
  

Introduction to Petri Nets

2006/2007



  

History
● Petri nets were introduced by C.A. Petri in his 

Ph.D. Dissertation: ”Kommunikation mit 
Automaten.” , Institut für Instrumentelle 
Mathematik, Bonn, 1962.

● They are particularly useful form modeling 
systems with concurrent and asynchronous 
processing



  

Why concurrency is a problem?
● Concurrency and asynchronous processing is 

typical in real world
● It can pose a problem when many entities 

(people, machines, processing threads) use 
(share) the same resource (or a limited number 
of resources)

● A trivial example is that of an elevator – the 
cabin is single resource that many people want 
to use. The problem is how to control the 
elevator to minimise waiting time?



  

Why concurrency is a problem?
● The elevator '”scheduling” control is not crucial, 

at worst improper algorithm may result in long 
waiting times

● There are situations where handling 
concurrency is crucial for correct behaviour of 
the system



  

Why concurrency is a problem?
● Unwanted results of concurrency include:

– Race conditions
– Resource starvation
– Deadlocks



  

Race conditions
● When race conditions occur, the result of the 

system behaviour may be unexpected and is 
dependent on the sequence of other events

● Race conditions were first described in 
electronics (logic circuits), when parallelism is 
typical

● An example of race conditions may be poorly 
implemented ATM



  

ATM case
● Lets imagine the ATM operation is following

– Authorise client
– Get account balance
– Get client request
– Update account
– Dispense cash



  

ATM case
● This can translate to following situation:

– Time = t
0
 Authorisation OK

– Time = t
0
+2s Balance is 1000

– Time = t
0
+10s Client requested 800, 800<1000

– Time = t
0
+12s Account updated by -800, 200 left

– Time = t
0
+14s Cash dispensed

● Everything worked fine



  

ATM case
● Now, lets imagine that there are two cards 

attached to the same account (wife and 
husband, corporate account etc.)

● Two persons at nearly the same time want to 
withdraw money. What may happen?



  

ATM case
Client 1 Client 2

Time = t
0
 Authorisation OK

Time = t
0
+1s Authorisation OK

Time = t
0
+2s Balance is 1000

Time = t
0
+3s Balance is 1000

Time = t
0
+5s Client requested 800, 800<1000

Time = t
0
+7s Account updated by -800, 200 left

Time = t
0
+9s Cash dispensed

Time = t
0
+10s Client requested 800, 800<1000

Time = t
0
+12s Account updated by -800, -600 left

Time = t
0
+14s Cash dispensed



  

Race conditions
● Race conditions may be resolved by resource locking

Client 1 Client 2
Time = t

0
+2s Balance is 1000, lock account

Time = t
0
+3s account locked - cannot proceed

Time = t
0
+10s Client requested 800, 800<1000

Time = t
0
+12s Account updated by -800, 200 left, unlock account

Time = t
0
+14s Cash dispensed



  

Resource starvation
● The process (person, system) is denied the 

resource it needs, because other process is not 
freeing them 



  

Deadlock
● Deadlock occurs when a number (at least 2) 

processes are waiting for the other to finish (or 
release resources) and therefore none 
progresses

● This can be illustrated by dining philosophers 
problem (invented by Edsger Dijkstra)



  

Dining philosophers problem
● The philosopher is either 

thinking, or eating
● The philosophers do not 

talk (communicate)
● The philosopher can 

pick a fork to her/his 
right or left, one at a 
time

● The philosopher needs 
both forks to eat



  

Graphs
● Petri nets are graphs
● Graph is an ordered pair G:=(V,E), where V is a 

set of nodes (vertices), E is a set of pairs of 
distinct vertices – edges (lines)

● If E is a set of unordered vertices, the graph is 
undirected

● If E is a set of ordered vertices, the graph is 
directed (digraph)

● Petri nets are digraphs



  

Graphs



  

Multigraph
● A multigraph is a graph that may contain more 

than one edge connecting the same vertices



  

Bipartite graph
● Petri nets are bipartite graphs
● In bipartite graphs the set of vertices V can be 

divided into two disjoint subsets V
1
 and V

2
 such 

that any edge always connects vertices from 
different subsets

● The graph is sometimes denoted as G:=(V
1
+V

2
, 

E)



  

Petri Nets as graphs
● In Petri nets nodes of the first subset of vertices 

are called places, nodes of the second – 
transitions

● The symbol of a place is a circle or an ellipse
● The symbol of transition is a solid bar or a 

rectangle
● The edges of the graph are called arcs



  

Sample simple Petri net



  

Tokens
● In order to describe dynamics of Petri nets (and 

being able to “execute” them) another concept 
is introduced – that of a token

● The tokens are denoted by a solid dot and can 
be placed inside the place symbol

● They indicate presence or absence of, for 
example, resource

● Places can hold any number of tokens or only a 
limited number (capacitated places)



  

Transitions
● Tokens are used to describe enabling of 

transitions
● If an arc is drawn from a place to a transition, it 

indicates that a token in the place is required to 
enable the transition

● If many arcs are drawn (multigraph!), its 
number indicates the number of required tokens

● The transition is enabled iff for all arcs coming 
to the transition the condition of the required 
tokens are met



  

Input and output sets
● In order to clarify the description the concept of 

input and output sets is introduced
● The input set (preset) of a transition t, denoted 

●t, is a set of all places for which there are arcs 
going from these places to the transition t

● The output set (postset) of a transition t, 
denoted t●, is a set of all places for which there 
are arcs going from transition t to these places

● Similar definitions apply to input and output sets 
of a place p, denoted by ●p and p●, 
respectively



  

Marking
● Marking of a Petri net is distribution of tokens in 

this net
● It is a mapping P→{0, 1, 2, ...} that describes 

the number of tokens present in each place
● The marking of the net at the beginning of an 

analysis is called initial marking



  

Sample marking



  

Firing
● If a transition is enabled, it can fire
● When a transition fires, tokens are removed 

from all its input places (taking into account 
multiple arcs!)

● After that, tokens are inserted into all its output 
places – again taking into account multiple arcs

● The number of the tokens removed and 
inserted may be different!

● Firing sequence is a sequence of transitions 
firing



  

Firing



  

Firing



  

Firing



  

Usefulness of Petri nets
● Petri nets can be used to model complex 

processes
● Petri nets can be simulated (executed) in order 

to illustrate and test system behaviour, 
benchmark its speed etc.

● It is possible to perform a formal analysis of 
Petri net to find possible problems of the 
systems (for example deadlocks)

● For different applications the places and 
transitions may have different interpretations



  

Interpretations of places and 
transitions

Input places Trasitions Output places
required resources task freed resources

input data computations output data

input signals signal processing output signals

buffers/registers processor buffers/registers



  

Some sample simulations

In separate files...



  

Properties of Petri nets
● Petri nets properties are basis for their formal 

analysis
● The following properties are commonly used:

– Reachability
– Liveness
– Boundedness



  

Reachability

● Reachability set R(M
0
) is a set of all possible 

markings reachable from the initial marking M
0

● If a marking M is in the reachability set R(M
0
), it 

means that there exists a firing sequence 
transforming M

0
 into M

● This is an useful property for analysis of 
systems. We can ask whether:
– A desired state can be reached at all?
– Is it possible for a system to arrive at an undesired 

(erroneous) state?



  

Reachability and reachability graph
● Reachability can be analysed by building a 

reachability graph
● It is a directed graph where nodes represents 

markings and edges – transitions between two 
markings

● The graph is constructed by finding all possible 
transitions from the initial marking – this gives a 
set of markings reachable from the initial one, 
then all possible transitions from the previously 
discovered markings, and so on

● May lead to extremely large graphs



  

Liveness

● A marking M
x
 of network is live if, for any 

transition t and for every reachable marking M
y
 

there exists a firing sequence from M
y
 that 

includes t
● In other words, every transition of the net can 

fire an infinite number of times
● A Petri Net PN is structurally live, if any initial 

marking of PN is live
● Liveness may be used to model the 

occurrences of deadlocks



  

Boundedness
● A marking M

x
 is bounded if there exists a positive 

integer k such that for every reachable marking 
M

y
 - element of the reachability set R(M

x
) - the 

number of tokens in each place is bounded by k. 
● A Petri net is structurally (inherently) bounded if 

all of its initial markings are bounded
● In other words, no reachable state can at any 

place contain more than k tokens
● If k equals one, the marking is said to be safe
● This property is useful for modelling limited 

(bounded) resources



  

Limitations of Petri nets
● The type of Petri nets described up to this point 

is called Place/Transition nets
● They have a number of limitations:

– Inability to model similar (but not identical) 
processes using one net

– All tokens are identical
– No way to represent additional properties – there is 

no way to associate any additional data with token



  

p-processes

q-processes

Sample net



  

More complex Petri nets
● In order to overcome these problems, a number 

of solutions extending the initial approach has 
been proposed:
– Coloured Petri Nets
– Hierarchy Petri Nets
– Object Petri Nets
– Prioritised Petri Nets
– Timed Petri Nets

● Stochastic Petri Nets



  

Coloured Petri Nets (CPNs)
● Allow to construct more compact models by 

sharing similar parts between various 
processes

● Handling additional data is possible
● This is mainly achieved by transition from 

identical tokens that represent binary value to 
typed tokens that can hold any kind of data



  

Coloured Petri Nets
● The data value attached to a token is called 

token colour
● The data value can be a simple number, a 

string, a structure consisting of some fields etc.
● The type of the value is called colour set – it is 

identical to type in programming languages
● Each place in CPN has its colour set (type)



  

Colour sets
● Before any coloured tokens are created, colur 

sets (types) must be defined
● Types may be defined in an arbitrary way, but 

in order to use computer tools, a formal method 
is required

● One of such methods is CPN ML language



  

Marking and initial marking
● Initial marking in CPNs is determined by 

evaluation of initialization expressions that are 
attached to places (by convention an underlined 
expression next to a place)

● As the tokens may now carry complex 
information, their representation by presence or 
absence of dots is not useful

● Instead, the number of tokens is denoted by a 
number in a circle next to the place, and the 
token values are listed below this circle



  

Arc expressions
● As the tokens are more capable, transitions 

should have a way to use the information 
carried by the tokens

● This is possible thanks to arc expressions
● Arc expressions evaluate to a set of tokens that 

determine type and number of tokens “passed” 
through arc

● Arc expressions can contain a number of 
variables, operations on these variables (e.g. 
comparison), logical operators etc. Therefore 
they may evaluate to different values for 
different tokens



  

Arc expressions
● Arc expressions can be therefore treated as 

functions:
– Tokens (their types and values) are arguments to 

the expressions
– Tokens (their types and values) are return values 

from the expressions and determine token flow



  

Arc expressions and enabled 
transitions

● Arc expression going to transition nodes 
determine if the transition is enabled

● In CPNs, thanks to arc expressions, enabling of 
a transition is conditioned not only on the 
presence of tokens in the input places, but also 
on their values



  

Guards
● Guard is a boolean expression applied to a 

transition node
● By convention it is placed in square 

parentheses next to a transition
● Guard is an additional condition that has to be 

fulfilled in order to enable transition



  

Sample 
coloured net

Initialisation expression

E

E

E

Tokens in place

Place colur set (type)

Arc expression

Types (colur sets) definition



  



  



  



  



  



  



  



  



  



  



  



  



  

Coloured version of dining 
philosophers



  

Coloured version of dining 
philosophers



  

Coloured version of dining 
philosophers



  

Coloured version of dining 
philosophers



  

Software for Petri nets – CPN Tools
● http://wiki.daimi.au.dk/cpntools/_home.wiki 
● Now (May 2007) in version 2.2.0
● Created by CPN Group, University of Aarhus, 

Denmark
● Runs on Win2K, Win XP, Linux Fedora Core 2, 

probably other Linux distributions
● Requires hardware OpenGL acceleration, may 

not work with older graphics cards



  

CPN Tools interface
● CPN Tools uses a clever and intuitive UI, 

however, it is quite different from typical GUI – 
this may pose problems during first contact

● The screen is divided into “Index” (left side) and 
“Workspace” (the rest)

● Although the Index can be used for some 
operations, typical user interaction is different



  

CPN Tools interface
● Many functions are accessible by clicking and 

holding right mouse button – this brings up a 
circular context menu

● Some items can be dragged from the Index into 
Workspace – they expand into toolboxes



  

CPN Tools interface


