std::atanh(std::complex)
Defined in header <complex>
|
||
template< class T > complex<T> atanh( const complex<T>& z ); |
(since C++11) | |
Computes the complex arc hyperbolic tangent of z with branch cuts outside the interval [−1; +1] along the real axis.
Parameters
z | - | complex value |
Return value
If no errors occur, the complex arc hyperbolic tangent of z is returned, in the range of a half-strip mathematically unbounded along the real axis and in the interval [−iπ/2; +iπ/2] along the imaginary axis.
Error handling and special values
Errors are reported consistent with math_errhandling.
If the implementation supports IEEE floating-point arithmetic,
- std::atanh(std::conj(z)) == std::conj(std::atanh(z))
- std::atanh(-z) == -std::atanh(z)
- If z is
(+0,+0)
, the result is(+0,+0)
- If z is
(+0,NaN)
, the result is(+0,NaN)
- If z is
(+1,+0)
, the result is(+∞,+0)
and FE_DIVBYZERO is raised - If z is
(x,+∞)
(for any finite positive x), the result is(+0,π/2)
- If z is
(x,NaN)
(for any finite nonzero x), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(+∞,y)
(for any finite positive y), the result is(+0,π/2)
- If z is
(+∞,+∞)
, the result is(+0,π/2)
- If z is
(+∞,NaN)
, the result is(+0,NaN)
- If z is
(NaN,y)
(for any finite y), the result is(NaN,NaN)
and FE_INVALID may be raised - If z is
(NaN,+∞)
, the result is(±0,π/2)
(the sign of the real part is unspecified) - If z is
(NaN,NaN)
, the result is(NaN,NaN)
Notes
Although the C++ standard names this function "complex arc hyperbolic tangent", the inverse functions of the hyperbolic functions are the area functions. Their argument is the area of a hyperbolic sector, not an arc. The correct name is "complex inverse hyperbolic tangent", and, less common, "complex area hyperbolic tangent".
Inverse hyperbolic tangent is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1] and [+1,+∞) of the real axis.
The mathematical definition of the principal value of the inverse hyperbolic tangent is atanh z =ln(1+z) - ln(1-z) |
2 |
For any z, atanh(z) =
atan(iz) |
i |
Example
#include <complex> #include <iostream> int main() { std::cout << std::fixed; std::complex<double> z1(2.0, 0.0); std::cout << "atanh" << z1 << " = " << std::atanh(z1) << '\n'; std::complex<double> z2(2.0, -0.0); std::cout << "atanh" << z2 << " (the other side of the cut) = " << std::atanh(z2) << '\n'; // for any z, atanh(z) = atanh(iz) / i std::complex<double> z3(1.0, 2.0); std::complex<double> i(0.0, 1.0); std::cout << "atanh" << z3 << " = " << std::atanh(z3) << '\n' << "atan" << z3 * i << " / i = " << std::atan(z3 * i) / i << '\n'; }
Output:
atanh(2.000000,0.000000) = (0.549306,1.570796) atanh(2.000000,-0.000000) (the other side of the cut) = (0.549306,-1.570796) atanh(1.000000,2.000000) = (0.173287,1.178097) atan(-2.000000,1.000000) / i = (0.173287,1.178097)
See also
(C++11) |
computes area hyperbolic sine of a complex number (arsinh(z)) (function template) |
(C++11) |
computes area hyperbolic cosine of a complex number (arcosh(z)) (function template) |
computes hyperbolic tangent of a complex number (tanh(z)) (function template) | |
(C++11)(C++11)(C++11) |
computes the inverse hyperbolic tangent (artanh(x)) (function) |
C documentation for catanh
|