

Introduction to Petri Nets

2006/2007

History
● Petri nets were introduced by C.A. Petri in his

Ph.D. Dissertation: ”Kommunikation mit
Automaten.” , Institut für Instrumentelle
Mathematik, Bonn, 1962.

● They are particularly useful form modeling
systems with concurrent and asynchronous
processing

Why concurrency is a problem?
● Concurrency and asynchronous processing is

typical in real world
● It can pose a problem when many entities

(people, machines, processing threads) use
(share) the same resource (or a limited number
of resources)

● A trivial example is that of an elevator – the
cabin is single resource that many people want
to use. The problem is how to control the
elevator to minimise waiting time?

Why concurrency is a problem?
● The elevator '”scheduling” control is not crucial,

at worst improper algorithm may result in long
waiting times

● There are situations where handling
concurrency is crucial for correct behaviour of
the system

Why concurrency is a problem?
● Unwanted results of concurrency include:

– Race conditions
– Resource starvation
– Deadlocks

Race conditions
● When race conditions occur, the result of the

system behaviour may be unexpected and is
dependent on the sequence of other events

● Race conditions were first described in
electronics (logic circuits), when parallelism is
typical

● An example of race conditions may be poorly
implemented ATM

ATM case
● Lets imagine the ATM operation is following

– Authorise client
– Get account balance
– Get client request
– Update account
– Dispense cash

ATM case
● This can translate to following situation:

– Time = t
0
 Authorisation OK

– Time = t
0
+2s Balance is 1000

– Time = t
0
+10s Client requested 800, 800<1000

– Time = t
0
+12s Account updated by -800, 200 left

– Time = t
0
+14s Cash dispensed

● Everything worked fine

ATM case
● Now, lets imagine that there are two cards

attached to the same account (wife and
husband, corporate account etc.)

● Two persons at nearly the same time want to
withdraw money. What may happen?

ATM case
Client 1 Client 2

Time = t
0
 Authorisation OK

Time = t
0
+1s Authorisation OK

Time = t
0
+2s Balance is 1000

Time = t
0
+3s Balance is 1000

Time = t
0
+5s Client requested 800, 800<1000

Time = t
0
+7s Account updated by -800, 200 left

Time = t
0
+9s Cash dispensed

Time = t
0
+10s Client requested 800, 800<1000

Time = t
0
+12s Account updated by -800, -600 left

Time = t
0
+14s Cash dispensed

Race conditions
● Race conditions may be resolved by resource locking

Client 1 Client 2
Time = t

0
+2s Balance is 1000, lock account

Time = t
0
+3s account locked - cannot proceed

Time = t
0
+10s Client requested 800, 800<1000

Time = t
0
+12s Account updated by -800, 200 left, unlock account

Time = t
0
+14s Cash dispensed

Resource starvation
● The process (person, system) is denied the

resource it needs, because other process is not
freeing them

Deadlock
● Deadlock occurs when a number (at least 2)

processes are waiting for the other to finish (or
release resources) and therefore none
progresses

● This can be illustrated by dining philosophers
problem (invented by Edsger Dijkstra)

Dining philosophers problem
● The philosopher is either

thinking, or eating
● The philosophers do not

talk (communicate)
● The philosopher can

pick a fork to her/his
right or left, one at a
time

● The philosopher needs
both forks to eat

Graphs
● Petri nets are graphs
● Graph is an ordered pair G:=(V,E), where V is a

set of nodes (vertices), E is a set of pairs of
distinct vertices – edges (lines)

● If E is a set of unordered vertices, the graph is
undirected

● If E is a set of ordered vertices, the graph is
directed (digraph)

● Petri nets are digraphs

Graphs

Multigraph
● A multigraph is a graph that may contain more

than one edge connecting the same vertices

Bipartite graph
● Petri nets are bipartite graphs
● In bipartite graphs the set of vertices V can be

divided into two disjoint subsets V
1
 and V

2
 such

that any edge always connects vertices from
different subsets

● The graph is sometimes denoted as G:=(V
1
+V

2
,

E)

Petri Nets as graphs
● In Petri nets nodes of the first subset of vertices

are called places, nodes of the second –
transitions

● The symbol of a place is a circle or an ellipse
● The symbol of transition is a solid bar or a

rectangle
● The edges of the graph are called arcs

Sample simple Petri net

Tokens
● In order to describe dynamics of Petri nets (and

being able to “execute” them) another concept
is introduced – that of a token

● The tokens are denoted by a solid dot and can
be placed inside the place symbol

● They indicate presence or absence of, for
example, resource

● Places can hold any number of tokens or only a
limited number (capacitated places)

Transitions
● Tokens are used to describe enabling of

transitions
● If an arc is drawn from a place to a transition, it

indicates that a token in the place is required to
enable the transition

● If many arcs are drawn (multigraph!), its
number indicates the number of required tokens

● The transition is enabled iff for all arcs coming
to the transition the condition of the required
tokens are met

Input and output sets
● In order to clarify the description the concept of

input and output sets is introduced
● The input set (preset) of a transition t, denoted

●t, is a set of all places for which there are arcs
going from these places to the transition t

● The output set (postset) of a transition t,
denoted t●, is a set of all places for which there
are arcs going from transition t to these places

● Similar definitions apply to input and output sets
of a place p, denoted by ●p and p●,
respectively

Marking
● Marking of a Petri net is distribution of tokens in

this net
● It is a mapping P→{0, 1, 2, ...} that describes

the number of tokens present in each place
● The marking of the net at the beginning of an

analysis is called initial marking

Sample marking

Firing
● If a transition is enabled, it can fire
● When a transition fires, tokens are removed

from all its input places (taking into account
multiple arcs!)

● After that, tokens are inserted into all its output
places – again taking into account multiple arcs

● The number of the tokens removed and
inserted may be different!

● Firing sequence is a sequence of transitions
firing

Firing

Firing

Firing

Usefulness of Petri nets
● Petri nets can be used to model complex

processes
● Petri nets can be simulated (executed) in order

to illustrate and test system behaviour,
benchmark its speed etc.

● It is possible to perform a formal analysis of
Petri net to find possible problems of the
systems (for example deadlocks)

● For different applications the places and
transitions may have different interpretations

Interpretations of places and
transitions

Input places Trasitions Output places
required resources task freed resources

input data computations output data

input signals signal processing output signals

buffers/registers processor buffers/registers

Some sample simulations

In separate files...

Properties of Petri nets
● Petri nets properties are basis for their formal

analysis
● The following properties are commonly used:

– Reachability
– Liveness
– Boundedness

Reachability

● Reachability set R(M
0
) is a set of all possible

markings reachable from the initial marking M
0

● If a marking M is in the reachability set R(M
0
), it

means that there exists a firing sequence
transforming M

0
 into M

● This is an useful property for analysis of
systems. We can ask whether:
– A desired state can be reached at all?
– Is it possible for a system to arrive at an undesired

(erroneous) state?

Reachability and reachability graph
● Reachability can be analysed by building a

reachability graph
● It is a directed graph where nodes represents

markings and edges – transitions between two
markings

● The graph is constructed by finding all possible
transitions from the initial marking – this gives a
set of markings reachable from the initial one,
then all possible transitions from the previously
discovered markings, and so on

● May lead to extremely large graphs

Liveness

● A marking M
x
 of network is live if, for any

transition t and for every reachable marking M
y

there exists a firing sequence from M
y
 that

includes t
● In other words, every transition of the net can

fire an infinite number of times
● A Petri Net PN is structurally live, if any initial

marking of PN is live
● Liveness may be used to model the

occurrences of deadlocks

Boundedness
● A marking M

x
 is bounded if there exists a positive

integer k such that for every reachable marking
M

y
 - element of the reachability set R(M

x
) - the

number of tokens in each place is bounded by k.
● A Petri net is structurally (inherently) bounded if

all of its initial markings are bounded
● In other words, no reachable state can at any

place contain more than k tokens
● If k equals one, the marking is said to be safe
● This property is useful for modelling limited

(bounded) resources

Limitations of Petri nets
● The type of Petri nets described up to this point

is called Place/Transition nets
● They have a number of limitations:

– Inability to model similar (but not identical)
processes using one net

– All tokens are identical
– No way to represent additional properties – there is

no way to associate any additional data with token

p-processes

q-processes

Sample net

More complex Petri nets
● In order to overcome these problems, a number

of solutions extending the initial approach has
been proposed:
– Coloured Petri Nets
– Hierarchy Petri Nets
– Object Petri Nets
– Prioritised Petri Nets
– Timed Petri Nets

● Stochastic Petri Nets

Coloured Petri Nets (CPNs)
● Allow to construct more compact models by

sharing similar parts between various
processes

● Handling additional data is possible
● This is mainly achieved by transition from

identical tokens that represent binary value to
typed tokens that can hold any kind of data

Coloured Petri Nets
● The data value attached to a token is called

token colour
● The data value can be a simple number, a

string, a structure consisting of some fields etc.
● The type of the value is called colour set – it is

identical to type in programming languages
● Each place in CPN has its colour set (type)

Colour sets
● Before any coloured tokens are created, colur

sets (types) must be defined
● Types may be defined in an arbitrary way, but

in order to use computer tools, a formal method
is required

● One of such methods is CPN ML language

Marking and initial marking
● Initial marking in CPNs is determined by

evaluation of initialization expressions that are
attached to places (by convention an underlined
expression next to a place)

● As the tokens may now carry complex
information, their representation by presence or
absence of dots is not useful

● Instead, the number of tokens is denoted by a
number in a circle next to the place, and the
token values are listed below this circle

Arc expressions
● As the tokens are more capable, transitions

should have a way to use the information
carried by the tokens

● This is possible thanks to arc expressions
● Arc expressions evaluate to a set of tokens that

determine type and number of tokens “passed”
through arc

● Arc expressions can contain a number of
variables, operations on these variables (e.g.
comparison), logical operators etc. Therefore
they may evaluate to different values for
different tokens

Arc expressions
● Arc expressions can be therefore treated as

functions:
– Tokens (their types and values) are arguments to

the expressions
– Tokens (their types and values) are return values

from the expressions and determine token flow

Arc expressions and enabled
transitions

● Arc expression going to transition nodes
determine if the transition is enabled

● In CPNs, thanks to arc expressions, enabling of
a transition is conditioned not only on the
presence of tokens in the input places, but also
on their values

Guards
● Guard is a boolean expression applied to a

transition node
● By convention it is placed in square

parentheses next to a transition
● Guard is an additional condition that has to be

fulfilled in order to enable transition

Sample
coloured net

Initialisation expression

E

E

E

Tokens in place

Place colur set (type)

Arc expression

Types (colur sets) definition

Coloured version of dining
philosophers

Coloured version of dining
philosophers

Coloured version of dining
philosophers

Coloured version of dining
philosophers

Software for Petri nets – CPN Tools
● http://wiki.daimi.au.dk/cpntools/_home.wiki
● Now (May 2007) in version 2.2.0
● Created by CPN Group, University of Aarhus,

Denmark
● Runs on Win2K, Win XP, Linux Fedora Core 2,

probably other Linux distributions
● Requires hardware OpenGL acceleration, may

not work with older graphics cards

CPN Tools interface
● CPN Tools uses a clever and intuitive UI,

however, it is quite different from typical GUI –
this may pose problems during first contact

● The screen is divided into “Index” (left side) and
“Workspace” (the rest)

● Although the Index can be used for some
operations, typical user interaction is different

CPN Tools interface
● Many functions are accessible by clicking and

holding right mouse button – this brings up a
circular context menu

● Some items can be dragged from the Index into
Workspace – they expand into toolboxes

CPN Tools interface

