grading to the physical fault insertion often conducted today. The
emergence of an industry standard serial test interface provides an opportunity to provide
additional control and to obtain better data within this environment.

11.4.2: Run Time Diagnostics

The boundary-scan path has the ability to capture data and make them available for
examination without having any effect on the functional logic during its normal operation.
This provides an avenue to the establishment of test processes in a background mode, that
executes during operational time windows. One can take "snapshots" of the system and
scan them out for external review. In this manner, useful information can be obtained to
support run time diagnostic requirements.

11.4.3: Reconfiguration and Graceful Degradation

The operation of many systems is critical; consequently they cannot be allowed to fail
catastrophically. Typically these systems feature redundancy, allowing tasks to be
redistributed to fault-free resources when a failure occurs.

As with other cases discussed previously, the structured test access based on IEEE Std
1149.1 can provide greatly improved localization and monitoring of failing hardware. Upon
detection of a failure, a system manager function can reallocate the task or function of the
failed hardware to a backup node or it can reconfigure the hardware to allow the least
critical function to be dropped temporarily. Thus graceful degradation occurs while the
system manager executes diagnostics on the failed function in an attempt to confirm and
isolate the fault.

The system manager is able to maintain a near real-time assessment of the system's
capabilities and to rededicate resources as required. Additionally, the failed function can
be continuously retested in the background to detennine if the failure was intermittent or
transient. Having determined a function to be "restored," the system manager can
gracefully recover and bring the system back up to full performance.

11.4.4: Off-line Diagnostics

The structured test and debugging capabilities provided allow sophisticated highly
portable tools to re-execute BIT and factory tests in the operational environment of the
system. Manufacturing tests for digital boards can be rerun on boards still in the chassis
through a system-level maintenance bus (e.g., the VHSIC TM-bus [l]†). Compact
computers equipped with relatively simple interfaces can isolate failures to single boards
with minimal activity on the part of the maintainer.

In cases where off-line test procedures are required, possibly augmented by portable
maintenance aids, the structured test architecture acts like a built-in instrument and

† The VHSIC TM-bus has been accepted as the basis of a companion project to IEEE
Std 1149.1 — the P1149.5 Module Test and Maintenance Bus.

138

provides a path to the failure data collected during on-line operation. A smart controller
within the product can interface to a host computer via phone or radio link to remotely
execute diagnostics maintained at a base repair facility.

11.4.5: Test and Repair of Field Returns

Testing to detect and repair failures of boards returned after field repair of systems is an
expensive and often capital-intensive area for many companies. In the military arena, and
in some areas of the commercial sector, in-circuit test techniques cannot be used because
the conformal coating used to protect loaded boards from damage cannot be easily
removed or penetrated by probes. Depots and repair facilities have to rely on
multi-million-dollar functional testers, that are good for detection, but often poor on
diagnosis. The functional tests differ significantly from the on-line and off-line
diagnostics used in the operational environment, causing fault repeatability problems.

Because standardized test interfaces reduce the need for physical contact, depots can use
the same low-cost manufacturing tests run in the production facility. The inherent
modularity of the tests provides good isolation, and when replicating field test sequences
reduces the chance of "cannot-duplicate" problems. Warranty repair facilities for
commercial products are small operations that cannot justify large capital investments for
troubleshooting or repair. Again, the possibility of being able to use test environments
similar to those used in the factory can offer greater repair efficiency at costs lower than
those achievable today.

11.5: Conclusion

Implementation of a structured chip-through-system test architecture requires an
investment at the IC level toward the solution of system level problems that are becoming
major barriers to profitability and performance. This investment can pay for itself many
times over in reduced costs throughout the product life cycle. The process of test
generation and verification for digital logic can be constrained into the region capable of
being handled by current-day computer-aided tools. The tests can be reutilized
throughout all test phases of the product's life.

By removing the dependence on complex fixturing, the potential exists for simpler
personal-computer-based systems for testing and debugging. These systems are
cost-effective enough to be introduced during product debug and test of initial prototypes
when volumes are still too low to justify current approaches. Basic hardware/software
building blocks, combined with application software, provide highly functional yet
portable debugging and testing environments. Production tests and production ATE can be
utilized cost-effectively in the field to reduce the costs of field and warranty support.

Having reduced the test interface to a four-wire port, the majority of the test capability
lies within the linking and execution of previously developed tests for ICs combined with
automatically-generated connectivity tests. This environment is far more flexible and
robust, allowing test program sets to quickly adapt to design changes. Set-up and
take-down time for tests is minimal.

139

Additionally, tests can be extended into numerous environments previously unavailable
because of constraints on connecting instrumentation. Tests can be applied in closed boxes
within environmental chambers, equipment bays, or difficult-to-access places using
portable, reusable test programs.

The robustness, flexibility, and performance of such a test architecture will allow many
companies to meet their obligations to their customers while containing test costs and
achieving greater profitability. While an investment is needed during IC design, this will be
leveraged against a broad range of problems spanning the entire product cycle.

11.6: Reference

[1] IBM, Honeywell, and TRW, VHSIC Phase 2 Interoperability Standards: TM-Bus
Specification — Version 3.0, Nov. 9 1987. (Copies can be obtained from J.P.
Letellier, Naval Research Lab, Code 5305, Washington, D.C. 20375, U.S.A.)

140

Chapter 12. Benefits and Penalties of Boundary-Scan

Richard Sedmak Colin Maunder
Self-Test Services British Telecom Research Labs

6 Lindenwold Terrace Martlesham Heath
Ambler, PA 19002, U.S.A. Ipswich IPS 7RE, U.K.

An analysis of the economics of boundary-scan begins with consideration of the benefits
and penalties associated with the technique. In some cases, the penalties may appear to
outweigh the benefits if considered only at the integrated circuit (IC) level. However, the
benefits usually far outweigh the penalties when we consider a more comprehensive
analysis spanning all levels of assembly from chip to system and consider all test phases
during the life cycle of a system.

12.1: Benefits

12.1.1: Lower Test Generation Costs

Costs of test generation can be lowered. At the board level, boundary-scan testing
provides the equivalent of in-circuit testing without the cost and need for a bed-of-nails
fixture. This is true even when assembly techniques that impede in-circuit testing are used
— for example, conformal coating, surface-mount technology, and double-sided boards.
By being able to use boundary-scan based testing as the primary means of testing loaded
boards, perhaps supplemented by a reduced functional test, a company can avoid the
enormous costs of test generation associated with pure functional or edge-connector test.
In addition, the presence of boundary-scan permits some reuse of test patterns up through
the hierarchy of packaging levels. For example, at the board level, a portion or full set of
chip level test vectors can be reused as a nucleus for the board level test.

When boundary-scan is the a basis for built-in self-test (BIST) at the chip, loaded
board, or system level, the cost of test generation can be substantially reduced because the
test stimuli (such as pseudo-random patterns) are generated automatically and
algorithmically within the product.

12.1.2: Reduced Test Time

Another benefit of boundary-scan is the possibility of reducing test time, particularly in
the diagnostic area. In regard to GO/NO-GO testing, the use of boundary-scan may, at
first glance, seem to lead to increased test time because of the serialization of test stimuli
and circuit responses. This may be particularly true when comparing boundary-scan testing
with in-circuit testing. However, as described earlier, the limitations imposed during the
latter type of testing, as well as the complications caused by board packaging methods,
may make it difficult (if not impossible) to use the in-circuit test approach. A true
comparison of boundary-scan test times with functional test times requires more careful
scrutiny of the assumptions. If we assume a very complex board and a required level of
single stuck-at fault coverage — for example, in the high 90 percentages — some

EH0321-0/90/0000/0141 $01.00 © 1990 IEEE 141

segments of the electronics industry feel that boundary-scan test times may actually be less
than the equivalent times for functional testing because of the divide-and-conquer
approach used. Achievement of high-fault coverage without adequate design-for-test
provision can be a lengthy and expensive task.

Few people take exception to the claim that, for a given level of fault coverage, lower
test times result when boundary-scan based BIST is used in conjunction with, or in lieu
of, externally-applied functional or in-circuit tests.

72.7.3: Reduced Time to Market

Use of scan design techniques at the chip level can have a significant positive impact on
time to market, because less time needs to be spent on test generation [1].

Similar benefits result at the board level through use of boundary-scan. For example,
where a considerable amount of engineering effort would previously have been required to
develop an in-circuit test module for a new state-of-the-art IC, this task can now be
completed in a matter of hours because it is no longer necessary for the board test
engineer to understand the detailed operation of the new chip.

In highly competitive markets, the saving in test development time for a new product,
even where only a small percentage of the chips on a board include boundary-scan, can
help ensure its commercial success.

12.1.4: Additional Benefits

Three additional benefits result:

• simpler and less costly testers;

• commonality of interface with the tester; and

• the ability to accommodate high-density and poor-access packaging approaches.

Boundary-scan based testing can be performed regardless of any constraints imposed by
new packaging methodologies — therefore allowing a reduction and, in some cases, the
elimination of the need for expensive bed-of-nails test fixturing. Furthermore, since
IEEE Std 1149.1 establishes a common four- (or five-) pin interface and protocol with
the tester, such commonality across all board types will save even more in fixturing or
interface adapter costs, particularly if one considers the cost impact of engineering
changes.

142

12.2: Penalties: Additional Circuitry

The first and most obvious penalty is the cost of the additional circuitry.

The effect on circuit size of adding boundary-scan capability is, as for other
design-for-test changes, difficult to predict because much depends on the detail of the
implementation — for example: Are "holding" registers or latches provided in all
boundary-scan cells? What is the geometry and positioning of the cells? Etc.

The following examples provide estimates for the overall size of the circuitry required to
give conformance to IEEE Std 1149.1, but without extensions to the facilities defined in
the standard. An important consideration when it comes to an analysis of the penalties of
boundary-scan, including the amount of added circuitry, is that their impact can be
reduced by early planning in the development cycle, by good design practices, by the use
of automated tools, and by exploiting boundary-scan in all life-cycle phases of testing as
discussed in Chapter 11.

It should also be emphasized that a good many ICs are pin limited — that is, the size
of the chip is determined by the space required along the chip sides to provide sufficient
bonding pads for all inputs and outputs, and not by the number of gates or transistors
required to implement the function of the chip. Therefore, there may be "spare" gates or
silicon area within the chip that can be used to construct the boundary-scan test logic.
Under these circumstances, the real cost of implementing boundary-scan is at least
considerably reduced and may, in some cases, be zero.

12.2.1: Example 1

The first cost example is for a full-custom 6 mm. x 6 mm. IC built in a 2.0 micron
single-layer metal complimentary metal-oxide semiconductor (CMOS) process.

• Test access port (TAP) controller: Implementation of the TAP controller requires on
the order of 80 NAND gates. A more efficient implementation could, however, be
achieved using a transistor level state machine design. An initial implementation in
the stated technology requires a silicon area of approximately 0.3 sq. mm.

• Instruction and bypass registers: An instruction register containing two bits (the
minimum configuration) would occupy on the order of 0.02 sq. mm. The bypass
register is approximately one half of the size of the minimum instruction register, or
0.01 sq. mm.

• Boundary—scan register: An estimate of the total size of the boundary-scan register
can be obtained by looking at the size of the boundary-scan cell for an output pin
illustrated in Figure 12-1. A circuit that implements this design requires around
0.015 sq. mm. It can be expected that boundary-scan cells for input and other pin
types would be of similar size. Therefore, for an IC with 40 system pins (input or
output), implementation of the boundary-scan register would require some 0.6 sq.
mm. silicon area.

143

Figure 12-1: A boundary-scan cell for an output pin.

The combined silicon area for a minimal implementation comprising a TAP controller, a
two-bit instruction register, a bypass register, and a 40-bit boundary-scan register would
be approximately 1 sq. mm. from the above figures (including a small allowance for the
multiplexers, etc., required to complete the minimum implementation of IEEE Std
1149.1). This represents an increase in size of 3 percent for the 36 sq. mm. chip. Clearly,
this figure is significantly affected by changes in circuit size, component geometries, and
other changes (such as the use of two metal layers). It also does not take any account of
any increase in the size of the on-chip system logic, for example because of increased
separation of cells caused by increased pitch between input/output pads.

72.2.2; Example 2

This second example details the cost of the additional circuitry in a library-based
application-specific IC (ASIC) design environment. The assumption is made that the
ASIC cell library does not include custom-designed ("hard") boundary-scan cells or other
cells to support IEEE Std 1149.1. Therefore, all the required features are provided by
using "soft" macros (i.e., cells constructed as interconnections of "hard" cells) in the
vendor-supplied library or are constructed by the user from "hard" cells.

The gate counts given are based on those shown in [2] for basic logic gates and flip-flops
and relate to a 10,000 gate design with 40 system pins. They relate to implementations of
the example circuits shown in IEEE Std 1149.1.

144

Table 12-1: Gate requirement for a semi-custom implementation.

Item

TAP controller
Instruction register (2 bits)
Bypass register
Boundary-scan register (40 cells)
Miscellaneous logic

TOTAL

Gate Equivalent

131
28
9

680 approx.
20 approx.

868 approx.

In total, construction of the various building blocks required by IEEE Std 1149.1 from
the available macrocells requires an equivalent of 868 gates, broken down as shown in
Table 12-1. The reduction in usable capacity from 10000 to 9200 gates gives an estimated
overhead of 8 percent.

Two comments must be made on this cost estimate:

1. It has been assumed that the chip has only input and 2-state output pins. Because
IEEE Std 1149.1 requires additional circuitry in the boundary-scan cells placed at
3-state and bidirectional pins, the cost could rise if the design included any such
pins.

2. The cost is based on the use of macrocells from a version of the cell library [2]
created prior to publication of IEEE Std 1149.1. It is therefore assumed that all
the required circuitry is constructed in the area available for the user's circuit
design. If specific cell designs were available to support IEEE Std 1149.1 or if the
vendor were to place the boundary-scan circuitry in areas of the chip not available
for the user's design, then the cost could be considerably reduced. (Some methods
of reducing the cost are discussed in Section 12.2.4 and Chapter 13.)

Further examples of costs using the same ASIC product are contained in [3]

72.2.3: Example 3

Reference [4] discusses the costs of implementing a built-in self-test architecture based
on the principles of cellular automata in a circuit that includes a boundary-scan path. The
architecture is based on the Joint Test Action Group (JTAG) version 2.0 definition, a
precursor to IEEE Std 1149.1 (see Chapter 3).

The paper estimates that a boundary-scan cell with BIST facilities would occupy
approximately 0.065 sq.mm. in a 3 micron CMOS process. Estimates are given for the

145

overall cost (measured as a reduction in usable silicon area) for a range of chip sizes. These
estimates vary from 17 percent down to 6.7 percent as the size of the chip increases from
11.8 sq. mm. to 64.3 sq. mm. (with pin counts varying from 28 to 84 pins, respectively).

12.2.4: Reducing the Cost of Added Circuitry

The amount of circuitry required to implement IEEE Std 1149.1 can be reduced in
several ways, dependent on the circuit design. The following list gives some examples:

1. Boundary-scan register cells can be integrated with the input or output buffer
stages in the circuit design [5].

2. The TAP and the boundary-scan register cells can be implemented in "dead" area
around the periphery of the circuit. In the implementation discussed in [6], for
example, the cells are located beneath power distribution busses. Others have
discussed the possibility of locating the cells between the input and output bonding
pads on the IC.

3. Circuitry can be shared between the various shift-register-based features of the
test logic (e.g., the instruction, bypass, and boundary-scan registers). One way of
achieving this is described in Chapter 13.

12.3: Other Penalties

12.3.1: Added Pins

The second most apparent penalty is the need to add dedicated test pins to the chip.
IEEE Std 1149.1 calls for a minimum of four pins. While the provision of the fifth test
logic reset (TRST*) pin is optional, feedback from some IC manufacturers indicates that
they may also provide this pin.

As illustrated in the following chapters, the TAP can allow access to many testability
features within a design that might otherwise require package pins for additional data or
control access. The four or five pins required by the TAP may therefore frequently provide
for all test purposes. Viewed in this way, the requirement for a number pins dedicated to
test is not unusual — many ICs today use several dedicated test pins to allow them to be
tested economically.

12.3.2: Design Effort

Since there is additional circuitry associated with boundary-scan, it can be safely
assumed that some form of additional design effort will be required. The exact impact will
depend on the degree of automation of the design process and on other factors:

• Some companies are already working on computer-aids that will automatically add
the boundary-scan path and associated test logic to a design, for example.

146

• In others, application-specific ICs (ASICs) are being developed that have the
boundary-scan path built into the periphery of the base logic array. It will be there
whether the designer chooses to use it or not.

In .either case, the amount of additional effort required to produce an IC design that
conforms with the standard will be low.

12.3.3: Performance

Performance is another consideration. The multiplexer that feeds the system pin in
Figure 12-1, for example, could add two gate delays that, together with the additional
delay due to the input loading of the boundary-scan register, would increase the
propagation delay of signals leaving the chip. Similarly, the delays experienced by signals
entering the chip would be increased if boundary-scan cells were used that included
multiplexers in the pin-to-logic data path (such multiplexers are required only where the
INTEST instruction is supported).

The importance of these additional delays clearly depends on the application for which
the chip is intended. However, the impact of the additional circuitry can be minimized by
careful design or by combining input buffers with the boundary-scan register cells [5], etc.

In many cases, the skew between signal changes at two or more output pins of a
component resulting from a common cause is more important than the absolute delay, for
example, between a clock edge and a signal change at one output. Since identical cells can
be introduced at each output, the pin-to-pin skew can be kept under tight control.

It must be pointed out, however, that the use of multiplexers at output pins to permit
observation of test data from the core of the design is already commonplace. Many ASIC
vendors require that complex macrocells are connected in this way to ensure that library
test waveforms can be applied. Given this situation, there is no additional delay
introduced by the inclusion of a boundary-scan path — the multiplexer at the output
needs only to be widened to allow for the input from the boundary-scan shift-register
stage.

12.3.4: Power Consumption

Because circuitry is added to the basic design to provide the boundary-scan path, an
increase in the power consumption of the component must be expected. For CMOS IC
designs in which operation is controlled by gated clock signals, the increase in
consumption during normal operation will be small because the boundary-scan path and
much of the other test logic will be inactive. Only the TAP controller will remain active
since, in the absence of a TRST* input, it must continue to be clocked with the test
mode select (TMS) input driven to logic 1 to ensure that the controller can return to the
Test—Logic—Reset state following any upset.

147

12.3.5: Reliability and Yield

Also resulting from the additional circuitry are the potential penalties of reduced
reliability and reduced yield. While sufficient data have not yet been collected in this
regard, one can say at least that any reduced "raw yield" of the integrated circuit resulting
from a slightly larger die size, for example, will be off-set by improved yield measured
after test at subsequent packaging levels. This yield improvement will result from the high
test performance achievable by using boundary-scan.

Note also that the periphery of an IC contains the circuitry and connections that are
most likely to fail during operation of the component [7]. These are the areas that are
most directly addressed by the boundary-scan test technique. An improvement to system
mean-time-to-repair can therefore be expected through simplified testing and diagnosis of
faults in input and output buffers, bond wires, etc.

12.4: Conclusion

The principal benefits and penalties of boundary-scan have been presented and
discussed. By careful design and by provision of appropriate design-support tools, the cost
of implementing IEEE Std 1149.1 can be minimized. As discussed in Chapter 11, the
benefits of using boundary-scan accrue at many test stages and can be significant where
field support and maintenance of systems are key requirements [8]. When viewed against
the escalating cost of using traditional functional or in-circuit test techniques for loaded
boards, boundary-scan quickly becomes an attractive proposition.

12.5: References

[1] M.E. Levitt and J.A. Abraham, "The Economics of Scan Design," IEEE
International Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1989, pp. 869-874.

[2] LSI Logic Corp., CMOS Macrocell Manual, LSI Logic Corp., Milpitas, Calif.,
September 1984.

[3] LSI Logic Corp., IEEE P1149.1/JTAG Testability Bus, LSI Logic Corporation,
Milpitas, Calif., November 1989.

[4] C.S. Gloster and F. Brglez, "Boundary-Scan with Built-in Self-Test," IEEE
Design and Test of Computers, Vol. 6, No. 1, pp. 36-44.

[5] S. Das Gupta et al., "Chip Partitioning Aid: A Design Technique for
Partitionability and Testability in VLSI," ACM/IEEE Design Automation
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1984, pp. 203-208.

[6] D. Laurent, "An Example of Test Strategy for Computer Implemented with VLSI
Circuits," IEEE International Conference on Computer Design: VLSI in Computers

148

and Processors, IEEE Computer Society Press, Los Alamitos, Calif., 1985, pp.
679-682.

[7] D.H. Merlino and J. Hadjilogiou, "Built-in Test Strategy for Next Generation
Military Avionic Hardware," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp. 969-975.

[8] C. Dislis, I.D. Dear, J.R. Miles, S.C. Lau, and A.P. Ambler, "Cost Analysis of
Test Method Environments," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp. 875-883.

149

Chapter 13. Single Transport Chain

Wim Sauerwald, Frans de Jong, and Math Muris
Philips Centre for Manufacturing Technology

Eindhoven, The Netherlands

The example implementations included in IEEE Std 1149.1 show instruction and test
data registers implemented as a bank of parallel shift-register paths connected between the
test data input (TDI) and test data output (TDO) pins. This chapter describes a more
efficient, implementation called the single transport chain (STC) architecture.

13.1: Introduction

The test logic defined by IEEE Std 1149.1 can be implemented as a bank of parallel
shift-register paths, for example as illustrated by Figure 13-1. The registers will, in
general, contain different numbers of shift-register stages. Each stage can be visualized as
being constructed from three basic elements:

1. a capture element that allows data to be loaded into the register stage;

2. a shift-register (or transport) element that allows data to be moved serially through
the register stage; and

3. an update element that holds a data value at the register's output while a new value
is shifted in.

Figure 13-1: IEEE Std 1149.1 architecture.

These elements work together to perform the following functions:

1. data can be captured and transported through TDO for examination (Figure 13-2)

EH0321-0/90/0000/0151 $01.00 © 1990 IEEE 151

Figure 13-2: Capture then transport.

2. data can be shifted in through TDI and, when shifting is completed, made available
through update elements (Figure 13-3).

Figure 13-3: Transport then update.

Not all the registers defined by IEEE Std 1149.1 are constructed from all three kinds of
element (for example, the bypass register has only capture and transport elements).
However, where a register has an element of a given kind then its operation will be the
same as that of any other register with that element type.

13.2: The STC Architecture

The STC architecture exploits the following features to allow a more efficient (in terms
of gate count) realization that is more efficient in terms of gate count:

1. the commonality of structure and operation just described;

2. the fact that only one register can be connected between TDI and TDO at any
time;

3. the permission that registers are required only when they are selected; and

4. the fact that every scan operation (instruction or test data) starts with a "capture"
that overrides old data in the shift-register (transport) elements.

152

Together, these features permit one set of transport elements to service all the basic
registers defined in IEEE Std 1149.1. As illustrated in Figure 13-4, capture elements
(based on multiplexers) are used to select data from a set of data sources and update
elements (based on demultiplexers) are used to load data from the transport element onto
the appropriate update element output.

Figure 13-4: The single transport chain architecture.

13.3: The Transport Chain

The length of the core transport chain is determined by the longest of the registers to be
implemented. For example, Figure 13-5 shows how segments of the transport chain that
are not required for the selected register can be bypassed.

Figure 13-5: Single transport chain with various outputs.

153

Figure 13-5 shows a design with:

• a bypass register (transport register stage 1);

• a minimum instruction register implementation (transport register stages 1 and 2);
and

• a boundary-scan register (transport register stages 1 to N).

In this case, the overall length of the transport chain is determined by the
boundary-scan register — the longest register in the design.

Where a device identification register, which must contain 32 shift-register stages, is also
implemented, the potential savings through sharing of transport elements between registers
as described can be significant. For example, where the boundary-scan register contains 60
shift-register-based cells, some 180 gates are saved through the reduction from 95 to 60
transport elements in the design with an identification register.

13.4: Capture Element Design

The identification code of a chip is accessed by capturing a stored, read-only, value into
the transport elements. The stored value can either be held in read-only memory cells or
it can be built into the design by use of two types of cell design in the register:

• one that loads a 0 in the Capture—DR controller state; and

• one that loads a 1 in the Capture—DR controller state.

In the STC architecture, the identification code can be built into the design of the
capture elements for each relevant shift-register stage. As shown by Figure 13-6, the
capture elements then become multiplexers that are able to select between a variety of
external data sources (X1, X2, or X3) and the hard-wired identity-code bit (IDENT) --
0 or 1.

Figure 13-6: Multiplexor with built-in IDENT value.

154

13.5: Update Element Design

Together, the update elements operate as a bank of addressable latches — one for the
instruction register, another for the boundary-scan register, and so on. Data are loaded
into one of these latches at the end of shifting, dependent on the type of scan operation
being executed (instruction or test data) and the register selected by the current
instruction.

Reg i s t e r
Ou t p u t s

Figure 13-7: Update element design.

Note that, as shown in Figure 13-7 the latches in the update elements need only be
level-operated devices (they do not have to be master-slave flip-flops). Note also that for
registers that do not require a latched parallel output, the update element behaves, in
effect, as a data demultiplexer.

13.6: Transport Element Design

The transport element completes the design for each register stage. Figure 13-8 shows a
design with a short feedback path to allow the state of the register to be held and
therefore does not require clock gating. The selection between the three modes of
operation:

1. holds the present data value;

2. loads the data presented from the capture element; and

3. shifts in data from the previous transport element (or TDI)

is controlled by signals fed to the multiplexer from the test access port (TAP) controller.

155

To UPDATE Element

Figure 13-8: Transport element design.

13.7: A Complete STC Register Cell Design

Figure 13-9 shows a complete cell design that implements the functions of:

1. the instruction register with data input (Status) and instruction output
(Instruction);

2. the device identification register with data input IDENT; and

3. the boundary-scan register with data input Data In and data output Data Out .

Figure 13-9: A complete cell design.

156

Table 13-1 shows the functions that must be implemented by each cell according to its
position in the transport chain in a design example used earlier (which included a
minimum-length instruction register, a device-identification register, and a 60-cell
boundary-scan register). In the table, it is assumed that the cell nearest to TDI is
numbered 1 and that the boundary-scan register is the longest. The complexity required
for cell implementation varies from location to location:

• cell requires an additional input to the capture element to allow a constant 0 to be
loaded when the bypass register is selected;

• the Data In input and the instruction output latch are not required in cells 3 to 60;
and

• the IDENT input is not required in cells 33 to 60.

Table 13-1: Cell function versus position.

13.8: Conclusions

In this chapter, we have described a different implementation of IEEE Std 1149.1 to
that given as an example in the standard. This implementation, which we call the STC
architecture, exploits the potential for sharing circuitry between the registers defined by
the standard and, therefore, allows a lower cost implementation.

157

Chapter 14. Boundary-Scan Cell Provision:
Some Dos and Don'ts

Colin Maunder
British Telecom Research Labs

Martlesham Heath
Ipswich IP5 7 RE, U.K.

Kenneth P. Parker
Hewlett Packard Company
P.O. Box 301 A, M/S AU100
Loveland, CO 80537, U.S.A.

This chapter provides examples to illustrate the correct provision of boundary-scan cells
within an integrated circuit that seeks to conform to IEEE Std 1149.1. It must be
emphasized that the opinions expressed here are those of the authors, and not necessarily
those of the IEEE.

14.1: Clock Pins

For system clock input pins, performance issues are often important, for example, the
time taken for clock signals to reach stored-state devices within the integrated circuit. The
inclusion of a boundary-scan cell at the clock pin could, therefore, have an adverse effect
on the capability of the complete design to meet its performance targets.

For this reason, IEEE Std 1149.1 permits the use of cells that can monitor, but not
control, the signals that arrive at clock pins. Figure 14-1 shows an example of such a cell.

Figure 14-1: A boundary-scan cell for a clock input pin.

Further, the standard permits the data input to the boundary-scan cell to be taken from
any point in the clock distribution tree, provided that there is no logic (other than buffers
or inverters) between the clock pin and the monitored point. Figure 14-2 shows several

EH0321 -0/90/0000/0159$01.00 © 1990 IEEE 159

points in a clock distribution tree that could be used to supply the data input of a
boundary-scan cell. These points are labeled A and B. Figure 14-2 also shows a point that
cannot be used as the input to the boundary-scan cell, because two signals are combined
onto the monitored point.

Figure 14-2: Boundary-scan cells for clock inputs.

Note that the standard requires that the value seen by loading and then scanning the
boundary-scan register must be that applied at the input pin. Given that the
boundary-scan cell shown in Figure 14-1 loads the value present at the data input into the
shift-register stage without inversion, the monitored point must be an even number of
inversions removed from the input pin (i.e., it must be driven from a point marked A). It
would not be permissible to monitor the output of one of the first rank of inverters
(marked B) using this cell. However, a different cell design could be used (see Section
14.4).

14.2: Logic Outside the Boundary-Scan Path

IEEE Std 1149.1 does not permit any logic (other than buffers or inverters) outside the
boundary-scan path.

The motivation for this is that the test generation process would be significantly more
complex if "external" logic functions needed to be accommodated. While there may be a
savings in circuitry in the component by combining two signals outside the boundary-scan
path (for example, by using a NAND gate) it would no longer be possible to use
algorithmically generated test patterns to test the board interconnect. To be able to take
into account the effect of the external logic on the interconnect test, a test generator
would need to be expanded every time a chip became available that included a new circuit
type external to the boundary-scan register.

160

Figure 14-3 shows a number of situations where logic is placed between the
boundary-scan path and the input/output pins. All circuitry between the boundary-scan
path and the package pins in this figure violates the rules of IEEE Std 1149.1, because it
allows interaction between data received at two or more input pins or between data from
two or more outputs of the on-chip system logic.

Boundary-Scan
C e l l s

Figure 14-3: "Illegal" logic outside the boundary-scan path.

Note that, in IEEE Std 1149.1, cell designs are shown for 3-state and bidirectional pins
that include a logic gate between the boundary-scan cell and the control input of the
output buffer. An example is shown in Figure 14-4, where the added gate is controlled by
signal CHIP_TEST*. While the provision of this gate may seem to be "illegal" according to
the earlier discussion, note that the CHIP_TEST* input is generated by decoding the
instruction that has been entered (CHIP_TEST* is 0 when either INTEST or RUNBIST is
selected). The signal does not come from the on-chip system logic or a system pin.
Therefore, when an instruction is selected that requires the system pin to be controlled
from the boundary-scan cells (e.g., EXTEST), the added gate is transparent
(CHIP_TEST* = 1) and can be ignored by software that determines how to control the
system pin to the desired state (0, 1, or Z). In contrast, for the earlier examples, the test
generation software would require a knowledge of the logic function provided outside the
boundary-scan path.

161

Figure 14-4: Boundary-scan cells for a 3-state pin.

14.3: Special Cases

There are a number of special cases where there is no circuitry, other than inverters and
buffers, located between two system pins of a component. A common example is when a
component has an output-enable input pin that serves only to control the activity of a set
of output drivers, for example, as shown in Figure 14-5. In cases such as this, it is
possible to use a single boundary-scan cell to meet the requirements for the input pin and
output pin or driver.

Note, however, that it is only permissible to use a single boundary-scan cell in cases
where the input signal is not used to feed the on-chip system logic as well as the output
driver(s). Figures 14-6 and 14-7 show two "illegal" circuits where the input data are also
fed to the on-chip system logic. A correct implementation, using two separate
boundary-scan cells, is shown in Figure 14-8.

162

Figure 14-5: Input used only to control an output enable.

Figure 14-6: "Illegal" design: Example 1.

Figure 14-7: "Illegal" design: Example 2.

163

Figure 14-8: A correct design.

Similar shared use of a boundary-scan cell is possible in cases where a data input feeds
directly to a data output. Figure 14-9 shows a bidirectional buffer component, for
example. In Figure 14-9, boundary-scan cell A receives its input from pin Data_A and
feeds pin Data_B. Boundary-scan cell B receives its input from pin DataJB and feeds pin
Data_A. As in Figure 14-5, a single boundary-scan cell is used to receive data from the
control input pin and to supply control signals to the output buffers.

Figure 14-9: A bidirectional buffer: Example 1.

Note that, while Figure 14-9 shows a single cell being used to control both output
buffers, there are advantages to board test if a separate cell is used for each buffer. For
example, data can be driven onto Data_A and DataJB simultaneously, allowing circuitry
on both sides of the component to be stimulated. Also, the data received at both inputs
would be captured simultaneously. Together, these features would permit independent
testing of the connections and/or logic on each side of the component. It is therefore

164

recommended that the design of Figure 14-10 is used where possible. However, designers
should use the design shown in Figure 14-9 where simultaneous activation of busses
Data_A and Data_B would cause the power supply to the chip to be overloaded.

Figure 14-10: A bidirectional buffer: Example 2.

14.4: Components with Inverting Input and Output Buffers

It was briefly mentioned in the last section that IEEE Std 1149.1 requires that the data
shifted into or from a boundary-scan cell must be identical to that driven from or applied
at the corresponding package pin, respectively. For example, when the EXTEST
instruction is selected, a logic 1 applied to an input pin of a component should result in a
logic 1 being captured into the corresponding shift-register stage. Equally, a logic 1 shifted
into a shift-register stage should result in a logic 1 being driven through a connected
output pin. The aim of these requirements is to ensure that the data that are shifted into
or out of the component's boundary-scan path is exactly that which would be seen by
connecting probes at the system pins.

The example boundary-scan cell designs included earlier in this book and in the standard
assume that non-inverting input and output buffers are used at the component's system
pins. All paths in these cell designs are non-inverting, so the requirements are met.
However, if inverting input and/or output buffers are used, then a number of inversions
must take place in the boundary-scan cells to compensate. Figures 14-11 and 14-12 give
examples for input and output pins, respectively. Note, for example, the inversions at the
inputs of the multiplexers controlled by ShiftDR and at the outputs of the flip-flips
controlled by UpdateDR.

165

Figure 14-11: A boundary-scan cell for an input pin with an inverting input buffer.

Figure 14-12: A boundary-scan cell for an output pin with an inverting output
buffer.

166

In Figure 14-12, for example, a logic 1 output from the on-chip system logic would
result in a logic 0 being driven from the component pin during normal chip operation.
When the SAMPLE/PRELOAD instruction is used_(Mode = 0), the logic 1 output from
the on-chip system logic will (due to the inverting 1 input to the input multiplexer) result
in a logic 0 being loaded into the shift-register stage. That is, the value loaded into the
shift-register stage will be the same as that driven through the component pin.

When the EXTEST instruction is selected (Mode = 1), a logic 1 shifted into the
shift-register stage will result in a logic 1 being driven through the component pin, this
time due to the inversion at the output of the parallel output flip-flop.

A further example is given in Figure 14-13. This figure shows a design for an inverter
chip which, in effect, is a component with a non-inverting input buffer, an inverting
output buffer and no on-chip system logic.

Figure 14-13: An inverter chip with boundary-scan.

As discussed in Section 14.3, one boundary-scan cell can meet the requirements for
both the input and output pin in this case. In this case, the requirements for the data in
the shift-register stage to match that at the pins has the following impact: there can be
no inversion between the input pin and the shift-register stage, therefore the inversion
between the shift-register stage and the inverting output buffer is required.

167

14.5: Complex Boundary-Scan Cells

IEEE Std 1149.1 addresses the four most common types of pin on an integrated circuit:

• input pins;

• 2-state (including open-collector) output pins;

• 3-state output pins; and

• bidirectional pins with 3-state output capability.

Other types of pin are occasionally found on integrated circuits. In these cases, an
appropriate combination of the "basic" input and output pin cells must be constructed to
meet the special requirements of the pin. For example, Figure 14-14 shows a
boundary-scan cell for a bidirectional pin that includes a 2-state open-collector output
buffer. This combines a 2-state output boundary-scan cell (at the top) with an input cell
(at the bottom).

Figure 14-14: Boundary-scan cells for 2-state open-collector bidirectional pins.

168

Figure 14-15 shows two components that use a more complex type of pin for
chip-to-chip communication. In effect, a 3-state bus flows into each component. Two
3-state drivers and one input are included in each chip, connected to the bus.

In a case such as this, each component would need to have five boundary-scan cells
connected to the pin:

• one input cell;

• two data output cells; and

• two output enable cells.

This combination of cells will permit the ability of each output buffer in the component
to drive the pin to be tested, as well as the ability of the component to receive data from
the pin.

Figure 14-15: A complex chip-to-chip connection.

An alternative arrangement would be to redesign the circuitry as shown in Figure 14-16.

169

Boundary-Scan Cel ls

Figure 14-16: An alternative approach.

14.6: Conclusion

Inevitably, situations will arise from time-to-time that are not covered explicitly by the
rules in IEEE Std 1149.1. In this chapter, a number of such situations has been discussed
and the authors' personal interpretations of the standard have been presented,
accompanied with comments that show why decisions have been made.

More designers will find structures that are not covered explicitly by the standard as its
use increases. In these situations, as in those described in this chapter, the underlying
objectives of the standard — clear separation of chip and loaded-board test, simplicity of
test pattern generation for external circuitry, etc. — should be borne in mind when
determining appropriate solutions.

170

Chapter 15. Providing Boundary-Scan on Chips
with Power or Output-Switching Limitations

Lee Whetsel
Texas Instruments

6500 Chase Oaks Boulevard
Piano, TX 75086, U.S.A.

This chapter will identify problems that may arise during boundary-scan testing of
inter-component connections in cases where a chip is not designed to support
simultaneous enabling or switching at all its output pins. Some solutions are given to these
problems.

15.1: Problem Statement

A principal motivation for including boundary-scan in a chip is to be able to efficiently
verify the wiring interconnects between multiple chips on a loaded board. Initially these
test patterns will be developed manually by a test engineer familiar with the circuit board
design. In the future, this effort will become automated as test pattern generation tools
are developed. In either case the test patterns will be designed to verify that all possible
wiring paths between chips in the circuit can be set to both logic zero and logic one and
that no short- or open-circuit faults exist.

Ideally, only an understanding of the board interconnects and of the boundary-scan
configuration or each chip should be required to allow the development of test patterns
for board-level interconnect. However, if chips are not designed to fully support the
operation of the boundary-scan circuitry, other factors may need to be included to insure
proper operation of such a test. The result is that test generation, and the tools that
support it, will be more complex.

In Figure 15-1, an example circuit is shown to illustrate problems that could occur
during boundary-scan testing of board-level interconnections, but that can be avoided by
correct design of the test logic (as will be described later).

IC1 has three output busses. In normal operation, these busses would be controlled
either so that they change state at different times (Figure 15-2) or so that only one of the
three output busses is active at any given time (Figure 15-3). Controls such as these may
be required to minimize the power consumption requirements for the chip, allowing the
number of power and ground pins needed by the chip to be reduced. For example, more
power is consumed when outputs change state so sequencing of output changes as shown
in Figure 15-2 will result in lower power consumption.

EH0321-0/90/0000/0171 $01.00 © 1990 IEEE 171

Figure 15-1: Example component with three output busses.

Figure 15-2: Normal component operation: Case 1.

Figure 15-3: Normal component operation: Case 2.

The problems arise when the pins of a chip that does not normally support simultaneous
switching or enabling of all outputs are controlled from the boundary-scan path, rather
than from the on-chip system logic. For example, this situation arises when the EXTEST
instruction is selected. As shown in Figure 15-4, it is probable that the tests supplied
through the boundary-scan path will cause all outputs to change state and/or be active

172

simultaneously. In the former case (Figure 15-2), the sum of the switching currents of all
pins may produce VCC and VSS glitches that might very well exceed the tolerance level of
IC1, and the core logic as well as the boundary cells and TAP would then be subject to
interference. In the latter case (Figure 15-3), the power consumption could be increased
beyond the capacity of the power pins for a prolonged period, with the probable result
that incorrect operation of the chip will occur.

Figure 15-4: Possible component operation during a boundary-scan interconnect
test.

Both problems can be solved if the boundary-scan test patterns are constrained to
conform to the normal requirements of each IC on the board design, for example, by
ensuring that only one output bus changes state between adjacent test patterns.
Unfortunately, however, this complicates the test generation task and requires that
additional information on chip operation is made available to, and used by, the test
engineer or test pattern generation tool. Alternative solutions, where features built into
the chip ensure that it cannot overload its power pins, are preferred because they do not
require provision, storage, and use of this additional information. Some example solutions
are presented in the following sections.

15.2: Provide More Power Pins

The first (and least practical) solution is for the chip manufacturer to provide the
additional power and ground pins required to ensure tolerance of simultaneous switching
or enabling of all output pins. This solution may, however, not be practical because it may
force an increase in the size of package required for the chip, which in turn may affect the
cost to the customer.

15.3: Preventing Simultaneous Switching of Output Pins

Figure 15-5 shows how delays can be added to prevent simultaneous switching of
outputs when pins are driven from the boundary-scan register [1,2]. The added delays
should be small in comparison with the minimum period of TCK, but should be sufficient
to ensure that the power-current demand arising from the change of state at one pin does
not overlap with that from another.

173

Note that the added delays impact only changes at the pin due to:

• a change of instruction (the delays in the Mode distribution network); or

• a change in test pattern (the delays in the UpdateDR distribution network).

Signals received from the on-chip logic propagate through the boundary-scan cells
without added delay.

Figure 15-5: Adding delays to prevent simultaneous switching of outputs.

174

15.4: Do Not Allow Pins to be Enabled Simultaneously

Where output pins or busses cannot be enabled simultaneously, this limitation should be
met as a result of features built into the chip, rather than through constraints imposed on
the test pattern generation process. For example, because two boundary-scan cells
(numbered 1 and 3) are provided in Figure 15-6, pins A and B can be enabled
independently. The test engineer or, more realistically, the test generation software can
enable both pins, disable both, or enable just one pin as required. In this case, the chip
should be provided with sufficient power and ground pins to support simultaneous
enabling of the two pins — avoiding the need to constrain the test generation process.

B o u n d a r y - S c a n

Figure 15-6: Circuit that allows simultaneous enabling of outputs.

In contrast, only three boundary-scan cells are provided in Figure 15-7, although the
circuit performs the same normal function. In this circuit, both output buffers are
controlled from a single boundary-scan cell (numbered 1) — a logic 1 in this cell enables
pin A and disables pin B. Since there is only one boundary-scan cell, it is not possible for
both pins to be enabled simultaneously during testing — the restriction is inherent in the
chip's design and is not only one that needs to be imposed on the test generation process.
The test engineer, or test generation software, cannot inadvertently cause the power supply
to be overloaded.

175

B o u n d a r y
/ C e l l s

Scan

P i n
A

P i n
B

Figure 15-7: Circuit that does not allow simultaneous enabling of outputs.

15.5: Acknowledgments

The author is greatful to Thomas Williams and Bob Bassett, IBM, and Ken Parker,
Hewlett-Packard, for bringing the solution presented in Section 15.3 to his attention.

15.6: References

[1] Anon., "Improved Off-Chip-Driver Sequencer for LSSD Testing," IBM Technical
Disclosure Bulletin, Sept. 1989, pp. 422-423.

[2] Anon. "Inhibit Sequencing Delay Circuit," IBM Technical Disclosure Bulletin,
June 1986, pp. 251-252.

176

Chapter 16. Tapping into ECL Chips

Lee Whetsel
Texas Instruments

6500 Chase Oaks Boulevard
Piano, TX 75086, U.S.A.

This chapter will illustrate some problems and suggested solutions for the addition of the
test access port (TAP) interface to emitter-coupled logic (ECL) chips.

16.1: The Problem

Several semiconductor technologies — for example, transistor-transistor logic (TTL)
and complimentary metal-oxide semiconductor (CMOS) — use compatible input and
output voltage levels for the two logic states (0 and 1). Chips constructed using these
technologies can therefore be easily connected together, for example to form the serial test
data path at the board level. However, to construct a scan path through chips that use
different voltage levels for each logic state — for example, through chips built using TTL
and ECL technologies — it is necessary to convert the various test signals from one set of
logic voltage levels to another at appropriate points along the serial path. This level
translation can be performed by either an external level shifting circuit residing between
the device boundaries or in the input and output buffer regions of chips incorporating the
TAP.

The focus of this chapter is the problem created by the way that ECL technology reacts
to open-circuit conditions at the TAP inputs, which is significantly different from the
reaction of a TTL chip. The problem stems from the fact that to conform to IEEE Std
1149.1 the output state of a non-driven TAP input buffer must be set to a logic 1 level.

In TTL technology a non-driven input buffer is usually pulled up to logic 1 by an
internal resistance incorporated in the buffer, because this condition draws minimal
current. In CMOS technology, a non-driven input buffer can be pulled up or down, with
neither logic state having an apparent advantage over the other. Both of these technologies
adapt easily to the rules of IEEE Std 1149.1 regarding non-terminated TAP input buffers.

For performance and biasing reasons, a non-driven ECL input buffer is usually pulled
down to logic 0 by an internal resistance incorporated in the buffer. At first, it would
appear that substituting a pull-up resistor for the pull-down resistor on the input buffers
for the TAP signals would solve the problem. However, the circuit shown in Figure 16-1
(in which the test data input (TDO) output of one ECL chip is connected to the test data
input (TDI) input of another) identifies three problems that prevent this from being the
desired simple solution:

1. An open circuit at wiring point 1 causes the receiving chip's input to be pulled
down to -V (typically -2 or -5 volts). Since Rl << R2, the condition results in a
logic 0 output from the chip's input buffer.

EH0321 -0/90/0000/0177$01.00 © 1990 IEEE 177

An open circuit at wiring point 2 causes the receiving chip's input to be pulled up
to GND (typically -0.7 volts), resulting in a logic 1 output from the chip's input
buffer.

An open circuit at wiring point 3 results in improper termination and loss of
operation between the ECL chips since the output buffer in the driving chip has
no resistive path to -V that would enable it to source the required output biasing
current.

Figure 16-1 : A TDO-to-TDI connection between ECL components.

It is clear, therefore, that placing a pull-up resistor on ECL inputs is not a suitable
solution. The result of an open-circuit in the serial path between ECL chips would be
dependent on the location of the fault in the wiring path and could disable data
transmission.

The following are suggested solutions that can be implemented in ECL chip designs to
allow compliance with IEEE Std 1149.1 regarding open-circuit, non-driven TAP inputs.

16.2: Incorporating TTL/CMOS TAP Connections on ECL Chips

The first option is to incorporate TTL/CMOS compatible TAP inputs and outputs into
ECL designs. Using this approach requires the use of an additional 5 volt power supply
pin on the package for the TAP input and output level shifting buffers. If the additional 5
volt supply pin is not a problem, this is probably the preferred approach.

178

16.3: Using a Special ECL Input Buffer for TDI, TMS, and TRST*

The second option is to design a special ECL input buffer that can differentiate between
an open-circuit input and a normally-biased logic 0 input. These special ECL input
buffers would be provided at the TAP input pins: TDI, the test mode select (TMS) input,
and the optional test reset (TRST*) input.

In Figure 16-2, a typical interconnection between an ECL device output and ECL
device input is shown. During normal operation, the ECL output buffer provides the
output biasing current (lout) required to develop the correct ECL logic voltage levels
across load resistor Rl . Typical ECL output voltages are -0.9V for a logic 1 and -1.75V
for a logic 0.

Figure 16-2: Current flow for an ECL TDO-to-TDI connection.

As long as the interconnection between the ECL output buffer and load resistor Rl
remains intact, the input voltage to the ECL input buffer will remain in the normal ECL
logic level switching range of either a logic 1 or logic 0.

In Figure 16-3, a detailed view of the special ECL input buffer is illustrated. The input
buffer contains two single-ended differential amplifiers, Dampl and Damp2. Dampl is the
normal differential amplifier seen in ECL input buffers and is used to determine the input
logic state by comparing the input voltage (Vin) against a reference switching threshold
voltage VR1.

179

Figure 16-3: A special ECL input buffer design.

Damp2 is an additional differential amplifier used to detect Vin levels that are more
negative than the normal logic 0 voltage levels produced by ECL output buffers. The
voltage reference input (VR2) to Damp2 is set to detect Vin levels falling below the typical
ECL logic 0 level. VR2 should be set to allow Damp2 to detect the following two types of
open-circuit fault (see Figure 16-2):

• A fault between the ECL output buffer and the load resistor Rl. If this fault occurs,
the ECL input buffer will be driven to a static voltage level determined by the
voltage divider effect of Rl and R2. Since Rl << R2, the open-circuit input
voltage to the ECL input buffer and Damp2 is slightly less than -2V.

• A fault between load resistor Rl and the ECL input buffer. If this fault occurs, the
voltage applied to the ECL input buffer will be the -5V level attached to
pull-down resistor R2. Since VR2 is set to detect voltages below -2V (to detect the
first stated open-circuit condition) this type of open-circuit is detected by Damp2.

When either of the above faults occurs, the non-inverting output of Damp2 is set to a
logic 1. This logic 1 output is routed to the exclusive-OR gate in Figure 16-3 and causes
the logic level output to the test logic to be inverted. By using this type of ECL input
buffer, it is possible to differentiate between an ECL logic 0 input level and an
open-circuit input level. Therefore, conformance to the IEEE Std 1149.1 specification for
undriven TAP inputs is achieved.

180

16.4: Summary

These solutions offer ways to incorporate the TAP into ECL components. Option 2
needs to be implemented carefully to insure that noise spikes that may occur during input
transition between a logic 1 and 0 do not cause Damp2 to temporarily switch on.
However, this is probably not a problem for the TAP because the TDI and TMS inputs
are basically data inputs and will be in a stable state by the time the rising edge of the test
clock (TCK) arrives. If a 5 volt power supply pin is already implemented in a device of
mixed technologies, option 1 is probably the most logical choice to implement.

181

Chapter 17. Cell Designs that Help Test
Interconnect Shorts

Dilip K. Bhavsar
Digital Equipment Corporation

Semiconductor Design and Engineering
Hudson, MA, U.S.A.

This chapter describes a problem that may, under some circumstances, arise when using
a boundary-scan register to test interconnection shorts on loaded boards. A remedy to
overcome the problem is proposed.

17.1: Introduction

One of the major test problems addressed by IEEE Std 1149.1 is that of testing
interconnection faults on densely populated printed wiring boards. With the advent of
surface-mount components and the use of buried and blind vias for mounting chips on
these boards, the access available to in-circuit-testers is rapidly disappearing

Interconnection defects are introduced during the printed wiring board manufacture and
assembly processes. In general, these defects fall into two categories:

1. Opens: These include defective solder joints and open-circuits in the
interconnection tracks of the board.

2. Shorts: These include shorts between adjacent pins on the same chip and shorts
between adjacent interconnecting tracks on a board. In either case, the defect
manifests itself as a short between two signals or nets.

A simple and straight-forward test for both fault categories can be achieved by using
the boundary-scan register.

This chapter will focus on the testing of shorts and will point out a problem that may
occur in certain semiconductor technologies, such as complimentary metal-oxide
semiconductor (CMOS) and transistor-transistor logic (TTL). The case to be examined is
that in which output buffers are not designed to withstand a short to another output
driving the opposite logic state. We must point out that the severity of the problem
highlighted in this chapter depends significantly on the implementation details of a chip's
output buffers and, in many cases, will be minimal.

17.2: The Problem

Consider that we are testing the interconnection between two chips (chip A and chip B)
on a board. Assume that the chips are implemented in CMOS technology, that both
implement the IEEE Std 1149.1 boundary-scan architecture, and that both are connected
in the same boundary-scan ring on the board. Now consider the simple interconnection as

EH0321-0/90/0000/0183$01.00 © 1990 IEEE 183

shown in Figure 17-1 where a short occurs between the two adjacent output pins PI and
P2 fed from ordinary drivers Dl and D2. The tests that detect this fault consist of driving
a differential pattern. One of the patterns, "10" or "01", must be applied to the shorted
pins. Applying one of these tests requires several steps.

S = Shifter Latches
H = Hold Latches

Figure 17 -1 : Testing a pin short with IEEE Std 1149.1.

Assuming that the appropriate instruction has been loaded in the instruction register and
that the test access port (TAP) controller has been appropriately initialized, then a portion
of the steps involved and the corresponding TAP controller state transitions are shown in
Table 17-1.

During Step 3, if the pins have no short, the receiving boundary scan cells in chip B
observe the response pattern "01." However, if the pins are shorted, then the receiving
boundary scan cells will sense a "00" pattern and the fault will be detected. Notice that to
successfully detect and diagnose the presence of shorts via the boundary scan it is essential
that the receivers in chip B must have their switch-over voltages away from the voltage
expected to be reached by the shorted drivers. In our analysis, we arbitrarily chose that the
receivers should sense "0." All arguments hold true if "1" were to win and the observed
pattern were to be "11."

184

Table 17-1: Steps for testing for shorts.

Step

1

2

3

4

Action

Shift in the
[...01...] pattern

Apply the [01]
pattern to the
shorted pins.

Capture the
response

Shift the response
out

Remarks

Say 0 is applied to PI
and 1 to P2.

Boundary scan cells at
input pins of chip B
capture the response.

The duration of this
operation depends on the
total length of the
boundary scan registers on
the board.

The problem is that, whereas the above test procedure succeeds in detecting the short, it
may cause permanent damage to the drivers Dl and D2. This is because the differential
pattern "01" enables a power-to-ground path via the turned-on P and N transistors and
the shorted P1 and P2 pins. This is shown in Figure 17-2.

Notice that this short will persist for the duration of the entire shift operation and until
a safe pattern ("00" or "11") can be shifted in and applied to the pins. This period can be
arbitrarily long because it depends on the total length of the boundary-scan registers in
the board-level path containing chips A and B, the frequency of the test clock (TCK) and
on any interruptions (e.g., pause cycles) to the shift operation. Whereas a short on pins is
generally considered a repairable fault, in some cases the above test procedure may destroy
the high-price chip, making the repair meaningless.

185

Figure 17-2: Power-to-ground path enabled during shorts test.

17.3: A Proposed Solution

The above problem can be overcome by using a special boundary-scan cell design at the
output pins and by slightly modifying the test steps used. A proposed cell structure that is
compliant with IEEE Std 1149.1 is shown in Figure 17-3. Notice that the cell has a
second observation tap taken from the output of the driver via a dedicated receiver.
During application of a board interconnect test using the EXTEST instruction, the
instruction register will set the multiplexer controls on the shift latch such that the data
are captured from this special observation tap. The rest of the controls and operations
remain as usual.

186

Figure 17-3: Proposed boundary-scan cell for output pins.

With this cell structure in place at the drivers Dl and D2, the test operation will use
slightly different test steps as shown in Table 17-2.

By virtue of the boundary-scan cell design, during Step 3a the response pattern at the
output of the drivers is captured and loaded into the shifter latches of the cell. If the pins
PI and P2 are not shorted, then the pattern captured will be the same as the pattern
applied, namely, "01." If the pins are shorted, the captured pattern will be "00" (per the
previous assumptions).

The additional Steps 3b, 3c, and 3d re-apply the captured pattern to pins PI and P2.
Thus, if the pins P1 and P2 were indeed shorted, the differential pattern "01" is removed
and the safe pattern "00" will be applied. The power-to-ground path will be disabled.
With this test sequence, the power-to-ground short is enabled only for a fixed duration
of 4 clock cycles of TCK, independent of factors such as the duration of the shift
operation and the total length of all the boundary scan registers on the board-level path.
The test operation for detecting shorts is thus made very safe for the drivers, assuming
that the clock applied at TCK is sufficiently fast.

187

Table 17-2: Testing for shorts when using the proposed cell design.

Step

1

2

3a

3b

3c

3d

4

Action

Shift in a [...01...]
pattern

Apply the [01] pattern
to the shorted pins

Capture the response

Move through the
Capture-DR controller
state to Exitl-DR

Exit the scan cycle

Re-capture the
response.

Shift the response out

Remarks

As before

Passage through the
Update-DR controller
state is required. In
consequence, PI and P2
will be fed [00].

Exit immediately, without
shifting.

P1-P2 fed [00] if shorted
or [01] if healthy.

Response pattern is re­
captured without any
modifications.

As before.

17.4: Conclusion

In this chapter, we have indicated a potential danger in using boundary-scan for testing
interconnection shorts among components in certain technologies, such as CMOS and
TTL. We have proposed a solution that uses a special design for boundary-scan cells used
at output pins and a slightly modified test operation. We used simple output pins to
illustrate the application. However, the same solution is applicable to 3-state output and
bi-directional pins and can handle shorts to power or ground.

Besides overcoming the potential danger to the drivers, the proposed boundary-scan cell
also offers the following advantages:

188

1. Because the cell uses a dedicated receiver, this receiver can be especially designed to
guarantee the success of the interconnection short test without any adverse impact
on system operation.

2. Shorts on output pins (or nets) can be tested on chips whose outputs do not feed
any chip or whose outputs feed chips that do not have boundary scan implemented
in them. This also means that the ability of the proposed scheme to test pin shorts
on a board is unaffected by the presence of chips that implement boundary-scan
cells differently, although the test procedure becomes more complex.

3. During testing of an integrated circuit (e.g., in various stages of chip
manufacturing), the cell structure provides convenient observability of output
drivers for detecting defects in the drivers.

4. This cell, when used on 3-state output and bi-directional pins, provides additional
visibility into busses to facilitate isolation of bus problems.

In the end, it must be emphasized that the severity of the problem caused by shorted
output drivers is not clear. At best, it is highly dependent on processing technology and
may vary considerably from one chip manufacturer to another.

If the threat is serious, a key question is still left unanswered by the solution presented.
Could the powering up of a board leave drivers of shorted pins (especially, 2-state output
pins) at opposite logic states? If so, how likely are the drivers to survive the short before
testing begins? If damage is possible, it can only be avoided by careful design of the
power-up initialization routines for a board — the solution presented in this chapter is
limited to test-operation-induced contention between shorted output drivers.†

Finally, note that if the method described in this chapter is used in a catalog IC, the
specification must clearly indicate the cell design and the test strategy required to make
best use of it. Further, if the cell can be damaged by inappropriate test sequencing, chip
specifications should include a clear and conspicuous warning of this fact.

† Note that such problems can occur on any board, with or without boundary-scan.,
They will be encountered equally frequently in cases where functional or power-up
in-circuit tests are applied without prior screening of a board for short-circuit faults
(e.g., by using a manufacturing defects analyzer).

189

Chapter 18. Integrating Internal Scan Paths

Colin Maunder
British Telecom Research Labs

Martlesham Heath, Ipswich IP5 7RE, U.K.

At first sight, integration of the scan path for the internal (system) logic of a
component with the IEEE Std 1149.1 test logic appears straight-forward. The internal
scan path could, for example, be connected into the test logic as a user-defined test data
register so that it could be accessed through the test data input (TDI) and test data output
(TDO) pins when an appropriate instruction was present. Further examination, however,
shows a number of technical, commercial, and logistic problems. The objective of this
chapter is to discuss these problems and to show how they can be resolved.

18.1: Problems at the Chip Level

There are two key technical problems at the chip level.

18.1.1: Dead States

The state diagram for the test access port (TAP) controller includes at least three dead
states (states in which no activity occurs) between completion of the inward shifting of a
test pattern and the time when the results of the test are captured into the shift-register
path from its parallel inputs. In the optimum case, the controller must sequence through
Exitl—DR, Update—DR, and Select—DR—Scan as shown by the highlighted path in Figure
18-1.

The need to cycle through these dead states has several effects:

1. There is a marginal impact on test length, because three additional clocks need to
be applied for every scan cycle.

2. The scannable registers used to build the internal scan path must have the ability to
enter a "hold" state, in addition to "shift" and "load." This will increase the size of
the registers in cases where the "hold" operation is not needed for normal system
operation, as shown in Figure 18-2.

3. Faults that cause increased propagation delays through the combinational logic
between the scannable registers cannot be detected. While the larger delays may
cause failure when the capture clock occurs immediately following the last shift
clock (as would be the case for conventional scan testing), it is extremely unlikely
that the increased delay will span three clock cycles.

EH0321-0/90/0000/0191 $01.00 © 1990 IEEE 191

Figure 1 8 - 1 : TAP controller state diagram.

Figure 18 -2 : Provision of a hold mode on a scannable register.

78.1.2: Multiple Scan Paths

At the integrated circuit level, it is common to connect scannable registers within a
component into several independent scan paths, each of which has its own serial input and
output connections. Such use of multiple scan paths in a chip allows test times to be
reduced, since the number of clocks-per-scan-cycle is reduced. It also allows a scan

192

implementation to be achieved at lower cost in cases where several different clocks are
used within the chip design. For example, all registers controlled by clock CKl may be
connected into the first scan path, those controlled by clock CK2 into the second, and so
on (Figure 18-3). This avoids the need for clock signals to be switched between the chip's
normal and test modes of operation.

S01 S02 S03 S0N

Figure 18-3: Use of multiple scan paths.

In contrast, IEEE Std 1149.1 dictates a single serial path between TDI and TDO. If the
internal scan paths were to be accessed through the test access port, they would need to
be connected in series and controlled by a common clock during testing.

18.2: Problems at the Board Level

Logistic and commercial problems come to light at the board level, as discussed below.

18.2.1: Volume of Test Data

An internal scan path may contain many hundreds of shift-register stages. To permit use
of the scan test once the chip has been assembled onto a board, this would need to be
extended by the chip's boundary-scan path and (at a minimum) the bypass registers for all
other chips on the board-level serial path.

The volume of test data to be stored on an automated test equipment (ATE) system for
a board populated entirely with scannable chips would therefore be very large.

193

18.2.2: Version Dependence

The scan test data for a component will change from one version of the design to the
next due to the impact of design modifications. Because of this, severe logistic problems
could result through the use of internal scan test data at the board level.

As an example, consider a board populated with 100 scan testable components. If an
average of three versions of a component is used during the production and operational
life of the board design, then there could be a need for as many as 31 ° ° versions of the
board test program. This need would arise even if no functional change could be detected
for the assembled board.

The problem is further complicated by the need for the tester to determine the version
of each chip used before testing can start. While this could be achieved by using the device
identification register defined by IEEE Std 1149.1, it is not guaranteed that every chip will
have such a register.

18.2.3: Protecting Proprietary Information

A key goal of IEEE Std 1149.1 is to allow a systems company to acquire components
for its products from many sources. In many cases, therefore, the supplier of an integrated
circuit may very likely be a different company (not another division of the same company).

Under these circumstances, there may be commercial issues that limit the availability of
scan test data to the component purchaser and, in consequence, limit the board
assembler's ability to test the loaded board. For example, it may be possible (with effort)
to create a copy of the original design by examining the scan test data (assuming that fault
coverage is high).

18.3: A Solution

A solution to these problems is to combine scan testing (for use by the chip
manufacturer) and self-test (for use by the purchaser).

78.3.7: The Chip Level

The objective of IEEE Std 1149.1 is to ensure that integrated circuits from multiple
vendors can cooperate during the process of testing a loaded board. As long as the
standard can be met with regard to the operation of the defined test features (e.g., the
boundary-scan path, the instruction register, and the bypass register) and with regard to
any other test feature that is to be offered for "public" use, there is no reason why
additional "private" test features should be designed while fully complying with the
standard.

Bearing this in mind, a solution to the use of scan test techniques for stand-alone
integrated circuit testing can be obtained. First, the instruction register can be used as a

194

means of selecting scan test operation of the integrated circuit. Second, the manufacturer
can provide a private SCANTEST instruction for this purpose†. Entry of this instruction
would be done in accordance with the operation of IEEE Std 1149.1.

When the SCANTEST instruction is present, certain states of the TAP controller can be
redefined as shown in Figures 18-4 and 18-5:

1. Exitl—DR and Exit2-DR cause data to be captured into the scan paths in the same
way as would normally occur in the Capture-DR controller state.

2. Pause-DR causes data to be shifted in the same way as Shift—DR.

Figure 18-4: Basic scan state
diagram.

Figure 18-5: Scan state diagram
when SCANTEST is selected.

Note that the effect of this redefinition is to make test mode select (TMS) (which
controls movement between controller states) almost equivalent to the test mode control

† The SCANTEST instruction described could not be offered for use by the component
purchaser, because it requires dynamic alteration of the TAP controller state machine and,
thus, does not conform to IEEE Std 1149.1.

195

for a conventional scan circuit (which causes movement between "shift" and "load") while
the SCANTEST instruction is selected. When TMS = 1 (which lasts for only one clock
cycle), data are loaded into the scan path and while TMS = 0 data are shifted. The bold
paths in Figure 18-5 show the cycle that would be followed during scan testing. In
contrast to the conventional operation of IEEE Std 1149.1, the transition from "shift" to
"load" (i.e., capture) can be effected without leaving the data register scan states of the
TAP controller. Therefore, there are no dead states and the need to provide "hold"
operation on the scannable registers is avoided.

In components that have a single internal scan-path, the TDI and TDO pins could be
used for "scan-in" and "scan-out." Note that this would require the control of the TDO
driver to be modified to allow it to be active in the Pause—DR controller state (redefined
to behave as Shift—DR) whenever the SCANTEST instruction is present — normally, it
would be inactive in this state.

Multiple internal scan paths can be provided by multiplexing the serial inputs and
outputs onto normal package pins when TMS = 0 and SCANTEST is selected. At outputs,
this requires that the design of the boundary-scan cell is extended as shown in Figure
18-6.

Figure 18-6: Multiplexing of an internal scan path onto a system output pin.

Using this approach, internal scan testing can be achieved in almost the same way as it
would without IEEE Std 1149.1. Again, it must be emphasized that the SCANTEST
instruction is intended only for the private use of the integrated circuit manufacturer
because it does not comply with IEEE Std 1149.1.

18.3.2: The Board Level

It is clear from the problems highlighted earlier that internal scan testing is not the ideal
basis for an hierarchical chip-through-system test approach. Further, if the solution just
proposed is adopted to allow stand-alone scan testing of the integrated circuit, then there

196

may be problems in reusing the scan test data at the board level. For example, the
multiple scan paths would need to be connected into a single path to allow access through
the TDI and TOO pins.

These problems can, however, be overcome by combining the internal scan design with
self-test facilities. IBM's LSSD† on-chip self-test (LOCST) approach [2], for example,
shows how linear feedback shift-registers and signature analyzers can be used to convert a
scan/boundary-scan design into a self-testing circuit at moderate cost (Figure 18-7). The
paper also shows how, a self-testing circuit can be created when multiple internal scan
paths are used.

Boundary Scan Path

Figure 18-7: The LOCST scan and sel f- test approach.

The combination of scan and self-test allows the requirements of both the integrated
circuit manufacturer and the component purchaser to be met. The manufacturer can use
the scan test facilities through the private SCANTEST instruction as defined in the
previous section; the purchaser can use the self-test operation through a public RUNBIST
instruction.

From the purchaser's viewpoint, this has the following advantages:

1. The test is compact and can be run easily when the component is mounted on the
board. For example, there is no need to store and shift large amounts of test data.

† Level-sensitive scan design (LSSD).

197

2. The manufacturer can arrange that all versions of a component will yield the same
results from self-test execution. Where linear feedback shift-registers (LFSRs) are
used to produce the self-test signature, this can be achieved by choosing the initial
state of the linear-feedback shift-register (LFSR) such that the final state will be
the required constant value.

The use of self-test to provide a manufacturer-supported test of the component will
also allow the manufacturer to limit access to detailed design information.

18.4: Further Reading

The papers by Komonytsky [1] and LeBlanc [2] discuss how level-sensitive scan design
circuits can be converted into self-testing designs as outlined in this application note. In
both cases, pseudo-random test patterns are generated by LFSRs provided as an extension
to the functionality of boundary-scan register cells located at input pins. The signature is
generated using single- or multiple-input signature analyzers formed by extending the
functionality of boundary-scan register cells at component outputs.

The paper by Gloster and Brglez [3] discusses a similar approach based on cellular
automata instead of linear-feedback shift-registers.

18.5: References

[1] D. Komonytsky, "LSI Self-Test Using Level-Sensitive Scan Design and Signature
Analysis," IEEE International Test Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, Calif., 1982, pp. 414-424.

[2] J.J. LeBlanc, "LOCST: A Built-in Self-Test Technique," IEEE Design and Test
of Computers, Vol. 1, No. 4, Nov. 1984, pp. 45-52.

[3] C.S. Gloster and F. Brglez, "Boundary-Scan with Built-in Self-Test," IEEE
Design and Test of Computers, Vol. 6, No. 1, Feb. 1989, pp. 36-44.

198

Chapter 19. Testing Mixed Analog/Digital ICs†

J. Hirzer
Siemens AG

Munich, West Germany

This chapter discusses the design and use of boundary-scan in mixed analog/digital
integrated circuits.

While the prime thrust of the boundary-scan path defined by IEEE Std 1149.1 is to
reduce the complexity (and hence the cost) of testing miniaturized digital circuits, there
are also benefits to be gained through provision of such a path in mixed analog/digital
circuits. Test costs can be high for such designs unless design-for-test features are
included and, as will be described in this chapter, boundary-scan can be a valuable tool
for simplifying the creation and application of parametric and functional tests.

19.1: The Location of the Boundary-Scan Path

In mixed analog/digital integrated circuits the boundary-scan path must be designed to
visit each purely digital pin — other than the test access port (TAP) pins — and each
digital signal received from, or supplied to, the analog block within the design. Figure
19-1 illustrates this in a component that contains a large digital block and an A - t o - D
converter.

Figure 19-1: The location of a boundary-scan path at the analog/digital interface.

† The work described in this chapter was performed within the AIDA collaborative
project of the ESPRIT research programme, supported by the Commission of the
European Community.

EH0321 -0/90/0000/0199$01.00 © 1990 IEEE 199

The provision of access to the analog/digital interface separates the analog and digital
blocks and allows them to be tested individually using the test techniques and strategies
best suited to the block designs:

• tests for the digital block can be performed without having to propagate signals
through the analog block

• the analog block can be tested functionally without having to propagate signals
through the potentially complex digital block.

Some of the complexity in testing a complete mixed-signal integrated circuit arises due
to the tolerances inherent in the A - t o - D converter. Due to these tolerances any given
voltage applied at the analog input can give rise to one of a range of digital codes at the
converter's outputs. During testing, such uncertainty in the pattern applied to the digital
circuit block is difficult to accommodate (digital testing requires precise knowledge of the
pattern being applied at any test step).

19.2: Boundary-Scan Cell Design

Two types of boundary-scan cell are required at the analog/digital interface: an A - t o - D
type and a D - t o - A type. The A - t o - D cell is placed at the analog/digital boundary on
any unidirectional digital signal that feeds from an analog block into a digital block, while
the D - t o - A cell is placed on any signal from a digital block that feeds into an analog
block. The design of each cell type, and the reasons for differences between them, are
discussed below.

19.2.1: The A-to-D Cell

Figure 19-2 gives a schematic for an A- to -D cell that is compatible with the clocking
and control scheme generated by the example TAP controller shown in Figures 4-8 and
4-9.

Note that this cell design meets all the rules specified by the standard for cells to be
placed at system input pins. Selection of the instructions defined in the standard gives the
following results:

1. the EXTEST instruction causes signals from the analog block to be captured into
the boundary-scan cell so that they can be examined by shifting;

2. the INTEST instruction causes signals supplied through the boundary-scan path to
be applied to the digital block on-chip; and

3. the SAMPLE/PRELOAD instruction allows signals flowing across the analog/digital
boundary to be examined without interfering with normal circuit operation.

200

Figure 19-2: An A - t o - D cell.

Note that no provision is made in the example cell design to prevent the signals (applied
to the digital block when the INTEST instruction is selected) from rippling as data are
shifted into or out of the boundary-scan path. If such rippling signal values were likely to
cause unwanted operation of the digital block (e.g., because they were fed to
asynchronous or clock inputs), then additional holding latches or registers would need to
be provided at the parallel output from the shift-register stage.

79.2.2; The D-to-A Cell

In general, it is impossible to preserve the state of an analog circuit if the signals at its
inputs are allowed to change. This situation also occurs for some digital circuits (for
example, asynchronous state machines), but not for others (for example, synchronous
sequential circuits change state only when clocked; changes at data inputs between clocks
have no effect).

Consequently, it is necessary to ensure that no interruption occurs to a test sequence
and that input signals applied to an analog block change only from one valid value to
another. Therefore, during shifting of the boundary-scan register, it is vital that the
signals driven to the analog/digital block from D - t o - A cells do not ripple. The value at
the cell's data output must be held until the shift operation is complete.

201

The requirements for the D - t o - A cell design are identical to those of boundary-scan
cells to be placed at 2-state digital pins of the component. A suitable design is shown in
Figure 19-3.

Figure 19-3: A D-to-A cell.

Selection of the instructions defined in the standard gives the following results:

1. the INTEST instruction causes signals from the digital block to be captured into
the boundary-scan cell so that they can be examined by shifting;

2. the EXTEST instruction causes signals supplied through the boundary-scan path to
be applied to the analog block; and

3. the SAMPLE/PRELOAD instruction allows signals flowing across the analog/digital
boundary to be examined without interfering with normal circuit operation.

19.3: Testing Analog Blocks Using Boundary-Scan

This section gives an example of how a test on an analog block in a mixed analog/digital
mtegrated circuit design can be achieved by using a mixture of direct connections through
the chip pins and indirect connections through a boundary-scan path placed at the
analog/digital interface.

The example is based on the use of digital signal processing (DSP) test techniques [1] in
which analog signals applied to the circuit are generated by digital programmable function
generators, and those received from the circuit are analyzed by using DSP techniques.

202

Figure 19-4: Test system configuration for analog test.

Figure 19-4 shows the design of a test system that couples DSP test techniques with
support for the boundary-scan path. With this test system, dynamic analog measurements
are performed in the time domain by application of continuous waveforms or digital
pattern sequences. In some cases (e.g., filters), it is useful to describe the analog function
in the frequency domain, in which case the inverse fast Fourier Transform (IFFT)
technique can be used to create the test signals. The function generators can be loaded
with the array of real numbers representing the amplitude values of the required waveform
at discrete points in time.

The serial buffer memory is used to scan digital vectors onto the digital/analog interface.
Each of these vectors is related to a single point of time and to one distinct input signal.
Clearly, the boundary scan path at the analog/digital interface may be split up logically
into one or more input and output vectors. Also, layout optimization and other
requirements may lead to scrambling of the boundary-scan register cells, so test vector
conversion may be required to map the test vectors onto the actual structure of the
boundary scan path. For example, the order bits at a digital-to-analog converter's input
lines may be reversed such that it is not consistent with the binary number representation
of the fast Fourier transform (FFT) and inverse FFT (IFFT) operations of the array
processor.

Analog measurements are performed in a similar manner. Analog output signals are
digitized and recorded in the digitizer's random-access memory (RAM) and the scan-out
signal (which is again a serial digital data stream) is selectively analyzed. Only one analog
output signal is evaluated at a time, with the binary vector representing this signal being
strobed bitwise to the data buffer memory. The bit strobe signal originates from the serial
buffer memory that generates the scan-in signal to achieve synchronization.

203

As for the serial input patterns, vector conversion may be required. To allow evaluation
of the recorded output signals, they may be transformed from the time domain to the
frequency domain by using FFT. After computing the characteristic parameters (e.g., gain,
attenuation, and signal-to-noise ratio) the test procedure will be completed.

19.4: Further Reading

Further discussion of the use of boundary-scan techniques to ease the testing of mixed
analog/digital circuits is contained in [2].

19.5: References

[1] M. Mahoney, DSP—Based Testing of Analog and Mixed—Signal Circuits, IEEE
Computer Society Press, Los Alamitos, Calif., 1987.

[2] P.P. Fasang, "ASIC Testing in a Board/System Environment," IEEE Custom
Integrated Circuits Conference, IEEE, New York, 1989, pp. 22.4.1-22.4.4

204

Chapter 20. Adding Parity and Interrupts to IEEE Std 1149.1

Patrick F. McHugh Lee Whetsel
Electronics Technology and Defense Systems and

Devices Lab. Electronics Group
US Army LABCOM Texas Instruments Inc.

Fort Monmouth, NJ 07703, U.S.A. Piano, TX 75086, U.S.A.

Trends within the U.S. Department of Defense (DoD) are forcing system integrators to
use industry standard interfaces to fulfill DoD system requirements. The test access port
and boundary scan architecture defined by IEEE Std 1149.1 meets many of the
requirements set forth by the DoD for the testability of very high-speed integrated circuit
(VHSIC) components, with the exception that it does not support parity checking of
instructions and test data or the flagging of interrupts to the device controlling test
operations (the bus master). These capabilities are considered important in both military
and commercial systems where high operational reliability is required.

In this chapter, a method is proposed whereby parity checking and interrupt capability
can be provided within the framework of IEEE Std 1149.1 that could be implemented to
meet the DoD's requirements.

20.1: Introduction

The principal application of the proposed parity checking method is verification of
instruction data input to a component's test logic. The parity checking scheme can be
extended to cover test data input and output data from the test logic. Both these
applications will be discussed in this chapter.

There must be a means of flagging parity errors to the data source (i.e., the bus master
or automated test equipment (ATE)). To achieve this, an additional signal must be added
to the test access port defined by the standard. The relationship between parity coding of
instruction data and the additional interrupt signal, the test interrupt (TINT*), is also
described. A method for using the TINT* signal to flag other types of error to the master
device is also proposed.

The cost of implementing the proposed extensions to the standard is modest. A small
amount of logic must be added to the instruction register and instruction codes must be
extended to include a parity check bit. Finally, one signal, TINT*, must be added to the
test access port.

20.2: Why Use Parity?

Where highly reliable operation is required, the coding of instructions and data (for
example, by adding a parity bit) is a valuable means of detecting any data corruption
involving an odd number of bits that might arise during transmission.

EH0321 -0/90/0000/0205$01.00 © 1990 IEEE 205

For example, in Figure 20-1 a circuit is shown that consists of two slave devices (each
compatible with IEEE Std 1149.1) interfaced to a test bus master controller. When the
master transmits information (e.g., an instruction) to the slave devices, it assumes this is
correctly received. However, in actual practice there could be corruptions to the
serially-transmitted information caused by external electrical or mechanical interference.
When the corrupted information is acted on by the receiving slave, an incorrect test
operation may be performed, possibly causing malfunction of the complete system. For
example, a transmitted BYPASS instruction could be corrupted into an instruction that
would cause the slave to enter a self-test mode of operation.

M a s t e r S l a v e S l a v e

Figure 20 -1 : A basic master-slave system.

By adding a parity check bit to each item of information transmitted, the slave devices
can check the received data for corruptions that effect odd numbers of bits (e.g., single
bit errors). Figure 20-2 shows how the master-slave system of Figure 20-1 could be
enhanced to allow parity encoding and checking.

M a s t e r S l a v e S l a v e

Figure 20-2: A master-slave system with parity coding and interrupts.

206

In Figure 20-2, each slave device has been enhanced to include parity checking of
received instructions. Detected errors are flagged back to the bus master by using an
additional interrupt signal, TINT*. In the example, the TINT* signals from the two slave
devices are capable of wire-AND operation, so the master receives an interrupt when an
error is detected by either slave. Other methods of combining the interrupts generated by
the various slave devices controlled by a single master could also be used (e.g., a priority
encoder).

By the means illustrated, the master receives confirmation that valid information has
been received by the slave(s). When an error is detected, the information transmission can
be repeated until the information is transmitted and received correctly.

20.3: Adding Parity to Instructions

The most critical information items transmitted to a component compatible with IEEE
Std 1149.1 are the instructions which control the operation of the test logic and, in
particular, the way that the test logic can alter or impede the operation of the on-chip
system logic. Transmission errors can convert a public instruction into a public one or a
BYPASS instruction into RUNBIST. In some cases, such a change can have a significant
impact the functional integrity of the complete board.

This section proposes changes to the test logic defined by the standard which will permit
parity coding of instructions. Enhancements to this basic scheme will be introduced in
later sections.

20.3.7: The Test Interrupt Signal, TINT*

As mentioned earlier, a signal must be added to the test access port to allow a slave
component to bring parity errors to the attention of the master.

TINT* should be an active-low output from the test logic capable of wire-AND
connection to the TINT* outputs of other components that offer parity checking. TINT*
would normally be held at 1, and should be set to 0 when a parity error is detected. When
the TINT* outputs of several components are wired together, the resultant signal should
be 0 whenever any of the connected components sets its TINT* output to 0. To allow
different technologies to be used, the output characteristics of TINT* must be defined to
allow an output buffer to be connected to buffers constructed in different logic
technologies (e.g., open collector or emitter-coupled outputs).

20.3.2: The Instruction Register and Instruction Coding

IEEE Std 1149.1 requires that:

• the BYPASS instruction must have the all-Is value; and

• the EXTEST instruction must have the all-Os value.

207

Because the parity bit must be decoded as part of the instruction, it must be a 0 in the
encoded EXTEST instruction. This implies that even parity is required. Again, because it
will be decoded as part of the instruction, the parity bit must be a 1 in the encoded
BYPASS instruction. If we add to this requirement the necessity of even parity, we find
that an instruction register with parity must have a total length that is an even number of
bits. The unencoded instruction (without the parity bit) must be an odd number of bits in
length (Figure 20-3).

Figure 20-3: Instruction register with parity bit.

Note that it is proposed that the parity bit is the most significant bit of the complete
instruction (i.e., that it is the last bit shifted into the chip). Note also that, where parity
coding is used, the minimum length of the instruction register is four stages. This is
because a component must support at least three instructions if it is to conform to the
standard: BYPASS, EXTEST, and SAMPLE/PRELOAD.

Figure 20-4 gives an example implementation for an instruction register that includes
even parity detection logic and associated interconnections. This figure does not show the
connection of the clock and control signals to the shift-register stages.

Figure 20-4: An enhanced instruction register design.

208

An instruction register that complies with the standard consists of a shift-register
section which is connected between the test data input (TDI) and test data output (TDO)
pins, logic to decode the received instruction, and an output holding latch that retains the
previous instruction until a new instruction has been latched in the Update—IR controller
state.

To achieve even parity checking, a parity checker must be connected between the
shift-register stages and the instruction decoding logic. This checker might consist of an
array of exclusive-OR gates, for example. The output of the parity checker is fed to a
flip-flop that is clocked only on the rising edge of the test clock (TCK) in the Exitl—IR
controller state. This latch is included so that the resulting output does not change while a
new instruction is shifted into the instruction register. It is reset when in the Shift—IR
controller state. The design should also cause TINT* to be released to its inactive state on
entry into the Test—Logic—Reset controller state.

The parity latch output must feed both to the TINT* output and to the instruction
decoding logic. This latter connection is necessary to prevent the received instruction from
being applied to the test data registers in the event that a parity error is detected. It is
recommended that, when a parity error is detected, the instruction decoder's output
should be forced to the state that would normally result when the BYPASS instruction is
received. In this way, a non-damaging instruction is presented to the test data registers if
the user should cause the test logic to pass through the Update—IR controller state.

Additionally, the output of the parity checker may be latched and fed back to a data
input of the instruction register, thus allowing the bus master to interrogate slave
components to determine which had received the corrupted instruction. Note that, to
allow the parity flag to be examined, it is necessary to move through the Update—IR
controller state to the Capture—IR state where the data will be loaded into the instruction
register.

If desired, the scheme shown in Figure 20-4 can be extended to allow masking of
interrupts. In this case, instructions for enabling and disabling interrupts must be
provided. The addition of these two instructions will not increase the length of the
instruction register beyond the size required by the three mandatory instructions. Since the
minimum length for the instruction register with parity is four stages, there are unused
opcodes when the minimum instruction set is implemented. Note that, if the capability to
mask interrupts is provided, it must be possible to read the state of the interrupt mask
register within the component. This could be achieved in a number of ways, for example,
by making it a user-defined register in the standard architecture.

20.3.3: A Typical Operating Sequence

The sequence of operations for a IEEE Std 1149.1 interface with parity coded
instructions and a non-maskable interrupt for a parity errors is described below.

The bus master would first control the test mode select (TMS) and TCK signals to
initiate scanning of the instruction register. When the Capture—IR controller state is

209

entered, the required "10" pattern is loaded into the least significant bits of the instruction
register. When a design allows the state of the parity checker output latch and the status
of the interrupt mask to be loaded, then this will also occur in the Capture—IR controller
state.

The captured data are shifted out through TDO during the Shift—IR state while an
instruction with even parity is shifted in through TDI. Note that the data being shifted
out through TDO (captured during Capture—IR) need not be parity coded — in fact, they
may have odd parity if they happen to be data from a failed attempt at loading an
instruction. When shifting of the captured data and new instruction is completed, parity
of the received instruction will be checked. If the received data does not have even parity,
TINT* will be asserted (i.e., set to 0).

The bus master would typically cause the slave components to enter the Pause—IR
controller state to allow time to sample its TINT* input and determine its next action. If
a parity error is detected, the master can return the slaves to the Shift—IR controller state,
whereupon the TINT* signal will be released. The instruction sequence can be transmitted
to the slaves again.

If a parity error has been detected and the slaves are moved into the Update—IR
controller state, then the instruction decoder will be forced to operate as if the BYPASS
instruction had been received. The BYPASS instruction is a safe default instruction in the
event that a parity error cannot be corrected by repeated transmission. The recovery action
by the master, in this case, would require initiating the instruction scanning sequence
again. During this second instruction scan operation, the test bus master would be able to
identify which slaves were flagging the parity error.

20.4: Extending Parity to Received Test Data

The parity scheme can, dependent on the application, be extended to include test data
received by a component as well as instructions. As for the instruction register, the most
significant bit of the test data register would be required to be the parity bit. In contrast
to the instruction register, no matter what the implementation details there is no
requirement for the length of the test data registers to be even for the restriction to even
parity coding. It is, however, suggested that even parity coding is used since this maintains
consistency with the instruction register.

The operation of the component when shifting in parity coded test data would be
analogous to that described above for encoded instruction loading. If a parity error were
detected, TINT* would be asserted in the Exitl—DR controller state and released in the
Shift—DR or Test-Logic-Reset controller states. Note that, in contrast to the instruction
register case, the updating of any latched parallel output should be inhibited on entry into
the Update-DR controller state when incorrectly encoded data are present in the selected
test data register. Note that, in general, there will be no guaranteed safe state for the
output latches of a data register.

210

20.5: Parity Coding of Output Data

The previous sections have addressed only the application of parity coding to instructions
and test data received by a component. The data output by a component could also be
parity coded such that the receiving device could determine its validity. However, there are
more limitations to the usefulness of this application than in the previous cases (see
below). This would require the most significant bit of the data shifted out to be the parity
bit.

An encoder would need to be provided to generate the parity code from the data
presented to the other inputs to the instruction register or selected test data register. The
encoder's output would then be loaded into the register in the Capture—IR or Capture—DR
controller state, respectively.

A limitation of this scheme is that, unless specific provision is made within a component
or in the operation of the master device, it will not be possible to request retransmission
of the information should it be found to be corrupt on receipt. This is because it is
necessary to terminate the register scanning operation (i.e., enter the Update—IR controller
state) to revisit the Capture—DR or Capture—IR controller state.

In the case of the boundary-scan register where the EXTEST instruction is used solely
to test interconnections to adjacent components compatible with the standard, it is
possible to make a repeat attempt to read the test results by feeding the original test
pattern in again before exiting from the scan operation through the Update—DR controller
state. Note, however, that this cannot be done where stored-state circuitry outside the
component is being tested, since it is not possible to "undo" previous tests.

20.6: Other Uses of TINT*

In addition to its use to flag errors in received instructions or test data, the TINT*
output could be used to indicate other error conditions within the component to a master
device. Examples of such "error" conditions might include

• completion of a test task; or

• an abnormal event in the system operation of the component (e.g., memory
overflow).

If the TINT* is to be used to flag such interrupts in addition to its use to flag parity
errors, then it is important that the master device is able to distinguish between the
different types of interrupt being transmitted.

To allow parity errors in received information to be distinguished, it is suggested that
specific test access port (TAP) controller states be reserved for this application. While
scanning of instructions or test data is in progress (i.e., between Capture—IR and
Update—IR, or between Capture-DR and Update—DR), TINT* should indicate parity
errors in the received data as discussed in the previous sections. In the other controller

211

states {Test-Logic-Reset, Run-Test/Idle, Select-DR-Scan, and Select- IR- Scan) TINT*
may be used to indicate other error conditions. Figure 20-5 shows how this could be
achieved by inclusion of a multiplexer.

Figure 20-5 : Multiplexing of interrupts onto TINT*

It is also necessary to allow the master to determine which component has generated an
error condition interrupt and, where a component is able to flag several error conditions,
which specific condition exists. It is recommended that this is achieved by inclusion of an
interrupt conditions register whose outputs feed the data inputs of the instruction register.
Appropriate data bits in this register would be set when the interrupt was generated and
be reset either following the rising edge of TCK in the Capture-IR state or when the test
logic reset (TRST*) pin is asserted. (If TRST* is not provided, then the interrupt
conditions register must reset on power-up).

20.7: Conclusion

The addition of parity checking capability to IEEE Std 1149.1 in the manner described
allows a component to quickly check received instructions and, where appropriate, to test
data for transmission errors. The TINT* output is added to the TAP to allow the
component to notify the bus master that data corruption has occurred. Both these features
are added in a manner that ensures that the component design remains fully compatible
with the standard.

The TINT* signal can also be used to indicate that other error conditions have occurred,
provided that diagnostic information is available to explain why TINT* has been asserted.
Interrupts can also be masked if instructions to enable and/or disable interrupts are
provided and if it is possible to externally determine the interrupt enable status.

212

Together, these capabilities will allow DoD systems integrators to use a commercial
interface to fulfill DoD requirements for a chip level test interface.

20.8: Acknowledgments

The authors wish to thank Colin Maunder, British Telecom Research Labs, and Chuck
Hudson, Honeywell Inc., for reviewing drafts of this chapter and for the suggestions they
supplied.

213

Part V: Further reading

Part V provides an annotated bibliography and contains reprints
of papers that either discuss the general topic of boundary-scan
or provide specific examples of applications and developments
based on IEEE Std 1149.1.

Readers should be aware that several of the reprinted papers
discuss boundary-scan testing in general, or applications of the
various versions of the Joint Test Action Group (JTAG)
proposals that preceded the development of IEEE Std 1149.1.
Some papers may therefore provide implementation examples that
are not compliant with the standard.

215

Chapter 21. Bibliography

The following is an annotated bibliography of papers covering the development and
application of boundary-scan test techniques and, in particular, IEEE Std 1149.1.
Reprints of papers marked REPRINT are included following this bibliography.

[1] P. Goel and M.T. McMahon, "Electronic Chip in Place Test," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1982, pp. 83-90.

In ECIPT, a chip designed according to Level-Sensitive Scan Design (LSSD)
principles is enhanced such that a shift-register latch (SRL) is connected directly to
each package pin. Where an SRL is available at the input or output as a part of the
normal functional design, no additional SRL is added. However, where a pin feeds
or is fed by combinational logic, an SRL is added purely for test purposes.
Together, these SRLs can be used to perform boundary-scan-like tests of
chip-to-chip interconnections.

[2] D. Komonytsky, "LSI Self-Test Using Level Sensitive Scan Design and Signature
Analysis," IEEE International Test Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, Calif., 1982, pp. 414-424.

[3] J.J. Zasio, "Shifting Away from Probes for Wafer Test," IEEE COMPCON, IEEE
Computer Society Press, Los Alamitos, Calif., 1983, pp. 395-398.

This paper discusses the use of boundary-scan as a means of reducing the number
of probe contacts that must be made during wafer testing. In the particular
implementation described, a small number of probes is sufficient to give access to
power pins, the boundary-scan path, and the internal scan path of each chip. Note
that the boundary-scan cells are placed outside the bonding pads for the integrated
circuit (IC) so that the integrity of the signal paths from the bonding pads to the
circuitry is checked.

[4] S. das Gupta, M.C. Graf, R.A. Rasmussen, R.G. Walther and T.W. Williams,
"Chip Partitioning Aid: A Design Technique for Partitionability and Testability in
VLSI," ACM/IEEE Design Automation Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, Calif., 1984, pp. 203-208.
REPRINT

This paper describes IBM's proprietary implementation of boundary-scan that is
based on Level-Sensitive Scan Design (LSSD).

EH0321 -0/90/0000/0217$01.00 © 1990 IEEE 217

[5] J.J. LeBlanc, "LOCST: A Built-in Self-Test Technique," IEEE Design and Test
or Computers, Vol. 1, No. 4, Nov. 1984, pp. 45-52.
REPRINT

This paper describes an IC architecture that combines boundary-scan, on-chip test
control, and self-test.

[6] R. Lake, "A Fast 20K Gate Array with On-Chip Test System," VLSI Systems
Design, Vol. 7, No. 6, June 86, pp. 46-65.
REPRINT

This paper describes the architecture and operation of a gate-array family that
includes boundary-scan and self-test.

[7] F.P.M. Beenker, "Systematic and Structured Methods of Digital Board Testing,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1985, pp. 380-385.

It was this paper that started the drive toward a standard boundary-scan
architecture. The paper reviews the problems faced by companies attempting to use
advanced surface-mount interconnection technologies and considers the value of
boundary-scan as a solution to the problems identified.

[8] D. Laurent, "An Example of Test Strategy for Computer Implemented with VLSI
Circuits," IEEE International Conference on Computer Design: VLSI in Computers
and Processors, IEEE Computer Society Press, Los Alamitos, Calif., 1985, pp.
679-682.

This paper discusses Bull's implementation of boundary-scan. Note two key
features. First, the boundary-scan cells at output pins are not able to drive signals
through the pins — they can only monitor the signal values driven through the
pins by the system logic. Second, the cost of implementing boundary-scan is
reduced by placing the boundary-scan cells beneath power distribution busses
around the periphery of the chip.

[9] P.T. Wagner, "Interconnect Testing with Boundary-Scan," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1987,
pp. 52-57.
REPRINT

This paper discusses how tests may be generated for a board populated with
boundary-scannable chips and provides formulae that can be used to compute the
overall test length.

[10] C M . Maunder and F.P.M. Beenker, "Boundary-Scan — A Framework for
Structured Design for Test," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1987, pp. 714-723.

218

This paper discusses the JTAG version 1.0 architecture.

[11] L. Avra, "A VHSIC ETM-Bus Compatible Test and Maintenance Interface,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1987, pp. 964-971.

This paper describes the U.S. DoD's VHSIC ETM and TM busses. Many ideas
from the ETM-bus were incorporated in the design of the IEEE Std 1149.1 test
logic. Other papers included among these reprints show how board-level test
busses formed by interconnecting chips compatible with IEEE Std 1149.1 can be
interfaced to a system-level test and maintenance bus (the TM-bus).

[12] M.M. Pradhan, R.E. Tulloss, H. Bleeker, and F.P.M. Beenker, "Developing a
Standard for Boundary-Scan Implementation," IEEE International Conference on
Computer Design: VLSI in Computers and Processors, IEEE Computer Society
Press, Los Alamitos, Calif., 1987, pp. 462-466.

A review of the development of the JTAG standard proposal up to the middle of
1987.

[13] IBM, TRW, and Honeywell, VHSIC Phase 2 Interoperability Standards: TM-Bus
Specification —— Version 3.0, November 9 1987 (available from LP. Letellier,
Naval Research Lab., Code 5305, Washington DC 20375, U.S.A).

The TM-bus is a test and maintenance bus intended for use at the system level.
For example, the bus may be used to convey test data to and from a printed wiring
board (PWB) in a rack of equipment. The TM-bus is the basis of the IEEE
P1149.5 project.

[14] P. Barton and C. Dolan, "ASICs and Testability Devices Revolutionize Testability
Design," Texas Instruments Technical Journal, Vol. 5, No. 4, July/August 1988,
pp. 86-97.

This paper shows how, by selectively replacing key chips on a PWB with compatible
devices that include a boundary-scan register, the overall testability of the loaded
board can be increased considerably.

[15] A. Hassan, J. Rajski, and V.K. Agrawal, "Testing and Diagnosis of Interconnects
Using Boundary-Scan Architecture," IEEE International Test Conference
Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp.
126-137.
REPRINT

The application of self-test techniques, based on an extension to the functionality
of boundary-scan cells, to the testing of chip-to-chip interconnections is
described. The technique offers easy diagnosis of detected faults.

219

[16] M.A. Breuer and J . -C . Lien, "A Test and Maintenance Controller for a Module
Containing Testable Chips," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1988, pp. 502-513.

This paper describes how a controller could be designed that would interface
between a system-level TM-bus and a board-level test bus based in IEEE Std
1149.1.

[17] B.I. Dervisoglu, "Using Scan Technology for Debug and Diagnostics in a
Workstation Environment," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1988, pp. 976-986.

While the architecture described is not based on the use of IEEE Std 1149.1, the
paper gives a good example of how a chip-through-system test and maintenance
architecture can be achieved and of the resulting benefits.

[18] C.L. Hudson, "Integrating BIST and Boundary-Scan on a Board," National
Communications Conference, 1988, pp. 1796-1800.

This paper considers several options for the integration of boundary-scan and
self-test.

[19] J. Sweeney, "JTAG Boundary-Scan: Diagnosing Module Level Functional
Failures," National Communications Conference, 1988, pp. 1801-1804.

This paper discusses how the SAMPLE/PRELOAD instruction defined by IEEE
Std 1149.1 can be used during fault location during functional (edge-connector)
loaded-board testing or during system-level built-in self-test.

[20] P.A. Uszynski and A.C. Erdal, "Hybrid Global Test Strategy," High Performance
Systems, Vol. 10, No. 1, Jan. 1989, pp. 68-74.

A test approach that combines boundary-scan and self-test is described. This
approach employs linear-feedback shift-registers and signature analysis, coupled to
a scan path through the on-chip system logic.

[21] C.S. Gloster and F. Brglez, "Boundary-Scan with Built-in Self-Test," IEEE
Design and Test of Computers, Vol. 6, No. 1, Feb. 1989, pp. 36-44.
REPRINT

This paper describes how boundary-scan cells can be designed to act as cellular
automata as a part of a self-test scheme for on-chip logic.

[22] R.P. van Riessen, H.G. Kerkhoff, and A. Kloppenburg, "Design and
Implementation of a Hierarchical Testable Architecture Using the Boundary-Scan
Standard," European Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1989, pp. 112-118.

220

This paper shows how a macro-oriented design-for-test strategy might be
integrated with the IEEE Std 1149.1 test logic.

[23] L.-T. Wang, M. Marhoefer, and E.J. McCluskey, "A Self-Test and
Self-Diagnosis Architecture for Boards Using Boundary-Scan," European Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989,
pp. 119-126.

The authors present a low-cost self-test and self-diagnosis architecture, using
boundary-scannable chips, that allows location of defective chips and chip-to-chip
interconnections.

[24] D. van de Lagemaat, "Testing Multiple Power Connections with Boundary-Scan,"
European Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1989, pp. 127-130.

Where multiple power and ground connections are provided on an IC, it is essential
that all are correctly connected to the PWB if the assembled product is to operate
reliably. For example, if one power connection is open-circuit, failures will only
occur when sufficient current is drawn by the integrated circuit to cause the power
voltage within the chip to fall. This paper shows how faults in board-to-chip
connections at power pins can be detected using extensions to the boundary-scan
path.

[25] P.P. Fasang, "ASIC Testing in a Board/System Environment," IEEE Custom
Integrated Circuits Conference, IEEE, New York, 1989, pp. 22.4.1-22.4.4.
REPRINT

This paper discusses the use of boundary-scan in mixed analog/digital ICs.

[26] J -C . Lien and M.A. Breuer, "A Universal Test and Maintenance Controller for
Modules and Boards," IEEE Transactions on Industrial Electronics, Vol. 36, No.
2, May 1989, pp. 231-240.
REPRINT

This paper looks at architecture for the design of maintainable systems and at the
design of a board-level maintenance controller compatible with IEEE Std 1149.1.

[27] P. Hansen and T. Borroz, "Tough Board Test Problems Solved with
Boundary-Scan," Electronics Test, Vol. 12, No. 6, June 1989, pp. 34-40.

The authors review the application of boundary-scan to the process of testing
loaded boards.

[28] C.H. Hao et al, "Computer Aided Structured Design for Testability of ASICs," 8th
Australian Microelectronics Conference, Brisbane, July 1989, pp. 116-121.

221

This paper outlines how a range of design-for-test approaches, including
boundary-scan and self-test, might be employed in the design of an
application-specific IC (ASIC).

[29] S. Evanczuk, "IEEE 1149.1: A Designer's Reference," High Performance Systems,
Vol. 10, No. 8, Aug. 1989, pp. 52-60.

This article provides a brief tutorial introduction to IEEE Std 1149.1.

[30] D. McLean, S. Banerji and L. Whetsel, "Bringing 1149.1 Into the Real World,"
High Performance Systems, Vol. 10, No. 8, Aug. 1989, pp. 61-70.

A view is given of the way that one company has chosen to support IEEE Std
1149.1 in its product range.

[31] P. Hansen and C. Rosenblatt, "Handling the Transition to Boundary-Scan for
Boards," High Performance Systems, Vol. 10, No. 8, Aug. 1989, pp. 74-81.

A test equipment vendor gives a view of the impact of the availability of
boundary-scan chips on the overall loaded-board test process.

[32] K.P. Parker, "The Impact of Boundary-Scan on Board Test," IEEE Design and
Test of Computers, Vol. 6, No. 4, pp. 18-30.
REPRINT

This paper assesses the impact that boundary-scan may have on the board test
task. It includes an analysis of the impact of boundary-scan in reducing the need
for bed-of-nails probes on in-circuit test fixtures, for example in the case where a
board contains a mixture of chips with and without IEEE Std 1149.1 features.

[33] S. Vining, "Prototype JTAG Controller Trade-Off Decisions," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 47-54.

This paper looks at the issues involved in the design of an interface between a
low-cost test processor (say, a personal computer) and the serial IEEE Std 1149.1
test data path.

[34] A. Dahbura, M.U. Uyar, and C.W. Yau, "An Optimal Test Sequence for the
JTAG Boundary-Scan Controller," IEEE International Test Conference
Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp. 55-62.
REPRINT

Systems companies will wish to be assured that the chips they buy are truly
conformant to IEEE Std 1149.1. This paper looks at how a conformance test could
be constructed that, from the package pins, will verify that the requirements of the
standard have been met. The resulting test also gives good fault coverage of the test

222

access port (TAP) controller and other mandatory features of the standard.

[35] C.W. Yau and N. Jarwala, "A New Framework for Analyzing Test Generation and
Diagnosis Algorithms for Wiring Interconnects," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 63-70.
REPRINT

This paper develops a method of analyzing interconnect test patterns for use in
boundary-scan environments — for example, in terms of their length, fault
coverage, and diagnostic capability. Based on a comparison of previously-published
algorithms for generating test patterns, a new adaptive algorithm is presented.

[36] N. Jarwala and C.W. Yau, "A Unified Theory for Designing Optimal Test
Generation and Diagnosis Algorithms for Board Interconnects," IEEE International
Test Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif.,
1989, pp. 71-77.
REPRINT

This is a companion to the previous paper. It shows how tradeoffs can be made
between test length and diagnostic resolution given information on the size of
defects typically introduced by the assembly process.

[37] P. Hansen, "Testing Conventional Logic and Memory Clusters Using Boundary
Scan Devices as Virtual ATE Channels," IEEE International Test Conference
Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp.
166-173.

For some time, board designs will continue to include a number of chips that do
not offer boundary-scan. These components may continue to be tested via
bed-of-nails techniques if sufficient access for probing is available. Where access is
limited, the boundary-scan paths in chips surrounding such chips may be used as
"virtual" ATE channels. This paper looks at the way that an ATE may be designed
to support this type of testing.

[38] A. Halliday, G. Young, and A. Crouch, "Prototype Testing Simplified by
Scannable Buffers and Latches," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp. 174-181.

The authors look at the impact of IEEE Std 1149.1 on the testing of prototype
boards.

[39] W.D. Ballew and L. Streb, "Board-Level Boundary-Scan: Regaining Observability
with an Additional IC," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1989, pp. 182-189.

223

This paper describes the design of a chip that can be added to a board to provide
controllability and observability to sections of the design that do not offer
boundary-scan. The chip is provided with a TAP compatible with IEEE Std
1149.1.

[40] F. Brglez, C. Gloster, and G. Kedem, "Hardware-Based Weighted Random
Pattern Generation for Boundary-Scan," IEEE International Test Conference
Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989, pp.
264-274.

This is a continuation of the work presented at the 1988 International Test
Conference and in IEEE Design and Test of Computers magazine (see reference
21).

[41] D.L. Landis, "A Self-Test System Architecture for Reconfigurable WSI," IEEE
International Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1989, pp. 275-282.
REPRINT

This paper looks at the application of IEEE Std 1149.1 in the test and
configuration of wafer-scale ICs. Each chip on the wafer is tested using an internal
test mode of the boundary-scan path. Chips that pass this test are then
interconnected via laser-programmable interconnections. As interconnections are
programmed, they are tested using the external test mode of the relevant chip
boundary-scan paths.

[42] A. Hassan, V.K. Agarwal, J. Rajski, and B.N. Dostie, "Testing Glue Logic
Interconnects Using Boundary-Scan Architecture," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1989,
pp. 700-711.

This is a continuation of the work presented at the 1988 International Test
Conference (see reference 15).

[43] Y. Zorian and N. Jarwala, "Designing Fault-Tolerant, Testable VLSI Processors
Using the IEEE P1149.1 Boundary-Scan Architecture," International Conference
on Computer Design: VLSI in Computers and Processors, IEEE Computer Society
Press, Los Alamitos, Calif., 1989.

The production of defect and fault tolerant VLSI processors poses many problems
in debugging and production testing. This paper proposes IEEE Std 1149.1 as a
solution to these problems.

[44] P. Hansen, "Strategies for Testing VLSI Boards Using Boundary-Scan," Electronic
Engineering, Vol. 61, No. 755, Nov. 1989, pp. 103-111.

224

This paper discusses programming, tester, and diagnostic requirements for
boundary-scan-based loaded-board testing.

[45] R.P. van Riessen, H.G. Kerkhoff, and A. Kloppenburg, "Designing and
Implementing an Architecture with Boundary-Scan," IEEE Design and Test of
Computers, Vol. 7, No. 2, Feb. 1990, pp. 9-19.
REPRINT

The authors describe a standardized structured test methodology based on IEEE
Std 1149.1. The architecture ensures testability of the hardware from the printed
wiring board level down to the chip level. In addition, the architecture has built-in
self-test at the IC level and is implemented in a silicon compiler.

[46] R.W. Bassett, M.E. Turner, J. H. Panner, P.S. Gills, S.F. Oakland, and D.W.
Stout, "Boundary-Scan Design Principles for Efficient LSSD ASIC Testing," IBM
Journal of Research and Development, Vol. 34, No. 2/3, Mar./May 1990, pp.
339-354.

A boundary-scan design method based on LSSD design principles is presented and
compared to IEEE Std 1149.1.

[47] D. Landis and P. Singh, "Optimal Placement of IEEE 1149.1 Test Port and
Boundary-Scan Resources for "Wafer-Scale Integration," IEEE International Test
Conference Proceedings, IEEE Computer Society Press, Los Alamitos, Calif., 1990,
Paper 5.1.

This paper identifies the tradeoffs of using a standardized serial test interface for
wafer-scale integration. The test circuitry area overhead and yield loss are
compared to the benefits of reduced input/output connections and improved wafer
testability.

[48] J. Maierhofer, "Hierarchical Self-Test Concept Based on the JTAG Standard,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1990, Paper 5.2.

A hierarchical self-test architecture from system down to macrocell level is
presented. At the board level, the IEEE Std 1149.1 is used to activate both
chip-level self-test and board-level interconnect testing. A special-purpose BIST
bus is used to provide test communications within the chip.

[49] P. Dziel, "Design for Test: A Methodology and Implementation", IEEE
International Test Conference Proceedings, IEEE Computer Society Press, Los
Alamitos, Calif., 1990, Paper 5.3.

A complete design-for-test methodology is discussed, based on IEEE Std 1149.1.
An internal partial-scan path is used that is integrated with the test access port.

225

[50] L. Whetsel, "Event Qualification: A Gateway to At-Speed Functional Testing,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1990, Paper 5.4.

This paper describes an event-qualification architecture and interface that can be
designed into integrated circuits to facilitate functional testing at the board level.

[51] K. Parker and S. Oresjo, "A Language for Describing Boundary-Scan Devices,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1990, Paper 9.1.
REPRINT

A simple, machine-readable, language for describing the chip-specific
characteristics of an IEEE Std 1149.1-compatible integrated circuit is presented.
The language, which is a subset of VHDL, is proposed as a standard for
communication of data on chips compatible with IEEE Std 1149.1.

[52] F. de Jong, "Boundary-Scan Test Used at Board Level: Moving Towards Reality,"
IEEE International Test Conference Proceedings, IEEE Computer Society Press,
Los Alamitos, Calif., 1990, Paper 9.2.

To be able to use boundary-scan facilities effectively at the board level, a method
is required for communicating test patterns between test pattern generation tools
and boundary-scan test systems. This paper describes a test-specification language,
called BITL, that is intended for this purpose.

[53] D. Sterba, A. Halliday, and D. McClean, "ATPG Issues for Board Designs
Implementing Boundary-Scan," IEEE International Test Conference Proceedings,
IEEE Computer Society Press, Los Alamitos, Calif., 1990, Paper 9.3.

This paper describes experiments conducted to study the use of automatic test
pattern generation tools and scan-based fault dictionaries on loaded boards that
use IEEE Std 1149.1.

[54] M. Lefebvre, "Functional Test and Diagnosis: A Proposed JTAG Sample Mode
Scan Tester," IEEE International Test Conference Proceedings, IEEE Computer
Society Press, Los Alamitos, Calif., 1990, Paper 16.1.
REPRINT

The SAMPLE instruction is used to allow logic analysis and diagnostic probing of a
loaded board while it is performing its system function or executing a functional
test.

[55] M. Fichtenbaum and G. Robinson, "Scan Test Architectures for Digital Board
Testers," IEEE International Test Conference Proceedings, IEEE Computer Society
Press, Los Alamitos, Calif., 1990, Paper 16.2.

226

This paper looks at how features can be added to a digital board tester to allow
effective use of boundary-scan facilities in the unit under test.

[56] C. Yau and N. Jarwala, "The Boundary-Scan Master: Target Applications and
Functional Requirements," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1990, Paper 16.3.

A bus-master chip is described that can control the standardized test features a
board populated with chips compatible with IEEE Std 1149.1. The paper describes
both the chip architecture and some possible applications.

[57] G. Robinson and J. Deshayes, "Interconnect Testing of Boards with Partial
Boundary-Scan," IEEE International Test Conference Proceedings, IEEE
Computer Society Press, Los Alamitos, Calif., 1990, Paper 27.3.

Test generation for and diagnosis of short- and open-circuit faults on loaded
boards that have partial boundary-scan can be achieved by combining
boundary-scan and conventional in-circuit interconnect testing.

227

CHIP PARTITIONING AID: A DESIGN TECHNIQUE FOR
PARTITIONABILITY AND TESTABILITY IN VLSI

S. DasGupta
IBM Corporation
P.O. Box 390
Poughkeepsie, NY 12602

M. C. Graf
IBM Corporation
Route 52
Hopewell Junction, NY 12533

R. A. Rasmussen
IBM Corporation
Route 52
Hopewell Junction, NY 12533

R. G. Walther
11400 F.M.R.D. 1325
IBM Corporation
Austin, Texas 78759

T. W. Williams
IBM Corporation
P.O. Box 1900
Boulder, CO 80314

ABSTRACT

This paper presents a structured partitioning
technique which can be integrated into the design
of a chip. It breaks the pattern of exponential
growth in test pattern generation cost as a
function of the number of chips in a package. In
one of its forms, it also holds the promise of
parallel chip testing, as well as migration of
chip-level tests for testing at higher package
levels.

INTRODUCTION

Level Sensitive Scan Design (LSSD) [1, 2] is one
method to solve controllability and observeability
problems in sequential networks and hence, ease the
problem of test pattern generation. This is
achieved by incorporating all memory elements in a
sequential network in shift register latches (SRLs)
and then connecting all SRLs into one or more shift
registers so that the internal state of the network
can be controlled or observed at any time through
the shift register path. LSSD also permits
software-based partitioning techniques [3] to
divide a large network into manageable, independent
networks, each of which is separately addressed by
test pattern generators. This LSSD-based approach
to partitioning will be discussed in the next
section prior to the main topic of this paper.
While this partitioning approach was adequate for
large scale integration (LSI), it is inadequate for
networks in very large scale integration. (VLSI) [4]
due to the rapid increase in test generation
complexity. Several solutions have been suggested
to solve this partitioning problem. Hsu, et al [5]
, and Tsui [6] have recommended ad hoc techniques
for controlling and observing the outputs of chips,
and, hence, inputs of other chips fed by the former
on a common package. Goel and McMahon [7] have
proposed another method where extra circuitry in
system latches and multiplexors on chip outputs are
required to control and observe chip boundaries.

This paper presents a structured, logical
partitioning technique called Chip Partitioning Aid
(CPA) that can be designed into a VLSI chip
technology. In its simplest form, called Half-CPA
(HCPA), it is a structured technique that
partitions a network into nearly disjoint, physical

segments that are approximately a chip's worth of
logic in size. Thus, test generation cost, at
higher package levels, drops from the normal
exponential cost function to a straight multiple of
the number of chips in the package. In the
complete version of CPA, called Full-CPA (FCPA),
the logic network is partitioned into subnetworks
virtually along chip boundaries with built-in latch
isolation around chip inputs and outputs (I/O's)
that allows the potential reapplication of chip
level test data and, more importantly, the
potential for simultaneous testing of the internal
logic of all chips. This latter version is, of
course, the ultimate in the "divide and conquer"
approach to test generation. The only addition at
each package level is the incremental set of tests
for interconnection faults at that package level
which can be derived from a considerably simpler
model of the network.

Next, we will define the rules associated with the
two versions of CPA, and, finally, there will be a
discussion on the effect of CPA on sytem design and
how it can be mitigated by proper implementation of
CPA.

HALF-CPA (HCPA)

Figure 1 shows a conceptual diagram of HCPA. It
shows that in this version of CPA, all logic
outputs of a chip are buffered by shift register
latches (SRLs), called CPA-SRLs here, before being
driven off-chip. CPA-SRLs are similar to standard
SRLs, an example of which is shown in Figure 2.
However, control outputs, such as clocks, are
treated differently. They feed off-chip drivers
unimpeded as required by system function. However,
to ensure that this control function can be tested
properly, it is required to also feed a CPA-SRL
which is left to the side, out of the system path.

The HCPA structure at the chip boundary described
above does not play any significant role in test
pattern generation at the chip level. The only
difference from a chip without CPA-SRLs is that
measurements at chip outputs can be made only after
the data has been clocked into the CPA-SRLs. The
HCPA structure, however, has a considerble
influence in test pattern generation at higher
package levels, forcing creation of partitions of
approximately a chip's worth of logic.

EH0321-0/90/0000/0228$01.00 © 1984 IEEE 228

Reprinted firom IEEE Proceedings 21st Design Automation Conference,
1984, pages 203-208. Copyright © 1984 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

Figure 1. Half-CPA (HCPA) Structure

Figure 2. Example of CPA-SRL

An understanding of some partitioning concepts [3]
is necessary here to appreciate the effect of HCPA.
In an LSSD environment, SRLs, like package outputs,
are considered observable nodes since the values in
SRLs can be shifted out and observed. Therefore,
to divide a network into smaller, independent
subnetworks, a back-trace is performed from each
observable node, stopping only at package inputs or
SRLs, since the latter can be considered as a
controllable input. All logic encountered in this
back-trace constitutes an independent partition
since it contains all the logic that can ever
affect this SRL or primary output (PO). An example
of this partitioning approach is shown in Figure 3.
The unfortunate problem with this approach is that
once the design is done, there is no way to bound
or change the sizes of these partitions without a
redesign; in fact, experience has shown that in
many cases a significant segment of the entire
network may be accounted for in a single partition.

Figure 3. Examples of Partitioning Backtraces

A particularly good example of this is a
bus-architected design where backing up from the
bus, one can pack up just about the entire network
in a single partition. A second problem is
partition overlap in which a gate appears in more
than one partition back-trace. This gate is
considered at least for signal propagation during
test generation and fault simulation, thus,
effectively increasing the total number of gates
that are evaluated by test generation/fault
simulation programs.

The HCPA structure of Figure 1 changes the above
situation. Figure 4 shows a module with several
chips with HCPA structure. Since the CPA-SRLs also
satisfy the property that they are
controllable/observeable points, they serve both as
"start points" and "stop points" of partitioning
back-traces. Thus, starting from any HCPA-SRL, a

Figure 4. Partitioning with HCPA

229

back-trace propagates backwards through the logic
on that chip and, in the worst case, stops at
CPA-SRLs on the outputs of chips feeding the chip
from where the back-trace started. Thus, each
partition contains a network about the size of a
chips's worth of logic, hence, putting an upper
bound on the size of the partition. The question
now is: how does this concept break the trend of
an exponential rise in test generation cost as a
function of chip count? To answer that, consider a
package of n chips with m circuits on each chip.
Assume that without HCPA, the worst case partition
is approximately the size of the entire package.
Also, assume that test generation cost is
proportional to the square of the circuit count.
Then, for a package without HCPA, test generation
cost for a chip is:

T c = km
2

i .e. m2 = Tc/k '

Test generation cost at package level, Tp is given
by,

partitioning in HCPA relates to control outputs of
chips. It is possible to back-trace through
multiple chips, starting from a control output, but
experience has shown us that these paths, while
they may traverse multiple chips, are sparse in
logic content. These outputs, therefore, are not
expected to have large partitions, even in dense
VLSI networks. The CPA-SRLs, that are fed by
control outputs and sit on the side, aid in testing
the logic since these SRLs act like intermediate
observation points for the logic.

FULL-CPA (FCPA)

This is the complete version of CPA and is built on
the benefits of HCPA. Unlike in HCPA where only
system logic outputs are buffered by CPA-SRLs, in
FCPA, both system logic inputs and outputs are
buffered by CPA-SRLs, as shown in Figure 5. The
only exceptions are control inputs and outputs. In
the case of control inputs, they are required to
feed CPA-SRLs on the side along with the system
logic they are designed for, while control outputs
are treated the same way they are treated in HCPA.
The FCPA structure has two benefits over HCPA:

or,

Tp = k(nm)2

= kn2 m2

T = kn2 Tc /k P

= Tc n
2

1. Though a FCPA chip needs at least two test
clocks, they can be shared with all chips at
higher package levels.

2. Latches on all system logic inputs/outputs
effectively isolate the internal logic of chips
allowing all chips with the potential to be
tested simultaneously (hence, saving time on
the tester) along with the potential to apply
tests that were generated for the individual
chip.

For a fixed chip size, Tc can be considered to be
fixed. Hence, Tp varies as the square of n, i.e.,
the square of the number of chips.

With HCPA, partitions are limited to approximately
a chip's worth of logic. Hence,

Tp = (km
2) n

= (kTc/k)n

Tcn

Once again, the assumption that Tc is fixed for a
fixed chip size makes Tp directly proportional to
the number of chips. Thus, HCPA creates, for a
given chip size, a linear relationship between the
cost of test generation and the number of chips and
hence, network size on a high level package.

Once these HCPA partitions are determined, test
generation is done as in ordinary LSSD networks
[8,9] with package wiring being tested along with
on-chip circuitry.

The only exception to what has been said about Figure 5. Full-CPA (FCPA) Structure

230

Test generation in the FCPA environment is now done
in two stages:

CPA RULES

1. Test generation of the internal logic of chips
which is done either at the chip level and
migrated up through the packaging levels or are
generated again at the package level.

2. Test generation for stuck-at-faults in the
package wiring and drivers/receivers on chips
for which a simple model is created (see Figure
6) since they are bounded by SRLs. If any
logic is performed at this package level, with
wire-ORs or wire-ANDs, the number of test
required is (r+1) where r is the maximum number
of wires that is tied together to perform the
largest AND or OR. If no such functions are
performed, the package wiring can be tested
with two tests.

The rules for HCPA are as follows:

1. Each chip "data output" signal feeding a chip
output driver must be fed directly from a
single CPA-SRL.

2. Each chip control output (for example, RAM
control, shift clocks, tri-state inhibits) must
feed a CPA-SRL, as well as it's off-chip
driver.

In addition to the above rules, FCPA has the
following additional rules:

1. Each chip "data input" must directly feed a
CPA-SRL.

TEST PATTERNS
APPLIED HERE

TEST RESULTS
CAPTURED HERE

Figure 6. Simplified Model for Wiring Test on
FCPA Module

Note that in FCPA, as in HCPA, test generation cost
can be shown to be a linear function of the number
of chips.

The real advantage offered by FCPA over HCPA is in
parallel testing of the internal logic of all chips
in a package. While in an idealized environment,
all chips can be tested simultaneously, in a more
realistic environment, parallel chip testing is
affected by the way clocks are shared between chips
and the order in which they need to be sequenced
during a test. For example, if a particular test
for one chip requires a C1-C2 sequence, while
another chip requires the opposite order, these
patterns cannot be merged into one common pattern
for the package, even if everything else in the two
patterns match. This limitation, however, is not
expected to be a serious problem.

2. Each chip control input must feed directly to a
CPA-SRL, as well as the system logic that it
normally drives.

SYSTEM CONSIDERATIONS

From a system viewpoint, the choice of HCPA and
FCPA is dependent upon density, system architecture
and performance. At sufficient densities, latches
naturally migrate to chip boundaries. In an LSSD
environment, these latches would be embodied in
SRLs, thus, satisfying the CPA requirements.
However, there will be situations where an SRL will
be required for CPA only, that is, a test-only SRL
with no system application. In this situation, the
clock(s) to that SRL will be used to control or
observe a chip boundary during test.

When test-only SRLs are required for CPA, several
steps can be taken to mitigate the real-estate and
delay penalty of CPA-SRLs. In the case of HCPA,
the CPA-SRL can be merged with its output driver to
minimize both real-estate and delay. Also, the
output from the CPA-SRL is taken from its L1 latch
to the driver, thus saving the delay of the L2
latch. Figure 7 shows an example of an integrated
CPA-SRL and driver where the performance detractor
is the loading of the wired-AND function in the
CPA-SRL. Estimates have shown that the above
techniques can be used to limit real-estate
overhead to less than 10% of the chip area and the
delay penalty to a fraction of the delay of a logic
circuit. And, finally, the test clock that sets
data into the L1 latch of the CPA-SRL can be held
"on" during system operation so that data can be
flushed through it. Note that this test clock
would constitute an overhead and at higher level
packages, in a worst case situation, each chip
might require a separate test clock for race-free
testing. However, in a typical multi-chip package,
it is possible to have many chips share the same
test clock and still have race-free testing.

In the case of FCPA, the above ideas can be applied
for the CPA-SRLs on both chip inputs and outputs.
Additionally, the latches at the inputs and outputs
can be merged into a single SRL with the L2* latch
[10] , as shows in Figure 8, so that the LI latch

231

CONVENTIONAL GATED DRIVER

SYSTEM DATA D

HCPA CLOCK C

SCAN-IN I

SHIFTCLOCK A

SHIFT CLOCK B

ADDITIONAL CIRCUITRY FOR HCPA-SRL

Figure 7. Example of Integrated HCPA-SRL/Driver

SYSTEM DATA

SYSTEM CLOCK

SCAN DATA i

SHIFTCLOCK A

CHIP PAD

SYSTEM DATA D2

SYSTEM CLOCK C2

SHIFTCLOCK B

Figure 8. Example of CPA-SRL with L2* Latch
Integrated with Receiver and Driver

could serve as the CPA boundary for an output and
the L2* latch could serve as the CPA boundary for
an input (see Figure 9). This provides a further
reduction in the real-estate overhead for FCPA.
The two test clocks that set data into these CPA
latches are now part of the CPA overhead. However,
at higher package levels, these two clocks can be
shared between other chips. Figure 10 shows an
example of a CPA-SRL implementation from [11] to
show the delay impact on a system data path.

One final note on CPA! Whether the latches at chip
boundaries are system usable or not, CPA-SRLs can
be used to trap machine states when desired and in
the event of an error/fault, can, in most cases, be
used to pinpoint the failing chip [12] .

NOTE: SCAN PATHS & CLOCKS NOT SHOWN

Figure 9. FCPA Chip with CPA-SRL Built with
L2* Latch Integrated with Driver and Receiver

SYSTEM CLOCK

SYSTEM DATA D1
SHIFT CLOCK A

TO OFF-CHIP
DRIVER

+V

SCAN DATA I

SYSTEM DATA D2

TO SYSTEM LOGIC

Figure 10. Example of CPA-SRL Implementation
for FCPA

CONCLUSIONS

In this paper, we have described a partitioning
technique that removes the uncertainty of
partitioning sizes, since each partition is forced
around chip boundaries and contains approximately a
chip's worth of logic. Test generation, at higher
package levels, now increases as a linear function
of the number of chips and, in one of the versions,
allows parallel chip testing which saves time on
the tester during manufacturing. We have also
defined the design rules and discussed system
design aspects of CPA.

232

REFERENCES

[1] Eichelberger, E. B. and Williams, T. W., "A
Logic Design Structure for LSI Testability,"
Proc. 14th Design Automation Conf., June
1977, pp. 462-468.

[2] DasGupta, S., Eichelberger, E. B. and
Williams, T. W., "LSI Chip Design for
Testability," Digest of Technical Papers,
1978 International Solid-State Circuits
Conference, February 1978, pp.216-217.

[3] Bottorff, P. S., France, R. E., Garges, N. H.
and Orosz, E. J., "Test Generation for Large
Logic Networks," Proc. 14th Design Automation
Conf., June 1977, pp. 479-485.

[4] Goel, P., "Test Generation Costs Analysis and
Projection," Proc. 17th Design Automation
Conf., June 1980, pp. 77-81.

[5] Hsu, F., Solecky, P., and Zobniw, L.,
"Selective Controllability: A Proposal for
Testing and Diagnosis," Proc. 1978
Semiconductor Test Conf., October 1978, pp.
170-175.

[6] Tsui, F., "In-situ Testability Design (ISTD)
- A New Approach for Testing High-Speed
LSI/VLSI," Proc. IEEE, Vol. 70. No. 1,
January 1982, pp. 59-78.

[7] Goel, P. and McMahon, M. T.
"Electronic-Chip-In-Place Test," Proc. 19th
Design Automation Conf., June 1982, pp.
482-488.

[8] Goel, P., "An Implicit Enumeration Algorithm
to Generate Tests for Combinational Logic
Circuits," Proc. 10th International Symposium
on Fault Tolerant Computing, October 1980,
pp. 145-151.

[9] Goel, P. and Rosales, B. C, "P0DEM-X: An
Automatic Test Generation System for VLSI
Logic Structures," Proc. 18th Design
Automation Conf., June 1981, pp. 260-268.

[10] DasGupta, S., Goel, P., Walther, R. G. and
Williams, T. W., "A Variation of LSSD and Its
Implication on Design and Test Generation,"
1982 International Test Conf., November 1982,
pp. 63-66.

[11] Culican, E. F., Diepenbrock and Ting, Y. M.,
"Shift Register Latch for Package Testing in
Minimum Area and Power Dissipation," IBM
Technical Disclosure Bulletin, Vol. 24, No.
11A, April 82, pp. 5598-5600.

[12] DasGupta, S., Walther, R. G., Williams, T. W.
and Eichelberger, E. B., "An Enhancement to
LSSD and Some Applications of LSSD in
Reliability, Availability and
Serviceability,1-1 Proc. 11th International
Symposium on Fault Tolerant Computing, June
1981, pp.32-34.

233

Reprinted from IEEE Design and Test, November 1984, pages 45-52.
Copyright © 1984 by The Institute of Electrical and Electronics Engineers,
Inc. All lights reserved.

LOCST:
A Built-in Self-Test
Technique
With its low hardware cost, simple implementation and excellent
coverage, this technique promises to meet the needs of a variety
of VLSI environments.

Johnny J. LeBlanc, IBM Federal Systems Division

The advent of very large scale
integration technologies has in­

creased interest in built-in self-test as a
technique for achieving effective and
economical testing of VLSI compo­
nents. As used in this article, the term
"built-in self-test" refers to the capa­
bility of a device to generate its own
test pattern set and to compress the test
results into a compact pass-fail indica­
tion. Many buit-in self-test techniques
have been proposed over the past 10
years, ranging from self-oscillation to
functional pattern testing of
microprogrammed devices to random-
pattern testing (for examples, see
papers by Mucha et al.,1 Sedmak,2

Summary
A built-in self-test technique utilizing on-chip pseudorandom-pattern

generation, on-chip signature analysis, a "boundary scan" feature, and
an on-chip monitor test controller has been implemented on three VLSI
chips by the IBM Federal Systems Division. This method (designated
LSSD on-chip self-test, or LOCST) uses existing level-sensitive scan
design strings to serially scan random test patterns to the chip's com­
binational logic and to collect test results. On-chip pseudorandom-
pattern generation and signature analysis compression are provided via
existing latches, which are configured into linear-feedback shift registers
during the self-test operation. The LOCST technique is controlled through
the on-chip monitor, IBM FSD's standard VLSI test interface/controller.
Boundary scan latches are provided on all primary inputs and primary out­
puts to maximize self-test effectiveness and to facilitate chip I/O testing.

Stuck-fault simulation using statistical fault analysis was used to
evaluate test coverage effectiveness. Total test coverage values of 81.5,
85.3, and 88.6 percent were achieved for the three chips with less than
5000 random-pattern sequences. Outstanding test coverage (>97%) was
achieved for the interior logic of the chips. The advantages of this tech­
nique, namely very low hardware overhead cost (<2%), design-
independent implementation, and effective static testing, make LOCST
an attractive and powerful technique.

and McCluskey et al.3). These various
techniques provide different capabili­
ties for defect detection and self-test
execution time. They also impose dif­
ferent requirements for implemen­
tation and control.

Benefits to be gained from self-test,
however, are common to all imple­
mentation techniques and include

• reduced test pattern storage re­
quirements,

• reduced test time, and
• defect isolation to the chip level.

Since test patterns are generated auto­
matically, only self-test initialization,
control, and pass-fail comparison pat­
terns need be stored, significantly re­
ducing pattern storage requirements.
Test time is reduced because one can
use simple hardware devices (e.g.,
counters or linear-feedback shift
registers) to control test execution,
rather than retrieving test patterns
from storage devices (e.g., disks) and
applying them to the component under
test. When components with built-in
self-test are mounted on higher-level
packages, the self-test pass-fail indica­
tion provides defect isolation to the
chip level (e.g., during card repair
testing).

At the IBM Federal Systems Divi­
sion we have implemented a VLSI
built-in self-test technique, which can
be incorporated at very low hardware
cost into any chip conforming to level-
sensitive scan design (LSSD) rules, on
three VLSI signal-processing chips.
Our method (designated LSSD on-
chip self-test, or LOCST) uses on-chip
pseudorandom-pattern generation

EH0321 -0/90/0000/0234$01.00 © 1984 IEEE 234

and on-chip signature analysis result
compression. This is not a new self-test
method; LOCST utilizes the serial-
scan, random-pattern test technique
pioneered by Eichelberger et al.4,5 and
Bardell et al.6 of IBM. This article (1)
details the adaptation of this technique
to our existing chip testability architec­
ture, (2) details the implementation of
LOCST on three VLSI chips designed
and fabricated by IBM FSD, and (3)
discloses the results of the test coverage

evaluations performed on these three
chips. (For a thorough understanding
of the principles of serial-scan, ran­
dom-pattern testing, I strongly rec-
commend a review of references 4, 5,
and 6 and also a very comprehensive
paper by Komonytsky.7)

standard FSD VLSI
testability features

For a better understanding of the
self-test architecture chosen for

Figure 1. Standard VLSI features.

Figure 2. On-chip monitor.

LOCST, a discussion of design fea­
tures typical to IBM FSD's products is
warranted. Figure 1 illustrates the
three standard testability features in­
corporated in our VLSI products.
They include

• level-sensitive scan design,
• "boundary scan" latches, and
• a standard maintenance interface,

the on-chip monitor, or OCM.
All chips are designed following

IBM's LSSD rules (see Eichelberger
and Williams8) to ensure high test
coverage and high diagnostic resolu­
tion during chip manufacture testing.
"Boundary scan" is a requirement
that all primary inputs (Pis) feed
directly into shift register latches
(SRLs, or LSSD latches) and all pri­
mary outputs (POs) are fed directly
from SRLs. Boundary scan greatly
simplifies chip-to chip interconnect
testing and also provides an ideal buf­
fer between LSSD VLSI products and
non-LSSD vendor components, there­
by reducing the complexity of testing
"mixed-technology" cards.

The OCM is a standard main­
tenance interface for our VLSI chips
(Figure 2). It consists of seven lines:
two for data transfer, four for control,
and one for error reporting. The OCM
maintenance bus can be configured as
either a ring, a star, or a multidrop net­
work, depending on system mainte­
nance requirements. The four major
functions of the OCM are

• scan string control,
• error monitoring and reporting,
• chip configuration control, and
• clock event control: run/stop,

single cycle, and stop on error.
During LSSD testing (chip manu­

facture testing), scan strings are ac­
cessed via either dedicated or shared
Pis and POs. (Note: The OCM is not
used as a test aid during LSSD testing;
it is simply logic to be tested by LSSD
test patterns.) During card and system
test, however, chip scan strings are ac­
cessed via the OCM interface.

The error detection hardware de­
picted in Figure 1 consists of on-chip
error checkers used for on-line system
error detection and/or fault isolation
(described by Bossen and Hsiao9).
When these checkers are triggered by

235 IEEE DESIGN & TEST

an on-chip error, an attention signal is
sent to the system maintenance pro­
cessor through the OCM interface.
The system maintenance processor
reads internal chip error registers (or
writes internal chip mode control
registers) via OCM "instructions."

LOCST architecture
The basic self-test methodology

used in LOCST is to (1) place pseudo­
random data into all chip LSSD
latches via serial scan, (2) activate
system clocks for a single cycle to cap­
ture the results of the random-pattern
stimuli through the chip's combina­
tional logic, and (3) compress the cap­
tured test results into a pass-fail signa­
ture. With the existing testability fea­
tures (LSSD, boundary scan, OCM)
on each chip, it was a simple matter to
incorporate a self-test capability.

To perform the pseudorandom-pat­
tern-generation and signature-com­
pression operations while in LOCST
self-test mode, functional SRLs are
reconfigured into linear-feedback shift
registers, or LFSRs. The pseudoran­
dom-pattern generator, or PRPG, is
20 bits in length, and the signature ana­
lyzer (SA) is 16 bits in length (see
Figure 3). It should be noted that the
devices shown in Figure 3 operate as
normal serial-scan latches and as
linear-feedback shift registers. The
transformation from normal serial-

scan mode to LFSR mode is controlled
by multiplexing the scan inputs with a
self-test enable signal (controlled via
the OCM interface). The parallel data
ports of these latches are not modified
in any way. During self-test the data
port clocks (system clocks) are dis­
abled to prevent outside data from
disrupting the deterministic sequences
of the LFSRs.

The feedback polynomial for the
PRPG was chosen because it is the
least expensive "maximal-length"
20-bit LFSR implementation in terms
of XOR gates required. For the
LOCST implementation, the charac­
teristic polynomial of the PRPG and
the SA is fixed. Differing test pattern
sequences can be obtained by altering
the initial value (or "seed") of the
PRPG. The feedback polynomial for
the SA was chosen because of its
proven performance (see Frohwerk10

and Smith,u for example). The result
of using a 20-bit PRPG and a 16-bit
SA is a self-test capability with 220 - 1
possible random-pattern sequences
and a very low probability of signature
analysis fault masking (approximately
1/216 or 0.0015 percent).

A high-level block diagram of the
LOCST implementation structure is
shown in Figure 4. In self-test mode
the initial 20 SRLs of the chip's scan
strings are configured into a PRPG
LFSR, and the last 16 SRLs are con­

figured into an SA LFSR. For normal
LSSD chip manufacture testing, a chip
usually contains several scan strings
—each accessible from chip input and
output pins. During LOCST testing,
however, all scan strings except the one
containing the OCM latches are con­
figured into a single scan string. (Note:
Random test patterns are scanned into
the single scan string under OCM con­
trol. SRLs that are part of the OCM
and any chip clock generation circuitry
cannot be included in the LOCST scan
string since self-test control and clock
control cannot be disrupted by ran­
dom data.)

The following is a description of the
LOCST sequence:

(1) Initialize all internal latches:
scan known data into all SRLs; this in­
cludes scanning "seeds" into PRPG
and SA registers.

(2) Activate self-test mode: enable
PRPG and SA registers; disables sys­
tem clocks on input boundary SRLs
and LFSRs.

(3) Perform self-test operation:
(a) Apply scan clocks until entire

scan string (up to the SA LFSR) if
filled with pseudorandom patterns.
This step also scans test data into the
SA LFSR for test result compres­
sion.

(b) Activate system clocks for
single-cycle operation.

Figure 3. Linear-feedback shift register implementations.

November 1984 236

(c) Repeat (a) and (b) until fin­
ished.
(4) Read out test result signature

and compare with known "good"
value.

The "good" value from step 4 can
be obtained in two ways; (1) simula­
tion of the entire self-test sequence, or
(2) the "golden chip" approach (that
is, determine what the "good" value is

by performing the LOCST self-test
operation on chips which have passed
all other forms of manufacture and
functional testing). Due to the high
cost of the first method, the second is
currently being used. If the correct
"good" signature value were known
(via simulation) during the chip design
phase, a hardware comparator could
be placed on the chip to provide an im-

Figure 4. LOCST architectures.

Figure 5. LOCST effectiveness.

mediate pass-fail indication. Our im­
plementations of LOCST require that
the 16-bit signature be read by an ex­
ternal processor for comparison
against the stored 16-bit "good"
value.

The entire LOCST self-test opera­
tion is controlled by an external pro­
cessor via the OCM interface. The ex­
ternal processor may be a chip or card
tester or a system maintenance proces­
sor, depending on the testing environ­
ment. The OCM provides the follow­
ing self-test control functions:

• PRPG and SA enable control,
• scan access to internal SRLs for

random-pattern insertion and test
result compression,

• chip clock control for single-cycle
operation (if on-chip clock gener­
ation is used), and

• access to self-test results via direct
register read or via scan.

If a chip does not have an OCM, con­
trol of these functions must be pro­
vided by some other means.

The data port clocks of input SRLs
(i.e., boundary scan LSSD latches fed
directly by primary inputs) are in­
hibited during self-test mode to pre­
vent unknown data from corrupting
the self-test sequence. If the input latch
clocks are not disabled, known values
must be ensured on chip PIs during
self-test execution.

LOCST limitations
Like all on-chip self-test techniques,

LOCST is incapable of testing the en­
tire chip. In considering on-chip self-
test effectiveness, we can divide chip
logic into two basic categories: interior
logic and exterior logic. Figure 5 il­
lustrates the effectiveness of LOCST
for the various chip regions. Since self-
test patterns are applied via serial scan
into chip latches, only the logic fed by
latches will have random test patterns
applied to it and test results will be cap­
tured only for logic which feeds
latches. Chip logic whose inputs are
fed by latches and whose outputs feed
latches is designated "interior logic,"
and combinational logic whose inputs
are fed by chip PIs and whose outputs
feed chip POs is designated "exterior
logic."

237 IEEE DESIGN & TEST

Obviously, external logic is com­
pletely untestable by the LOCST
technique. The importance of bound­
ary scan to on-chip self-test also
should be obvious. The larger the per­
centage of exterior logic on a chip, the
less effective on-chip self-test be­
comes. In the ideal case with 100 per­
cent boundary scan, the only exterior
logic would be I/O drivers and receiv­
ers (and with 100 percent boundary
scan, I/O drivers and receivers would
be very easy to test!)

Types of chip logic that do not clear­
ly fall into the categories of interior or
exterior are the OCM logic and em­
bedded RAMs. Since the OCM con­
trols the self-test operation, internal
OCM logic is not tested by random
patterns during self-test. Rather, the
OCM is tested to the extent that all
OCM functions needed to perform the
self-test operation will have been exer­
cised (i.e., scan control, clock control,
loading self-test registers, etc.). Re­
maining OCM functions are tested by
exercise of the OCM's remaining in­
struction set. RAMs embedded in a
chip will not be completely tested by
the LOCST self-test technique. Special
RAM self-test circuitry would be
needed to provide effective testing
with random patterns. This topic is not
addressed here.

The locations of the PPG and SA
LFSRs are not illustrated because this
would require a detailed scan string
diagram. As mentioned previously,
the PRPG and SA LFSRs utilize ex­
isting functional latches. The two
other chips, B and C, when configured
with a vendor multiply chip, perform
digital filtering functions. Like Chip
A, Chips B and C are primarily arith­
metic data pipelines. All three chips
are now incorporated in signal-pro­
cessing systems.

To determine the testing effective­
ness of the LOCST technique on these
three chips, we performed fault simu­
lation of the self-test procedure. Fault
simulation provides a test coverage
value upon which self-test effective­
ness is based. The fault simulation was
based on the classical stuck-fault
model. Full fault simulation of the
LOCST operation would have been

too costly, so we followed this meth­
odology:

• We used a statistical random sam­
ple of the full stuck-fault list. Test
coverage results therefore have a
95 percent confidence level.

• Since no significant (<< 1 %) error
masking occurs due to the LFSR
compression of the test results,10-12

simulation of the serial compres­
sion activity of the SA LFSR was
not performed. If the detection of
a fault is observed at an SRL, it is
assumed that this fault will be
detected after LFSR compression.

We generated pseudorandom pat­
terns placed in the latches during fault
simulation via a PL/I program, using
the same characteristic polynomial as
the PRPG LFSR implemented on the
chips (see Figure 3). A plot of test

coverage vs. the number of self-test se­
quences for Chip A is presented in
Figure 7. A total chip test coverage of
88.6 percent was achieved (with 95 per­
cent confidence) with 3000 self-test se­
quences. Figure 8a displays the cover­
age evaluation results for Chip A in a
different manner. Here Chip A's logic
is divided into three categories (interior
logic, exterior logic, and OCM logic)
to highlight the LOCST testing effec­
tiveness for each. LOCST test effec­
tiveness for all three chips is summariz­
ed in Figure 8.

implementions and
coverage evaluation

The LOCST technique has been im­
plemented on three VLSI chips used
for signal-processing applications. The
three chips—hereafter called Chip A,

Figure 6. Signal-processing Chip A.

November 1984 238

Chip B, and Chip C—were designed
and fabricated in 1982. The addition
of the LOCST capability (i.e., LFSRs
for PRPG and SA functions and
OCM self-test control logic) represents
a hardware overhead of less than two
percent. (Note: This figure does not in­
clude LSSD overhead or OCM over­
head, as these features are included
whether or not LOCST is imple­
mented. Total testability overhead is in
the 10-15 percent range.)

One of the three chips, Chip A, per­
forms front-end signal-processing
functions requiring high-rate, multi­
ply-intensive algorithms such as finite-
impulse response filtering, linear

beam-forming, and complex band-
shifting operations. Chip A performs
these functions by utilizing a simple
add-multiply-add pipelined data struc­
ture. A high-level diagram of Chip A is
shown in Figure 6.

Overall test coverage values of 88.6,
81.5, and 85.3 percent (mean values of
a 95 percent confidence interval) were
obtained for the three chips respective­
ly. Very good coverage (>97%) was
obtained for the interior logic of all
three chips with relatively few random-
pattern loads (<5000). Test coverage
obtained by deterministic LSSD test
pattern generation was greater than 99
percent for all three chips. Whether or

Figure 7. Test coverage results for Chip A.

Table 1.
LOCST test time.

NO. OF
RPs

NO. OF
SRLs

TEST
TIME

Chip A
ChipB
ChipC

2K
500
3K

213
230
223

0.43s
0.12s
0.67s

Test time = (No. of RPs/scan rate) x No. of SRLs
Scan rate = 1 MHz

RP = random-pattern sequence

not test coverage comparable to that of
LSSD testing could be obtained if
more random-pattern loads were
simulated (e.g., 10K, 100K, or 1M)
was not evaluated because of the
limited budget of this evaluation task.

LOCST execution time
In addition to providing high test

coverage, a self-test technique should
execute in a relatively short period of
time. Table 1 presents the equation for
calculating LOCST execution times
and the predicted test times for the
three FSD chips. For the assumed scan
rate (based on existing FSD scan con­
trollers) and the number of self-test se­
quences (based on the presented test
coverage evaluation), subsecond ex­
ecution times are achieved for all three
chips.

If a large number of random-pat­
tern loads is required to achieve ade­
quate test coverage results, if the scan
rate is slow (e.g., 1 MHz or less), or if a
chip contains a large number of SRLs,
LOCST self-test times may become
quite large (minutes). An alternative to
the basic LOCST implementation is to
use many parallel scan strings feeding
a multiple-input signature register, or
MISR. This modification, illustrated
in Figure 9, reduces the number of
serial shifts required to fill all chip
SRLs with random test data, thereby
reducing the overall LOCST test time.

Self-test environments
One of the greatest potentials of

self-test is the possibility of eliminating
the need to produce a unique test pat­
tern set for each test environment. The
major test environments are

• chip manufacture test,
• card test,
• operational system test, and
• field return test (repair test).

The lack of defect diagnostic informa­
tion is the key reason that self-test is
not considered a viable technique for
chip manufacture testing. But on­
going research is investigating the use
of self-test techniques for LSI devices
in the chip manufacture environment.
A very promising technique using ran­
dom-pattern testing for diagnosing
failures has been developed by F. Mo-

239 IEEE DESIGN & TEST

tika et al.13 of IBM Kingston. Present­
ly, LOCST does not replace LSSD
testing in the FSD chip manufacture
test environment but is used as a sup­
plemental chip-testing technique. As a
minimum, since it provides a rapid
pass-fail indication, self-testing would
be useful in a production test environ­
ment to provide efficient preliminary
screening of product.

The inclusion of several 10,000-gate
VLSI components onto cards that
have historically contained 5000 to
8000 gates of logic posed a serious
problem to traditional card test meth­
odologies. On-chip self-test offers a
very effective solution. LOCST is used
to verify that the FSD VLSI compo­
nents on a card are defect-free. All
FSD VLSI components are accessed
via their OCM interface, requiring
only seven card connector pins. Chip
boundary scan latches (accessed via Figure 9. LOCST modification for faster execution.

November 1984 240

the OCM) are used to apply and cap­
ture data for chip-to-chip interconnect
testing. Boundary scan also effectively
isolates FSD VLSI components from
vendor components, enabling the use
of traditional methods for testing the
vendor logic on the card.

On-chip self-test supports the fol­
lowing types of operational system
testing:

• system initialization test,
• system on-line periodic test, and
• system off-line fault localization

test.

The objectives of implementing an
on-chip self-test capability in our

VLSI chips were to substantially re­
duce the plethora of unique test pat­
tern sets for the differing test en­
vironments, reduce the volume of test
vectors required to test our VLSI prod­
ucts, and eliminate the need for man­
ual test pattern generation. Priorities
of low hardware overhead, simple im­
plementation, simple self-test control,
high test coverage, and short self-test
execution time were of prime impor­
tance. The implementation of LOCST

on our VLSI products has enabled us
to meet these objectives without violat­
ing any of the priorities. •

Acknowledgments
I would like to express my appreciation

to E. B. Eichelberger and E. Lindbloom for
their counsel and encouragement during
the development and implementation of
this self-test technique. I would also like to
thank Tina Nguyen for her assistance with
the fault simulation activity.

References
1. B. Koenemann, J. Mucha, and G.

Zwiehoff, "Built-in Logic Block
Observer," Digest of Papers 1979 Test
Conf. IEEE, Oct. 1979, pp. 37-41.

2. R. M. Sedmak, "Design for Self-
Verification: An Approach for Deal­
ing with Testability Problems in VLSI-
Based Designs," Digest of Papers
1979 Test Conf. IEEE, Oct. 1979, pp.
112-120.

3. E. J. McCluskey and S. Bozorgui-
Nesbat, "Design for Autonomous
Test," IEEE Trans. Computers, Vol.
C-30,No. 11,Nov. 1981, pp. 866-875.

4. E. B. Eichelberger and E. Lindbloom,
"Random-Pattern Coverage Enhance­
ment and Diagnosis for LSSD Logic
Self-Test," IBM J. Research and
Development, Vol. 27, No. 3, May
1983, pp. 265-272.

5. T. W. Williams and E. B. Eichel­
berger, "Random Patterns Within a
Structured Sequential Logic Design,"
Digest of Papers 1977 Semiconductor
Test Symp. IEEE, Oct. 1977, pp.
19-26.

6. P. Bardell and W. McAnney, "Self-
Testing of Multichip Logic Mod­
ules," Digest of Papers 1982 Int'l Test
Conf. IEEE, Nov. 1982, pp. 200-204.

7. D. Komonytsky,' 'LSI Self-Test Using
Level Sensitive Scan Design and

Signature Analysis," Digest of Papers
1982 Int'l Test Conf. IEEE, Nov.
1982, pp. 414-424.

8. E. B. Eichelberger and T. W.
Williams, "A Logic Design Structure
for LSI Testability," J. Design
Automation and Fault Tolerant Com­
puting, Vol. 2, No. 2, May 1978, pp.
165-178.

9. D. C. Bossen and M. Y. Hsiao,
"ED/FI: A Technique for Improving
Computer System RAS," Digest of
Papers 11th Ann. Int'l Symp. Fault-
Tolerant Computing, June 1981, pp.
2-7.

10. R. A. Frohwerk,' 'Signature Analysis:
A New Digital Field Service Method,"
Hewlett-Packard Application Note
222-2, pp. 9-15.

11. J. E. Smith, "Measures of the Effec­
tiveness of Fault Signature Analysis,"
IEEE Trans. Computers, Vol. C-29,
No. 6, June 1980, pp. 510-514.

12. D. K. Bhavsar and R. W. Heckelman,
"Self-Testing by Polynomial Divi­
sion, '' Digest of Papers 1981 Int 7 Test
Conf. IEEE, Oct. 1981, pp. 208-216.

13. F. Motika, et al., "An LSSD Pseudo
Random Pattern Test System," Int'l
Test Conf. 1983 Proc. IEEE., Oct.
1983, pp. 283-288.

Johnny J. LeBlanc is a staff engineer work­
ing in the System/Subsystem Testability
department of the IBM Federal Systems
Division in Manassas, Virginia, where he is
responsible for the development of VLSI
design for testability methodologies, in­
cluding VLSI test generation, built-in test,
and on-chip self-test.

LeBlanc received his BS in electrical en­
gineering from the University of South­
western Louisiana in 1976 and an MS in
electrical engineering from North Carolina
State University in 1978.

Questions concerning this article may be
addressed to LeBlanc at Bldg. 400/044,
IBM Federal Systems Division, 9500 God­
win Drive, Manassas, Va. 22110.

241 IEEE DESIGN & TEST

Copyright © 1986 by CMP Publications, Inc., 600 Community Drive,
Manharaet, NY 11030. Reprinted with pejmission from VLSI System
Design.

A Fast 2OK Gate Array with
On-Chip Test System

Son Lake, Honeywell Inc., Colorado Springs, CO

High performance VLSI system design is demanding
advances in ASIC technology from IC vendors. Pro­
cess development must provide dense circuits capa­

ble of efficient high-speed performance. Test techniques must
verify chip functionality at all levels of integration, from
wafer sort to in-system diagnostics, without requiring expen­
sive high-pin-count testers or exhaustive test development.

In response to these demands, ETA Systems Inc. (St. Paul,
MN) has designed a high-performance CMOS gate array with
an on-chip self-test system known as BEST, for Built-in
Evaluation and .Self Test. Derived from Control Data Corp. 's
On-Chip Maintenance System (Resnick, 1983), the BEST
system provides the designer with an effective method of
verifying chip functionality and ac performance using output
signature analysis. The BEST system provides this test func­
tion with little input from the designer—effectively removing
the time-consuming effort of test vector generation for fault
coverage from the design cycle. The gate array product is
licensed to Honeywell for commercial sale and is referred to
as the HC20000 (HC20K).

The HC20K is a CMOS gate array with a density of 20,000
NAND gates (Figure 1). The chip is fabricated in CMOS-III,
a 1.25-micron, dual n-well epitaxial process with oxide
isolation and double-level metal interconnect. The array con­
tains 12,065 internal logic cells of six transistors each,
arranged in a matrix structure. This equates to 18,097 internal
2-input NAND gates; 80% utilization is recommended. Typi­
cal 2-input NAND gate delay is 450 ps at 25 °C (fan-out of
one). Worst-case performance is 600 ps over the commercial
temperature range and 900 ps for military temperatures. A
two-tier structure of 284 I/O pads rings the periphery of the
internal matrix. The BEST self-test network is incorporated
into this I/O structure, and requires 2,000 gates of internal
logic.

HC20K I/O Structure

The 284 I/O pins on the HC20K are divided into several
functions: 40 pins for power and ground, four pins for the
BEST system, one system clock pin, one hold-off function
pin, and 238 data I/O pins. The data I/O pins are further
subdivided into 140 bidirectional pins and 98 input-only pins.
Each of the 238 possible input buffers may be selected for
either TTL or CMOS trigger levels; all contain an input
protection network. All output buffers contain dedicated
force-active (FAC) and force-off (FOF) pins, which permit
the BEST network to force all outputs active or tristate for

FIGURE 1. HC20K die photograph.

parametric testing. The hold-off pin (HOF) is used to syn­
chronize chip-to-chip data transfer within a system.

The 40 power and ground pins help minimize the effects of
current spikes. Separate power and ground buses for internal
array logic and I/O buffers maintain internal logic integrity
even with large transient currents. Output buffers are further
subdivided into three groups of 20, four groups of 18, and one
group of eight, each with a separate power and ground bus.
This subdivision maintains output buffer performance even
when large numbers of these outputs switch simultaneously.

The system-clock pin brings the clock signal through an
input buffer and distributes it to four separate sets of program­
mable clock drivers, which are distributed one to each side of
the die. The clock drivers all drive a clock bus network,
which surrounds the internal matrix and distributes the clock
signal with minimum skew to each cell of the array. Each
programmable driver contains transistors of three different
sizes: the transistor selected for a given application depends
upon the total capacitive load that must be driven by the clock
bus.

Providing for data synchronization in a system environ­
ment, the hold-off pin tristates outputs from a single chip for a
user-specified duration before allowing active data to pass.

VLSI SYSTEMS DESIGN June 1986 242

FIGURE 2. Built-in Evaluation and Self Test: input block (a) and output block (b).

243 VLSI SYSTEMS DESIGN June 1986

FIGURE 3. Output register in the checksum
mode.
This feature is particularly useful in high-performance sys­
tems running at or near maximum operating frequency. Small
skews in interchip communication caused by fast data paths
can be corrected by hold-off without affecting system
performance.

The BEST maintenance system requires four pins: test
clock enable, test strobe, test data in, and test data out.
Because the BEST network is crucial to HC20K applications,
several later sections are devoted to explaning its capabilities
and the interaction of these four system pins.

HC20K Macrocell Functions
A macro function library supports application design on the

HC20K. All macros are optimized first for performance and
then for logic density. Macros are constructed using double-
level intra-macro metal interconnect, which increases array
mutability by freeing external channels for inter-macro con­
nections. Speed-critical macro primitives (NAND, NOR,
NOT) are constructed with different speed-power-size op­
tions to allow designers to optimize critical logic paths while
minimizing system power.

Register and multiplexer macros are extensible to allow for
variable-length logic functions without wasting logic gates.
Stackable functions are provided by defining separate control
block and element macros instead of a fixed-length combina­
tion. This separation of control provides users with the
flexibility of an n-bit register, for example, without wasting
extra storage bits or duplicating the control function.

CMOS transmission gates have been used to develop both
dynamic and static flip-flop macros. Because dynamic flip-
flops require no feedback, they take fewer devices to imple­
ment. Fewer devices leads to less capacitance on critical
nodes, thereby giving dynamic flip-flops better performance.
Dynamic flip-flops have transmission gates wired in master-
slave fashion with insulator gates at each output. Insulator
gates draw no dc current. Gate capacitance therefore acts as a
temporary storage mechanism, holding a valid logic level
until leakage currents eventually destroy it. As long as the
clock runs at a minimum frequency of 10 kHz, however,
leakage currents will not have time to upset operation, and the
flip-flops will perform properly.

If the minimum clock rate constraint cannot be met, static
flip-flops with feedback are available. With a static flip-flop,
the clock may be stopped high or low and data integrity will
be maintained as long as power is supplied to the chip.

Built-in Evaluation and Sell Test
The BEST system provides the logic designer with special

features to aid in testing a design during wafer probe, pack­

aged IC test, system test, and in-system field maintenance.
The system permits probing and testing with only 30 I/O pins
connected, PC board interconnect testing, standardization of
test programs for different array designs, and on-line integrity
checking during normal system operation. With BEST, de­
velopment of long test programs is not required: the designer
must merely initialize the chip logic and then access the BEST
system through the control and data pins. The BEST logic
generates a final output signature by summing all logic
outputs during the pseudo-random test sequence. The design­
er need only check this final result to verify chip
functionality.

The BEST system comprises a 24-bit control register, a
242-bit input register with operand generation capability, and
a 148-bit output register with checksum capability (Figure 2).
These three components are arranged into a serial shift
register configuration. To access the BEST logic, four I/O
pins are required. These are the control pins, test clock enable
(TCE) and test strobe (TS); and the data transfer pins, test
data in (TDI) and test data out (TDO). TCE gates the system
clock to the maintenance registers, while TS engages the
maintenance function. If TS is low, the maintenance registers
are separated from the array logic, so that data may be serially
shifted through the maintenance registers with no effect on
system operation. When TS goes high, a function code is
frozen in the control register, and the contents are gated to the
array control nodes. TDI is used to shift data serially to the
first bit of the control or input registers in order to provide the
input register with an initial seed value and to define the
function in the control register. TDO serially shifts data from
the last bit of the output register to the outside world, allowing
the designer to examine the output register results.

The use of these four control pins along with system clock,
hold-off, 12 of the VDD pins, and 12 of the Vss pins provides
full functional testing of this array at low pin count. Function­
al tests may be performed at system speed up to a maximum
frequency of 100 MHz (at room temperature).

BEST Registers

The input register contains one bit for every input buffer on
the array, plus four extra bits to multiplex data for vector
generation. It serves as either a data source or destination for
nodes between the input buffers and the internal gates of the
logic array. The register may be loaded either in parallel from
the input buffers or serially through the TDI pin. When in test
mode, the logic-array gate inputs may be isolated from the
input buffers, and receive instead the contents of the input
register. When this input register is subsequently clocked,
pseudo-random operands are generated and applied to the
array inputs at the system clock rate.

Similar in operation to a cyclic redundancy code generator,
the pseudo-random generator is formed by feeding back the
input register's output at selected intermediate points, and
half adding this result to the previous state value at this bit.
Given a user-defined seed value, the number generator will
define a unique set of patterns that begins to repeat after
approximately 1035 patterns. Thus, a designer may develop a
unique test sequence merely by specifying an initial seed
value and a number of clock iterations. The BEST circuitry
will then generate the vectors required to provide a particular
level of fault coverage.

VLSI SYSTEMS DESIGN June 1986 244

FIGURE 4. BEST in the sell-test mode

FIGURE 5. BEST in the interconnect test mode.
The output register contains one bit for every output buffer

on the array plus an extra bit for data multiplexing, and may
source or sink data. When sourcing, the logic-array gate
outputs are separated from the output buffers, and the output
register data is substituted. This allows known data to be
forced through the outputs in order to verify buffer functiona­
lity. When sinking data (in checksum mode), data is loaded
into the output register from either the logic-array gate out­
puts or the output buffers, at the user's choice. Again, this
gives the user the flexibility to test separately the functionality
of the logic array and the output buffers. In this mode, each
bit loaded into the output register is half-added to the contents
of the previous bit of the register. The result is reloaded into

the output register with the data shifted by one bit. The shift is
circular in that the data from the last bit is loaded into the first
bit, ensuring that an error at any pin is kept in the checksum
(Figure 3).

The 24-bit control register is partitioned into a 10-bit
system portion and a 14-bit user portion. The individual bits
in the system portion each control a distinct function in the
BEST system. The first eight bits connect and disconnect data
paths between the registers and internal logic gates; they also
enable the input operand generation and output checksum­
ming. Bits 9 and 10 are used to tristate or force active all
output buffers. Outputs of the 14 user bits are available for
definition by the designer. Several uses for these bits could be

245 VLSI SYSTEMS DESIGN June 1986

FIGURE 6. BEST in the system checksum mode.
to initialize the internal logic, set all flip-flops high or low,
control a set-scan network, or multiplex internal logic nodes
out the TDO pin.

BEST System Operation
The BEST maintenance system is configured to not affect

system performance. Maintenance registers lie in parallel
with the I/O pins instead of in series; thus, data will not pass
through an input register bit when it passes from an input
buffer to the logic array. The BEST system supports self test,
interconnect test, ac test, and provides a logic-analyzer mode
and a system checksum mode.

For self test (Figure 4), the control register must set the
following conditions:

• Input register set to random generator mode;
• Output register set to checksum mode;
• Output register sinks data from either the logic-array

outputs or the output buffers.

The designer must then provide:

• A chip initialization sequence, perhaps using a bit in
thecontrol register;

• A seed value for the pseudo-random number generator,
which is shifted in serially;

• The number of clock cycles to iterate;
• The expected checksum result.

If errors occur in the final checksum, the self test could be
repeated with intermediate checksum values observed in
order to isolate the test cycle that first demonstrates the error.

For the interconnect test (Figure 5), the control register
must set the following conditions:

• A known operand in the output register;
• Output register sourcing data to the output buffers;
• Input register sinking data from the input buffers.

in a system, a quick check can be performed to find faults
such as opens, shorts, or grounded lines, which exist in the
PC board configuration for the system.

For ac test, the control register must be set to select the ring
oscillator in the ring periphery to be gated on, and to connect
the oscillator output to the TDO pin.

In logic-analyzer mode, the control register must set the
input register to sink data from the input buffers, and the
output register to sink data from the output buffers. The
designer must then bring TS low at predefined times during
system operation. This captures I/O data in the input and
output registers whenever TS toggles low. The resulting
timing "diagram" for the chip may be serially shifted off chip
for comparison to expected values.

For system checksum (Figure 6), the control register must
set the output register to checksum mode, and connect it to
either the logic-array outputs or me output buffers. After a
system diagnostic program is run, the final checksum can be
checked for validity. This diagnostic can be scheduled during
normal operation to perform on-line checking. Due to the
parallel configuration of the maintenance registers, this
checksum operation has no effect on either system operation
or performance. If no diagnostic program is available, normal
system operation can be performed with several arrays and
the resulting data compared for corroboration. The user must
ensure that the test sequence in normal system operation is
fully deterministic. There can be no undefined data in storage
elements at the beginning of the test, and no interrupts can
occur during the test. These constraints will generate a unique
checksum that will remain consistent for all gate arrays of a
given design. If an error is apparent from the final checksum
in a gate array, diagnostic or system programs can be rerun
and intermediate checksums compared to isolate the first
point of error.

Control Nodes
By checking input register bits in the various receiving chips The HC20K provides 42 internal control nodes for use at

VLSI SYSTEMS DESIGN June 1986 246

the designer's discretion. These control nodes may be con­
nected within the design netlist to increase a design's testabi­
lity beyond that automatically achieved by the BEST mainte­
nance circuitry. The control nodes may be divided into two
separate cases: nodes that are outputs of the BEST logic, and
nodes that are inputs to the BEST logic. Output nodes (N30-
N43, N50-N52, and N54) provide the designer with access to
the 14 user-defined bits in the control register, the BEST
control signals (TCE and TS), TDI, and the hold-off bus.
These nodes are intended to give the designer access to
critical internal control signals, but may be ignored if the
function provided is not required to increase testability.

Input nodes (N2-N23, N60, and N61) must be defined, and
fall into three groups. Nodes N2-N23 are used to overwrite
the contents of the control register whenever the TS toggles
low. These nodes are intended to give the designer the ability
to encode a chip type and revision level into the netlist. The
nodes are connected to either the power or ground bus by user
assignment, and their values may be observed by shifting the
control register data through the maintenance registers and
out the TDO. Node N60 provides hold-off control of the
TDO. If hold-off is not used, this signal should be tied high.
Node N61 provides a path for alternate on-chip data to be
observed through the TDO pin. This node must be tied high if
the alternate data function is not used.

Summary

The HC20K offers the density, efficiency, and perfor­
mance demanded by VLSI system design. High pin-count I/O

reduces the need for data multiplexing while incorporating
discharge protection and parametric testing into the buffers.
Macro functions are optimized for high performance and
logic density. Power, ground, and clock bus distributions
support high-performance applications while maintaining
data integrity. The hold-off capability allows for fine-tuning a
system after prototype delivery.

The BEST maintenance network reduces the burden of test
development by providing an on-chip facility capable of
verifying the performance of the array at clock rates up to 100
MHz. The system permits probing and testing with only 30
I/O pins connected. •

Reference

Resnick, D. March/April 1983. "Testability and Maintainability
with a New 6K Gate Array," VLSI Design.

About the Author

Ron Lake holds B.S. and M.S. degrees in
electrical engineering from the University of
Missouri at Columbia. He is currently a sys­
tem applications engineer at Honeywell's
Digital Product Center. Previously, Ron held
various positions in design, applications, and
engineering with other semiconductor
companies.

247 VLSI SYSTEMS DESIGN June 1986

INTERCONNECT TESTING WITH BOUNDARY SCAN

Paul T. Wagner

Honeywell, Inc.
Solid State Electronics Division

12001 State Highway 55
Plymouth, Minnesota 55441

ABSTRACT

Boundary scan is a structured design technique which can be
used to simplify the testing of digital circuits, boards, and
systems. With boundary scan, test patterns can be generated
which provide 100% stuck-at and bridging fault coverage of
board interconnections. The paper describes the advantages
and disadvantages of boundary scan along with the application
and implementation of boundary scan circuitry. Algorithms for
generating interconnect test patterns for stuck-at and bridging
fault coverage are also presented.

Besides simplifying testing fixturing, boundary scan also
reduces test equipment requirements. Since the boundary scan
path provides access to the primary I/O, the testing process is
reduced to serially shifting the test pattern into place, executing
one or more clock operations, and serially shifting out the
results as the next pattern is shifted in. Thus a small,
inexpensive testing computer can be used to perform chip
testing. This simple setup is shown in Figure 1.

INTRODUCTION

Advances in VLSI technology have increased the density and
speed of integrated circuits. Thus, the complexity and cost of
testing digital integrated circuits, boards, and systems have also
increased. By providing a simple means to access the
periphery of digital circuits, boundary scan can greatly simplify
the task of testing and maintaining systems which use these
circuits. This advantage allows boundary scan to reduce the
costs of wafer-level IC testing, board and system testing, and
system field maintenance.

Wafer-Level Testing

At the wafer level, boundary scan can be used to reduce the
need for complex probing fixtures and high-pin-count testers .
By using boundary scan to access the primary chip I/O, a
simple probe card consisting of power, ground, and serial test
interface signals can be used to test chips with hundreds of I/O
pads . The decrease in fixturing complexity simplifies test
setup, reduces test fixturing costs, and reduces the possibility
of damaging the device-under-test during probing.

Figure 1: Wafer-Level Testing With Boundary Scan

Board-Level Testing

At the board level, boundary scan can be used to resolve testing
difficulties introduced by new packaging technologies
associated with surface mount devices and multi-chip
packages. Traditional methods for digital board testing include
through-the-hole probing to gain access to the primary
component I/O with a "bed-of-nails" testing fixture.
Difficulties with the "bed-of-nails" approach include degraded
reliability due to over-driving connections from other board
components, physical limitation of through-the-hole
accessibility, difficulty of reproducing tests, and expenses
involved with developing the "bed-of-nails" testing fixture3,4 .
These problems, combined with the increasing use of
surface-mount technology5 and the need for high speed and
high pin count testers, have resulted in extremely expensive
board-level testing costs.

Boundary scan can reduce the problems associated with
board-level testing. As shown in Figure 2, boundary scan
provides serial access to the primary component I/O and their
interconnections. This allows any component to be partitioned
from the rest of the board during testing and eliminates the need
for a "bed-of-nails" testing fixture. Also, boundary scan
reduces the time and cost associated with test pattern generation
because test patterns used on the component at wafer level can
be modified and applied through the boundary scan path. This
can be useful when components are purchased from outside
vendors and knowledge of the internal circuitry is limited.
Since board interconnections are easily accessed, simple
algorithms can be used to generate test patterns which provide
100% stuck-at and bridging fault coverage.

As was the case at wafer-level testing, boundary scan greatly
simplifies the setup required for board testing as shown in
Figure 2. This setup reduces testing costs because the test
patterns can be applied serially with an inexpensive test
computer through a simple test interface consisting of the
boundary scan-in signal, boundary scan-out signal, and
necessary control lines.

EH0321-0/90/0000/0248$01.00 © 1987 IEEE 248

Reprinted from IEEE Proceedings 1987 International Test Conference,
pages 52-57. Copyright © 1987 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

Figure 2: Board-Level Testing With Boundary Scan

Field Testing

•Boundary scan can also reduce the cost of system field
maintenance. Since boundary scan tests the input buffers, the
output buffers, and all component interconnect, it provides
excellent coverage of the most common field failures.
Furthermore, the procedure for testing with boundary scan in
the field is nearly identical to that described for board-level
testing. Thus field testing can be performed using a simple
testing computer accessing a serial test interface. Since very
few interconnect test patterns are required, the testing
computer can be as simple as a lap-top personal computer,
which is ideally-suited for field maintenance.

Boundary scan can be used to test the system interconnections
and to partition the system into separately-tested modules. In
this case, testing will isolate the fault to a single module or to a
faulty interconnection(s) if the individual modules can
themselves can be adequately tested. If boundary scan is
extended to the component level, the fault can be isolated to the
individual component. Thus, cost-effective repair of the
module is possible since the faulty component or
interconnection can be easily identified for replacement or
repair.

Boundary scan can also be used as part of a system self-test
strategy. By allowing a system test processor to access the
boundary scan paths in the system, boundary scan can be used
to test the system interconnections and to partition the system
into smaller self-testable units. The easy execution of self-test

and improved fault isolation provided by boundary scan reduce
the mean-time-to-repair; thereby increasing system availability.

IMPLEMENTING BOUNDARY SCAN

In general, boundary scan provides a method for accessing all
application inputs and outputs from an external test controller.
As shown in Figure 3, this can be accomplished by including
boundary scan registers, which are selected during the test
mode, to shift in test patterns and shift out results. The
boundary scan registers consist of individual flip-flops
associated with each application input and output. These
registers are designed to support both a parallel and a serial
mode. The registers interface to both the application and its I/O
during the parallel mode and can be read from and written to by
means of a serial interface during the serial mode. Selecting the
boundary registers can be accomplished using either MOS
transmission gates2 or the multiplexers shown in Figure 3.

Before actually implementing boundary scan, a number of
options must be considered which affect both the design and
capabilities of the boundary scan circuitry. These options
include: the use of application registers as boundary scan
registers, the control of output buffers, the selection of a test
interface, and the implementation of the boundary registers.
These options and others are addressed in the following
sections on implementing the components of a boundary scan
technique.

Figure 3: A Conceptual Diagram For Boundary Scan

249

Dedicated Boundary Scan Registers

Boundary registers can either be dedicated for boundary scan
testing or they can be used in both functional and test modes.
When implementing boundary scan on high-speed bipolar
integrated circuits, we found that there were a number of
advantages to using some functional registers for boundary
scan testing. First, the high-speed of the system mandates that
most of the chip inputs and outputs be registered directly at the
I/O buffer. Since we already incorporate serial scan" in our
chip designs, these registers were easily added to the boundary
scan path. Dedicated boundary "shadow" registers are then
added to any I/O which are not directly registered. A 2:1
multiplexer is used to make the shadow registers visible during
the test mode and invisible during the functional mode. This
approach of exploiting existing registers substantially reduces
both the circuit and power overhead associated with boundary
scan and eliminates a 2:1 multiplexer delay from the path of
critical signals.

If boundary scan is to be implemented on a gate array product,
associating dedicated shadow scan registers with the I/O
buffers at the periphery of the array has a number of
advantages. First, the user of the gate array can utilize
boundary scan with little or no design effort. Furthermore,
array cells are not consumed when implementing boundary
scan and numerous signal routings are eliminated. Finally,
implementing dedicated boundary scan registers on a CMOS
gate array product2 will not significantly increase the chip
power (contrary to bipolar designs).

buffers to change state at the same time; resulting in excessive
noise on power and ground busses. For these reasons, a
global output buffer disable signal is included in our
implementation of boundary scan and can be controlled by the
test interface circuitry.

If the testing of asynchronous sequential logic is necessary, a
latch must be added to between the flip-flop and output buffer
to hold the output state during shifting operations. A similar
latch would also be required at the input boundary register if
the application logic array contained asynchronous sequential
logic to be tested with the boundary scan circuitry. Typically,
we do not include this latch because we infrequently use
asynchronous sequential logic in our digital system designs.

Another implementation concern involves connecting the
boundary scan bit-slices as inverting serial shift registers or as
non-inverting serial shift registers. The advantages of an
inverting serial shift path include the easy identification of
faults in the shift path. To test the shift path, the entire path is
reset to either a logic 0 or a logic 1 and the contents are shifted
out. The serial output pin is men examined for an alternating
pattern of ones and zeros. If the data remains at a logic 1 or 0
after k clocks, then we know that a fault exists k bits back
from the output pin. With mis information, we can quickly
isolate the cause of the fault Without the inverting boundary
scan path, finding the fault could be tedious and difficult task.
For this reason, we frequently make use of inverting serial shift
paths when implementing boundary scan.

The Boundary Scan Bit-slice

The boundary scan registers consist of bit-slices that are
attached to each application input and output. Our
implementation of this bit-slice is shown in Figure 4. This
consists of a 3:1 multiplexer which allows data to be loaded in
the functional mode, serial data to be shifted in the test mode,
and a reset operation to be performed. The output of the
multiplexer is then fed to the scan flip-flop which in turn drives
the scan out signal and the chip output.

Figure 4: The Boundary Scan Bit-slice

As data is shifted through the boundary scan path, the chip
outputs must be latched or disabled to prevent unwanted and
possibly damaging output conditions. For example, the scan
operation could damage output buffers by forcing two separate
output drivers on the same net to different logic levels. Also,
the shifting operation may cause a large number of output

The Test Interface

Selecting an appropriate test interface is a very important part of
the boundary scan implementation. A common interface will
allow the boundary scan paths of multiple chips on a complex
circuit board to be easily accessed. Without this common
interface, many of the advantages of using boundary scan at the
board level are diminished due to the difficulty in using the
technique.

To resolve this problem, we are using the VHSIC standard
Element Test and Maintenance Bus ' (ETM-Bus) as our serial
test interface for boundary scan and other on-chip
design-for-test techniques8. If the serial test bus is to be
connected solely to on-chip boundary scan, a simplified
version of this interface logic can be used.

INTERCONNECT TEST PATTERN GENERATION

When testing interconnection nets on a digital module, both
stuck-at and bridging faults must be considered. Since the
boundary scan path provides direct access to these nets, test
patterns can be generated which provide 100% coverage of
these faults. The following sections discuss algorithms we use
for the generation and application of boundary scan test
patterns which detect all possible stuck-at and bridging faults.

Stuck-at Fault Test Pattern Generation

Because stuck-at faults occur on a variety of bus
configurations, different test pattern generation algorithms are
required for wired-AND, wired-OR, and three-state
interconnect nets.

250

Testing wired-AND interconnection nets. As the name implies,
the values forced on a wired-AND interconnection net are
logically ANDed to obtain the resulting value. Thus, the
wired-AND net can be treated in the same way as an AND gate
where 100% of all the stuck-at faults can be detected with k +
1 test patterns where k is the number of inputs. The test
patterns can be divided into k patterns which test for stuck-at
'1' faults and a single pattern which tests for all stuck-at '0'
faults. Figure 5 shows the steps we use for testing
wired-AND interconnection nets.

1) The driver to be tested is set to a logic '0'
2) All other drivers on the net are set to a logic '1'
3) The data is clocked into the receivers
4) All receivers on the net are examined for a logic '0'
5) Repeat steps 1-4 until each driver is tested
6) Every driver is set to a logic '1'
7) The data is clocked into the receivers
8) Every receiver is examined for a logic '1'

Figure 5: S-A Faults Testing Steps for Wired-AND Nets

Testing wired-OR interconnection nets. Generating test
patterns for a wired-OR interconnection net is nearly identical
to the wired-AND case. For a wired-OR net with k drivers,
100% of all stuck-at faults can be detected with k + 1 test
patterns. In this case, the test patterns can be divided into k
patterns which test for stuck-at '0' faults and a single pattern
which tests for all stuck-at '1' faults. Figure 6 shows the
steps we use for testing wired-OR interconnection nets.

1) The driver to be tested is set to a logic 1'
2) All other drivers on the net are set to a logic '0'
3) The data is clocked into the receivers
4) All receivers on the net are examined for a logic '1'
5) Repeat steps 1-4 until each driver is tested
6) Every driver is set to a logic '0'
7) The data is clocked into the receivers
8) Every receiver is examined for a logic '0'

Figure 6: S-A Faults Testing Steps for Wired-OR Nets

Figure 7: A Three-state Interconnection Net

Testing three-state interconnection nets. When a three-state
interconnection net is used, multiple drivers control one or
more receivers as shown in Figure 7. Since only a single
driver can be enabled at any one time, a special restriction is
imposed on the generation of the three-state interconnect test
patterns. In order to achieve 100% stuck-at fault coverage,
each driver on the net must be individually for stuck-at '1' and
stuck-at '0' faults while the remaining drivers are disabled.
Since this requires 2 test vectors per driver, 100% stuck-at
fault coverage can be achieved using 2 • k test vectors where
k is the number drivers on the net. The steps we use for
testing three-state interconnect nets are shown in Figure 8.

1) The driver to be tested is enabled and set to a logic '1'
2) All other drivers are set to a logic '0' and disabled
3) The data is clocked into the receivers
4) The receivers are examined for a logic '1'
6) Repeat steps 1-5 until all drivers have been tested
7) The driver to be tested is enabled and set to a logic '0'
8) All other drivers are set to a logic ' 1' and disabled
9) The data is clocked into the receivers
10) All receivers are examined for a logic '0'
11) Repeat steps 7-11 until all drivers have been tested
Figure 8: S-A Fault Testing Steps for Three-state Nets

Bridging Fault Test Pattern Generation

In addition to testing for stuck-at faults, we also test the
interconnects for bridging faults. A bridging fault occurs when
two nets are electrically connected as shown in Figure 9. A
procedure which detects this fault is described in Figure 10.

1) Enable the drivers on each net
2) Apply a logic '1' to all drivers on the first net
3) Apply a logic '0' to all drivers on the second net
4) Clock the data into the receivers
5) Examine at least one receiver on each net
6) If the data at the receiver of either net does not

correspond with the data applied at the respective
driver, then a bridging fault exists between the nets

Figure 10: The Procedure for Detecting a Bridging Fault

251

The procedure described in Figure 10 operates on two nets.
Since a digital module may contain hundreds of interconnection
nets, this procedure must be applied to every possible pair of
nets to achieve. 100% bridging fault coverage. Since separate
pairs of nets can be tested at the same time, 100% bridging
fault coverage can be achieved with log2(n + 2) test vectors
where n is the number of nets on the board".

Bridging fault test generation example. The algorithm we use
to generate the log2(n + 2) test patterns for bridging fault
detection is best illustrated through a simple example. The
example given below uses a board with 8 interconnect nets.

Step 1 - Determine the total number of nets on the board. In
this example, n = 8 which requires log2(8 + 2) or 4 test
vectors.

Step 2 - Assign each interconnect net a unique number.
Assignments should begin with the number 1 and continue in
increments of 1. In this example, the first net is given the
number 1, the second net is given the number 2, and the last
net is given the number 8.

Step 3 - Assign binary values to each net. Since 4 test
vectors are required, assign each net the 4-bit binary
equivalent of the net number assigned in the previous step as
shown in Figure 11.

interconnect net 1 -
interconnect net 2 -
interconnect net 3 -
interconnect net 4 -
interconnect net 5 -
interconnect net 6 -
interconnect net 7 -
interconnect net 8 -

0001
0010
0011
0100
0101
0110
0111
1000

Figure 11: The Binary Numbers Assigned to the 8 Nets

Step 4 - Determine the test vectors. The first test vector is
comprised of all the bits in the least significant position of the
binary numbers. The second test vector is comprised of the
bits in the second least significant position. This is continued
until all bit positions of the binary numbers have been used.
The resulting test vectors are shown in Figure 12.

test vector 1 - 10101010
test vector 2 - 01100110
test vector 3 - 00011110
test vector 4 - 00000001

Figure 12: The Bridging Fault Test Vectors for the 8 Nets

Isolating the faulty interconnects- The bridging fault test
pattern generation scheme described in the previous section
provides a quick and easy method of bridging fault detection.
Although this scheme determines if any bridging faults exist, it
does not isolate every interconnection net with a bridging fault
If repairing interconnection nets with bridging faults is
possible, all of the faulty interconnects need to be identified.
This can be accomplished using the test patterns generated by
the algorithm described in the previous example along with an
additional log2(n + 2) test patterns. Thus, 2 • log2(n + 2)

test patterns can be used to provide complete bridging fault
isolation of the interconnection nets.

test vector 5 - 01010101
test vector 6 - 10011001
test vector 7 - 11100001
test vector 8 - 11111110

Figure 13: Additional Test Vectors for Isolating Faulty Nets

The additional log2(n + 2) test patterns are generated by
simply inverting the binary values of the first log2(n + 2) test
vectors. For the previous example, the these test vectors are
shown in Figure 13. To identify those interconnects with
bridging faults, a list of the faulty nets can be maintained
during testing. When a bridging fault is detected, the
corresponding interconnect net can be identified and added to
this list. After all the test patterns have been applied, the list
will contain all of the faulty interconnection nets.

CONCLUSIONS

Boundary scan simplifies the testing of digital circuits, boards,
and systems. Since boundary scan provides easy access to the
periphery of digital circuits through a serial shift path, the setup
needed for testing is simplified to an inexpensive computer and
a simple test interface. This reduces the complexity and costs
of wafer-level testing, board-level testing, and field
maintenance.

Boundary scan allows easy partitioning of board components
and interconnects, thus wafer-level test patterns can be
modified and used to test the components on the board. Also,
the simple algorithms presented generate test patterns which
provide 100% stuck-at and bridging fault coverage of board
interconnects. These advantages allow boundary scan to
significantly reduce test and maintenance ccsts while
maintaining a high percentage of fault coverage at the circuit,
board, and system level.

REFERENCES

[1] J. J. Zasio, "Shifting Away From Probes For Wafer
Test," COMPCOM S'83, San Francisco, CA, pp.
317-320.

[2] R. Lake, "A Fast 20k Gate Array With On-chip Test
System," VLSI Systems Design, June 1986, pp.
47-55.

[3] F. P. M. Beenker, "Systematic and Structured
Methods for Digital Board Testing," IEEE International
Test Conference 1985 Proceedings, pp. 380-385.

[4] H. Bleeker and D. van de Lagemaat, "Testing A
Board with Leaded and Surface Mounted Components,"
IEEE International Test Conference 1986 Proceedings,
pp. 317-320.

[5] W. Booth, "VLSI Era Packaging," VLSI Design,
December 1986, pp. 22-35.

[6] H. W. Miller, "Design for Test Via Standardized
Design and Display Techniques," Electronics Test,
October 1983, pp. 38-61.

252

[7] VHSIC Phase 2 Interoperability Standards ETM-Bus
Specification, Version 2.0, December 31,1986

[8] L. Avra, "A VHSIC ETM-Bus-Compatible Test and
Maintenance Interface," IEEE International Test
Conference 1982 Proceedings, pp. 83-90.

[9] P. Goe l and M. T. M c M a h o n , "Electronic
Chip-in-place Test," IEEE International Test Conference
1982 Proceedings, pp. 83-90.

253

Testing and Diagnosis of Interconnects
using Boundary Scan Architecture

Abu Hassan. Janusz Rajski and Vinod K.Agarwal

VLSI Design Laboratory
Department of Electrical Engineering

McGill University, 3480 University Street
Montreal. Canada H3A 2A7

Abstract
This paper proposes a new approach to built-in self-test

of interconnects based on Boundary Scan Architecture. De­
tection and diagnosis schemes are proposed which provide
minimal-size test vector set, I/O scan chain order indepen­
dent test vector set and walking sequences. Properties like
ease of test vector generation, structure independent detec­
tion and diagnosis, local response compaction have made the
developed schemes suitable for BIST implementation. An ex­
ample board interconnect test session is described using one
of the proposed schemes.

Key Words : Interconnect, Boundary Scan Architecture, De­
tection, Diagnosis. Walking Sequence.

1. Introduction

In recent years, structured design-for-testability at the
printed circuit board (PCB) level has become an activity of
major interest. This is a natural evolution following a wide
acceptance of the structured DFT (i.e. scan) at the IC level
and the realization that the costs associated with implement­
ing scan cannot be justified unless it can be used to simplify
the testing efforts at the PCB and higher levels as well. This
combined with the emergence of the very high density pack­
aging technology at the PCB level, in particular that of sur­
face mount interconnections, made it essential to develop the
concept of boundary scan, as detailed in Boundary Scan Ar­
chitecture Standard Proposal, Version 2.0. produced by JTAG
[1J.

The boundary scan concept allows one to access and con­
trol all the primary input and output pins on the PCB from
outside. This is done by connecting all the primary inputs and
outputs of an IC into a shift register which has a boundary
scan input and a boundary scan output. A simple boundary
scan cell is shown in Figure 1. The shift registers on all the
IC's of a PCB can be connected together to form a larger
shift register with a single scan in edge and a single scan out

This work was supported in part by the Commonwealth Scholarship
Plan of Canada and in part by the Natural Science and Engineering
Research Council of Canada.

Figure 1 A Simple Boundary Scan Cell Design

Board Under Test

Figure 2 A Boundary Scan Board

edge, as shown in Figure 2. Thus in effect, the boundary scan
concept provides a sort of electronic in-circuit testing facility.

Using this concept at the PCB level, it should be possible
to confirm that each IC performs its required function, that
the IC's are interconnected in the correct manner, and that
the IC's interact correctly and that the complete PCB per­
forms its intended function. The problem of interest in this
paper is that of using this concept to verify that the IC's are
interconnected in the correct manner.

Interconnection of IC's and other discrete components on
a PCB is a complex maze of multi-layer electrical conductors
which are likely to be failed by the presence of shorts, stuck-
ats and stuck-open faults. In order to test such a structure in
a cost-effective way structured techniques are required which
can be easily automated, possibly BISTed. At the outset, it
does not appear to be a simple problem when one realizes
that on a single PCB there may be thousands of I/O pins

EH0321-0/90/0000/0254$01.00 © 1988 IEEE

Reprinted from IEEE Proceedings International Test Conference, 1988,
pages 126-137. Copyright © 1988 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

254

f r o m all di f ferent IC's wh ich are connected to each other

in many di f ferent ways (un id i rect ional , b id i rect ional , one- to -

many, many- to -one, f o rm ing chains and c lusters, e tc .) . In

add i t ion , since repair at the PCB level is a necessary act iv i ty ,

i t is no t suff ic ient to know i f the in terconnect is fau l t y ; one

also has to determine where the fau l t m igh t be i f indeed the

board is fau l ty .

Th is paper a t t emp ts to develop a fo rma l set of s t ruc tu red

tes t generat ion and tes t diagnosis techniques for in terconnect

fau l ts on PCB 's w i t h boundary scan. These techniques are

easily implemented in a B I S T manner. Th i s lat ter require­

men t impl ies t h a t the B I S T imp lementa t ions should not re­

quire any in fo rmat ion abou t the actual topo logy of wh ich pin

is connected to wh i ch . Such techniques are the mos t impor ­

t a n t con t r i bu t i on o f th is paper.

The remainder of the paper is organized as fo l lows. In

sect ion t w o , various basic not ions related to boundary scan,

di f ferent types of in terconnects, and fai lures of interest are

descr ibed. Many tes t generat ion and tes t diagnosis schemes

are developed in sect ion three. An example tes t session to tes t

t he in terconnects on a boundary scan PCB us ing one of the

proposed tes t schemes is descr ibed in sect ion four. Research

d i rect ions and conc lud ing remarks are made in sect ion f ive.

2. Basic Model

The tes t access po r t (T A P) concept o f the boundary scan

arch i tecture fac i l i ta tes s tandard tes t commun ica t ion p ro toco l

between IC's on the same PCB manufac tured by di f ferent

vendors. In the J T A G proposal [1] , the T A P consists of a

tes t data in (T D I) p in, a tes t data ou t (T D O) p in . a tes t

c lock (T C K) p in , and a tes t mode select (T M S) p in . These

pins are used to access (i) an ins t ruc t ion register in T A P ; (i i)

the boundary scan register; or (i i i) some user defined data

registers. Mo re detai ls can be found in [1] ,

As seen in Figure 1, the basic cell of the boundary scan

arch i tecture for an input p in a l lows one to either load data

in to the scan register f r o m the input po r t , or drive data f r o m

the register th rough the ou tpu t po r t o f the cell in to the core of

t he IC design. Boundary scan cells associated w i t h ou tpu t or

b id i rect ional connect ions can be designed in a s imi lar manner.

In a typ ica l in terconnect ion tes t ing scenario, all the

boundary scan cells associated w i t h o u t p u t connect ions of

all the IC's wou ld be f i rs t loaded w i t h tes t data using the

boundary scan register. In the second step, th is tes t data

wou ld be appl ied and col lected at the corresponding bound ­

ary scan cells associated w i t h t he inpu t connect ions. In o ther

words , in terconnect tes ts are appl ied by ou tpu t cells and re­

ceived by inpu t cel ls. In the f inal s tep, the response col lected

at the inpu t cells is shi f ted ou t and ver i f ied. The example in

Figure 3 i l lustrates all these three steps. T h e actual con t ro l

sequence required to carry ou t these steps is executed w i t h

the help of the tes t access po r t and is detai led in [1] .

2 . 1 S t ruc ture o f the Interconnects

To convenient ly describe various tes t ing and diagnosis

schemes, we w i l l use the t e r m Inet to refer to any group of

Figure 3 Inets Testing using Boundary Scan

two or more I/O boundary scan cells and the electrical con­

ductors connecting these cells. Different Inet structures are

shown in Figure 4. The simplest type of Inet is a pair of I/O

cells connected by a single wire, as shown by AB in Figure 4a.

When an output cell, such as G in Figure 4b, is connected to

two or more input cells, fanout results. A more complex Inet

is formed when multiple drivers are connected to the same

bus, as shown in Figure 4c. In such a case, of course only

one output cell is connected to the bus input cell at any given

time. However, due to the common driving point, detection

and diagnosis schemes for such Inets are slightly different for

certain fault types as will be discussed later in the follow­

ing. A combination of these three types of Inets can result in

cluster type Inet shown in Figure 4d.

Figure 4 Different Inet Structures.

A few observat ions about the way the t e r m Inet w i l l be

used in the remainder of th is paper are in order here. W h e n

we refer to an Inet as a un i t under tes t , the Inet mus t be such

t h a t under faul t - f ree cond i t ions all the I /O cells of the Inet

f o r m a single connected graph. T h u s for instance. Figure 4a

conta ins three dif ferent Inets, A B , C D , and EF; Figure 4b has

one Inet, GHI ; also each of Figures 4c and 4d shows a single

Inet, respectively, K L M N and P Q R S T . The second observa­

t i on is about b id i rect ional cells. Each of the b id i rect ional cells

on a PCB has to be tested b o t h as an input cell and as an

o u t p u t cel l . Th i s choice is of course contro l led by the tes t

access po r t [1] . In the fo l low ing , we wi l l assume t h a t dur ing

255

testing each cell of each Inet has been controlled to be an
input or an output cell, but not both simultaneously. In other
words, the testing of Inets is not done with bidirectional cells
floating with high impedance. Finally we will refer to a path in
an Inet as any connection between two I/O cells. However, an
independent path associated with an output cell in an Inet is
the group of I/O scan cells and interconnection wires formed
by connecting this output scan cell to all the input scan cells
in that Inet. For instance, in Figure 4c, the interconnection
wires 'kx' and 'xn' connect one output scan cell K to the in­
put scan cell N. Thus, kx-xn is one independent path in the
Inet KLMN. Similarly, Ix-xn and mx-xn are the independent
paths associated with output scan cells L and M respectively.
In Inet PQRST (Figure 4d). there are two output scan cells.
The two independent paths associated with these scan cells
Q and R are qv-vu-up-vw-ws-wt and ru-up-uv-vw-ws-wt re­
spectively. Thus, by definition, the number of independent
paths associated with any Inet equals the number of output
scan cells in that Inet.

2.2 Fault Model

The fault model of interest in Inets has to be based on
the likely failures observed in interconnects on PCB's. It is
well known [7,9] that the most common failure mode is shorts
between any two or more Inets. These shorts can be classified
as being

• AND short(where logic 0 dominates)
« OR short (where logic 1 dominates)

• weak short (where the resulting value is between logic 0
and logic 1)

• short between strong and weak drivers (where the outputs
follow the strong drivers)
Of the first two types of shorts, depending upon the tech­

nology used in the individual IC component, either AND type
or OR type but not both will occur. However, IC components
with different technologies can be used on the same PCB.
Thus, to make the testing schemes technology independent,
we will, in this paper, consider the simultaneous presence of
both AND and OR type of shorts on a single PCB. These
two short types are treated extensively in this paper. Weak
shorts and shorts between strong and weak drivers are not
considered here.

Beside shorts, the following additional fault types are con­
sidered significant :

• stuck-at-one fault

• stuck-at-zero fault

• stuck-open fault
« delay fault

The schemes to be described consider single as well as
multiple faults in the system. Moreover, the schemes for
shorts testing allow the shorts to occur between a pair of
Inets as well as among multiple Inets.

Different Inet structures and the concept of independent
path have been introduced in the previous sub-section. It is
interesting to note that the number of test vectors to be ap­
plied for shorts and stuck-ats testing does not depend upon

the complexity of any individual Inet or the number of inde­
pendent paths in any Inet. For example, if any interconnec­
tion wire 'kx'. 'Ix', 'mx' or 'xn' in Inet KLMN (Figure 4c) is
shorted to any other Inet, then enabling only one driver, say
the driver at K, will test for that short. Drivers at L and M
will be kept disabled throughout the test. So. it is assumed
that controls are provided for independent enable/disable of
the output drivers in multiple driver Inets. The same is true
for stuck-at testing.

However, this is not true for stuck-open testing. For ex­
ample, in Figure 4c, if a test vector is applied, by enabling
the driver at K (and disabling drivers at N and 0) then any
stuck-open fault in the branches 'Ix' and 'mx' will remain un­
detected. So. by enabling the drivers at N and O. only one at
a time, (and hence, enabling every independent path) all the
stuck-open faults in KLMN can be detected. Thus, the test­
ing of stuck-open faults is structure dependent. The number
of vectors to be applied depends upon the number of inde­
pendent paths in any Inet in the system.

3. Fault Detection and Diagnosis

This section describes some existing schemes and pro­
poses some new schemes for testing of different types of
faults in inets. It will be seen that the existing schemes are
not very efficient from implementation point of view. None
of these schemes is structure independent. Thus, fault-free
simulation of the Inets is required to obtain the expected re­
sponse. Moreover, huge overhead is required to store this
expected response for comparison with the test output. We
will introduce a number of detection and diagnosis schemes
to overcome the shortcomings of the existing schemes. Em­
phasis is given on efficient BIST implementation of these pro­
posed schemes. Different types of deterministic vectors are
used as test patterns in these schemes. Finally, some re­
sults are also presented on the detection capability of random
vectors.

3.1 Detection of Shorts and Stuck-ats

3.1.1 Minimal-Size Test Set for Shorts Detection

It has been shown in [10] that a set of [log2 n] vectors
is necessary and sufficient to detect all possible shorts in
a network of 'n ' unconnected terminals. The terminals are
checked by physical contact using multiple probe continuity
test. This set of [log2 n] vectors can be shown to be sufficient
for testing all shorts in 'n ' Inets [2,8].

The scheme is described with an example. Three vectors
are required for 8 Inets as shown in Table 1. Each bit 'i' in
each vector is applied to the output cell (input port) of Inet
'i', and the resulting output is collected at the corresponding
input cell(s) of Inet 'i'. In the case when Inet 'i' has more than
one output cell, any one output cell is arbitrarily enabled and
the others are dasabled. Bit 'i' is then applied to the enabled
cell.

It can be seen from the table that by applying [log2 n]
vectors to 'n' Inets. each Inet is assigned a unique binary

256

V3

0
0
0
0
1
1
1
1

V2

0
0
1
1
0
0
1
1

VI

0
1
0
1
0
1
0
1

Inets

Inet 1
Inet 2
Inet 3
Inet 4
Inet 5
Inet 6
Inet 7
Inet 8

Table 1 Minimal-Size Vector Set for Shorts Detection

number. Due to this assignment each Inet input bits differ
from those of all the other Inets at least by one-bit position.
For example, the input assignments to Inets 1 and 2 (see Table
1) differ in V1. So. the corresponding output bits are also
bound to be different in the fault free case. But in case of a
short between this pair of Inets, the output bits corresponding
to V1 are not different any more. Thus the short is detected
at the output. This is true for every pair of Inets in the set.
The same argument holds for multiple Inets shorted together.

3.1.2 Minimal-Size Test Set for Stuck-ats Detect ion

An Inet stuck-at-one (s-a-1) can be detected by applying
a '0 ' as one of the input bits. Similarly a s-a-0 can be detected
by applying a '1'. For example, if a bit-set '001' is applied
to an Inet which is s-a-1, the faulty output is '111' . So,
the s-a-1 in that Inet is detected. For this reason, stuck-
at faults in most of the Inets can be detected by the set of
[log2n] vectors used for shorts detection in sub-section 3.1.1.
However, notice that '000' and '111' are assigned to Inet 1
and 8 respectively in that example. Clearly. '000' will not
detect a s-a-0 and '111' will not detect a s-a-1. So, instead
of [log2n] vectors, if [log2(n + 2)] vectors are applied (thus
avoiding all-zero and all-one) to 'n ' Inets, all possible stuck-ats
(SAs) and shorts are detected. Thus, [log2{n + 2)] vectors
are necessary and sufficient to detect all possible (single and
multiple) shorts and SAs in a system of 'n ' Inets.

3.1.3 Order Independent Test Set Scheme for Shorts
and SAs Detect ion

To implement the minimal size test set scheme for shorts
and SAs detection, each test vector is loaded through the
scan chain, applied to the Inets and the obtained response
is shifted out (Figure 3). Recall here that the I/O scan cells
of different components are connected in a single scan chain.
Let us assume that the total number of output scan cells in
this scan chain is 'n ' . the total number of input scan cells
is 'm ' and the total number of I/O cells is (n+m) = N. In
the minimal size test set scheme, [log2(n + 2)] vectors are
generated based on the number V. Each of these vectors
has (n+2) bits. These (n+2) bits of each vector are shifted
in and applied through a scan chain which is N cells long. So.
after the generation of each input vector of (n+2) bits, the
vector is padded with N-(n+2) '0's, to make it compatible
with the length of the scan chain. The '0's are padded in the
proper order depending upon the order of the input and out­

put scan cells in the scan chain. Thus, the generated vector
is restructured or reformated before loading. This requires
structural information about the scan chain as well as extra
hardware and control for reformating of the input vectors.

These problems can be solved by generating [log2(N + 2)]
vectors for a scan chain N cells long. N bits from the (N+2)
bits of each vector are loaded through the scan chain. The
detection process works as before. But no reformating or
structural information is required for test vector generation
and loading. Since no information is required related to the
order of the I/O cells in the scan chain, this can be termed
as the order independent test set. This test set is not min­
imal size any more. [log2(N + 2)] vectors are required in­
stead of [log2n] vectors. So. the time complexity becomes
O (N log 2N) compared to O(Nlog 2n) of the minimal-size test
set. But order independent test vector set is more suitable
for BIST implementation due to its order-free test generation
and loading property.

Test Generation Hardware :
In a BIST environment test vectors are generated on site.

Thus, the test generation hardware is required to be sim­
ple and small in size to keep the BIST overhead reasonable.
The test generation hardware to generate [log2(N + 2)] vec­
tors is shown in Figure 5. In this scheme. [log2(N + 2)]
bit counter generates the [log2(N + 2)] test vectors. No­
tice that each test vector consists of (N+2) bits and is being
generated serially from one of the stages of this counter. A
[log2(N + 2)] : 1 MUX is then used to select which test vec­
tor should be applied during one scan cycle. The MUX is
controlled by a [log2(log2(N + 2))] bit counter. The state
of this counter is changed after counting through (N+2) in
the [log2(N + 2)] bit counter. So the control bits are ap­
pended with the data bits in the counter. Thus, the hardware
is a [log2(N + 2)] + [log2(log2(N + 2))] bit counter with the
[log2(log2(N + 2))] MSBs become the control bits and the
[log2(N + 2)] LSBs become the data bits. N bits of output
(excepting the first and the last bits) coming from the first
LSB are chosen as the first vector by the [log2(N + 2)] :1
MUX. It can be shown that these bits form the first vector in
the set of [log2(N + 2)] vectors. In the same way the output
of the second LSB register forms the second vector and so

Figure 5 Generation of Order Independent Vector Set.

257

on.

file:///l0g2/N

Response Analysis :
After loading and application of each test vector, the re­

sponse is shifted out for detection of faults. The obtained
response is compared with the expected response. The ex­
pected response can be determined by fault-free simulation
of the system of Inets under test. This requires structural
information about these Inets. Thus, fault detection is struc­
ture dependent both for minimal-size test set and order in­
dependent test set schemes. Moreover, minimal-size test set
scheme requires N[log2n] bits of storage for expected re­
sponses and N[log2N] bits of expected response are stored
for the latter scheme. Thus, although, the order independent
vector set scheme makes the test generation and loading order
independent, response analysis is structure dependent. Also,
the storage requirement is high.

3.1.4 Walking Sequence

In order to overcome the disadvantages of minimal-size
test set and order independent test set schemes, a different
type of deterministic vector set is considered here. Consider
a bit stream of a single ' 1 ' followed by all 'O's which is shown
below :

1 0 0 0 0 0 0 0 . . .
This bit stream can be loaded through the scan chain as

the first test vector. Then by gradually shifting this vector
through the scan chain the rest of the vectors can be obtained.
Since the vector set is obtained by gradually shifting the single
' 1 ' along the stream, this sequence is termed as a walking one
sequence.

If the original bit stream (i.e., 1000...) of the walking
one sequence is shifted (N- l) times, the single ' 1 ' gradually
passes along all the scan cells, one at a time. Thus, in the
fault-free case, the expected output on each input scan cell of
each Inet is a single ' 1 ' . But in case the of a fault, number of
'1's is changed (increased or decreased) at the output. Thus,
by counting the total number of '1's, a faulty Inet can be
detected.

A walking zero sequence (single '0' followed by all ' l ' s ,
i.e.. 0111... . shifted N-l times) can also be used in the same
way for detection of shorts and SAs.

Test Generation Hardware :
A walking one (or, a walking zero) sequence is very easy

to generate. The outputs from the flip-flops of N-bit counter
are fed to an NOR (OR) gate (see Figure 6). The resulting
vector becomes 1000... (0111...).

3.1.5 Walking Sequence Scheme for Shorts and SAs
Detect ion

In this scheme every input vector is shifted-in individually
through the scan chain, applied and the response is shifted
out. Walking one sequence described above is used as the
input sequence. The response is taken out and fed to a com­
pactor which is a '1's counter in this scheme. The scheme
is shown in Figure 7. It can be shown that for the complete
set of input vectors, expected number of ones is exactly N in
the fault-free case where N is the total number of input and
output scan-cells connected along the scan chain. However,

To Scan Path

Figure 6 Generation of Walking Sequence.

in the case of a faulty Inet in the system, the total number
of ones is increased or decreased depending upon the type of
fault. SA-1 and OR-short increase the count whereas SA-0
and AND-short decrease the count.

'1's counter

Figure 7 Walking Sequence Scheme for Shorts & SAs
Detection

This scheme detects all single faults in the system. How­
ever, multiple faults can mask each other. As for example,
if the count increased by an OR-short is exactly equal to
the count decreased by an AND-short, then these two shorts
mask each other. Similarly, a SA-1 fault can be masked by a
SA-0 fault. In general, the faults can be grouped into two
types. OR-short and SA-1 are the increasing count type
whereas AND-short and SA-0 belong to the decreasing count
type. As long as multiple faults belong to the same type,
there is no masking. But multiple faults from different types
can mask each other.

The scheme requires N-bits to be shifted-in and shifted-
out for each vector. So, for N vectors, the time required for
the complete procedure is O (N 2) . The response analyzer is
a [log2N] bit '1's counter.

This walking sequence detection scheme is independent
of the order of the I/O scan cells in the scan chain for test
vector generation. Moreover, structural information about the
Inets and expected response storage are not required for fault
detection. However, for multiple faults there are chances of
masking.

258

file:///l0g2N

3.2 Diagnosis of Shorts and Stuck-Ats

3.2.1 Existing Schemes

Goel and McMahon [8] have described a diagnosis scheme
which is divided into two steps. In the first step. [log2(n + 2)]
vectors used for detection in sub-section 3.1.1 are applied to
identify a subset W of the faulty Inets. The shorts must in­
volve these Inets as well as some other Inets. In the second
step, a unique test is applied to each member w' of W. In
this test "w" is assigned a '0' (or '1') and the remaining (n-1)
Inets a ' 1 ' (or '0'). This indicates which Inets are shorted to
'w'. Thus all the shorted Inets can be identified.

Wagner [2] has proposed a diagnosis scheme which re­
quires 2[log2(n + 2)] vectors. [log2n] vectors used for shorts
and SAs detection together with its complementary set forms
the complete set of vectors for diagnosis, [log2(n)] vectors
identify at least one of the Inets involved in each short. The
complementary vectors then isolate the other Inets which were
not identified by the first set.

None of these two schemes has addressed the implemen­
tation issues like input vector formating and loading. Inet
structure dependence of response analysis, overhead required
for storing the expected responses. Thus, these schemes are
analytical treatment of diagnosis problem and are rather in­
complete from a practical point of view.

3.2.2 Order Independent Test Set Scheme for Shorts
and SAs Diagnosis

2[log2 (n + 2)] vectors used in [2] are sufficient to diag­
nose all possible shorts and SAs in 'n ' Inets. However, for
a scan chain N cells long, 2[log2(n + 2)] vectors are refor-
mated as was described in sub-section 3.1.3. The diagnosis
scheme can be made I/O scan chain order independent and
the need of reformating can be avoided by using 2\logiN]
vectors. The [log2N] vectors are similar to [log2(N + 2)]
vectors described in sub-section 3.1.3. Here, all '0' and all '1'
bit-sets can also be included as valid assignments. That is
why [log2N] vectors are used instead of [log2(N + 2)] vec­
tors. These [log2N] vectors and their complements form the
complete vector set for the proposed diagnosis scheme.

For N=6. the 6 vectors in Table 2 form the complete set.

V5
0
0
0
0
1
1

V3
0
0
1
1
0
0

VI

0
1
0
1
0
1

Scan Cell
Cell l
Cell 2
Cell 3
Cell 4
Cell 5
Cell 6

V6
1
1
1
1
0
0

V4
1
1
0
0
1
1

V2
1
0
1
0
1
0

Table 2 2[log2N] vectors for Shorts & SAs Diagnosis.

The vectors are applied in the following sequence. One vec­
tor (say V1) is applied from the set of [log2N] vectors fol­
lowed by its complement (say V2) from the complementary
set. This is repeated until all the vectors are applied. The

output bits are treated in pairs. In each pair there is a '0'
and a '1' (because the components of the pair are coming
from two complementary vectors). So in a non-faulty bit-
pair, there is always a '0 ' followed by a ' 1 ' or a ' 1 ' followed by
a '0 ' . For a s-a-1 (or, a s-a-0), the bit-pair are changed to two
'1's (or, two '0's). Now let us see what happens in the case
of a short. The input bit-pairs applied to two Inets can have
the four different possible combinations shown in Table 3.

CI

01
01

C2

10
10

C3

01
10

C4

10
01

Inets

Inet 1
Inet 2

Table 3 Possible combinations of input bit-pairs.

In the first two cases, CI and C2, the inputs to the two
Inets are the same. So no change can be observed due to a
short. For set C3, if the two Inets are shorted, the output is
changed to either '00' or ' 11 ' . The same is true for set C4.
Thus if any two Inets differ in input bit-pair combination (and
they do differ for [2log2N] vectors at least in one bit-pair),
the short can be diagnosed as a pair of '0's (or '1's) at the
output.

Implementation Issues :
In this scheme, diagnosis can be done in-place or exter­

nally. In-place diagnosis is done by comparing, for each pair
of input vectors, the pair of output bits obtained from each
Inet within the associated input scan cell. For external di­
agnosis, the output bits are shifted out of the scan chain,
stored in an external register and compared outside the scan
chain. Notice, however, that both of these are implemented
in a board level BIST environment.

For in-place diagnosis, boundary scan input cells of JTAG
[1] at the output end of the Inets will have to be modified (see
Figure 8). Two one-bit registers are needed to store the bit-
pair at each input scan-cell. One single-bit register is already
provided with the boundary scan cell. Thus, one extra one-bit
register is needed per input scan cell. A two-input comparator
is also added to the register pair to compare the bit-pairs.
Thus 'q ' input scan-cells requires 'q ' extra one-bit registers
and 'q ' two-input comparators.

Inet ou tput

Figure 8 In-place Diagnosis using Order Independent
Vector Set.

The first input vector is loaded individually through the
scan chain and applied to the Inets. The output response of
each Inet is stored in the one-bit register of the associated in­
put scan cell. Then the second input vector is applied and the

259

file:///l0g2N
file:///l0g2N
file:///l0g2N
file:///l0g2N
file:///2iog2N

responses are stored in the second one-bit registers. These
two bits are then compared in the comparator and the out­
puts of all the comparators are shifted out for diagnosis. This
procedure is repeated for all the [log2N] pairs of vectors in
the set.

So, for each vector N bits are shifted in through the scan
chain and for each pair of vectors N bits of comparator results
are shifted out.
Thus, for in-place diagnosis.
Loading Time. Tl = N.2[log2N] = O(N. log2N)
Shift-Out Time, T0 = N.[log2N] - 0(N.log2N)

The arrangement for external diagnosis is shown in Fig­
ure 9. The output response of the first vector is shifted out
of the scan chain and loaded in an N-bit shift register. The
complementary vector is then applied and while this response
is shifted out it is compared with the response stored in the
external register, bit by bit. through a two-input comparator.
This procedure is repeated for every pair of input vectors. Ex­
ternal diagnosis requires N-bit shift register and a two-input
comparator external to the scan chain. No modification of
the I/O scan cells is necessary.

Figure 9 External Diagnosis using Order Independent
Vector Set.

For each input vector, N bits are loaded and N bits of
response are shifted out through the scan chain.
Thus, for external diagnosis.
Loading Time. 2} = N.2\log2N] =0{N.log2N).
Shift-out Time. T0 = N.2\log2N] =0(N.log2N).

So. the order of complexity remains the same for in-place
and external diagnosis. For in-place diagnosis, when the com­
parator output bits are coming out of the scan chain, one has
to distinguish between the bits coming from input scan cells
and those coming from output scan cells. Thus, the order of
I/O scan cells should be known. However, external diagnosis
does not require any such information. The fault-free com­
parator output is a '0' independent of whether the bits are
coming from input cells or from output cells.

Order independent vector set diagnosis scheme can diag­
nose all possible shorts and SAs. The scheme is independent
of Inet structure and complexity and test generation is inde­
pendent of the order of I/O scan cells. Diagnosis is local for
each Inet which means that the diagnosis bits obtained from
each Inet are sufficient to identify that Inet as fault-free or
faulty. Diagnosis can be done in-place or externally. In-place
diagnosis requires less time (although the order of complexity

is the same) whereas external diagnosis requires no modifi­
cation of the given architecture.

3.2.3 Walking Sequence Scheme for Shorts and SAs
Diagnosis

As mentioned in sub-section 3.1.4. the advantage of using
a walking sequence is that only a single test vector is gener­
ated and loaded through the scan chain. By gradually shifting
this vector within the scan chain, the rest of the vectors can
be obtained. Thus, a walking sequence is very time-efficient
in terms of loading the test vectors. In the following a diagno­
sis scheme is described using such walking sequences. This
scheme is time efficient not only in terms of loading but also
from the response analysis point of view.

V4

0
0
0
1

V3

0
0
1
0

V2

0
1
0
0

VI

1
0
0
0

Inets

Inet 1
Inet 2
Inet 3
Inet 4

Table 4 Walking One Sequence for Diagnosis.

Table 4 shows the complete sequence for 4 Inets. The
input scan cells have the following modifications. A single
bit register and a two-input EX-OR gate is included in each
input scan cell at the output or receiving end of each Inet
(Figure 10). The single-bit register provided by boundary scan
architecture is used only for loading and shifting of the output
vectors. The second single-bit register (a shadow register)
together with the EX-OR gate compacts the output response
for diagnosis. No modification of the output scan cells is
necessary.

Fron Ine-t

Figure 10 Diagnosis using Walking Sequence.

The first output bit coming from an Inet is stored in the
shadow register R2 (Figure 10). The next bit coming from the
Inet is EX-ORed with the stored bit to get a new output bit.
This new bit is stored in the register and EX-ORed with the
next bit coming. The procedure is repeated N times for the N
vectors and finally a one-bit compacted response is obtained
in the register R2. This bit is shifted out for diagnosis. For
even N, following are the compacted responses :
' 1 ' : Fault-free, OR short (odd no. of Inets).

260

'0 ' : SAs. OR short (even no. of Inets), AND short (odd and
even).

Similar compacted responses can be obtained for odd N.

It can be observed from the above list that OR short
among odd number of Inets has the same compacted response
as the fault-free compacted response. Thus, this type of short
cannot be diagnosed using only a walking one sequence. In
order to diagnose this type of short as well as other OR and
AND shorts and SAs a walking zero sequence is applied fol­
lowing a walking one sequence. In this scheme. N vectors of
the walking one sequence are applied as before and the com­
pacted bits are shifted out. Then the N vectors of the walking
zero sequence are applied and a second set of compacted re­
sponse is obtained. For even N. compacted responses for the
walking zero sequence are :
'1': Fault-free. AND short (odd no. of Inets).
'0 ' : SAs, AND short (even no. of Inets). OR short (odd and

even).
By combining the two sets of compacted responses, the com­
plete diagnosis becomes :

"11' : Fault-free.
'10': OR short (odd no. of Inets).
' 01 ' : AND short (odd no. of Inets).
'00': SAs, OR short (even no. of Inets). AND short (even

no. of Inets).

Time Requirement :
Complete diagnosis requires 2N vectors. For N vectors of

the walking one sequence, only the first vector is loaded and
shifted (N- l) times. This requires N-bits of loading and (N- l)
shifts. Walking zero sequence requires the same operation's.
So. altogether, there are 2N bits to be loaded and (2N-2)
shifts. At the output end, N bits are shifted out twice (once
after every N vectors are applied). So, 2N shift-outs are done.
Thus, the test time required is O(N).

Let us compare the time requirements of order indepen­
dent vector set scheme and walking one/zero sequence scheme

For order independent vector set scheme (External Diag­
nosis):

Loading time Tl = 2Nlog2N
Test application time Ta = 2log2N
Shifting-out time T0 = 2Nlog2N
For walking one/zero sequence scheme :

Ti = 2N + 2N
Ta = 2N
T0 = 2N
So. 2Nlog2N + 2log2N + 2Nlog2N >AN + 2N + 2N
~ for, N > 4
Thus, although the number of vectors applied is small in

the order independent vector set diagnosis scheme, walking
one/zero sequence diagnosis scheme (for N > 4) requires
less time.

Walking sequence diagnosis scheme does in-place diag­
nosis with time complexity of O(N). Order of I/O scan cells
should be known to identify the diagnosis bits. An external
diagnosis implementation is possible with the time complexity
of 0(N2).

3.2.4 Modifier Sequence Scheme for Shorts and SAs
Diagnosis

In the walking sequence diagnosis scheme, each input
scan cell has one extra single-bit register. This shadow reg­
ister is used to store the compacted response so that it is
not lost due to shifting of the input vectors along the scan
chain. A different arrangement is possible where no shadow
register is required for compaction and at the same time the
compacted response obtained in each input scan cell is not
affected due to the shifting operation.

In this scheme, after application of each vector and com­
paction of the corresponding response, the contents of all the
scan cells are shifted out and modified by using a modifier
vector. The objective of this modification is to generate a
new vector and at the same time to not lose the compacted
responses.

The arrangement is shown in Figure 11. The modifier
sequence is shown in Table 5. The first input vector (V I
in Table 5) is shifted in through the scan chain and applied.
Compaction is done locally in each input scan cell as was
described in sub-section 3.2.3. The bit stream is then shifted
out and passed through the EX-OR gate together with the
next modifier vector (V2) to generate a new input vector.
This procedure is repeated for all the N vectors in the modifier
sequence. To explain how this works, consider the modifier
sequence in Table 5. Vector VI has a single ' 1 ' . When VI is
shifted in. this ' 1 ' goes to one of the scan cells in the scan
chain. If this cell is an output scan cell then the ' 1 ' is applied
to the associated Inet as the input. However, if the cell is an
input scan cell, the ' 1 ' is passed through the corresponding
EX-OR gate A (Figure 11) and stored back. After this, the
contents of the scan chain is shifted out and passed through
the EX-OR gate B together with V2. The first ' 1 ' in V2
cancels the first ' 1 ' in VI due to the EX-OR operation. The
second ' 1 ' in V2 is shifted in along the scan chain and acts in
the same way as the ' 1 ' in VI did before. This is repeated for
all the modifier vectors. Thus, every output scan cell in the
chain gets a single ' 1 ' . one output scan cell at a time. This T
is canceled by another ' 1 ' from the following modifier vector
outside the scan chain. Similarly, the two Ts corresponding
to each input scan cell cancel each other due to two EX-OR
operations. Therefore, the net effect of the procedure is to
apply a single ' 1 ' to each output scan cell one at time and to
keep the contents of input scan cells unchanged due to shift
in operations.

...

...

...

...

...

...

V7

0
0
0
0
0
1

V6

0
0
0
0
1
1

V5

0
0
0
1
1
0

V4

0
0
1
1
0
0

V3

0
1
1
0
0
0

V2

1
1
0
0
0
0

VI

1
0
0
0
0
0

Table 5 Modifier Sequence for Diagnosis of Shorts &
SAs.

261

Figure 11 Diagnosis using Modifier Sequence.

Test Generation Hardware :
The modifier sequence is similar to the walking one se­

quence. V1 is the same as the first vector of the walking
one sequence. However, starting from V2. each vector has
two consecutive Ts instead of a single ' 1 ' . Thus this can be
treated as a walking sequence with two consecutive T s . So
similar type of hardware can be used to generate these vec­
tors. However, the vector V2 is to be stored somewhere and
gradually shifted to get the complete sequence. Thus, the
same N-bit counter (Figure 6) can be used for the generation
of VI and V2 as well as for shifting of V2 to get the rest of
the sequence.

Implementat ion :
A two-input EX-OR gate is connected along the shift path

of the scan-chain to generate the 'effective' input sequence.
Moreover, each output scan-cell has a two-input EX-OR gate
for local compaction and diagnosis.

Time Requirement :
In this scheme shift-in and shift-out-modification opera­

tion take place simultaneously. Thus, for N vectors of N bits
each, the scheme has the time complexity of 0(N).

As mentioned in Section 3.2.3, N vectors of the modifier
sequence diagnose all the shorts and SAs except odd number
of Inets OR-shorted together. To take care of this type of
faults, the complementary set of the modifier sequence should
be applied.

This scheme can diagnose all possible shorts and SAs.
Diagnosis is local and structure independent and does not
require any shadow register. However, the test time is longer
(O(N2) compared to O(N) or O (N[log 2 N])) due to shift in
and shift-out-modification operation.

Let us give an example of the time requirement of this
scheme. For a board with 100 IC's each having 100 I/O

pins, the number of I/O scan cells connected in the boundary
scan chain, N = 10.000. So for a 10 MHz test clock, the
time required (N2 = 100,000.000) is 10 sec. This is quite
reasonable for board-level testing.

3.3 Detection and Diagnosis of Stuck-Open Faults

Stuck-Open faults can be tested by checking for a con­
ducting path from each output scan cell to all the input scan
cells in an Inet. To do this, the input cells are initialized to
a known logic value. The opposite logic value is applied from
the output scan cell. In the fault-free case, the values in input
cells should be changed through the conducting paths.

For detection of stuck-open faults, a single vector is shifted
in through the scan chain. All the input scan cells are initial­
ized to '0' and all the output scan cells are loaded with ' 1 '
using this vector. The vector is then applied and the response
is shifted out. Since, all the output scan cells are loaded with
T s . the number of Ts in the fault-free case is exactly N
where N is the number of scan cells in the scan chain. Thus,
a [log2N] bit Ts counter can do detection of all single and
multiple stuck-open faults.

It was mentioned in section 2 that testing of stuck-open
faults is structure dependent. Thus, a single vector is suffi­
cient for detecting stuck-open faults in simple Inets without
multiple drivers. For multiple driver Inets and cluster Inets,
each independent path is to be tested separately. Thus, only
one output driver in each Inet is enabled at one time and one
test vector is applied. This vector tests one independent path
in every Inet simultaneously. Thus, the number of vectors ap­
plied equals the maximum number 'p' of independent paths
in any Inet in the system. The expected number of Ts is 'N '
for each input vector. Thus, in the fault-free case, total ex­
pected number of Ts is 'pN' for all the 'p' vectors. However,
for diagnosis each response bit coming out of the scan chain
is to be checked for a fault-free value of T.

3.4 Summary of the Test Schemes

Table 6 is a brief summary of the proposed and existing
detection and diagnosis schemes discussed in this section.

3.5 Testing with Random Vectors

Some experiments were done using the random vectors to
test the Inets. In a random vector, the probability of getting
a '0 ' or a T on each input bit is exactly 0.5. Thus, the prob­
ability of detecting any short is 0.5. Using this information
and analyzing the complete set (2n) of random vectors for 'n '
Inets it can be shown that on the average 50% of all possible
shorts are detected by a single random vector. Experiments
were carried out using these average random vectors (each of
which covers 50% of all possible shorts). Experimental re­
sults have shown that a very small number of random vectors
(comparable to [log2(n)]) can give close to 100% cover­
age of all possible shorts. However, detection and diagnosis
schemes to use these random vectors are yet to be developed.

262

file:///l0g2N

Scheme

(i) Minimal

Size

(Detection)

(ii) Order

Independent

(Detection)

(Hi) Walking

* Sequence

(Detection)

(iv) Goel and

McMahon

(v) Wagner

(vi) Order

Independent

(Diagnosis,

In-Place)

(vii) Order

Independent

(Diagnosis.

External)

(viii) Walking

Sequence

(Diagnosis)

(ix) Modifier

Sequence

(Diagnosis)

(x) Stuck-open

(Detection)

(xi) Stuck-open

(Diagnosis)

Number

of

Vectors

[log2(n + 2)]

[log2(N + 2)]

N

[log2n]

+ W

2[log2(n + 2)]

2[log2N]

2[log2n]

2N

2N

p

p

Detection/

Diagnosis

Capability

Multiple

Shorts

and SAs

Detection

Multiple

Shorts

and SAs

Detection

Multiple

Shorts

and SAs

Detection

(Chance

of masking)

Multiple

Shorts

Diagnosis

Multiple

Shorts

Diagnosis

Multiple

Shorts

& SAs

Diagnosis

Multiple

Shorts

and SAs

Diagnosis

Multiple

Shorts

and SAs

Diagnosis

Multiple

Shorts

and SAs

Diagnosis

Multiple

Stuck-open

Detection

Multiple

Stuck-open

Diagnosis

Time

Requirement

BIST

Hardware

O(Nlog2n)

Extremely

Large

O(Nlog2N)

Extremely

Large

O(N2)

Simple

XX

Extremely

Large

XX

Extremely

Large

O(Nlog2N)

Simple

O(Nlog2N)

Simple

0(N)

Simple

O (N 2)

Simple

pN

Simple

pN

Simple

Table 6 Summary of Inet Test Schemes.

4. Example of Inets Testing using Order
Independent Vector Set Diagnosis Scheme

In this section, an Inets testing session is described using
the external diagnosis scheme proposed in sub-section 3.2.2.
This scheme is chosen because it requires no modification of
the I/O scan cells as well as the time complexity, O(Nlog2N).
is reasonable.

The board-under-test is chosen as an arbitrary example.
There are 3 components. A, B, C, on the board each having
24 I/O pins. Seven of these 24 pins are used as VDD, GND,
CLOCK and TAP (see section 1). Scan cells of the remaining
17 I/O pins form the boundary scan chain of each component.
The scan cells are named as A l . B l , CI etc.. where Al is the
first cell of component A and so on. Scan chains of the three
components are connected in series to form the scan path on
the board. Out of the 51 I/O pins. 22 are output pins and the
remaining 29 are input pins. 16 Inets are formed arbitrarily
using these I/O pins. Actual connections and types of Inets
are shown in Table 7. Table 8 gives the injected fault list.

Inet

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Output

Scan Cell

(Input Port)

A2

A14

A5

B9

B12

B17

C1

C9

CIO

B15

A4

Bl

A7. B6

C2, C12. B4. A16

A l l , C3

C17, C14

Input

Scan Cell

(Output Port)

BIO

C15

B l l

C4

C l l

C5

A3

B2

A6, B3

A12. C7

B3. B16. C16

C6. A8, A9

C13

A15

A10, B5. B14, C8

A l , A13. A17, B7, B8

Type

of

Inet

Simple

(one output

cell connected

to one input

cell, i.e.,

one-to-one)

Fan-out

(one-to-two)

Fan-out

(one-to-three)

Multi-driver

(two-to-one)

Multi-driver

(four-to-one)

Cluster

(two-to-four)

Cluster

(two-to-five)

Table 7 Inets on the Board-Under-Test.

2[log2N] vectors are required to test the 16 Inets. Since.
N equals 51 in this example. 2|[log251] = 12 vectors shown
in Table 9 are applied to the Inets. Finally Table 10 shows
the compacted response and diagnosis. Columns C I , C2,...
are the compacted responses obtained from the comparator.

263

Fault

Type

S-A-l

S-A-0

AND Short

(between

Inet pair)

OR Short

(between

Inet Pair)

OR short

(among

3 Inets)

No. of

Faults

2

1

1

1

1

Faulty

Inet

No.

3

13

7

5

14

1

8

9

11

15

I/O Scan

Cells

Involved

A5, B11

A7. B6. C13

C1, A3

(B12. C11)

(C2. C12. B4,

A15, A16)

(A2. BIO)

(C9. B2)

(C10, A6, B13)

(A4. B3. B16. C16)

(A l l , C3, A10, B5,

B14, C8)

Scan Cell

used for

Input

A5

A7

C1

B12

C2

A2

C9

C10

A4

A l l

Table 8 Injected Fault List.

I/O
Scan
Cell

Al

A2

A3

A17

Bl

B17

CI

C17

V1

0

0

0

0

0

1

1

1

V2

1

1

1

1

1

0

0

0

V3

0

0

0

1

1

0

0

1

V4

1

1

1

0

0

1

1

0

V5

0

0

0

0

0

0

0

0

V6

1

V7

0

0

0

0

1

0

0

0

V8

1

1

1

1

0

1

1

1

Vil

0

1

0

1

1

1

0

0

V12

1

0

1

0

0

0

1

1

Table 9 Input Vectors applied to the Inets.

The number of IC components or the number of Inets on
the board is not important in this example. The objective is
to show what are the various steps involved in applying the
tests and diagnosing the faulty Inets. Diagnosis is done based
on the comparator results without requiring any structural
description of the Inets.

5. Conclusion

The various problems and complexities of interconnect
testing are addressed in this paper. Schemes have been pro­
posed for detection and diagnosis of different types of faults
in the interconnects. |7o92n1 vectors are minimal for detec­
tion of shorts in n' Inets. But for N I/O scan cells in the
scan chain. \l0g2N] vectors are easier to apply. External di­
agnosis scheme using 2\log2N] vectors does not require any
modification of the scan cells. Walking sequence scheme is
shown to be very time efficient for diagnosis of shorts and

I/O

Scan

Cell

Al

A2

A3

A6

A10

A15

B2

B3

B5

B10

Bl l

B13

B14

B16

C8

Cll

C16

VI

1

0

0

1

1

0

1

1

1

1

1

1

1

1

1

0

1

V2

0

1

0

1
1
0
1
1
1
1
1
1
1
1
1

0

1

CI

0

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

V3

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

V4

1
1
0
1
1
0
1
1
1
1
1
1
1
1
1

0

1

C2

0

0

1

0

0

1

0

0

0

0

1

0

0

0

0

1

0

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Vll

1
1
0
1
1
0
1
1
1
1
1
1
1
1
1

0

1

V12

0

0

0

1
1
0
1
1
1
1
1
1
1
1
1

0

1

C6

0

0

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Diagnosis

Fault-free

Fault-free

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Faulty

Table 10 Diagnosis of Faulty Inets.

SAs. Modified sequence diagnosis scheme requires simple
modification of the input scan cells.

One interesting feature about the schemes is that these
are Inet structure independent. Based only on the number of
I/O scan cells, test vector sets can be developed. Detection
and diagnosis procedures are also not based on or restricted
to any particular topology or structure of the Inets.

All these schemes are based on a Boundary Scan archi­
tecture on the board. The schemes are developed to be used
in a BISTed environment. But these can be used in a non-
BISTed DFT environment as well. Moreover, all the ideas and
schemes presented here are equally applicable for testing the
interconnects in a large area chip, WSI system etc. However,
the modules in those systems should be isolated from each
other, in the test mode, to make the design testable. Fur­
ther research is being done on various unsolved problems like
testing of the glue logic, testing of special I/O pins, structural
testing of the Inets etc.

6. References

[1] JTAG Boundary Scan Architecture Standard Proposal.
Version 2.0. Published on 30 March 1988.

{2] P.T.Wagner, Interconnect Testing with Boundary Scan.
Proceedings of ITC 1987. pp. 52-57.

[3] F.M.Beenker et. al.. Macro Testing : Unifying IC and
Board Testing, IEEE Design and Test. December 1986.
pp. 26-32.

[4] K.P.Parker, Integrating Design &. Test: Using CAE Tools
for ATE Programming. Published by Computer Society
Press of IEEE. 1987.

[5] V.Ramachandran, On Driving many long wires in a VLSI

264

file:///l0g2N

Layout. Journal of ACM. Vol. 33, No. 4. Oct. 1986. pp.
687-701.

[6] M.G.H.Katevenis and M.G.BIatt. Switch Design for Soft-
Reconfigurable WSI Systems. Proceedings of Chapel Hill
Conference on VLSI, 1985. pp. 197-219.

[7] J.Bateson. In-Circuit Testing, Published by Van Nostrand
Reinhald Company, Inc. 1985.

[8J P.Goel and M.T.McMahon. Electronic Chip-ln-Place Test.
Proceedings of ITC 1982. pp. 83-90.

[9] R.G.Bennetts, Introduction to Digital Board
Testing. Published by Crane Russard & Company, Inc..
1982.

[10] W.H.Kautz. Testing of faults in wiring networks. IEEE
Transactions on Computers. Vol. c-23. No.4. April 1974.
pp. 358-363.

265

Reprinted from IEEE Design & Test of Computers, February 1989, pages
36-44. Copyright © 1989 by The Institute of Electrical and Electronics
Engineers, Inc. All rights reserved.

BOUNDARY SCAN
WITH

BUILT-IN
SELF- TES T

CLAY S. G L O S T E R

Mic roe lec t ron ic s C e n t e r of
N o r t h C a r o l i n a

FRANC BRGLEZ

Be l l -Nor the rn R e s e a r c h *

The authors propose a way to merge
boundary scan with the built-in self-

test of printed circuit boards. Their
boundary-scan structure is based on

Version 2.0 of the Joint Test Action
Group's recommendations for bound­
ary scan and incorporates BIST using
a register based on cellular automata

techniques. They examine test pat­
terns generated from this register and
the more conventional linear-feedback

shift register. The advantages of the
CA register, or CAR, are its modular­

ity, which allows modification without
major redesign; higher stuck-at fault
coverage; and higher transition fault

coverage.

*Also with Microelectronics Center of North
Carolina

Today's IC manufacturers typically use in-circuit and
functional board-test systems to detect defects in their
products. As designs grow more complex, however, and
as we rely more on surface-mount technology, tradi­

tional testing techniques become less cost-effective. One solution
to this complexity is to turn to more advanced methods, such as
boundary scan. Boundary scan allows the circuit to be tested via
the board-edge connector plus it introduces a shift register that
is logically, and often physically, adjacent to the I/O pins of every
chip on the board. Because the shift register allows test data to
be shifted, applied, or captured, it can be used to test not only
individual chips but also board interconnections.

There has been an industry-wide effort to standardize bound­
ary scan techniques. The Joint Test Action Group has presented
a proposal for a standard " in which boundary-scan modes are
defined and guidelines are offered for implementation. The pro­
posed standard does not explicitly address built-in self-test, but
it provides for establishing a framework that would merge bound­
ary scan and BIST. It is this type of framework that we discuss
here.

BOUNDARY SCAN WITH BIST
The idea of incorporating built-in self-test with boundary scan

is not new. LeBlanc, Bardell and McAnney, and Komonytsky
have introduced approaches that merge the two concepts. We also
proposed a boundary-scan template at the 1988 International
Test Conference,7 which we are updating in this article to reflect
the latest JTAG recommendations (Version 2.0).3

Figure 1 shows a block diagram of a boundary-scan template
with BIST and its primary interfaces to the chip's interior. The
template consists of an input register, an output register, and a
controller with its own internal registers. Two additional control
pins, TMS (test mode select) and TCK (test clock), are required
along with two scan pins, TDI (test data in) and TDO (test data
out). The registers in this template accommodate all the basic test
modes proposed by JTAG along with a built-in self-test mode.

EH0321 -0/90/0000/0266$01.00 © 1989 IEEE 266 IEEE DESIGN & TEST OF COMPUTERS

The boundary-scan template has three principal tasks. It allows
the circuit to function normally, it allows data to be shifted in or
results to be shifted out, and it conducts several circuit tests. The
template supports the following modes:

1. External test. This mode tests the interconnections of the
printed circuit board. Data is applied to the board from the
output register. The input register latches the data flowing
from another chip via the board. Data can then be shifted out
and verified.

2. Internal test. This mode tests the internal logic of the design.
Data is applied from the input register to the circuit. The corre­
sponding responses are latched in the output register. Once
again, the results can be shifted out and verified.

3. Sample test. In this mode, the test engineer can take a snap­
shot of the circuit in time. Data is latched in both the input
and output registers. The boundary-scan input and output
registers are configured in this manner during the circuit's
normal operation as well. The TCK pin must be asserted to
capture the snapshot.

4. Bypass. This mode uses an output multiplexer to bypass the
chip's lengthy boundary-scan path. Without this feature, test­
ing a board with 100 chips, each with 100 I/O pins, would
take too long. The data on the chip travels from the TDI pin,
through one latch, and directly to the TDO pin.

5. Built-in self-test. In this mode, the input register is reconfigured
to a pseudorandom pattern generator, while the output regis­
ter functions as a signature analyzer. Random patterns are
shifted serially into the internal scan register and are applied
synchronously with patterns from the input register. The re­
sponses from these random patterns are compressed in the
output register. The resulting signature can be checked to en­
sure proper circuit operation.

HARDWARE COMPONENTS
The modes just described require several hardware compo­

nents: an input register, an output register, and a controller sec­
tion. Input and output registers share similar characteristics. In
fact, they operate in the same way except that the input register
generates patterns while the output register analyzes the signa­
tures of multiple inputs. The controller section has its own inter­
nal registers. We have captured a complete description of the con­
troller specified by JTAG 2.0 using a Pascal-like programming
language, called Logic-Ill, which we compile automatically into a
netlist of standard cells. We discuss all the proposed hardware
in more detail in an earlier report.9

Figure 2 shows how the input register is reconfigured during
various test modes. The register must meet the following require­
ments:

Figure 1. Structured template for bound­
ary scan with built-in self-test; TDI=test
data in, TDO=test data out

Random pattern
generator

Figure 2. Input register modes four-bit
example).

FEBRUARY 1989 267

-BOUNDARY SCAN WITH BIST

Several of the
register's functions
are similar to those

of the register in
Koenemann's built-in
logic-block observer,

although our
implementation is

different.

Figure 3. Input register design (four-bit example); PI = pin input, CAI =
cellular automata input, CAO = cellular automata output, PO = pin output.

268 IEEE DESIGN & TEST OF COMPUTERS

• It must appear transparent in the normal mode of operation.
• It must latch the data during external and sample mode.
• It must form a scan chain during scan mode.
• It must be able to apply data in the internal mode.
• It must generate pseudorandom patterns in the BIST mode.
The register implements boundary-scan input cells as recom­
mended by JTAG while incorporating cellular automata prin­
ciples for built-in self-test. Several functions are similar to those
of the register in Koenemann's built-in logic block observer,11 al­
though our approach differs in implementation.

Approaches that generate pseudorandom patterns using cellu­
lar automata principles are relatively new. A cellular automaton,
or single-cell, finite-state machine, evolves in discrete steps. The
next value of each cell depends on the previous value of the cell
to its left and the cell to its right. Cellular automata either are cy­
clically connected or have null boundary conditions. We used the
null boundary condition in our research because it allowed us to
remove the long feedback loop between the first and last cells.
Hortensius has shown that by combining cellular automata rules
90 and 150, we can generate binary sequences of maximum
length from each site. Rule 90 is

where i is the index of cell a. Combining these two rules gives us
a sequence of maximum length, 2s - 1, where s is the number of
cells or the length of the cellular automata. Table 1 lists the con­
struction rules that produce this sequence. We can compare
the results from this table with registers that have maximum-
length configurations that are based on linear-feedback shift reg­
isters.1 2 - 1 4

Table 1. Construction rules for two configurations of a cellular automata
register. In configuration 1, 0 represents a Rule-90 cell, 1 represents a
Rule-150 cell In configuration 2,0 represents a Rule-150 cell, 1 represents
a Rule-90 cell The period of the sequence for either configuration is 2s-1.

Length
(s)

4
5
6

7

8
9
10
11
12
13
14

15
16
17
18

19
20
21
22

23
24
25
26
27

28
29
30

31

32

Construction
Rule

0101
11001
010101
1101010
11010101
110010101
0101010101

11010101010
010101010101
1100101010100
01111101111110

100100010100001
1101010101010101
01111101111110011
010101010101010101

0110100110110001001
11110011101101111111
011110011000001111011
0101010101010101010101

11010111001110100011010
111111010010110101010110
1011110101010100111100100

01011010110100010111011000

000011111000001100100001101
0101010101010101010101010101
00011000100011000111111100101
000001100010000110000100111110

0000110100100000110000001100101

00011111100100011001110110110000

Figure 3 shows an input register design. In this example, the
input register is between the input pins and the circuit logic. We
get a maximum-length sequence for four inputs by alternating
Rule 90 (odd) and Rule 150 (even) cells. Figure 4 shows the
boundary-scan cell recommended by JTAG in more detail. The
original cell consists of two multiplexers and two flip-flops. To in­
corporate built-in self-test, we added an additional control sig­
nal, BIST, to the multiplexer and the Exclusive-OR tree for pat­
tern generation. The cell implements cellular automata Rule 150,
but we can convert it to a Rule 90 cell simply by removing the Ex­
clusive-OR gate that feeds back the previous value of the cell.

A pattern generator
based on the

principles of cellular
automata is a viable

alternative to the
more conventional

LFSR-based
generator in terms of
pattern coverage as
well as for transition

fault testing.

Figure 4. Realization of a Rule 90/150
cell; TDI = test data in, TDO = test data
out

FEBRUARY 1989 269

-BOUNDARY SCAN WITH BIST

While the
implementation
overhead of a

cellular automata
register is generally
higher than that of

an LFSR, a CAR has
the advantage of

modularity.

Figure 5. An effective location for bound­
ary scan with BIST.

COSTS
In determining the overhead involved in adding boundary scan

with BIST to an existing design, we used the largest unidirectional
cell. To verify the functions of this cell, we used three Exclusive-
OR gates, two multiplexers, one demultiplexer, and a scannable
flip-flop. The implementation required 13 logic gates or standard
cells. The design used 91 transistors and, with loose wiring, oc­
cupied 255 x 255 sq. (µm in a 3-p.m CMOS technology. After we
optimized the largest cell, we decreased the number of transis­
tors to 68. Custom design of these cells will decrease the area
also, but we believe that the resulting need for feedthroughs will
offset any decrease. For this reason, we used the conservative
area estimate of 255 x 255 sq. µm in analyzing the chip area re­
quired.

Since there will be a boundary-scan cell for each primary I/O,
we suggest placing the cells adjacent to the pins of the design.
The cells are then on the periphery of the design.

Figure 5 shows the projected location of all required hardware
to enable boundary scan and BIST. The template consists of the
boundary-scan cells as well as some additional control logic. In
some instances, part of the area in the shaded region, nominally
reserved for boundary-scan cells, will accommodate additional
control logic. If we include the boundary scan cells in the gray re­
gion of Figure 5, we must ensure that the width of the cells is less
than the distance between adjacent pins. This requirement is not
difficult to satisfy. Even our largest cell fits beside a pin with area
left for routing.

We analyzed several pad frames to estimate the cost of testabil­
ity in terms of chip area. Table 2 gives the results. The maximum
usable area before boundary scan is the frame area minus the
area of the pads. We calculated our maximum usable area after
boundary scan by placing our largest cell beside each I/O pin.
For large frames, the decrease in usable area is relatively small.

Table 2. Projected overhead including built-in self-test for pad frames of
different sizes.

Pins Frame
Size

Usable Area
Before

Boundary Scan
(mm2)

Usable Area Calculated
After Overhead

Boundary Scan (%)
(mm2)

28
40

40
40
64
64

64
84

84

S
S
M
L
M
L

XL
L

XL

11.8
11.8
25.7
40.2
25.7
40.2

64.3
40.2

64.3

10.1
10.1

23.2
37.0

23.2
37.1

60.2
37.1

60.2

16.96
16.96

11.15
8.55
11.15
8.55
6.70
8.55

6.70

270 IEEE DESIGN Si TEST OF COMPUTERS

By merging an input and output cell, we can get a bidirectional
cell. Because of the constraint in pin spacing, however, these cells
would have to be rectangular and would thus increase overhead.

As we mentioned earlier, all our projections are based on a 3-
µm CMOS technology. With a l-µm CMOS technology, we can
place even the most complex cell on the chip boundary.

EVALUATING OPTIONS WITH BIST
We experimented with using a register based on cellular auto­

mata principles, called CAR, and a traditional linear-feedback
shift register as sources to generate random patterns. We used
the two CAR configurations in Table 1 and several LFSR polyno­
mials tabulated in work by Bardell et al.

Table 3. Trial pattern generation for pa­
rameters n=3, m=2, s=4.

THE BIST MODEL
In the BIST mode, the boundary-scan input register is recon­

figured into a CAR or a LFSR of length s. Either register can serve
as a source of s-bit wide 2s - 1 random patterns. These patterns
are distributed in parallel to n primary inputs and serially to m
interior scannable latches, as Figure 6 shows. In fact, n of the s
latches from the source register are primary inputs. We add s -
n register latches to the input register only when the random pat­

tern testability of the circuit under test requires such an addi­
tion. Given that the number of uniformly distributed random
patterns required to test the circuit in the scan mode is NT E S T .
then we need to maintain s > log(NTEST+l)/log(2) with some mar­
gin.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Source
Pat terns

1111
1100
1010
0001
0011
0110
1011
0010
0101
1101
1001
0111
1000
0100
1110

1111

Trial
Trav. 1

10101

00110

10101

01001

10011

10011

11100

Pat terns
Trav. 2

11010

00000

01111

00110

11010

01111

01001

11100

TEST-PATTERN GENERATION
We formed a pattern n+m wide by clocking the source register

for m cycles to serially load the interior register. We then applied
the pattern in a single clock cycle to the circuit under test (Figure
7). Table 3 shows an exhaustive set of trial patterns that the CAR
source register (configuration 1 in Table 1) can generate for pa­
rameters (s=4, n=3, m=2).

In generating trial patterns, we traversed 2s - 1 source patterns
m times. In this example, the period of the trial patterns is the

Figure 6. Characteristic parameter set (n,m,s); NTEST = the number of ran­
dom patterns to cover 100% of stuck-at faults.

1

1

1

0

0

s=4

1 1

1 0

0 1

0 0

0 1

1

0

0

1

1

m

m

1

0

n

0

0

1

m

0 1

1 1 0

Figure 7. Test-pattern generation.

FEBRUARY 1989 271

-BOUNDARY SCAN WITH BIST

Table 4. Trial pattern coverage for a set
of cellular automata registers and linear-
feedback shift registers.

n m s

4 2 6*
4 3 6
4 4 6
4 5 6
4 6 6
4 7 6
4 8 6

4 3 7
4 4 7
4 5 7
4 6 7
4 7 7
4 8 7

4 3 8*
4 3 9*
4 3 10*
4 3 11*

16 1 17*
16 2 17*
16 3 17*
16 4 17*

16 6 18
16 6 19

Period

A
63
21

6 3

6 3

21

9

6 3

B

127

127

127

127

127

127

C
255
511

1,023
2,047

D
131,071
131,071
131,071
131,071

E
87,381

524,287

Maximum
Coverage

CAR LFSR

100

33.3
100

100

33.3
14.3
100

50.4
50.4
50.4
100

4 0 0

100

27.3
25.04
12.5
6.25

100

100

100

100

33.3
100

50.8
28.6
50.8
100

33.3
14.3
100

25.2
25.2
25.2
100

100

100

27.3
12.5
12.3
6.25

50

50

100

100

20.7
100

same as that of the source, but this is not always the case. If the
number of interior latches, m, and the source period 2s - 1 have
a common prime factor, say r, then the period of trial patterns be­
comes (2s - l)/r. Trial patterns begin repeating after the first tra­
versal of the source patterns. The source period in Table 3 is 15,
so by choosing m=3, for example, we reduce the period of trial
patterns to 5.

Note also that only eight of the 15 patterns in the table are
unique. If we change the source to a cellular automata register
with configuration 2 (see Table 1) or to an LFSR, we would
generate 15 unique trial patterns. For this reason, we compare
trial pattern generation on the basis of trial pattern coverage,
which is

trial pattern coverage =
no. of unique trial patterns

•CAR configuration 1 from Table 1 (all others
are CAR configuration 2).

We exhaustively analyzed trial patterns for coverage with several
values of s, n, and m, using both CARs and LFSRs as the source
register. Table 4 summarizes the results. We divided the data into
five groups to represent the aspects of pattern generation. Group
A represents a case in which the period of the source is 63. The
period has several prime factors in common with several choices
of m, so the period of trial patterns varies. In Group B, pattern
coverage starts at less than 100% when m<s. When the source is
based on a CAR instead of an LFSR, pattern coverage rises toward
100% much faster. Group C shows the requirements for an ex­
haustive test, given these values of m and n. To achieve 128
unique patterns, we need a CAR source with value of s=9 and an
LFSR source with a value of s= 11. Group D conveys the same
message as Group B except that register lengths are in a some­
what more practical range. Group E uses the source register that
relates to an actual design.

WHY DISTINCTIVE PATTERN COVERAGE?
As Table 4 shows, trial patterns repeat at different rates for a

CAR or an LFSR source. A plot of pattern coverage as a function
of trial patterns is shown in Figure 8 for a set of parameters. Trial
patterns repeat for a number of reasons. First, a pattern from the
n-bit segment, illustrated in Figure 7 repeats itself 2 s - n times. The
exception is the (000...00) pattern, which repeats 2s-n - 1 times.
This repetition does not depend on the order of patterns, and we
can verify it by sorting the patterns in ascending binary order.

Second, for the m-bit segment, we have two cases. When m< s,
we can have 2m unique patterns from a total of 2s - 1 patterns.
We cannot predict the distribution of these patterns as readily as
we can for the patterns of the n-segment. For m > s, all 2s - 1 pat­
terns in the m-bit segment are unique, so all trial patterns are
unique. Thus, we can generate fewer than 2s - 1 unique trial pat­
terns only when m < s.

The pattern distribution of the m-bit segment for the CAR is
similar to that for the LFSR. Therefore, we conclude that the single
most important influence on pattern coverage is the order in

272 IEEE DESIGN 8i TEST OF COMPUTERS

which the n-bit and m-bit segments combine into 2s - 1 trial pat­
terns. Trial patterns generated with a CAR as a source register
more readily produce trial patterns with higher coverage. We
believe this higher coverage occurs because the adjacent bit cor­
relation with a CAR is lower than that with an LFSR.

ON PATTERN AND FAULT COVERAGE
For some circuits, we must generate many random patterns

before 100% of the stuck-at faults are covered. The effectiveness
of BIST depends on how well we can match the source of random
patterns to the testability requirements of the circuit under test.
We must ensure that BIST hardware will deliver patterns that
have sufficient coverage.

We applied boundary scan and BIST techniques to an existing
scan-based chip design that has a small number of interior
scannable latches (m=6) relative to the number of inputs (n=16).
Let NTEST be the number of random tests we must apply to fully
test the circuit. In fault simulation with computer-generated ran­
dom patterns, we found that JVTEST = 131,040 covers 100% of
the single stuck-at faults in this design.

We chose a source register of s=18 to match the random testa­
bility requirements of this design. However, we did not realize at
that time that m=6 and 2s - 1 = 262,143 have a common prime
factor, 3. This factor reduced the period of the trial patterns to
87,381. Despite this shorter period, the pattern coverage of the
CAR was higher than that of LFSR, 33.3% vs. 20.7%, as shown
in Table 4.

This pattern coverage correlates well with the fault coverages
we attained when we simulated CAR-based and LFSR-based pat­
terns. Figure 9a shows the results of this simulation. With 41,888
CAR-based trial patterns, we reached 100% coverage, but the
LFSR-based test flattened at 98.28% after about 40,000 trials.

The last entry in Table 4 shows that for (s= 19, n= 16, m=6), both
CAR and LFSR achieve 100% pattern coverage. We also easily
covered 100% of the single stuck-at faults in both cases. How­
ever, if we consider a two-pattern test and measure transition
fault coverage, the test patterns are not equivalent between the
CAR and the LFSR. As Figure 9b shows, when we use a CAR as
a pattern source, we cover 99.7% of the transition faults in
500,000 patterns. With an LFSR as a pattern source, we cover
only 93.4% of the faults in the same number of patterns.

W e can realize boundary scan with a variety of test
modes for high-performance boards, including a

mode for built-in self-test, while keeping overhead to
an acceptable level. A pattern generator based on the

principles of cellular automata is a viable alternative to the more
conventional LFSR-based generator in terms of pattern coverage
as well as for transition fault testing. While the implementation
overhead of a CAR is generally higher than that of an LFSR, a
CAR has the advantage of modularity. Since only adjacent neigh­
bor communication is required, we can readily change the length

Figure 8. Trial pattern coverage with a
cellular automata register and a linear-
feedback shift register for (n=4, m=2,
s=6).

Figure 9. Fault coverage curves for the
CAR and LFSR: stuck-at fault coverage
(a) and transition fault coverage (b).

FEBRUARY 1989 273

-BOUNDARY SCAN WITH BIST

Clay Gloster, Jr., is graduate student in the
Department of Electrical and Computer Engi­
neering at North Carolina State University,
where he is working towards a PhD in electri­
cal engineering. His research interests are
boundary-scan and built-in self-test architec­
tures in conjunction with random pattern
generation and pattern compaction. Previ­
ously, he worked on superconducting DC mo­
tors for David Taylor Naval Ship Research.
Gloster holds an MSEE from North Carolina
A&T State University.

of the generator by simply adding or removing adjacent cells.
Thus, we do not have the major redesign effort involved with
LFSR-based generators.

We have begun work on a tool to automate boundary-scan lay­
out. The tool characterizes a universal mask-programmable reg­
ister that we can reconfigure into either a CAR or an LFSR. We
are also investigating properties of CARs and LFSRs in weighted
random test-pattern generation and test-pattern compaction.

ACKNOWLEDGMENTS
We gratefully acknowledge Rod Tulloss from AT&T Engineering Research Cen­

ter for keeping us updated with versions of JTAG's recommendations, Peter
Hortensius from the University of Manitoba for sharing with us early results from
his PhD dissertation on random number generation with cellular automata, BNR
for supporting a summer student position at the Microelectronics Center of North
Carolina in 1987, and NTI for supporting an Industrial Affiliate position at MCNC
in 1988. In addition, Harold Martin from North Carolina A&T State University has
been a source of constant encouragement throughout this effort.

Franc Brglez is with Bell-Northern Research
and is a resident professional at Microelec­
tronics Center of North Carolina, where he
manages a research team in design synthesis
and testability. He is also an adjunct profes­
sor in the Department of Electrical and Com­
puter Engineering at North Carolina State
University. His research interests have been
in digital testability analysis, fault simula­
tion, and automatic test-pattem generation.
Currently, he is focusing on work in bridging
logic synthesis, verification, and testability.

Direct comments or questions on this article
to F. Brglez, MCNC, 3021 Cornwallis Rd., Re­
search Triangle Park, NC 27709.

REFERENCES
1. F. Beenker and C. Maunder, Boundary-Scan, "A Framework for Structured

Design-For-Test," Proc. Int'l Test Con/., Sept. 1987, pp. 724-729.
2. C. Maunder, F. Beenker, and C. Vivter,. A Standard Boundary Scan Architec­

ture Version 1.0, June 1987 (available by writing to R. Tulloss, AT&T Eng.
Res. Ctr., PO 900, Princeton, N.J. 08540).

3. JTAG Boundary-Scan Architecture Standard Proposal Version 2.0, Mar. 1988
(available by writing to R. Tulloss at the address above).

4. J. LeBlanc, "LOCST: A Built-in Self-Test Technique," IEEE Design & Test of
Computers, Vol. 1, No. 4, December 1984, pp. .

5. P. Bardell and W. McAnney, "Self-Testing of Multichip Logic Modules," Proc.
Int'l Test Conf, Nov. 1982, pp. 200-204.

6. D. Komonytsky, "LSI Self-Test Using Level-Sensitive Scan Design and Signa­
ture Analysis," Proc. Int'l Test Con/., Nov. 1982, pp. 414-424.

7. C. Gloster, Jr., and F. Brglez, "Boundary Scan with Cellular-Based Built-in
Self-Test," Proc. Int'l Test Con/., Sept. 1988, pp. 138-145.

8. F. Brglez et al., "Automated Synthesis for Testability,"XEEE Trans. Industrial
Electronics (to be published).

9. C. Gloster and F. Brglez, Integration of Boundary Scan with Cellular-Based
Built-in Self-Test for Scan-Based Architectures, Version 1.0, tech. rpt. TR87-
18, Microelectronics Center of North Carolina, Research Triangle Park, N.C.,
Aug. 1987.

10. P. Hortensius, Parallel Computation of Non-Deterministic Algorithms in VLSI,
PhD dissertation, University of Manitoba, Winnipeg, 1987.

11. B. Koenenmann, J. Mucha, and G. Zwiehoff, "Built-in Logic Block Observer,"
Proc.Infl Test Conf, Oct. 1979, pp. 37-41.

12. D. Lancaster, TTL Cookbook, Howard W. Sams & Co., New York, 1974.
13. L.-T. Wang and E. McCluskey, "Hybrid Designs Generating Maximum-Length

Sequences," IEEE Trans. Computer-Aided Design of ICs and Systems, Vol. 7,
No. 1, Jan. 1988, pp. 91-99.

14. W. McAnney, P. Bardell, and J. Savir, Built-in Test for VLSI: Pseudorandom
Techniques, John Wiley & Sons, New York, 1987.

15. G. Kedem and J. Ellis, "The Ray Casting Machine," Proc. Int'l Conf. on Com­
puter Design, Oct. 1984, pp. 533-538.

16. J. Calhoun, D. Bryan, and F. Brglez, Automatic Test Pattern Generation (ATPG)
for Scan-Based Digital Logic: Version 1.0, tech. rpt. TR87-17, Microelectron­
ics Center of North Carolina, Research Triangle Park, N.C., Aug. 1987.

17. M. Schulz and F. Brglez, "Accelerated Transition Fault Simulation," Proc. De­
sign Automation Conf, 1987, pp. 237-250.

274 IEEE DESIGN 81 TEST OF COMPUTERS

Boundary Scan And Its Application To Analog-Digital
ASIC Testing In A Board/System Environment

Patrick P. Fasang

National Semiconductor Corporation
ASIC Division

2900 Semiconductor Drive
M/S 10-165

Santa Clara, CA 95052-8090

Abstract

This paper first introduces the concept and motivations
for developing Boundary Scan (BS), then explains the input
BS cell, the output BS cell, and the bidirectional BS cell.
Then the paper explains the application of Boundary Scan
to the testing of analog-digital ASICs in a board/system
environment. An example is given to illustrate the concept
and the application.

1. Introduction

Design For Testability (DFT) at the chip level for the
purpose of making sure that the chip can be tested in a
stand-alone manner is not new. Companies have been
using this approach for some time. However, DFT used at
the chip level by itself does not mean that such chips when
used on a board will make it easier for the board or for
that matter the system to be tested. The reason is that new
packaging technologies for ICs, while allowing more ICs to
be mounted on a given size of board, have made it difficult
or impossible to use current in-circuit board testing
techniques. Examples of new packaging technology of this
type are surface mounted package and pin-grid array. The
former requires no plated through holes on the printed
circuit board (PCB), and the latter has its pins inaccessible
from the device side of a PCB. One additional problem is
that the spacing between adjacent pins has decreased to
the point that physical probing of package pins is
impossible or requiring too expensive probes. To solve this
problem, the Joint Test Action Group (JTAG) developed a
specification that became a proposed IEEE standard
(P1149.1) test interface and Boundary Scan architecture for
increasing the testability of PCBs, and hence systems, by
adding a scan path around the periphery of ICs.

2. The Boundary Scan Concept

Circuit in a serial manner via the Test Data Input (TDI) pin.
Likewise the response from the Application Circuit can be
captured info the BS ceil on the output port and serially
shifted out via the Test Data Output (TDO) pin. Figure 1
shows only one Mission Input pin and one Mission Output
pin. However, the concept can be extended whereby the IC
may have n Mission Input pins and m Mission Output pins,
where n and m are some arbitrary numbers. In that case,
the IC would have n BS cells on the input port and m BS
cells on the output port. The IC needs to have, however,
only one TDI and only one TDO. The TDO of the first BS cell
on the input port would be connected to the TDI of the
second BS cell on the input port, etc. Likewise the TDO of
the first BS cell on the output port would be connected to
the TDI of the second BS cell on the output port, etc. The
general concept of Boundary Scan as seen from the board
level is depicted in Figure 2. Note that the TDI of the first
IC in the BS path is connected to the signal called Scan In
on the edge of the PCB, and the TDO of the last IC in the
BS path is connected to the signal called Scan Out on the
edge of the PCB. From the above information, one sees
that functionally there is a need to distinguish those BS
cells on the input port from those on the output port.
Hence the BS cells on the input port are called input BS
cells, and those on the output port are called output BS
cells. For bidirectional signals, bidirectional BS cells are
needed. Likewise, for Tri-state output signals, Tri-state
output BS cells are needed.

Boundary scan is the application of a scan path to the
internal periphery of the signal pins of an IC to provide
controllability and observability to the pins when the IC is
mounted on a PCB and the pins are not physically
accessible for probing. Figure 1 shows an IC with BS cells
placed next to the signal pins. During normal application
or mission function, a signal travels from the Mission Input
through the BS cell into the Application Circuit. The
response from the Application Circuit travels out to the
Mission Output pin through a second BS cell. When the IC
is mounted on a PCB and if the pins are not physically
accessible, test data can be applied to the Application

FIGURE 1. BOUNDARY SCAN IN AN INTEGRATED CIRCUIT

3. Input BS Cell, Output BS Cell, & Bidirectional BS Cell

Figures 3, 4, and 5 show the block diagrams of one
implementation of the input BS cell, the output BS cell, and
the bidirectional BS cell, respectively. JTAG also specifies
a Test Access Port (TAP) controller which generates the
various control signals used in the boundary scan
architecture (1). The BS cells for each of the signal pins of
an IC are interconnected to form a scan path around the

EH0321-0/90/0000/0275$01.00 © 1989 IEEE 275

Reprinted from IEEE 1989 Custom Integrated Circuits Conference, pages
2Z4.1-22.4.4. Copyright © 1989 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

border of the design, and this path Is provided with serial
input and output connections and appropriate clock and
control signals. For further information on the BS concept,
specification, and applications, see references (1 - 6).

FIGURE 2. A BOUNDARY-SCAN BOARD

FIGURE 5. BIDIRECTIONAL BOUNDARY-SCAN CELL

FIGURE 3. INPUT BOUNDARY-SCAN CELL

FIGURE 4. OUTPUT BOUNDARY-SCAN CELL

4. Analog-Digital ASICs

Some semiconductor companies offer analog as well as
digital circuits in their ASIC libraries (7). This type of mixed
signal ASICs are difficult to test even when they are
stand-alone devices (8). When placed on a PCB, the testing
problem becomes more difficult. The reason is due to the
fact that analog signals do not lend themselves to shifting
via scan paths as digital signals do, and mixed-signal
simulators are not yet capable of providing a complete set
of analog and digital input and output data for testing as in
the case of purely digital circuit simulator.

5. Application Of BS To Analog-Digital ASIC Testing

To manage the testing problem of analog-digital ASICs,
the following procedure is suggested:

A. Partition the analog circuit from the digital circuit

B. Add demultiplexers (DMUX) to observe the digitized
analog input signal(s) via output BS cells during testing

C. Add multimplexers (MUX) to control the digital circuit
with digital test patterns applied during testing via the
input BS cells

276

D. Perform logic simulation of the digital circuit without
using the analog input signal(s) but use the digital test
patterns applied during simulation (and testing) via the
input BS cells

E. Test the analog and digital circuits separately by
applying analog test signals at the analog input pins and
observing the digitized analog outputs at the output BS
cells; and by applying digital test patterns to the digital
circuit via the input BS cells and observing the digital
circuit outputs via the output BS cells associated with the
digital circuit output pins.

F. With one or two analog input values, check the overall
behavior of the ASIC chip to make sure that the link
between the analog circuit and the digital circuit is not
faulty. This particular step is not meant to be an
exhaustive test but only to ensure that the analog-digital
link is not broken.

• Note that the above procedure is useful even when the
IC is not mounted on a PCB because each BS cell has the
property that it aids in performing an external
interconnection test or as a scan element to allow internal
testing of the application circuit or simply a transparent
(buffer) element. So when an IC is in a stand-alone mode,
meaning not mounted on a PCB, its BS cells can be
controlled so that they are in the transparent mode and
allow the testing procedure described above to be
performed.

6. An Example

Figure 6 shows an example of an analog-digital ASIC
with DMUXs, MUXs, input BS cells, and output BS cells
added for the purpose of making the IC testable both at
the chip level as well as at the board or system level. In
this example, the analog circuit consists of an amplifier
and an analog-to-digital (A/D) converter. The analog input
is a primary input pin to the ASIC chip. When mounted on
a PCB, this analog primary input pin needs to be
connected to a dedicated analog signal pin (finger) on the
edge of the PCB containing this ASIC chip. The output BS
cells associated with the DMUXs allow the digitized analog
signal to be observed when the ASIC chip is in a
stand-alone mode as well as when the ASIC chip is
mounted on a PCB. In the stand-alone mode, these output
BS cells can be placed in the transparent mode, and the
digitized outputs from the DMUXs can be observed in
parallel at their corresponding output pins. When the ASIC
chip is mounted on a PCB, these output BS cells can be
controlled such that they are linked together to form a
scan path around the border of the ASIC chip, and the
digitized analog-signal bits can be captured into these BS
cells and then shifted along the boundary scan path on this
ASIC chip, and via other boundary scan paths in other ICs
if the PCB is so designed, and finally to the Scan-Out pin
(finger) on the edge of the PCB on which this ASIC chip is
mounted. In the stand-alone mode, the digital circuit can be
tested by applying, in parallel, the digital patterns used in
the logic simulation of the digital circuit at the pins
associated with the input BS cells which feed into the
MUXs. The responses from the digital circuits can be
observed in parallel at the pins associated with the output
BS cells on the output port of the digital circuit. When
mounted on a PCB, the digital circuit can be tested by
having the input test pattern bits shifted in serially from
the Scan-In pin (finger) on the edge of the PCB, and via
other boundary scan paths in other ICs if the PCB is so
designed, and then loaded from the input BS cells into the

MUXs and then into the digital circuit. The responses from
the digital circuit are captured into the output BS cells on
the output port of the digital circuit and then serially
shifted along the boundary scan path in this ASIC chip, and
via other boundary scan paths in other ICs if the PCB is so
designed, and then to the Scan-Out pin (finger) on the edge
of the PCB. Note that under normal mission mode, the
DMUXs and the MUXs would be controlled in such a way
that the BS cells associated with these DMUXs and MUXs
would not be selected. To make Figure 6 simple to follow,
various control signals such as system clock, test clock,
and boundary scan shift and update signals are not shown.

7. Conclusions

New IC packaging technologies which allow more ICs to
be mounted on a given size of PCB also make it
increasingly difficult to gain physical access to the pins of
the ICs for testing purposes. JTAG whose membership
includes some 30 to 40 systems companies as well as
semiconductor companies developed a concept and
specification to address this particular issue of testing
boards/systems containing state-of-the-art ICs. The JTAG
solution is known as boundary scan. The boundary scan
concept entails embedding a BS cell next to each signal pin
on an IC to, in effect, emulate electrical in-circuit testing
without requiring physical access to each signal pin of an
IC when mounted on a PCB. For ASIC chips with both
analog and digital circuits, partitioning the whole circuit so
that the analog circuit is separate from the digital circuit
and adding DMUXs, MUXs, and BS cells make the chip
testable both in the stand-alone chip environment as well
as in a board/system environment.

8. References

(1) Boundary-Scan Architecture Standard Proposal, Version
2.0, JTAG Technical Committee, March 30, 1988

(2) Expanding Beyond Boundary Scan Techniques And JTAG,
Pete Fleming, WESCON'88 Professional Program Session
Record 13, November 15-17, 1988, Anaheim, California

(3) A Proposed Standard Test BUS And Boundary Scan
Architecture, Lee Whetsel, WESCON'88 Session Record
13

(4) Boundary Scan -- A User's Point Of View, Ulrlch
Ludemann and Heinz Vogt, WESCON'88 Session Record 13

(5) Merging BIST And Boundary Scan At The IC Level, Scott
Davidson, WESCON'88 Session Record 13

(6) A Method For Using JTAG Boundary Scan For Diagnosing
Module Level Functional Failures, John Sweeney,
WESCON'88 Session Record 13

(7) National Semiconductor ASIC Analog Cells, 1987,
National Semiconductor Corporation, Santa Clara, CA
95052-8090

(8) Design For Testability For Mixed Analog/Digital
ASICs, Patrick P. Fasang, et. al., Proceedings of
the 1988 IEEE Custom Integrated Circuit Conference,
May 1988, Rochester, N.Y.

277

FIGURE 6. ANALOG-DIGITAL ASIC WITH BOUNDARY SCAN CELLS

278

Reprinted from IEEE Transactions on Industrial Electronics, Volume 36,
Number 2, May 1989, pages 231-240. Copyright © 1989 by The Institute of
Electrical and Electronics Engineers, Inc. All rights reserved.

A Universal Test and Maintenance Controller for
Modules and Boards

JUNG-CHEUN LIEN, STUDENT MEMBER, IEEE AND MELVIN A. BREUER, FELLOW, IEEE

Abstract—The design of a Module test and Maintenance Controller
(MMC) is presented. Driven by structured test programs, an MMC is able
to test every chip in a module or PCB via a test bus, such as the JTAG
boundary scan bus. More than one test bus can be controlled by an
MMC. The proposed MMC is quite versatile. It can support several bus
architectures and many modes of testing. The differences between
MMC's on different modules are the test programs which they execute,
the number of test buses they control, and the expansion units they
employ. A simple yet novel circuit, called a test channel, is used in an
MMC. The MMC processor can control a test channel by reading/writing
its internal registers. Once initialized by the MMC processor, a test
channel can carry out most of the testing of a chip. Thus the processor
need not deal with detailed test-bus control sequences since they are
generated by the test channel. This strategy greatly simplifies the
development of test programs. The proposed MMC can be implemented
as a single-chip ASIC or by off-the-shelf components. Some self-test
features of the MMC are also presented.

I. INTRODUCTION

DESIGNING testable chips which can be connected to
standard test buses has recently drawn much attention

[l]-[3], [12], [16]-[18]. This is due primarly to two major
initiatives dealing with testable designs, which have emerged
over the last few years. One is the ETM-BUS protocol
proposed by the VHSIC committee [13]; another is the
boundary scan protocol proposed by the JTAG committee
[21], which has attracted considerable industrial support.
Recently, the IEEE Testability Bus Standard Committee
(TBSC) developed several test-bus protocols for board-level
testing, known as P1149.X (x = 1, 2, 3, 4) [22]. The serial
test bus, namely PI 149.1, was adopted from the JTAG
proposal. As a result of these IEEE proposals, the ETM-BUS
protocol will probably be abandoned.

The main objective of these efforts is to support the design
for testability (DFT) of a module (or a board). An acceptable
degree of testability is not always achievable by simply using a
set of testable chips unless they are properly integrated at the
module level. Similar problems exist at both the subsystem
level and system level. For a system to have a high degree of
testability and maintainability, the system must be testable at
every level of integration. Examples of such systems are
described in [7] and [11].

Manuscript received November 16, 1988; revised December 10, 1988.
This work was supported by the Defense Advanced Research Projects Agency
and monitored by the Office of Naval Research under Contract N00014-87-K-
0861. The views and conclusions considered in this document are those of the
authors and should not be interpretted as necessarily as representing the
official policies, either expressed or implied, of the Defense Advanced
Research Projects Agency or the U.S. Government.

The authors are with the Department of Electrical Engineering-Systems,
University of Southern California, Los Angeles, CA 90089.

IEEE Log Number 8926814.

A hierarchical system design methodology to support test
and maintenance, known as an HTM, has recently been
reported [7]. In this methodology, a hierarchy of test control­
lers is embedded into a target system's physical hierarchy. In
an HTM system, each testable chip contains an on-Chip test
and Maintenance Controller (CMC); each testable module
contains a Module test and Maintenance Controller (MMC);
each testable subsystem contains a Subsystem test and Mainte­
nance Processor (SuMP); and each system has a System test
and Maintenance Processor (SMP). These controllers partici­
pate in all system test and maintenance activities and commu­
nicate via test buses. Fig. 1 shows part of the test hierarchy
with these four levels of controllers. Different buses may be
used for communcation at different levels. The SMP commu­
nicates with SuMP's through a Level-2 bus (L2-bus); a SuMP
communicates with MMC's through a Level-1 bus (Ll-bus);
and an MMC communicates with CMC's through a Level-0
bus (LO-bus).

Bus interfaces are required for both the controlling party
(master) and controlled parties (slaves) on a bus. For example,
each CMC contains an LO-slave to interface to an LO-bus.
Each MMC contains an LO-master to control an LO-bus and an
Ll-slave to communicate with an Ll-bus. If MMC's, SuMP's,
and SMP's are all designed to be testable chips, they each
should contain a CMC. It is possible for an MMC to have
more than one LO-master and thus control more than one LO-
bus.

Suitable LO-bus designs are the JTAG boundary scan bus,
the VHSIC ETM-BUS, and the IEEE P1 149.x (x = 1,2,3,4)
bus. The TM-BUS [14] is suitable for an Ll-bus design. The
TM-BUS or a system functional bus, such as the pi-bus, can be
used for the L2-bus. In this paper, we employ the JTAG bus
and the LO-bus; hence, every LO-slave contains a test access
port (TAP) controller. This bus consists of a data line input
(TDI) to the chip, a data line output (TDO), a control input
(TMS), a clock (TCK), and an optional interrupt output line
(INT).

This paper deals primarily with the design of an MMC. An
MMC is able to control the self-test process of a module (or
board) by accessing each chip's BIT structures through an LO-
bus. The proposed MMC is universal in that the same basic
design is used for all modules. MMC's differ by the test
programs they execute, the number of these buses they
control, and the expansion units they employ. Test programs
direct-the processor in an MMC in the execution of the built-in
self test (BIST) process for the entire module. The test results
are then reported to a SuMP via an Ll-bus. A SuMP can
initiate the self-test process of a module by sending a "begin

EH0321 -0/90/0000/0279$01.00 © 1989 IEEE 279

Fig. 1. Test hierarchy for a module.

test" commmand to the MMC on that module. The MMC then
reports the "health status" of that module to a SuMP.

An MMC contains bus interface units, such as an LI-slave
and an LO-master, a processing unit such as a processor, a
memory unit consisting of RAM's and ROM's, one or more
test channels, a bus driver/receiver, one or more expansion
units such as testability registers and analog test interface, and
a CMC. Only bus interface units are shown in Fig. 1.

A simple yet novel design, called a test channel, is used in
an MMC. Since every testable chip has an LO-slave in its
CMC, a test channel, which contains an LO-master, can
communicate over an LO-bus with a CMC. The MMC's
processor can control a test channel by reading or writing its
internal registers. Once initiated by the processor, a test
channel can completely control an LO-bus and the testing of a
chip. The separation of processor and test buses provided by
test channels prevents the processor from dealing with detailed
bus timing activities. A test channel translates processor
instructions into proper timing sequences for an LO-bus. A test
process can now be represented as high-level processor
instructions.

Budde reported on the design of the Testprocessor [9],
which is similar to our MMC. The Testprocessor is intended
to carry out some of the functions of the CMC and the MMC.
Since it may be part of an application chip, it must be simple.
The Testprocessor is programmed at the microinstruction
level. All peripherial devices are controlled directly by the
control signals provided by the microinstructions. The number
of expansion units is limited by the total number of control
signals the control unit can provide. Data can be moved
directly between the test-pattern RAM and the test interfaces
without going through the processor register. Obviously, this

is an efficient approach for data movement. However, due to
the limitation of the bus, only one serial interface can run at a
time. Comparisons are done by a fault-secure comparator.
There is no other data processing unit in the Testprocessor.
Due to the limited processing capability, diagnostic programs
cannot run on the Testprocessor.

In Section II a control model for a testable chip is presented.
The design requirements of an MMC are presented in Section
III, followed by its architecture in Section IV. Major building
blocks such as a test channel, processor, and memory are
described in turn. Some self-test aspects of the MMC are
presented in Section V.

II. A CONTROL MODEL FOR TESTABLE CHIPS

A test controller for the DFT and/or BIST hardware on a
chip must be able to: 1) provide data to the circuit under test
(CUT), such as test vectors or seed values; 2) switch between
test and functional clocks; 3) provide required control signals;
4) count the number of tests executed; and 5) execute and
process test results. More details on DFT and BIST test
controllers can be found in [5] and [6]. Both control signals
and data required to test a chip are supplied, to some extent, by
the MMC. Thus the hardware for carrying out this test process
can be distributed between the MMC and the CMC.

An MMC can transmit two types of information to a chip,
namely instructions and data. Instructions are sent to the
instruction register in the LO-slave to control and/or configure
the test function of a chip, while data are set to a selected scan
chain in the chip. Two types of information are sent from a
chip to an MMC, namely status and results. The status consist
of the values of important signals monitored by the chip, while
results come from a selected scan chain in the chip.

Fig. 2(a) shows a typical testable chip employing the JTAG
boundary scan architecture. Components within dashed boxes
are optional. The original portion of the chip, denoted as the
application circuit, has been modified to have n scannable data
registers. Everything outside of application circuit, which is
added for the purpose of testing the chip, is called the CMC.
The CMC consists of an LO-slave and a BIT controller (see
Fig. 2(b)). Assuming the LO-bus is a JTAG boundary scan
bus, then the LO-slave consists of a TAP controller, an output
buffer, an instruction register, two multiplexers, a bypass
register and, optionally, an interrupt circuit.

In the control of the CMC by the MMC, two control
schemata exist, namely centralized and distributed. In the
centralized control schema, the MMC and CMC are tightly
coupled during the entire test process of a chip, and the test
bus is thus tied up during this time. The CMC cannot execute a
test process without the help of the MMC. In the distributed
control schema, the test bus is used only to initialize the test
process. The CMC then executes the test process without any
help from the MMC. During this time, the test bus can be used
to communicate with other CMC's. At the termination of the
test, the bus is used for the transmission of test results from the
CMC to the MMC.

III. MMC DESIGN

An MMC must be able to respond to request from a SuMP,
to carry out tests for every chip on the module, and to report

280

Fig. 2. Control model for a testable chip: (a) JTAG architecture, and (b)
abstract model.

test results to a SuMP. The requirements for an MMC are
outlined next, followed by a description of its architecture in
Section IV.

A. Requirements for an MMC

Based on the test control model presented, one can design an
MMC to satisfy all requirements for testing a module
containing testable chips. An MMC should be able to support
the following functions:

1) access the on-chip BIT structures via an LO-bus;
2) provide proper control sequence for the execution of a

chip's BIT structures;
3) provide test data and collect test results if necessary;
4) analyze test results to decide on the health status of

chips;
5) test the interconnection among different chips on the

module via the boundary scan registers;
6) provide controllability and observability for nontestable

chips and analog circuits; and
7) interface with a SuMP or the control console.

An MMC must have memory to store test data and/or test
results if deterministic test data are used. For random or
exhaustive test methodologies, much less memory is required
since only seed data and signatures need to be stored.

IV. MMC ARCHITECTURE

Fig. 3 shows the architecture of an MMC. It consists of a
16-bit general- or special-purpose processor, a ROM, a RAM,
a test channel, a CMC with an LO-slave, an Ll-slave, and a

Fig. 3. Architecture of an MMC.

bus-driver/receiver (BDR), which support an expansion bus.
Extra units can be added to the MMC via the BDR. For
example, a functional bus interface, two testability registers,
an analog test interface, several test channels, an expansion
ROM, a control console interface, and a disk interface are
shown in the figure. The components shown within the dashed
line box are required for every MMC. This unit can be
implemented as a single ASIC chip. All other units on the
expansion bus can be designed for one or more ASIC chips.
CMC's for these chips are not shown.

All units on the local and expansion bus are accessed by the
processor in a memory-map schema. That is, every accessible
register of each unit occupies one location in the global
address space. The processor can read from or write into these
registers by first addressing the appropriate registers. Each
unit must be able to decode the address lines. Once a register is
selected, an enable signal is generated to initiate a READ or
WRITE operation.

A. Test-Channel Design

A CMC may have a pseudorandom test-pattern generator
(TPG) and a signature analyzer (SA), which can be imple­
mented using linear feedback shift registers (LFSR's) [19]. In
this case, only control signals need be supplied by a test bus
during self-test. An example of such a design is presented in
[1]. However, if the chip does not have these registers and is to
be tested using pseudorandom test data, then a TPG and an SA
must be made a part of the MMC. For chips tested by
deterministic test vectors, an MMC must be able to provide
test vectors and obtain test results via a test channel.

Once initialized by the processor, the primary function of a
test channel is to control an LO-bus autonomously. The
processor can then be used for other tasks. Thus, high test
parallelism can be achieved through running several test
channels at the same time.

The major functions of a test channel are listed below:

1) serve as an LO-master;
2) transmit instructions to and receive status from chips;
3) generate and transmit pseudorandom test data and

receive and compact test results;
4) transmit deterministic test vectors to and receive test

results from chips;

281

Fig. 4. Architecture of a test channel.

5) generate interrupts and also direct interrupts from chips
to the processor; and

6) keep count of the number of tests applied and the number
of bits of each test or instruction transmitted.

Organization of a Test Channel: Fig. 4 shows a block
diagram of a test channel. Solid lines represent data flow
paths, and dashed lines represent control flow paths. A test
channel consists of a transmitter register (TxR) for transmit­
ting data over the TDI line; a receiver register (RxR) for
receiving data on the TDO line; two polynominal control and
buffer registers PA and PB; a control register (CR), which
specifies operation mode, selection, and function enabling
information; a status register (SR), which contains the current
chip status; three counters, namely a test counter (TC), which
stores the total number of test vectors to be sent, a scan counter
(SC), which keeps track of the number of bits in a test vector
which have been transmitted, and a delay counter (DC), which
keeps track of the elapse idle time between two vectors; a
register count number register (CNR), which contains the
initial values for SC and DC; a register select circuit for
processor READ/WRITE control; an interrupt circuit to request
service from the processor; and a control unit FSM1, which
implements the LO-master protocol and is used to send and
receive information via an LO-bus under the control of the CR
and the three counters. If a test channel is implemented as a
stand-alone unit, then it should also have a CMC.

Output signals, such as TDI and TMS, are all driven
through a tri-state buffer thus allowing two or more test
channels to be connected to an LO-bus. This enhances the
reliability of the test process and makes external testing of a
module by another MMC feasible [7]. A more detailed
description of the major blocks follows.

1. TxR (Transmitter Register): The TxR is a 16-bit
register with parallel LOAD, SHIFT, and TPG capabilities. It
is used to transmit data over the TD/line. During pseudoran­
dom data transmission, the TxR acts as a TPG. The feedback

polynominal of the TPG is controlled by PA. Any feedback
polynominal can be realized since PA is directly writable by
the processor. The seed value for the TPG also can be loaded
by the processor. During instruction or deterministic data
transmission, TxR acts as a shift register. It must be loaded
with a new word of data before transmission is initiated. The
PA serves as a buffer for transmission. Once TxR is empty,
the next word of data, which is already PA, is copied into
TxR. Processor service is then requested in order to load a
new word of data into PA. Transmission over the LO-bus is not
interrupted during the 16-clock-cycle window in which PA
may receive a new data word. If the data transfer rate is not
fast enough, or when TxR is empty and PA does not contain a
new word of data, the LO-bus enters a pause state until PA is
loaded.

2. RxR (Receiver Register): The RxR is a 16-bit register
with parallel READ, SHIFT and SA capabilities. It is used to
receive data from the TDO line. Received data are either read
by the processor or compressed into a signature. During'
pseudorandom data transmission, RxR acts as an SA. The
feedback polynominal is controlled by PB. The final signature
in RxR can be read out via a processor READ operation. During
transmission of status or deterministic results, data on the
TDO line are shifted into RxR. PB serves as a buffer. Once
the RxR is full, its content is copied into PB. A service request
is generated to signal the processor to read PB and store the
data in the RAM. If the previous results in PB have not yet
been read, the LO-bus enters a pause state. Transmission
cannot start again until PB is read and RxR transfers its data to
PB.

3. PA, PB (Polynominal Control Registers): Both regis­
ters are 16 bit and have parallel LOAD capability. They can be
accessed by the processor via the data bus. Their functions
have already been described.

4. CR (Control Register): CR is a 7-bit register. Symbolic
names used for the CR bits are FSMen, INTen, MSO, MSI,
BS0, BSl, and Scan. FSMen and INTen are used to enable
FSM1 and the interrupt circuit, respectively, MSO and MSI
are used to specify operation modes; BSO and BSl address one
of the TMSi (i = 0, 1, 2, 3) signals, and Scan is. for the
selection operation type.

5. SR (Status Register): SR is a 4-bit register consisting of
bits Finish, IRQ, Ready, and Wait. The Ready bit is cleared
whenever the content of PA is copied into TxR and is set
whenever the processor loads new data into PA. The Finish bit
is set only when the required information has been transferred
or TC reaches 0. The IRQ bit is set when the INT line from
the test bus is active. The Wait bit is set when both the TxR
and PA are empty and is cleared when the TxR is loaded. A
processor SR READ operation also reads the contents of CR,
i.e., 11 bits are read. This operation can be performed
independent of the state of the FSM1. Bits Finish and IRQ are
cleared whenever the SR is read.

6. TC (Test Counter): TC is used to keep count of the
number of test vectors transmitted during the execution of one
test session. The TC is a 22-bit down counter and requires two
processor WRITE operations to load. One of the WRITE opera­
tions loads part of this counter and part of the CR. This

282

counter is able to count down to 0 from any number between 1
and 4 194 303.

7. SC (Scan Counter): SC is used to keep count of the
number of bits of a test vector or instruction which have been
transmitted. SC is a 10-bit down counter and can count down
to 0 from any number from 1 to 1023. Its initial value is loaded
from the CNR. A terminal count signal will be activated
whenever the value in SC reaches 0, and the value s in CNR
will be copied into SC. In transmitting t test vectors to a chip
during one test session, SC must be re-initialized (to the value
s) t times.

8. DC (Delay Counter): DC is a 5-bit down counter and is
used to count the number of clock cycles between the
transmission of two consecutive test vectors.. Its initial value
can be loaded from the CNR. The DC can count down to 0
from any number from 1 to 31. A terminal count signal will be
activated whenever DC reaches 0, and the value d in CNR will
be copied into DC.

9. CNR (Count Number Register): This buffer is used to
store the initial value of the constants for both SC and DC,
i.e., s and d referred to above. These counters destroy their
original contents after a test vector is transmitted. Thus, this
register is used to restore the value of both SC and DC so that
the next vector can be transmitted. The CNR is 15 bits long. It
can be loaded by a single processor WRITE operation.

10. Register Select Circuit: This circuit is driven by the
processor and is used so that the processor can write into and/
or read from various registers in the test channel. Registers
CNR, TC, CR, SR, TxR, RxR, PA, and PB are accessible to
the processor. When the Direct signal here is inactive, the
registers are selected by address. When the Direct signal is
active, this circuit interprets a processor READ operation as a
WRITE to PA operation, thus ignoring the address lines. In
addition, the address and READ signals are used to read a word
from the memory unit. Thus, a word of data is transferred
from the memory unit to the PA of the selected test channel.
Similarly, when Direct is active, a processor WRITE operation
is interpreted as a READ from PB operation. The address and
WRITE signals are used to write the contents of PB into the
memory unit.

11. FSM1: This circuit controls the operation of a test
channel and acts as an LO-master. It receives control signals
from CR and conditional signals from counters. TC, SC, and
DC. When the FSMen bit is set, a processor-generated WRITE

operation is used to generate a Start signal, which in turn
initiates the FSM1.

Operation of the Test Channel: The operation of a test
channel is controlled by its FSM1. The FSM1 controls the
state of a test bus via signal line TMS (see Fig. 4). For the
possible JTAG bus states, the reader is referred to [21].

A test channel provides for two types of operation, namely
RunTest and Scan. During RunTest, die test bus enters die
Idle/RunTest state for a predetermined number of clock
cycles. The TC counter keeps tracking of this number. No data
is transmitted on either the TDI or TDO lines. This type of
operation is used when a CUT has BIST capability, and the
BIST hardware has been properly initialized through the test
bus. The chip's BIST controller runs the self-test as long as the
bus stays in the Idle/RunTest state.

TABLE I.
COUNTER USAGE

TC
SC
DC
TxE
RxR

PTD
no. of tests
no. of bits
elapsed clock cycles
TPG
SA

DTD
no. of tests
no. of bits
set to 15
SHIFT
SHIFT

DRC
no. of tests
no. of bits
set to IS
SHIFT
SA

INS
set to 1
no. of bits
set to 15
SHIFT
SHIFT

RunTest

no. of clock cycles

—
—
—
—

During Scan operation, the test channel tranfers either
pseudorandom test data (PTD), deterministic test data without
results compression (DTD), deterministic test data with results
compression (DRC), or instruction (INS). The operation of the
test channel is controlled by the CR and three counters. These
counters are used for all types of information transfer. During
different operations, a counter may be used for different
purposes. For example, in PTD transmission, TC keeps track
of the number of test vectors applied, SC keeps track of the
number of bits transmitted, and DC keeps track of the number
of elapsed clock cycles between two consecutive test vectors.
Table I indicates how these counters are used. The operation
modes of the TxR and RxR are also shown in the table.

Fig. 5 shows the state transitions carried out by a test
channel. Dashed rectangles represent a wait for processor
service. The operations indicated in the solid rectangles
execute in one clock cycle. The protocol corresponding to this
state-transition diagram is consistent with the JTAG boundary
scan protocol.

The FSMen bit is cleared during the power-up process, and
the test channel enters the idle state at this time. The processor
can read from and write into internal registers of a test channel
while in tfiis state. After initializing the appropriate set of
registers, setting the Start signal and FSMen bit will initiate
the operation of the FSM1. Depending on the setting of bits
Scan, MSO, and MSI, the FSM1 follows one of the five major
branches as shown in Fig. 5(a).

The branch labeled PTD is followed when pseudorandom
testing is used. Registers PA, PB, TxR, RxR, CNR, and TC
are assumed to have been initialized to appropriate values,
such as pa, pb, seedl, seed2, (s, d) and t. The TxR acts as a
TPG with pa selecting die feedback polynominal and seedl as
its initial value; RxR acts as an SA with pb selecting die
feedback polynominal and seed2 as its initial value. The test
channel then autonomously transmits t random test vectors
generated by TxR to TDI and compresses t test results in the
RxR. Each test result is s bits long, and d clock cycles of delay
exist between two consecutive test vectors. No service from
the processor is required during pseudorandom testing. The
Finish bit is set to signal the processor that the process has
completed. The processor then reads the signature stored in
RxR to determine the test result.

The branch labeled DTD (see Fig. 5(b)) is used when
deterministic test data are employed. Registers CNR and TC
contain the values (s, d) and t. Note that d is always equal to
15 for the DTD process. Its purpose is to clear the Ready bit
after every 16 bits transmitted. For a test vector longer than 16
bits, TxR is loaded with the first 16 bits of deterministic test
data before the Start signal is activated. After 15 shift
operations, TxR contains the last bit of the test data. One clock
cycle later, RxR is full. Two possible situations exist. After
these shift operations have occurred, it is possible diat PA is

283

Fig. 5. State transition diagram for a test channel: (a) overall diagram, and
(b) the DTD case.

full {Ready = 1). Then the content of PA is copied into TxR
and one clock cycle later the content of RxR is copied into PB.
The Ready bit is cleared, and transmission over TDI and TDO
is not interrupted. The processor then has another 16 clock
cycles to load PA, read PB, and set the Ready bit.

Another possibility is that PA is empty (Ready = 0).
Transmission is then interrupted, and the Wait bit is set to
request service from the processor. Waiting for the processor
to read the RxR and load TxR is indicated by a dashed
rectangle in Fig. 5(b). The test bus is in the pause state during

the wait period. Once the processor finishes the READ/WRITE

process, it clears the Wait bit to allow the FSM1 to transfer
another 16 bits of information. The Finish bit is set upon the
completion of the DTD test, i.e., when TC reaches zero.

The branch labeled DRC is followed when deterministic test
data are used and test results are compressed in RxR. The
volume of information flow between the memory unit and test
channel is reduced by half over the DTD operation.

The branch labeled INS is followed when transmitting
instructions. The content of TC is set to 1. The operation of the
test channel is similar to that for DTD operations. The only
difference is that the sequence of values on the TMS line is
different.

The branch labeled RunTest is followed when the RunTest
operation is used. The test channel transmits a specific
sequence as specified by the JTAG protocol over the TMS line
such that all LO-slaves connected to the selected signal TMSi
will enter the Idle/RunTest state for t clock cycles. The
Finish bit is set before returning to the idle state again.

The loop conditions depend on condition signals (TC = 0,
SC = 0, DC - 0, and DC > 1) generated by counters TC,
SC, and DC, respectively. The processor can stop or disable
the operation of the FSM1 by loading a new word into CR
through a processor write operation. Resetting the FSMen bit
will halt the operation of the FSM1. In order to maintain
consistent operation, modification of all other registers, except
PA, PB, TxR and RxR, is prohibited until the Finish bit is
set or an interrupt has occurred.

B. Bus Driver/Receiver

The BDR is a bidirectional interface to the local bus of the
MMC. It provides driving capability for the signals to/from
the expansion bus. Fig. 6 shows the basic architecture of the
BDR. Signals IN and OUT control the flow of information
between the local bus and the expansion bus. These two
signals are decoded from the address and control buses, which
are subbuses of the local bus. When the addressed unit is not
directly tied to the local bus, the BDR is used to allow
searching for the appropriate unit on the expansion bus. To
allow interrupts from units tied to the expansion bus to reach
the local bus, the expansion bus interrupt signals can also
assert the IN signal.

C. Functional Bus Interface

The funtional bus interface (FBI) allows communications
between the module's functional bus and the MMC's expan­
sion bus. Through the FBI, the MMC can execute functional
tests for the module. Details of this interface will not be
presented here. Further information on related interfacing
techniques can be found in [4].

D. Testability Register

This is a 16-bit register used to increase the testability of
modules containing chips which are either not designed to be
testable or do not have a test bus interface. The boundary scan
registers on testable chips can be used to increase the
testability of nontestable chips. However, in many cases, no
boundary scan registers can be found to access signals between

284

Fig. 6. Bus driver/receiver.

nontestable chips. The testability register can be used to
increase the testability of these chips and their signals in the
following way. Signal points which need to be controlled (C)
and/or observed (O) are cut and fed into the testability
register. The O signals are connected to the C signals during
normal operation (see Fig. 7). In test mode, the processor
writes a word to the testability register which in turn applies
this data to the C signals. O signals are loaded into the
testability register and then read by the processor. Thus, both
the controllability and observability of these cut points are
enhanced. A technique for selecting these signal points is
presented in [10].

E. Analog Test Interface

This circuit is used when there are analog circuits on the
module under test (see Fig. 8). To generate an analog signal,
the processor writes a word to the analog test interface, and the
D/A converter then converts this data into an analog signal.
For observability, an analog signal is converted into a digital
word, which can then be read by the processor.

F. Ll-slave

The MMC communicates with its higher level SuMP
controller via an LI-bus; thus, it must have an Ll-slave. The
design of a TM-slave is given in [8].

G. Processor

Processor functions can be classified into five categories: 1)
transfer data between memory and test channels; 2) transfer
data between memory and an Ll-slave; 3) compare test results
with good results; 4) transfer data between memory and
expansion units; and 5) execute test and/or diagnostic pro­
grams.

A general- or special-purpose 16-bit processor can be used
in the MMC. It controls all other units in the MMC. Through
READ/WRITE operations, the processor can access internal
registers of a peripheral device, such as the Ll-slave and test
channels. Operations of a peripheral device can thus be
controlled by a processor WRITE to the CR of the peripheral
device. Data exchange between memory and a peripheral
device are controlled by processor READ/WRITE operations. Any
processor having the following instructions is powerful
enough for the application of an MMC.

instruction
LDA Ri

LDA M
STA Ri

STA M

meaning
Load Ace with Ri.
Load Ace from memory location M.
Store Ace to Ri

Store Ace to memory location M.

Fig. 7. Testability register: (a) block diagram, and (b) circuitry for bit i.

ADD Ri

AND Ri
CMP Ri
NEG
CLA
BRZ Ri
JMP Ri
PUSH
POP
NOOP
HALT

enable

Fig. 8. Analog test interface.

Add Ri to Ace.
Bitwise AND Ri, with Ace.
Compare Ace with Rj.
Complement Ace.
Clear Ace.
Branch to location Ri, if Ace not zero
Jump to location Ri.
Push Ace onto stack.
Pop Ace from stack.
No operation.
Halt the processor.

The minimal architecture for a processor which is able to
execute the above instruction set consists of an accumulator,
four general-purpose registers, an ALU, a program counter, a
program status word, a stack with at least four words, an
interrupt circuit, and a microprogrammed control unit.

285

If an MMC is implemented as a single-chip ASIC, two
additional instructions are useful to increase the data transfer
efficiency between the memory unit and a test channel. The
added instructions are MULTIPLE READ (MR) and MULTIPLE READ

and MULTIPLE WRITE (MRMW). The signal lines Direct, Finish,
and Ready are used exclusively to support these two instruc­
tions (see Fig. 9). Signal Direct is active when the microcon­
troller is executing any one of these two instructions. Signals
Finish and Ready are used as conditional signals for the
microcontroller of the processor. All Ready (Finish) signals
from test channels are wired-ORed together.

When executing an MR instruction, the processor waits
until the Ready signal is cleared and then issues a READ

operation to the memory location addressed by general-
purpose register R0. Meanwhile, the test channel with FSMen
bit set and operation mode being either DTD, DRC, or INS
can generate a load PA signal using signals Direct and Read.
Thus, a data word is moved directly from memory to a test
channel. The value of R0 is increased by one after each READ.

The processor waits for the Ready signal to be activated and
then issues another READ operation. This process is repeated
until the Finish signal is set. Thus, a block of information can
be moved from the memory unit to the selected test channel
and transmitted to a chip without any interruption.

When executing an MRMW instruction, the processor waits
until the Ready signal is deactivated and then issues a READ

operation to the memory location addressed by R0; mean­
while, the enabled test channel generates a load PA signal, and
the data word from memory is loaded into the PA. The value
of R0 is incremented by one. The processor then issues a WRITE

operation to the memory location addressed by Rl; mean­
while, the enabled test channel generates a READ PB signal, and
a data word is read out of the PB and sent to the memory. The
value of R1 is incremented. The processor waits for the Ready
signal to be deactivated again and then issues another READ/

WRITE operation. This process is repeated until the Finish
signal is set. Thus, a block of deterministic test data is moved
from the memory unit to the selected test channel, and a block
of test results is moved from the selected test channel to the
memory unit.

H. Memory

The memory unit in an MMC is composed of a RAM unit
and a ROM unit. The ROM unit contains test programs to test
the entire module. These programs are compiled separately
before testing. Some crucial information about the chips on the
module is stored here such as the number of chips to be tested,
ordering of chips along the test bus ring, number and length of
scan chains for each chip, number of random test vectors to
apply to each chain, test instructions for each chip's CMC,
TPG seeds, and good signature for each test session. MMC
functional self-test programs can also be stored in this unit. If
the MMC is implemented using commercial IC's, then these
programs are essential for MMC self-test. The expansion
ROM can be added where a module requires a large test
program.

The RAM unit provides scratch pad memory for test
program execution. Response signatures are stored here for

Fig. 9. Control signals for MR and MRMW instructions.

latter evaluation. The RAM also provides storage for the Go/
NoGo status for all chips, as well as for the entire module.

/. Stand-alone MMC

The MMC can be used as a stand-alone mini ATE, provided
extra storage and console capabilities are added. For this
application, a console control interface and disk interface can
be added to the MMC.

V. MMC SELF-TEST

If the MMC is implemented with an off-the-shelf "nontest-
able" processor, ROM, and RAM, then some form of
functional self-test is required. After finishing self-test, the
MMC then reports its status to the control console or to a
SuMP.

An MMC can also be tested by either an ATE or by another
MMC. In the first case, an ATE can access the expansion bus
of the MMC under test. The ATE invokes the self-test
program of the MMC under test and waits until its completion.
The test results, which are stored in the RAM, are then read by
the ATE. In the second case, an MMC uses its FBI to access
the expansion bus of the MMC under test. Again, self-test
programs can be invoked. Test results can be read and
interpreted by the monitoring MMC.

If the MMC under test is implemented as a custom testable
ASIC, then we assume it has a CMC. The MMC can thus be
tested by another MMC. All units in the MMC, such as the
processor, RAM, ROM, test channel, and Ll-slave must be
designed to be testable, and their BIT structure must be
accessible via the LO-slave.

The testable design features of a test channel are shown in
Fig. 10. Major combinational logic blocks are indicated by
rectangles having dotted lines. Registers are indicated by
rectangles having solid lines. Some logic is associated with
these registers, since some are counters and LFSR's. Normal
functional connections are not shown. Instead two scan chains
formed during self-test are shown. Scan chain 1 is the
boundary scan chain. All I/O signals can be controlled and
observed by shifting test data or results along this chain. All
other registers make up scan chain 2. The state of the test
channel is controlled by shifting data along this scan chain. If a

286

Fig. 10. Testable design features for a test channel.

functional clock is then activated, the next state of the test
channel also can be observed by shifting out the content of this
chain.

During testing, scan chain 1 is first loaded with test data
which is held in place while the logic associated with scan
chain 2 is tested. The module I/O is tested using the boundary
scan chains of this chip and those to which it is connected.

VI. CONCLUSIONS AND DISCUSSIONS

We have described an MMC design suitable for controlling
the self-test process of a module. The design uses the concept
of test channels, which can run a test autonomously (in PTD
case) once it is initialized by the processor. Because of the test
channel, the processor need not deal with detailed control
sequences over the JTAG boundary scan bus. Test execution
sequences for chips can be generated in terms of processor
READ/WRITE operations, which greatly simplifies the develop­
ment of test programs.

The MMC architecture is expandable. More test channels
can be added so that more chips can be tested in parallel. In
addition, the MMC supports the functional testing of a
module, the testing of clusters of chips which are not designed
to be testable, and the testing of analog devices.

Clock Synchronization: Four or more clocks may be
applied to an MMC, viz. TCK for the CMC, FCKl for the
Ll-slave, FCKl for each test channel connected to an LO-bus,
and FCK3 for the operation among processor and other
peripheral devices. Synchronization problems will occur in a
test channel where both FCKl and FCK3 may access the same
component, such as TxR and RxR. Techniques to solve this
problem can be found in [4] and [15]. In the design presented
here, a common clock is used to drive all the clocks mentioned
above, thus avoiding the clock synchronization problem.

Portable tester. The proposed MMC is designed to be part
of an HTM system. It is assumed that each module contains an
MMC, which under request from a SuMP can test all chips on
the module and report back test results. However, it is possible

to build an MMC as a portable stand-alone unit. In this case,
the Ll-slave can be replaced by a control panel. A stand-alone
MMC can test any module having an LO-bus. The module's
built-in MMC is tested first through its LO-slave. Application
chips on the module can be tested either by the built-in MMC
or by the stand-alone MMC. For the latter case, the built-in
MMC must be disabled to allow the stand-alone MMC to take
control the module's LO-bus. An operator can start the test
process via the control panel. Test programs stored in the
ROM then take over control. After all chips have been tested,
test results are shown on the control panel to indicate the Go/
NoGo status of the module under test.

Overhead: There are several ways of implementing an
MMC. One or more test channels can be built on an ASIC
chip. The processor, RAM, and ROM can be implemented
using standard chips. The other functions, which are optional,
can be implemented using standard parts or an ASIC chip,
excluding the expansion ROM. The application chip requires
overhead to support testability, such as scan registers, as well
as a LO-slave. For double-latch designs, scan area overhead
usually varies from 2.8 to 6.3 percent, depending on the ratio
of gates to latches [20]. The overhead for the LO-slave
depends on the length of the instruction register and the
number of I/O pins. Assuming each shift register latch (SRL)
is equivalent to ten gates, an LO-slave with a 16-bit instruction
register and a 60-bit boundary scan register requires about
1600 gates. For a 50 000-gate ASIC chip, the total overhead
for testability will typically be between 5 and 10 percent.

The JTAG bus consists of four wires. Assuming 60 pins/
chip prior to adding the bus, the routing overhead to support
testability will be at least 4/60*100 = 6.7 percent. This is a
lower bound since most pins on a chip are tied to only two to
three point nets, while the JTAG bus goes to all IC's. We
estimate the wiring overhead to be closer to 10 percent.

Fault Isolation: One of the important attributes of bound­
ary scan is the ability to test the interconnect between chips.
Assuming chips are also designed to be testable via DFT or
BIST techniques, the MMC should be able to accurately
isolate hardware faults to a chip or interconnect.

Analog Performance: Since the A/D and D/A conversion
time is much smaller than the data transfer rate over the bus,
the speed of observing or controlling an analog signal is
determined by the data-bus bandwidth. For example, an Intel
80186 processor running at 8-MHz clock rate can transfer 4-
MByte of data from memory to the analog interface in 1 s.

CAD Tool Support: Clearly, a great deal of binary data
flows between an MMC and test application chips. It is not
feasible to develop these data manually. Thus, CAD tools are
required so that test programs for chips can be written in a
high-level language and these programs compiled into code
which is executed by an MMC. We are currently working on
developing such tools and associated test languages.

REFERENCES

[1] L. Avra, "A VHSIC ETM-BUS compatible test and maintenance
interface," in Proc. Int. Test Conf., 1987, pp.'964-971.

[2] F. Beenker, "Systematic and structured methods for digital board
testing," VLSISyst. Des., vol. 8, pp. 50-58, Jan. 1987.

[3] F. Beenker, K. Eerdewijk, R. Gerritsen, F. Peacock, and M. van der

287

Star, "Macro testing: Unifying IC and board test," IEEE Design &
Test Computers, pp. 26-32, Dec. 1986.

[4] G. Bordello and R. H. Katz, "Synthesis and optimization of interface
transducer logic," in Proc. Int. Conf. CAD, 1987, pp. 274-277.

[5] M. A. Breuer, "On-chip controller design for built-in-test," Dept. EE-
Systems, Univ. of Southern Calif., Techn. Rep. CRI-88-04, Dec.
1985.

[6] M. A. Breuer, R. Gupta, and J. C. Lien, "Concurrent control of
multiple bit structures," in Proc. Int. Test Conf., 1988, pp. 431-442.

[7] M. A. Breuer and J. C. Lien, "A methodology for the design of
hierarchically testable and maintainable digital systems," in Proc. 8th
Digital Avionics Systems Conf., 1988, pp. 40-47.

[8] M. A. Breuer and J. C. Lien, "A test and maintenance controller for a
module containing testable chips," in Proc. Int. Test Conf, 1988, pp.
502-513.

[9] W. O. Budde, "Modular testprocessor for VLSI chips and high-density
PC boards," IEEE Trans. Computer-AidedDes., vol. 7, no. 10, pp.
1118-1124, Oct. 1988.

[10] K. K. Chua and C. R. Kime, "Selective I/O scan: A diagnosable design
tehnique for VLSI systems," Comput. Math. Applic, vol. 13, no. 5/
6, pp. 485-502, 1987.

[11] J. E. Haedtke and W. R. Olson, "Multilevel self-test for the factory
and field," in Proc. Annual Reliability Maintainability Symp.,
1987, pp. 274-279.

[12] C. L. Hudson, Jr. and G. D. Peterson, "Parallel self-test with pseudo­
random test patterns," in Proc. Int. Test Conf, 1987, pp. 954-963.

[13] IBM, Honeywell, and TRW, "VHSIC Phase 2 interoperability
standards," ETM-BUS specification, Dec. 1986.

[14] IBM, Honeywell, and TRW, "VHSIC Phase 2 interoperability
standards," TM-BUS specifications, Dec. 1986.

[15] S. Y. Kung, S. C. Lo, S. N. Jean, and J. N. Hwang, "Wavefront array
processors—Concept to implementation," IEEE Computer, vol, 20,
pp. 18-33, July 1987.

[16] D. van de Lagemaat and H. Bleeker, "Testing a board with boundary
scan," in Proc. Int. Test Conf, 1987, pp. 724-729.

[17] J. J. LeBlanc, "LOCST: A built-in self-test technique," IEEE Design
& Test Computers, pp. 45-52, Nov. 1984.

[18] C. Maunder and F. Beenker, "Boundary-scan: A framework for
structured design-for-test," in Proc. Int. Test Conf, 1987, pp. 714-
723.

[19] E. J. McCluskey, "Built-in self-test techniques," IEEE Design & Test
Computers, Apr. 1985, pp. 21-28.

[20] M. J. Ohletz, T. W. Williams, and J. P. Mucha, "Overhead in scan
and self-testing designs," in Proc. Int. Test Conf, 1987, pp. 460-
470.

[21] Technical Subcommittee of Joint Test Action Group (JTAG), "Bound­
ary-scan architecture standard proposal," Version 2.0, Mar. 1988.

[22] J. Turino, "IEEE P1149 proposed standard testability bus—An update
with case histories," in Proc. Int. Conf. Comput. Design (ICCD),
1988, pp. 334-337.

288

Reprinted from IEEE Design & Test of Computers, August 1989, pages 18-
30. Copyright © 19S9 by The Institute of Electrical and Electronics
Engineers, Inc. All rights reserved.

THE IMPACT OF
BOUNDARY SCAN

ONBOARD TEST

KENNETH P. PARKER
Hewlett-Packard

Boundary scan, which began as a
proposal from Joint Test Action

Group, is now IEEE proposed
standard PI 149.1. This technology for

incorporating design for testability
into ICs can actually benefit several

levels of manufacturing from IC
fabrication through boards and into

system test. Boundary scan's impact
seems particularly noticeable in
production-board testing. Pure

boundary-scan implementations, in
which all ICs are scannable, are not

likely to appear in the near future, but
the benefits of partial implementations

are still significant. While definitely
not a replacement for ATE, boundary
scan can still reduce test complexity

and cost, and increase accuracy.
Those not willing to incorporate

boundary scan at the IC level must be
prepared to balance costs at that level
with the costs of board test, which are

escalating in the face of growing
complexity.

This article is based on the keynote presenta­
tion given at the BIST Workshop, Kiowah
Island, South Carolina, March 1989.

Testing technology h a s been examined formally a n d in
depth for m a n y years . This year m a r k s the 2 0 t h Inter­
nat ional Test Conference, the 12th Design for Testability
Workshop, a n d the Eighth Built-in Self-Test Workshop.

However, despite the fact t h a t design-for-testability technology
h a s been widely disseminated, the indus t ry overall—except for
large, vertically integrated companies—has t aken remarkably
little advantage of it. ' There are only a few examples of indust r ia l
DFT and built-in self-test applications, s u c h as the level-sensitive
s can design approach developed by IBM.

One source of th is res is tance is designers, who tend to be
offended by the overhead of extra circuitry and possible perfor­
mance degradat ion from adding testability. When t aken in t he
nar row view, tha t of designing a small pa r t of a product , t he
overhead does appear onerous . If, however, we look at t he larger
view, t ha t of the entire des ign /manufac tur ing process, the costs
a re made up in reduced test ing costs a t all levels, a n d decreased
development t ime. Thus , as Dave Ballew of AT&T p u t it, we m u s t
avoid being "silicon wise a n d system foolish."

Manufacturers of ICs have also been re luc tant to provide tes­
tability features for u s e r s even though for VLSI it is absolutely
manda tory to incorporate testability to economically produce
such par t s . Some reasons for their hesi tancy are

• Testability features m u s t be documented a n d main ta ined j u s t
like any other IC feature.

• Security of designs may be compromised.
• Faul t coverage may be embarrassingly low (if known at all).
• An implied warran ty could be a t tached to these features making

the IC vendor liable if the device conta ins an uncovered fault.
• Test requi rements conflict from cus tomer to customer .

An article in a 1986 i ssue of D&T, examined these a n d other
sources of res is tance to testability. At t ha t time, ano ther reason
w a s the lack of s t anda rds . Since t hen we've seen a p u s h for
boundary scan, once referred to as the JTAG proposal now called
IEEE proposed s t anda rd PI 149.1 . This effort began as an
a t t empt to develop a s t anda rd t h a t c an be embraced a t m a n y
levels of digital-circuit test, from IC fabrication th rough system

EH0321-0/90/0000/0289$01.00© 1989 IEEE 289 J E E E DESIGN &. TEST OF COMPUTERS

test. It has been so well-received that the proposed standard, as
of publication date, has been issued for balloting.

A standard such as PI 149.1 relieves many of the problems that
have caused resistance to design for testability. The IC vendor is
free to use this boundary-scan standard as a gateway to public
BIST features while leaving proprietary tests undisclosed. Bound­
ary scan allows board and system designers to more easily test
their respective products independently of the content of the ICs.
It lets IC vendors off the hook legally, since all they have to do is
adhere to an official standard and then blame it if the users
complain.

There is a great deal of interest now in integrating the design
and test phases of a product-development cycle.7 The implemen­
tation of boundary scan within ICs will have a two-fold effect: It
will make digital designs more testable and producible, and it will
take pressure off designers who might otherwise have to pursue
ad hoc testability modifications to their designs. This will make
cooperation between design and test departments easier to
achieve.

We must look at
savings in the larger

view and avoid
being silicon wise

and system foolish.

BOARD-TEST PHILOSOPHIES
It's fair to ask why we go to the trouble of testing boards at all.

The main reason is economics. It is relatively easy to test boards
and much more difficult to test systems. If boards used to build
systems are nearly perfect, then system turn-on success rates
will be acceptable. If boards are somewhat less than perfect,
system turn-on success decreases very rapidly.

What are some of the approaches to board test in manufacturing
today? Broadly categorized, they are

• board test as a sorting process
• board test as a repair driver
• board test as a process monitor

In the following discussion, bear in mind that any approach to
board test is heavily influenced by such factors as product mix,
volume, complexity, reliability requirements, quality require­
ments, capital budgets, and available skills as well as inertial
factors such as "it's always been done this way" and "we have to
use existing processes and equipment."

A SORTING PROCESS
Sorting in this context means to separate good boards from

faulty boards. It is a go/no-go approach. Essentially, only one bit
of information is generated about a board during test. Finding
and repairing faults in such an environment can be quite difficult,
but we can justify this approach if we simply discard faulty
boards. For example, if a board-manufacturing process enjoys
very high yields, then why invest in diagnostic test and repair
processes when it costs less to discard the few bad boards? In
another case, seen in military applications, extremely high tech­
nology boards are built in very low quantities and are technically
challenging to repair without introducing new failures (some

AUGUST 1989 290

BOUNDARY SCAN-

An all-too-familiar
practice is to sort
good boards for

immediate shipment,
leaving piles of dog
boards to be dealt

with later.

latent). Consequently, manufacturers simply discard bad boards,
while taxpayers cringe, and keep making new ones until they
accumulate enough good boards.

In yet another scenario, schedule pressures dictate simply
sorting good boards for immediate shipment, leaving piles of dog
boards behind to be dealt with later. This result is unfortunately
all too familiar across the electronics industry. It is yet another
indication of how forces other than testing issues can Influence
efficiency.

A REPAIR DRIVER
Using board test as a repair driver is perhaps the most common

board-test approach today. Here, testing is more thorough and
delivers more bits of information about failures, which forms the
basis for a failure diagnosis. More sophisticated techniques are
used during test, such as in-circuit isolation, guided probes,
current tracing, and fault dictionaries. Information about faults,
in the form of symptoms such as failed outputs and test numbers,
is collected into a fault syndrome that can be interpreted to help
repair. This information is important because we need enough
correct data on the fault to enable a complete repair. It is
unproductive to send a bad board back without complete infor­
mation, since partially repaired boards inevitably return for
rework.

A PROCESS MONITOR
The newest view of board test is as a process monitor. A

well-conceived and thorough board test that emphasizes diagno­
sis can provide a wealth of information about the various pro­
cesses that go into a board's manufacture. For example, soldering
is a well-known point for faults. Solder problems show up at board
test as shorts in the form of blobs, opens in the form of SMT
tombstones (small low-mass SMT components like resistors and
capacitors that have moved during soldering because of the
surface tension of the liquid solder) or incomplete flow, or therm­
ally damaged devices. When such problems are exposed, we
know, in the long run it will be more fruitful to fix the soldering
process than to fix the solder defects after the fact.

We can use this type of board test to change the structure of
the manufacturing process. For example, we may discover fabri­
cation errors, like a wayward solder process, or errors in the
design of the board. We can also improve the tests themselves to
get a better diagnosis. With time, we gain expertise in the board's
manufacture and can begin to improve diagnosis by correlating
data from independent tests and previous repairs.

Another use of this type of board test is to observe and control
all the system-level process changes. Machines wear out and
require calibration. Different people are involved, depending on
the shift and who's on vacation. Vendors of components may
change what they send, perhaps because their own process
changes. Manufacturers may add new people and machines,
update production technology, or change the locale of production.

291 IEEE DESIGN & TEST OF COMPUTERS

The design group may implement changes to the board's design.
All these changes have an impact on the manufacturing process,
and using board test as a process monitor provides a way of
controlling them efficiently.

This philosophy of board test is not easy to implement quickly,
however. It requires skill, experience, and teamwork to a degree
that some organizational structures will not readily allow. Man­
agement involvement is a key ingredient. Managers need to
recognize that process control is becoming more and more impor­
tant with each new round of technical evolution in board manu­
facture, and is becoming the dominant reason for using board
test. Without process control, a manufacturer cannot hope to
attain world-class quality.

Managers need to
recognize that

process control is
becoming the

dominant reason for
using board test.

WHAT ARE THE COSTS?
Everyone knows that testing is costly and that it is grabbing a

larger percentage of manufacturing costs every year. It is phe­
nomenally expensive to let a failure escape to later stages of
product manufacture or support. The rule is fix it now or suffer
far costlier problems downstream.

Each board-test philosophy has an associated cost. In general,
more testing for better coverage and diagnosis implies more
test-development costs in time and talent and more time actually
spent testing on test heads. Testers themselves become more
expensive. The driving forces here are increased tester versatility,
complex test-preparation software, increased operating frequen­
cies and higher active tester channel counts. It is not unusual
today to see board testers with five times more channels operating
10 times faster than they did just a few years ago. Ironically, while
boards are often the same size, many board testers have increased
in volume, mass, and power consumption. Especially in the IC
test world, mass ratios between the tester and the IC are nearly
unbelievable. Channel counts and operating frequencies are two
main contributers to this trend.

As mentioned earlier, controlling a process requires teamwork.
The people involved have many disciplines. Purchasing agents
enforce quality controls on vendors. Inspectors inspect incoming
parts that must meet precisely identified parameters. Stock/in­
ventory personnel need to take care that parts are not damaged
before they are used—even if it's in today's Just-In-Time manu­
facturing process. Those controlling phases of fabrication must
be alert to their own controls. The test department has to correlate
and communicate failures to points upstream in the process. The
design team has to have design for manufacturability as a
measured goal. And finally, management has to see how these
disciplines interrelate. Teamwork is a challenge.

INTERNAL THREATS TO SUCCESS
A number of elements in the overall testing and manufacturing

process can sabotage the success of a board-test operation, which
depends on sophisticated monitoring and control techniques.

AUGUST 1989 292

^BOUNDARY SCAN'-

Figure 1. The resistor network in (aj with
an extreme ratio of component values is
tested using the six-wire guarding
scheme in (b), where error impedances,
labeled Zx, are sensed at points A, B, and
Lfor mathematical correction. Accuracy
to 2% is easily achieved.

Figure 2. In (a), three stuck-at-0 faults at
A, B, or C will have identical behavior to
the output D stuck-at-1 during test. We
need to consider only one fault (usually
D) when developing the test, but we must
consider all four faults when attempting
to diagnose a failing circuit. In (b), a sim­
ulator analyzes single stuck-at faults at
nodes U through Z, but none will produce
the syndrome caused by an open at point
F. Though it is likely (but not guaranteed)
that we will detect F during testing, its
syndrome will be missing from the fault
dictionary producedfrom the simulation,
so diagnosis will be poor.

When these factors intrude on the control procedures, the object
of board testing—the exchange of diagnostic information to pre­
vent future failures—is greatly impaired. Elements that can
sabotage a successful board-test operation include test inaccu­
racy, misdiagnosis, loops in the test-repair process, and failures
from extra handling.

Another threat, which is very real but not always taken into
account, is the psychological factor of confidence in the control
procedures. If we lose confidence in our control of a process,
regardless of reality, matters will rapidly degenerate from tight
control to a bare-minimum position of simply sorting good boards
from bad. Like biological homeostasis, a well-controlled process
requires the coordinated balance of myriad variables and feed­
back relations. Without this balance, a system enters shock.

Accuracy. If a test is not accurate, it will not give results that
we can trust in monitoring and controlling the process. For
example, look at the analog test in Figure 1. A three-resistor
network has a delta configuration of two 10-ohm resistors and a
10,000-ohm resistor. In-circuit testers find this circuit challeng­
ing because of the ratio of resistances and the need to remove
error terms. A simple three-wire guarding scheme can measure
the 10,000-ohm resistor in this configuration, but without proper
consideration of error sources, the measurement can yield 900
ohms. This error is large enough to invalidate testing the 10,000-
ohm resistor altogether. A six-wire guarding scheme can account
for errors due to voltage drops in the measurement setup (Zg, Zu
and Zs) and mathematically reduce their effects to achieve a 2%
accuracy on the measurement.

This analog example illustrates that real-world board-test is not
simply for digital testing problems. Harder problems may actually
be more prevalent, and not just in the analog domain. The digital
bus-fault problem has a number of complexities, for example. We
don't know which driver sources a bus at any time, so we have
to isolate the source(s) of current on the bus. Test measurement
must then move from voltage measurement to current measure­
ment, or we are forced to make complex deductions about the
states of the drivers on the bus. Such interactions can profoundly
affect digital testing accuracy.

Misdiagnosis. This problem occurs when we detect a failure
but do not properly resolve it. For example, we may make an
invalid assumption in fault modeling (Figure 2), or several failure
modes with identical syndromes may be represented by only one
mode. Misdiagnosis leads to erroneous and unnecessary repairs
that pollute the information stream we are using to observe the
process. The box on the righthand page elaborates on fault
isolation. Misdiagnosis also makes the other structural threats
even more damaging.

Test-repair looping. Looping occurs when testing is not able to
completely or accurately resolve all the faults on a board in one
pass across the test head. This inability could be due to tester
inadequacies but more often is due to poorly designed or imma­
ture test programs. Looping can also be due to handling-induced
failures. A loop occurs when the board is sent to repair with an

293 IEEE DESIGN Si TEST OF COMPUTERS

incomplete or inaccurate list of defects. Subsequen t test ing will
fail, a n d another repair cycle will s tar t . This cycling consumes
t ime and talent. Even though paperless test-repair networks have
reduced some of the bookkeeping overhead associated with mul ­
tiple repairs, repair looping still was tes tester t ime and u s e s
skilled technicians to poor advantage.

Handling-induced failures. Failures can resul t from the extra
handl ing and rework in a repair cycle. Clearly, each additional
repair cycle compounds t he r isk of new failures. But another kind
of r isk is of even greater concern. Handling may weaken the
circuitry enough to accelerate t he t ime to failure. Thus , handl ing
increases the risk of infant mortality, the failure of the board in
early stages beyond manufactur ing.

Repair looping
wastes tester time
and uses skilled

technicians to poor
advantage.

EXTERNAL THREATS TO SUCCESS
Industry t rends can th rea ten a manufacturer ' s ability to control

the board-manufactur ing process. Some of these are ASICs,

ISOLATING INTERCONNECTION FAULTS
One of the prime advantages of boundary scan at

board test is the ability to test board interconnections
for integrity. (Algorithms and analysis for this will be
presented in detail at the 1989 International Test
Conference, held in Washington D.C. August 27-31.)
In a pure boundary-scan implementation, in which
every IC is scannable, each source and destination
of a node is connected to a scannable point. The
figure below shows a simplified circuit of six bound­
ary-scan devices with a node driven by point U and
received at points V through Z. This figure is simply
a scannable version of the circuit in Figure 2b on the
facing page. We no longer show the NAND gates since
these are not relevant. We also do not need a simu­
lator to help us develop an interconnection test for
this circuit.

We can test any single stuck-at fault on the six
labeled points, U through Z by driving U to 1 (through
the scan path) and latching bits V through Z for scan
out, followed similarly with U set to 0. If a single bit
in V through Z is incorrect, it indicates a single stuck
value at the corresponding receiver. If all five bits, V
through Z are incorrect, there may be a stuck prob­
lem with driver U. Suppose a circuit is open at point
F, and the test of V and W pass and X, Y, and Z fail
(say to 1). We then know that the problem with the
interconnection affects only part of the net, and we
can deduce the significant topological clues neces­
sary to isolate the physical defect.

The simulator-based test for the circuit in Figure
2b may misdiagnose the fault at point F because its
effects were not modeled. Because of this, the test
fails but the observed syndrome does not match any

syndromes predicted by the simulation. When this
occurs, we must supply meaningful diagnostic infor­
mation with additional measurements. For example,
with a handheld probe guided by the actual syn­
drome data and deductions on the cause of the fault
derived from circuit topology, we can backtrace to the
region of the physical defect. However, we've invested
a great deal in the simulation for nothing. Moreover,
physical access constraints may apply to the guided
probe as well, which may limit its effectiveness.

This circuit is the same as the circuit shown in Figure 2b,
except NAND gates are replaced with scannable NAND
gates. The output U and inputs V through Z are scannable
cells. We do not have to know that the devices are NANDs.
The complexity is arbitrary. The open-circuit defect is at
point F.

AUGUST 1989 294

BOUNDARY SCAN-

In-circuit testing,
probably the most
popular board-test
methodology, is the
most threatened by

access problems.

surface-mount technology/tape automated bonding, miniatur­
ized components, and node counts.

ASICs. Each application-specific IC—unique as a fingerprint—
is an adventure in test. There is nothing inherently untestable
about ASICs, although a conjunction of forces makes them seem
that way. They are often developed in parallel with the board they
will be placed on, which constricts test-development time. Along
with this, the ASIC design database is commonly either nonexis­
tent or incompatible with the board test. ASICs are often used to
garbage collect random gating or glue logic into one package,
which makes their function appear random and undecipherable
to a test engineer. Last-minute design changes often destroy any
test written for the ASICs—and you can bet that the ASICs will
be affected.

SMT/TAB. Surface-mount technology and tape automated
bonding are two newer packaging technologies that present new
board-test problems. They introduce severe test-access problems
and are difficult to rework in repair situations. Repairing such
boards is a time-consuming task that requires a lot of skill and
may elevate the risk of collateral damage that could result in
scrapping the board entirely. Also, these technologies are more
sensitive to physical damage. Their fragile nature makes them
particularly vulnerable to misdiagnosis and test-repair looping.
Each pass through the loop increases the probability of irrepara­
ble damage.

Access problems. Boards are becoming much more densely
laden with higher complexity devices. But even generic resistors
and capacitors are presenting test problems, all because of
miniaturized packaging and surface-mount configurations. In-
circuit testing, probably the most popular board-test methodol­
ogy, is the most threatened, since it relies heavily on direct
electrical access to all nodes through bed-of-nails probing. In
talking about access, an important distinction is that access is
required to all nodes (also known as nets or circuits), not to each
device pin on each node.

We are now seeing boards with components on both sides
without the through-holes that enabled test nails to see every
node from one side of a board. This packaging technology is also
producing components with large numbers of pins on much
closer centers. Some boards that are SMT redesigns of existing
through-hole boards are 30% to 50% of the original size. New
designs are often done on familiarly sized boards to reduce board
count in products or to add functionality without increasing
physical size.

Two problems arise with this increased number of components
and absence of through-holes. First, we may need to place nails
much closer together, which means they will be much smaller,
more fragile, and more expensive. Second, the targets the nails
must hit are much smaller. Since boards are not vastly smaller
(on average) today, we need tight control of mechanical tolerances
for these nails across thousands of square centimeters. Other

295 IEEE DESIGN & TEST OF COMPUTERS

access problems are presented by hybrids on ceramic substrates,
conformal coatings, and similar applications.

Node counts. Because of these packaging technologies, the
node counts of boards are rising, although node counts per board
can actually fall if the level of integration within packages is high
enough to reduce interpackage data flow on parallel buses. An
example is the recently introduced microprocessors that contain
on-chip memory management and floating-point units.

Generally, though, node counts are rising. Entire systems now
fit on single boards. For in-circuit testing, this trend means
adding more nails to ensure access to all nodes. For functional
testing (based on edge connectors), the ratio of functions per I/O
pin increases. The already difficult problem of test preparation
for functional test will become legendary in the future.

Boundary scan
promises to enhance

fault diagnosis,
reduce test-repair

looping, and enable
standardized testing,
and the reuse of tests.

THE IMPACT OF BOUNDARY SCAN
Boundary scan promises to relieve at least some of the difficul­

ties in board test, regardless of the philosophy adopted—in-cir­
cuit, functional, or combined (called combinational) testing.
These benefits Include enhanced diagnosis', reduced test-repair
looping, standardized testing, and reuse of tests.

Enhanced diagnosis. The scan port provides access to hun­
dreds of additional control and observation points. We can access
the publicly available BIST features of the ICs in the scan chain,
for example. The BIST functions run independently from the
board and do not require tedious programming. There is also less
sensitivity to the initial state of the board. Of course, this access
is not without cost. Because it is serialized, we have to consider
the impact on test length and time, which could be considerably
greater.

The scan chain allows us to perform many tests without great
concern about synchronizing or homing sequences, since we can
effectively ignore the logic within scanned ICs. In doing so,
however, we are assuming a certain amount of luck as to the
integrity of the scan chain itself.

Another benefit to diagnosis is the increased stability of fault
syndromes, which is due to the insensitivity of tests to initial
states. A syndrome becomes unstable when it depends on an
initial state that cannot be reliably achieved. It is difficult to
isolate faults with unstable syndromes when we must run a test
several times to collect isolation information, as in backtracing.

Reduced test-repair looping. Because the scan path offers
additional control and observation points, we can isolate more
faults per pass across a test head. Thus, we need to make fewer
passes across the test head, and we decrease the time and
handling involved. The improved immunity to initial-state prob­
lems and more stable fault syndromes makes each pass yield
higher quality diagnoses, again resulting in fewer passes.

Standardized tests. Tests in a boundary-scan environment are
prewritten, or they are easily derived from the topological struc­
ture of the circuit. The content of ICs within the boundary-scan

AUGUST 1989 296

BOUNDARY SCAN'-

Analog components
are a reality, and the

large number of
analog or hybrid

boards being tested
is not going to get

any smaller.

perimeter may not be exhaustively tested as is true today at
board-level test. Of course, if the scanned ICs possess BIST
functions, they can be accessed with a standard RUNBIST pro­
tocol without much programming effort. The problem of last-min­
ute changes to ASICs is no longer of great concern because the
internal workings of the ASIC have been removed from consider­
ation in developing the board test.

Reuse of tests. Tests that work in concert with the scan
protocol, such as BIST functions, will be accessible at several
stages of manufacture. This is not true in a non-scan environ­
ment. For example, we may not be able to use an IC test developed
along with the IC during in-circuit board test if there are simple
constraints such as tying some pins to ground.

Reduced access problems. Fixturing, that is, connecting the
tester to the board for testing, is traditionally troublesome. This
problem is particularly true for in-circuit testing, in which we use
hundreds or thousands of nails to access a board's internal
nodes. This access gives exceptional test control, observability,
and fault isolation. Further, it allows comprehensive analog
testing along with digital testing. For this reason alone, in-circuit
testing will remain popular. Analog components are a reality even
on so-called digital boards, and the large number of analog or
hybrid boards being tested is not going to go away. The access
problems described earlier are indeed a threat to board test, and
particularly aggravating to in-circuit access. Boundary scan of­
fers some relief, even though not all the ICs will be scannable
initially.

IN-CIRCUIT TEST
Boundary scan implementations—even partial ones—will have

a number of benefits to in-circuit testing. They will reduce the
need for a 1:1 nail-to-node ratio, for example. We can test any
digital node composed completely of scannable sources and
destinations from the scan port without a nail. Another benefit is
less need for close-centered probing, which is done with thin,
fragile, expensive nails necessitating small target pads and fine
mechanical tolerances. By reducing the number of nails on a
device, even if we don't eliminate them entirely, we reduce the
crowding, which is the reason we do close-centered probing in
the first place.

Boundary scan will also reduce the need for two-sided probing.
If devices mounted on the nonprobed side of a board are testable
through scanning, we can avoid nails on this side, but we must
consider this strategy in the design-for-testability specifications.
Reducing the nail count will, in turn, reduce the flexing of boards
caused by the uneven concentrations of closely spaced nails.
Each nail presses against the board with roughly two newtons of
spring force. When the nails are spaced too closely—that is,
concentrated in groups—the force is no longer uniform across the
board, which causes it to flex. Flexing can cause the board to
misalign with the nails, which may make vacuum-activated

297 IEEE DESIGN & TEST OF COMPUTERS

fixtures unreliable without some mechanical augmentation.
Worse, flexing may cause open connections to close during test,
masking their existence and making the test inaccurate.

FUNCTIONAL TEST
Boundary scan will also benefit functional (edge-connector)

testing. The ability to observe and control the circuit is greater,
which helps mitigate the unfavorable impact of high gate-to-pin
ratios. Boundary scan also allows us to conduct topologically
derived tests for interconnection faults. These faults are currently
modeled as single stuck-at faults at the IC pin level, when
preparing functional tests.

The ability to conduct topologically derived tests is perhaps
boundary scan's greatest potential contribution because it re­
duces the pressure to do board-level simulation to develop tests
for common manufacturing faults. Of course, the success of this
strategy will depend on how pure (what percentage of the ICs are
scannable) the boundary-scan implementation is in the board
design.

There is some hope that scannable devices can incorporate aids
for performance testing, also known as at-speed testing. This
testing attempts to run a board at its native clock speed during
test to excite timing problems or other marginal conditions. We
can use the INTEST and SAMPLE modes of PI 149.1 to set up test
experiments and examine the results. As is true today, the
technical challenges of such testing are likely to be high.

Pure boundary-scan
may never be

widespread because
the increase in fault

diagnosis isn't
enough to justify the
expense of putting
testability in every

chip.

FUTURE TRENDS
Partial boundary-scan implementations are beginning to crop

up in board designs. Partial implementations are likely to be the
most we can expect for some time because the number of ICs
available using the discipline is limited. Actually, pure implemen­
tations may never be the rule because the increase in fault
diagnosis isn't significant enough to justify the expense of incor­
porating testability in every chip.

The big question is will boundary scan die out before reaching
its potential because of a lack of critical mass? I am confident
that the discipline will achieve acceptance in short order. But
today's board-level ATE will not be disappearing. Indeed, some
people equate boundary scan with the total absence of ATE, but
this is a fallacy. We should avoid overselling the impact of this
new technology, which will only create credibility problems.

In fact, ATE and boundary scan are mutually beneficial. In the
real world of manufacturing, we have to test economically, so we
still need the enhanced diagnosis that our current ATE systems
can give. Boundary scan, in turn, allows ATE to reduce the testing
cost, since the nail count goes down. The nice thing about
boundary scan is that we don't need it in every chip to make it
effective. We can use this technology with ATE to get a more
in-depth fault diagnosis without an impossible rise in cost and
complexity. We still get the additional test capability, but bound-

AVGUST 1989 298

Board-level ATE in
its present form will
not vanish. It will

span the gap
between current test
problems and the

new boundary-scan
test environment.

ary scan allows us some flexibility in determining how far we want
to take the implementation.

In digital testing, the upward spiral of board-level ATE costs will
slow and even decline with the advent of boundary scan, and the
cost of test preparation will be less. The capital (purchase) cost
of an ATE system is heavily driven by the cost of its electronics
and the cost of the software. With unconstrained board designs,
both these costs will escalate as board circuitry becomes denser.

Boundary scan will also improve hybrid analog/digital testing
because the digital portion will have greater testability. Analog
testing problems will remain largely unaffected, however, so
in-circuit approaches must solve new analog test problems
without it. Thus, board-level ATE in its present form will not
vanish because we still need it to span the gap between current
test problems and the new boundary-scan test environment.

IN-CIRCUIT TEST
With boundary scan, in-circuit test will see the nail-to-node

ratio drop below one, (see box at right on in-circuit testing)
because some tests can be accomplished without nails on the
scannable nodes. As a result, many of the aforementioned fixtur-
ing difficulties will be relieved. Also, the number of simulta­
neously active nails (connected to independent drive/receive
channels) will stabilize or decline. An advantage to test serializa­
tion (there is one) is that we can examine connectivity between
high pin-count devices with just four active channels. This de­
cline allows higher nail-to-channel multiplex ratios which means
more nails can be serviced with fewer active (expensive) electron­
ics channels. Test preparation is eased since scanned nodes can
be tested with software-derived tests based on board topology,
and there is no need to write IC interconnect tests that sensitize
pathways through the internal regions of the ICs.

FUNCTIONAL TEST
For functional test, we see control and observability rise for

internal areas of a board. This makes test preparation easier, and
may reduce or even eliminate the requirement for fault simula­
tion. (Simulation for design verification may still be required, but
that is a very different problem.7) Each scannable IC is a candi­
date for elimination from simulation which is attractive if simu­
lation models are unavailable or inadequate, or if the IC is
complex and expensive to simulate. As a result, the cost of test
preparation is reduced. Hardware costs for functional testers has
been increasing due to the depth of pattern storage required
behind all pins. With higher levels of boundary scan adherence,
only those tester channels dedicated to scanning may actually
generate long bit streams with the general I/O channels only
active a small fraction of time.

In whichever case, in-circuit or functional or the combined
approach, the Increased usage of boundary scan will have a cost
savings impact that can be readily demonstrated. This savings
will make it easier to measure the value of a level of adherence to
the boundary scan discipline.

299 IEEE DESIGN &, TEST OF COMPUTERS

SETTING UP ANIN-CIRCUIT TEST
How does one set up an in-circuit test for a digital

circuit that has some boundary scan components?
Consider the simple circuit in the figure below. This
circuit has two scanned components [71 and [72 and
three glue gates, which are not scannable. For sim­
plicity, the figure shows NAND gates, but the devices
could be much more complex. The nodes are labeled
in alphabetical order from A to T. The triangular
pointers show the location of in-circuit test nails.

We need nails A through I at the circuit's main
inputs to test for connectivity to [71 and to drive tests
for gates [73 and [75. We need nails P through T at
the circuit's main outputs to test for connectivity to
[72 and to monitor gate [75. We need nail JV to test the
second input to gate [74. The channel driving this nail
requires overdrive capability. We need nail O to test
the first input to gate [75 and to monitor gate [74. The
channel driving this nail also requires overdrive ca­
pability. Nails A, E, F are the boundary-scan inputs
TDI, TCK and TMS. Nail P is the scan-chain output
TDO. These nails allow us to control the entire chain.

Nodes B, C, D, K, L, and M on [71 are scannable
through the boundary scan chain, as are nodes K, L,
M, Q, R, and S on [72. Therefore, all interconnections
to [71 and [72 are completely testable without any
knowledge (or concern) for the internal logic of these
devices. Interconnection here includes printed trace
integrity, solder integrity, the existence of IC bond
wires, and bare-bones silicon integrity—that is, the
devices can at least perform boundary-scan proto­
cols. U2's input node JV, however, is not scannable
because gate 03 is not a boundary-scan device.
Instead, we use nail N to overdrive gate [73 as if node
TV were a primary input.

Gate [74 has nails on nodes JV and O, but we can
control node M only by scanning through [71. Think
of node M as a virtual nail that we can control from
[71 to provide inputs while directly driving node JV and
receiving on node O. It is this idea of a virtual nail
that allows the nail-to-node ratio to drop below one.

Nail J is an interesting case. It sits on the scan data
(TDI-TDO) path between [71 and [72 and must have
overdrive capability. This path is supposedly tested
by the procedure to test boundary-scan integrity run
first to ensure that the path works. But what if a fault
has damaged the path? Say, for example, that device
U2 is completely dead. We can still test [73, [74, and
[75, plus all board-input interconnections because
nail J lets us see the results scanned by [71.

Stopping the test because the scan path is faulty
can cause test-repair looping, especially if a large
board with many scannable devices fails the test for
scan-path integrity. In this case, there may be several
faults on the scan path, which ruins our ability to
isolate the culprits. The result is misdiagnosis, which
may cause several iterations through the test-repair
loop before real testing can begin. To reduce distress

due to a faulty scan path, we can add a TDI-TDO nail
on every package.

When the board is 100% scannable, we need the
nails on all of the following: all board inputs, I; all
board outputs, O, all TDI-TDO signals (one per device
pair), D; and all analog nodes, A. The nail count is
then 1+ O + D + A, which has essentially saved us
placing nails on all the internal digital-only nodes.
When not all the ICs on a board are scannable, we
need to add nails for all nonscanned glue-gate inputs
and outputs such as nodes O and N in the figure.

Thus, we begin to see the benefits of putting bound­
ary scan into a device. If we balk at the cost of
incorporating boundary scan in ICs, we must be
prepared to balance the savings at the IC level against
the costs of fixturing at board test. There are also the
benefits to test preparation. Either [71 or [72 can be
horribly complex internally, but we don't care.
Boundary scan has isolated us from this complexity.
Likewise, if either device is difficult to initialize inter­
nally, we are not affected. If either device has a public
BIST function for self-test, we use the RUNBIST
instruction and read out the result using canned
routines. This simplicity is understandably exciting
for test programmers.

An example of a circuit with mixed standard and
boundary-scan components showing the location of
nails for in-circuit test. Note that not all nodes need a
nail.

AUGUST 1989 300

^BOUNDARY SCAN

ome prognostications for boundary scan have been nothing
less than euphoric. Some say boundary scan will eliminate
the need for today's testers in manufacturing. A new gener­
ation would appear consisting of a four-wire interface I/O

card for a personal computer and a few floppy discs of software. The
reality lies somewhere between the past and this happy outcome.
Jus t as a carpenter, upon receiving a new power saw, does not
discard his collection of older tools, ATE systems that control a
board-production process will not discard the capabilities they have
today. The future can bring many pleasant developments if bound­
ary scan (as well as other BIST/DFT technologies) is accepted, and
we could all enjoy the reduced cost and complexity. This hesitancy
should go away as we quantify the benefits of this new technology,
and its use should become more widespread. Perhaps the largest
obstacle will then be deciding how to use what we have developed,
and that will be up to management.

s

REFERENCES
1. T.W. Williams and K.P. Parker, "De­

sign for Testability: A Survey," Proc.
IEEE, Vol. 71, Jan. 1983, pp. 98-112.

2. C.C. Timoc, Selected Reprints on
Logic Design for Testability, IEEE
Computer Society Press, Los Al-
amitos, Calif., 1984.

3. E.B. Eichelberger and T.W. Williams,
"A Logic Design Structure for LSI
Testability," Proc. Design Automation
Con/., 1977,77CH1216-lC,pp.462-
468.

4. K.P. Parker, 'Testability: Barriers to
Acceptance," IEEE Design & Test of
Computers, Vol. 3, Oct. 1986, pp.
11-15.

5. C. Maunder and F. Beenker, "Bound­
ary Scan: A Framework for
Structured Design-for-Test," Proc.
Int'lTest Conf., 1987, pp. 714-723

6. IEEE Standard 1149.1-1989/D4,
"IEEE Standard Test Access Port
and Boundary-Scan Architecture,"
IEEE Standards Board, 345 East
47th Street, New York, NY 10017,
Draft D4, May 5, 1989.

7. K.P. Parker, Integrating Design and
Test: Using CAE Tools for ATE Pro­
gramming, IEEE Computer Society
Press, Los Alamitos, Calif., 1987.

8. D.T. Crook, "Analog In-Circuit Com­
ponent Measurements: Problems
and Solutions," Hewlett Packard J.,
Mar. 1979, pp. 19-22.

9. M. Bullock, "Designing SMT Boards
for In-Circuit Testability," Proc. Int'l
Test Conf, 1987, pp. 606-613.

10. "Built-in Self-Test: Are Expectations
Too High?" IEEE Design & Test of
Computers, Vol. 6, No. 3, June 1989,
66-74.

Ken Parker is a member of the technical
staff in Hewlett-Packard's Manufacturing
Test Division, where he is involved in the
design and development of systems to test
circuits. Previously, he worked for HP in
California and for NASA/Ames Research
Center, where he was involved in the Illiac
IV project.

Parker is cofounder of the IEEE Sub­
committee on Design for Testability. He
holds a BS in computer engineering from
the University of Illinois, and an MS and a
PhD in electrical engineering from Stan­
ford University. His address is Hewlett-
Packard, PO 301, Loveland, CO 80537.

301

An Optimal Test Sequence for the JTAG/IEEE PI 149.1
Test Access Port Controller

Anton T. Dahbura

AT&T Bell Laboratories
Murray Hill, NJ 07974

M. Umit Uyar

AT&T Bell Laboratories
Holmdel, NJ 07733

Chi W. Yau

AT&T Bell Laboratories
Engineering Research Center

Princeton, NJ 08540

ABSTRACT

A test sequence is given for the Test Access Port (TAP)
controller portion of the boundary-scan architecture proposed
by the Joint Test Action Group (JTAG) and IEEE Working
Group PI 149.1 as an industry-standard design-for-testability
technique. The resulting test sequence, generated by using a
technique based on Rural Chinese Postman tours and Unique
Input/Output sequences [1], is of minimum cost (time) and
rigorously tests the specified functional behavior of the con­
troller. The test sequence can be used for detecting design
faults for conformance testing or for detecting manufacture-
time/run-time defects/faults.

I. Introduction

The Joint Test Action Group (JTAG), an ad hoc com­
mittee comprised of major semiconductor users in Europe
and North America, together with IEEE Working Group
PI 149.1, has proposed a framework for standardized design-
for-testability of integrated circuits for module-level (e.g.,
board-level) testing. The so-called boundary-scan architec­
ture consists of circuitry which allows the inputs and outputs
of the digital logic of the integrated circuit to be accessed
from outside the module [10]. The advantage of the
boundary-scan approach is that the controllability and obser­
vability of a module containing many components is vastly
improved while the input/output overhead of the module con­
sists of only three extra inputs and one extra output.

In most cases, boundary-scan components which have
been designed and produced by different manufacturers reside
within the same module. Thus, it is paramount that the
implementation of the boundary-scan portion of each com­
ponent conforms to the set JTAG/IEEE PI 149.1 standard to
ensure that the component can be successfully integrated into

a module-level design-for-testability scheme. While design
verification is necessary at virtually every step of the design
process, it is ultimately desired to check that, in the physical
implementation of the component, the functionality of the
boundary-scan portion is as expected, based on its
specification.

Of course, any test sequence which checks the confor­
mance of many different designs must, by its nature, be
implementation-independent. This means that test sequence
generation techniques which are based on logic-level infor­
mation such as stuck-at-faults are of little value. Further­
more, since it is applied to a physical implementation, the
test sequence must be able to overcome the severe observa­
bility and controllability constraints which arise. As a result,
a high-level approach is required for generating a test
sequence which is 1) implementation and fault-model
independent, 2) of compact length, and 3) able to detect an
extremely high percentage of faults which occur as a result
of design faults.

In this paper, a minimum-cost (time) conformance test
sequence, based upon such a high-level approach, is
presented for checking the joint functional behavior of the
TAP controller and associated registers in a boundary-scan
implementation. The test sequence has been derived using
optimization techniques for managing the observability and
controllability limitations which arise in testing in a "black
box" environment such as this. While the test sequence has
been designed for conformance testing (design verification),
it is also an effective manufacture-time and/or run-time test
for the boundary-scan portion of an implementation.

In Section II, the JTAG/IEEE PI 149.1 architecture is
described. The model used to derive the test sequence is
given in Section JH. In Section IV, the test sequence genera-

Reprinted from IEEE Proceedings 1989 International Test Conference,
pages 55-62. Copyright © 1989 by The Institute of Electrical and
Electronics Engineers, Inc. All lights reserved.

EH0321 -0/90/0000/0302$01.00 © 1989 IEEE 302

tion technique is discussed. Finally, the resulting test
sequence is described and the fault coverage results for an
implementation of the boundary-scan architecture are
presented in Section V.

II. JTAG/IEEE P1149.1 Architecture

The boundary-scan technique consists of placing a
boundary-scan cell adjacent to each component input/output
pin in order to observe and control the component's signals
at its boundaries [10]. Each boundary-scan cell is able to
either capture data from an input pin or from the component
logic, and can load data either into the component logic or
onto a component output pin. The boundary-scan cells are
interconnected as a shift-register chain and, if desired, several
components can be connected as a single chain. The
boundary-scan cells can be used to test the interconnections
among various components (external test) or to isolate a
component while an internal test is performed. Also, the
boundary-scan cells can be used to sample values at a
component's input and output pins.

The overall JTAG/IEEE PI 149.1 boundary-scan archi­
tecture is shown in Figure 1. The primary elements are as
follows:

Test Access Port (TAP) controller: a sixteen-state cir­
cuit (Figure 2) which receives the test clock signal
(TCK) and test mode select (TMS) control input and
generates clock and control signals for the remainder of
the architecture. The actions initiated by the TAP con­
troller occur on the rising edge of TCK, when the con-

Figure 2. State diagram of the TAP controller [10].

troller leaves the corresponding state, except for the
reset operation (state 0000), which occurs asynchro­
nously. A block diagram of the TAP controller is
shown in Figure 3.

Instruction Register (IR): stores an instruction, shifted
into it through the TDI input, which selects the test to
be performed (external, internal, sample) and/or the data
register (boundary-scan, bypass, or device identification)
to be accessed.

Boundary-Scan Register (BSR): a multiple-bit shift-
register consisting of the boundary-scan cells intercon­
nected in serial fashion with access to the component's
input/output pins and internal logic.

Bypass Register (BPR): a single-bit connection from
TDI to TDO to allow test data to flow through to other
components with a single TCK period delay.

Figure 1. The JTAG/IEEE PI 149.1 boundary-scan architec­
ture [10].

Figure 3. Block diagram of the TAP controller.

303

Device Identification Register (IDR): an optional
multiple-bit shift-register which contains a device-
dependent binary identification code.

In this paper, two configurations of the boundary-scan
architecture, with and without the optional device
identification register, are considered. Optional features, such
as additional registers, are not included, although the test
generation technique is also applicable. For more details on
the JTAG/TEEE PI 149.1 architecture, the reader is referred to
[10]..

The detailed operation of the IR, BSR, BPR, and
optional IDR in the design under consideration is as follows.

Instruction Register

The IR consists of three IR cells, IRO, IR1, and IR2,
each consisting of a shift-register stage and a latch stage
(Figure 4). The latch stage of an IR cell is loaded with the
corresponding shift-register value upon receiving an
UpdateJR (UP_IR) signal from the TAP controller (Figure
3). Upon receiving a CaptureIR (CAP_IR) signal from the
TAP controller, IRO retains its previous value, the shift-
register stage of IR1 is loaded with a "0", and the shift-
register stage of IR2 is loaded with a "1". Upon receiving a
ShiftIR (SHIR) signal from the TAP controller, the value
on the TDI input is stored in the shift-register portion of IRO,
the old value of the shift-register portion of IRO is shifted to
IR1, and IRl's old value is shifted to IR2, which is then
observable on the TDO output. Upon receiving a Test-Logic
Reset (TRST) signal from the TAP controller, 1) in the
configuration without the IDR, the latch stages of IRO, IR1,
and IR2 are each loaded with a "1", which corresponds to the
"bypass-select" instruction, and the shift-register portions of
the cells retain their previous values; 2) in the configuration
with the IDR, the latch stages of IRO, IR1, and IR2 are each
loaded with a design-specific bit corresponding to the "IDR-
select" instruction and the shift-register portions of the cells
retain their previous values. In this study, the two instruc­
tions of relevance are that in which the latch stages of the
three IR cells are loaded with "0" (000), which selects the
boundary-scan register and places it in the external test
mode, and that in which the latch stages of the three IR cells
are loaded with "1" (111), which selects the bypass register;

Figure 5. Functional diagram of the boundary-scan register.

in addition, the implementation-specific "IDR-select" instruc­
tion is relevant in a design which includes the IDR.

Boundary-Scan Register

The considered design consists of three cells in the
BSR: an input cell (BS0), an output cell (BS2), and an output
enable control cell (BS1) which enables the POO pin of the
output cell (Figure 5). Each cell consists of a shift-register
stage and a latch stage. Upon receiving a Capture_DR
(CAP_DR) signal from the TAP controller and when the
BSR is selected in the IR (instruction 000), the shift-register
stage of BS0 is loaded with the value of input pin PIO; BS1
and BS2 retain their previous values. Upon receiving a
ShiftDR (SHDR) signal from the TAP controller when the
IR is in external test mode (instruction 000), the values of
the shift-register portions of the BSR cells shift one cell to
the right (from BS0 to BS1 to BS2), the value on the TDI
input is stored in the shift-register portion of BS0, and the
new value of the shift-register portion of BS2 is then observ­
able on the TDO output. Upon receiving a Test-Logic-Reset
(TRST) signal from the TAP controller, the latch stage of
BS1 is loaded with a "0" to disable the POO signal and BSO
and BS2 retain their previous values. In the external test
mode and upon receiving an Update_DR (UP_DR) signal
from the TAP controller, the latch stages of BSO, BS1, and
BS2 are loaded with the values of their corresponding shift-
register stages.

Bypass Register

The bypass register consists of a single-stage shift-
register cell (Figure 6). Upon receiving a Capture_DR
(CAPDR) signal from the TAP controller and when the IR

Figure 4. Functional diagram of the instruction register. Figure 6. Functional diagram of the bypass register.

304

is in bypass mode (instruction 111), a "0" is stored in the
BPR cell. Upon receiving a ShiftDR (SHDR) signal from
the TAP controller when the IR is in bypass mode, the value
on the TDI input is stored in the BPR cell and is conse­
quently observable on the TDO output. An UpdateDR
(UPDR) signal from the TAP controller when the IR is in
bypass mode produces no effect on the bypass register or any
other register. Finally, a Test-Logic-Reset (TRST) signal
from the TAP controller produces no effect on the BPR.

Device Identification Register (optional)

The IDR consists of N (normally N=32) single-stage
shift-register cells (Figure 7). Upon receiving a Capture_DR
(CAPDR) signal from the TAP controller and when the IR
is in "IDR-select" mode (an implementation-specific instruc­
tion), each bit of the device identification code is stored in
the corresponding IDR cell. Upon receiving a Shift_DR
(SHDR) signal from the TAP controller when the IR is in
"IDR-select" mode, the the values of the IDR cells shift one
cell to the right (from IDR1 to IDR2, and so on, to IDRN),
the value on the TDI input is stored in IDR1, and the new
value of IDRN is then observable on the TOO output. An
Update_DR (UPDR) signal from the TAP controller when
the IR is in "IDR-select" mode produces no effect on the
IDR or any other register. Finally, a Test-Logic-Reset
(TRST) signal from the TAP controller produces no effect on
the IDR.

The instruction stored in the IR ("000", "111", or the
optional implementation-dependent "IDR-select" instruction)
controls the multiplexer determining which of the shift-
register outputs of the data register cells (BS2, BYPASS, or
IDRN, respectively) is to be observable at the TDO output.
The appropriate data register value is observable at the TDO
output only when the TAP controller enables the output
buffer (Figure 1) in states DRCAPTURE, DRSHIFT,
DREXITl, DRPAUSE, and DREXIT2 (Figure 2). The value
of the shift-register portion of the IR2 cell is observable only
when the TAP controller enables the output buffer in states
IRCAPTURE, IRSHIFT, IREXITl, IRPAUSE, and IREXIT2
(Figure 2).

III. Finite-State Machine Model of the JTAG/IEEE
P1149.1 Architecture

As described in the previous section, the TAP controller
is a sixteen-state finite-state machine (FSM); since its output
depends solely on its present state, it is a Moore circuit [6].
If the values on the TAP controller outputs could be directly
measurable then several of its states would be essentially
directly observable. For instance, if the SH_DR line is active
(Figure 3) and all other lines are inactive, then, by definition,
the TAP controller is in the DRSHIFT state (state 0010 in
Figure 2).

BI (CAPTURE) B2 (CAPTURE) BN (CAPTURE)

Figure 7. Functional diagram of the device identification
register (optional).

In fact, however, the implementation of the complete
JTAG/IEEE PI 149.1 boundary-scan architecture is such that
the TAP controller outputs are not directly measurable, but
control the instruction register, decoding logic, boundary-
scan, bypass, and (optional) device identification registers,
multiplexers, and buffers (Figure 1). The contents of the
instruction register control the behavior of the data (BS, BP,
and optional ID) registers. Thus, determining the levels of
the TAP controller outputs consists of observing the effects
of these outputs on the TDO and primary outputs as a func­
tion of the contents of the instruction, boundary-scan, bypass,
and optional device identification registers and the values
applied to the TMS, TDI, and primary inputs. The FSM
representation of the control portion of the JTAG/IEEE
PI 149.1 boundary-scan architecture, therefore, describes the
joint behavior, or composition of the TAP controller with the
contents of the instruction register. This composition is
shown in Figure 8 for a design which does not include a dev­
ice identification register, and in Figure 9 for an implementa-

TO DRSCAN/000

Figure 8. Finite-state machine showing the joint behavior of
the TAP controller and instruction register.

305

Figure 9. High-level view of the FSM showing the joint
behavior of the TAP controller and IR (IDR included).

tion which does. For instance, in Figure 8, the
DRSHIFT/000 state corresponds to the TAP controller
SH_DR line active and "000" in the instruction register
(external test mode); in this state, the value on the TDI input
is shifted through the boundary-scan register. On the other
hand, in the DRSHIFT/111 state, the value on the TDI input
is shifted through the bypass register.

In this model, the operation consisting of capturing, fol­
lowed by shifting several bits through any of the registers, is
represented by a single directed edge, and is said to be a
capture-shift sequence (CS-sequence). For example, in Fig­
ure 8, the operation consisting of capturing a "0" in the
bypass register, followed by shifting through a certain
sequence of bits and then completing the operation by apply­
ing a " 1 " to the TMS input, thereby putting the TAP con­
troller in die DREXIT1/111 state, is represented by a directed
edge from the DRCAPTURE/111 state to the DREXIT1/111
state with the label C-S.

Similarly, the operation consisting of entering the
DRSHIFT or IRSHIFT state from DREXTT2 or IREXIT2,
respectively, and shifting several bits through the correspond­
ing register and then completing the operation by applying a
"1" to the TMS input, thereby putting the TAP controller in
the DREXTTl or IREXTTl state, respectively, is represented
by a directed edge with the label S (for Shift) and is said to
be a shift sequence (S-sequence). The issue of determining
an appropriate sequence of values to shift through the various
registers in CS-sequences and S-sequences is addressed in
Section V.

Note that, as intended to be used in this paper, the
IRCAPTURE state (CAP in Figure 9) is entered with the
intention of placing either "000" or "111" (or the "IDR-
select" instruction) in the instruction register latch, which
occurs when either the IRUPDATE/000 or IRUPDATE/111

states (or TRUPDATE/TDR), respectively, are exited. Thus,
there are three states, IREXTTl/?, IRPAUSE/?, and
IREXIT2/?, which may be entered from the IRCAPTURE
state but which may not lead directly to the IRUPDATE/000
or IRUPDATE/111 (or IRUPDATE/IDR) states without plac­
ing a "000" or "111" (or the "IDR-select" instruction) in the
instruction register cells.

IV. Test Generation Technique

Verifying that the boundary-scan portion of a given
implementation of a component conforms to the JTAG/TEEE
PI 149.1 boundary-scan standard is equivalent to verifying the
functional behavior of the underlying sequential logic circuit.
Several techniques for automatically generating test
sequences for sequential logic circuits have been published in
the literature and, for the most part, can be categorized into
structural testing for logic-level fault coverage and functional
testing for design verification.

Structural testing approaches, including the D-algorithm
[7] and its variants [3],[4], aim at detecting gate-level faults
such as single stuck-at-1 and stuck-at-0 faults in an electronic
device. While these techniques can be adapted to generating
test sequences for sequential circuits, they are
implementation-specific; furthermore, they are designed to
detect only a very limited subset of the possible faults that
can occur in the design, manufacture, and operational stages
of a device.

The classical functional testing approach consists of the
design of so-called checking experiments [5], which produces
a set of input and output test sequences which are used to
verify that the behavior of the "black box" under test is
exactly as specified by the given state transition table. A
checking experiment tests the implementation of an m-state
finite-state machine (FSM) for the correctness of every
specified transition; that is, it verifies that each specified
input for state s,, i=l,...,m, in the implementation produces
the expected output and takes the implementation to the
expected state.

In the past, checking experiments were based on the
existence of an input sequence called a distinguishing
sequence, which produces a distinct output sequence for each
initial state of the FSM [5]. Unfortunately, only a very lim­
ited number of FSMs have a distinguishing sequence [2,5].
A new approach was proposed in [1], based on the concept
of Unique Input/Output (UIO) sequences [8]: a UIO sequence
of a given state Si in an FSM is an input/output sequence of
minimum length starting from state s, which could not be
produced by starting at any other state. Thus, a UIO
sequence can be used to verify that the initial state of an
input/output sequence is that which is expected. The differ­
ence between a UIO sequence and a distinguishing sequence

306

is that if the FSM is not in the expected initial state, the
actual initial state can be deduced from the output sequence
of a distinguishing sequence but not from that of a UIO
sequence; however, this information is unnecessary for the
purposes of testing.

The advantage of UIO sequences over distinguishing
sequences is twofold. First, while few FSMs have a distin­
guishing sequence, almost all FSMs have a UIO sequence, or
a variant described below, for each state. Second, the length
of a UIO sequence is at most that of a distinguishing
sequence and usually much less, so that UIO sequences are
the method of choice for checking that an implementation is
not in an expected state.

In the technique described in [1], after computing the
UIO sequences for each state of the FSM specification, a test
is formed for each transition of the FSM. The test of a tran­
sition consists of placing the FSM in the initial state of the
transition, applying the appropriate input for the transition
and observing that the output is that which is expected, and
then applying the UIO sequence for the final state of the
transition to ensure that the final state of the given transition
under test is that which is expected.

The set of tests is then assembled in an optimal manner,
using a network flow algorithm based on the Chinese Post­
man problem of graph theory [9], such that the resulting test
sequence is a continuous tour of the FSM which 1) contains
a test for each transition of the FSM, 2) begins and ter­
minates at a designated start state of the FSM, and 3) is of
minimum total cost. In the case of the TAP controller, each
transition requires the same time to realize, so that the test
sequence generated, described in the following section, con­
sists of the minimum number of transitions necessary to
rigorously test the FSM in the manner described above. (For
more information on the UIO sequence/Chinese Postman test
sequence generation approach, the reader is referred to
[1],[2],[8],[9]).

V. Test Sequence Description

UIO Sequences

For the implementation with no device identification
register, a UIO sequence was computed for 28 of the 33
states shown in Figure 8. For example, the UIO sequence
for the DRSCAN/000 state consists of the following: 1) start­
ing in the DRSCAN/000 state, apply a "0" to the TMS input
and observe the previous value of the shift-register portion of
BS2 on the TDO output; 2) apply a "0" to the TMS input,
hence capturing the value of PIO in BSO; 3) shift a CS-

signature (for capture-shift signature) to be described below,
during the capture-shift sequence, from the TDI input,
through the boundary-scan register, to the TDO output so that

it may be deduced that the values from the TDI input are
actually shifted through the boundary-scan register. It can be
observed that this output behavior could have been produced
only if DRSCAN/000 had been the initial state. Similar UIO
sequences exist for all of the other states except for
IREXIT1/?, DREXIT1/000, DREXTTl/lll, IREXTT1/000,
and IREXITl/ll l . These five states are considered in the
following.

It is easily observable that state IRPAUSE/? is weakly
equivalent [2] to state IREXIT1/? in that there is no effect on
the functionality of the boundary-scan architecture if the TAP
controller and instruction register composition is in the
IRPAUSE/? state when it is expected to be in the IREXTTl/?
state. This is because applying a "0" to the TMS line when
the TAP controller is in the IREXIT1/? state has the same
effect as applying a "0" to the TMS line when the TAP con­
troller is in the IRPAUSE/? state. Note that a "1" input to
the TMS when the TAP controller is in the IREXTTl/? state
is undefined since that would ultimately place an undefined
instruction in the instruction register.

For the last four of the states, a set of input/output
sequences, henceforth called a set of partial UIO sequences,
is used instead of UIO sequences, since the four states do not
initiate any unique input/output behavior themselves and yet
are not weakly equivalent to any other states. For example,
note that the result of applying a "0" to the TMS input when
the TAP controller is in state DREXIT1/000 is identical to
that produced when the TAP controller is initially in state
DRPAUSE/000; from that point on, all actions are identical
since the two transitions lead to the same state. Also, the
result of applying a " 1 " to the TMS input when the TAP
controller is in state DREXIT1/000 is identical to that pro­
duced when the TAP controller is in state DREX3T2/000 and
the two transitions also lead to the same state, so that further
actions are identical. The first partial UIO sequence for
DREXIT1/000 distinguishes DREXITl/000 from all other
states except DRPAUSE/000. The second partial UIO distin­
guishes DREXITl/000 from all other states except
DREXTT2/000. Each transition leading to DREXITl/000 is
tested twice as in the manner described in the previous sec­
tion, once using each partial UIO sequence. Together, the
partial UIO sequences yield the same diagnostic power as a
UIO sequence. Analogously, sets of partial UIO sequences
can be easily derived for the other three states.

For the implementation with an IDR, 34 of the 41 states
have UIO sequences and six have partial UIO sequences as
described above. Also, state IRPAUSE/? is weakly
equivalent to state IREXIT/?.

CS-Signatures and S-Signatures

The process of capturing and shifting a sequence of
values through the boundary-scan, bypass, instruction, or dev-

307

ice identification register during a capture-shift sequence or
shift sequence must serve two functions: 1) to ensure that the
shift operation is occurring by means of the intended register,
and 2) to exercise as fully as possible the targeted register.
Such a sequence is said to be a CS-signature (if the shift
operations are preceded by a capture operation) or S-
signature (if there is no capture operation before shifting) of
the appropriate register.

In addition, specific logic values must be placed on all
of the input lines to ensure that the proper operation is taking
place. For example, when the BSO cell captures a value
from the PIO primary input, the complement of that value is
placed at the TDI input to distinguish the capture operation
from an ordinary shift. Also, the complement of each CS-
signature and S-signature is used at least once in the test
sequence to exercise the register adequately.

The CS-signatures and S-signature chosen are as fol­
lows, where each bit corresponds to a TMS input on con­
secutive TCK pulses. Note that capture operations apply
only for CS-signatures, and are omitted for S-signatures:

boundary-scan register: (capture 0 in BSO register),
1,0,0,1,1, followed by 0,1,1;

bypass register: (capture 0 in BP register), 1,0,0,1,1;
device identification register (optional): (capture ID),
1,0,0,1,1, followed by complement of ID;

instruction register (external test mode): (capture 0 in IR1
register, capture 1 in IR2 register), 1,0,0,1,1, followed by
0,0,0;

instruction register (bypass mode): (capture 0 in IR1 regis­
ter, capture 1 in IR2 register), 0,1,1,0,0, followed by 1,1,1;
instruction register ("IDR-select" mode): (capture 0 in IR1
register, capture 1 in IR2 register), 1,0,0,1,1, followed by
"IDR-select" instruction.

The left-most five bits of the signatures, which are the first to
be applied to the respective register, exercise the register
logic. Note that each value (0 and 1) is stored at least once
in each register cell and that each transition (0—»0, 0—»1,
1—>0, and 1—>1) occurs at least once in each register cell.
Finally, the right-most bits, which remain in the correspond­
ing register after the signature is applied, are such that when
they are ultimately shifted out, it is evident which of the
registers is being exercised. The CS-signatures and S-
signatures can easily be generalized for use with boundary-
scan architecture implementations consisting of arbitrary-
length boundary-scan, device identification, and instruction
registers; in general, only the right-most bits which remain in
the register must be changed.

Length of Test Sequence

The generated test sequence for the implementation

under consideration without the device identification register
consists of 694 input/output operations, corresponding to 694
pulses of TCK, including CS-sequences. The boundary-scan
CS- and S-sequences are used 12 times, the bypass register
CS- and S-sequence is used 20 times, the instruction register
CS- and S-sequence (external test mode) is used 12 times,
and the instruction register CS- and S-sequence (bypass
mode) is used 11 times. In general, given that the number of
cells in the boundary-scan register is Nbs and that the number
of cells in the instruction register is Nir, the overall length of
the test sequence for the implementation without the device
identification register is

589 + i2Nbs + 23Nir;

for an implementation which includes the device
identification register, where the number of cells in the dev­
ice identification register is Nid, the overall length of the test
sequence is

986 + l2Nbs + 44Nir + 21Nid.

As an example, for a device with 200 I/O pins, a four-cell
instruction register, and a 32-cell device identification regis­
ter, the test sequence is of length 4234.

Coverage

The test sequence for the implementation without the
device identification register was evaluated by means of a
fault simulator, using a gate-level description of the
boundary-scan architecture. Recall that the goal of the test
sequence is to be a conformance test for the TAP controller
portion of the boundary-scan architecture. Any faults
detected beyond the boundaries of the TAP controller is a
desirable, yet optional, feature. The test sequence detected
100% of the non-redundant single stuck-at-faults associated
with the TAP controller (151 out of 151); with the judicious
selection of the CS- and S-signatures, it also detected a very
high percentage (85%-95%) of the 546 single stuck-at-faults
associated with the registers, multiplexers, and buffers. It is
not possible to give an exact figure for the fault detection in
the circuitry external to the TAP controller because: 1) many
of the faults can only be detected by entering the sample or
internal test modes, which do not have standard, reserved
instructions, and 2) the number of undetectable faults outside
the TAP controller are design-dependent and therefore,
unpredictable.

Discussion

The figures for the single stuck-at-fault coverage do not
adequately quantify the capabilities of the test sequence
because the UIO sequence/Chinese Postman test generation
technique, unlike other approaches for testing sequential cir­
cuits, is designed to detect functional faults, of which stuck-
at-faults are but a small subset. Therefore, it seems reason-

308

able to believe that the robustness of the test sequence using

UIO sequences should exceed that of other known techniques

based on the stuck-at-fault model. At present, however, there

is no way to verify this using simulation techniques.

The test sequence generated by the UIO
sequence/Chinese Postman technique avoids needlessly
detecting so-called operationally redundant faults, that is,
faults which do not affect the specified operation of the
implementation. This further reduces the overall length of
the test sequence. An example of an operationally redundant
fault is a fault in the TAP controller which can only be
detected by updating the instruction register with an
undefined instruction.

Finally, another advantage of the UIO Sequence/Chinese
Postman-generated test sequence is that it is not circuit-
dependent. Unlike other techniques, the test sequence gen­
erated here is based solely upon a functional description of
the circuit. Therefore, the same test sequence can be used as
a manufacture-time and/or run-time test as well as a confor­
mance (design-time) test for the many different boundary-
scan gate-level implementations expected to be designed by
the various manufacturers that plan to incorporate the
JTAG/IEEE PI 149.1 boundary-scan architecture into their
chip designs.

VI. Conclusions

In this paper, a novel technique for generating test
sequences has been applied to the TAP controller portion of
the JTAG/IEEE PI 149.1 boundary-scan architecture. The
resulting test sequence is based on a functional-level, finite-
state machine description of the circuit and has in its initial
analysis indicated impressive capabilities in detecting design
inconsistencies and run-time faults in boundary-scan imple­
mentations.

Acknowledgements

The authors would like to thank J.D. Sutton and A.B.
Sharma for their valuable contributions which made this
paper possible. The work reported in this paper was first
suggested by R.E. Tulloss.

References

[1] A.V. Aho, A.T. Dahbura, D. Lee, and M.U. Uyar, "An
optimization technique for protocol conformance test
generation based on UIO sequences and Chinese post­
man tours," in Proc. 8th. Int. Symp. on Protocol
Specification, Testing, and Verification, North Holland,
ed. S. Aggarwal and K. Sabnani, 1988.

[2] A.T. Dahbura and K.K. Sabnani, "An experience in
estimating the fault coverage of a protocol test," in

Proc. IEEE INFOCOM '88, pp. 71-79.

[3] H. Fujiwara & T. Shimono, "On the acceleration of test

generation algorithms", IEEE Trans, on Computers, vol.

C-32, no. 12, pp. 1137-1144, Dec. 1983.

[4] P. Goel, "An implicit enumeration algorithm to generate
tests for combinational logic circuit", IEEE Trans, on
Computers, vol. C-30, no. 3, pp. 215-222, March 1981.

[5] Z. Kohavi, Switching and Finite Automata Theory.
New York: McGraw-Hill, 1978.

[6] E.F. Moore, "Gedanken-experiments on sequential
machines," Automata Studies, Annals of Mathematical
Studies, no. 34, Princeton Univ. Press, Princeton, NJ,
pp. 129-153, 1956.

[7] J. P. Roth, Computer Logic, Testing, and Verification.
Rockville, MD: Computer Science Press, 1980.

[8] K.K. Sabnani and A.T. Dahbura, "A protocol test gen­
eration procedure," Computer Networks, vol. 15, no. 4,
pp. 285-297, 1988.

[9] M.U. Uyar and A.T. Dahbura, "Optimal test sequence
generation for protocols; the Chinese postman algorithm
applied to Q.931," in Proc. IEEE Global Telecommuni­
cations Conference, pp. 68-72, 1986.

[10] Boundary-Scan Architecture Standard Proposal, Version
2.0, JTAG, 31 March, 1988.

309

A New Framework for Analyzing Test Generation and Diagnosis
Algorithms for Wiring Interconnects

Najmi Jarwala and Chi W. You

AT&T Bell Laboratories
Princeton, NJ

Abstract

Increasing complexity of circuit boards and surface mount
technology has made it difficult to test them using traditional
in-circuit test techniques. A design-for-testability framework
has been proposed as the IEEE Standard 1149.1* Test Access
Port and Boundary-Scan Architecture. This architecture
simplifies board test by providing an electronic bed of nails. It
also provides access to other test features that may be present
on a chip.

Because of the serial nature of the tests that use Boundary-
Scan, it is important to minimize the test size while
maintaining diagnosability. This has renewed interest in
exploring efficient test algorithms and implementation
techniques. This paper presents a new framework for analyzing
the algorithms proposed for testing and diagnosing wiring
interconnects. Using this framework, the algorithms proposed
in the literature are analyzed, clearly identifying their
capabilities and limitations. A new optimal adaptive algorithm
that can reduce test and diagnosis complexity is also
presented.
Keywords: Boundary-Scan, Board Test, Test Generation,
Diagnosis, Interconnect Test.

1. Introduction

Higher levels of system integration have resulted in circuit
boards shrinking onto devices, while systems are packed onto
circuit boards. The increase in both the number of integrated
circuits and their complexity has made testing circuit boards
difficult and expensive. Traditionally, manufacturers use two
techniques to test boards: in-circuit test and functional test. In
the in-circuit test technique, the devices on a board are
accessed by a "bed-of-nails" — probes on the ATE that
directly make contact with the device I/O pins from pads on
the surface of the circuit board. This makes it possible to test
each device and the interconnects between devices. Note that
this technique requires extensive access to the circuit under
test.

Functional tests are applied through a board's normal
terminations—for example, edge connectors. The objective is
to test the board as a single entity. However test generation,
fault simulation, and test application costs are excessive to
achieve acceptable fault coverage. For some products it may
be impossible to either verify or achieve the desired fault
coverage.

Design-for-testability (DFT) and Built-in Self-Test (BIST)
make the test problem more tractable. ATE's have also
evolved to cope with the growing complexity of circuit boards.
However surface mount technology, silicon-on-silicon, etc.
further reduce the access that the in-circuit test methodology
needs.

1.1 Review of the Boundary-Scan Architecture

To solve the problems discussed above, IEEEStd. 1149.1 has
proposed the Boundary-Scan Architecture. This architecture
basically consists of a Test Access Port (TAP) which consists
of a four or five signal interface, a controller, an instruction
register, and two or more test data registers (Figure 1). One of
these test data registers is the Boundary-Scan (B-S) Register.
This register is formed by serially linking latches (each of
which is part of a B-S cell) that are placed at each device I/O
so that the signals at the I/O can be controlled and observed.
The B-S data registers in the parts of a board are linked into
one or more serial paths through the assembled product. Such a
path allows one to test the interconnects, apply tests to each
device on this path, apply tests to clusters of logic that are not
on the B-S path, access BIST and other testability features
within devices, and take "snapshots" of the system state in
real time. More details about this architecture can be obtained
from [3].

Figure 1. IEEE Std. 1149.1 Boundary-Scan Architecture.

1.2 Testing Circuits with Boundary-Scan

If all the devices on a board implement B-S, then the board test

Reprinted from IEEE Proceedings 1989 International Test Conference,
pages 63-70. Copyright © 1989 by The Institute of Electrical and
Electronics Engineers, b e . All rights reserved.

EH0321 -0/90/0000/0310$01.00 © 1989 IEEE 310

procedure can be divided into the following test sequence:

• Test B-S chain integrity

• Test board interconnects

• Activate BIST and scan out the resultant signatures

Testing the integrity of the B-S chain is supported by the B-S
architecture standard and is described in detail in [3],
Activating BIST is done by scanning in the RUNBIST
instruction, waiting for it to complete, and scanning the
signature out of the B-S Register. Testing the board
interconnect is the subject of the remainder of the paper. While
the emphasis of this work is testing in the IEEE Std. 1149.1
scan environment, the algorithms and results discussed here are
also applicable to the general problem of testing wiring
interconnects.

Section 2 presents the notations and definitions that will be
used in the remainder of this paper. Section 3 defines the fault
model which is followed by a review of fault detection
algorithms in Section 4. Section 5 discusses fault diagnosis.
In this section the faulty response is analyzed and classified,
and the new framework is presented. The diagnostic
capabilities and limitations of existing algorithms are analyzed
under this new framework. Section 6 proposes a new, optimal
adaptive test and diagnosis algorithm. Sections 7 and 8 discuss
stuck-at faults and opens on wire/3-state nets respectively.
Section 9 reviews some implementation issues, and Section 10
offers conclusions.

2. Notations and Definitions

In this section we present the notations and definitions that will
be used in the remainder of the paper.

Net: A net on a circuit board is defined as an equipotential
surface, formed by a physical wire connecting a set of input
buffers and a set of output buffers.

The most general form of a net is shown in Figure 2.

Figure 2. A Wire or 3-state Net.

A net can be driven by one or more buffers. Each net can be
fanned out to one or more buffers. If a net is driven by a single
buffer, we refer to it as a simple net. A net which is driven by
more than one buffer is either a wire-AND/OR or 3-state and is
referred to as a wire net or a 3-state net respectively.

Net Degree: The degree of a wire net, denoted by k, is defined
to be the number of buffers that drive that net. The degree of a
3-state net, denoted by z, is also defined to be the number of
buffers that drive that net.

Let:

• L: Length of the B-S chain

• N: Number of nets

• ni: A net identified by a unique number (ID), i

• ni
*: A wire net identified by a unique number, i

• ki. Degree of a wire net ni
*

• K: max(ki)

• ni
t: A 3-state net identified by a unique number i

• zi: Degree of a 3-state net ni
t

• Z: max(zi)

We also review the following definitions:

Union of Vectors, denoted by U(v1,v2, • • •), is the vector
that results from a bit-wise OR of the component vectors.
Example: v1 = 0 0 0 l ;v2 = l 100. U(v1,v2)= 1101.

Intersection of Vectors, denoted by n (v1,v2, • • •), is the
vector that results from a bit-wise AND of the component
vectors.
Example: v1 = 1 0 0 1 ; v2 = l 1 0 0. n1(v1,v2)= 1 00 0.

Parallel Test Vector (PTV), is the vector applied to all nets
of an interconnect network in parallel.

Sequential Test Vector (STV), is the vector applied to a net,
over a period of time, by a number of PTVs.
Note that the STV also represents a net ID. In Table 1, the
PTVs are represented by the columns while the STVs are
represented by the rows.

Sequential Response Vector (SRV), is the response of a net to
an STV. If the net is fault free, its STV and SRV will be
identical. A faulty net will differ in its STV and SRV.

Fault Syndrome, denoted by sf, is the serial response of faulty
or potentially faulty net(s). It is a SRV that is either different
from its corresponding STV or a SRV that is common to two
or more nets.

Vector Set, denoted by S is the set of all STVs. Note that
|S| =N.

3. Fault Model

We consider the following classes of faults:

Multi-Net Faults. These are bridging faults that create a short
between two or more nets. The behavior of the nets is a
function of the driver characteristics of the individual nets

311

involved in the short. This behavior can be either deterministic
or non-deterministic. Deterministic behavior can be
characterized as follows:

• OR-type Short. If the drivers are such that a ' 1 ' dominates,
then the resultant logic value is an OR of the logic values
on the individual nets.

• AND-type Short. If the drivers are such that a '0'
dominates, then the resultant logic value is an AND of the
logic values on the individual nets.

• Strong-Driver Short. If a specific driver in the short
dominates, then the value of the net follows that of the
driver regardless of the output of the other drivers.

The logic value on the net can also be non-deterministic or
undefined. This behavior is not included in this fault model and
is not considered in the remainder of this paper.

Single-Net Faults. These are stuck-at-one, stuck-at-zero, and
open faults on single nets. Note that in the case of wire or 3-
state nets, stuck-at faults affect the net as a whole while open
faults may affect only part of the net.

The fault model allows for single or multiple occurrences of
either multi-net faults and/or single-net faults with
deterministic behaviour.

4. Fault Detection

In this section we discuss detection of stuck-at faults, shorts
between nets and opens on simple nets. Note that opens on
simple nets are equivalent to a stuck-at '0' or stuck-at ' 1 ' at the
receiving buffer(s), depending on the technology. Opens on
wire and 3-state nets are more complex and are dealt with in
section 8.

Counting Sequence Algorithm
Some of the earliest work in this area was reported by Kautz
[5]. In this paper he showed that [log(N)] PTVs are optimal
for detecting all shorts in a network of N unconnected
terminals. The test requirement for detecting shorts is very
simple; a unique STV must be applied to each net. If the board
is fault-free, each response must be unique. In case of a short,
the nets involved will have the same response and hence the
short will be detected. The requirement of applying a unique
STV to each net can be easily met by following a simple
counting sequence.

Modified Counting Sequence Algorithm
The vector set proposed by Kautz contained the all '0' and all
' 1 ' STVs. This was extended to [log(N+2)] PTVs by Goel
and McMahon. This vector set eliminated the all '0' and all
' 1 ' STVs so that every STV has at least one '0' and one ' 1 ' .
This modification permits stuck-at fault testing. This vector set
is also a counting sequence with the all '0' and all '1' vectors
excluded.

Nets

« i

n2

"3

« 4

« 5

"6

n7

«8

n,

"10

Parallel Test Vectors
I,T i.T" n^ « r
V, V2 V3 V4
0
0
0
0
0
0
0
1
1
1

0
0
0
1
1
1
1
0
0
0

0
1
1
0
0
1
1
0
0
1

1
0
1
0
1
0
1
0
1
0

Sequential
Test Vectors

Vl

V2

v3

V4

V5

v6

V7

V8

v9

VlO

TABLE 1. Test Set defined by Modified Counting Sequence Algorithm..
Consider a circuit with ten nets. The four test vectors that
would be applied are shown in Table 1. As defined previously,
the Parallel Test Vectors are represented by the columns of
Table 1 and the Sequential Test Vector are represented by the
rows of Table 1. Each STV applies at least a '0' and ' 1 ' to each
net so that stuck-at faults can be detected. Also every STV is
unique so that a short between any pair of nets can be detected.

Structure Independent Algorithm
The test proposed by Hassan et al. [2] further generalizes the
test proposed by Goel and McMahon. Their goal is to generate
a test that is independent of the structure of the scan path so
that test generation is simplified. To do this they propose using
f log(L+2)l test vectors (JL is the length of the B-S path)
instead of f \og(N+2)~\ . The logic is that while this is non-
optimal, it does not need formatting and is more suitable for
BIST implementation. This test, however has a serious
limitation: It only works if there are no 3-state nets. This
constraint is not realistic for complex, bus-oriented circuit
boards. In general, for scan paths based on the IEEE Standard
1149.1, order independent test sets are not possible. This is
because the 3-state control signals and the outputs they control
lie on the same scan path; and, to prevent conflicts, the
relationship between the control signal and the outputs must be
deterministic.

Walking One's Algorithm

Nets

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

1
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0

Walking One's Sequence
0
0
1
0
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0
0

0
0
0
0
1
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
1

TABLE 2. Walking One's Test Sequence.
This is a very common test sequence used for testing
memories, etc (Table 2). This has also been discussed by

312

Hassan et al. [2]. We consider the properties of the original
sequence without response compression. The sequence has N
PTVs. Each PTV is applied and the response stored for
analysis. If applied in parallel this sequence is O (N). In a scan
environment this test is O(N2). Note that this sequence
satisfies the minimum requirement for stuck-at and short
detection as discussed above. This sequence also has a unique
property that guarantees diagnosis, as discussed in the next
section.

5. Diagnosis of Short Faults

In this section we discuss diagnosis of short faults. Diagnosis
of stuck-ats and detection/diagnosis of other single-net faults
will be discussed in sections 7 and 8.

Diagnostic resolution is of two types: The first identifies,
•without ambiguity, a list of nets that have a fault. The second
type further identifies the sets of nets affected by the same
short, the nets that are stuck-at zero or one, or the net that is
open. When we use the term diagnose, we refer to the second
type of diagnosis. This is important for rapid repair during
manufacture.

Further, there are two test and diagnostic techniques. The first
we call the One Step Test and Diagnosis where a set of test
patterns are applied and the response is analyzed for fault
detection and diagnosis. The other technique we call
Adaptive Test and Diagnosis where the test is applied,
response analyzed and then one or more additional tests may
be applied to aid diagnostics. The implication of these
techniques and their suitability for different test and repair
environments is discussed in the Section 4.

Traditional testing applies PTVs to a circuit-under-test,
receives a response and then analyzes one or more failing
PTVs for diagnosis. We use a different approach. We assign a
unique ID (STV) to each net and then consider the test
procedure as 'requesting' each net to respond with its ID. Fault
free nets respond with their correct IDs; faulty nets with IDs
that differ from their assigned IDs. These incorrect IDs (or
SRVs) have been defined earlier as fault syndromes and their
analysis leads to diagnosis.

5.1 Syndrome Behavior

We analyze the relationship of the syndrome to the STVs of
the nets involved in a short.

Let vi represent the STV applied to net ni. The SRV for a fault
free net is same as the STV applied — vi. Let the faulty
response be represented by vi

f. This notation implies that net ni

has responded with an ID f instead of i. All nets involved in a
short will have the same faulty SRV. This SRV is called the
fault syndrome sf If nets ni, nj, nk,-•• are shorted together,
then each will have the response sf = vi

f,vj
f, v k

f , . . .

Let (vi
f,vj

f, vk
f, . . .) be the STVs that were assigned to the nets

involved in a short. Based on the type of short the syndrome
can be characterized as follows:

• If sf = U(vi
f,vj

f, vk
f, ...), then the short is of OR-type and

the syndrome is called a Disjunctive Syndrome.

• If sf = n(vi
f,vj

f, vk
f , . . .), then the short is of AND-type

and the syndrome is called a Conjunctive Syndrome.

• If the syndrome is neither conjunctive nor disjunctive and
sf € (vi

f,vj
f, vk

f, ...) then the short is strong-driver short and
the syndrome is called an Identity Syndrome.

5.2 Syndrome Classification

Based upon the above characterization, we classify a syndrome
into two types:

• Aliasing Syndrome.
Let SF be the set of nets which respond with the syndrome
sf. If sf € S (S is the set of STVs) and sf=U(SF-sf) or
sf=n(SF-sf), then the syndrome sf is called an aliasing
syndrome. If this happens then the faulty response of a set
of failed nets is the same as the fault-free response of
another net. It cannot be determined whether or not this net
is also involved in the short.

Consider the test in Table 1. Assume all shorts are of type
OR. If nets n3, and n4 are shorted then both will have a
syndrome 0 111. However the fault-free response of net
n7 is also the same. Therefore it is not possible to
distinguish whether n3, n4, n7 are shorted or only nets
n3, n4 are shorted. The syndrome 0 1 1 1 is an aliasing
syndrome. Clearly, if nets n 1 ,n 2 and n7 were shorted then
the syndrome would be 0 111. However this syndrome
would not be aliasing because sf != u(n1,n2) (Note that it
is possible for a syndrome to be conjunctive or disjunctive
and the corresponding short be a strong-driver short. For
example, if net n5, n6, n7 are shorted and the driver
associated with n7 is a strong driver, then the syndrome
will still be disjunctive and aliasing. However for
diagnosis, this situation is not relevant and will not be
considered further.)

• Confounding Syndrome.
A syndrome is called a Confounding Syndrome if the
syndromes that results from multiple independent faults are
identical, that is si =sj = . . = sk. Therefore it cannot be
determined if these faults are independent.

Consider (Table 1) two independent faults: nets n4,n10 are
shorted and nets n6,n8 are also shorted. Both shorts have
the same syndrome 1110. Consequently it cannot be
determined if the faults are independent or one fault, a
short between n4,n10,n6,n8 has occurred. The syndrome
1 1 1 0 is a confounding syndrome.

313

Degree of Confounding, denoted by c, of a syndrome is
defined as the maximum number of potentially independent
faults which all have the same syndrome. In the above
example the syndrome 1 11 0 has c = 2.

Note that a syndrome can be both confounding and aliasing.
Full diagnosis (as defined earlier) is possible if and only if no
aliasing or confounding syndromes can exist.

S3 Diagnostic Capabilities of One-Step Algorithms

Using the syndrome analysis framework introduced in the
previous section, we now analyze the diagnostic capabilities
and limitations of the algorithms proposed in the literature.

Modified Counting Sequence Algorithm
This algorithm can diagnose all short faults, provided the
syndromes are neither aliasing nor confounding. It is
impossible to predict the nature of the syndrome and
consequendy Algorithm 2 has very limited diagnostic
capability.

True/Complement Test and Diagnosis Algorithm
To resolve the ambiguity caused by aliasing syndromes,
Wagner [6] proposed a technique that we refer to as the
True/Complement Test sequence.

Nets

n1

n2

n3

n4

n5

n6

n7

n8

n9

n10

True Vectors
0
0
0
0
0
0
0
1
1
1

0
0
0
1
1
1
1
0
0
0

0
1
1
0
0
1
1
0
0
1

1
0
1
0
1
0
1
0
1
0

Complement Vectors
1
1
1
1
1
1
1

0
0
0

1
1
1
0
0
0
0
1
1
1

1
0
0
1
1
0
0
1
1
0

0
1
0
1
0
1
0
1
0
1

TABLE 3. True/Complement Test Sequence.

The technique applies 2[log(N+2)] patterns. The additional
[log(N+2)] patterns are obtained by complementing the first
set of patterns. This test can diagnose all shorts with unique
syndromes which are not confounding. Consider Table 3,
which shows the 2\ log(iV+2)] patterns applied to the same
ten nets. If now nets n3,n4 are shorted, the complement test set
gives a syndrome of 1 1 1 1 while the fault free response of n7

is 10 00. Therefore the combined syndrome is no longer
aliasing and the short can be diagnosed. However confounding
syndromes cannot be diagnosed. This can be seen by analyzing
the pairs of shorts, n8,n6 and n10,n4. The diagnostic
capabilities of this technique is summarized by the following
lemma:

Lemma 1. The True/Complement Test and Diagnosis
algorithm will not generate aliasing syndromes. It cannot
diagnose syndromes that confound.

Proof: Obvious. •

Walking One's Algorithm.
This algorithm is unique in that it is the only known algorithm
that guarantees complete one step diagnosis of shorts for
unrestricted faults. It has a property that we call Diagonal
Independence. (Note that the definition that follows applies for
OR-type shorts, that is the definition is actually for Disjunctive
Diagonal Independence. Its dual, Conjunctive Diagonal
Independence would apply to AND-type shorts. For clarity,
OR-type shorts are assumed in the discussion that follows.)

Diagonal Independence of a Vector Test Set.

Let SNxM . M>=N denote the matrix of the vector test S. Let
bij, 0<=i<=N-1, 0<=j<=M-l be an element of S. If S, or the
matrix obtained from S by successive row and/or column
interchanges, has the form:

bij =

1 for all i=j
0 for all i>j
x for all i<j

where x € {0,1), then S is said to be Diagonally Independent.

The general form of a matrix of test vectors that is Diagonally
Independant is:

1 x x x x x

0 1 x x x x
0 0 1 x x x
0 0 0 1 x x

The following are two other examples of Diagonally
Independant test vector matrices:

Theorem 1: Unrestricted shorts of the nets whose STVs e S
are diagnosable if S is Diagonally Independent.

Proof: Let Q be the matrix that is obtained from S after
successive row and/or column interchanges, so that Q is in the
form defined by the Diagonal Independence property. Let
V1,V2, . . . ,VN represent the N rows of the matrix Q or the N
STVs of the corresponding test set. Let each STV be
represented by vi,=bi0,bi1, ... ,bi(M-1). Consider any two
STVs vi, vj € Q. Let bil and bjn be the lowest bit positions
that are ' 1 ' , of the two vectors vi, vj respectively. From the
definition of Diagonal Independence, it is clear that
i!=j => l != n. In other words, no two row vectors of a matrix
that is Diagonally Independent can have identical lowest bit

314

positions that are ' 1 ' .

Further, diagnosis is possible if and only if the syndromes do
not alias or confound.

Let us assume that the syndromes qan alias. Therefore there
exists a set of vectors R = {vi,vj, vk,}, R c Q such that
U(vi,vj, vk,) = v/, vl !€ R, vl € Q. This implies that there is
at least one vector in R which has a ' 1 ' in the same lowest bit
position as v;. This implies that the matrix Q has two unique
vectors that have the same lowest bit position as ' 1 ' , and
consequently cannot be Diagonally Independent. This
contradicts the given fact that Q is Diagonally Independent and
hence it is impossible for the syndromes to alias.

Similar it can be shown that the syndromes cannot confound.
For two syndromes to confound, there must exist two
independent vector sets, such that their respective unions result
in the same vector. This implies that each vector set must have
at least one vector which has ' 1' in the same lowest bit position
as the syndrome. This further implies that the matrix has at
least two unique vectors with a ' 1 ' in the same lowest bit
position which leads to the same contradiction as above. Hence
syndromes cannot confound.

Since syndromes can neither alias nor confound, full diagnosis
is possible. •

Note that this condition is sufficient, but not necessary, for a
test vector set to avoid aliasing and confounding. However this
leads to a systematic method of generating vector sets that
guarantee diagnosability.

Corollary 1: The Walking One's algorithm can diagnose
unrestricted shorts with N test vectors.

Proof: The Walking One's test set is Diagonally Independent
and consequently the proof follows directly from Theorem 1.
•
5.4 Diagnostic Capabilities of Adaptive Algorithms

As defined previously, adaptive test refers to the process of
applying test vectors to a CUT, analyzing the response and
then applying one or more tests to perform diagnosis. Note that
each of the previous one-step algorithms has its adaptive dual.
We present a new algorithm, called the One-Test Adaptive
Algorithm, that is the dual of the True/Complement Algorithm.
We then analyze the W-Test Adaptive algorithm, proposed by
Goel and McMahon [1], which is the dual of the Walking
One's Algorithm.

One-Test Adaptive Algorithm
This algorithm is the equivalent of the True/Complement
Algorithm. That is, they have the same diagnostic capability.
The algorithm is as follows:

1. Apply the [log(iV+2)] tests for fault detection.

2. Analyze the syndromes. If the syndromes are neither
aliasing nor confounding, then diagnosis is immediate.

3. If the syndromes are aliasing (but not confounding) then
we need to resolve whether or not the vector, which is
aliased to, has also failed. This can be accomplished by
one additional test. A PTV is applied to the interconnects
in which the bits applied to the nets whose STVs are
aliased to, are set to ' 1 ' . The remaining bits are set to '0'.
Clearly if a net is part of a short, then the response bits
of the nets in the same short will be driven to ' 1 ' .
Otherwise they will remain '0'. This test can be
performed for all unique aliasing syndromes in parallel
and hence only one additional test is required.

Note that like the True/Complement Algorithm, One-Test
Adaptive Algorithm also cannot diagnose confounding
syndromes.

Lemma 2. The One-Test Adaptive Algorithm can diagnose
shorts with syndromes that are aliasing but not confounding
with no more than l+[log(N+2)] tests.

Proof: Follows from the discussion above. •

W-Test Adaptive Algorithm
Goel and McMahon [1] have proposed a two-step test and
diagnosis procedure. This algorithm is equivalent to the
Walking One's Algorithm and, in the limit, reduces to the
Walking One's Algorithm. In the first step they apply the
[log(N+2)] vectors discussed in the Modified Counting
Sequence Algorithm. From analyzing the response, it is
possible to identify a set of vectors R c= S which have
produced faulty response vectors. Let W= |R|. In the second
step the procedure applies a Walking One Test to the set R to
diagnose the failures. This algorithm has requires
W + [log(N+2)] PTVs.

In case there are a large number of faults, W —> N. However in
practice W << N and so this will require fewer vectors than the
Walking One's Sequence.

Lemma 3. The W-Test Adaptive Algorithm can diagnose all
unrestricted shorts with W +[log(n+2)] vectors, where W is
the number of faulty nets.
Proof: Follows directly from discussion above. •

6, Optimal C-Test Adaptive Algorithm

This section describes a new, optimal diagnostic algorithm. It
has the same capability as the Walking One's Algorithm,
however the analysis stage uses the analytical framework
developed earlier to avoid the potential inefficiency the W-
Test Adaptive Algorithm. Instead of looking at the set of all
faulty nets, this algorithm analyzes the syndromes to determine
their nature and then decides if additional tests are required.

The Algorithm is as follows:

315

1. Apply the [log(N+2)] tests for fault detection.

2. Analyze the syndromes. If they are neither aliasing nor
confounding, then, diagnosis is immediate.

3. If syndromes are only aliasing, then full diagnosis
requires one additional test, as described in the One-Test
Adaptive Algorithm.

4. The remaining syndromes are either confounding, or
both aliasing and confounding. The confounding is
resolved as follows: Let C = max(c;) be the largest
degree of confounding of these syndromes. No more
than C-l tests are required to resolve the confounding of
the fault whose syndrome has a degree of C. Since the
diagnosis of faults with unique syndromes can be done
in parallel, C-l tests suffice to completely resolve all
confounding syndromes.

5. Finally aliasing (if exists) needs to be resolved. This
requires one more vector. Therefore if the syndromes are
confounding and aliasing, then C-l tests suffice to
resolve confounding and one more test resolves aliasing.
Therefore, in general, at most C tests suffice to
completely diagnose all shorts.

Lemma 4. The C-Test Adaptive Algorithm can diagnose
unrestricted shorts with no more than C+[log(N+2)] tests,
where C is the highest degree of confounding.

Proof: Follows directly from the discussion above. •

7. Diagnosis of Stuck-at Faults

Diagnosis of a stuck-at fault is relatively simple, since the
affected receiving buffer reads a constant value. However to
achieve complete diagnosis, care must be taken to ensure that
the resultant all-one or all-zero syndrome is not disjunctive or
conjunctive respectively. If that is the case then the set of nets
reporting a constant '0' or ' 1' syndrome could all be stuck-at
or shorted together. This can be a potential problem for one-
step diagnosis. For example, consider a short of nets n7,n8 in
Table 1. The SRV of both these nets will be 1 1 1 1, which is
same if both the nets had been stuck at ' 1 ' . This ambiguity can
be resolved by adding a all-zero (for OR-type shorts) and all-
one (for AND-type shorts) PTV to the test vector set. If
Table 1 had another all PTV, vTs, which is all '0', the the last
bit of the SRVs of n7 and n8 will distinguish between a stuck-
at-1 fault and a short. A stuck-at-1 fault will drive this bit to a
'1' while a short will result in this bit having a value '0'. This
will clearly distinguish between a stuck-at and short.

8. Testing and Diagnosing Opens on Wire and 3-State Nets

Wagner [6] presents detailed algorithms for testing wire nets.
There are three types of wire-nets: wire-AND, wire-OR and 3-
state nets. Testing wire-AND and wire-OR nets is simple and
is equivalent to testing an AND or OR gate. Note that stuck-at

and bridging faults affect the net as a whole and are detected
by the previous test procedures. The principle interest in these
tests is to test for and diagnose opens which affect only a
subset of the pins in a net.

Wire-AND/OR Nets Test and Diagnosis Algorithm
Consider a wire-AND net of degree k. Testing it is analogous
to testing a k input AND gate and the test set consists of k tests
formed by 'walking' a '0' across the k output buffers (the
remaining k-1 output buffers are held at '1') and one
additional test which consists of all ones. The dual applies to
wire-OR nets. Therefore a net of degree k can be tested with
k + 1 tests. Since multiple wire-nets can be tested in parallel,
K+1 tests suffice to test all AND/OR wire nets.

3-State Nets Test and Diagnosis Algorithm
To test a 3-state net, we have to ensure that each buffer can
independently drive the net to both a '0' and a ' 1 ' and that this
value is correctly received by the receiving buffers. This
implies that both a '0' and a ' 1 ' has to walked across the input
of the output buffers, (with the other output buffers being held
at the complementary state and disabled). Therefore a 3-state
net of degree z can be tested with 2z test vectors. Further since
multiple 3-state nets can be tested in parallel, 2Z tests suffice to
test all 3-state nets.

Lemma 6. All stuck-ats and open faults in 3-State, Wire-AND
and Wire-OR nets can be detected and diagnosed by the
Wire-AND/OR and 3-State Test and Diagnosis Algorithms
using at most max(K + 1, 2Z) test vectors.

Proof: Follows directly from the observation that all wire-
AND, wire-OR and 3-state nets can be tested in parallel. Note
that by observing the output response, it is trivial to diagnose
which driver or receiver is isolated from the net by an open. •

9. Implementation Issues

There are several implementation issues that are important
when generating tests for a circuit board. The objective is to
minimize the test/repair time (and consequendy the cost) while
achieving high fault coverage and diagnostic resolution. Some
of the parameters to be considered are:

• ATE Capabilities

• Test/Repair Environment

• Board Yield

9.1 ATE Capabilities

One of the motivations for using B-S is that low cost ATE's
(e.g. one that is PC-based) can be used for board test. These
ATE's may have some limitations. Of principal concern is the
maximum length of the test sequence that the ATE can apply
between successive disk accesses. This may constrain the
algorithm that can be used. An ATE with limited test length
capability may make it impractical to use the Walking One's

316

Algorithm. Another limitation concerns the 'openness' of the
architecture. In some cases it is not possible for a test engineer
to gain direct access to the response for the purpose of
diagnosis; in other cases, the ATE provides a compressed
failure report. Other factors are the ATE's handling of the
failed response and the number of failures permitted before test
termination. If few such failures are permitted, then insufficient
failure information might be obtained and this may impact
diagnostic resolution.

Another important consideration is the computational
capability of the ATE and the ease of generating and applying
test vectors in real time. These factors determine the feasibility
of adaptive testing. Some ATE's may have very limited
computational capabilities making diagnosis difficult. Others
may require extensive processing before test vectors can be
generated making it impossible to apply tests in real time.

9.2 Test/Repair Environment

A good understanding of this factor is crucial in designing
efficient tests. Frequently this may be pre-determined by
existing equipment and practices. If a shop set-up initially
performs a go/no-go test and failing boards are sent to a repair
station, then to maximize throughput, the Modified Counting
Sequence algorithm can be used for the initial test, and the C-
Test Adaptive Algorithm for diagnosis and repair. If however
test and repair are done at the same station, and the ATE does
not have the capability to do adaptive testing, then the Walking
One's Algorithm may be required. This problem is addressed
in another paper by the authors [4], where design and process
information is used to constrain the size of the test produced by
one-step algorithm without sacrificing diagnostic resolution.

9.3 Board Yield

If the process is mature and high yields are being obtained,
even the Modified Counting Sequence or the
True/Complement Algorithms may provide enough diagnostic
resolution. On the other hand for a new product/process the
number of failures are likely to be large and and consequently
the Walking One or C-Test Adaptive may be required. Note
that in such an environment the W-Test Adaptive Algorithm
may suffer reduced effectiveness

10. Conclusions

This paper makes several contributions. A new framework for
analyzing test generation and diagnosis algorithms for wiring
interconnect have been presented. A property of test vector
sets, called Diagonal Independence, has been identified which
guarantees the diagnostic resolution of the vector test set. The
failing responses or syndromes have been classified into
aliasing and confounding syndromes, and this classification
permits precise analysis of the diagnostic capabilities of
different test algorithms. Using this framework, all the
algorithms that have been proposed for board interconnect test

are analyzed. Their capabilities and limitations are clearly
defined. A new, optimal adaptive test and diagnosis algorithm
is proposed.

An important aspect of test design is to take into account the
test/repair environment and its relationship with the product
being tested. This relationship is not static and it changes as the
process matures. Ideally we need a design procedure that takes
into account the ATE capabilities, test/repair strategies,
product yield and the fault data from Failure Mode Analysis so
that an efficient, cost-effective test can be developed. To do
this we not only need a good understanding of the entire
test/repair process but we also need good test algorithms that
permit a tradeoff between diagnostic resolution and test
complexity. Presently, if adaptive tests are not possible, then
we basically have two choices: The Modified Counting
Sequence Algorithm with O(logN) test size or the Walking
One's Algorithm with O (N) test size. If Boundary-Scan is used
to apply the test vectors then the test time, because of the
serialization of the PTVs, is O(2NogN) and O(N2)
respectively. In this environment, the difference between
O (N logAO and O (N2) test application times may be too high
to make the algorithm with 0(N2) complexity practical.

Using the framework established in this paper, the authors
propose [4] a family of One-Step diagnosis algorithms that use
design and process information to generate tests of O (logN)
without sacrificing diagnostic resolution. The algorithms
(Modified Counting Sequence, Walking Sequence) that are
discussed in this paper are shown to be special cases of the
general theory that is used to generate these new algorithms.

References

[1] P. Goel and M. T. McMahon, "Electronic Chip-in-
Place Test," Proceedings International Test
Conference 1982, pp. 83-90

[2] A. Hassan, J Rajski, and V. K. Agarwal, "Testing and
Diagnosis of Interconnects using Boundary Scan
Architecture," Proceedings International Test
Conference 1988, pp. 126-137.

[3] JTAG Boundary Scan Architecture Standard Proposal,
Version 2.0, published March 1988.

[4] N. Jarwala and C. W. Yau, "A Unified Theory for
Designing Optimal Test Generation and Diagnosis
Algorithms for Board Interconnects," Proceedings,
International Test Conference 1989.

[5] W. K. Kautz, "Testing of Faults in Wiring
Interconnects," IEEE Transactions on Computers, Vol
C-23, No. 4, April 1974, pp. 358-363.

[6] P. T. Wagner, "Interconnect Testing with Boundary
Scan," Proceedings, International Test Conference
1987, pp 52-57.

317

A Unified Theory for Designing Optimal Test Generation and Diagnosis
Algorithms for Board Interconnects

Chi W. Yau and Najmi Jarwala

AT&T Bell Laboratories
Princeton, NJ

Abstract

To test wiring interconnects in a printed circuit board,
especially one equipped with boundary-scan devices, it is
important to minimize the test size while maintaining
diagnostic capability. This has provided the motivation for
research work that explores efficient test generation and
diagnosis algorithms. In this paper, we propose a unified theory
for designing various types of interconnect test algorithms. We
demonstrate that the algorithms proposed in the literature are
special cases of the general algorithms presented in this paper.
The new algorithms are shown to be optimal or near-optimal
for a given set of design and process parameters. They increase
the designer's flexibility by offering a full range of solutions
(i.e. test vector sets) based on various trade-off criteria such as
test compactness and diagnostic accuracy. Parameters for
quantifying the quality of the tests are described. The
significance and limitations of the proposed algorithms are also
discussed.

Key Words: Board testing, boundary-scan, interconnect test,
design-for-testability.

1. Introduction

The problem of test generation for wiring interconnects has
been extensively studied. Several algorithms have been
proposed which assure detection of all opens, shorts, and
stuck-at faults [1-4]. Some of them [1, 2] are optimal in the
sense that they produce tests that are most compact. That is, the
test size is 0(logN), and, in the boundary-scan environment,
the test time is 0(NlogN). However, as described in the
accompanying paper [5], these tests are inadequate in terms of
their diagnostic capability. An algorithm based on the walking
patterns [4] has been proposed for fault diagnosis. Although it
guarantees complete diagnosis, the test size and the test time
are O (N), and O (N2) respectively. This may be intolerable for
high-density boards.

Clearly, it is advantageous to develop a general approach for
designing test generation and diagnosis algorithms which
enable the designer to gradually give up compactness while
still maintaining maximal diagnostic resolution. In this paper,
we present a unified theory which will allow us to accomplish
this goal. In particular, the designer will have the freedom to
choose from a wide variety of tests, ranging from those
primarily designed for fault detection to those primarily
designed for fault diagnosis.

We assume that the reader is familiar with the boundary-scan
test architecture [6], as well as some basic interconnect test
algorithms. (Detailed review and analysis of these algorithms
can be found in the accompanying paper.) In addition, this
work is based on the framework and some basic concepts
described in the accompanying paper from which we also
adopt all the necessary notations and definitions. For clarity,
we assume throughout this paper that all shorts exhibit wire-
OR behavior. By duality, all results presented can be easily
extended to handle shorts with wire-AND behavior.
Additionally, strong-driver shorts [5] exhibiting deterministic
behavior can also be handled easily.

In the following section, we present the unified theory for
designing test generation and diagnosis algorithms. Two new
algorithms are proposed. It is shown that both algorithms
produce the fault-detection test (the Modified Counting
Sequence) and the fault-diagnosis test (the Walking-1
Sequence) as special cases. Section 3 discusses some important
characteristics of the proposed algorithms. Some directions for
future work are given in Section 4. The last section provides
some concluding remarks.

2. A Unified Theory

In this section, we generalize the results from the previous
works [1-4] by proposing a unified theory for designing
optimal test generation and diagnosis algorithms. This theory is
based on a general concept: Suppose, for an iV-net board, that
the number of parallel test vectors (PTVs) which we can
"afford" to apply is p, where p > [log(iN-2)]. Then, the
problem of generating a test vector set with optimal diagnostic
capability is equivalent to that of "intelligently" assigning a
unique (p-bit) sequential test vector (STV) to each of the N
nets such that the overall diagnostic ambiguity of the test is
minimized. Since, excluding the all-0 and all-l STVs, there are
2p-2 possible STVs, the solution space is defined by

To circumvent combinatorial explosion, we will describe the
optimality of a solution in heuristic terms only. Among
possible solutions, we will propose two heuristic algorithms.
These algorithms can generate test vectors with complete fault
detection capability, and also "good" fault isolation
capability. Since both algorithms produce test vectors with full
fault detection capability, we will describe their "goodness"

Reprinted from IEEE Proceedings 1989 International Test Conference,
pages 71-77. Copyright © 1989 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

EH0321-0/90/0000/0318$01.00 © 1989 IEEE 318

only in terms of their fault isolation capability. In general, we
attempt to increase the diagnostic capability of a test vector set
by reducing its potential for producing aliasing and/or
confounding syndromes [5].

All algorithms proposed in the literature provide the designer
with individual, ad hoc solutions which fall within two
extremes—the test generated by the Modified Counting
Sequence Algorithm [2], which is most compact, but least
helpful to diagnosis (p =[log(N+2)]); and the test generated
by the Walking-One Algorithm [4], which is most helpful to
diagnosis, but least compact (p=N). In contrast, both of our
algorithms share an important property: They enable the
designer to select from a full range of solutions
([log(N+2)l <p <N) based on such trade-off criteria as test
compactness and diagnostic capability.

Now, we will describe the two heuristic algorithms in detail.
The first one assumes that no physical design information is
available; while the second one assumes that certain design and
process information can be used.

2.1 The Min-Weight Algorithm

This algorithm can be used when no design and process
information is available. Typically, the designer specifies the
total number p of parallel test vectors (PTVs) to be produced in
advance. During test generation, the Min-Weight Algorithm
sequentially assigns a unique (p-bit) STV of minimum weight
to each of the N nets (hence the name Min-Weight Algorithm).
Since, the number of unique STVs which can have a weight of

the maximum weight wmax of the N assigned STVs is given by
the minimum value of k for which the following is true

(1)

A necessary consequence of the Min-Weight Algorithm is that
wmax is always greater than or equal to the weight of any of
(2p-2)-N unassigned STVs (excluding the all-1 STV). Also
observe that if N=2p-2, then wmax=p-l and all (2p-2)
possible STVs will be assigned. A sample test produced by
this algorithm is shown in Table 1, where p = 4 and N = 12

Intuitively, one can see that if all shorts exhibit wire-OR
behavior, the test generated by the Min-Weight Algorithm is
less likely to produce aliasing syndromes than that by the
counting methods [1,2]. This follows from the observation that
shorting of two or more nets often produces a syndrome whose
weight is greater than those of all the STVs assigned to the
shorted nets. Since all assigned STVs have minimum possible
weights, the (heavy) syndrome is less likely to alias with one of

Nets
ni

n2

n3

n4

n5

n6

n7

n8
n9

n10

n11

n12

P
1
0
0
0
1
1
1
0
0
0
1
1

-Bit STVs
0 0 0
1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 0
1 0 1

Weights
1
1
1
1

2
2
2
2
2
2
3
3

TABLE 1. Test Vectors Produced by the
Min-Weight Algorithm

them.

It is interesting to observe the lower and upper boundary
conditions of this algorithm: If p = [log(N+2)] , the test is
spatially most compact, but diagnostically least helpful; its
diagnostic capability is marginally better than, or even
identical to, that generated by the counting methods. On the
other hand, if p = N, the test is diagnostically most helpful, but
spatially least compact; it is the same as that generated by the
Walking-One Algorithm.

2.2 The Max-Independence Algorithm

The Max-Independence Algorithm minimizes the size of a test
without sacrificing its diagnostic accuracy. This is achieved by
using net adjacency (i.e. wire routing) information as well as
certain process-related information—in particular, the
maximum size of expected shorts or solder defects. (The size a
of a short or solder defect is the number of nets affected by the
defect.) The following definitions are needed before
describing the Max-Independence Algorithm.

Definition 2.1. Given a binary vector v = (bo,b\,...,b„), let i
and j be the lowest and highest bit positions respectively such
that bi=bj=l. The potential weight w of v is equal to j-i+l for
all non-zero v; otherwise, w = 0. For example, vectors
(0,1,1,1,0) and (0,1,0,1,0) both have a potential weight of 3.
Further, the number N$ of unique (p-bit) STVs that can have a
potential weight of w is given by

(2)

Definition 2.2. A set of N nets {n1,n2,...,nN) is an
adjacency-ordered set if ni is more adjacent to, or more likely
to be shorted with, ni+1 than ni+2 for l<=i<=N-2, and if ni is
more adjacent to ni-1 than ni-2 for 3<=i<=N. Note that a net on a
circuit board can be physically adjacent to its neighboring nets

319

in more than one dimension. Therefore, only a partial, or
approximate, adjacency-ordering is achievable in practice.
Fortunately, bare board testing eliminates many faults (e.g.
inter-layer shorts) which weaken the "net-adjacency
assumption." We will show that even a partial ordering is
more useful than a random one. A "good" partial adjacency
ordering can be easily obtained by approximating net
adjacency with device pin adjacency. (Here, we assume that
most common shorts are caused by solder bridges affecting
physically adjacent device pins.)

Definition 2.3. Given an adjacency-ordered set of nets, let ni

be the lowest ordered net, and nj the highest ordered net
affected by a given short. The extent e of the short is then
defined as j-i+l. In a physical sense, e is related to <sig> the
number of nets affected by a short (e.g. the number of nets
shorted together by a single "solder blob"), and to the
ordering of the nets: for a complete adjacency-ordering, e = a;
for a partial adjacency-ordering, e >= <sig>. Clearly, e is bounded
by 2<= e <=N.

Finally, we assume that the reader is familiar with the diagonal
independence property of a test vector set which is detailed in
the accompanying paper. Having provided sufficient
background material, we are ready to describe the Max-
Independence Algorithm in detail.

The Max-Independence Algorithm consists of the following
steps:

1. Find the minimum number p of PTVs that are required
for unambiguous diagnosis of all expected shorts, given
that the extents of these shorts will never exceed some
predetermined limit E. (As seen in Theorem 2.1 below, p
is given by

\E + log(W+l) - logB - ll if E > 2 or log(A/+l) < f log(W+l)l

P=\
riog(A/+2)l if£ = 2and log(N+l)= Clog(AM-l)l

where 2<E<N).

2. Generate an adjacency-ordered list of all N nets. (Partial
adjacency-ordering is acceptable if complete adjacency-
ordering is impractical.)

3. Form unique subsets of p-bit STVs (excluding the all-0
and all-1 STVs) such that each subset is made of all
possible STVs which have the same potential weights
and the same Hamming weights. (Observe that each
STV subset contains a maximum number of unique
STVs that are diagonally independent—thus the name
Max-Independence Algorithm.)

4. Use the STV subset with the smallest potential weights
(i.e. 1) to form an initial ordered set of STVs.

5. Concatenate, repeatedly, a new STV subset with the next
smallest potential weights to the ordered STV set until it

contains at least N STVs. (If two or more STV subsets
have equal potential weights, pick the subset with the
smallest Hamming weight.)

6. Assign, sequentially, an STV from the ordered STV set
to the next unassigned net in the adjacency-ordered net
list until all N nets have been assigned a unique STV.

A sample test generated by this algorithm is shown in Table 2,
where p = 4 and N =12.

Adjacency-
Ordered Nets

n1
n2

n3
n4

n5

n6

n7

n8
n9

n10

n11

n12

1
0
0
0
0
1
0
0
0
1
0
0

STVs
{p bits)

0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
1 0 0
1 1 0
0 1 1
0 0 1
0 1 0
1 0 1
0 1 0

0
0
0
0
1
0
0
0
1
0
0
1

Potential
Weights

1
1
1
1
1
2
2
2
2
3
3
3

TABLE 2. Test Vectors Produced by the
Max-Independence Algorithm

It is important to point out a unique property of the STV set
produced by the Max-Independence Algorithm. First, notice in
Table 2 that the vector set exhibits a very regular pattern.
Specifically, it is made of (successively smaller) STV subsets

which are
diagonally independent. Also, the unique ordering of the STVs
guarantees that as long as the extent of any given short (see
Definition 2.3) never exceeds a certain upper bound (4 in this
case), the fault can always be unambiguously diagnosed. This
is because any 4 consecutive STVs in the vector set possess the
diagonal independence property. One can be easily convinced
of this assertion by observing a number of examples. The most
obvious example involves the STVs assigned to nets n1, n2,
n3 and n4. A less obvious example consists of the STVs
associated with nets n4, n5, n6 and n7, whose diagonal
independence property becomes evident upon realizing that the
STVs of n4 and n5 and the STVs of n6 and n7 can be
interchanged [5].

Table 3 summarizes some important characteristics associated
with the Max-Independence Algorithm. As seen in this table,
STVs of successively larger potential weights are assigned to
each of the N nets, and the maximum potential weight of all
assigned STVs is denoted by k (column 1). In addition, as the
potential weight w-t of an STV subset increases, the maximum
defect extent ei for which full diagnosability is still maintained,

320

t The all-0 and all-l STVs are excluded to detect all stuck-at faults.

TABLE 3. The STV Assignment Sequence of the
Max-Independence Algorithm

decreases (column 2). Specifically, upon completion of test
generation, the maximum allowable defect extent E of the test
vector set becomes min{ei,} or p-(k-2). Finally, since the total
number of STVs to be assigned is N, we should be able to
equate N to the sum of the terms in column 3.

At this point, it has become apparent that the larger the
maximum defect extent E, the larger the number p of PTVs
that are required to guarantee unambiguous diagnosis of all
expected shorts. Obviously, given E, it is desirable to compute
the minimum p which still assures complete diagnosis. The
following theorem enables us to do precisely that.

Theorem 2.1. Let E be the maximum extent of all expected
shorts on a board with N adjacency-ordered nets, and let the
test generation algorithm be the Max-Independence Algorithm.
Then, the minimum number p of parallel test vectors required
to unambiguously diagnose all expected shorts is given by

where 2<=,E<=N.

Proof: Obviously, the total number of STVs assigned by the
Max-Independence Algorithm (i.e. the sum of the terms in
column 3 of Table 3) must equal N. Therefore,

Table 3), is equal to E. Since min{e,} =p-(k-2),

E =p-(k-2) (6)

must hold. Solving (5) and (6) forp, we obtain

p = [E + log(N+1) - logE - 1] (7)

p = [E + log(N+2) - logE - 1] (8)

Note that the term log(N +2) in (8) reflects the omission of both
the all-0 and all-l STVs from the test vector set. Finally,
putting E = 2 in (8), we get

p = [log(.N+2)] (9)

a
Note in (3) that p is a function of N and E. While N is always
known, E can only be estimated or empirically obtained for a
given board and manufacturing process. Also, it can be verified
that p satisfies the two well-known boundary conditions. That
is, for 2<= E <=N,

[log(N+2)] <=p <=N

Further, as seen in Figure \,p is essentially a linear function of
E for a given N.

p
(number
of PTVs)

Figure 1. The Effect of Maximum Defect Extent
on the Number of PTVs

Note that although in the worst case (i.e. when all possible
shorts are considered, including that which affects all N nets)
E = N, in practice, E << N holds for most of the faults that will

321

Simplifying the two series on the right hand side of (4), we get

(4)

or

(5)

We know that unambiguous diagnosis of all expected shorts is
guaranteed if the minimum of e,-, the maximum allowable
defect extents associated with the STV subsets (column 2 of

Note that the term log(N+l) in (7) clearly signifies the
exclusion of the all-0 STV from the test vector set. The Max-
Independence Algorithm automatically avoids assigning the
all-1 STV to the last net nN as long as E > 2 or
log(iV+l) < [log(N+l)] . Otherwise, when the boundary
condition that E = 2 and log(iV+l) = [log(N+l)l is true, we
must subtract 1 from the right hand side of (4) to account for
the exclusion of the all-1 STV. This, after solving for p again,

actually occur. For example, E = 20 maybe an upper bound on
the extents of, say, 99% of the actual shorts encountered by a
particular board.

We now illustrate the significance of Theorem 2.1 with a
simple example. Given that a board has 1000 nets (N = 1000),
which are (completely) adjacency-ordered, and that the number
of nets affected by any given short never exceeds 20 (E = 20),
the minimum number of PTVs required to fully diagnose all
expected shorts, according to Eq. (3), is p = 25. Note that p is
significantly smaller than the upper bound N = 1000, and that
full diagnostic capability of the test is still maintained. Of
course, this is possible only because we have prior information
regarding net adjacency and the maximum size of expected
short/solder defects.

3. Discussion
In this section, we will discuss some important aspects of die
algorithms proposed in the last section.

3.1 The Min-Weight Algorithm

The characteristics of this algorithm will be described in terms
of its trade-off criteria, measure of goodness, and diagnostic
capability.

Trade-off Considerations: Virtually no design and process
specific information is needed by the Min-Weight Algorithm.
Moreover, the fault model includes all theoretically possible
shorts. The primary trade-off criterion offered by the algorithm
is p, the number of PTVs that the test engineer is willing to
apply to the board under test, given certain spatial and
temporal constraints (i.e. vector storage space and test
throughput). Once p is determined, the algorithm generates an
STV set whose maximum Hamming weight is minimal
(assuming only OR-type shorts are possible).

Measure of Goodness: The qualitative justification for the
Min-Weight Algorithm is that the probability of the test to
produce aliasing syndromes (whose weights are generally
greater than the constituent STVs) is likely to diminish if the
weights of the assigned STVs are minimized. In general, the
larger the p (where [log(N+2)] <=p <=N), the smaller the
chance of aliasing, and thus the "better" the test vector set.

Diagnostic Capability: The Min-Weight Algorithm does not
totally prevent the test vector set from producing aliasing and
confounding syndromes although the probability of their
occurrence is reduced. Therefore, when unambiguous
diagnosis is desired, the optimal adaptive diagnostic algorithm
presented in the accompanying paper [5] can be used to resolve
any ambiguity.

3.2 The Max-Independence Algorithm

Our discussion on the Max-Independence Algorithm will
cover four aspects: trade-off criteria, measure of goodness,
diagnostic capability, and test complexity.

Trade-off Considerations: This algorithm typically requires
the knowledge of net adjacency and maximum defect extent.
Using this knowledge, the size of a test can be minimized
without compromising its diagnostic capability. Similar to the
Min-Weight Algorithm, this algorithm allows the test engineer
to use the maximum allowable p as the trade-off criterion.
Given a predetermined value of p, a set of p-bit STVs is
generated. This test set is less likely to cause diagnostic
ambiguities because it consists of maximum STV subsets
which are diagonally independent.

The Max-Independence Algorithm gives the designer another
trade-off option. Assuming that unambiguous one-step
diagnosis [5] is required for all shorts whose extents do not
exceed a predetermined upper bound E, this algorithm allows
one to compute the corresponding minimum value of p which
guarantees the full diagnosis of those shorts. Typically, the
trade-off parameter E can be estimated using accummulated
statistical data pertaining to the sizes of solder defects.

Measure of Goodness: In most applications, the designer uses
die Max-Independence Algorithm to derive p from E, die
maximum extent of all (or most of) the expected shorts.
Therefore, the larger the E (and hence the p), the "better" the
test vector set. This is because the probability that the extent of
a short exceeds E (or equivalendy the probability of diagnostic
ambiguity) decreases as E increases. (Recall that aliasing
and/or confounding syndromes can be encountered only when
the extent of a short is greater than E.)

Diagnostic Capability: As mentioned previously, as long as
the extent of a short does not exceed E, the Max-Independence
Algorithm guarantees complete diagnosis. Strictly speaking,
however, the only value of E that assures full diagnosis of all
possible shorts is N, the total number of nets on the board.
Fortunately, in reality, the "equi-probable assumption" about
all shorts never holds. That is, realistic shorts do not occur
with the same frequency. For example, a 5-net short is far more
likely to occur than a 50-net short. This implies that it is
possible to select a proper E (e.g. 50) which is greater than the
extents of a great majority of realistic shorts. Of course, in the
unlikely event where the extent of a short exceeded E, and
aliasing and/or confounding syndromes were encountered, we
can always resort to the optimal adaptive algorithm described
in [5] to achieve full diagnosis.

Test Complexity: Previously, we have shown that p, die
number of PTVs generated by the Max-Independence
algorithm varies almost linearly with E, the maximum defect
extent (Figure 1). Fortunately, E in reality is much smaller than
N the total number of nets, and can be treated as a constant
parameter indicative of a particular character of the
manufacturing process (e.g. maximum solder blob size).
Therefore, we can assume that p is essentially O(logN),
especially when E is small relative to logN (see the upper
diagram in Figure 2). However, as E gets much larger than

322

Figure 2. The Effect of Total Net Count
on the Number of PTVs

logN, p becomes almost insensitive to variations in N. That is,
p remains nearly constant in spite of changes in N (see the
lower diagram in Figure 2). Note that in Figure 2 each solid
line plots p as a function of TV for a typical value of E (e.g. 12).
The dotted lines represent p=N. The values of p are plotted
only to the right of the dotted line, where N>=E. (Clearly, the
maximum defect extent should never exceed the total number
of nets.)

To summarize, in terms of test compactness, the Max-
Independence Algorithm is comparable to the Modified
Counting Sequence Algorithm; however, in terms of diagnostic
capability, it is equivalent to the Walking-One Algorithm.

4. Future Work
The unified theory proposed in this work has transformed test
generation for wiring interconnects into a more general
problem. This problem involves assigning unique p-bit vectors
(STVs) to a set of N nets such that the diagnostic capability of
the resultant test is maximized. As mentioned previously, the
solution space of this problem is extremely large, and various.

heuristic techniques must be employed to make the problem
computationally tractable. Potentially, families of heuristic
algorithms can be developed. We have proposed two such
algorithms which are based on different assumptions about the
availability of certain information (e.g. design and process
information). In the future, we intend to explore other heuristic
algorithms including those based on the techniques of binary-
tree search.

We are convinced that the Max-Independence Algorithm is a
very powerful test generation technique for wiring
interconnects. However, its effectiveness directly depends on
our ability to obtain a "good" adjacency-ordered net set. For
such a net set, the extent of a short tracks very closely to the
size of the short (e.g. the size of the solder blob). On the other
hand, for a poorly adjacency-ordered net set, the maximum
defect extent E could become proportional to the total number
of nets TV. As a result, p, the number of required PTVs may
become O (N) instead of O (logN). Therefore, we intend to
develop effective schemes for obtaining good, partially
adjacency-ordered net sets. Realizing that most solder bridges
affect the adjacent pins of the same device, an obvious and
good approximation of net-adjacency-ordering is pin-
adjacency-ordering. Note that the latter can be easily derived
from existing device libraries.

5. Conclusion
In this paper, we addressed the need of minimizing the test size
while maintaining its diagnostic capability. This need is
particularly pressing if the board under test is equipped with
boundary-scan devices, and the interconnect test vectors have
to be applied through the serial scan chain. We proposed a
unified theory which reduces interconnect test generation to a
more general problem. This problem involves assigning unique
sequential test vectors (STVs) to all the nets on the board so
that the overall diagnostic accuracy of the test is maximized.
With this new approach, it is possible to develop families of
interconnect test algorithms. We demonstrated that the
algorithms reported in the literature are special cases of the two
new algorithms proposed in this paper: the Min-Weight
Algorithm and the Max-Independence Algorithm. These
algorithms were shown to be optimal or near-optimal for a
given set of design parameters. In particular, the Max-
Independence Algorithm can achieve virtually full diagnosis of
shorts with O(logN) parallel test vectors (PTVs). The new
algorithms increase design flexibility by providing a full range
of solutions (i.e. test vector sets) based on various trade-off
criteria such as test compactness and diagnostic accuracy. We
also described some of the trade-off parameters as means for
quantifying the quality of the tests. Finally, we discussed the
significance and the limitations of the proposed algorithms, and
provided some directions for future work.

323

References

[1] W. K. Kautz, "Testing of Faults in Wiring
Interconnects," IEEE Transactions on Computers, Vol
C-23, No. 4, April 1974, pp. 358-363.

[2] P. Goel and M. T. McMahon, "Electronic Chip in
Place Test," Proceedings International Test
Conference 1982, pp. 83-90.

[3] P. T. Wagner, "Interconnect Testing with Boundary
Scan," Proceedings International Test Conference
1987, pp. 52-57.

[4] A. Hassan, et al., "Testing and Diagnosis of
Interconnects using Boundary Scan Architecture,"
Proceedings International Test Conference 1988, pp.
126-137.

[5] C. W. Yau and N. Jarwala, "A New Framework for
Analyzing Test Generation and Diagnosis Algorithms
for Wiring Interconnects," Proceedings International
Test Conference 1989.

[6] JTAG Boundary Scan Architecture Standard Proposal,
Version 2.0, published March 1988.

324

A Self-Test System Architecture for Reconfigurable WSI
David L. Landis

University of South Florida
Center for Microelectronics Research
Department of Electrical Engineering

Tampa, FL 33620

ABSTRACT

Progress in Wafer Scale Integration (WSI) has
brought the problem of electronic system testing into the
semiconductor manufacturing arena. The problem is
complicated by the reduced controllability and observability
implicit at the full wafer integration level. Structured
methods must be employed to generate and apply tests in a
hierarchical fashion at the function, chip, and system levels.
This paper describes a methodology under development
within the WSI program at the University of South Florida
which addresses these problems for both the manufacturing
and field test environments. A uniform testing interface is
defined for each functional chip (cell), with built-in self-test
incorporated whenever possible on all new designs. Use of
a standard interface will reduce test complexity and costs by
allowing entire wafer probing by a common standardized
probe card, irrespective of the number of different species of
functional cells. Details are provided for the function (cell),
chip, and wafer level testing standards as well as for the
procedures to be followed at wafer level restructuring and
test. The proposed methods will allow current generation
wafer restructuring methods to be applied to the next
generation of WSI designs requiring numerous cell types
and increasing on-wafer complexity.

I. Background

As Very Large Scale Integration (VLSI) technology
grows at a rapid rate, the problem of testing state-of-the-
art devices is growing even faster. Difficulties associated
with chip testing (cost, time, test data volume, tester
complexity) have grown because advances in IC technology
must slightly precede advances in test technology.
Furthermore the trend toward larger levels of on-chip
integration have not been matched by increasing package
pin count, worsening the accessibility of on-chip circuitry.
The size of monolithic integrated circuits has generally
been limited by the acceptable yield loss associated with
defects within the manufacturing process. Thus while
advancing technology has reduced feature size and defect
densities to allow higher levels of on-chip integration, the
defect, yield, and cost relationships always place a physical
limit on the maximum economical chip size. Traditional
large scale system designs continue to be implemented
using multiple packaged chip assemblies.

This research is being supported by the
Defense Advanced Research Projects Agency
under DARPA Grant No. MDA 972-88-J-1006.

An alternative to traditional assembly methods is to
develop an IC design and fabrication technology which is
capable of tolerating defects. This is accomplished through
the careful use of redundant components, along with a
means to restructure each fabricated device to circumvent
its unique defect pattern. One successful method for
providing defect avoidance at the wafer level has been
demonstrated at the MIT Lincoln Laboratories. This
Restructurable VLSI (RVLSI) technique uses a laser to
configure wafer level interconnections, following wafer
probe tests which identify defective components [1]. Both
additive and deletive interconnections can be made using
this technology through the use of fuse and anti-fuse
connections on the wafer. Under DARPA support, this
technology is being transferred to the University of South
Florida in support of wafer scale research which includes
technology, architecture, and test activities.

Recent progress in WSI at Lincoln Labs and
elsewhere has brought the problems of system level testing
into the semiconductor manufacturing arena. The problem
is complicated by the reduced controllability and
observability implicit at the full wafer integration level.
Structured methods must be employed to generate and
apply tests in a hierarchical fashion at the function, chip,
and system levels. Extensive CAD tool support is
mandatory because each manufactured wafer is potentially
unique due to its personal defect map. Cells must be
tested prior to restructuring to determine the cell level
defect map. For WSI designs containing multiple species
of cells, this requires multiple probe cards and extensive
wafer handling during test. During the restructuring
process, the interconnections must also be tested to assure
proper connectivity. Only after the restructuring task has
been completed can traditional system level functional
testing be performed. Failures found at the final system
test level are traditionally the most expensive to find and
repair, and this becomes even more expensive for RVLSI
and WSI because of the inherent difficulties associated
with repair at the wafer level.

II. Reconfigurable WSI System
Test Requirements

Many of the inherent test problems associated with
Wafer Scale Integration could be reduced through
limitations upon allowable system designs. It is well
accepted that there are substantial benefits associated with
restricting the system building blocks to one or a few
simple cells [2], For example, a totally homogenous design
(only a single building block) could be wafer probe tested
using only a single probe card. Furthermore, the

Reprinted firorn IEEE Proceedings 1989 International Test Conference,
pages 275-282. Copyright © 1989 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

EH0321-0/90/0000/0325$01.00 © 1989 IEEE 325

assignment of logical functions to physical cells is
simplified because all cell instances are functionally
interchangeable. Unfortunately such homogeneity in
system design is virtually unattainable. For even the
simplest homogenous processor system design, several
different cell types will be required to account for input
and output requirements. Restructurable WSI designs
currently under development have as many as five cell
types [3], and it is easy to envision system requirements
for even larger numbers of cell species. Obviously the
system level design must balance the requirements of
efficient overall design using many function specific cell
designs, against efficient wafer level layout and redundant
resource utilization which dictates only a few unique cells.
This problem will become more acute as the development
and acceptance of WSI ushers in an era of application
specific wafer scale designs, which will likely require
numerous cell species to allow for a wide range of
customization.

Given the previously identified problems and
requirements for restructurable WSI, the following
subsections outline the procedures which must be followed
during the three testing phases: i.) silicon
processing/manufacturing test; ii.) reconfiguration and
restructuring test; iii.) system test (field test and
verification / fault tolerance).

i.) Processing/manufacturing test: Silicon processing
for WSI is generally performed in much the same manner
as that for conventional VLSI chip fabrication. The ability
to create WSI by placing multiple chip types on a single
wafer follows the Mead and Conway pioneered multi-chip
project wafer methodology [4]. This technology is readily
available to universities and defense contractors through
the DARPA funded MOSIS silicon foundry. Upon
completion of processing, each unique chip or cell must be
independently verified on a VLSI tester. This requires a
separate probe card and test vector set for each cell type.
A typical procedure would involve setting up a probe card
and test program for a particular chip, and then probing all
instances of that chip on all untested wafers. Once this
test is complete, a new probe card and test vector set is
loaded for the next cell type, and the defective devices of
this type are identified. This process must be repeated
until a complete wafer defect map is obtained. The
extreme amount of wafer handling (and corresponding yield
loss) associated with designs containing multiple cell
species should be obvious. Following the cell tests, a wafer
scale interconnect verification test must be performed to
identify the defective wafer level tracks which cannot be
used for global interconnections.

ii.) Restructuring test: Following test step i.)
described above, those wafers with sufficient cell and track
yield are packaged to enable electrical circuit connections
to be monitored during the laser restructuring process.
Given the defect map of a specific wafer and the logical
description of the target system design, a logical to
physical mapping must be performed to route the wafer
scale interconnections. This process is typically assisted
by a CAD tool [5] which makes the assignment of logical
cells to good cells on the wafer, and then performs the
routing of required cell-to-cell interconnections. Once this
assignment has been made, the laser restructuring process
is used to physically attach all the required system
interconnections. Because there is less than 100% yield
associated with this restructuring process, it is desirable to

perform incremental tests during the restructuring process.
Such testing allows defective interconnection links to be
quickly identified and re-routed while the capability and
wiring resources still exist to perform such an operation.
This is currently done in the RVLSI system by using the
laser to illuminate a junction within a cell, and then
measuring the generated photo-current at an external pad
which must pass through the link or cut under test [2].
For interconnection signals which are completely internal
to the wafer, extra links and wires must be connected to
temporarily route these signals to a wafer pad for test
purposes. Following a successful test, these extra
connections are deleted using the laser to blow link fuses.

iii.) System test: In a conventional WSI system,
complete wafer functional tests are performed totally under
external I/O control. Where provisions are made to use
extra internal redundancy for field level fault tolerance,
the testing and identification of bad cells (and the
swapping in of good cells), must be done under the control
of off-wafer resources.

III. WSI Self-Test System Architecture

In an attempt to reduce the number and magnitude
of wafer scale test problems (as described in sections I and
II of this paper), a WSI self-test system architecture is
under development at the University of South Florida.
This architecture utilizes standardized system test
interfaces for Wafer Level test coordination within the
framework of a system level Built-in Self-Test (BIST)
strategy. Several maintenance network standards have
been developed which potentially address the wafer scale
test coordination problem. These include the Test &
Maintenance (TM) and Element Test & Maintenance
(ETM) networks [6], developed primarily for military
applications, and the Test Access Port (TAP) defined in the
Joint Test Action Group (JTAG) boundary-scan
architecture standard proposal [7], endorsed by commercial
manufacturers. Under the auspices of the Test Technology
Committee of the IEEE Computer Society, a testability bus
standardization committee has been formed to develop an
IEEE standard for a testability bus. The minimum serial
signal subset of this proposed standard (P1149.1)
corresponds to the current JTAG test access port (version
2), and provides a standardized serial interface for ATE
(automatic test equipment) as well as BITE (built-in test
equipment) access. Work is already underway at
Honeywell [9], Texas Instruments [10] and elsewhere, to
develop chips which can provide a standardized test-bus
interface based upon the VHSIC, JTAG, and/or IEEE
PI 149.1 test bus standards.

Utilizing the P1149.1 (JTAG TAP) standard, an
evolutionary path has been defined within our WSI self-
test architecture to allow existing components to be added
to a WSI design by adding only a simple set of boundary
scan I/O pads in addition to the standardized self-test
interface. However, supplemental BIST circuitry is
recommended for all new cell designs. The basic elements
and requirements of this architecture are summarized in
section III.a. below. Several WSI cell designs are currently
in development which incorporate this architectural
standard, and their functional architecture and test
features are briefly summarized in the results (section IV).

326

A. Elements of the WSI Self-Test Architecture B. Application of the WSI Self-Test Architecture

All WSI cell designs include a standardized test
interface {based upon the proposed IEEE P1149.1
(JTAG v.2) standard [8]}

A common probe pattern is defined for all cells,
utilizing a standardized placement of probe pads and
test interface signals. This allows a single probe
card to be used to test an entire wafer irrespective
of the number of different cell species.

All cells incorporate boundary scan [7] to facilitate
internal and inter-chip testing. Where possible,
Built-in Self-Test (BIST) will be incorporated on new
designs to reduce testing time, cost, and data
volume; and to simplify the test generation problem.

A "standardized" maintenance processor is proposed
for future wafer level system designs to facilitate
laser restructuring testing and system verification
testing. This maintenance processor could also
provide the basic support necessary for field level
fault tolerance given an appropriate underlying
system architecture.

This section describes how the features defined in
section HI A.) will be used to facilitate wafer level testing
and system verification. Figure 1 illustrates the overall
WSI self-test system concept. As indicated, a common
seven pin interface is included on each wafer level cell (or
chip). By placing the test interface in the corner of the
chip layout, a common probe card can be used to probe
this interface, irrespective of the actual cell dimensions.
Thus a complete wafer test can be performed without
physically removing the wafer from the tester or having to
interchange multiple probe cards. Naturally, the test
process must be organized as a sequence of tests of
individual cell types, with delays between these tests to
load the unique test program associated with each cell
type. Note that the incorporation of BIST within cells can
drastically reduce the test time, test program length, test
cost, and test data storage requirements.

As indicated, the standard interface includes both power
and ground pins for the unit under test. This is because
the physical power and ground connections are made
during the restructuring process, so that devices with

Figure 1. Wafer Level Self-Test Concept

327

catastrophic Vdd - Gnd shorts do not disable an entire
wafer. For the simple WSI cells currently being developed
(<10K devices), a single pair of Vdd and Gnd pins will be
adequate to provide power during wafer probe testing.
However, for more complex devices which require high
power / high speed testing, multiple Vdd and Gnd pins will
be required at wafer probe. This can be accommodated
within the standard by placing additional power pin pairs
adjacent to the existing power pins at the edge of the
standard test probe card. The signal designations on the
self-test interface follow the proposed IEEE P1149.1
standard, with signal definitions as given in Table 1 below.

TABLE 1. Self-Test Interface Pin/Signal Definitions

In addition to a standardization of the self-test
interface itself, there are several other advantages
associated with the use of this interface. It is not
uncommon for a VLSI design to have its overall chip
dimensions dictated by the pad size and pitch, especially
where large numbers of I/O are required on designs of
moderate complexity. Reductions in pad size and pitch are
limited by the accuracy and repeatability limitations of
wafer probing. However, in the WSI self-test strategy just
defined, only those seven self-test interface pads need to
be full size probe pads, with the remaining I/O connections
only directly connected to global wafer interconnections
and the boundary scan path. Thus in some cases there
would be a substantial wafer area savings associated with
the use of the standardized self-test interface.

An additional advantage is found in the potential for
performing closer to at-speed testing using this
architecture. Output drivers for WSI designs are typically
sized to drive the worst case on-wafer capacitance.
However the capacitive loading associated with driving a
probe card and test head can be orders of magnitude larger
than that encountered on-wafer. In the WSI self-test
architecture, only the five common self-test interface
signals must logically communicate with the probe card.
Furthermore, only one of these signal is an output, and its
driver can be appropriately sized to drive the test head
load. Consequently, the on-chip test / built-in self-test can
proceed at operational speeds, or as limited by the test
clock generation and distribution circuitry. Furthermore,
additional area and power can be saved through the
reduced size of off chip drivers, which no longer need to
drive off-wafer capacitances during test.

Figure 2 provides a block diagram level illustration
of the complete standard test interface, which is comprised
of registers, decoding logic and a sequential state machine
controller. The five registers are: instruction, boundary-
scan, bypass, pattern generator, and signature analyzer.
The individual register functions are defined as follows:

Instruction register - a shift-register stage and a parallel
output register. The instruction register allows an
instruction to be shifted in through the TDI pin. The
instruction is used to select the test to be performed
and/or the test data register to be accessed.

Boundary-Scan register - a single shift-register-based
path containing cells connected to all module inputs
and outputs.

Bypass register - a single shift-register stage between
TDI and TDO. It provides a short circuit route for the
test-data during a scanning cycle.

Pattern Generator - the Pattern Generator is constructed
using a 17-bit Linear Feedback Shift Register (LFSR)
which is configured to generate test patterns for the
built-in self-test mode. It may also be configured into
a shift-register so that an initial seed value may be
shifted in through TDI.

Signature Analyzer - forms a signature for the test
results during the built-in self-test mode using an LFSR
circuit. A seed can be shifted in through TDI and the
final signature may be shifted out through TDO after
the self-test is completed.

The scan path connections provide access to the
internal registers of the circuit, allowing all internal
parallel registers to be operated as shift-registers. The
number of scan paths may vary according to the structure

328

Signal

GND*

TCK1

TMS1

TD01

TDI1

Vdd*

*

Functional Description:(including P1149.1 -
JTAGv.2 standard signal definitions)

GND provides a ground connection for the entire
chip under test. Note that after restructuring, this
(and other pins around the periphery of logically
assigned good chips) will be permanently connected
to ground.

TCK1 is the test clock input to the chip under
test. This signal not only provides the clock
control for the test circuitry itself, but under
control of the test interface circuitry also provides
those chip level system clock signals necessary for
test / self-test.

TMS1 is the test mode select input for the chip
under test. This signal is used to control the
modes of operation of the testability circuitry
incorporated in the self-test interface. In
particular, it is used to enable boundary scan for
interconnect testing, on-chip test pattern input and
result output, as well as for initiation of built-in
self-tests for those devices which include such
modes of operation.

TDOl is the test data output from the chip under
test. This line is activated in conjunction with the
TCK1 and TMS1 lines to provide a serial test data
output. This test data may come from the
boundary scan registers within the chip, or from
the test interface circuitry itself (eg. the signature
resulting from a BIST operation).

TDI1 is the test data input to the chip under test.
This input is used in conjunction with TCK1 to
load either functional test patterns into the
boundary scan path; or to load test instructions into
the self-test interface circuitry (eg. a BIST
initiation command). Note that for each cycle of
TCK1, one input bit is accepted by TDI1 and one
output bit is produced on TDOl.

Vdd is a power supply input voltage to the chip
under test. Note that after restructuring, this (and
other pins around the periphery of logically
assigned good chips) will be permanently connected
to Vdd.

note: multiple GND and Vdd pins are permitted to
accommodate high speed / high power cells

Figure 2. Standard Self-Test Interface

of the design and the total number of on-chip registers.
Decoding logic identifies a selected test data register
according to the instruction in the instruction register.
The unselected registers maintain their previous values.
The controller is a synchronous finite state machine which
sequences through its various operations under the control
of the TMS and TCK signals. This design follows the
JTAG Test Access Port Controller specification [7].

The contents of the mstruction register and the state
of the test interface controller determine the mode of
operation of the cell and test circuitry. The various
operating modes are generically defined as follows:

Functional - On power-up reset, the mstruction register
is initialized to the functional command mode. This
mode continues until a different instruction is
clocked in. Pulling the TRST low for one clock
cycle, or holding TMS high for more than 5 clock
cycles will also force the controller into the
functional mode of operation.

External test - In this mode the interconnects of the
wafer scale system design are tested by means of the
boundary-scan registers. This is accomplished by
scanning data into the output boundary cells of a
module, and then observing the inputs of all attached
modules using their boundary scan input features.

Sample test - This may occur during the functional mode
of operation. The boundary-scan registers sample the
input and/or output of the module without
interfering with functional operation.

Internal test - In this mode the module is isolated from
the other modules on the wafer by means of the
boundary-scan registers, and the internal circuitry is
tested. This test may be conducted by means of
BIST or by shifting in external data scan path data.

Serial Scan - Instructions or test-data are shifted through
the 'daisy chain' connection of TDOs to TDIs.
However, the destination of the data may be
different in each module.

Using the self-test system architecture and interface
just described, the WSI manufacturing, restructuring, and
system level test procedures, as previously denned in
section II, are modified and enhanced as follows:

i.) Processing/Manufacturing test: The 7-pin
standardized wafer probe card will be loaded onto the
probe station, and the test vector set for the first chip type
will be loaded into the ATE memory. For the case of a
chip containing BIST, the test program could be as simple
as providing a test initiation command, and then reading
back the good - bad test result. Optionally, the tester
could be required to check the resultant BIST signature
against a known good value. In the worst case of a device
containing only boundary scan circuitry on each I/O pad,
conventional ATPG test data would be loaded in serial
fashion into the boundary registers to exercise the device.
In this case, the worst case test time would be N times
longer that of a conventional broadside (parallel) I/O test;
where N is the maximum of the number of bits in the
input / output boundary registers. At the completion of
a test, the chip position is marked as either good or bad,
and thewafer table is stepped to the next instance of the
cell whose test program is currently loaded in the tester.
Following completion of a particular cell type, the test
program for the next cell type is loaded into the tester,
and the procedure is repeated for the wafer sites
corresponding to that particular cell type. This entire
process is repeated until all cell types have been tested
and a complete wafer map has been obtained. The defect
map for wafer scale interconnections would be created at
this time using conventional capacitance measurements, as
is currently done [2].

ii.) Restructuring test: Testing during the laser
restructuring phase could be performed in a similar fashion
to that described in section II. However, an evolutionary
goal of the WSI self-test architecture is to allow logic
driven interconnect testing concurrent with the
restructuring process. This would be performed through

329

coordination of the restructuring laser with an off-chip
ATE controller or an on-chip maintenance processor. The
process sequence would be as follows: First, a wafer wide
test bus would be configured which, interconnects the self-
test interfaces of each chip to either an external ATE or
an on-chip maintenance processor. The Maintenance
Processor would be included on the wafer as a special chip
instance. This chip would be assigned responsibility for
control of the testability bus connections to all other chips,
and have direct off-wafer connections for diagnostic and
maintenance purposes. An example of a maintenance
processor test interface is given in the single chip test-bus
interface unit under design reported by Honeywell [9].
Using the boundary scan capabilities of each chip on the
wafer, the maintenance processor can be utilized to test
each chip-to-chip interconnection as it is restructured. A
more realistic and efficient method might be to perform
this interconnect testing in a staged fashion, first
restructuring logical groups of signals, and then testing the
individual groups. These signal groups would be
partitioned in such a way as to maximize the probability of
being able to reroute a faulty signal interconnection.

iii.) System test: The incorporation of the
Maintenance Processor chip as defined in ii.) above can
also be used to facilitate system level testing. For an
advanced system containing all self-testing chips, the
maintenance processor would be used to initiate a self-test
of all chips, collect the self-test responses, and signal
complete wafer self-health assessment to the external
world. Furthermore, if given sufficient intelligence, it
could be used to generate test patterns and compress
results for those chips which do not have on-chip BIST.
In addition, it could be used as a repository for
supplemental patterns which would be applied to BIST
devices as a means to improve the fault coverage provided
by the self-tests.

A complete wafer scale system containing the above
described features would be an ideal candidate for the
incorporation of field level fault tolerance. Given that
redundancy of components is implicit in the wafer scale
concept, intelligent partitioning of hard restructured and
soft restructured (electrically switchable) redundant
resources could be made. If all redundant resources are
not consumed during the initial restructuring process, then
appropriate architectures could permit the extra resources
to be available for field level fault tolerance. If an error
is observed (for example, via parity), the entire wafer
system could be configured into the self-test mode by the
maintenance processor. Following a self-health assessment,
the maintenance processor could determine if all assigned
resources are functioning correctly (the error was
transient), or whether an assigned resource was actually
faulty (permanent error). In the later case, if a redundant
resource is available via soft switching to replace the failed
resource, then this reconfiguration would be performed
under the auspices of the maintenance processor. Such an
operation could happen at power-on self-test time in a
manner which is totally transparent to the system user.

IV. Summary and Status

Under the design, architecture, and applications task
of our WSI research project, we are developing cells to
support Fast Fourier Transform (FFT) and related signal
processing operations. Figure 3 provides a system block

diagram of our reciprocal cell which provides one of the
fundamental operations required in a high speed array
architecture for LU decomposition (a common signal
processing task). This is the first of our chip designs
targeted specifically for WSI system implementation, and
it includes both on-chip Built-in Self-Test and standardized
self-test interface circuits. As indicated in the figure, the
15-bit input register includes a pseudo-random 15-bit linear
feedback shift register pattern generator mode of
operation. This provides exhaustive self-testing by
generating all (32K - 1) possible input sequences (the
reciprocal of zero is considered separately as a special
case). At the output boundary register, a 20-bit multiple
input signature register (MISR) mode of operation is
included for test result compression (again using LFSR
techniques). The figure also indicates the inclusion of the
standard test interface circuitry which provides for test
control and observation via the test bus. Design
complexity for this cell is approximately 7000 transistors,
and speed is predicted to be 120ns for a 3 micron CMOS
fabrication process. Additional details of this chip design
are provided in [11].

Application of the WSI self-test, interface to a
radically different cell type is illustrated in the block
diagram of Figure 4. This MSA (Multiply-Subtract-Add)
component provides the primitive computation necessary
for the implementation of a pipelined FFT algorithm. Due
to the large number of inputs and pipelined nature of this
design, exhaustive self-test cannot be practically
implemented. Thus a serial self-test is provided which is
initialized and controlled from the standard test interface.
Additional details of the MSA cell design and on-chip self-
test circuitry can be found in [12] and [13] respectively.

Summarizing the costs and benefits of the proposed self-
test system architecture for WSI:

• As with all structured test and self-test
methodologies, additional circuitry is required on
each chip. For the levels of integration
characteristic of WSI cells (on the order of 10K
devices), the self-test interface represents a
minimum percentage overhead (generally < 4%),
and the boundary scan register requirements should
only add approximately 3% additional penalty [14].

• The addition of boundary registers in all inter-chip
signal paths could reduce system throughput,
especially in asynchronous data driven system
designs. However, all candidate WSI systems
currently under evaluation involve synchronous
sequential design techniques. In such designs, the
use of boundary register is commonplace to provide
synchronization and re-timing for global wafer level
signals, and no time penalty is incurred.

• Use of a common 7-pin probe card for all WSI
designs will significantly reduce the probe card cost
($0 for new designs after the initial investment).
While the use of a serial test interface can produce
a test slow-down by a factor of N over conventional
wafer probe parallel testing, this can easily be offset
in future designs by the incorporation of a
significant fraction of self-testing devices on the
wafer. Equally important is the reduction in wafer
handling (complete wafer probe testing without
replacement of probe card) which could have a

330

X INPUT (Normalized 2's Comp. Fractional Data)

Figure 3. High Speed Reciprocal Cell

Figure 4. MSA (multiply-subtract-add) Cell

331

substantial impact on final wafer yield. Additional
benefits include area savings (due to I/O pad and
driver area reductions), and the potential for higher
speed testing because test head capacitances need
not be driven by the off-chip drivers.

• The on-wafer standardized testability bus and
maintenance processor provide for efficient logical
interconnect testing during restructuring. They
additionally provide an easy migratory path for
including fault tolerance in fielded systems. This is
very appealing because of the built-in redundancy
implicit in WSI for defect tolerance.

In addition, future work will be directed toward more
efficient use of wafer resources in support of field level
fault tolerance. For example, previous work has identified
optimal amounts and types of system level BIST using
computational performance measures [15,16]. Extensions
of this work have considered the optimal number of
maintenance processors for a self-testing architecture using
similar performance measures [17]. Related work has also
considered the use of redundant maintenance network
connections (redundant standardized test interfaces) to
improve overall system reliability and performance
[15,16,17]. Results from each of these previous research
activities could be included in a second generation WSI
self-test system architecture targeted for highly reliable,
fault-tolerant digital system applications.

References

[1] Wyatt, P. A., & Raffel, J. I., "Restructurable VLSI - A
Demonstrated Wafer Scale Technology", Proceedings
of the 1989 International Conference on Wafer Scale
Integration, January 3-5, 1989, pp. 13-20.

[2] JesshOpe, C. ed, Wafer Scale Integration, section 5.3,
Anderson, A. H., "Computer Aided Design and Testing
for RVLSI",pp.216-222, Taylor and Francis
Publications, Inc, 1987.

[3] Anderson, A. H. & Berger, R., "RVLSI Applications
and Physical Design", Proceedings of the 1989
International Conference on Wafer Scale Integration,
January 3-5, 1989, pp. 39-45.

[4] Mead, C. and Conway, L., Introduction to VLSI
Systems. Addison Wesley, 1980

[5] Frankel, R. et. al., "SLASH - An RVLSI CAD System",
Proceedings of the 1989 International Conference on
Wafer Scale Integration, January 3-5, 1989, pp. 31-38.

[6] IBM, Honeywell and TRW, "VHSIC Phase 2
Interoperability Standards TM / ETM Bus
Specifications," version 2.0, Dec. 31, 1986.

[7] The Technical Sub-Committee of the Joint Test
Action Group (JTAG), "A Standard Boundary Scan
Architecture", version 2.0, 30 March, 1988.

[8] P1149 T-Bus Standardization Committee (TBS©
Working Group of the IEEE Computer Society's Test
Technology Technical Committee, "IEEE Standard for
a Testability Bus", IEEE Std PU49-1989/D8 (Draft
Version 8), January 31, 1989.

[9] Brown, D. et. al, "A Single-Chip Test-Bus Interface",
Proc. 1988 GOMAC Conference, pp 565-568.

[10] Mokhoff, N. & Weitzner, S., "TI Boosts Testability in
Standard Cell ASICs", Electronic Engineering Times,
May 8, 1989, pp. 1,8.

[11] Jain, V.K., Landis, D.L., and Alvarez, C. "A Wafer
Scale L-U Decomposition Array with a new Reciprocal
Cell", Proceedings of the 1989 IFIP Workshop on
Wafer Scale Integration, Milano Italy, June 6-8,1989

[12] V. K. Jain, H. A. Nienhaus, D. L. Landis, S. A. Al-
Arian, and C. E. Alvarez, "Wafer scale architecture for
an FFT processor," Proc. IEEE International
Symposium on Circuits and Systems, May 7, 1989.

[13] S. A. Al-Arian, "The BIST Structure of the WSI MSA
Cell", Univ. of South Florida - CMR Technical
Report, WSI-T8, May 1989.

[14] Ohletz, M.J., Williams, T.W., & Mucha, J.P.,
"Overhead in Scan and Self-Testing Designs",
Proceedings of 1987 International Test Conference, pp.
460-470.

[15] Landis, D., Check, W., & Muha, D., "Influence of
Built-in Self-Test on the Performance of Fault
Tolerant VLSI Multi-Processors", Proc. 1987 Intl.
Conference on Parallel Processing, Aug. 17-21, 1987,
St. Charles, Illinois, pp. 114-116.

[16] Landis, D. and Muha, D., "Evaluation of System BIST
using Computational Performance Measures", Proc.
1988 Intl. Test Conference, Sept. 1988, pp 531-536

[17] Muha, D. "Built-in Self-Test Resources for Fault
Tolerant VLSI Environments", Ph.D. Thesis in
Electrical Engineering, Penn State University,
December 1988.

[15] Landis, D. and Check, W., "Essential Maintenance
Network Issues for Highly Reliable System Level
Built-in Self-Test", Proc. of 1987 IEEE Intl.
Conference on Computer Design, Oct 5-8, 1987, Port
Chester, New York, pp. 458-461.

[16] Landis, D. and Check, W., "Built-in Self-Test
Mamtenance System Impact on VLSI Computer
Performability", Proceedings of the 1988 IEEE VLSI
Test Workshop, March 22, 23 1988, Atlantic City, N.J.,
pp. 31-40.

[17] Check, W. "Fault-Tolerant Maintenance Networks for
Highly Reliable Self-Testing Systems", Ph.D. Thesis
in Electrical Engineering, Penn State University, Aug.
1988.

332

DESIGNING AND IMPLEMENTING

AN ARCHITECTURE
WITH BOUNDARY SCAN

Reprinted from IEEE Design & Test of Computers, February 1990, pages 9-
19. Copyright © 1990 by The Institute of Electrical and Electronics
Engineers, Inc. All rights reserved.

The problems of testing increasingly complex digital integrated
systems continue to challenge the design and test commu­
nity. At the printed-circuit-board, or PCB, level, these prob­
lems led to the formation of JTAG, short for Joint Test Action

Group, a collaborative organization of major semiconductor users in
Europe and North America. JTAG subsequently developed the
boundary-scan standard1 with the goal of improving the controlla­
bility and observability of an IC's primary inputs and outputs.
Because of this standard, which is now IEEE proposed standard
PI 149.1, we can now easily implement testability hardware using
computer tools, which reduces overall design time.

However, boundary scan does not address testability at the IC
level—primarily because there is no standard for designing BIST
circuits. At this level are many approaches to adding testability, but
the one that seems most promising for future VLSI and ULSI circuits
is built-in self-test, or BIST.2 In BIST, test data is generated and
evaluated on the chip.

In this article, we present an architecture called hierarchical test­
able, or H-testable, architecture for integrating boundary scan at the
PCB level and BIST at the IC level. We believe that this integration is
important because the boundary-scan standard defines access to the
IC during the IC test. The extra test pins let us control on-chip
testability hardware.

A digital system has several levels of hierarchy. First, we have the
PCB level, which contains such items as a Winchester control board.
The second level is the IC level, where we have units such as a
microprocessor chip. The third level, called the macro level, allows
us to make finer distinctions between functional modules like PLAs
and ALUs, for example—the so-called macros. We use these three
levels to define the H-testable architecture. With this hierarchical
structure, we can use BIST for a macro at the higher levels and so
more completely integrate the testability features at the IC and PCB
levels.

As we show in more detail later, the H-testable architecture can be
implemented using a self-test compiler.4 This compiler automatically
generates the layout of a macro, including hardware to generate data
for and evaluate the results of self-test.

RP. VAN RIESSEN
H.G. KERKHOFF

A. KLOPPENBURG

University of Twente, The Netherlands

The authors describe a standardized,
structured test methodology based on
the boundary-scan proposal from the

Joint Test Action Group, which is now
IEEE proposed standard PI 149.1. The
architecture ensures testability of the

hardware from the printed-circuit- board
level down to integrated-circuit level. In

addition, the architecture has built-in
self-test at the IC level. The authors have

implemented this design using a
self-test compiler.

EH0321 -0/90/0000/0333$01.00 © 1990 IEEE 333

CHIP-LEVEL SELF-TEST

Test interface elements
are located at the

primary inputs and
outputs of both macros

and ICs. Each TIE
contains boundary-scan
cells and serial control

registers.

ARCHITECTURAL REQUIREMENTS
To be H-testable, an architecture must have certain characteristics.

First, it must be hierarchical because, as we just mentioned, the
hierarchical approach allows us to use test results from a lower level
in higher levels. The results of a macro test can be used for the IC
test, for example. Second, the architecture has to be standard
because PCB manufacturers use ICs from different vendors on a
single board. If we have well-defined test-interface rules and control
definitions for every level of hierarchy, we can use standard test
approaches. Third, the architecture has to be structured also to
reduce extra design time. With a structured approach, test hardware
is developed only once and is reusable. A structured approach also
facilitates the design by allowing us to use computer tools. Finally,
to be H-testable, the architecture must incorporate the BIST facilities
of different macros.

INTEGRATION WITH BOUNDARY SCAN
Figure 1 shows the JTAG boundary-scan architecture for PCB

testing. The behavior and architecture of all blocks in this figure are
defined in the standard. We use this architecture to define our
H-testable architecture.

Figure 2 is a schematic block diagram of the H-testable architecture
at the IC level. In this diagram, we can distinguish two levels of
hierarchy: the macro level and the IC level. At the IC level are
(self-)testable macros, connections between these macros, and addi­
tional testability hardware. The macro level consists of a (self-)test-
able macro with additional testability hardware. Both levels of the
testability hardware incorporate test interface elements, or TIEs; a
test processor; and a scan path.

The TIEs separate a macro (IC) from the connections with other
macros (ICs). Therefore, TIEs are located at the primary inputs and
primary outputs of both macros and ICs. Each TIE contains bound­
ary-scan cells and serial control registers. Test processors provide
parallel control of the TIEs.

Figure 1. Architecture of the Joint Test Action Group boundary-scan standard.

334 IEEE DESIGN & TEST OP COMPUTERS

The IC test processor provides the TIEs at the IC level and the macro
test processors with parallel control. The macro test processor
provides the TIEs at the macro level with parallel control. The macro
test processor can also control a macro self-test.

ARCHITECTURE AT THE IC LEVEL
At the IC level, the H-testable architecture is compatible with the

boundary-scan architecture and its behavior. Therefore, we have in
effect merged the H-testable architecture with the JTAG boundary-
scan architecture as evidenced by the following structural character­
istics:

• The JTAG boundary-scan path in Figure 1 is part of the boundary-
scan cells of the TIEs at the IC's input and output in Figure 2.

• The JTAG instruction-register path is implemented in the IC-level
test processor. The registers in this path provide the serial control
data for the IC-level TIE.

• The JTAG test-access port (TAP) controller is implemented in the
IC-level test processor of the H-testable architecture. The TAP
controller generates the parallel control signals for the IC-level TIEs
and the macro-level test processors.

• The JTAG user-defined register path is used to implement the local
scan path in Figure 2.

We can merge the architecture of the JTAG boundary-scan standard
and the H-testable architecture without any changes to either.
Consequently, at the IC level, the H-testable architecture has already
been defined.

ARCHITECTURE AT THE MACRO LEVEL
The test hardware for the H-testable architecture at the macro level

consists of TIEs and a macro test processor, as Figure 2 shows.
A TIE in the local scan path forms the link between a macro and

the macro interconnection. We add this element only to enhance
testability. The TIEs are located at both inputs and outputs of a macro
and do not affect the functional behavior of the IC during normal
operation.

We can merge the JTAG
boundary-scan and

H-testable architectures
ivithout any changes to

either. Thus, the
H-testable architecture

is already defined at the
IC level.

Figure 2. Block diagram of the hierarchical testable (H-testable) architecture at the IC level

FEBRUARY 1990 335

CHIP-LEVEL SELF-TEST

Data-register cells form
the interface of the
macro and macro

interconnections. DRC
modes vary according
to the control signals

applied to the
multiplexers.

During an IC test however, the TlEs are able to separate macros
from their interconnections, which allows an independent test of
both. Test pat terns are shifted serially into the TIE via the local scan
path, and the TIE applies the pat terns in parallel to the macro or to
the interconnection of macros. Results from a macro self-test are
loaded in parallel into the TIEs at the output of the macro. Results
from the macro interconnection test are loaded in parallel into the
TIEs at the input of a macro. Next, data m the TIE's will be shifted
out serially via the local scan path. Control signals for the TIE are
applied serially via the local scan path and in parallel via the control
signals from the macro-level test processor.

Figure 3 shows the implementation of the TIE. A TIE consists of
data-register cells D, two control-register cells (M and S), a bypass
path, and a multiplexer.

Data-register cells form the interface of the macro and the inter­
connections to other macros. Figure 4a is a block diagram of one of
these cells. This cell consists of two multiplexers and a master-slave
register. The macro-level test processor provides the signals Mode,
DRC1, and DRC2. The data-register cell is used in different modes,
which vary according to the control signals applied to the multiplex­
ers. Figure 4b shows the t ru th table of multiplexer 2. The first mode

Figure 4. Block diagram off a data-register cell (a) and the truth table ffor
data-register multiplexer 2 (b).

336 IEEE DESIGN & TEST OF COMPUTERS

of the data-register cell is the hold mode (DRC1 =0, DRC2=0), in which
data in the register remains unchanged. The second mode (DRC 1=1,
DRC2=0) is the test mode, in which the input Test is used for BIST.
The third mode (DRC 1=0, DRC2=1) is the scan mode, in which the
cell is placed in the local scan path at the IC level. Figure 2 shows
this path. We can now shift data into input TDI and towards output
TDO. The fourth mode (DRC 1=1, DRC2=1) is the normal functional
operation. Data enters the cell via the input Data-in and propagates
through the cell with minimal delay to Data-Out.

The control-register cells in the instruction path of a TIE (M and S
in Figure 3) provide its serial control. These registers consist of a shift
register (L2) and an output latch (LI). Figure 5a is a block diagram
of an instruction-register cell. The TAP controller of the IC-level test
processor supplies the control signals Update-IR, IRC1, and IRC2.
At the rising edge of Update-IR, the contents of shift register L2 are
loaded into the output latch LI. The signals IRC 1 and IRC2 control
which input is selected by the multiplexer. Figure 5b shows the truth
table of this multiplexer. The input Hold (IRC 1=0, IRC2=0) is selected
to retain the data in the output latch LI. The input Status (IRC 1=1,
IRC2=0) is required to load a signal into the shift register. The input
Shift (IRC 1=0/1, IRC2=1) is the serial scan input. This input is
connected to the output TDO of the previous shift-register cell.

Because TIEs are at both the input and output of a macro, there
are two mode registers—Ml at the input, M2 at the output—and two
select registers—SI at the input and S2 at the output. These four
instruction registers can define 16 modes for the data-register cells.

The select register S in Figure 3 controls the bypass of the data-
register cells. The data-register cells in a TIE are placed in the local
scan path if S=l. If S=0 the scan path of a TIE contains only the
instruction-register cells.

The value in the mode register Mis decoded in the macro-level test
processor and, together with parallel control signals from the IC-level
test processor, controls the two functions of the data-register cells.
In Figure 4a the data-register cells transmit data if mode=l and
receive data via input Data-in if mode=0.

Figure 3 shows, in contrast with the JTAG architecture, that the
boundary-scan path and the instruction path are connected serially.
With this architecture at the macro level, we can use a simple
multiplexer to select either the bypass mode or the boundary-scan
mode. Because both modes include the instruction path, a data scan
will always contain data bits and instruction bits. We need only one
scan operation to initialize the TIEs for a macro test. At the PCB level,
the JTAG boundary-scan architecture requires two scan operations
to initiate the TIEs. In the first stage, the instruction bits are shifted
in. In the second stage, the data bits are shifted in.

Another difference between the macro-level TIE and the IC-level TIE
is the number of modes that a data-register cell has. The boundary-
scan data-register cell at the IC level has three modes of operation.
At the macro level, it has four modes. As we mentioned earlier, this
additional mode is the test mode, which allows the data-register cell
to be used for BIST. This mode does not require an extra control signal
as compared with the boundary-scan register cell.

At the PCB level, the
JTAG boundary-scan
architecture requires

two scan operations to
initiate the test interface

elements: shift in
instruction bits and
shift in data bits.

Figure 5. Block diagram of an instruction-
register cell (a) and the truth table for the
instruction-register multiplexer (b).

FEBRUARY 1990 337

CHIP-LEVEL SELF-TEST'

Central to the
H-testable architecture

is the self- testable
macro, which has only
combinational logic.

THE MACRO-LEVEL TEST PROCESSOR
The test processor forms the control part of the H-testable archi­

tecture. At the macro level, the processor has to perform a macro
self-test and apply the parallel control signals to the data-register
cells of the TIEs at both the input and output of the macro.

To carry out BIST, we mus t generate test pat terns and compact
them using some hardware implementation of a test-pattern gener­
ation/compaction algorithm. Test patterns are applied in parallel to
the macro inputs by loading the test pat terns in the data-register
cells via the extra Test input, as Figure 4a illustrates. The test result
is loaded in parallel into the TIE at the output of the macro.

During the self-test, the macro test processor generates the par­
allel control signals for the data-register cells of the TIE. Figure 6 is

Figure 7. Example of the hierarchical testable, or H-testable architecture.

338 IEEE DESIGN & TEST OF COMPUTERS

a block diagram of the macro-level test processor. We briefly describe
the main parts of the test-processor architecture. A more detailed
description is available elsewhere.

Parallel and serial control logic supply the data-register cells with
control signals. The signals DRC11, DRC12, and Model form the
signals DRC1, DRC2, and Mode for the TIE at the input of a macro.
The signals DRC21, DRC22, and Mode2 form the signals DRC1,
DRC2, and Mode for the TIE at the output of a macro. These signals
depend on the state of the controller and on the state of the IC-level
TAP controller (BSH-dr, BAH-dr).1

A decoder signals the controller to start a macro self-test. The
self-test is activated by the contents of the registers in the instruction
path at the input (SI and Ml) and the output (S2 and M2) of the
macro. A controller, which is, in fact, a synchronous state machine
controls the macro self-test. We can, however, implement a macro
self-test in many ways, depending on the type of macro. Therefore,
we have a dedicated controller for each macro. Every controller must
be able to start the self-test, indicate the end of a self-test, and control
the registers involved.

A pattern generator, which is governed by the controller, generates
the test pat terns for the macro. The pattern generator uses the TIE's
data-register cells at the input of the macro. The generated patterns
(Data-Out) are applied to the Test inputs of the data registers. The
pat tern generator generates a signal (Ready) for the controller to
indicate the completion of a self-test.

A pattern generator,
which is governed by

the controller, generates
the test patterns
for the macro.

AN H-TESTABLE ARCHITECTURE
The best way to illustrate the features of the H-testable architecture

is to describe an actual implementation. Figure 7 shows the example
we have used. Our intent is primarily to show the integration of
boundary-scan hardware with BIST at the IC level. Our example
incorporates two TIEs, a macro test processor, one TAP controller,
and a simple macro.

The central part in the architecture is the self-testable macro, which
has four inputs and four outputs. This macro contains only combi­
national logic and is tested with pseudorandom patterns. A signature
analyzer compacts the test results. We have added some hardware
to the data-register cells of the TIEs so that we can use the data
register as a building block for pseudorandom pattern generation
and signature analysis. Figure 8 illustrates the additional hardware.

We form the pattern generator/compactor by connecting a number
of modified data-register cells as a linear-feedback shift register. To
do this, we feed Data-Out of the last register cell back to the Feedback
terminal of specific data-register cells. The connections are deter­
mined by the feedback polynomial. We can use the structure as a
pseudorandom pattern generator when (DRC1, DRC2)=(1,0) and
mode=l. The circuit operates as a signature analyzer when (DRC1,
DRC2)=(1,0) and mode=0.

In our example, the TIEs form an LFSR during the test mode that
has a feedback polynomial of 1+X+.X4. Figure 9 shows the data
register of a TIE realizing this LFSR.

The macro-level test processor also incorporates the logic to start
and complete the self-test. The Ready signal, which indicates the
completion of the self-test, is true when a specific test pattern is
generated.

FEBRUARY 1990 339

CHIP-LEVEL SELF-TEST

We have added some
hardware so that we

can use the data register
as a building block for
pseudorandom pattern

generation and
signature analysis.

Figure 8. Block diagram of a modified data register.

Data in

Data out

Figure 9. Block diagram of the data register part of the test interface element, or TIE, that forms a four-bit linear feedback shift
register (LFSR) with feedback polynomial I+X+X4.

340 IEEE DESIGN & TEST OF COMPUTERS

The TAP controller is identical to the TAP controller as described in
version 2.0 of the boundary-scan standard.

SIMULATION OF THE SAMPLE CIRCUIT
Table 1 shows the scan actions applied to the example circuit

during simulation. Scan action 1 initializes the instruction-register
cells. Four clock cycles shift the values for the initialization path into
the instruction-register cells: (M1,S1,M2,S2) = (1,1,0,1). Because
S l = l and S2=l, we can initialize the data-register cells at both the
input and output.

Scan action 2 initializes the data-register cells for a macro self-test.
Both data-register cells are initialized with the value (1,1,0,0). Scan
action 3 indicates that during a macro self-test, we can still shift data
through the TIEs. While the two TIEs perform a macro self-test, a
pat tern is shifted via the input TDI to the output TDO.

We need scan action 4 to place the data-register cells in the scan
path after the macro self-test has been completed, Finally, with scan
action 5, the signature in the output TIE appears at the serial output
TDO.

We simulated the test process for this sample circuit using a
switch-level description. The results of the simulation show the
correct operation of the H-testable architecture. A layout for the
individual blocks of the H-testable architecture has since been
designed and will be used in our self-test compiler.

With the self-test
compiler, designers

define only the type and
size of the macro to be
realized and the fault

coverage they desire for
the self-test.

A SELF-TEST COMPILER
As we mentioned earlier, the purpose of the H-testable architecture

is to develop a standard, hierarchical test approach to ease the
burden of test development. Towards that end, we implemented our
architecture in a self-test compiler. The compiler automatically
generates the layout of the most appropriate on-chip test hardware
for self-testing along with the functional macro. Designers define only
the type and size of the macro to be realized, along with the fault
coverage they desire for the self-test. Using the described architec­
ture, the compiler generates self-testable macros that we can control
in a standardized format. The H-testable architecture defines the
signals to initialize, control, and verify a macro self-test from the
macro level to the PCB level.

Table 1. Tests applied to the sample circuit in Figure 9.

No. Scan Action Instruction
Ml SI M2 S2

1 Select initialization path

2 Initialize data and instruction register

3 Scan operation during self-test

4 Select result path

5 Verify test result and scan in
pattern for external test

1

1

1

0

0

1

0

0

1

1

0

0

0

0

1

1

0

0

1

1

FEBRUARY 1990 341

CHIP-LEVEL SELF-TEST

For small macros of say,
10 to 20 I/O ports, the

controllers will probably
determine the overhead

of the extra test
hardware.

Figure 10 shows part of the layout of a self-testing carry-save array
multiplier, which was generated by the self-test compiler. The self-
test, performed in this particular structure, is an exhaustive test. We
used a signature analyzer to evaluate the test responses. The bottom
row of cells in the figure shows the layout of some data-register cells
used for data compaction.

The overhead needed for the extra test hardware varies with the
size of the array multiplier. For a 16xl6-input carry-save array
multiplier, for example, the overhead is about 20%. For a 32x32-bit
array multiplier, the overhead is about 12%.

T
he H-testable architecture we have described will ease the
problems of testing ICs on printed-circuit boards. It is hier­
archical, structured, and compatible with the JTAG bound­
ary-scan standard for PCB testing. Using this architecture,

we can initialize, control, and verify a macro self-test from the IC level
up to the PCB level. During a macro self-test, the IC-level scan path
can still be used, which implies that we can test different macros in

'lSr,",r,M;'

!?li i«!? ;?I.!l l l«!^?!:flf
.». . . ; - t H r L- ••-; - , i ' « u : : _*..; . i , H i L . . . - * - ; . . t ,M,i:;_ . . - * i « r : i - •JV; . I , B I I - - : » . .

Figure 10. Part of the layout of a self-testing carry-save array multiplier, which
was generated by the self-test compiler. The bottom row of cells shows the
layout of some data-register cells used for data compaction.

342 IEEE DESIGN & TEST OF COMPUTERS

parallel with the H-testable architecture. We have implemented this
architecture in a self-test compiler. An example circuit, generated by
this compiler, shows the possibilities of this architecture.

The overhead of the extra test hardware remains a problem that
needs more research. For small macros of say, 10 to 20 I/O ports,
we expect the controller parts of the H-testable architecture to
determine the overhead. Therefore, we advise the use of only one
macro test processor for a set of small self-testable macros.

Ronald P. van Riessen is working towards a
PhD in electrical engineering at the University
of Twente, Enschede, The Netherlands, where
his research interests include automatic de­
sign for testability and BIST of CMOS VLSI
systems, particularly boundary scan with
BIST in a module compiler. He holds an MSc
in electrical engineering from the University
of Twente.

ACKNOWLEDGMENTS
This research is supported by the Innovative Research Program (IOP) on IC

technology under HTO-049/1, part testing. We thank F. Beenker and his group
at Philips Research Laboratories, Eindhoven, for their contribution to this re­
search.

Hans G. Kerkhoff is a staff member of the IC
Technology and Electronics Group of the Uni­
versity of Twente, where his interests are in
testable CAD for VLSI digital signal proces­
sors. He holds an MSc in electronical engi­
neering from the Technical University of Delft
and a PhD in microelectronics design from the
University of Twente.

REFERENCES
1. A Test Access Port and Boundary Scan Architecture, JTAG standard, Version

2.0, Draft 2, Jan. 1988.
2. B. Koenemann, "Built-in Logic Block Observation Techniques," Proc. Int'l Test

Con/., 1979, pp. 37-41. i
3. F. Beenker et al., "Macro Testing: Unifying IC and Board Test," IEEE Design

& Test of Computers, Vol. 4, No. 6, Dec. 1986, pp. 26-32.
4. R. van Riessen, H. Kerkhoff and A. Kloppenburg, "Design of a Compiler for

the Generation of Self-Testable Macros," Proc. European Solid-State Circuits
Conf, 1988, pp. 194-197.

5. A. Kloppenburg, Investigations on the Possibilities of Using Boundary-Scan
Techniques in Silicon, MSc thesis, Univ. of Twente, 060-7001, Enschede, The
Netherlands, July 1988.

6. A. Miczo, Digital Logic Testing and Simulation, John Wiley & Sons, New York,
1987.

7. A. van Genderen, A. de Graaf, "SLS: A Switch-Level Timing Simulator," in The
Integrated Design Book, Delft Univ. Press, 1986, The Netherlands, pp. 2.93-
2.145.

Ad Kloppenburg is a staff engineer at
Witteveen en Bos, an engineering consultancy
in Deventer, The Netherlands. He holds an
MSc in electrical engineering from the Univer­
sity of Twente.

Direct questions or comments on this article
to R. van Riessen, University of Twente, EF
Bldg., PO Box 217, 7500 AE Enschede, The
Netherlands.

FEBRUARY 1990 343

Reprinted from IEEE Proceedings 1990 International Test Conference,
pages 222-234. Copyright © 1990 by The Institute of Electrical and
Electronics Engineers, Inc. All rights reserved.

A Language for Describing Boundary-Scan Devices
Kenneth P. Parker and Stig Oresjo

Hewlett-Packard Company, Manufacturing Test Division
P. O. Box 301, Loveland Colorado, 80537

ABSTRACT

Boundary-Scan (IEEE Standard 1149.1-1990) technology
is beginning to be embraced in chip and board designs.
One key need is a way to simply and effectively describe
the feature set of a Boundary-Scan compliant device in a
manner both user friendly and suitable for software to util­
ize. A language subset of VHDL is proposed here for this
purpose. As with any new standard, the industry is learning
how to apply its rules and mistakes will occur. A derivative
effect of the language proposed here is that if a device is
not describable by the language, then that device does not
comply with the 1149.1 standard. While the converse is not
true, the language still allows a syntactic check for compli­
ance as well as a number of semantic checks.

INTRODUCTION

IEEE Standard 1149.1-1990111 was approved in February
1990, and is now available from the IEEE. The Boundary-
Scan concept was formally investigated by the Joint Test
Action Group, a consortium of European and North Amer­
ican companies starting in 1985, and is often refered to as
the JTAG Standard. The standard is rich in options and is
open-ended in that user defined features are provided for.
This richness can be a source of complication that must be
accounted for while utilizing the standard. The testability
enhancing attributes of the standard are quite powerful.
Many of the barriers that have slowed the adoption of tes­
tability technology!21 are directly overcome by Boundary-
Scan131. For these reasons, expect to see widespread appli­
cation of the standard. In this paper it is assumed the
reader has a passing knowledge[1][2][3][4] [5] of Boundary-Scan.

As new products become available to support Boundary-
Scan designs, each will have the problem of how to describe
a designer's unique application of the standard. Some sort
of description will be necessary for each device containing
Boundary-Scan. This paper describes a language that cap­
tures the essential features'61 of an implementation. This
language is called the Boundary-Scan Description Language
(BSDL) and is written within a subset of the VHSIC
Hardware Description Language (IEEE Std 1076-1987
VHDL171). It has two criteria to meet: first that it be 'user
friendly', since people will have to create the files; and
second, it should be simply and unambiguously parsable by
computer. This proposal is intended to be a 'straw man' or
'Version 0.0', illustrating a structure and illuminating needs.

It is important to note that the language described here is
necessarily evolving. However, it represents a consensus
developed from discussions'61 with many individuals within
various sectors of the electronics industry as noted in the
acknowledgements. Several groups had already begun their
own development efforts on proprietary languages suited to
their individual needs; of note, AT&T, Hewlett-Packard,
Philips, and Texas Instruments. In particular, the Philips
work is part of an effort supported by the multinational
European Commission ESPRIT Project 2478. It is now the

intention that this European activity will merge with this
proposal. This process is now underway and in this respect,
this proposal reflects both North American and European
thinking. While this language definition is expected to
change as applications develop, it is our hope that the
resulting evolution will differ in minor ways, with a goal of
upward compatibility. Thus, software tool developers can
make use of this proposal now rather than continue to wait.
In so doing they will benefit from compatibility with other
segments of the industry. Ultimately, this language should
be taken over and maintained by a body devoted to stan­
dards, such as the IEEE.

THE SCOPE OF THE LANGUAGE

The BSDL language allows description of the testability
features in IEEE Std 1149.1-1990 compliant devices. This
language can be used by tools that make use of those testa­
bility features. Such tools include testability analysis, test
generation and failure diagnosis. Note that BSDL itself is
not a general purpose hardware description language. With
a BSDL description of a device and knowledge of the stan­
dard, it is possible for tools to completely understand the
data transport characteristics of the device. With additional
capabilities provided by VHDL, it is possible to perform
simulation, verification, compliance analysis, and synthesis
functions. Support for these functions is beyond the scope
of BSDL alone.

A key characteristic of a BSDL description of the param­
eters of an implementation is orthogonality to the rules of
the standard. As a result, elements of a design absolutely
mandated by the standard are not included in BSDL
descriptions. For example, the BYPASS Register is not
described in BSDL because it is completely described by
the standard itself, without option. This eliminates both
redundancy and the opportunity for error.

BOUNDARY-SCAN CHARACTERISTICS

What are the characteristics of any Boundary-Scan device
that need description? All such devices must have two
major features; a Test Access Port (TAP) and a Boundary
Register. The parameters of these features are described
by BSDL.

The parallel/serial Boundary Register is made up of
Boundary Cells which are associated with device inputs,
device outputs, device bidirectional signals, and specific
embedded device control signals. A great deal of the flexi­
bility of the standard is reflected in the Boundary Register
rules.

The TAP possesses either four or five dedicated signals,
familiarly labeled TCK, TMS, TDI, TDO and, optionally,
TRST*. It must contain an instruction register and a
BYPASS register. The TAP implements a minimum set of
mandatory instructions which control operation of the
Boundary-Scan facility. These instructions operate in con­
junction with the dedicated TAP signals in a precisely

EH0321-0/90/000Q/0344$01.00 © 1990 IEEE 344

prescribed way. The TAP may also contain optional data
registers and optional instructions as specified by the 1149.1
standard. Additionally, the TAP may also be endowed by a
device designer with additional user-specified data registers
and instructions beyond those specified by the standard, but
governed by rules of implementation within the standard.

Notice by conspicuous absence that the TAP state
diagram is not described here. This information is inherent
in the 1149.1 standard itself and does not need to be speci­
fied as part of a device adhering to the standard. In
essence, stating "1149.1-1990" implies a great deal of infor­
mation common to any such device. The proposed
language is intended to specify those parameters necessarily
unique to a given Boundary-Scan device implementation.

As further context, a device should be thought of as a
black-box with terminal connections. Inside is the TAP and
the system logic1 surrounded on its perimeter by the Boun­
dary Register logic. We want to describe the properties of
the Boundary Register and terminal connections without
need for describing the system logic. This independence
recognizes a major contribution of Boundary-Scan; we can
decouple problems such as board test from the system logic
of the ICs.

LANGUAGE ELEMENTS

The language consists of a case-insensitive free-form mul­
tiline terminated syntax which is a subset of VHDL[7] Com­
ments are any text between a "--" symbol and the end of a
line, syntactically terminating that line. Some of the infor­
mation is conveyed in VHDL strings; sequences of charac­
ters between quote marks. This information is associated
with a VHDL attribute and has a BSDL syntax require­
ment. Obviously, this is not checked by VHDL itself, but
by applications that consume this information. (This is one
reason the BSDL name is retained.) In practice, this infor­
mation will be used in two environments. The first is a full
VHDL-based system. It passes a BSDL description
through its VHDL analyser into a compiled design library.
From there, VHDL design library based tools can extract
Boundary-Scan data by referencing the appropriate attri­
butes. The second environment is a non-VHDL system
capable of parsing a limited set of VHDL syntax (simply
skipping items it doesn't recognize) to find and parse the
BSDL information. In support of these systems, we con­
strain the full power of VHDL into a standard practice.
Standard practices will be indicated as they are used in this
text. Thus, BSDL is a "subset and standard practice" of
VHDL.

BSDL is composed of three sections. These are: Entity,
Package, and Package Body. An entity is the basis for
describing a device within VHDL and an example for a real
device is shown in Appendix A. Within the entity, the
Boundary-Scan parameters of a device are described. The
1149.1 related definitions come from a pre-written, standard
VHDL package (and related package body). The defini­
tions for a 1149.1-1990 package and package body are given

1. The 'system logic' is the same refered to by the 1149.1 document. How­
ever, important 'null' logic cases must also be treated as will be discussed.

in Appendix B. The package information is directly related
to the 1149.1 standard and is only expected to change when
the standard itself is changed. Typically, this information
would be write-protected. The development of new stan­
dards in the future would require new packages to be
created.

A user may add an additional package (and package
body), to contain user-specific design information. An
example of this would be to contain a library of cell defini­
tions unique to the users application, perhaps dependent
upon the silicon technology in use. The reason for breaking
out package bodies as seperate units is to allow the updat­
ing of the data within these without causing the need for
recompilation of all entities that reference the correspond­
ing package.

A simple Backus-Naur Form (BNF)[8] is used to describe
the syntax of BSDL data within VHDL strings (see also
Appendix C). Where the meaning is obvious without the
use of BNF, the description is given by example. Since
many of these strings are potentially long, the concatenation
operator '&' is used to break them into managable pieces.
The syntax descriptions will not show this, and, the concate­
nation operation may be thought of as a lexicographical
pre-processing step before parsing.

THE ENTITY DESCRIPTION

An entity describes a device's I/O port and important
attributes of the device. For BSDL, an entity has the fol­
lowing structure:

entity My_IC is -- an entity for my IC

[generic parameter]
[logical port description]
[use statement(s)]
[package pin mapping]
[scan port identification]
[TAP description]
[Boundary Register description]

end My_IC; -- End description

The order of the elements within the entity as shown above
is a required standard practice to simplify non-VHDL
applications. The next few sections will examine each ele­
ment of the entity.

Generic Parameter

The generic parameter is a VHDL construct used to pass
data into a VHDL model. In BSDL it is intended as a
method for selecting among several packaging options that
a device may have. Each option may have a different
mapping between the pins of the package and the bonding
pads of the device. Even devices manufactured in a single
package will be tested before packaging, with a different
mapping possible. We call this the logical-to-physical rela­
tionship of the signals of the device. The description of the
Boundary-Scan architecture of the device is done with the
logical signals. Applications such as board testing will need
to know how the logical structure of the device maps onto a
set of physical pins. A VHDL generic parameter is used
for this. It must have the name shown in order for
software to seperate it from other parameters that might be
passed to the entity. It has this form:

345

generic(PHYSICAL_PIN_MAP:string: = "undefined");

Note the string is initialized to an arbitrary value ("unde­
fined") that will not allow a package selection if the param­
eter is not bound to a value, i.e., not passed. The use of
this parameter will become clear shortly.

Logical Port Description

The port description uses the VHDL port list in a stan­
dard practice. Here, we are assigning meaningful symbolic
names to the device's system terminals. These symbolic
names are used in subsequent descriptions. This allows the
majority of the statements to be 'terminal independent';
that is for example, independent of a renumbering or other
reorganization of the terminals of the device. It also allows
description of devices which may be packaged in several
different forms. It is optional to include non-digital pins
such as power, ground, no-connects, or analog signals, but
these should be included for completeness. Non-digital pins
will not be referenced later in the description, but all pins
referenced in the description must have been defined here.
The form is:

port(<PinID>; <PinID>;... <PinID>);

<PinID> ::= <IdentifierList>: <Mode> <PinType>

<IdentifierList> ::= <Identifier> \
<IdentifierList> , <Identifier>

<PinType> ::= <PinScaler> | <PinVector>

<PinScaler> :: = <Identifier>

<PinVector> ::= <Identifier>(<Range>)

<Mode> ::= in | out | inout | buffer | linkage

<Range> :: = <nutnber> to <number> |
<number> downto <number>

The <Mode> identifies the system usage of a device pin,
with in for a simple input pin, out for an output pin that
may participate in buses, buffer for an output pin that may
not participate in buses, inout for a bidirectional signal pin,
linkage for other pins such as power, ground, analog, or
no-connect. A <PinVector> is a shorthand for grouping
related signals. For example, Data(l to 8) indicates there
are 8 signals named Data indexed from 1 to 8, like Data(3).
A <PinScaler> is a single signal. Note, every pin must
have a unique name, so if there are several ground pins for
example, they must have different names such as GND1,
GND2, etc, or be expressed as a vector. An example of a
port statement for a 22 pin device is;

port(CLK:in bit; CLEAR:in bit; Qtout bit_vector(l to 8);
DATA:in bit_vector(l to 8); VCC, GND:linkage bit);

Bit and bit_vector are type names known to VHDL.

Use Statement(s)

The use statement identifies a VHDL package needed
for defining attributes, types, constants, and other items that
will be referenced. The following statement is mandatory
in BSDL. Others may also be added to support user
defined Boundary Register cells. The content of this pack­
age and its associated package body is shown in Appendix
B.

use STD_1149_l_1990.all; - Get 1149.1 information

Package Pin Mapping

VHDL attribute and constant statements are used to
show the package pin mapping. These are shown by exam­
ple:

attribute PIN_MAP ofMy_IC:entity
is PHYSICAL_PIN_MAP;

constant dw_package:PIN_MAP_STRING: =
<MapString>;

Attribute PIN_MAP is a string that is set to the value of
the parameter PHYSICAL_PIN_MAP, already described.
VHDL constants are then written, one for each packaging
variation, that describe the mapping between the logical
and physical pins of the device. (The BSDL syntax for
<MapString> is given in Appendix C.) In a VHDL design
library, the value of PIN_MAP can be used to identify the
constant (by name) that contains the mapping of interest.
In a non-VHDL implementation, the parse phase would
look for the constant with a name matching the value of
PIN_MAP. Note, the type of the constant must be
PIN_MAP_STRING. This allows such parsers to ignore
constants of other types. An example of a mapping is:

"CLK:1, DATA:(6,7,8,9,15,14,13t12), CLEAR:10, "&
"Q:(2,3,4,5,21,20,19,18), VCC:22, GND.11"

Notice it is the concatenation of two smaller strings. This
is arbitrary; a string is the result after all concatenations are
performed. A BSDL parser will read the content of the
string. It matches signal names like CLK with the names in
the port definition. The symbol on the right of the colon is
the physical pin associated with that port signal. It may be
a number, or an alphanumeric identifier because some
packages such as Pin-Grid Arrays (PGAs) use coordinate
identifiers like A07, or H13. If signals like DATA are
<PinVector>'s in the port definition, then a matching list
of pins enclosed in parenthesis are required. The physical
pin mapped onto DATA(5) is pin 15 in the above example.

Scan Port Identification

Next we give the 5 attributes that define the scan port of
the device. These are shown by example:

attribute TAP_SCAN_IN of TDI:signal is true;
attribute TAP_SCAN_OUT of TDO: signal is true;
attribute TAP_SCAN_MODE of TMS: signal is true;
attribute TAP_SCAN_RESET of TRST: signal is true;
attribute TAP_SCAN_CLOCK of TCK:signal

is (17.5e6, BOTH);

Here, signal names TDI, TDO, TMS, TRST and TCK must
have appeared in the port description. The names chosen
here match the 1149.1 standard, but may be arbitrary. The
TAP_SCAN_RESET attribute is optional but the others
must be specified for a correct implementation. The
boolean assigned is arbitrary, the statement is used to bind
the attribute to the signal. The TAP_SCAN_CLOCK attri­
bute is a record with a real number field (the first) that
gives the maximum operating frequency for TCK. The
second field is an enumerated type with values LOW and
BOTH which specify which state(s) the TCK signal may be

346

stopped in without data loss in Boundary-Scan mode.

TAP Description

The next major piece of Boundary-Scan functionality that
must be described is the device dependent characteristics of
the TAP. It may have four or five control signals, already
identified. It may have a user specified instruction set
(within the rules) and a number of data registers and
options. The following sections show how this is described.

The TAP Instruction Register may have any length 2 bits
or longer and is required to support certain opcodes and
some (but not all) of these have mandatory bit patterns. A
designer may add 1149.1-identified optional instructions
and/or new instructions with completely dedicated func­
tions. An instruction may have several bit patterns. Unused
bit patterns will default to the BYPASS instruction. Upon
resetting the TAP or passing through the Test-Logic-Reset
state, the instruction register is jam-loaded with a specific
instruction. The standard provides for 'private' instructions
which need not be documented except if their access could
create an unsafe condition such as a board level bus con­
flict. Our language must easily denote these characteristics
and take advantage of opportunities for semantic checks.

The characteristics of the instruction register that we cap­
ture with the language are length, opcodes, capture, disable,
private and usage. Since these are basically simple, they are
introduced by example.

attribute INSTRUCTION _LENGTH of My_IC:entity
is <integer>;

attribute INSTRUCTION_OPCODE of My_IC:entity
is <OpcodeTable>;

attribute INSTRUCTION_CAPTURE of My_IC: entity
is <Pattem>;

attribute INSTRUCTION_DISABLE of My_IC: entity
is <OpcodeName>;

attribute INSTRUCTION_PRIVATE of My_IC: entity
is <OpcodeLisf>;

attribute INSTRUCTION_USAGE ofMy_IC: entity
is <UsageString>;

Example:

attribute INSTRUCTION_LENGTH of My_IC:entity is 4;

attribute INSTRUCTION_OPCODE of My_IC:entity is
"Extest (0000), " &
"Bypass (1111), " &
"Sample (1100, 1010), " &
'Preload (1010)," &
"Hi_Z (0101), " &
"Secret (0001) ";

attribute INSTRUCTION_CAPTURE of My_IC:entity is
"0101";

attribute INSTRUCTION_DISABLE of My_IC: entity is
"Hi_Z";

attribute INSTRUCTION_PRIVATE of My_IC: entity is
"Secret";

The instruction_length attribute defines the length that all
opcode bit patterns must have. The instruction_opcode
attribute is a BSDL string (syntax defined in Appendix C)
containing the opcode identifiers and their associated bit

patterns. The rightmost bit in the pattern is closest to
TDO. The standard mandates the existence of EXTEST,
BYPASS, and SAMPLE instructions, with mandatory bit
patterns for the first two. Note that other bit patterns may
also decode to these same instructions.

The instruction_capture attribute string states what bit
pattern is jammed into the shift register portion of the
instruction register when the TAP passes through the
Capture-IR state. This bit pattern is shifted out whenever a
new instruction is shifted in, and the standard mandates the
least 2 significant bits must be a "01". Note, this bit pattern
may be design-specific data. Since it is possible, by travers­
ing from Capture-IR to Exitl-IR to Update-IR, to cause this
pattern to become the effective instruction, it will act as
some instruction (if not simply BYPASS) when it becomes
effective. This bit pattern is not the instruction loaded into
the instruction register when passing through the Test-
Logic-Reset state. The standard states that on passing
through the reset state, the effective instruction is jammed
either to BYPASS, or IDCODE if it exists.

The optional instruction_disable attribute identifies an
opcode that makes a Boundary-Scan device "disappear". In
this mode, the 3-state outputs are disabled and the
BYPASS register is placed between TDI and TDO. This is
not (yet) a specified behavior in the 1149.1 standard, but
many devices have this capability today because it is very
useful for testing purposes. This attribute allows the
opcode to be identified for software use.

The optional instruction_private attribute identifies
opcodes that are private and potentially unsafe for access.
By definition, the results of these instructions are undefined
to the general public and should be avoided. Software can
monitor the instruction register to issue warnings or errors
if a private instruction is loaded during run time.

The optional instruction_usage attribute is a BSDL
string with the syntax given in Appendix C. The usage con­
cept will be covered in its own section later.

ID Register Values

Next, we need to identify standard prescribed optional
registers. These are the IDCODE and USERCODE regis­
ters. Note, if an IDCODE instruction exists, an IDCODE
register must also exist. Further, the existence of USER-
CODE implies the existence of IDCODE. To describe
these instructions we need two attributes.

attribute IDCODE_REGISTER ofMy_IC:entity is
"0011" & -4 bit version
"1111000011110000" & -16 bit part number
"00000000111" & - 11 bit manufacturer
"1"; - mandatory LSB

attribute USERCODE_REGISTER ofMy_IC: entity is
"10xx" & "0011110011110000" &
"00000000111" & "1";

The bit patterns must be 32 bits long. The rightmost bit is
closest to TDO. In the examples above, concatenation is
used to delimit fields within the codes. The "X" values
specify a don't-care for that bit position. This is used to
nullify subfields within a code that are not important for
testing purposes.

347

Register Access

All TAP instructions must place a shiftable register
between TDI and TDO. User-defined instructions may
access data registers mandated by the standard; the Boun­
dary Register, the IDCODE register, and the BYPASS
register. The standard allows a designer to place additional
data registers in the design. These are referenced by user-
defined TAP instructions. It is important for software to
know the existence and length of these registers and then-
associated instruction(s). Therefore we need to express
these associations in the language. The attribute for this is:

attribute REGISTER_ACCESS ofMy_IC: entity
is <RegisterString>;

The syntax for <RegisterString> is in Appendix C. Exam­
ple:

attribute REGISTER_ACCESS ofMyJCentity is
"Boundary (Secret, Userl), " &
"Bypass (Hi_Z, User2), " &
"MyReg[7] (LoadSeed, ReadTest)";

In this example, Secret, Hi_Z, Userl, Userl, LoadSeed and
ReadTest must be previously defined user instructions.
Note that a seven bit user-register MyReg has been added
to the TAP, with two instructions that access it. The 1149.1
standard itself defines the following relationships implicitly,
so these need not be given.

attribute REGISTER_ACCESS of My_IC:entity is
"Boundary (Extest, Sample, Intest)," &
"Bypass (Bypass), " &
"Idcode (Idcode, Usercode)";

This ability to identify register access allows software to
know the length of a scan sequence, which is dependent on
the currently effective instruction. The mandatory Boun­
dary Register, Bypass Register and Instruction Register are
known from other statements, as well as their relationship
to TAP instructions. Note that a semantic check can be
made here ensuring that each instruction has an associated
data register as required by the standard. Exceptions to
this are the instructions marked 'private' since they are not
to be accessed, nor do their target registers need to be
identified.

The standard also allows user-instructions to reference
several registers at once in a concatenated mode, but also
requires them to have a new name in this mode. Here, we
would treat this concatenation as if it were a new register
with a distinct name and length. The reason is that in any
case, the data flowing out of any register after passing
through the Capture-DR state is not known to BSDL
because it is not a simulation language. We are not
attempting here to completely characterize the entire design
so that its behavior is simulatable. This is more properly
the domain of VHDL itself. We are simply trying to cap­
ture the relevant characteristics of Boundary-Scan devices
so that we can intelligently manipulate chains of such dev­
ices. Other software can predict what must be coming out
of various registers. This allows us to divide testing prob­
lems into two parts: calculating tests at an abstract level
and manipulating the chain to deliver them. The language
described here deals mainly with this second task. This
division is important since there are several configurations

(even proposed within the standard itself) for setting up
Boundary-Scan chains. The abstracted test can be indepen­
dent of these configurations.

Boundary Register Description

The Boundary Register is an ordered list of Boundary
Cells, numbered 0 to AT where N+l is the number of cells
in the register. Cell 0 is closest to TDO. There are cells of
varying design and purpose. The standard, in chapter ldP-\
shows fifteen such designs as examples. Others are possible
as well. In discussing cell structures we will make heavy
use of reference to the standard and its figures depicting
cell designs to save space in this paper. To avoid confusion
with figure references, a symbol such as f10-16[1] will refer
to figure 10-16 in the standard. Symbols such as fl0-19[1]

and f10-19d[1} refer to the control and data cells that make
up the structure shown in figure 10-19 of the standard.

Cells must be identified before they are referenced in the
Boundary Register description that follows. However, since
the standard does give a number of examples that will likely
be adopted in a design, we have constructed the language
to have intrinsic or predefined cells that may be referenced
via a simple nomenclature. Cell names are listed in Table
1 and their definitions are shown in the VHDL package
body given in Appendix B. However, there will still be a
need to define other cells not covered by the intrinsics.
The details of these definitions are defered until later. If
the intrinsic definitions contain the cells one needs for a
description, then no cell definitions are required at all.

348

Table 1. List of intrinsically defined cells and the figures
covered in the standard.

Numerous rules must be observed when using the cells to
create a Boundary Register as covered in chapter 10!1) of
the standard. Some of these may be checked during compi­
lation of a device's description. For example, some cell
designs may only be used on a device input. Some will not
support the INTEST instruction, which is allowable if the
device TAP description does not list that instruction. Some
cells require the aid of another cell to control 3-state
enables. Checks can be performed and problems
discovered as soon as a device's Boundary-Scan behavior
has been specified and described, which may be well in
advance of device fabrication.

A very general cell design from the standard (f10-16[1]) is
shown in Figure 1. In Figure 2a we show a symbol that
captures the essence of this cell needed for discussion. The
design in Figure 1 is comprised of a. parallel input, a parallel
output, a multiplexer controlled by a Mode signal, and two
flip-flops. The Mode signal is a function of the currently
effective instruction. Yes, there are other elements such as
the signals shifted in from the last cell and to the next cell.
Yes, there is a second multiplexer controlled by signal
ShiftDR. Yes, there are two clock signals ClockDR and
UpdateDR. But, all these additional elements are always

Figure 1. Cell design from fl0-16m.

precisely prescribed by 1149.1 and as such, may be omitted
from our consideration in this language. This leads us to

, the symbol in Figure 2a which is simple.

Figure 2. Two symbols for a typical Boundary Cell, one (a)
with an UPD flip-flop and one without (b).

The parallel input and output are shown, and these are con­
nected to various places depending on the application. The
two flip-flops are labeled CAP and UPD to symbolize then-
use; the CAP flip-flop captures data in the Capture-DR
state. The UPD flip-flop captures data in the Update-DR
state. The shift path is shown because many such cells will
be linked together in a shift chain that makes up the Boun­
dary Register. The shift path links only the CAP flip-flops.
Now, one cell design shown in f10-11ll] has a symbol (Fig­
ure 2b) with no UPD flip-flop.

Figure 3. Symbols for a Boundary Cells with preset (a)
and clear (b) on the UPD flip-flop.

The symbols in Figure 3 show bubbles on the top or bottom
of the UPD flip-flop to indicate that flip-flop may be preset
(1) or cleared (0) when passing through the Test-Logic-
Reset state, as the standard allows in f10-2111). No signal
connection is made to these bubbles.

Now we show the three attributes needed to define the
Boundary Register:

attribute BOUNDARY_CELLS of My_IC: entity is
<CellList>;

attribute BOUNDARY_LENGTH of My_IC: entity is
<integer>;

attribute BOUNDARY_REGISTER of My_IC: entity is
<CellTable>;

The <CelUist> and <CellTable> are strings with syntax
given in Appendix C. An example of a 3 cell Boundary
Register is:

attribute BOUNDARY_CELLS of My_IC: entity is
"BCJ, MyCell";

attribute BOUNDARY_LENGTH of My_IC: entity is 3;
attribute BOUNDARY_REGISTER of My_IC: entity is

-- num cell port function safe [ccell disval rslt]
" 0 (BCJ, IN, input, X), " &
" 1 (BCJ, *, control, 0), " &
" 2 (MyCell, OUT, output3, X, 1, 0, Z)";

The first attribute shows the cells used in the register; BCJ
from the standard package, and MyCell, which must have
been described in a user defined package. A semantic
check can occur here; do these cells support the standard
instructions that are listed for the TAP opcodes? For exam­
ple, the TAP may support INTEST, but does MyCell?

The second attribute defines the number of cells in the
Boundary Register. This number must match the number
actually found in the third attribute, the register itself. This
attribute is a string containing a list of elements, each with
two fields. The first field is merely the cell number, which
must be between 0 and LENGTH-1. (They may be listed
in any order.) The second is a set of subfields within
parentheses. There are either four or seven subfields.
They are labeled, as in the comment above, cell, port, func­
tion, safe, ccell, disval, and rslt. All cells have the first
four subfields. Only cells providing data for device outputs
that can be disabled have the remaining three subfields.
These three specify how to disable the output.

The cell subfield identifies the cell design used. It must
match a cell given in the boundary_cells attribute.

The port subfield identifies the port signal actively driven
or received by this cell. A cell serving as an output control
or internal cell will have an asterisk in this position.

The function subfield shows the primary function of the
cell. Table 2 shows the values this subfield may have:

input a simple input pin receiver (fl0-8rl1)
clock a cell at a clock input (flO-ll1'1)
output2 supplies data for a 2-state output (fl0-16f1])
output3 supplies data for a 3-state output (flO-18dM)
control controls 3-state drive or cell direction (fl0-18c{1])
controlr a control, disables at Test-Logic-Reset (f!0-21c111)
internal captures internal constants (see page 10-7!1J)
bidir reversible cell for a bidirectional pin (fl0-22dlll)

Table 2. Function subfield values, meanings, and a figure
reference of a representative cell in the standard111.

Shortly, we discuss cells with more than one function. Note
that the function is with respect to the boundary cell and
not the device pin. This reflects the fact that two cells may
service a single pin, for example, one serving as an input
receiver and the other serving as an output driver, on a

349

bidirectional pin (f10-211*1). Internal cells are used to cap­
ture 'constants' (O's and l's) within a design. They are
specifically not allowed to be 'surrounded by system logic
(f10-7111). One proposed use of this is to capture an
encoded value (perhaps in the first few bits of the Boundary
Register) as an informal identification code. Another was
proposed in[9! where sense amplifiers monitor redundant
power connections and place the measured results in inter­
nal Boundary Register cells. If the power connections are
good, the data loaded will be constant. Finally, there may
be "extra" cells unused in a programmable device (see page
10-7 of the standard'1').

The safe subfield gives the value that a designer prefers
to be loaded into the UPD flip-flop of the cell when
software would otherwise choose a value randomly. Two
examples are; the value that an output should have that is
safe to overdrive during In-Circuit testing; or, the value to
present to on-chip logic at a device input during EXTEST.
An 'X' signifies that it doesn't matter.

The ccell subfield identifies the cell number of the cell
that serves as an output enable. The disval subfield gives
the value the ccell must have to disable the output driver.
The rslt subfield gives the state the disabled driver goes to;
a high impedance state (Z), a weak '0' (WeakO), or a weak
'1 ' (Weakl). The last two values correspond to asymetrical
drivers such as TTL open-collector drivers or ECL open-
emitters. The functions in effect when these three subfields
exist must be output!, output3 or bidir. If it is bidir, then
disabling the driver implies the cell is a receiver.

An Example Boundary Register Description

We now use the device shown in Figure 4 to illustrate a
Boundary Register description and how special cases are
handled. These special cases arise because the standard
allows cells to be merged when the system logic between
them is null. (See for example, fl0-41], fl0-51''.) Cells may
be merged if the logic between them is simply a non-
inverting data path, like a wire or buffer. When merging is
done, the resulting cell must obey a combination of the
rules of the merged cells. Here is the definition of the
Boundary Register for Figure 4.

attribute BOUNDARY_CELLS of Figure4:entity is
"BC_1, BCJ, BC_6";

attribute BOUNDARY_LENGTH of Figure4:entity is 10;
attribute BOUNDARY_REGISTER of Figure4:entity is
— num cell port function safe [ccell disval rslt]

"0 (BCJ, * control, 0)," &
"1 (BCJ, OUT2, output!, 1, 1, 1, Weakl),"&
"2 (BC_6, BIDIR1, bidir, X, 3, 0, Z)," &
"3 (BCJ., * control, 0)," &
"4 (BCJ, * control, 0)," &
"5 (BCJ, BIDIR3, input, X)," &
"5 (BCJ, BIDIR2, output3, X, 7, 1, Z)," &
"6 (BCJ, BIDIR2, input, X)," &
"6 (BCJ, BIDIR3, output3, X, 4, 0, Z)," &
"7 (BCJ, * control, 1)," &
"8 (BCJ, IN2, input, X)," &
"9 (BCJ, INI, input, X)," &
"9 (BCJ, OUT1, output3, X, 0, 0, Z)";

Cell 0 is simply a control cell between the system logic
and the enable for signal OUT1. Cells 4 and 7 are similar.

BIDIR2 BIDIR3

BIDIR1

OUT2

OUT1

TDO

Figure 4. A device illustrating several merged cell situa­
tions.

Notice the safe bits are assigned to cause the associated
drivers to disable. Cell 3 is the control for the reversible
cell (f10-22d[1]) used on the bidirectional signal BIDIR1.

Cell 1 is a 2-state output data cell. Note that it has the
three extra fields indicating that it controls its own open-
collector asymetrical driver. Placing a ' 1 ' in cell 1 will dis­
able OUT2 by putting it into the 'Weakl' state.

Cell 2 is the reversible cell of figure fl0-22dfl]. This cell
serves as an input if the control cell has turned off the out­
put driver, meaning cell 3 produces a '0'. This cell serves
as the data for the driver if the output is enabled. It cannot
serve both functions. This is a drawback during test, since
the value of BIDIR2 cannot be observed while the driver is
turned on. A board level fault could not be seen by this
device. Note that the structures for BIDIR2 and BIDIR3
(or fl0-21lll) would allow observation of the driver, thus
allowing a simple consistancy check.

Cell 5 (and similarly for cells 6 and 9) has merged
behavior; it serves as the input receiver for BIDIR3 and as
the data source for BIDIR2. It has two lines of description
in the Boundary Register definition as a result. The first
gives its behavior as an input cell while' the second
describes its characteristics as an output cell. Note that cell
BC_1 used in this capacity must support both input and out­
puts functions. This is reflected in the definition of BC_1
(see appendix B) where both functions are seen to exist for
all instructions.

350

This example is extreme in dwelling on odd cases. Most
device implementations will be quite simple and routine, as
the example in Appendix A, the Texas Instruments
74BCT8374[10], illustrates.

PACKAGE DESCRIPTION

The package that describes the Std 1149.1-1990 informa­
tion needed for BSDL is given in appendix B. This package
cannot be modified without changing BSDL itself.

There may be occasion for users to define their own
packages for use in conjunction with the 1149.1 package.
This is the way to add user-specific Boundary Cell defini­
tions. By placing these in a package, they may be refer­
enced by many entities. While it is possible to place an
entire cell description in a package, it is standard practice
to place the actual cell description in a package body

. (described next) associated with the package. All that then
remains in the user-defined package is the names of the
cells. For example, say a user wants to define two new
cells for reference in a boundary-scan description. Here is
what the package would look like:

package My_New_Cells is

constant MNC_1 : CELLJNFO; - My new cell 1
constant MNC_2 : CELLJNFO; - My new cell 2

end My_New_Cells;

Of course, to reference these cells, a use statement must
appear in an entity description that references
MyJVewjCells.all, and the cell names must appear in the
BOUNDARY_CELLS attribute string. The definition of
these deferred constants goes into the related package body.

PACKAGE BODIES FOR DEFINING BOUNDARY CELLS

Now it is time to discuss the description of Boundary
Register cells. We have already skimmed this subject in
examining the description of the Boundary Register itself,
and, we have benefitted from intrinsic cell definitions pro­
vided by the 1149.1 package body.

What are the important aspects of a cell we need to
describe for BSDL to meet its statement of scope? In
looking at the variety of possible cell designs given in the
standard and the long list of rules governing these designs,
this might seem to be a daunting task. It turns out that all
of the cells shown in the standard (excepting fl0-22d{1})
could be modeled as shown in Figure 5, for the purposes of
BSDL scope.

For the case of cell fl0-22d[1], its reversible nature can be
represented as if it were two cells; one that is left-to-right
and the other that is right-to-left, each modeled by Figure
5. The one to choose is defined by the value of the control­
ling cell. When enabled to drive, the cell works left-to-right
and vice versa.

In BSDL, any cell consists of a Parallel Input (PI), a
Parallel Output (PO), CAP and UPD flip-flops and connec­
tions to/from CAP flip-flops of other cells. Note, the UPD
flip-flop may not exist in certain input cell configuration as
allowed by the standard. The CAP flip-flop has eight
choices of data source as shown. In looking at any particu­
lar cell design, usually only two or three of these choices
are actually implemented. The '0' and 1' constants may be

Figure 5. A general BSDL model of a Boundary Register
Cell.

loaded into the CAP in certain situations. For example, an
output cell design during EXTEST may load a constant into
the CAP. The 'X' value denotes a don't-know or don't-care
about what is loaded. An example of this is an output cell
design during RUNBIST that loads a Linear Feedback Sig­
nature bit into the CAP. BSDL alone is not capable of
simulating what this value could be. Also, proprietary
information about a cell design may be hidden by "X-ing"
out the activities of an instruction.

Context is another important factor in analysing Boun­
dary Cells. What is the cell function? When a cell is an
input cell, then PI must be connected to a device pin and
PO must be connected to the system logic (ignore cell
merging here). Now, add the context of the effective
instruction. If EXTEST is in effect, then CAP must
receive PI data. What we are defining here is a triple of
data:

<function> <instruction> <CAP data source>

A cell description is a collection of these triples in the form
of a VHDL array of records. Each triple tells us a piece of
a cell behavior; for a given cell function, while a certain
instruction is in effect, what data is loaded into the CAP
when passing through the Capture-DR state. Since the CAP
flip-flop data is what is eventually seen when scanning out
data, it is important to know what the CAPs will contain.
This data is simple to derive. One simply fixes the cell
function, and then for each instruction supported, traces
the data flowing to the CAP flip-flop.

What about other details? For example, input cell f 10-
101'1 in the standard produces a ' 1 ' on PO while EXTEST
is in effect. BSDL does not model this because, during
EXTEST on an input, we are looking outward from the
device, not inward. Essentially, we do not care what is
being fed to PO during EXTEST on input pins. The device
designer did which is why the ' 1 ' is being injected; probably
to satisfy some requirement internal to the device. During
and after an EXTEST operation, the 1149.1 standard does
not specify the what the state of the system logic will be so
there is no point in trying to describe inputs to the system
logic during EXTEST. There are similar arguments about
what it is necessary to model during INTEST, SAMPLE
and RUNBIST.

351

Many details are prescribed by the standard itself. The
UPD flip-flops always get the CAP data transfered during
the Update_DR state, so we need not describe this. If an
UPD flip-flop is missing from a design, it can only be used
as an input cell. If it still supports INTEST, then the CAP
flip-flop will supply data to the system logic (and data rip­
ple due to shifting is guaranteed by design not to matter),
or, the input has been specifically designated as a clock
function as the rules allow.

Defining a Boundary Cell

A cell is defined as a VHDL constant. It is an array of
records with the range of the array unspecified, but implicit
from the number of records given in the constant definition.
Each field of each record must be filled. A standard prac­
tice is that these are filled using positional association
rather than named association, as shown, to simplify
development of non-VHDL based applications.

We give an example of a Boundary Cell C_Ex_l that
supports EXTEST, SAMPLE and INTEST. It loads a ' 1 '
into the CAP during EXTEST if the cell is used as an out­
put or control function. The cell may be used as a simple
input function. During INTEST as an input, it reloads the
CAP with the data value that was shifted into the cell. Its
description is:

constant C_Ex_1 : CELL_INFO : =
C (Output!, Extest, One), (Output3, Extest, One),

(Output!, Sample, PI), (Output3, Sample, PI),
(Output!, Intest, PI), (Output3, Intest, PI),
(Control, Extest, One), (Input, Extest, PI),
(Control, Sample, PI), (Input, Sample, PI),
(Control, Intest, PI), (Input, Intest, CAP));

The values allowed for function are the same as shown in
Table 2 with the exception that bidir is replaced by two
functions; bidir_in and bidir_out. A reversible cell such as
fl0-22d111 is described only with these functions, with both
required for every supported instruction as in cell BC_6 of
Appendix B. The control cell, when enabling or disabling
the cell as a driver, chooses between the bidir_out or
bidirjn functions respectively. This is the only function
with this complication.

The values allowed for an instruction are EXTEST,
INTEST, SAMPLE and RUNBIST. Others such as
BYPASS have no effect on the Boundary Cells. The values
allowed for CAP data are PI, PO, UPD, CAP, ZERO,
ONE, and X

OTHER BSDL FUNCTIONS

There are some other features in BSDL, some of which
we defered in previous discussion.

Instruction Usage

Generally, BSDL is a means for describing static design
parameters of an 1149.1 implementation. However, the
standard contains two instructions with details of operation
that are not statically defined. These are RUNBIST and
INTEST. The instruction_usage attribute gives additional
information about the operation of an instruction. While
targetted at the two standard instructions, it could be used
to document details about a user-defined instruction as
well. The types of information needed are; register

identification, result identification and clocking information.
This information is placed in string <UsageString> with
syntax given in Appendix C. Here are examples for
describing RUNBIST and INTEST and a user-defined
instruction MYBIST:

attribute INSTRUCTION_USAGE ofMy_IC: entity is
"Runbist (registers Boundary, Signature;" &

" shift Signature;" &
" result 0011010110000100;" &
" clock TCK in RunJTestJdle;" &
" length 4000 cycles)," &

"Intest (clock SYSCLK shifted)," &
"MyBist (registers Seed, Boundary, Bypass;" &

" initialize Seed 001110101;" &
" shift Bypass;" &
" result 1;" &
" clock SYSCLK in RunJTestJdle;" &
" length 125.0e-3 seconds)";

The RUNBIST usage shows two registers used. Note,
the standard states that only the Boundary Register may be
initialized for test operation. A second register Signature is
also used, and will be placed between TDI and TDO for
shifting. When the test is completed, the result shifted out
from Signature should match the given pattern (length must
match length of Signature register), where the rightmost bit
is closest to TDO. The test is run by clocking TCK 4000
times while in state RunJTestJdle.

The INTESTusage tells us that clocking is accomplished
by shifting the clock states to signal SYSCLK. This implies
a cell structure for input signal SYSCLK that supports
INTEST. If this cell had been a clock function rather than
input, then the description would read (clock SYSCLK) and
we would have to supply the clocking externally.

The MYBIST usage tells us that registers Seed, Boun­
dary, and Bypass are involved in the test and that Seed
requires initialization to a pattern. This will have to be
done using another instruction since MYBIST places the
Bypass register between TDI and TDO. Software could
look in the register_access attribute for such an instruction.
When the test is done, the Bypass register should contain
the result ' 1 ' . Clocking is done with the TAP in
RunJTestJdle, with SYSCLK freerunning for 125 mil­
liseconds.

Design Warnings

A device designer may know of situations where the sys­
tem usage of a device can be subverted via the Boundary-
Scan feature to cause circuit problems. As a simple exam­
ple, a device may have dynamic system logic which requires
clocking to maintain its state. Thus, clocking must be
maintained when bringing the device out of system mode
and into test mode for INTEST. The design_warning attri­
bute can be assigned a string message to alert future consu­
mers to the potential for problems. For example:

attribute DESIGN_WARNING of My_IC: entity is
"Dynamic device, " &
"maintain clocking for INTEST."

This warning is for application specific display purposes
only. It is a textual message with no specified syntax and is
not intended for software analysis.

352

CONCLUSION instrumental in the development of the VHDL subset.

BSDL is an extensible language for defining the basic tes­
tability features of a device implemented under the IEEE
1149.1-1990 standard. It is specifically designed for describ­
ing the numerous options that may be exercised in such
implementations, in a way useful for humans and comput­
ers. It is also a subset and standard practice of IEEE Std
1076-1987 VHDL and as such may be contained within a
larger VHDL description of a device used for modeling or
simulation. An added benefit is that a number of compli­
ance violations in a design may be discovered either in
attempting to code the device features, or, in semantic
checks possible during analysis.

Integrated circuit vendors have been reluctant121 to embed
user accessible testability features within their devices, and
are now responding to market pressures for it. The 1149.1
standard makes it much easier to add testability in a
prescribed way. However, without a simple, complete, and
automated way of describing implementations, these ven­
dors rightfully fear that new support difficulties will result.
The concept of a standardized description offers them a
way of transfering the support burden to the proper seg­
ments of the industry, most notably, the ATE vendors.
These same ATE vendors will benefit from the assurance
that the descriptions they receive are complete, accurate,
and uniform across the IC vendors.

Very recently, a new interest has been expressed for
BSDL. ASIC vendors could use a BSDL description of a
device in conjunction with the description of its system logic
to automatically add the Boundary-Scan logic during layout.
This offers 1149.1 testability to their customers who may be
unfamiliar with the details of the standard and, of course,
the BSDL description is available immediately.

The advantages of the 1149.1 standard can be more
widely enjoyed if there is some commonality in the descrip­
tion of Boundary-Scan devices across tasks and disciplines.
We believe BSDL fills this need.

ACKNOWLEDGEMENTS

A large number of companies on several continents have
been involved in drafting the 1149.1 standard. Many of
these same companies have materially contributed to the
development of BSDL in time and travel commitments. In
particular we would like to mention AT&T, Bennetts Asso­
ciates, British Aerospace, British Telecom, DEC, Electronic
Tools, ElektronikCentralen, Ericsson, the ESPRIT Consor­
tium, GenRad, Harris, IBM, ICL, Intel, Logic Automation,
Marconi, Mentor Graphics, Motorola, NCR, Philips, Sie­
mens, Teradyne, Texas Instruments, Thomson-CSF, and
Unisys.

Hewlett-Packard sponsored a worldwide effort to gain
consensus and gather comments. Meetings and presenta­
tions were held in Amsterdam, Bobligen, Boston, Carmel,
Chicago, Dallas, Denver, Karlsruhe, London, Loveland,
New York, Osaka, Paris, Philadelphia, Rome, Stanford,
Tokyo, Vail and Zurich.

Special thanks go to the chairs of the IEEE 1149.1 work­
ing group, Colin Maunder and Rod Tulloss, who responded
to scores of transmissions. Larry Saunders, chair of the
IEEE Design Automation Standards Subcommittee was

The authors communicated with many people to great
benefit. We wish to thank all of them, and in particular,
Elmer Arment, Bill Armstrong, LaNae Avra, Keith Baker,
Dave Ballew, Raymond Balzer, James Beausang, Bill Bell,
Ben Bennetts, Leon Bentley, Harry Bleeker, Bill Bruce,
Mike Bullock, Bill Den Beste, Bulent Dervisoglu, John
Deshayes, Gary Dudeck, Lee Fleming, Peter Fleming,
Michael Gallup, Vassilios Gerousis, Grady Giles, Luke
Girard, Peter Hansen, Vance Harwood, Jay Hiserote,
Najmi Jarwala, Doug Kostlan, Dirk van de Lagemaat, Wil­
liam Lattin, Johann Maierhofer, Ralph Marlett, Ken
Mason, Mark Mathieu, Don McClean, Ed McCluskey,
Randy Morgan, Carsten Mortensen, Roberto Mottola,
Math Muris, Paul Ocampo, Dieter Ohnesorge, Anwar
Osseyran, Michel Parot, Alain Plassart, Ken Posse, Jeff
Rearick, Gordon Robinson, Rick Robinson, Martin Roche,
Derek Roskell, Kevin Schofield, Dave Schuler, Rene
Segers, Jay Stepleton, Mark Swanson, John Sweeney,
Toshio Tamamura, Michael Tchou, Jake Thomas, Hai Vo-
Ba, Rolf Wagner, Allen Warren, Ron Waxman, Lee Whet-
sel, Harry Whittemore, Tom Williams, Akira Yamagiwa,
Chi Yau, and Mike Yeager.

REFERENCES

1. IEEE Standard 1149.1-1990, "IEEE Standard Test Access Port
and Boundary-Scan Architecture," IEEE Standards Board, 345
East 47th Street, New York, NY 10017, May, 1990

2. Parker, K. P., 'Testability: Barriers to Acceptance," IEEE
Design and Test of Computers, vol. 3, October 1986, pp. 11-15

3. Parker, K. P., "The Impact of'Boundaiy-Scan on Board Test,"
IEEE Design and Test of Computers, vol. 6, August 1989, pp.
18-30

4. Maunder, C. and F. Beenker, "Boundary-Scan: A Framework
for Structured Design-for-Test", Proc. Int'l Test Conference,
1987, pp. 714-723

5. Hansen, P., "The Impact of Boundary-Scan on Board Test Stra­
tegies", Proc. ATE&I Conference East, pp. 35-40, Boston, June
1989

6. Private Communications: The authors have benefited from over
300 communications in person, by phone, facsimile, mail and
E-mail with many individuals. See the acknowledgements.

7. IEEE Standard 1076-1987, "IEEE Standard VHDL Language
Reference", IEEE Standards Board, 345 East 47th Street, New
York, NY 10017, March, 1988

8. Backus, J. W., "The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-GAMM
Conference", Proc. Intnl. Conf. on Information Processing,
UNESCO, 1959, pp 125-132

9. van de Lagemaat, D., 'Testing Multiple Power Connections
with Boundary-Scan", Proc. 1st European Test Conference, Paris,
April 1989, pp. 127-130

10. Texas Instruments Data Sheet (Preliminary) SN54BCT8374,
SN74BCT8374 Boundary-Scan Device with Octal D-Type Flip-
Flop, Texas Instruments Inc, Dallas Tx. 1988

[Appendices s ta r t on the following page.]

353

Appendix A, An Example: This example is the Texas Instruments 74BCT8374 Octal D-Type Flip-Flop1101 (see Figure 6). This

device has an unusually rich set of user defined instructions.

entity ttl74bct8374 is

generic (PHYSICAL_PIN_MAP : string := "UNDEFINED");

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to 8); G N D , VCOlinkage bit;

OC_NEG:in bit; TDO;out bit; TMS, TDI, TCRin bit);

use STD_1149_l_1990.all; - Get Std 1149.1-1990 attributes and definitions

attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;

constant D W _ P A C K A G E : PIN_MAP_STRING := "CLK:1, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," &

"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12, TCIC13, TDI:14";

constant F K _ P A C K A G E : PIN_MAP_STRING := "CLK:9, Q:(10,ll,12,13,16,17,18,19), D:(6,5,4,3,2,27,26,25)," &

"GND:14, VCC28, OC_NEG:7, TDO:20, TMS:21, TCR23, TDI:24";

attribute TAP_SCAN_IN of TDI: signal is true;

attribute T A P _ S C A N _ M O D E of T M S : signal is true;

attribute TAP_SCAN_OUT of T D O : signal is true;

attribute TAP_SCAN_CLOCK of T C K : signal is (20.0e6, BOTH);

74BCT8374 D W P A C K A G E

Figure 6

-- outputs controlled from cell 16 set to 0 are Hi-Z.

-- cell 16 has a merged function, both input and control.

354

entity ttl74bct8374 is

generic (PHYSICAL_PIN_MAP : string:= "UNDEFINED");

port (CLK:in bit; Q:out bit_vector(l to 8); D:in bit_vector(l to 8); G N D , VCC:linkage bit;

OC_NEG:inbit; TDO;outbit; TMS,TDI,TCK:inbit);

use STD_1149_l_1990.all; - Get Std 1149.1-1990 attributes and definitions

attribute PIN_MAP of ttl74bct8374 : entity is PHYSICAL_PIN_MAP;

constantDW_PACKAGE:PIN_MAP_STRING:="CLK:l, Q:(2,3,4,5,7,8,9,10), D:(23,22,21,20,19,17,16,15)," &

"GND:6, VCC:18, OC_NEG:24, TDO:ll, TMS:12,TCK:13, TDI:14";

constantFK_PACKAGE:PIN_MAP_STRJ[NG:="CLK:9, Q:(10,ll,12,13,16,17,18,19), D:(6,5,4,3,2,27,26,25)," &

"GND:14, VCC:28, OC_NEG:7, TDO:20, TMS:21, TCR23, TDI:24";

attribute TAP_SCAN_IN of TDI: signal is true;

attribute T A P _ S C A N _ M O D E of T M S : signal is true;

attribute TAP_SCAN_OTJT of T D O : signal is true;

attribute TAP_SCAN_CLOCK ofTCK : signal is (20.0e6, BOTH);

attribute INSTRUCTION_LENGTH of ttl74bct8374 : entity is 8;

attribute INSTRUCTCON_OPCODE of ttl74bct8374 : entity is

" B Y P A S S (11111lll, 10001000, 00000101,10000100, 00000001)," &

"EXTEST (00000000,10000000)," &

"SAMPLE (00000010, 10000010)," &

"INTEST (00000011, 10000011)," &

"TRIBYP (00000110,10000110)," & -BoundaryHi-Z

"SETBYP (00000111, 10000111)," & -Boundaryl/O

" R U N T (00001001,10001001)," & -Boundaryruntest

" R E A D B N (00001010,10001010),"& ~Boundaryreadnormal

"READBT (00001011,10001011)," & -Boundaryreadtest

"CELLTST (00001100, 10001100)," & - Boundary selftest normal

"TOPHIP (00001101,10001101)," & ~Boundarytoggleouttest

"SCANCN (00001110,10001110)," & - B C R Scan normal

"SCANCT (00001111,10001111)," & ~BCRScantest

attribute INSTRUCTION_CAPTURE of ttl74bct8374 : entity is "01010101";

attribute INSTRUCTION_DISABLE of ttl74bct8374 : entity is 'TRIBYP";

attribute REGISTER_ACCESS of ttl74bct8374 : entity is

" B O U N D A R Y (READBN, READBT, CELLTST)," &

"BYPASS (TOPHIP, SETBYP, R U N T , TRIBYP)," &

"BCR[2] (SCANCN, SCANCT)"; - 2-bit Boundary Control Register

attribute B O U N D A R Y _ C E L L S of ttl74bct8374 : entity is "BC_1";

attribute B O U N D A R Y _ L E N G T H of ttl74bct8374 : entity is 18;

attribute B O U N D A R Y _ R E G I S T E R of ttl74bct8374 : entity is

-- num cell port function safe [ccell disval rslt]

"17 (BC_1, CLK, input, X)," &

"16 (BC_1, OC_NEG, input, X)," & - Merged Input/Control

"16 (BC_1, *, control, 0)," & - Merged Input/Control

"15 (BC_1, D(1), input, X)," &

"14 (BC_1, D(2), input, X)," &

"13 (BC_1, D(3), input, X)," &

"12 (BC_1, D(4), input, X)," &

"11 (BC_1, D(5), input, X)," &

"10 (BC_1, D(6), input, X)," &

"9 (BC_1, D(7), input, X)," &

"8 (BC_1, D(8), input, X)," &

"7 (BC_1, Q(1), output3, X, 16, 0, Z)," &

"6 (BC_1, Q(2), output3, X, 16, 0, Z)," &

"5 (BC_1, Q(3), output3, X, 16, 0, Z)," &

"4 (BC_1, Q(4), output3, X, 16, 0, Z)," &

"3 (BC_1, Q(5), output3, X, 16, 0, Z)," &

"2 (BC_1, Q(6), output3, X, 16, 0, Z)," &

"1 (BC_1, Q(7), output3, X, 16, 0, Z)," &

"0 (BC_1, Q(8), output3, X, 16, 0, Z)";

end ttl74bct8374;

Appendix B, IEEE Std 1149.1-1990 VHDL Package/Package Body definition.

This is the definition of the VHDL package and supporting package body for IEEE Std 1149.1-1990 attributes, types, subtypes,
and constants of BSDL.

package STD_1149_1_1990 is

— Give pin mapping declarations
attribute PIN_MAP : string;
subtype PIN_MAP_STRING is string;

— Give TAP control declarations
type CLOCK_LEVEL is (LOW, BOTH);
type CLOCK_INFO is record

FREQ : real;
LEVEL: CLOCK_LEVEL;

end record;

attribute TAP_SCAN_IN : boolean;
attribute TAP_SCAN_OUT : boolean;
attribute TAP_SCAN_CLOCK : CLOCKJNFO;
attribute TAP_SCAN_MODE : boolean;
attribute TAP_SCAN_RESET : boolean;

— Give instruction register declarations
attribute INSTRUCTION_LENGTH: integer;
attribute INSTRUCTION_OPCODE : string;
attribute INSTRUCTION_CAPTURE: string;
attribute INSTRUCTION_DISABLE: string;
attribute INSTRUCTION_PRIVATE: string;
attribute INSTRUCTION_USAGE: string;
— Give ID and USER code declarations
type ID_BITS is ('0', ' 1 ' , V, 'X');
type ID_STRING is array (31 downto 0) of ID_BTTS;
attribute IDCODE_REGISTER : ID_STRING;
attribute USERCODE_REGISTER : ID_STRING;

-- Give register declarations
attribute REGISTER_ACCESS : string;

-- Give boundary cell declarations
type BSCANJNST is (EXTEST, SAMPLE, INTEST,

RUNBIST);
type CELLJTYPE is (INPUT, INTERNAL, CLOCK,

CONTROL, CONTROLR, OUTPUT2,
OUTPUTS, BIDIRJN, BIDIR.OUT);

type CAP_DATA is (PI, PO, UPD, CAP, X, ZERO, ONE);
type CELL_DATA is record

CT : CELL_TYPE;
I : BSCAN_INST;
CD : CAP_DATA;

end record;
type CELL_INFO is array of CELL_DATA;

-- Boundary Cell defered constants (see package body)

constant BC_1 : CELLJNFO;
constant BC_2 : CELLJNFO;
constant BC_3 : CELLJNFO;
constant BC_4 : CELLJNFO;
constant BC_5 : CELLJNFO;
constant BC_6 : CELLJNFO;
— Boundary Register declarations

attribute BOUNDARY_CELLS : string;
attribute BOUNDARY_L.ENGTH : integer,
attribute BOUNDARY_REGISTER : string;

— Miscellaneous
attribute DESIGN_WARNING: string;

end S T D J 1 4 9 J J 9 9 0 ; - End of 1149.1-1990 Package

package body STD_1149_1_1990 is - Standard Boundary Cells

- Description for fl0-12, fl0-16, fl0-18c, fl0-18d, fl0-21c

constant BC_1 : CELLJNFO : =
((INPUT, EXTEST, PI),
(INPUT, SAMPLE, PI),
(INPUT, INTEST, PI),
(INPUT, RUNBIST, PI),
(OUTPUT3, EXTEST, PI),
(OUTPUT3, SAMPLE, PI),
(OUTPUT3, INTEST, PI),
(OUTPUT3, RUNBIST, PI),
(CONTROL, EXTEST, PI),
(CONTROL, SAMPLE, PI),
(CONTROL, INTEST, PI),
(CONTROL, RUNBIST, PI),

(OUTPUT2, EXTEST, PI),
(OUTPUT2, SAMPLE, PI),
(OUTPUT2, INTEST, PI),
(OUTPUT2, RUNBIST, PI),
(INTERNAL, EXTEST, PI),
(INTERNAL, SAMPLE, PI),
(INTERNAL, INTEST, PI),
(INTERNAL, RUNBIST, PI),
(CONTROLR, EXTEST, PI),
(CONTROLR, SAMPLE, PI),
(CONTROLR, INTEST, PI),
(CONTROLR, RUNBIST, PI));

(INTERNAL, EXTEST, PI),
(INTERNAL, SAMPLE, PI),
(INTERNAL, INTEST, PI),
(INTERNAL, RUNBIST, PI));

-- Description for fl0-8, f10-17, fl0-19c, fl0-19d, fl0-22c

constant BC_2 : CELLJNFO : =
((INPUT, EXTEST, PI), (OUTPUT2, EXTEST, UPD),
(INPUT, SAMPLE, PI), (OUTPUT2, SAMPLE, PI),
(INPUT, INTEST, UPD), -- Intest on output2 not supported
(INPUT, RUNBIST, UPD), (OUTPUT2, RUNBIST, UPD),
(OUTPUT3, EXTEST, UPD), (INTERNAL, EXTEST, PI),
(OUTPUT3, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
(OUTPUT3, INTEST, PI), (INTERNAL, INTEST, UPD),
(OUTPUT3, RUNBIST, PI), (INTERNAL, RUNBIST, UPD),
(CONTROL, EXTEST, UPD), (CONTROLR, EXTEST, UPD),
(CONTROL, SAMPLE, PI), (CONTROLR, SAMPLE, PI),
(CONTROL, INTEST, PI), (CONTROLR, INTEST, PI),
(CONTROL, RUNBIST, PI), (CONTROLR, RUNBIST, PI));

-- Description for fl0-9

constant BC_3 : CELLJNFO : =
((INPUT, EXTEST, PI),
(INPUT, SAMPLE, PI),
(INPUT, INTEST, PI),
(INPUT, RUNBIST, PI),

- Description for fl0-10, fl0-ll

constant BC_4 : CELLJNFO : =
((INPUT, EXTEST, PI), - Intest on input not supported
(INPUT, SAMPLE, PI), - Runbist on input not supported
(CLOCK, EXTEST, PI), (INTERNAL, EXTEST, PI),
(CLOCK, SAMPLE, PI), (INTERNAL, SAMPLE, PI),
(CLOCK, INTEST, PI), (INTERNAL, INTEST, PI),
(CLOCK, RUNBIST, PI), (INTERNAL, RUNBIST, PI));

-- Description for fl0-20c, a combined Input/Control

constant BC_5 : CELLJNFO : =
((INPUT, EXTEST, PI),
(INPUT, SAMPLE, PI),
(INPUT, INTEST, UPD),
(INPUT, RUNBIST, PI),

-- Description for fl0-22d, a reversible cell

constant BC_6 : CELLJNFO : =
((BIDIRJN, EXTEST, PI), (BIDIR_OUT, EXTEST, UPD),
(BIDIRJN, SAMPLE, PI), (BIDIR_OUT, SAMPLE, PI),
(BIDIRJN, INTEST, UPD), (BIDIR_OUT, INTEST, PI),
(BIDIRJN, RUNBIST, UPD), (BIDIR_OUT, RUNBIST, PI));

end STD_1149_1_1990; - End of 1149.1-1990 Package Body

(CONTROL, EXTEST, PI),
(CONTROL, SAMPLE, PI),
(CONTROL, INTEST, UPD),
(CONTROL, RUNBIST, PI)) ;

355

Appendix C, BSDL Syntax Specification

The BNF syntax descriptions are shown in this appendix. The items described are those contained within VHDL strings and
as such, are not part of VHDL syntax. Syntactic items are shown in italics, surrounded by ' < ' and ' > ' .characters. Keywords
such as 'Extest' or 'Outputs' are in normal font. Boldface items are BSDL terminals such as INTEGER, VHDL IDENTIFIER,
or other description. The symbol NULL is the empty expansion. All BSDL elements contained within VHDL strings are
treated as single, contiguous strings even though they may be expressed as the concatenation of smaller strings. All concatena­
tions should be removed during lexicographical analysis. An asterisk in the leftmost column marks the start of an BNF expres­
sion promised in the text of this paper.

* <MapString> ::= <PinMapping> | <MapString> , <PinMapping>

<PinMapping> ::= <PortName> : <PhysicalPinDesc>

<PortName> ::= VHDL IDENTIFIER

<PhysicalPinDesc> ::= <PhysicalPin> | (<PhysicalPinList>)

<PhysicalPinList> :.= <PhysicalPin> \ <PhysicalPinList> , <PhysicalPin>

<PhysicalPin> .:= INTEGER | VHDL IDENTIFIER

* <OpcodeTable> ::= <OpcodeDesc> | <OpcodeTable> , <OpcodeDesc>

<OpcodeDesc> ::= <OpcodeName> (<PattemList>)

<PattemList> ::= <Pattern> \ <PattemList> , <Patten>

* <Pattem> :.= BINARY STRING

* <UsageString> ; .= <UsageDesc> | <UsageString> , <UsageDesc>

<UsageDesc> ::= <OpcodeName> (<UsageList>)

* <OpcodeName> .:= Extest | Sample | Intest | Runbist | VHDL IDENTIFIER

< UsageList> :: = < Usage> | < UsageLisO ; < Usage>

<Usage> :.= <RegisterDecl> | <InitializeDecl> \ <ShiftDecl> \ <ResultDecl> \<ClockDecl> \ <LengthDecl>

<RegisterDecl> ::= Registers <RegisterList>

<RegisterList> ::= <Register> \ <RegisterList> , <Register>

<Register> ::= VHDL IDENTIFIER

<InitializeDecl> ::= Initialize <Register> <Pattem>

<ShiftDecl> ::= Shift <Register>

<ResultDecl> ::= Result <Pattem>

<LenghDecl> :: = Length <LengthSpec>

<LengthSpec> :: = INTEGER cycles | REAL seconds

<ClockDecl> .:= Clock VHDL IDENTIFIER <ClockSpec>

<ClockSpec> .:= in <TapState> \ shifted | NULL

<TapState> ::= Run_Test_Idle

* <RegisterString> ::= <RegisterAssoc> \ <RegfsterString> , <RegisterAssoc>

<RegisterAssoc> ::= <Register> (<OpcodeList>)

* <OpcodeList> ::= <OpcodeName> | <OpcodeList> , <OpcodeName>

* <CellList> .:= <CellName> | <CellList> , <CellName>

<CellName> ::= VHDL IDENTIFIER

* <CellTable> :.= <CellEntty> \ <CellTable> , <CellEntry>

<CellEntty> ::= <CellNumber> (<CellInfo>)

<CellInfo> .:= <CellSpec> \ <CellSpec> , <DisableSpec>

<CellSpec> ;:= <Cel!ID> , <PortID> , <Function> , <SafeValue>

<CellNumber> ::= INTEGER

<CellID> ..= VHDL IDENTIFIER

<PortID> :: = <PortName> \ *

<Function> ::= Input | Output2 | Ourput3 | Control | Controlr | Internal | Clock | Bidir

<SafeValue> .:= 0 | 1 | X

<DisableSpec> :: = <DisableCell> , <DisableVal> , <DisableResult>

<DisableCell> ::= <CellNumber>

<DisableVal> ::= 0 | 1

<DisableResult> ::= Z | Weak0 | Weakl

356

Functional Test and Diagnosis: A Proposed
JTAG Sample Mode Scan Tester

Mark F. Lefebvre

Digital Equipment Corporation
100 Minuteman Road

Andover, Massachusetts 01810

ABSTRACT

Emerging trends in physical interconnect tech­
nologies have made many of the conventional func­
tional test and diagnosis tools difficult, if not impossi­
ble, to utilize in today's manufacture and test
processes. The IEEE Standard 1149.1 boundary scan
implementation provides the internal access required
for analyzing nodal test data. This paper describes a
JTAG Sample Mode Scan Tester being developed for
diagnosis of at-speed failures in modules .

INTRODUCTION

Advances in physical interconnect technology,
made necessary to meet increasing speed and packag­
ing density requirements, are making physical access
to the internal networks of a module (populated
printed circuit board) increasingly difficult and in
many cases, impossible. The traditional method of
testing a module for functional defects has been with
a functional tester and an edge-connector type fixture.
Diagnosis has been typically performed through a
combination of limited bed-of-nails access and a
band-held probe, which may or may not have been
guided under program control.

This method has worked well for many years on
through-hole modules utilizing 100 mil pitch compo­
nent leads, or with modules of limited complexity.
However, with the advent of surface mount technol­
ogy and high pin count components with a lead pitch
of 25 mils or less, the bed-of-nails and guided probe
approaches to test have become impractical without
the addition of test pads.

Recognizing the limitations of physical access to
the internal networks and device leads, product de­
signers are beginning to use boundary scan latches as

a testability feature in product designs. Boundary
scan latches allow for the capture of electrical stimu­
lus and response data without the loading caused by
physically probing the MUT (Module Under Test).
Specifications defining a standard implementation for
boundary scan have been developed by an industry
sponsored committee called the Joint Test Action
Group (JTAG) in the IEEE Standard 1149.1, herein
referred to as JTAG. It is assumed that the reader is
familiar with the IEEE standard. The details of the
JTAG boundary scan implementation are provided in
IEEE Standard 1149.1 [1].

This paper describes a Sample Mode Scan Tester
that is currently being developed for the purpose of
diagnosing at-speed functional faults on modules that
incorporate the JTAG testability standard. The term
"at-speed functional test" refers to the process of
sampling response data at MUT speed. However,
the JTAG Sample Mode process allow for the data to
be shifted to the tester at a much slower speed. This
is significant, as it provides a means of performing
functional test without the need for the tester to keep
pace with product clock speeds.

The tester, with the appropriate software tools,
can also be used as a data acquisition system. This
capability also facilitates the debug of engineering
prototypes, similar to that of a logic analyzer.

PROBLEM STATEMENT

Functional Test Trends

The traditional functional test process can be
categorized under one of two scenarios. The first
concerns the use of traditional functional automatic
test equipment (ATE) and involves stimulus being
applied from the tester to the MUT through the edge

Reprinted from IEEE Proceedings 1990 International Test Conference,
pages 294-303. Copyright © 1990 by The Institute of Electrical and

E H 0 3 2 1 - 0 / 9 0 / 0 0 0 0 / 0 3 5 7 $ 0 1 . 0 0 © 1 9 9 0 IEEE 357 Electees Engineers, Inc. All rights reserved.

connector. The MUT response (ACQUISITION data)
to the stimulus is captured by the tester, again
through the edge connector. The results are then
compared against a known good data base (EXPECT
data), and a determination is made on whether the
MUT passed or failed the test Diagnosis is achieved
by comparing the EXPECT data with the ACQUISI­
TION data via a guided probe algorithm. In some ap­
plications, a fault dictionary is used in place of, or in
addition to, the guided probe.

The second scenario is the use of product to test
product In mis application, the MUT is plugged into
a known good system box, and stimulus is applied
via disk- or ROM-based diagnostics. Diagnosis is
achieved through a combination of custom diagnos­
tic routines, program direaed probing, and the use of
electronic instrumentation such as a logic analyzer or
an oscilloscope. Fault diagnosis at such a test station
is a very complicated process and requires an experi­
enced technician or engineer. In both scenarios, diag­
nosis would be further complicated without any
means of probing the MUT.

Because of the aforementioned physical access
restrictions due to emerging module technologies,
these traditional functional test methods have begun
to break down. Without physical access, guided
probe methodologies are no longer feasible. Simi­
larly, the use of test pads for interfacing test instru­
mentation such as logic analyzers to the MUT is also
limited. Due to these restrictions, it is clear that alter­
native methods of accessing MUT nodal test data are
required. Sampling data via boundary scan latches
is one such method.

Application Requirements

There are several application requirements that
must be addressed to perform Sample Mode testing.
The overall objective is to sample deterministic nodal
test data in a repeatable fashion.

• Deterministic - the ability to sample predictable
data (i.e. sample cycle n).

• Repeatable - given a program that samples cycle
n, the ability to sample the same data each time
the test program is executed.

In order to meet these objectives a number of
provisions must be made, both from the tester and the
MUT perspectives. The first involves synchronizing
the execution of the test sequence to the operation of
the tester. To achieve synchronization, the Sample
Mode process must be triggered by some event on the
MUT that is synchronous with the MUT clock.

The second requirement involves me execution
of a repeatable test sequence on the MUT. This will
allow test data to be captured in multiple executions
of the test sequence and requires a provision for the
test sequence to be initiated asynchronously by the
tester.

The third requirement is mat the tester must have
physical access to the JTAG Test Access Port (TAP)
interface in order to control the operation of the TAP,
and to transfer data between the tester and the bound­
ary scan devices. For the purposes of this applica­
tion, the JTAG signal pins, in addition to any signals
required for synchronization, are brought out to the
MUT edge connector.

Finally, in order to effectively diagnose MUT
failures to the failing component the majority of
MUT networks must be accessible via a boundary
scan latch. As more MUT networks become con­
nected to boundary scan latches, the level of diagnos­
tic resolution increases accordingly [2].

Synchronization Requirements

A means of synchronizing the execution of the
MUT test sequence must be developed that will allow
deterministic sampling of test data while the MUT is
operating at system speed. This usually requires the
tester to initiate the test sequence and the tester to
trigger off some event that is synchronous with the
execution of this test sequence [3].

Once synchronization is achieved, any cycle of
test data may be sampled by delaying the JTAG cap­
ture sequence such that it aligns with the desired cy­
cle of me test sequence. This process may be re­
peated under tester control in order that multiple
"snapshots" of test data are sampled and ultimately
analyzed for diagnostic purposes.

JTAG SAMPLE MODE OPERATION

JTAG Overview

Boundary scan latches allow for the sampling of
electronic stimulus and response data without imped­
ing MUT functional performance. The set of bound­
ary scan register latches can be considered as a very
wide parallel load, serial shift register. The parallel
inputs to the register are physically connected to the
device I/O, thereby providing access to the internal
networks of the MUT. At the module level, each
boundary scan device is daisy-chained to form a scan
chain comprised of the individual devices..

358

The 4 TAP signals (TDI, TDO, TCK, and TMS)
are accessible to the Sample Mode Scan Tester via
the module edge connector. Figure 1 illustrates how
individual JTAG-companble components can be con­
nected at the module level and brought to the edge
connector. Note that the scan output TDO from one
device is connected to scan input TDI of the next de­
vice in tiie scan chain. TMS and TCK are connected
in parallel to each device in this implementation. A
brief description of the TAP signals is also given be­
low.

Figure 1 Module-level JTAG Scenario

Test Data Input (TDI): TDI is the serial input
to the JTAG device by which test or instruction
data are loaded.

Test Data Output (TDO): TDO is the serial out­
put of the JTAG device by which test or instruc­
tion data are shifted from a given device.

Test Mode Select (TMS): The logic state of
TMS controls and distinguishes the functionality
of the TAP controller. The value of TMS is

clocked into the TAP controller on the rising
edge of TCK.

• Test Clock (TCK): TCK is a dedicated test
clock input that is normally free-running. The
frequency of TCK will determine the speed at
which we shift test data from the MUT to the
tester.

The JTAG state diagram is shown below in Fig­
ure 2. Note that the functionality of tihe state machine
is controlled by manipulating TMS and TCK. The
values of TMS are shown.

Figure 2 : JTAG TAP State Diagram

359

JTAG Sample Mode Operational Description

The JTAG Sample Mode sequence is a 3-step
process involving the execution of a test, the capture
of test data, and the transfer of that test data to the
Sample Mode Scan Tester.

TEST - Execute test sequence at MUT speed.
The test sequence could be either diagnostics or
self-test.

CAPTURE - Sample test data without affecting
MUT performance.

SHIFT - Shift nodal data to tester at tester speed.

In JTAG terms, this could be algorithmically de­
scribed as follows:

1. Load the Sample Mode instruction into the JTAG
device Instruction Registers. A Sample instruc­
tion must be loaded for each of the devices in the
scan chain, so for a module with six JTAG de­
vices, the instruction would be 48 bits long since
the Instruction Register has eight bits per device.

2. Manipulate TMS and TCK such that the TAP
controller is looping in the RUN-TEST/IDLE
state (see Figure 2).

3. Initiate the execution of the MUT test sequence
which is operating at the speed of the MUT clock.

4. Capture die nodal response of the desired cycle of
the test sequence. This is accomplished by further
manipulating TMS and TCK such that the TAP
controller of each JTAG device transitions from
the CAPTURE state during the test sequence cy­
cle to be sampled. Once in the CAPTURE state,
the next rising edge of TCK will cause the MUT
nodal test data to be captured at each of the device
boundary scan latches.

5. Shift the test data to the tester for analysis. This
shift step does not have to take place immediately
after the capture, nor does it have to be performed
at MUT speed.

6. Repeat steps 4 and S as required. Since the MUT
clock is free-running, the test sequence continues
to execute during the SHIFT process. We must
therefore take into account the elapsed MUT cy­
cles occurring during the SHIFT process before
we perform additional samples.

In order to control the JTAG boundary scan
latches for Sample Mode operation, die appropriate
JTAG protocol must be programmed by the Sample
Mode Scan Tester. This process is presented later in
greater detail relative to an actual module that is util­
ized as a test case.

TESTER DESCRIPTION

In response to the JTAG approach to the
testability problems presented in the Introduction, a
test system has been developed for the purpose of
overcoming these difficulties. What follows is a de­
scription of the Sample Mode Scan Tester and associ­
ated software tools, and a discussion of an application
that has been developed for a custom test module.

Hardware Overview
The Sample Mode Scan Tester is comprised of

two major subsystems, the Scan Subsystem and the
Host Processor.

The Scan Subsystem contains die necessary
control hardware for manipulating die MUT inter­
face, and for controlling the operation of the JTAG
components on the MUT. It also contains the actual
scan memory hardware for die storage of scan data.
The MUT interfaces to the Scan Subsystem through a
custom designed test head that includes the necessary
logic for synchronizing the test system to die opera­
tion of the MUT logic and the test sequence.

The Host Processor acts as a controller for the
scan subsystem by hosting and executing the various
software modules utilized for the Sample Mode Scan
Tester. Likewise, the application program is loaded
and executed from me Host Processor, a VAXStation
3500. All software operates in the VMS environment.

Software Overview

The Sample Mode Scan Tester software package
provides a comprehensive suite of tools that supports
die entire spectrum of the test process, from test pro­
gram generation to the graphic display of diagnostic
data. These tools are integrated into a menu-driven
platform that serves as a front end to the test engineer
or manufacturing technician. The list of die software
modules developed for the Sample Mode Scan Tester
includes me following:

• Pattern Converter

• Pattern Editor

360

• Learn Module

• Tester Control Module

• Boundary Scan Interconnect Test Generation
Module

• Waveform Display Module

• Diagnostic Module

Pattern Converter

The test stimuli have been simulated using a pro­
prietary simulator. The resulting response data must
be converted into the format required by the Sample
Mode Scan Tester.

The function of the Partem Converter is to trans­
late these simulation-generated response patterns
(called EXPECT patterns) into the correct binary for­
mat used by the Scan Subsystem. The pattern con­
verter reads in multiple types of simulator-generated
patterns, translates the patterns into an intermediate
binary format, and then renders the patterns into the
specified tester format. Specific output software
modules can be written to tailor the output format to
other testers.

Pattern Editor

The Pattern Editor is a tool used for editing and
manipulating the EXPECT pattern database. The
Editor also has programmable software triggering ca­
pability which allows the user to search and trigger
on the data based on a sequence of events, as speci­
fied by the user. The data can then be displayed or
manipulated under program control.

For example, the test engineer may wish to mask
indeterminate ACQUISITION data during a scan op­
eration. The Pattern Editor would allow the engineer
to specify a sequence of data for the Pattern Editor to
"watch for" during the scan operation. When the Edi­
tor sees this sequence, the specified bits in the EX­
PECT database would then be masked by the Editor.
Other functions include the ability to edit the data­
base by commands specified through the Waveform
Display module.

U a m Module

Two methods of data generation and testing are
being developed for the Sample Mode Scan Tester.
The first involves generating EXPECT data via simu­
lation and converting this data to the tester format as
mentioned above. The second involves 'learning" the
EXPECT data from a known-good MUT. The latter
scenario requires the tester to sample the nodal test
data via the JTAG interface much like the normal op­
eration of the tester. However, instead of performing

a test on the ACQUISITION data, a nodal database
will be constructed that will serve as the EXPECT
database.

The Learn Module is an extension of the func­
tions in the Pattern Editor. Its purpose is to compare
multiple databases generated from sampling and op­
erate on that data (change states or mask data) based
on certain conditions.

The function of this "programmable" Pattern
Editor is to compare multiple databases generated
from sampling, and then to operate on that data based
on conditions defined by the user. The resulting da­
tabase will serve as the EXPECT data for future tests
of that MUT.

Tester Control Program

The function of the Tester Control Program is to
interface to the tester hardware, control the testing
functions, and allow links to other tools that comprise
the tester tools suite. The Tester Control Program is
responsible for controlling all system functions such
as synchronization, JTAG protocol and data acquisi­
tion. It also serves as a front end for test program
generation, fault diagnosis and any other applications
for the tester.

Interconnect Test Generation Module

In addition to Sample Mode testing, the tester
also has the capability to perform boundary scan in­
terconnect testing. A test generation process has
been developed to provide test patterns for the pur­
pose of detecting MUT interconnect failures such as
shorts and opens. An output module adds the JTAG
scan protocol in addition to translating the test pat­
terns from simulator output into tester format

Waveform Display Module

For the purposes of debug and fault diagnosis, a
waveform display tool is being developed for the
Sample Mode Scan Tester. The display will have
similar functions to those of a logic analyzer. The
tool will draw a waveform from the test data that has
been sampled from the MUT. MUT failures will be
highlighted on the display.

Diagnostic Module

The tester hardware currently performs a real-
time hardware compare of the EXPECT data and the
ACQUISITION data sampled from the MUT during
the execution of the test program. The system passes
to the Host Processor the test cycle number and bit(s)
which do not match. The Diagnostic Module utilizes
this information together with the MUT CAD infor-

361

mation to determine the earliest failing cycle. The
Diagnostic Module then isolates the fault to a single
component and gives a level of confidence of the di­
agnosis.

MUT DESCRIPTION

The MUT is an internally developed test module
designed and fabricated to demonstrate the prototype
capabilities of the Sample Mode Scan Tester. The
module has been simulated and the resultant EX­
PECT data has been converted into tester format. A
block diagram of the MUT is shown in Figure 3.

NOTE: The 74BCT373 and 74BCT374 are TI SCOPE

Octals that incorporate the JTAG standard.

TM

Figure 3 : MUT Block Diagram

The counter's parallel output serves as the stimu­
lus to the module. Therefore, a new "test pattern" is
applied to the module for every counter cycle. Since
the counter is synchronous with the clock, a test pat­
tern exists for every clock cycle. The test sequence is
initiated by the signal MR (Master Reset), which trig­
gers the counter. When the counters count to terminal
count, the signal REF is asserted, indicating the com­
pletion of the test sequence. When the test sequence
is looping, this provision allows for synchronization
of the Sample Mode Scan Tester to the test sequence.

The boundary scan ring is comprised of 6 TI
SCOPE™1 Octals, each having 18 bits of scan data.
With this configuration, the boundary scan ring is
108 bits long.

The interface between the tester and the module
is also shown in Figure 3. The following is a descrip­
tion of the signal names.

REF: This signal will serve to synchronize the
tester to the execution of the test sequence. REF is a
trigger signal mat is asserted at the completion of the
test sequence, synchronously with the system clock.

CLK: This is the system clock and is asserted
on the rising edge. The frequency of CLK is 50 MHz

MR: This signal is a Master Reset which origi­
nates from the tester. MR allows the tester to
asynchronously restart the test sequence.

TDO: Test Data Out is the JTAG serial output of
the module under test

TDI: Test Data In is the JTAG serial input to
the module under test

TCK: Test Clock is the clock used to synchro­
nize the JTAG operations. The speed of TCK is 25
MHz and is provided by the tester.

TMS: Test Mode Select is used by the tester to
control the JTAG state machine.

The logic necessary to ensure accurate and pro­
grammable synchronization of the Sample Mode
process is implemented on an interface between the
tester hardware and the MUT.

TEST METHODOLOGY

Overview

Programmable sampling is achieved by program­
ming the Sample Mode Scan Tester to manipulate the
JTAG state machine of each of the JTAG devices.
Controlling the Sample Mode process involves loop­
ing the tester while the TAP Controller is in die

362

RUN-TEST/IDLE state, then manipulating TMS and
TCK to arrive at the CAPTURE state within the ap­
propriate MUT test cycle to be sampled. Refer to the
JTAG state diagram in Figure 2.

The specific provisions of this application are as
follows:

• Initial Capture: Determines when the initial
CAPTURE occurs, based on the delays associ­
ated with the MUT interface, the tester, and the
amount of MUT clock cycles elapsing between
the trigger signal and the MUT cycle being
tested. This delay will determine the time be­
tween REF and the first CAPTURE.

• Capture Interval: Determines the interval be­
tween successive CAPTURES by accounting for
SHIFT overhead. At a minimum, this provision
must take into account the number of MUT test
cycles that have elapsed during the shift process.
In other words, since the MUT clock is still oper­
ating, and since the test sequence is still execut­
ing unimpeded by the Sample Mode process, the
tester must take the elapsed MUT time into ac­
count when detennining the next cycle to be
sampled. This provision allows multiple samples
of boundary scan data to be captured during a
given pass through the test sequence.

• Multiple Pass Sampling: Allows multiple
passes of the test sequence to be executed. This is
accomplished by programming the tester to restart
the test sequence after a given sample, or by hav­
ing the test sequence continuously loop in a free-
running mode. The latter simply requires the
tester to track the test cycles, which occurs by de­
fault via the synchronization process. This proc­
ess is illustrated below in Figure 4.

This process provides the capability to sample
any cycle of test data during any pass of the test se­
quence. Subsequently, this sampling procedure is re­
peated until all desired cycles are sampled, or until the
scan tester pattern memory is filled.

For cases where the MUT clock is operating at
the same frequency as the JTAG test clock, there will
be a one-to-one correspondence between MUT cycles
and the tester cycles. If, however, these clocks do not
operate at the same frequency, one must account for
the difference when performing Sample Mode testing.
It is recommended that TCK be programmed to be an
integer divisor of the MUT clock. For instance, if the
MUT clock is operating at 50 MHz, the test clock
should be programmed at 25,10, or 5 MHz.

Figure 4 : Multiple Pass Sampling

363

Tester Setup
Prior to loading and executing the JTAG proto­

col to perform Sample Mode testing, the appropriate
tester parameters must be assigned. These parame­
ters include power supply levels, logic levels and tim­
ing values, and the assignment of tester scan re­
sources to the appropriate MUT signals.

JTAG Setup

Once the appropriate tester parameters have been
assigned, the boundary scan devices must be loaded
with the Sample instruction. Assuming the TAP
Controller is initially in the Run-Test/Idle state, the
sequence for setting up the state machine to perform
Sample Mode testing is as follows [4]:

1. Select-ER-Scan - This will select the Instruction
Register of each boundary scan device in order
that the Sample instruction can be loaded. When
TMS is held low in this state, a scan sequence for
the Instruction Registers is initiated.

2. Shift-IR - While in this state, the tester will shift
the Sample instruction into the Instruction Regis­
ter via TDI. Since there are 6 boundary scan de­
vices on the MUT, the instruction is 48-bits long
(6x8 bits).

3. Update-IR - During this state, the Instruction Reg­
ister contents become a valid instruction.

4. Return to the Run-Test/Idle state for the appropri­
ate rime specified by the delay sequence.

In this sequence, the Sample instruction would
assume the binary value of 10000010 for each of the
6 devices in the boundary scan chain.

Sample Procedure
Now that the JTAG devices have been set up to

capture nodal test data, the tester initiates the MUT
test sequence by asserting MR (Master Reset).
Again, the test patterns are simply the output of the
counter circuit When the tester sees the trigger sig­
nal (KEF) asserted, it interprets the next clock cycle
as cycle 1 of the test sequence.

All samples will be relative to REF. For exam­
ple, if we wish to capture data from the 4th cycle of
the test sequence, we must program the tester such
that the INITIAL CAPTURE occurs after 4 MUT
clock cycles, relative to REF.

For successive captures, we have to account for
the 5 (EXIT1-DR, UPDATE-DR, RUN-TEST/IDLE,
SELECT-DR-SCAN, and CAPTURE-DR) TAP state
transitions when calculating the amount of tester de­
lay to perform the next sample. This TAP overhead
is added to the time elapsed while shifting data to the
tester, and must also be accounted for when specify­
ing the next cycle of the test sequence to be sampled.
This value is the CAPTURE INTERVAL.

Using the previous example and keeping in mind
that the scan chain is 108 bits long for our MUT,
since we have captured data from cycle 4, the next
potential cycle to be sampled would be cycle 117
(cycle 4 + 108 cycles of shifting + 5 JTAG state tran­
sitions). This sequence is illustrated in Figure 5. In
situations where the test clock, TCK, and the system
clock are not operating at the same frequency, this
CAPTURE INTERVAL would account for the dif­
ference.

For each ensuing pass of the test sequence, the
tester delays each sample by one cycle in order to
create a contiguous database. Such a database would
facilitate fault diagnosis by providing a means of de­
termining the earliest failing test cycle.

Figure 5 : Sample Mode Example

MR

JTAG Instruction
Load

364

Using the previous example, the resulting test
database would resemble the structure shown in Fig­
ure 6. Other software tools, such as the Waveform
Display or the Diagnostic Module, could then access
this database for diagnostic or display purposes. It
should be noted that the Sample Mode Scan Tester is
not restricted to this pattern sequencing format

RESULTS

The Sample Mode Scan Tester prototype system
is fully capable of sampling nodal test data via the
JTAG boundary scan protocol. Using an internally
developed test module as a test case, applications
have been developed that successfully sample the re­
sponse data from the MUT, and diagnose MUT fail­
ures to the failing scan bit(s) in the scan chain.

A Diagnostic Module, which is currently being
developed, will analyze this ACQUISITION data in
addition to the corresponding MUT CAD data to fur­
ther isolate the failure to the failing device. Other
tools, such as the Waveform Module, display the AC­
QUISITION data for further analysis.

CONCLUSIONS

Initial results indicate that Sample Mode testing
is a viable means of diagnosing module faults in
cases where lack of physical access prevents tradi­
tional functional test methods from being used. Us­
ing boundary scan latches at device boundaries, and
connecting these devices to bring the resulting scan
chain to the module edge-connector, provides the in­
ternal observation points necessary to diagnose func­
tional test failures.

There axe, however, certain limitations with this
application. For instance, the MUT must contain the
signals and logic necessary to ensure synchronization
of the MUT test sequence and the operation of the
tester. Also, the relationship of the MUT clock and
the test clock will determine how effective the Sam­
ple Mode process is for a given application. Assume,
for instance, that the test clock is operating at half the
speed of the system clock. Since mere would be two
system cycles for each tester cycle, this relationship
would then require that the test clock be variable in
order to sample data from both system cycles.

Figure 6 : Example of a Sample Mode Test Database

365

Finally, unless the MUT has a large percentage
of devices incorporating the JTAG standard, diagnos­
tic resolution will be lacking, thereby limiting die
usefulness of the Sample Mode application.

The Sample Mode Scan Tester has demonstrated
that a low cost test system can be utilized to sample
data from modules operating at much higher speeds.
This is a significant achievement, as it reduces the
need for test equipment to keep pace with product
speeds.

ACKNOWLEDGMENTS

The author gratefully acknowledges Lorraine
Zambre, Phil McKinley, Al Cossette, John Sweeney,
Dave Florcik, Hook Wong and Alex Sokolovsky for
their dedication and contributions leading to the de­
velopment of the Sample Mode Scan Tester.

REFERENCES

[1] IEEE Standard 1149.1-1990: IEEE Standard
Test Access Port and Boundary Scan Archi­
tecture, 1990.

[2] Sweeney, John, 'Testability Implemented in
the VAX 6000 Model 400 Computer," Inter­
national Test Conference Proceedings, Sep­
tember, 1990.

[3] Vining, Sue, 'Tradeoff Decisions Made for a
PI 149.1 Controller Design, " International
Test Conference Proceedings, August 1989,
pp. 47-54.

[4] Dahbura, Anton T., Uyar, M., and Yau, Chi
W., "An Optimal Test Sequence for the
JTAG/ IEEE PI 149.1 Test Access Port Con­
troller," International Test Conference Pro­
ceedings, August 1989, pp. 55-62.

INDEX

Applications of IEEE Std 1149.1
Environmental test, 133
Field test, 137
Functional test, 136, 357
Hardware/software integration,

132
IC debug, 130
IC parametric test, 134
IC production test, 133
In-circuit test, 135
Incoming goods test, 134
Overview, 129
PWB debug, 131, 357
PWB repair, 139
System debug, 132, 357
System diagnostics, 138
System test, 137

Bed-of-nails, 3
Benefits

Test generation costs, 141
Test time, 141
Time-to-market, 142

BEST, see Built-in evaluation and
self-test

BILBO, see Built-in logic block
observer

BIST, see Built-in self-test
Boundary-scan

Costs and benefits, 141
Earlier implementations, 23
Introduction, 11
Use for diagnostic probing, 357

Boundary-scan cells
2-state bidirectional pins, 70
2-state output pins, 64, 72
3-state bidirectional pins, 69
3-state pins, 68
Clock pins, 159
Complex pin types, 168
Input pins, 64, 71
Inverting I/O buffers, 165

Boundary-scan description
language, 344

Boundary-scan register, 59
Basic cell designs, 63
Cell provision, 59, 159
Enhanced cell designs, 71

Boundary-scan test
Board test pseudocode, 97
Chip test, 15, 18, 84, 110
Comparison with functional test,

19, 289
Comparison with in-circuit test,

19, 289
Interconnect test, 15, 85, 107
Use to test a bus, 60
Use to test chips without

boundary-scan, 87
Use with cluster test, 92
Use with in-circuit test, 89,

289, 344
Built-in evaluation and self-test,

24, 242
Built-in logic block observer, 6
Built-in self-test, 6
Bus master design, 279
BYPASS instruction, 51

Use to identify chip type, 55
Bypass register, 51

Cellular automata, 266
Chip partitioning aid, 23, 228
Cluster test, 91
Conformance test, 302
CPA, see Chip partitioning aid

Design-for-test
BILBO, 6
BIST, see Built-in self-test
Built-in self-test, 6
Linear-feedback shift-registers, 5
Recent trends, 5
Scan design, 5

Device identification register, 52,
116

367

ECIPT, see Electronic
chip-in-place test

Electronic chip-in-place test, 23
ETM-bus, 27
EXTEST instruction, 65, 85

FBT, see Functional test
Functional test

Comparison with boundary-scan,
19, 289

Overview, 3, 83
Use of boundary-scan for probing,

357

Hierarchic testability, 333

ICT, see In-circuit test
IDCODE instruction, 53

Use to identify chip type, 55
IEEE Std 1149.1

Application overview, 129
Conformance test, 302
Costs and benefits, 129
Development path, 23
Instruction register, 43
Motivation, 7
TAP controller, 37
Test access port, 35
Test logic architecture, 33
Top-level view, 33
Use for loaded-board test, 81

Implementation costs
Added circuitry, 143
Added pins, 146
Design effort, 146
Performance reduction, 147
Power consumption, 147
Reliability and yield, 148

Implementation examples
Adding parity and interrupts, 205
Avoiding power and switching

limitations, 171
Cell provision, 159
ECL components, 177

Integrating internal scan paths,
191

Mixed analog/digital circuits,
199, 275

Self-testing chip design, 234,
242, 266, 333

Single transport chain, 151
Special cases, 162
To help test short-circuit faults,

183
Wafer-scale integration, 325

In-circuit test, 123
Chips compatible with IEEE Std

1149.1, 88
Comparison with boundary-scan,

19, 289
Overview, 3, 82

Initializing test logic, 100
Instruction register, 43

Design, 44
Operation, 45

Instructions
BYPASS, 51
EXTEST, 65
For in-circuit test, 126
For internal scan test, 194
IDCODE, 53
INTEST, 70
RUNBIST, 75
SAMPLE/PRELOAD, 67
USERCODE, 55

Interconnect test generation, 248,
254, 310, 318

Interrupts, 205
INTEST instruction, 70, 84

Control of clocks, 74
JEDEC manufacturer coding

scheme, 54
Joint Test Action Group, 23

Version 0 proposal, 23
Version 1 proposal, 26
Version 2 proposal, 27

JTAG, see Joint Test Action Group

368

Linear-feedback shift-registers, 5
Loaded-board fault spectrum, 82
LOCST, see LSSD on-chip self-test
LSSD on-chip self-test, 197, 234

OCMS, see On-chip maintenance
system

On-chip maintenance system, 23,
242

Parity coding, 205
PRELOAD instruction, see

SAMPLE/PRELOAD
instruction

RUNBIST instruction, 75, 85

SAMPLE/PRELOAD instruction,
67

Scan design, 5
Integration with IEEE Std 1149.1,

191
Testing a board-level bus, 13
Use at the board level, 11

Shift test control logic, 24
Single transport chain, 151
STCL, see Shift test control logic
Surface-mount technology

Impact on test, 6

TAP controller, 37
Example implementation, 41
State diagram, 38

Test access port, 35
Control from a bus master, 37
Interconnection of TAPs, 36
TCK pin, 35
TDI pin, 35
TDO pin, 35
TMS pin, 35
TRST* pin, 35

Test data registers
Boundary-scan register, 59
Bypass register, 51

Device identification register, 52
General operation, 47
Naming requirements, 47
Overview, 46

Testing a bus, 13
Testing the test logic, 101, 115

USERCODE instruction, 55

VHSIC hardware description
language

Use for describing boundary-scan
chips, 344

VHSIC programme
ETM-bus, 27
TM-bus, 37

VHSIC TM-bus
Interface to IEEE Std 1149.1,

279

Colin M. Maunder

Colin Maunder is an Engineering Adviser at the British Telecommunications Research
Laboratories, Martlesham Heath, Ipswich, U.K. His work includes design-for-test
consultancy on chip and system development projects as well as the development of new
techniques for the maintenance and repair of electronic equipment.

Mr Maunder has been involved in research into test generation and design-for-testability
since 1976. Between 1979 and 1981, he worked on the development of the CAMELOT
testability assessment program. Later, between 1983 and 1985, he contributed to the
development of HITEST — the first commercial knowledge-based test generation system.
More recently, he has been the architect of the design-for-test features included in several
integrated circuits designed by British Telecom.

In 1986, Mr Maunder became a member of the Joint Test Action Group (JTAG) and
helped draft JTAG's first technical proposal. Later he became chair of JTAG's Technical
Subcommittee and, on transfer of work to the IEEE, he became chair of the IEEE
P1149.1 Working Group. He is also a charter member of the IEEE Computer Society Test
Technology Technical Committee's Testability Bus Standards Steering Committee.

Mr Maunder has lectured on design-fortestability and test generation on many public
training courses, both in Europe and in North America. He is a member of the organizing
committee for the European Design-for-Test Workshop and of the organizing and
programme committees for the European Test Conference.

Mr Maunder received a BSc in Physics from Imperial College, London, in 1973. He is a
Chartered Engineer, a member of the IEE (U.K.) and a Senior Member of the IEEE.

371

Rodham E. Tulloss

Rodham Tulloss is a Distinguished Member of Technical Staff at AT&T Bell
Laboratories, Engineering Research Center, Princeton, NJ. He was a Supervisor for 11
years, in which position he initiated and led the development of research into fault
simulation, test data translation, automated test generation, built-in self-test, and
boundary-scan. At present, he is involved in standards development, in the introduction
of built-in self-test and boundary-scan into AT&T designs, and in studies in support of
new test technologies.

Dr Tulloss was the first North American member of the Joint Test Action Group
(JTAG). He founded the North American JTAG interest group and served as co-chair
and, more recently, vice-chair of the IEEE P1149.1 Working Group. He has played a
significant role in educating the engineering community about boundary-scan, for example
as technical consultant to the 1989 IEEE Satellite Seminar on the topic.

Dr Tulloss is a charter member of the IEEE Computer Society Test Technology Technical
Committee's Testability Bus Standards Steering Committee. Between 1981 and 1983, he
was co-editor of the TTTC Newsletter and played a major role in the expansion of its
content which eventually led to the creation of IEEE Design and Test of Computers
magazine. He is a consultant to the program to develop transatlantic television educational
programmes in electronic engineering.

Dr Tulloss reveived his PhD from the University of California, Berkeley, in 1971. He also
holds an MS in Mathematics from the University of California and a BS in Mathematics
from Union College, Schenectady, New York. He is a Senior Member of the IEEE and,
outside of engineering, is a prize-winning poet and a recognized expert on fungi of the
genus Amanita.

372

IEEE Computer Society

IEEE Computer Society Press

Press Activities Board

Vice President: James H. Aylor, University of Virginia
Jon T. Butler, U.S. Naval Postgraduate School

Ronald D. Williams, University of Virginia
Ez Nahouraii, IBM

Eugene M. Falken, IEEE Computer Society
Ted Lewis, Oregon State University

Fred E. Petry, Tulane University
Murali Varanasi, University of South Florida

Guylaine Pollock, Sandia National Laboratories

Editorial Board

Editor-in-Chief: Ez Nahouraii, IBM
Editors: Jon T. Butler, U.S. Naval Postgraduate School

Joydeep Gosh, University of Texas, Austin
A.R. Hurson, Pennsylvania State University

Garry R. Kampen, Seattle University
Krishna Kavi, University of Texas, Arlington

Frederick E. Petry, Tulane University
Charles Richter, MCC

Sol Shatz, University of Illinois, Chicago
Pradip K. Srimani, Colorado State University

Murali R. Varanasi, University of South Florida
Rao Vemuri, University of California, Davis

T. Michael Elliott, Executive Director
Eugene M. Falken, Director

Margaret J. Brown, Managing Editor
Walter Hutchins, Production Editor
Ann MacCallum, Production Editor
Robert Werner, Production Editor
Debra Penick, Editorial Assistant
Lisa O'Connor, Press Secretary

Thomas Fink, Advertising/Promotions Manager
Frieda Koester, Marketing/Customer Services Manager

Becky Jacobs, Marketing/Customer Services Admin. Asst.
Susan Roarke, Customer Services/Order Processing

Supervisor
Krista Tague, Customer Services Representative

Beverly Anthony, Order Processor
Lila Drolshagen,. Order Processor

Joseph Daniele, Senior Distribution Center Asst

Offices of the IEEE Computer Society

Headquarters Office
1730 Massachusetts Avenue, N.W.

Washington, DC 20036-1903
Phone: (202) 371-0101

Telex: 7108250437 IEEE COMPSO

Publications Office
P.O. Box

10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1264

Membership and General Information: (714) 821-8380
Publications Orders: (800) 272-6657

European Office
13, Avenue de I'Aquilon

B-1200 Brussels, Belgium
Phone: 32(2)770-21-98
Telex: 25387 AVVALB

Asian Office
Ooshima Building

2-19-1 Minami-Aoyama, Minato-ku
Tokyo 107, Japan

IEEE Computer Society Press Publications

Monographs: A monograph is an authored book

Tutorials: A tutorial is a collection of original materials prepared
by the editors and reprints of the best articles published in a
subject area. They must contain at least five percent original
material (15 to 20 percent original material is recommended).

Reprint Books: A reprint book is a collection of reprints divided
into sections with a preface, table of contents, and section
introductions that discuss the reprints and why they were
selected. It contains less than five percent original material.

(Subject) Technology Series: Each technology series is a
collection of anthologies of reprints, each with a narrow focus on
a subset of a particular discipline, such as networks,
architecture, software, robotics.

Submission of proposals: For guidelines on preparing CS-
Press Books, write Editor-in-Chief, IEEE Computer Society, P.O.
Box 3014,10662 Los Vaqueros Circle, Los Alamitos, CA 90720-
1264 (telephone 714-821-8380).

Purpose
The IEEE Computer Society advances the theory and practice

of computer science and engineering, promotes the exchange of
technical information among 100,000 members worldwide, and
provides a wide range of services to members and nonmembers.

Membership
Members receive the acclaimed monthly magazine Computer,

discounts, and opportunities to serve (all activities are led by
volunteer members). Membership is open to ail IEEE members,
affiliate society members, and others seriously interested in the
computer field.

Publications and Activities
Computer. An authoritative, easy-to-read magazine

containing tutorial and in-depth articles on topics across the
computer field, plus news, conferences, calendar, interviews,
and new products.

Periodicals. The society publishes six magazines and four
research transactions. Refer to membership application or
request information as noted above.

Conference Proceedings, Tutorial Texts, Standards
Documents. The Computer Society Press publishes more than
100 titles every year.

Standards Working Groups. Over 100 of these groups
produce IEEE standards used throughout the industrial world.

Technical Committees. Over 30 TCs publish newsletters,
provide interaction with peers in specialty areas, and directly
influence standards, conferences, and education.

Conferences/Education. The society holds about 100
conferences each year and sponsors many educational activites,
including computing science accreditation.

Chapters. Regular and student chapters worldwide provide
the opportunity to interact with colleagues, hear technical
experts, and serve the local professional community.

