
Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Memory system

✓ 18 months to double the microprocessor performance

✓ 7 years to double the memory performance

• Memory access time - describes the speed
of data transfer between memory and microprocessor

• Memory cycle time - describes how often the memory
access can be repeated

SRAM - based on gates, no need to refresh, short access
- more board space, more power, more heat, high cost

DRAM - based on capacitors, need to refresh, long access
- little board space, less power and heat, low cost

Growing gap between the memory and microprocessor speed

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Memory system

✓ Memory fast enough to respond to every memory access request

✓ Slow memory system with transfer improvements:
wide busses and serial accesses

✓ Combination of fast and slow memory systems, arranged so
that the fast one is used more often then the slow one

DEC Alpha 21164 (500MHz)
Internal registers 2ns
Cache level 1 - on chip 4ns
Cache level 2 - on chip 5ns
Cache level 3 - off chip 30ns
Main memory system 220ns
Virtual memory on disk ms

Another task for optimising compilers to arrange
the code with the view of the fastest memory access

Memory - the performance bottleneck

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache basics
Cache memory

small amount of fast memory that store
a subset of the main memory contents

✘ Hit rate - fraction of accesses to cache memory
in the total number of all memory accesses

✓ When reading from memory, the microprocessor can find out
whether the data is available in fast cache memory and transfer it,
otherwise it is fetched from main memory and placed in both
the microprocessor and cache

Operation principle:

✓ When writing to memory, the microprocessor can write both to cache
and main memory or only to cache (i.e. write-through), or only to cache,
where stored data is later transferred to main memory if this cache location
is claimed by other data

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache basics
Principle of locality

✓ Temporal locality (locality in time) -
if an item was referenced, it will be referenced again soon
(e.g. cyclical execution in loops)

✓ Spatial locality (locality in space) -
if an item was referenced, items close to it will be referenced too
(the very nature of every program - serial stream of instructions)

CPU

L1

L2

...

Main system memory

Increasing distance
from CPU in
access time

Size of memory at each level

High performance memory system
- hierarchical organisation

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache basics

Cache organisation

Line 0
Line 1
Line 2
Line 3
etc...

Cache
Main memory

✓ The principle of locality is valid either for instructions or for data,
but there is no locality relation between demand for the both.

✓ It is highly recommended to have two independent caches
(Harvard Memory Architecture)

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache problems

REAL*4 A(200,200)
DO J = 1, 200

DO I = 1, 200
SUM = SUM + A(I,J)

END DO
END DO

REAL*4 A(200,200)
DO I = 1, 200

DO J = 1, 200
SUM = SUM + A(I,J)

END DO
END DO

Example: accessing the 2-dimensional table (FORTRAN)
(successive elements of columns are stored sequentially in memory)

Optimal constructionAlphabetical, but non-optimal

Unit stride - the way of accessing the data
from memory, so that the hit rate is maximal

DO I = 1, 100000
SUM = SUM + A(I)

END DO

DO I = 1, 100000, 8
SUM = SUM + A(I)

END DO

Unit stride loop Non-unit stride loop

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation

Direct-Mapped Cache

Line 0
Line 1
Line 2
Line 3

✓ Less significant part of the memory cell address (index)
can be used directly to address data in cache

✓ Most significant part (tag) is stored for each cache line
and used to identify the part of main memory the data come from

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation
Direct-Mapped Cache

Tag Index Offset

V Tag Data

compare

Address from CPUHit ? Data

V (1 bit) - indicates the validity
of the cache line

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache problems

Cache thrashing

When alternating memory references point to the same cache line,
the cache entry is frequently replaced, lowering the performance.

Example: 4KB direct-mapped cache

REAL*4 A(1024), B(1024)
…
DO I = 1, 1024

A(I) = A(I) * B(I)
END DO

The arrays’ size coincide with
the cache size. The same
elements from A and B will
occupy exactly the same
cache lines, causing repeated
cache misses

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation

Set-Associative Cache - more flexible block placement

The key to performance increase (and trashing reduction) is
the more flexible placement of memory blocks by combining
several direct-mapped caches.

Block Tag Data

0
1
2
3

One-way set-associative
(direct-mapped)

Block Tag Data Tag Data

0
1
2
3

Two-way set-associative

The degree of associativity reduces the miss rate, at the cost of
increase in the hit time and hardware complexity

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation
Set-Associative Cache : four-way

Cache organisation

= = = =

Hit ?
Data

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation

Fully Associative Cache

✓ The memory block can be placed in any cache line

Tag Data Tag Data Tag Data Tag Data Tag Data

✗ Memory needed for tags increases with associativity

✗ Demand on board space - each cache entry has a comparator

Choosing which block to replace

✓ LRU (least recently used) - requires additional bits for
each cache line, updated during each access

✓ Random - candidates are selected randomly

Address

✗ Slower access - complicated internal circuitry

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation
Software managed caches

Idea: transfer the data to cache before the processor needs it,
so that the cache-fill time will be hidden

Cache-fill time can be hidden and hopefully all memory
references will operate at full cache speed.

Prefetching - method of loading cache memory supported
by some processors by implementing a new instruction.
Prefetch instruction operates like any other instruction,
except that processor doesn’t have to wait for the result

DO I = 1, 100000, 8
PREFETCH(ARR(I + 8))
DO J = 0, 7

SUM = SUM + ARR(I, J)
END DO

END DO

Compilers can generate prefetch
instructions when detects data access
using a fixed stride

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Cache organisation

Post-RISC effects on memory references

Ability of out-of-order and parallel execution gives the possibility
to compensate for slow memory latency

LOADI R6, 1000 set iterations
LOADI R5, 0 set index

LOOP LOAD R1, R2(R5) load from memory
INCR R1
STORE R1, R3(R5) save in memory
INCR R5
COMPARE R5, R6 check termination
BLT LOOP branch if R5<R6

Several load/store instructions can be initiated without
absolute stalling the program execution

Technical University of Lodz
Department of Microelectronics and Computer Science

Elements of high performance microprocessor archite ctureElements of high performance microprocessor archite cture

Memory system
Improving memory performance

Two main obstacles:

✓ Bandwidth - best possible steady-state transfer rate
(usually when running a long unit-stride loop)

✓ Latency - the worst-case delay during single memory access

CPU

cache

M
ain m

em
ory

32-256

data

address

Wide memory systems
- high bandwidth

CPU

cache

Bank 3

Bank 2

Bank 1

Bank 0

address

data

Interleaved memory systems
- lower latency

