std::experimental::simd<T,Abi>::simd

From cppreference.com
< cpp‎ | experimental‎ | simd‎ | simd
 
 
Experimental
Technical Specification
Filesystem library (filesystem TS)
Library fundamentals (library fundamentals TS)
Library fundamentals 2 (library fundamentals TS v2)
Library fundamentals 3 (library fundamentals TS v3)
Extensions for parallelism (parallelism TS)
Extensions for parallelism 2 (parallelism TS v2)
Extensions for concurrency (concurrency TS)
Extensions for concurrency 2 (concurrency TS v2)
Concepts (concepts TS)
Ranges (ranges TS)
Reflection (reflection TS)
Mathematical special functions (special functions TR)
Experimental Non-TS
Pattern Matching
Linear Algebra
std::execution
Contracts
2D Graphics
 
 
 
 
simd() noexcept = default;
(1) (parallelism TS v2)
template< class U >
simd( U&& value ) noexcept;
(2) (parallelism TS v2)
template< class U >
simd( const simd<U, simd_abi::fixed_size<size()>>& other ) noexcept;
(3) (parallelism TS v2)
template< class G >
explicit simd( G&& generator ) noexcept;
(4) (parallelism TS v2)
template< class U, class Flags >
simd( const U* mem, Flags flags );
(5) (parallelism TS v2)
simd( const simd& other ) noexcept = default;
(6) (parallelism TS v2)
(implicitly declared)
simd( simd&& other ) noexcept = default;
(7) (parallelism TS v2)
(implicitly declared)
1) Constructs a simd using default initialization (constructed without initializer) or value initialization (constructed with an empty initializer).
2) The broadcast constructor constructs a simd with all values initialized to value. This overload participates in overload resolution only if the conversion from U to T is value-preserving, or U is either int or unsigned int if T is an unsigned integral type.
3) Constructs a simd where the i-th element is initialized to static_cast<T>(other[i]) for all i in the range of [0size()). This overload participates in overload resolution only if Abi is simd_abi::fixed_size<size()> and the conversion from U to T is value-preserving, and, if both U and T are integral, the integer conversion rank of T is greater than the integer conversion rank of U.
4) The generator constructor constructs a simd where the i-th element is initialized to generator(std::integral_constant<std::size_t, i>()). This overload participates in overload resolution only if simd(gen(std::integral_constant<std::size_t, i>())) is well-formed for all i in the range of [0size()). The calls to generator are unsequenced with respect to each other. Vectorization-unsafe standard library functions may not be invoked by generator.
5) The load constructor constructs a simd where the i-th element is initialized to static_cast<T>(mem[i]) for all i in the range of [0size()).
6,7) Implicitly declared copy and move constructors. Constructs a simd where each element is initialized from the values of the elements in other.

Parameters

value - the value used for initialization of all simd elements
other - another simd to copy from
generator - a function object used for initialization of each simd element
mem - a pointer into an array where [memmem + size()) is a valid range
flags - if of type vector_aligned_tag, the load constructor may assume mem to point to storage aligned by memory_alignment_v<simd, U>
Type requirements
-
The conversion from U to T must be value-preserving. The broadcast constructor (2) additionally allows U to be int or to be unsigned int if T is an unsigned integral type.
-
is_simd_flag_type_v<Flags> must be true.

Example

#include <cstddef>
#include <experimental/simd>
#include <iostream>
namespace stdx = std::experimental;
 
int main()
{
    stdx::native_simd<int> a; // uninitialized
    a = 1; // all elements set to 1
    stdx::native_simd<int> b([](int i) { return i; }); // {0, 1, 2, 3, ...}
 
    alignas(stdx::memory_alignment_v<stdx::native_simd<int>>)
        std::array<int, stdx::native_simd<int>::size() * 2> mem = {};
    for (std::size_t i = 0; i < mem.size(); ++i)
        mem[i] = i & 1;
 
    stdx::native_simd<int> c(&mem[0], stdx::vector_aligned); // {0, 1, 0, 1, ...}
    stdx::native_simd<int> d(&mem[1], stdx::element_aligned); // {1, 0, 1, 0, ...}
 
    auto sum = a + b + c + d;
 
    for (std::size_t i = 0; i < sum.size(); ++i)
        std::cout << sum[i] << ' ';
    std::cout << '\n';
}

Possible output:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

See also

(parallelism TS v2)
loads simd elements from contiguous memory
(public member function)