
1

MPIMPI

● Introduction to MPI
● What it is
● Where it came from

● MPI overview
● Point-to-point communication

2

Large-Scale Scientific ComputingLarge-Scale Scientific Computing

● Goal: delivering computing performance to applications
● Deliverable computing power (in flops)

● Current leader is the Roadrunner
● 13000 computing processors, over 1 petaflop

● Parallelism taken for granted
● Fortunately, physics appears to be parallel

3

Parallel Programming ResearchParallel Programming Research

● Independent research projects contribute new ideas to
programming models, languages, and libraries
● Most make a prototype available and encourage use by others
● Users require commitment, support, portability
● Not all research groups can provide this

● Failure to achieve critical mass of users can limit impact of
research
● PVM (and few others) succeeded

4

StandardizationStandardization

● Parallel computing community has resorted to “community-
based” standards
● HPF
● MPI
● OpenMP

● Some commercial products are becoming “de facto”
standards, but only because they are portable
● TotalView parallel debugger, PBS batch scheduler

5

Standardization BenefitsStandardization Benefits

● Multiple implementations promote competition
● Vendors get clear direction on where to devote effort
● Users get portability for applications
● Wide use consolidates the research that is incorporated into

the standard
● Prepares community for next round of research
● Rediscovery is discouraged

6

Risks of StandardizationRisks of Standardization

● Failure to involve all stakeholders can result in standard
being ignored
● Application programmers
● Researchers
● Vendors

● Premature standardization can limit production of new ideas
by shutting off support for further research projects in the
area

7

Models for Parallel ComputationModels for Parallel Computation

● Shared memory (load, store, lock, unlock)
● Message Passing (send, receive, broadcast, ...)
● Transparent (compiler works magic)
● Directive-based (compiler needs help)

8

The Message-Passing ModelThe Message-Passing Model

● A process is (traditionally) a program counter and address
space

● Processes may have multiple threads (program counters
and associated stacks) sharing a single address space

● Message passing is for communication among processes,
which have separate address spaces

● Interprocess communication consists of
● Synchronization
● Movement of data from one process’s address space to

another’s

9

What is MPI?What is MPI?

● A message-passing library specification
● Extended message-passing model
● Not a language or compiler specification
● Not a specific implementation or product

● For parallel computers, clusters, and heterogeneous
networks

● Full-featured
● Designed to provide access to advanced parallel hardware

for end users, library writers, and tool developers

10

Where Did MPI Come From?Where Did MPI Come From?

● Early vendor systems (Intel’s NX, IBM’s EUI, TMC’s CMMD)
were not portable (or very capable)

● Early portable systems (PVM, p4, TCGMSG, Chameleon)
were mainly research efforts
● Did not address the full spectrum of issues
● Lacked vendor support
● Were not implemented at the most efficient level

● The MPI Forum organized in 1992 with broad participation
by:
● Vendors: IBM, Intel, TMC, SGI, Convex, Meiko
● Portability library writers: PVM, p4
● Users: application scientists and library writers
● MPI-1 standard finished in 18 months
● MPI-2 standard finished in 1996

11

Novel Features of MPINovel Features of MPI

● Communicators encapsulate communication spaces for
library safety

● Datatypes reduce copying costs and permit heterogeneity
● Multiple communication modes allow precise buffer

management
● Extensive collective operations for scalable global

communication
● Process topologies permit efficient process placement, user

views of process layout
● Profiling interface encourages portable tools

12

Problem DecompositionProblem Decomposition

● Domain decomposition
● Also known as data parallelism
● Data are divided into pieces that are approximately the same

size and then mapped to different processors.
● Each processor works only on the portion of the data that is

assigned to it.
● The processes may need to communicate periodically in order

to exchange data.
● Domain decomposition provides the advantage of maintaining

a single flow of control. A data-parallel algorithm consists of a
sequence of elementary instructions applied to the data: an
instruction is initiated only if the previous instruction is ended.

13

Problem DecompositionProblem Decomposition

● Functional Decomposition
● Useful when, for example, the individual subsets of data

assigned to the different processes require greatly different
lengths of time to process.

● Client-server paradigm.
● The tasks are allocated to a group of slave processes by a

master process that may also perform some of the tasks.

14

Load BalancingLoad Balancing

● Load balancing divides the required work equally among all
of the available processes.

● This ensures that one or more processes do not remain idle
while the other processes are actively working on their
assigned subproblems so that valuable computational
resources are not wasted.

● Load balancing can be easy when the same operations are
being performed by all the processes on different pieces of
data.

● It is not trivial when the processing time depends upon the
data values.

15

Execution TimeExecution Time

● A primary concern in parallel programming because it is an
essential component for comparing and improving all
programs. Three components make up execution time:
● Computation time
● Idle time
● Communication time

● Latency
● Bandwidth

16

Process Idle TimeProcess Idle Time

● It is important to minimize the time that processes remain
idle to reduce the impact on execution time.
● One strategy is to use overlapping communication and

computation, which is termed latency hiding.
● This method involves occupying a process with one or more

new tasks while it waits for a communication event to complete
so it can proceed to another task.
● Non-blocking communication
● Data-unspecific computation

17

Game of LifeGame of Life

● A simple simulation developed by John Conway
● 2-dimensional array of cells
● Each cell can have one of two possible states, usually

referred to as "alive" or "dead"
● At each time step, each cell may or may not change its

state, based on the number of adjacent alive cells, including
diagonals
● If a cell has three neighbors that are alive, the cell will be alive.

If it was already alive, it will remain so, and if it was dead, it will
become alive.

● If a cell has two neighbors that are alive, there is no change to
the cell. If it was dead, it will remain dead, and if it was alive, it
will remain alive.

● In all other cases — the cell will be dead.

18

Game of LifeGame of Life

Periodic boundary conditionsCell birth and death examples

19

MPI OverviewMPI Overview

● A MPI program consists of two or more autonomous
processes
● Each executing their own codes
● Code may or may not be identical on a given pair of processes.

● These processes communicate via calls to MPI
communication routines

● They are identified according to their relative rank within a
group (0, 1, . . . , groupsize-1).

● MPI does not allow for dynamic allocation of processes
during the execution of a parallel program.

● You specify the number of processes at the start of your
program and that number remains fixed throughout the
entire program.

20

Point-to-Point CommunicationsPoint-to-Point Communications
● Direct communication between two processors, one of

which sends data and the other receives this same data.
● In a generic send or receive, a message consisting of some

block of data is transferred between processors.
● An envelope indicates the source and destination processors
● A body that contains the actual data to be sent

● MPI uses the following three pieces of information to
characterize the message body in a flexible way:
● Buffer - the starting location in memory where outgoing data is

to be found or incoming data is to be stored
● Datatype - the type of data to be sent.

● Elementary type such as float (REAL), int (INTEGER)
● A user-defined datatype built from the basic types.

● Count - the number of items of type datatype to be sent.
● MPI deals with big/little endian issues etc.

21

Communication Modes and Completion CriteriaCommunication Modes and Completion Criteria
● A variety of communication modes define the procedure

used to transmit the message, as well as a set of criteria for
determining when the communication event is complete.
● A synchronous send is defined to be complete when receipt of

the message at its destination has been acknowledged.
● A buffered send, is complete when the outgoing data has been

copied to a local buffer.
● Nothing at all is implied about the arrival of the message at its

destination.
● In all cases, completion of a send implies that it is safe to

overwrite the buffer where the data were originally stored.
● There are four communication modes available for sends:

● Standard
● Synchronous
● Buffered
● Ready

22

Blocking and Nonblocking CommunicationBlocking and Nonblocking Communication
● A blocking send or receive does not return from the

subroutine call until the operation has actually completed.
Thus it ensures that the relevant completion criteria have
been satisfied before the calling process is allowed to
proceed.

● A nonblocking send or receive returns immediately with no
information about whether the completion criteria have been
satisfied.
● This approach has the advantage that the processor is free to

do something else while the communication proceeds in the
background.

● You can test later to see whether the communication has
actually completed.

● A nonblocking synchronous send returns immediately,
although the send will not be complete until receipt of the
message has been acknowledged.

23

Collective CommunicationsCollective Communications

● A communicator is an MPI object that defines a group of
processes that are permitted to communicate with one
another.
● Every MPI message must specify a communicator via a “name”

that is included as an explicit parameter within the argument list
of the MPI call.

● By default, all processes are defined as being members of the
communicator MPI_COMM_WORLD.

● Collective communication routines, also called collective
operations, transmit data among all processes in a group.
● These routines allow larger groups of processors to

communicate in various ways, for example, one-to-several or
several-to-one.

● All collective communication events are blocking.

24

Collective CommunicationsCollective Communications

● There are three basic types of collective communication
events in MPI.
● Synchronization - each process waits until all processes

included within its group have reached the specified
synchronization point.

● Data movement - data is transferred to all processes included
within its group.

● Collective computation — one process within a group collects
data from other processes within that group and performs an
operation (addition, multiplication, etc.) on that data.

25

Collective CommunicationsCollective Communications

● The main advantages of using the collective communication
routines over building the equivalent operation out of point-
to-point communications are:
● The possibility of error is significantly reduced. A single line of

code - the call to the collective routine - typically replaces
several point-to-point calls.

● The source code is much more readable, thus simplifying code
debugging and maintenance.

● Optimized forms of the collective routines are often faster than
the equivalent operation expressed in terms of point-to-point
routines.

26

Broadcast OperationsBroadcast Operations

● A single process sends a copy of some data to all the other
processes in a group.

● Each row in the figure represents a different process. Each
colored block in a column represents the location of a piece
of the data. Blocks with the same color that are located on
multiple processes contain copies of the same data.

27

Scatter and Gather OperationsScatter and Gather Operations

● MPI provides two kinds of scatter and gather operations,
depending upon whether the data can be evenly distributed
across processors.
● In a scatter operation, all of the data (an array of some type)

are initially collected on a single processor. After the scatter
operation, pieces of the data are distributed on different
processors

● The gather operation is the inverse operation to scatter: it
collects pieces of the data that are distributed across a group of
processors and reassembles them in the proper order on a
single processor.

28

Scatter and Gather OperationsScatter and Gather Operations

● The multicolored box reflects the possibility that the data may
not be evenly divisible across the processors.

29

Reduction OperationsReduction Operations

● Collective operations in which a single process (the root
process) collects data from the other processes in a group
and performs an operation on that data, which produces a
single value.
● You might use a reduction to compute the sum of the elements

of an array that is distributed across several processors.

30

Process GroupsProcess Groups

● A process group is simply an ordered set of processes
where each process in a group is associated with a unique
integer value referred to as the rank of the process.
● A process rank is also referred to as the process "ID."
● Rank values in MPI always start at zero and run sequentially

through N-1, where N is the number of processes in the group.
● Although the number of processes specified in an MPI

program remains fixed throughout the program, both groups
and communicators can be dynamically created and
eliminated during the execution of the program.

● A given process can be a member of more than one group
or communicator and will have a unique rank within each
group or communicator.

31

Process TopologiesProcess Topologies

● In MPI, a topology is a mechanism for associating different
identification schemes with the processes belonging to a
particular group.
● A topology describes a mapping or ordering of MPI processes

into some geometric shape.
● MPI supports two main types of topologies

● A Cartesian, or grid, topology
● A graph topology.

32

Process TopologiesProcess Topologies

● All MPI topologies are virtual
● There may be no simple relation between the process structure

implicit in the MPI topology and the actual underlying physical
arrangement of the processors within the computer itself.

● Virtual topologies are used in MPI to provide communication
efficiency and for programming convenience.
● A Cartesian or grid topology is likely to be convenient in an

application involving nearest-neighbor communication between
points on a rectangular grid.

33

Environment Management and InquiryEnvironment Management and Inquiry

● A number of MPI routines are available for managing and
inquiring about the state of the environment.

● They are used for a number of purposes, such as:
● Initializing and terminating the MPI execution environment
● Terminating all processes belonging to a given MPI

communicator
● Determining the number of processes belonging to a given

communicator
● Determining the rank of the calling process within a given

communicator

34

 MPI Program StructureMPI Program Structure
● Header file

● #include <mpi.h>
● Naming convention

● MPI_Xxxxx(parameter, ...)
● Return values

int err;
err = MPI_Init(&argc, &argv);
if (err == MPI_SUCCESS) {
 ...routine ran correctly...
 }

● MPI Handles
● MPI defines and maintains its own internal data structures.
● These data structures are referenced through handles, which

are returned by various MPI calls and may be used as
arguments in other MPI calls.

● In C, handles are pointers to specially defined datatypes that
are created via the C typedef mechanism

35

MPI DatatypesMPI Datatypes

● MPI allows automatic translation between representations in
a heterogeneous environment by providing its own
reference datatypes corresponding to the various
elementary datatypes in C and Fortran.

● Variables are normally declared as C/Fortran types and MPI
type names are used as arguments in MPI routines when a
type is needed.

● As a general rule, the MPI datatype given in a receive must
match the MPI datatype specified in the send. MPI hides the
details of the floating-point representation, which is an issue
for the implementor so you will need to see the vendor's
documentation for more detail.

● MPI allows for the definition of arbitrary datatypes, called
derived datatypes, that are built from the basic types.

36

Basic MPI DatatypesBasic MPI Datatypes

MPI Datatype C Type

MPI_CHAR signed char

MPI_SHORT signed short

MPI_INT signed int

MPI_LONG signed long

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE none

MPI_PACKED none

37

Initializing MPIInitializing MPI

● The initialization routine MPI_INIT must be the first MPI
routine called in any MPI program.

● This routine establishes the MPI environment and will return
an error code if there is a problem.

● MPI_INIT may be called only once in any program.
int err;
...
err = MPI_Init(&argc, &argv);

● The arguments to MPI_Init are the addresses of argc and
argv, the variables that contain the command-line
arguments for the program.

38

CommunicatorsCommunicators

● A communicator is a MPI handle that defines a group of
processes that are permitted to communicate with one
another.
● Every MPI message must specify a communicator via a name

that is included as an explicit parameter within the argument list
of the MPI call.

● The communicator specified in the send and receive calls must
agree for communication to take place.

39

CommunicatorsCommunicators

● There can be many communicators, and a given processor
can be a member of a number of different communicators.
● Within each communicator, processors are numbered

consecutively (starting at 0).
● This identifying number is known as the rank of the processor in

that communicator
● The rank is also used to specify the source and destination in

send and receive calls.
● If a processor belongs to more than one communicator, its rank in

each can (and usually will) be different.
● MPI automatically provides a basic communicator called

MPI_COMM_WORLD, consisting of all processors.
● Using MPI_COMM_WORLD, every processor can

communicate with every other processor.
● You can define additional communicators consisting of subsets

of the available processors.

40

Getting Communicator Information: RankGetting Communicator Information: Rank

● A processor can determine its rank in a communicator with a
call to MPI_COMM_RANK.
● Ranks are consecutive and start with 0.
● A given processor may have different ranks in the various

communicators to which it belongs.
int MPI_Comm_rank(MPI_Comm comm, int *rank);

● the argument comm is a variable of type MPI_COMM, a
communicator.

● You could use MPI_COMM_WORLD here or alternatively, you
could pass the name of another communicator you have
defined elsewhere.

● Such a variable would be declared as:
MPI_Comm some_comm;

41

Getting Communicator Information: SizeGetting Communicator Information: Size

● A processor can also determine the size, i.e., number of
processors, of any communicator to which it belongs with a
call to MPI_COMM_SIZE.
int MPI_Comm_size(MPI_Comm comm, int *size);

● The argument comm is of type MPI_COMM, a
communicator. The second argument is the address of the
integer variable size.

● If the communicator is MPI_COMM_WORLD, the number of
processors returned from MPI_COMM_SIZE equals the
number defined by the command-line input to MPIRUN
% mpirun -np 4 a.out

42

Terminating MPITerminating MPI

● MPI_FINALIZE is the last MPI routine called in a program.
● It terminates the program by cleaning up all MPI data

structures, canceling operations that never completed, and so
on.

● MPI_FINALIZE must be called by all processes; if any one
process does call it, the program will appear to hang.

● Once MPI_FINALIZE has been called, no other MPI routines
(including MPI_INIT) may be called....
err = MPI_Finalize();

43

Simple ExampleSimple Example

#include "mpi.h"
#include <stdio.h>

int main(argc, argv)
int argc;
char *argv[];
{
 int rank, size;
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);
 MPI_Comm_size(MPI_COMM_WORLD, &size);
 printf("I am %d of %d\n", rank, size);
 MPI_Finalize();
 return 0;
}

mpicc hello.c -o hello
mpirun -np 2 ./hello

44

 Point-to-Point CommunicationPoint-to-Point Communication

● The point-to-point communication facilities are two-sided
and require active participation from the processes on both
sides.
● One process (the source) sends, and another process (the

destination) receives.
● In general, the source and destination processes operate

asynchronously.
● Even the sending and receiving of a single message is typically

not synchronized.
● The source process may complete sending a message long

before the destination process gets around to receiving it, and
the destination process may initiate receiving a message that
has not yet been sent.

45

MessagesMessages
● Messages consist of two parts:

● the envelope
● the message body.

● The envelope of an MPI message has four parts:
● Source - the sending process
● Destination - the receiving process
● Communicator - specifies a group of processes to which both

source and destination belong
● Tag - used to classify messages

● The tag field is required, but its use is left up to the program.
● A pair of communicating processes can use tag values to

distinguish classes of messages.
● One tag value can be used for messages containing data

and another tag value for messages containing status
information.

46

MessagesMessages

● The message body has three parts:
● Buffer - the message data
● Datatype - the type of the message data
● Count - the number of items of type datatype in buffer

● Think of the buffer as an array; the dimension is given by
count, and the type of the array elements is given by
datatype.

● Using datatypes and counts, rather than bytes and
bytecounts, allows structured data and noncontiguous data
to be handled smoothly.

● It also allows transparent support of communication
between heterogeneous hosts.

47

Sending and Receiving MessagesSending and Receiving Messages

● The source (the identity of the sender) is determined
implicitly, but the rest of the message (envelope and body)
is given explicitly by the sending process.

● Sending and receiving are typically not synchronized.
● Processes often have one or more messages that have been

sent but not yet received.
● These messages that have not yet been received are called

pending messages.
● Pending messages are not maintained in a simple FIFO queue.

● Each pending message has several attributes and the destination
process (the receiving process) can use the attributes to
determine which message to receive.

48

Sending and Receiving MessagesSending and Receiving Messages

● To receive a message, a process specifies a message
envelope that MPI compares to the envelopes of pending
messages.
● If there is a match, a message is received.
● Otherwise, the receive operation cannot be completed until a

matching message is sent.
● The process receiving a message must provide storage into

which the body of the message can be copied.
● The receiving process must be careful to provide enough

storage for the entire message.

49

Blocking Send and ReceiveBlocking Send and Receive

● The basic point-to-point communication routines in MPI are
MPI_SEND and MPI_RECV.

● Both routines block the calling process until the
communication operation is completed.

50

Sending a Message: MPI_SENDSending a Message: MPI_SEND
● MPI_SEND takes the following arguments:

● Message body:
● buffer
● count
● datatype

● Message envelope:
● destination
● tag
● communicator

● The message body contains the data to be sent: count items
of type datatype ,the message envelope tells where to send
it.

● In addition, an error code is returned.
int MPI_Send(void *buf, int count,
MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm);

51

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● MPI_RECV takes a set of arguments similar to MPI_SEND,
but several of the arguments are used in a different way.
● Message body:

● buffer
● count
● datatype

● Message envelope:
● source
● tag
● communicator

● The arguments in the message envelope determine what
messages can be received by the call.
● The source, tag, and communicator arguments must match

those of a pending message in order for the message to be
received.

52

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● Wildcard values may be used for the source (accept a
message from any process) and the tag (accept a message
with any tag value).

● If wildcards are not used, the call can accept messages only
from the specified sending process and with only the
specified tag value.

● Communicator wildcards are not available.
● The message body arguments specify where the arriving

data are to be stored, what type it is assumed to be, and
how much of it the receiving process is prepared to accept.
● If the received message has more data than the receiving

process is prepared to accept, it is an error and the program
will abort.

53

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● In general, the sender and receiver must agree about the
message datatype, and it is your responsibility to guarantee
that agreement.
● If the sender and receiver use incompatible message

datatypes, the results are undefined.
● The status argument returns information about the message

that was received. The source and tag of the received
message are available this way, which is needed if
wildcards were used, and also available is the actual count
of data received. In addition, an error code is returned.
int MPI_Recv(void *buf, int count,
MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Status *status);

● buf and status are output arguments; the rest are inputs.
● An error code is returned by the function.

54

Receiving a Message: MPI_RECVReceiving a Message: MPI_RECV

● Some issues on receiving messages to remember are:
● A maximum of COUNT items of type DTYPE are accepted; if

the message contains more, it is an error.
● The sending and receiving processes must agree on the

datatype; if they disagree, results are undefined (MPI does not
check).

● When this routine returns, the received message data have
been copied into the buffer; and the tag, source, and actual
count of data received are available via the status argument

55

Message Passing ExampleMessage Passing Example

/* simple send and receive */
#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char **argv) {

 int myrank,i;
 MPI_Status status;
 double a[100],b[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) /* Send a message */
 {
 for (i=0;i<100;++i)
 a[i]=sqrt(i);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) /* Receive a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);...

 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

56

Wildcard ReceptionWildcard Reception

● The MPI_RECV call made by Processor 1 in the previous
example program is a completely specified reception.
● Processor 1 will only receive a message from Processor 0 with

tag 17.
● It is possible to configure the reception so it is open to

messages from any processor or any message tag.
● This is called wildcard reception.

● For source wildcard reception, use MPI_ANY_SOURCE for
the source argument in MPI_RECV.

● For tag wildcard reception use MPI_ANY_TAG for the tag
argument in MPI_RECV.

57

Wildcard ReceptionWildcard Reception

● Once the MPI_RECV function is completed with some
message, the destination process has little information
about it.
● If source and tag wildcard reception were both used, the

destination will not know where the message came from or its
tag.

● This "envelope" information is stored in the status variable
and can be retrieved from it.

● The status variable is a structure containing the message
information as members.

● The following expression is used to get the source of the
wildcarded reception:
status.MPI_SOURCE

● To get the tag information, use the expression:
status.MPI_TAG

58

Message SizeMessage Size

● The message-receive statement from our example program
was:
MPI_Recv(b,100,MPI_DOUBLE,0,17,MPI_COMM_WORLD,
&status);

● Remember the meaning of the second argument: the
maximum number of elements that the array b could hold,
not necessarily the number of elements actually received.

● The sending process could have transmitted a smaller
number.

● The message count is stored in the status variable and can
be extracted from it.

● The auxiliary MPI function MPI_GET_COUNT is used for
this purpose.
int MPI_Get_count(MPI_Status *status,
MPI_Datatype dtype, int *count);

59

Example Wildcard ProgramExample Wildcard Program

#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int argc, char **argv) {

 int myrank,i,count;
 MPI_Status status;
 double a[100],b[300];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) { /* Send a message */
 for (i=0;i<100;++i)
 a[i]=sqrt(i);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }else if(myrank == 1){ /* Receive a message */
 MPI_Recv(b, 300, MPI_DOUBLE,MPI_ANY_SOURCE,MPI_ANY_TAG,.
 MPI_COMM_WORLD, &status);...
 MPI_Get_count(&status,MPI_DOUBLE,&count);
 printf("P:%d message came from rank %d\n",myrank,status.MPI_SOURCE);
 printf("P:%d message had tag %d\n",myrank,status.MPI_TAG);
 printf("P:%d message size was %d\n",myrank,count);
 }
 MPI_Finalize(); /* Terminate MPI */
 return(0);
}

60

Runtime BehaviourRuntime Behaviour

● When a message is sent using MPI_SEND one of two
things may happen:
● The message may be copied into an MPI internal buffer and

transferred to its destination later, in the background, or
● The message may be left where it is, in the program's

variables, until the destination process is ready to receive it. At
that time, the message is transferred to its destination.

● In the first case, the sending process is allowed to move on
to other things after the copy is completed. The second case
minimizes copying and memory use, but may result in extra
delay to the sending process and the delay can be
significant.

61

Runtime BehaviourRuntime Behaviour

● In the first case, a call to MPI_SEND may return before any
non-local action has been taken or even begun, i.e., before
anything has happened that might naively be associated
with sending a message.

● In the second case, a synchronization between sender and
receiver is implied.

62

Blocking and CompletionBlocking and Completion

● Both MPI_SEND and MPI_RECV block the calling
processes.
● Neither returns until the communication operation it invoked is

completed.
● The meaning of completion for a call to MPI_RECV is simple

and intuitive - a matching message has arrived, and the
message's data have been copied into the output arguments
of the call.
● In other words, the variables passed to MPI_RECV contain a

message and are ready to be used.

63

Blocking and CompletionBlocking and Completion

● For MPI_SEND, the meaning of completion is simple but not
as intuitive.
● A call to MPI_SEND is completed when the message specified

in the call has been handed off to MPI.
● In other words, the variables passed to MPI_SEND can now be

overwritten and reused.
● If MPI copied the message into an internal buffer, then the

call to MPI_SEND may be officially completed, even though
the message has not yet left the sending process.

● If a message passed from MPI_SEND is larger than MPI's
available internal buffer, then simple, one-time buffering
cannot be used.
● The sending process must block until the destination process

begins to receive the message, or until more buffer is available.

64

DeadlockDeadlock

● When two (or more) processes are blocked and each is
waiting for the other to make progress, deadlock occurs.

● Neither process makes progress because each depends on
the other to make progress first.

● The program shown on the next slide is an example - it fails
to run to completion because processes 0 and 1 deadlock.

65

Deadlock ExampleDeadlock Example

/* simple deadlock */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {

 int myrank;
 MPI_Status status;
 double a[100], b[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) {
 /* Receive, then send a message */
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);...
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 }
 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

66

Avoiding DeadlockAvoiding Deadlock

/* safe exchange */
#include <stdio.h>
#include <mpi.h>
int main (int argc, char **argv) {

 int myrank;
 MPI_Status status;
 double a[100], b[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) {
 /* Receive a message, then send one */
 MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 }
 else if(myrank == 1) {
 /* Send a message, then receive one */
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);...
 }

 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

67

Avoiding Deadlock (Sometimes)Avoiding Deadlock (Sometimes)
/* depends on buffering */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {

 int myrank;
 MPI_Status status;
 double a[100], b[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) {
 /* Send a message, then receive one */
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 MPI_Recv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);
 }
 else if(myrank == 1) {
 /* Send a message, then receive one */
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 MPI_Recv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);...
 }
 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

68

Probable DeadlockProbable Deadlock
/* probable deadlock */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
 int myrank;
 MPI_Status status;
#define N 100000
 double a[N], b[N];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) {
 /* Send a message, then receive one */
 MPI_Send(a, N, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 MPI_Recv(b, N, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status);
 }
 else if(myrank == 1) {
 /* Send a message, then receive one */
 MPI_Send(a, N, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 MPI_Recv(b, N, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status);...
 }
 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

69

Nonblocking Sends and ReceivesNonblocking Sends and Receives
● MPI provides a way to invoke send and receive operations

that does not block the calling process.
● It is possible to separate the initiation of a send or receive

operation from its completion by making two separate calls to
MPI.

● The first call initiates the operation, and the second call
completes it.

● If such a separation is used, it is referred to as a non-blocking
communication.

● Between the two calls, the program is free to perform other
operations.

● The underlying communication operations are the same
whether they are invoked by a single call or by two separate
calls - one to initiate the operation and another to complete
it. The communication operations are the same, but the
interface to the library is different.

70

Nonblocking Sends and ReceivesNonblocking Sends and Receives

● Blocking and nonblocking communication can be mixed
together for the same data transfer.
● The source processor might use a blocking send and the

destination process could use a nonblocking receive process,
or vice-versa.

● Initiating a send operation is called posting a send.
● Initiating a receive operation is called posting a receive.
● Once a send or receive operation has been posted, MPI

provides two distinct ways of completing it.
● A process can test to see if the operation has completed

without blocking on the completion.
● Alternately, a process can wait for the operation to complete.

71

Nonblocking Sends and ReceivesNonblocking Sends and Receives

● After posting a send or receive with a call to a nonblocking
routine, the posting process needs some way to refer to the
posted operation.

● MPI uses request handles for this purpose.
● Nonblocking send and receive routines all return request

handles, which are used to identify the operation posted by the
call.

72

Posting Sends without BlockingPosting Sends without Blocking

● A process calls the routine MPI_ISEND to post (Initiate) a
send without blocking on completion of the send operation.

● The calling sequence is similar to the calling sequence for
the blocking routine MPI_SEND but includes an additional
output argument, a request handle.
int MPI_Isend(void *buf, int count,
MPI_Datatype dtype, int dest, int tag,
MPI_Comm comm, MPI_Request *request);

● None of the arguments passed to MPI_ISEND should be
read or written until the send operation is completed.

73

Posting Receives without BlockingPosting Receives without Blocking

● A process calls the routine MPI_IRECV to post (Initiate) a
receive without blocking on its completion.

● The calling sequence is similar to the calling sequence for
the blocking routine MPI_RECV, but the status argument is
replaced by a request handle.
int MPI_Irecv(void *buf, int count,
MPI_Datatype dtype, int source, int tag,
MPI_Comm comm, MPI_Request *request);

● None of the arguments passed to MPI_IRECV should be
read or written until the receive operation is completed.

74

Completion: Waiting and TestingCompletion: Waiting and Testing

● Posted sends and receives must be completed.
● If a send or receive is posted by a nonblocking routine, then

its completion status can be checked by calling one of a
family of completion routines.

● MPI provides both blocking and nonblocking completion
routines.
● The blocking routines are MPI_WAIT and its variants.
● The nonblocking routines are MPI_TEST and its variants.

75

Completion: WaitingCompletion: Waiting

● A process that has posted a send or receive by calling a
nonblocking routine can subsequently wait for the posted
operation to complete by calling MPI_WAIT.

● The posted send or receive is identified by passing a
request handle.

● The arguments for the MPI_WAIT routine are:
● request - a request handle (returned when the send or receive

was posted
● status - for receive, information on the message received; for

send, may contain an error code
● In addition, an error code is returned.
int MPI_Wait(MPI_Request *request, MPI_Status
*status);

76

Completion: WaitingCompletion: Waiting

● If the posted operation was a receive, then the source, tag,
and actual count of data received are available via the
status argument.

● If the posted operation was a send, the status argument
may contain an error code for the send operation (different
from the error code for the call to MPI_WAIT).

77

Completion: TestingCompletion: Testing

● A process that has posted a send or receive by calling a
nonblocking routine can subsequently test for the posted
operation’s completion by calling MPI_TEST.

● The posted send or receive is identified by passing a
request handle.

● The arguments for the MPI_TEST routine are:
● request - a request handle (returned when the send or receive

was posted)
● flag - "true" if the send or receive has completed
● status - undefined if flag equals "false". Otherwise, like

MPI_WAIT
int MPI_Test(MPI_Request *request, int *flag,
MPI_Status *status);

78

Completion: TestingCompletion: Testing

● The request argument is expected to identify a previously
posted send or receive.

● MPI_TEST returns immediately.
● If the flag argument is "true," then the posted operation is

complete.
● If the flag argument is "true" and the posted operation was a

receive, then the source, tag, and actual count of data
received are available via the status argument.

● If the flag argument is "true" and the posted operation was a
send, then the status argument may contain an error code
for the send operation (not for MPI_TEST).

79

Advantages and DisadvantagesAdvantages and Disadvantages

● Selective use of nonblocking routines makes it much easier
to write deadlock-free code. This is a big advantage
because it is easy to unintentionally write deadlock into
programs.

● On systems where latencies are large, posting receives
early is often an effective, simple strategy for masking
communication overhead.
● Latencies tend to be large on physically distributed collections

of hosts (for example, clusters of workstations) and relatively
small on shared memory multiprocessors.

● Masking communication overhead requires careful attention to
algorithms and code structure.

● On the downside, using nonblocking send and receive
routines may increase code complexity, which can make
code harder to debug and harder to maintain.

80

Code Structure for Latency HidingCode Structure for Latency Hiding

MPI_IRECV(...,request)

...

arrived=FALSE

while (arrived == FALSE) {

 "work planned for processor to do while waiting for message data"

 MPI_TEST(request,arrived,status)

}

 "work planned for processor to do with the message data"

81

Non-blocking Send/Receive ExampleNon-blocking Send/Receive Example

/* deadlock avoided */
#include <stdio.h>
#include <mpi.h>

int main (int argc, char **argv) {
 int myrank;
 MPI_Request request;
 MPI_Status status;
 double a[100], b[100];

 MPI_Init(&argc, &argv); /* Initialize MPI */
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
 if(myrank == 0) {
 /* Post a receive, send a message, then wait */
 MPI_Irecv(b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &request);
 MPI_Send(a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
 MPI_Wait(&request, &status);
 }
 else if(myrank == 1) {
 /* Post a receive, send a message, then wait */
 MPI_Irecv(b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &request);...
 MPI_Send(a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
 MPI_Wait(&request, &status);
 }

 MPI_Finalize(); /* Terminate MPI */
 return 0;
}

82

Send and Receive ModesSend and Receive Modes

● In MPI, there are four send modes but only one receive
mode. The four send modes are:
● Standard Mode Send
● Synchronous Mode Send
● Ready Mode Send
● Buffered Mode Send

● A receiving process can use the same call to MPI_RECV or
MPI_IRECV, regardless of the send mode used to send the
message.

● The standard mode send is the most widely used.
● Both blocking and nonblocking calls are available for each

of the four send modes.

83

Naming Conventions and Calling Sequences Naming Conventions and Calling Sequences

● The blocking send functions take the same arguments (in
the same order) as MPI_SEND. The nonblocking send
functions take the same arguments (in the same order) as
MPI_ISEND.

Send Mode Blocking Function Nonblocking Function

Standard MPI_SEND MPI_ISEND

Synchronous MPI_SSEND MPI_ISSEND

Ready MPI_RSEND MPI_IRSEND

Buffered MPI_BSEND MPI_IBSEND

84

Standard Mode SendStandard Mode Send
● When MPI executes a standard mode send, one of two

things happens.
● The message is copied into an MPI internal buffer and is

transferred asynchronously to the destination process
● The source and destination processes synchronize on the

message.
● The MPI implementation is free to choose (on a case-by-

case basis) between buffering and synchronizing,
depending on message size, resource availability, and so
on.
● If the message is copied into an MPI internal buffer, then the

send operation is formally completed as soon as the copy is
done.

● If the two processes synchronize, then the send operation is
formally completed only when the receiving process has posted
a matching receive and actually begun to receive the message.

85

Synchronous Mode SendSynchronous Mode Send

● Synchronous mode send requires MPI to synchronize the
sending and receiving processes.

● When a synchronous mode send operation is completed,
the sending process may assume the destination process
has begun receiving the message.
● The destination process need not be done receiving the

message.
● The nonblocking call has the same advantages the

nonblocking standard mode send has: the sending process
can avoid blocking on a potentially lengthy operation.

86

Ready Mode SendReady Mode Send

● Ready mode send requires that a matching receive has
already been posted at the destination process before ready
mode send is called.
● If a matching receive has not been posted at the destination,

the result is undefined.
● It is your responsibility to make sure the requirement is met.

● In some cases, knowledge of the state of the destination
process is available without doing extra work.

87

Buffered Mode SendBuffered Mode Send

● Buffered mode send requires MPI to use buffering. The
downside is that you must assume responsibility for
managing the buffer.

● If at any point, insufficient buffer is available to complete a
call, the results are undefined.

● The functions MPI_BUFFER_ATTACH and
MPI_BUFFER_DETACH allow a program to make buffer
available to MPI.

88

Game of LifeGame of Life

● In order to truly run the "Game of Life" program in parallel,
we must set up our domain decomposition, i.e., divide the
domain into chunks and send one chunk to each processor.

● In the current exercise, we will limit ourselves to two
processors.
● If you are writing your code in C, divide the domain with a

horizontal line, so the upper half will be processed on one
processor and the lower half on a different processor.

● If you are using Fortran, divide the domain with a vertical line,
so the left half goes to one processor and the right half to
another.

89

Domain DecompositionDomain Decomposition

90

Ghost CellsGhost Cells

● One issue that you need to consider is that of internal
domain boundaries.

● Each cell needs information from all adjacent cells to
determine its new state.

● With domain decomposition, some of the required cells no
longer are available on the local processor.

● A common way to tackle this problem is through the use of
ghost cells.

● In the current example, a column of ghost cells is added to
the right side of the left domain, and a column is also added
to the left side of the right domain.

● After each time step, the ghost cells are filled by passing the
appropriate data from the other processor.

91

Ghost CellsGhost Cells

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91

