ccoshf, ccosh, ccoshl
From cppreference.com
Defined in header <complex.h>
|
||
(1) | (since C99) | |
(2) | (since C99) | |
(3) | (since C99) | |
Defined in header <tgmath.h>
|
||
#define cosh( z ) |
(4) | (since C99) |
1-3) Computes the complex hyperbolic cosine of
z
.4) Type-generic macro: If
z
has type long double complex, ccoshl
is called. if z
has type double complex, ccosh
is called, if z
has type float complex, ccoshf
is called. If z
is real or integer, then the macro invokes the corresponding real function (coshf, cosh, coshl). If z
is imaginary, then the macro invokes the corresponding real version of the function cos, implementing the formula cosh(iy) = cos(y), and the return type is real.Parameters
z | - | complex argument |
Return value
If no errors occur, complex hyperbolic cosine of z
is returned
Error handling and special values
Errors are reported consistent with math_errhandling
If the implementation supports IEEE floating-point arithmetic,
- ccosh(conj(z)) == conj(ccosh(z))
- ccosh(z) == ccosh(-z)
- If
z
is+0+0i
, the result is1+0i
- If
z
is+0+∞i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) and FE_INVALID is raised - If
z
is+0+NaNi
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isx+∞i
(for any finite non-zero x), the result isNaN+NaNi
and FE_INVALID is raised - If
z
isx+NaNi
(for any finite non-zero x), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
is+∞+0i
, the result is+∞+0i
- If
z
is+∞+yi
(for any finite non-zero y), the result is+∞cis(y)
- If
z
is+∞+∞i
, the result is±∞+NaNi
(the sign of the real part is unspecified) and FE_INVALID is raised - If
z
is+∞+NaN
, the result is+∞+NaN
- If
z
isNaN+0i
, the result isNaN±0i
(the sign of the imaginary part is unspecified) - If
z
isNaN+yi
(for any finite non-zero y), the result isNaN+NaNi
and FE_INVALID may be raised - If
z
isNaN+NaNi
, the result isNaN+NaNi
where cis(y) is cos(y) + i sin(y)
Notes
Mathematical definition of hyperbolic cosine is cosh z =ez +e-z |
2 |
Hyperbolic cosine is an entire function in the complex plane and has no branch cuts. It is periodic with respect to the imaginary component, with period 2πi
Example
Run this code
#include <stdio.h> #include <math.h> #include <complex.h> int main(void) { double complex z = ccosh(1); // behaves like real cosh along the real line printf("cosh(1+0i) = %f%+fi (cosh(1)=%f)\n", creal(z), cimag(z), cosh(1)); double complex z2 = ccosh(I); // behaves like real cosine along the imaginary line printf("cosh(0+1i) = %f%+fi ( cos(1)=%f)\n", creal(z2), cimag(z2), cos(1)); }
Output:
cosh(1+0i) = 1.543081+0.000000i (cosh(1)=1.543081) cosh(0+1i) = 0.540302+0.000000i ( cos(1)=0.540302)
References
- C11 standard (ISO/IEC 9899:2011):
- 7.3.6.4 The ccosh functions (p: 193)
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
- G.6.2.4 The ccosh functions (p: 541)
- G.7 Type-generic math <tgmath.h> (p: 545)
- C99 standard (ISO/IEC 9899:1999):
- 7.3.6.4 The ccosh functions (p: 175)
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
- G.6.2.4 The ccosh functions (p: 476)
- G.7 Type-generic math <tgmath.h> (p: 480)
See also
(C99)(C99)(C99) |
computes the complex hyperbolic sine (function) |
(C99)(C99)(C99) |
computes the complex hyperbolic tangent (function) |
(C99)(C99)(C99) |
computes the complex arc hyperbolic cosine (function) |
(C99)(C99) |
computes hyperbolic cosine (cosh(x)) (function) |
C++ documentation for cosh
|