Microprocesor Systems -

Dariusz MakowsKki

Department of Microelectronics and

Computer Science
tel. 631 2720
dmakow@dmcs.pl
http://neo.dmcs.pl/es

% Department of Microelectronics and Computer Science 1

mailto:dmakow@dmcs.pl

From Acorn Computers Ltd. ARM to ARM Ltd.

Acorn

@ Small company founded in November 1990,
@ Spun out of Acorn Computers (BBC Micro computer),

@ Design the ARM range of RISC processor cores,

@ ARM company does not fabricate silicon itself,

@ Licenses ARM cores to partners: Intellectual Property Cores of ARM processors
and peripheral devices,

@ Develop tools (compilers, debuggers), starter-kits for embedded system
development and creates standards, etc...

% Department of Microelectronics and Computer Science 2

Microprocesor Systems -
PL List of ARM silicon partners

Wlnrlmn@ Bsri\&(;to SOTA QASH[!NG CoWare

¥ o §
DNP el siemens NSW g5 VAFLIO el inwoveoa. Computex
et " 1l F: s
woarch o Y M5B COMIT™ YOGITEEH éDﬁ Tektronix*
STE Pqut:l @ ar w WindRiver Sophia
SR ARCADIA e v s ? '''''' systems
&sinsa & & % Axis Q. ,/
Nl B - 2
ﬁmm SEIII:I%III “"» z a “I'?PPAN @ o H:.Eln GDdBi_ICH det |Iu-_:'l' n I“‘t erlsfgy Ap‘jx
M€ COoR " Amﬂmgc ABEL pffrsy ERICSsON 2 L o B .\llan!
~ORE DKI M) ADMtek m.'-n i sty
HOYA " mAg=, e intersin - EXSEEN
«.—»*’ FARADAY oml ﬁ, TOSHIBA Plamsnnsd ﬁIM_J_ ;"I'II]PS}’S
scw@p‘(ap & McoNAS PHILIPS @* R TIKOS
i alesel TALITY EPSON - [Sy 2 Chartered . 3
"ag‘%‘;mm FLE> TRONICS SANYO - namim WD\ 4~ Davs LAUTERBACH ,
- emicondactor [ALcaTil] A Tias. AKM
i'n&}ﬁ-‘:u'ﬁ’_‘.._ YSTA i Partnership G
FIRMWARE SYSTEMS @) T a2 'W aggfﬁ;,ms Panasonic JI. !!}Eneo{xighn? Microsoft:
Vo intgl ies, inc,
o et :
. b N $ 0~ 2 W -oe-ae- #aTriscend. AR, - INTERTRUST
- PRECISE == oo ency) @[mﬂa_‘k_“__l- S POCURNec) ratusriiesstusinis
S USSoftware T WESREE S Z
=) CEOWORKS ATz tyComm K — Nubionat ERICSSON S
= :"'_ Taobv.-.-re.rm ‘SIhCUHWHW_’ RESONEXT N ot " | & corporation liquid gud
E =7 OSE P m....._.g. Iquid audio
Microsoft: j«\ A Bluetooth® symbian :
B e A NE TS e cor e &
ém\?@r MICROWARE Qgﬁn R 2 ﬂ]DDW u&?‘&n‘g symmet”cum E cps Jr\\f\

ABAHI GHEMICAL INDUSTRY GO.LTD.

Smeated ynuxwoRks | CMX
T h 1 '. 3

Agilent, AKM, Alcatel, Altera, Atmel, Broadcom, Chip Express, Cirrus Logic, Digital
Semiconductor, eSilicon, Fujitsu, GEC Plessey, Global UniChip, HP, Hyundai, IBM, Intel,
ITRI, LG Semicon, LSI Logic, Lucent, Matsushita, Micrel, Micronas, Mitsubishi, Freescale,
NEC, OKI, Philips, Qualcomm, Rockwell, Rohm, Samsung, Samsung, Sanyo, Seagate,
Seiko Epson, Sharp, Sony, STMicroelectronics, Symbios Logic, Texas Instruments, Xilinx,

Yamaha, Zeevo, ZTEIC,

% Department of Microelectronics and Computer Science

Microprocesor Systems -
History of ARM Processors

1983 — Sophie Wilson and Steve Furber fabricate the first RISC processor in Acorn
Computers Limited, Cambridge, ARM = Acorn (Advanced) RISC Machine
1985 — The first processor ARM 1 (architecture version v1)

1986 — First ARM 2 processors left company (32-bits, 26-bits address, 16 registers 16-bits,
30.000 transistors, architecture version v2/v2a, 8 MHz)

1990 — Apple Computer and VLSI Technology start work on the next version of ARM core,

1990 — New company is created Advanced RISC Machines Ltd. Responsible for the development of
ARM cores,

1991 — The cooperation of Apple and VLSI Tech. provides new ARM 6 processor (ARM 610 applied in
Apple Newton PDA, architecture version v3, 33 MHz)

1995 — ARM company offers famous ARM7TDMI core (core architecture ARMv4T) and Intel offers
StrongARM (233 MHz)

2001 — ARM company offers ARM9TDMI core (core architecture ARMvV5TEJ, 220 MHz)

2004 — Cortex M3 processor (ARMv7-M, 100 MHz)

2008 — ARM Cortex A8 (core architecture ARMv7, 1 GHz)

2012 — ARM Cortex A9/A15/A17 (ARMv7-A, 32-bit, 1-2 GHz) — MPCore architecture

2021 - 2020 — ARM Cortex A53/A65/A78 (ARMv8-A, 64-bit, 2.0-2.6 GHz) — MPCore architecture, GPU
2021 — now — ARM Cortex A510/A710 (ARMv9-A, 64-bit, 2.0-3.1 GHz) — MPCore architecture, GPU

% Department of Microelectronics and Computer Science 4

Microprocesor Systems -

Processors with ARM Core

+ ARM processors are widely used in embedded systems and mobile devices that
require low power devices

+ The ARM processor is the most commonly used device in the World. You can find
the processor in hard discs, mobile phones, routers, calculators and toys,

+ Currently, more than 75% of 32-bits embedded CPUs market belongs to ARM
processors,

+ The most famous and successful processor is ARM7TDMI, very often used in
mobile phones,

+ Processing power of ARM devices allows to install multitasking operating systems
with TCP/IP software stack and filesystem (e.g. FAT32).

+ The known operating systems for ARM processors: embedded Linux (Embedded
Debian, Embedded Ubuntu), Windows CE, Symbian, NUTOS (Ethernut), RTEMS,...

% Department of Microelectronics and Computer Science 5

Microprocesor Systems
 (od

PL ARM Cortex Advanced Processors

Architectural innovation, compatibility A
across diverse application spectrum orte
> ARM Cortex_A family Low-Power Leadership from ARM*
+ Applications processors for feature-rich i
OS and 3rd party applications 6 Cortex-A9
...2GHz
+ ARM Cortex-R family B cortex-As
+ Embedded processors for real-time
signal processing, control applications 6‘1;”9,(_‘\5
+ ARM Cortex-M family . Cortex-RA(F)

+ Microcontroller-oriented processors for
MCU, ASSP, and SoC applications .cmex-m

* Mali GPUs ® conoc” 15 P SC300
oriex -
+ Graphics processors for a range of . Cortex-M1
mobile devices from smartwatches to

autonomous vehicles. \\ . Cortex-ny

12k gates... 4

% Department of Microelectronics and Computer Science 7

Microprocesor Systems -
Comparison of Selected ARMs
. Architecture .
Family Vers Core Feature Cache (I/D)/MMU | Typical MIPS @ MHz
ersion
ARM6 ARMv3 ARM610 Cache, no coprocessor 4K unified 17 MIPS @ 20 MHz
ARM7 ARMv3 ARM7500FE Integrated SoC. "FE" Added FPA and EDO memory controller. 4 KB unified 55 MIPS @ 56 MHz
ARM7TDMI |ARMV5TE) ARM7EJ-S Jazelle DBX, Enhanced DSP instructions, 5-stage pipeline 8 KB 120 MIPS @ 133 MHz
StrongARM |ARMv4 SA-110 5-stage pipeline, MMU 16 KB/16 KB, MMU 235 MIPS @ 206 MHz
5-stage pipeline, static branch prediction, double-bandwidth N
ARMS ARMv4 ARM810[7] B piped pred v W 8 KB unified, MMU |1.0 DMIPS/MHz
memory
ARMITDMI JARMVAT ARM920T 5-stage pipeline 16 KB/16 KB, MMU 245 MIPS @ 250 MHz
ARMO9E ARMV5TEJ ARM926EJ-S Jazelle DBX, Enhanced DSP instructions variable, TCMs, MMU 220 MIPS @ 200 MHz
ARM10E ARMVSTE ARM1020E VFP, 6-stage pipeline, Enhanced DSP instructions 32 KB/32 KB, MMU 300 MIPS @ 325 MHz
XScale ARMV5TE PXA27x MMX and SSE instruction set, four MACs, 32 Kb/32 Kb, MMU 800 MIPS @ 624 MHz
ARM11 ARMv6 ARM1136J(F)-S |SIMD, Jazelle DBX, VFP, 8-stage pipeline variable, MMU 740 @ 532-665 MHz
Cortex ARMYT-A Cortex-AS Application p.roﬁl-e, VFP, NEON, Jazelle RCT, Thumb-2, 13-stage variable (L1+L2), >1000 MIPS@
superscalar pipeline MMU+TrustZone 600 M-1 GHz
% Department of Microelectronics and Computer Science 8

Microprocesor Systems -
Cortex — A9 MPCore

Typical applications c N\

+ Smartphones and Tablets Co r‘texm -A9 M PCO rFe

+ Cortex A Series

+ Combines Power
Efficiency and
performance

+ Cortex A5
+ Cortex A9

+ Some manufactures like
Qualcomm only use the
ARMv7 ISA

Snoop Control Unit (SCU)

Dual 64-bit AMBA3 AXI

Private Accelerator
Peripherals | | Coherence

% Department of Microelectronics and Computer Science 9

Microprocesor Systems

ARM Cortex A510 in MPCore Configuration

o
CPU Core 0 2 87 CPU Core 1
B33
L1 Instruction Cache Ke] L1 Instruction Cache
r 32/64 KiB 4-Way '”“"(tlrgfet‘:t'r‘y;m '”S(tlr;_cé'r:’t’r‘y;m 32/64 KiB 4-Way
=16 Bytes/cycle =16 Bytes/cycle
f,;:.";:, Front Front
(BPU) BPU
Instruction Fetch Instruction Fetch
' End End | '
<3 Instructlons/cycle =3 Instructlons/cycle
3-Way Decode = 3-Way Decode
I Decoderl | Decoder | | Decoder | E | Decoder I I Decoder I | Decoder |
nop nop poP c LHH E wop pop poP
Issue | F| N 0 [Issue
=3/poP HOP to cl A HOP to =3/poP
Vector Unit E o 0 Vector Unit
o I
poP nop pap wop ROP poP pop qo 0] poOP ROP RoP popP WOP poP poP
ALU ALU ALU MAC Branch Load Load E Load Load Branch
[aw] [Aw] [Aw] H [Branch] [Load]) [[Load] H [aw] [Caw] [Caw] H [Branch]
EUs < EUs
Back Back
End 1 z 2 b End
[5, 5, 5,
":v% Q"}% %Cl° q,‘:"q.
L1 Data Cache (?:t:nlﬂ] ! |ﬁ§f:rﬁ; L1 Data Cache
32/64 KiB 4-Way 32/64 KiB 4-Way
I Memory Subsys
Arbiter |
Scalar FP Scalar FP
MEON NEON
SVE2 SVE2
Crypto Crypto

Vector Processing
Unit (VPU)

Department of Microelectronics and Computer Science

Microprocesor Systems
(el

PQQL Cortex M Microcontrollers’ Family (1)

Feature Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex- Cortex-

MO MO+ M1 M23 M3 M4 M33 M35P M55 M7
Instruction

Armv8-M Armv8-M Armv8-M Armv8.1-M
Set Armv6-M Armvé-M - Armvé-M . Armv/-M Armv7/-M o o o Armv7/-M
. Baseline Mainline Mainline Mainline

Architecture
TrustZone

No No No Yes (option) No No Yes (option) Yes (option) Yes (option) No
for Armv8-M
Digital Signal
Processing No No No No No Yes Yes Yes Yes Yes
(DSP) Extension
Hardware
L. No No No Yes Yes Yes Yes Yes Yes Yes
Divide
Arm Custom

. No No No No No No Yes No Yes No
Instructions
C
oprocessor No No No No No No Yes Yes Yes No
Interface
DMIPS/MHz* 0.87 0.95 0.8 0.98 1.25 1.25 1.5 1.5 1.6 2.14
CoreMark®/
MHz* 2.33 246 1.85 2.64 3.34 342 4.02 402 4.2 5.01
z

% Department of Microelectronics and Computer Science 1 1

Microprocesor Systems

Cortex M Microcontrollers’ Family (1)

Arm C Cortex Cortex Cortex Cortex Cortex Cortex Cortex Cortex Cortex Cortex
rm ~ore Mol2l MO+ M114] M30 M4lo) M707] M23(¢] M33(12] M35P M55
) o 9 o 10 10 10 ARMv8-M ARMv8-M ARMv8-M
ARM architecture ARMvE-ME! | ARMvE-MI® | ARMvE-MIEl | ARMV7-MU'?1 | ARMV7E-MI'® | ARMV7E-ML'0) s s e | ATMV8.A-M
Baselinel'®! Mainlinel!®! Mainlinel®!
Computer architecture Von Neumann | Von Neumann | Von Neumann Harvard Harvard Harvard Von Neumann Harvard Harvard Harvard
Instruction pipeline 3 stages 2 stages 3 stages 3 stages 3 stages 6 stages 2 stages 3 stages 3 stages | 4 to 5 stages
Thumb-1 instructions Most Most Most Entire Entire Entire Most Entire Entire Entire
Thumb-2 instructions Some Some Some Entire Entire Entire Some Entire Entire Entire
Multiply instructions
i Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
32x32 = 32-bit result
Multiply instructions
i No No No Yes Yes Yes No Yes Yes Yes
32x32 = 64-bit result
Divide instructions
) . No No No Yes Yes Yes Yes Yes Yes Yes
32/32 = 32-bit quotient
Saturated instructions No No No Some Yes Yes No Yes Yes Yes
DSP instructions No No No No Yes Yes No Optional Optional Optional
Single-Precision (SP) :
‘ .) No No No No Optional Optional No Optional Optional Optional
Floating-point instructions
Double-Precision (DP) . .
i .) No No No No No Optional No No No Optional
Floating-point instructions
Half-Precisions (HP) No No No No No No No No No Optional
TrustZone instructions No No No No No No Optional Optional Optional Optional
Co-processor instructions No No No No No No No Optional Optional Optional
Helium technology No No No No No No No No No Optional

Interrupt latency 23 for NMI 12 cycles 15 no security ext | 12 no security ext
) . 16 cycles 15 cycles 12 cycles 12 cycles))
(if zero-wait state RAM) 26 for IRQ 14 worst case | 27 security ext ?7 security ext

% Department of Microelectronics and Computer Science 12

Microprocesor Systems -

ARM Processor Core

% Department of Microelectronics and Computer Science 13

p“h ARM architecture (1)

Microprocesor Systems -

ARM processor core - processor designed according to ARM processor architecture

described in high level description language (VHDL lub Verilog) provided as macro-cell or
Intellectual Property (IP).

Features of ARM processor cores:

L 4

A 4
A 4
>

v ¢ ¢ ¢ ¢

Supposed to be used for further development — microcontroller, SoC
32 or 64-bits RISC architecture
Optimised for low power consumption
Support three different modes of operation:
¥+ ARM instructions, 32 bits,

® Thumb instructions, 16 bits,
+ Jazelle DBX - Direct java instructions.

Supported Big or Little Endian

Fast Interrupt Response mode for Real-time applications

Virtual memory

List of efficient and powerful instructions selected from both RISC and CISC architectures
Hardware support for higher level software (Ada, C, C++)

i

Department of Microelectronics and Computer Science 14

Microprocesor Systems -

p“h ARM architecture (2)
Nomenclature:

ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {S}
¥ X — core family

y — implemented Memory Management Unit

z — cache memory

T — Thumb mode (16 bit command)

D — Build in debugger, (usually via JTAG interface)

M — Build in multiplier, hardware multiplier (32x32 => 64 bits)

I — In-Circuit Emulator, another ICE debugger

E — Enhanced DSP instructions, Digital Signal Processing

J — Jazelle mode

F — Floating-point unit

v ¢ ¢ ¢ ¢ ¢ v ¢ ¢ @

S — Synthesizable version, available source code for further synthesis and EDA tools

Example of ARM cores:
ARM7TDMI ARM9TDMI-EJ-S

% Department of Microelectronics and Computer Science 15

p‘h ARM architecture (3)

Microprocesor Systems

+ Corein version 1, v1

Base arithmetic and logic operations,

8 and 32 bits operations,

¥

+ Hardware interrupts,
¥

>

26 bits address

+ Core in version 2, v2

Implemented Multiply ACcumulate unit,

+
+ Available coprocessor,

+ Additional commands for threads synchronisation ,
-

26 bits address

+ Core in version 3, v3
+ New registers CPSR, SPSR, MRS, MSR,
+ Additional modes Abort and Undef,

+ 32 bits address

i

Department of Microelectronics and Computer Science

16

Microprocesor Systems -

ARM architecture (4)

+ Corein version 4, v4

First standardised architecture

Available 16 bits operations

THUMB - new mode of operation, 16 bits commands
Added privileged mode

PC can be incremented by 64 bits

¥ ¢ ¢ & <

+ Core in version 5, vb

+ Improved cooperation between ARM and THUMB modes, mode of operation can be
changed during program execution,

+ Added instruction CLZ
+ Software breakpoints
+ Support for multiprocessor operation
+ Core in version 6, v6
+ Improved MMU (Management Memory Unit)
+ Hardware support for video and sound processing (FFT, MPEG4, SIMD etc...)
+ Improved exception handing (new flag in PSR)

% Department of Microelectronics and Computer Science 1 7

Microprocesor Systems
 (od

P'L ARM instruction sets

Taking into consideration executed commands ARM processor
can operate in one of the following modes:

* ARM — 32-bits instructions optimised for time execution (code must
be aligned to 4 bytes),

* Thumb, Thumb-2 — 16-bits instructions optimised for code size
(code must be aligned to 2 bytes, processor registers are still 32 bits
wide),

* Jazelle v1 — mode used for direct execution of Java code (without
virtual machine JVM) (1000 Caffeine Marks @ 200MHz)

% Department of Microelectronics and Computer Science 18

Microprocesor Systems
[God

S
=

24 Support for Java language

J

+ ARM core marked with 'J'
+ Dynamic exchange of registers and stack
+ Hardware decoder of Java instructions

Jazelle logic turned ON

Bytecode ALU
Instruction Control
Stream Signals
FETCH DECODE EXECUTE : MEMORY | WRITEBACK

% Department of Microelectronics and Computer Science

Microprocesor Systems -

ARM Processor provides 37 registers (all are 32-bits wide). The
registers are arranged into several banks (accessible bank being
governed by the current processor mode):

+ PC (r15) — Program Counter
+ CPSR - Main status register, Current Program Status Register

21 Programming Model — Registers

+ SPSR - Copy of status register, available in different modes of operation
Saved Program Status Register

+ LR (r14) — Link Register, used for stack frame during execution of
subroutines or return address register

+ SP (r13) — used as a Stack Pointer
+ 10 -r12 — General purpose registers (dependent of the mode of operation)

% Department of Microelectronics and Computer Science 20

Microprocesor Systems -

Program Status Register

28 27 24 23 16 15 8 7 6 5 4
Condltlon code flags Interrupt disable bits
+ V- ALU operation oVerflowed + |=1 Disables the IRQ
+ C - ALU operation Carried out + F=1 Disables the FIQ
+ Z— Zero result from ALU operation Flags for xT architecture
+ N — Negative result from ALU operation

+ T=0 Processorin ARM mode
+ T=1 Processor in Thumb mode

¥+ J —Processor in Jazelle mode Mode bits

Q- Sticky Overflow — saturation flag, set during ® Specify the processor operation mode
ALU operations (QADD, QDADD, QSUB or (seven modes)
QDSUB, or operation of SMLAxy, SMLAWYX,
result more than 32 bits)

Flags for processor from family 5TE/J

Read/Modify/Write strategy should be used to write data to PSR (to ensure further
compatibility)

% Department of Microelectronics and Computer Science 21

Microprocesor Systems -

Programming Model — modes of processor operation

Operating mode — defined which resources of processor are available, e.g. registers,
memory regions, peripheral devices, stack, etc...

ARM processor can operate in on of 7 modes:

User — user mode (not privileged), dedicated for user programs execution

FIQ — fast interrupts and high priority exceptions (used only when really necessary)
IRQ - handling of low or normal priority interrupts

Supervisor — supervisor mode gives access to all resource of the processor, used
during debugging. Available after reset or during interrupt handling.

Abort — used for handling of memory access exceptions (memory access violations)
Undef - triggered when unknown or wrong commands is detected

v ¢ ¢ ¢

v &

+ System - privileged mode, access to registers as in user mode, however various
memory segments are available

Mode Abbreviation Privileged Mode[4:0]
Abort abt yes 10111
Fast interrupt request fig yes 10001
Interrupt request irq yes 10010
Supervisor sve yes 10011
System SYS ves 11111
Undefined und yes 11011
User usr no 10000

% Department of Microelectronics and Computer Science 22

{74 Exception Handling
When an exception occurs, the ARM:
+ Copies CPSR into SPSR_<mode>
+ Sets appropriate CPSR bits
+ Change to ARM or Thumb state
+ Change to exception mode
+ Disable interrupts (if appropriate)
+ Stores the return address in LR_<mode>

+ Sets PC to vector address

To return, exception handler needs to:
+ Restore CPSR from SPSR_<mode>
+ Restore PC from LR_<mode>

Microprocesor Systems -

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FlQ
IRQ

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

Vector table can be at

OxFFFF0000 on ARM720T
and on ARM9/10 family devices

% Department of Microelectronics and Computer Science

23

Microprocesor Systems
=t

i3 Programming Model - registers available in User or System modes

Current Visible Registers

User Mode

Banked out Registers

FIQ IRQ SVC Undef Abort

rl3 (sp) § r1l3 (sp) § r1l3 (sp) §ELENE)]
r1ld (1r) |l r14 (1lr) § r1l4 (1lr) XN EES)

sSpsr m sSpsr sSpsr sSpsr

% Department of Microelectronics and Computer Science 24

Microprocesor Systems
[God

Pﬁ?l Programming Model - registers available in FIQ mode

Current Visible Registers

FIQ Mode

Banked out Registers

User IRQ SVvC Undef Abort

rl3 (sp) § r13 (sp) § r13 (sp) AELENE) D)
rld (1Ir) f rl4 (1lr) § rld (1lr) IE3EINEES)

cpsr
spsr m spsr spsr spsr

% Department of Microelectronics and Computer Science 25

Microprocesor Systems
[God

Pﬁ?l Programming Model — registers available in IRQ mode

Current Visible Registers

IRQ Mode

Banked out Registers

User FIQ SvC Undef Abort

rl3 (sp)
rld (1lr)

fICENE N BIKINEIIN [rl3 (sp)
rld (1lr) § rld (lr) gESESNEES)

s EZEEIN -

% Department of Microelectronics and Computer Science 26

Microprocesor Systems
[God

51",‘
i Programming Model - registers available in Supervisor mode

Current Visible Registers

SVC Mode

Banked out Registers

User FIQ IRQ Undef Abort

fICINE N | 13 (sp)
AV BNGEIN (r14 (1lr)

spsr

% Department of Microelectronics and Computer Science 27

Microprocesor Systems
[God

Pﬁ?l Programming Model - registers available in Abort mode

Current Visible Registers

Abort Mode

Banked out Registers

User FlQ IRQ SVC Undef

rl3 (sp) rl3 (sp) § r13 (sp) § r13 (sp)
rld (1lr) rl4 (1r) @ rl4 (1lr) § r14 (1lr)

cpsr

% Department of Microelectronics and Computer Science

28

Microprocesor Systems
[God

Pﬁ?l Programming Model — registers available in Undef mode

Current Visible Registers

Undef Mode

Banked out Registers

User FIQ IRQ SVC Abort

rl3 (sp)
rld (lr)

rl3 (sp) § r13 (sp) rl3 (sp)
rl4 (1r) § r1l4 (1lr) rld (lr)

% Department of Microelectronics and Computer Science 29

Microprocesor Systems -

User FIQ IRQ SvVC Undef Abort

Aart
= Programming Model — registers summary

U

r0
rl
r2
r3
r4
r5
r6
r7
r8
r9
rl0
rll
rl2
rl3 (sp)
rld (lr)
rl5 (pc)

B m Spsr Spsr

Note: System mode uses the User mode register set

Thumb state
Low registers

Thumb state
Highregisters

rl3 (sp)
rld (lr)

rl3 (sp)
rld (lr)

rl3 (sp)
rld (lr)

% Department of Microelectronics and Computer Science 30

Microprocesor Systems -

Interrupts and Exceptions

% Department of Microelectronics and Computer Science 3 1

Microprocesor Systems -

Handling of Exceptions

APPLICATIONS _ OPERATING SYSTEM

‘/”’EE\ (Exception Handlers)

SUPERVISOR
PRIVILEGE
LEVEL

PRIVILEGE
LEVEL

ERRORS,
TRAPS,
INTERRUPTS

CONTEXT SWITCHING

% Department of Microelectronics and Computer Science 32

Microprocesor Systems
 (od

U Exceptions

Exception — mechanism that control flow of data used in microprocessors-based
systems and programming languages to handling asynchronous and
unpredictable situations.

Exceptions can be divided into:
= Faults,
= Aborts,
- Traps.
In addition to exceptions processor supervises also interrupts.
ARM processors can handle two different modes of interrupts:
+ FIQ - Fast interrupt (interrupt with low latency handling),
+ IRQ - Normal Interrupt.

% Department of Microelectronics and Computer Science 33

Microprocesor Systems -

G Interrupts

" Hardware-triggered asynchronous software routine
" Triggered by hardware signal from peripheral or external device

" Asynchronous - can happen anywhere in the program (unless interrupt is
disabled)

" Software routine - Interrupt Service Routine (ISR) runs in response to interrupt

" Fundamental mechanism of microcontrollers
" Provides efficient event-based processing rather than polling

® Provides quick response to events regardless’ of program state, complexity,
location

" Allows many multithreaded embedded systems to be responsive without an
operating system (specifically task scheduler)

% Department of Microelectronics and Computer Science 34

Microprocesor Systems
 (od

PL Interrupts Processing Sequence

Main code is running (background)

Interrupt is triggered

Processor executes context switching to ISR

Processor executed ISR (foregroung), including return from ISR at the end
Processor resumes execution of the main code

¥ & ¢ &

Main Code Hardwired CPU ISR
(Background) response activities (Foreground)
L]
[

% Department of Microelectronics and Computer Science 35

Microprocesor Systems -

Interrupt or IRQ — Interrupt ReQuest — is an asynchronous signal indicating the
need for attention or a synchronous event in software indicating the need for a
change in execution. A hardware interrupt causes the processor to save its state
of execution and begin execution of an interrupt handler. Software interrupts are
usually implemented as instructions in the instruction set, which cause a context
switch to an interrupt handler similar to a hardware interrupt. Interrupts are a
commonly used technique for computer multitasking, especially in real-time
computing. Such a system is said to be interrupt-driven.

:'L Interrupts

Examples of interrupts:
@ Receive or transmission of data via serial interface (e.g. EIA RS232),
@ Change of state or detected slope on processor's pin.

Status of device can be checked using software commands, however it requires
continuous reading and checking of status register of the device. This operation
is called polling. Even simple polling usually requires a significant amount of
processing power and unnecessary loads processor, e.g. transmission of single
symbol lasts ~100 us (processor can execute hundreds of thousands of
instructions during this time).

% Department of Microelectronics and Computer Science 36

Microprocesor Systems -

Program Status Register

28 27 24 23 16 15 8 7 6 5 4
Condltlon code flags Interrupt disable bits
+ V- ALU operation oVerflowed + |=1 Disables the IRQ
+ C - ALU operation Carried out + F=1 Disables the FIQ
+ Z— Zero result from ALU operation Flags for xT architecture
+ N — Negative result from ALU operation

+ T=0 Processorin ARM mode
+ T=1 Processor in Thumb mode

¥+ J —Processor in Jazelle mode Mode bits

Q- Sticky Overflow — saturation flag, set during ® Specify the processor operation mode
ALU operations (QADD, QDADD, QSUB or (seven modes)
QDSUB, or operation of SMLAxy, SMLAWYX,
result more than 32 bits)

Flags for processor from family 5TE/J

% Department of Microelectronics and Computer Science 37

Microprocesor Systems -

Execution of not allowed operation in given processor mode can cause
exception, e.g. access to protected memory segment.

Handling of exception covers all operations when the exception was
detected until the first command of exception handler.

0. Finish current instruction
1. a) Change operating mode to ARM (from Thumb or Jazelle),
b) Change to interrupt of exception mode (FIQ/IRQ),
c) Set interrupt level mask on level equal to the handling interrupt (disable
interrupts).
d) Change registers bank:
make a copy of CPSR — SPSR and PC (r15) — Link Register (r14),
e) Make active SPSR register.

Calculate exception vector (interrupt).

{2 Handling of exceptions

Branch to the first instruction handling exception or interrupt.

Return from exception/interrupt:

a) Recover CPSR (r15) register,

b) Recover PC (Link Register r14),
c) Return to the interrupted program.

% Department of Microelectronics and Computer Science 38

Microprocesor Systems
(r—_—'

PL Exceptions (1)

Exception handling by the ARM processor is controlled through the use of an area of memory
called the vector table. This lives (normally) at the bottom of the memory map from 0x0 to
Ox1c. Within this table one word is allocated to each of the various exception types. This
word will contain some form of ARM instruction that should perform a branch. It does not
contain an address.

When one of these exceptions is taken, the ARM goes through a low-overhead sequence of
actions in order to invoke the appropriate exception handler. The current instruction is always
allowed to complete (except in case of Reset).

IRQ is disabled on entry to all exceptions; FIQ is also disabled on entry to Reset and FIQ.

0x1C FIQ

0x18 [3{e]

0x14 (Reserved)

0x10 Data Abort

0x0C Prefetch Abort

0x08 Software Interrupt

0x04 Undefined Instruction Memory image
0x00 Reset

% Department of Microelectronics and Computer Science 39

o

PL Exceptions (2)

Reset - executed on power on

Undef - when an invalid instruction reaches the execute
stage of the pipeline

SWI - when a software interrupt instruction is executed

Prefetch - when an instruction is fetched from memory that
is invalid for some reason, if it reaches the execute stage
then this exception is taken

Data - if a load/store instruction tries to access an invalid
memory location, then this exception is taken

IRQ - normal interrupt
FIQ - fast interrupt

Vector table is located in memory address 0x0.

The base address of exception table can be
modified: OxFFFF.0000 (ARM 7/9/10).

Microprocesor Systems

0x1C
0x18
0x14
0x10
0x0C
0x08
0x04
0x00

FIQ
IRQ

(Reserved)
Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

Memory image

% Department of Microelectronics and Computer Science

40

Microprocesor Systems
 (od

PE?.L Exceptions Table

LDR PC, =FIQ_Addr 0x1C FIQ

LDR PC, =IRQ_Addr 0x18 IRQ

NOP ; Reserved vector Ox14 (Reserved)
LDR PC, =Abort_Addr 0x10 Data Abort
LDR PC, =Prefetch_Addr 0x0C Prefetch Abort
LDR PC, =SWI_Addr 0x08 Software Interrupt
LDR PC, =Undefined_Addr 0x04 Undefined Instruction
LDR PC, =Reset_Addr 0x00 Reset

Memory image

% Department of Microelectronics and Computer Science

o

P‘L Exception Handlers (1)

IRQ_Addr:
[*- Manage Exception Entry */
/*- Adjust and save LR irq in IRQ stack */
sub Ir, Ir, #4
stmfd sp!, {Ir}
/*- Save r0 and SPSR in IRQ stack */
mrs r14, SPSR
stmfd sp!, {r0,r14}
/*- Write in the IVR to support Protect Mode */
/*- No effect in Normal Mode */
[*- De-assert the NIRQ and clear the source in Protect Mode */
Ildr 14, =AT91C_BASE_AIC
Ildr rO, [r14, #AIC_IVR]
str r14, [r14, #AIC_IVR]

/*- Branch to the routine pointed by the AIC_IVR */
mov r14, pc
bx ro [* Branch to IRQ handler */

/*- Restore adjusted LR _irq from IRQ stack directly in the PC */
ldmia sp!, {pc}" [* A - Recover CSPR */

Microprocesor Systems

% Department of Microelectronics and Computer Science

42

(r—_—-

pL Exception Handlers (2)

I* lowlevel.c */
/*
* Function Name : default_spurious_handler
* Object . default handler for spurious interrupt
* */
void default_spurious _handler(void)
{

dbgu_print_ascii("-F- Spurious Interrupt\n\r ");

while (1);
}

/*
* Function Name : default_fig_handler
* Object : default handler for fast interrupt
* */
void default_fig_handler(void)
{
dbgu_print_ascii("-F- Unexpected FIQ Interrupt\n\r ");
while (1);
}

Microprocesor Systems

% Department of Microelectronics and Computer Science

43

Microprocesor Systems

Nested Vectored
Interrupt Controller (NVIC)

Chapter 13

Department of Microelectronics and Computer Science

44

Microprocesor Systems -

STM32 Cortex-M4 implementation

Cortex-M4 processor

. . Cortex-M4
* BUIlt On a hlgh'performance processor FPU
Cortex-M4 processor core
3-stage pipeline e Embedded
9¢ PP) NVIC > Processor Trace Macrocell >
Harvard architecture, core
IEEE754- compliant single-
precision floating-point ¢ ¢
ComDUtatlon Debug Serial
: »| access Memory wire >
+ Single-cycle and SIMD oort protection unit Jiewer
multiplication and multiply-with- t t
accumulate capabilities,
saturating arithmetic and Eﬁiﬂ Watgfgiims
dedicated hardware division t t
+ Power control optimization of Bus matix
system components Code SRAM and
+ Integrated sleep modes for low '”tirface pe”phera:”te”ace
power consumption 2 3

% Department of Microelectronics and Computer Science 45

Microprocesor Systems -

Block diagram of NVIC of ARM processor

External IRQs \ NVIC
[}— ARM
IRQO-IRQN Processor
82 /91 N .

Sources

.. Embedded |
~.. Embedded |

Embedded
Peripheral

> nIRQ

A J

t APB

Manages vectorised interrupts (up to 240 IRQs)

<

>

Can monitor up to 82 or 91 (for STM32L496xx) internal and external interrupts,
Each interrupt can be disabled/enabled (masked),

16 priority levels (0 — the highest, 15 — the lowest, 4 bits), default 0

Handles interrupts triggered with level or edge,

Dynamic reprioritization of interrupts

Low-latency exception and interrupt handling

>
A 4
A 4
A 4
L 4
>
A 4
>

Power management control.

Department of Microelectronics and Computer Science 46

E

Microprocesor Systems -

Nested Vectored Interrupt Controller of ARM processor

+ NVIC uses system clock, however the clock signal cannot be disabled to save
power.

Interrupts can be used to wake up processor from sleep or hibernation mode.
11 exceptions (Priorities: -3..0..6)

81 or 91 interrupts assigned to peripheral devices (Priorities: 7 — 97)
Exceptions marked with negative numbers

v ¢ ¢ ¢ <&

Interrupts with positive numbers

% Department of Microelectronics and Computer Science 47

Microprocesor Systems -

Vectored interrupts - type of interrupts that allows user to modify the Interrupt
Handler (function) that is assigned to an interrupt vector.

This is a number (ID) that identifies a particular interrupt handler. This vector
may be fixed, configurable (using jumpers or switches), or programmable.

When the interrupt handler is registered its address is saved as a interrupt
vector in a table.

When the device interrupts, the system enters the interrupt acknowledge cycle,
asking the interrupting device to identify itself. The device responds with its
interrupt vector. The system then uses this vector to find the responsible interrupt
handler.

Interrupts has assigned ID numbers and assigned interrupt vector (address of
interrupt handler).

Department of Microelectronics and Computer Science 48

Exception Types (1)

Microprocesor Systems

Exception IRQ Exception Priorit Vector address Activation
number! | number(type y or offset(®
1 - Reset -3, the highest [0x00000004 Asynchronous
2 -14 NMI -2 0x00000008 Asynchronous
3 -13 Hard fault -1 0x0000000C -
4 12 Memory Configurable® | 0x00000010 Synchronous
management fault
5 11 Bus fault Configurable) | 0x00000014 Synchronous when precise
Asynchronous when imprecise
6 -10 Usage fault Configurable(s) 0x00000018 Synchronous
7-10 - - - Reserved -
11 -5 SVCall Configurable®) | 0x0000002C Synchronous
12-13 - - - Reserved -
14 -2 PendSV Configurable®) | 0x00000038 Asynchronous
15 -1 SysTick Configurable ®) | 0x0000003C Asynchronous
16 and 0 and : (4) | 0x00000040 and
above above Interrupt (IRQ) Configurable above) Asynchronous

Department of Microelectronics and Computer Science

49

Microprocesor Systems -

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SvCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000
MS30018V1

% Department of Microelectronics and Computer Science 50

Exception Types (2)

Microprocesor Systems

< >

o =

:‘5 6 Ty_p e_of Acronym Description Address

b = priority

o o

- - - Reserved 0x0000 0000

- -3 fixed Reset Reset 0x0000 0004
Non maskable interrupt. The RCC Clock

- -2 fixed NMI Security System (CSS) is linked to the NMI 0x0000 0008
vector.

- -1 fixed HardFault All classes of fault 0x0000 000C

- 0 settable |MemManage Memory management 0x0000 0010

- 1 settable |BusFault Pre-fetch fault, memory access fault 0x0000 0014

- 2 settable |UsageFault Undefined instruction or illegal state 0x0000 0018
Reserved 0x0000 001C -

0x0000 0028

- 3 settable |SVCall System service call via SWI instruction 0x0000 002C

- 4 settable |Debug Monitor 0x0000 0030

- - - - Reserved 0x0000 0034

- 5 settable |PendSV Pendable request for system service 0x0000 0038

- 6 settable |SysTick System tick timer 0x0000 003C

Department of Microelectronics and Computer Science

51

Microprocesor Systems -

Exception Types (3)

Reset

NMI

Hard fault

Memory
management fault

Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted, the
operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMls
cannot be:

e Masked or prevented from activation by any other exception
e Preempted by any exception other than Reset.

A hard fault is an exception that occurs because of an error during
exception processing, or because an exception cannot be managed by
any other exception mechanism. Hard faults have a fixed priority of -1,
meaning they have higher priority than any exception with configurable
priority.

A memory management fault is an exception that occurs because of a
memory protection related fault. The MPU or the fixed memory
protection constraints determines this fault, for both instruction and
data memory transactions. This fault is used to abort instruction
accesses to Execute Never (XN) memory regions.

Department of Microelectronics and Computer Science 52

Microprocesor Systems

Exception Types (4)

Bus fault

Usage fault

SVcCall

PendSV

SysTick

Interrupt (IRQ)

A bus fault is an exception that occurs because of a memory related
fault for an instruction or data memory transaction. This might be from
an error detected on a bus in the memory system.

A usage fault is an exception that occurs in case of an instruction
execution fault. This includes:

. An undefined instruction

D An illegal unalighed access

. Invalid state on instruction execution

. An error on exception return.

The following can cause a usage fault when the core is configured to
report it:

. An unalignhed address on word and halfword memory access

. Division by zero

A supervisor call (SVC) is an exception that is triggered by the SVC

instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In an
OS environment, the processor can use this exception as system tick.

An interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are asynchronous to
instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

Department of Microelectronics and Computer Science

53

Microprocesor Systems

Peripheral Devices Interrupts

c >
o =
= o Ty.pe.of Acronym Description Address
3 - priority
o o
0 7 settable |WWDG Window Watchdog interrupt 0x0000 0040
1 8 settable | PVD PVM I?’VD/PVM1/PVM2/P\./M3/PVM4 through EXTI 0x0000 0044
- lines 16/35/36/37/38 interrupts
RTC_TAMP_STAMP [RTC Tamper or TimeStamp /CSS on LSE
2 | 9| setable |ooct op through EXTI line 19 interrupts D000 006
3 | 10| settable |RTC WKUP RTCY¥akeuptmer thirough EXTI linec20 0x0000 004C
- interrupt
4 11 settable |FLASH Flash global interrupt 0x0000 0050
5 12 | settable |RCC RCC global interrupt 0x0000 0054
6 13 | settable |EXTIO EXTI Line0 interrupt 0x0000 0058
7 14 | settable |EXTI1 EXTI Line1 interrupt 0x0000 005C
8 15 | settable |EXTI2 EXTI Line2 interrupt 0x0000 0060
9 16 | settable |EXTI3 EXTI Lined interrupt 0x0000 0064
10 17 | settable |EXTI4 EXTI Line4 interrupt 0x0000 0068
11 18 | settable |DMA1_CH1 DMA1 channel 1 interrupt 0x0000 006C

Department of Microelectronics and Computer Science

54

Peripheral Devices Interrupts

Microprocesor Systems

< >

:‘% E ;sr(i':)?'i:); Acronym Description Address
o o

63 | 70 | settable |DFSDM1_FLT2 DFSDM1_FLT2 global interrupt 0x0000 013C
64 | 71| settable |COMP I‘ﬁ?ﬂﬁg(g SRliEmaugh St Inesey=s 0x0000 0140
65 72 | settable |[LPTIM1 LPTIM1 global interrupt 0x0000 0144
66 73 | settable |LPTIM2 LPTIMZ2 global interrupt 0x0000 0148
67 74 | settable |OTG_FS OTG_FS global interrupt 0x0000 014C
68 75 | settable |DMA2_CH6 DMAZ2 channel 6 interrupt 0x0000 0150
69 76 | settable |DMA2_CH7 DMAZ2 channel 7 interrupt 0x0000 0154
70 77 | settable |LPUART1 LPUART1 global interrupt 0x0000 0158
71 78 | settable |QUADSPI QUADSPI global interrupt 0x0000 015C
2 79 | settable |12C3 EV 12C3 event interrupt 0x0000 0160
73 80 | settable [12C3 ER 12C3 error interrupt 0x0000 0164

Department of Microelectronics and Computer Science

55

Microprocesor Systems

@1 NVIC Registers (1)

Complex 32-bit registers including:

Interrupt set-enable register (NVIC ISERX) x=0-7
Interrupt clear-enable register (NVIC_[ICERX) x=0-7
Interrupt set-pending register (NVIC ISPRx) x=0-7
Interrupt clear-pending register (NVIC _ICPRXx) x=0-7
Interrupt active bit register (NVIC _|IABRx) x=0-7
Interrupt priority register (NVIC _IPRx) x=0-59
Software trigger interrupt register (NVIC _STIR) x=1

¥ ¢ & ¥ & & «

% Department of Microelectronics and Computer Science

56

Microprocesor Systems -

NVIC Registers (2)

Offset| Register | JINIELIAJYSYTYIANAL gy~ 9
NVIC_ISERO SETENA[31:0]
0x100
Reset Value (0|0|O0(0|0Of0O|O|Of0O|O|O|O|Of0O|O|O|O|O|O|OfO|O|O|0O|O|O|0O|O|OfO|O]|O
NVIC_ISER1 SETENA[63:32]
0x104
Reset Value |{0|0|0|0|0|0|0O|0O|0O|O|O|O|OfO|0O|0O|0O|0O|O|0O|O|O|Q|O|0O|0O|0O|0O|0O|0O|0O]|O
Ox11C NVIC_ISER7 Reserved SETENA [239:224]
X
Reset Value |-|-|-|-|-[-]-]|- po|ojo|o|ofoj0o|0(0O|j0O|0O|0|O|0Of0O|0O]|O
NVIC_ICERO CLRENA[31:0]
0x180
Reset Value |{0|0|0|0|0|0|0O|0O|0O|O|O|O|OfO|0O|0O|0O|0O|O|0O|O|O|Q|O|0O|0O|0O|0O|0O|0O|0O]|O
NVIC_ICER1 CLRENA[63:32]
0x184
Reset Value (0|0|O0|0|0OfO|O|Of0O|O|O|O|Of0O|O|O|O|O|O|OfO|O|O|O|O|O|0O|O|Of0O|O]|O
NVIC_ICER7 Reserved CLRENA[239:224]
0x19C
Reset Value |-|-|-|-|-|-]-]|- p|ojo|o|ofojo|j0(0|j0|0O|0|O|0Of0O|O]|O
NVIC_ISPRO SETPENDI[31:0]
0x200
Reset Value |0|0|0|0|0|0O|O|O|O|O|O|O|OfO|O|0O|0O|0O|O|O|O|O|Q|O|0O|0O|0|O|0O|O|O|O
NVIC_ISPR1 SETPENDI[63:32]
0x204
Reset Value (0|0|0(0|0f(0O|0O|Of0O|O|O|O|Of0O|O|O|O|O|O|OfO|O|O|O|O|O|0O|O|Of0O|0O]|O
0x21C NVIC_ISPR7 Reserved SETPEND [239:224]
X
Reset Value |[-|-|-(-|-[-]-]|- o|jojo|o|0f0|0O|0O(0O|O|0O|0O|O|0Of0O|0O]|O

% Department of Microelectronics and Computer Science 57

Microprocesor Systems

NVIC Registers (3)
Offset| Register ##ﬁ*ﬁgﬁ{i##ﬁ‘aﬁ@@t?fiﬁ#:gmmn@‘mv
NVIC_ISPR7 Reserved SETPEND [239:224]
0x21C
Reset Value |- |-|-|-|-|-|-]|- 0(0|0|0(0|0(0|0|0(0O|0O|0|O
NVIC_ICPRO CLRPEND[31:0]
0x280
Reset Value |0|0|0(0(0|0(0(0O|0|O(O|0O|Q|0Q|0|0O|O|O|O|OfO(O|O|O|0O|0O|0O]O
NVIC_ICPR1 CLRPEND[63:32]
0x284
Reset Value |0(0|0|0(0(0|0{0|0|0|0O(0O|0|0OfO|O|O|O|O|O|O(O|OfO|O|0O|O|O

NVIC_ICPR7 Reserved CLRPEND [239:224]
0x29C
ResetValue |- |-|-|-|-|-]-]- 0/0{0|0|0|0|0|0|0O|0O|0O|0]|0O
NVIC_IABRO ACTIVE[31:0]
0x300
Reset Value (0(0(0|0|0|0|0|0|0|0|0|0|0|0|0|0|0|0O|0O|0O|0O|O|0O|0O|0|0O]|0O]|0O

% Department of Microelectronics and Computer Science

Microprocesor Systems -
Interrupt Set-Enable Register

For LPUART we use: Address offset: 0x100 + 0x04 * x, (x=01to 7)
Reset value: 0x0000 0000

v NVIC_ISER[Z] = 2A6 => Required privilege: Privileged
70 (2X 32 + 6) => NVIC_ISERO bits 0 to 31 are for interrupt O to 31, respectively
0_31 , 32_63, 64_70 NVIC_ISER1 bits 0 to 31 are for interrupt 32 to 63, respectively

(70 is bit 6, 0x40)

NVIC_ISERS bits 0 to 31 are for interrupt 192 to 223, respectively
NVIC_ISERTY bits 0 to 15 are for interrupt 224 to 239, respectively

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
SETENA[31:16]

rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SETENA[15:0]

rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs | rs

Bits 31:0 SETENA: Interrupt set-enable bits.
Write:
0: No effect
1: Enable interrupt
Read:
0: Interrupt disabled
1: Interrupt enabled.

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

Bits 16 to 31 of the NVIC_ISERY register are reserved.

% Department of Microelectronics and Computer Science 59

Microprocesor Systems

Interrupt Priority Register

For LPUART we use:

NVIC_IPR[70] = 0 (set
priority to 0),

Address offset: 0x400 + 0x04 * x, (x = 0 to 59)
Reset value: 0x0000 0000

&

Required privilege: Privileged

The NVIC_IPRx (x = 0 to 59) byte-accessible registers provide 8-bit priority fields IP[N]
(N = 0 to 239) for each of the 240 interrupts. Every register holds four IP[N] fields of the
CMSIS interrupt priority array, as shown in Figure 19.

Figure 19. Mapping of IP[N] fields in NVIC_IPRx registers

31 24123 16 {15 817 0
NVIC_IPR59 IP[239] IP[238] IP[237] IP[236]
NVIC_IPRx IP[4x+3] IP[4x+2] IP[4x+1] IP[4x]
NVIC_IPRO IP[3] IP[2] IP1] IP[0]

MSv47990V1

The following table shows the bit assignment of any NVIC_IPRx register. Each IP[N] field
order can be expressed as N =4 * x + byte offset.

Table 47. NVIC_IPRx bit assignment

Function

Bits Name

[31:24]
[23:16]
[15:8]
[7:0] Priority, byte offset =0

Priority, byte offset=3

Each priority field holds a priority value, 0-255. The lower the
value, the greater the priority of the corresponding interrupt. The
processor implements only bits[7:4] of each field, bits[3:0] read
as zero and ignore writes. -

60

Priority, byte offset = 2

Priority, byte offset = 1

Department of Microelectronics and Computer Science

Microprocesor Systems -

L=l Extended Interrupts and Events Controller (EXTI)
External IRQs EXTI
D_’ \ ARM
IRQO-IRQN Processor
26-!-14/15 A o
~Embedded - lines
.. Embedded »| nIRQ
Embedded >1)
Peripheral

1 APB

< =
+ Can monitor up to 40 or 41 (for STM32L496xx) ext. events or interrupt requests,

+ 26 configurable lines,

+ 14/15 lines with dedicated functionalities,
Independent mask on each event/interrupt line
Configurable rising or falling edge (configurable lines only)
Dedicated status bit (configurable lines only)
Emulation of event/interrupt requests (configurable lines only)

v ¢ ¢ ¢ &

Could wake up processor (from Stop 0 and Stop 1 modes, some from Stop 2)

% Department of Microelectronics and Computer Science 61

Microprocesor Systems

Extended Interrupts and Events Controller (2)

APB bus

PCLK —>| Peripheral interface ‘
Falling Rising Software g
trigger trigger interrupt EVBT Inrt:;;l:(pt I::nd;r;?
selection selection event mgst ist q.ut
register register register register tegister RS
N
- v Interrupts
Configurable Edge detect } A >
events circuit VHTY >
_J Events

Direct events

Stop mode

Rising
B

detect

+ Handles interrupts triggered with level or edge,

+ Low-latency exception and interrupt handling

+ Power management control.

Y
./
-
| i Wakeup

i

Department of Microelectronics and Computer Science

62

o

P'h Extended Interrupts and Events Controller (2)

Microprocesor Systems -

EXTIO[3:0] bits in the SYSCFG_EXTICR1 register EXTI15[3:0] bits in the SYSCFG_EXTICR4 register
PAO D—>\l\ PA15 m—><
PBO (—» PB15 ——»
PCO (—» PC15 —
PDO [(}——» EXTIO PD15+—» |[EXTI5
PEO (—» PE15 —— >
PFO —— PF15 }——»
PGO (— PG15 1——»
PHO ——» PH15" D—»/
PI0" —— /

+ 40 or 41 interrupt/event lines are available.
+ Connected to 16 configurable interrupt/event lines (EXTIO .. EXTI15)

Department of Microelectronics and Computer Science 63

Microprocesor Systems -

Extended Interrupts and Events Controller — Lines Mapping

EXTI line Line source(! Line type
0-15 GPIO configurable
16 PVD configurable
OTG FS wakeup event(? .
17 (OTG_FS_WKUP) direct
18 RTC alarms configurable
19 RTC tampéesrgrilgnEestamp or configurable
20 RTC wakeup timer configurable
21 COMP1 output configurable
22 COMP2 output configurable
23 12C1 wakeup(?) direct
24 12C2 wakeup'?) direct
25 12C3 wakeup direct
26 USART1 wakeup'?) direct
27 USART2 wakeup? direct p
@ 28 USART3 wakeup?) direct

Microprocesor Systems

lf’f.f'.f- Extended Interrupts and Events Controller — Registers (1)

0 ol [o oWwa o] 0d || Od [0S | o | odid | o

L N o | W3 o Y |of| Hd |o | HMS |o | Hid | o

Z il o eN3 |o | ¢ld |o | éld |o | €¢IMS |o | ddid | o

e EWl | o EWNT |o | B |o| €ld |o | EIMS | o | Edid | o

4] FWI o | W3 |o| #1H |o | ¥ld |o | VIMS |o | PdHId | o

G S s S [T S0 [S [SIMS [5| 5dld | &

9 Gl | o | N3 o | 918 |o | 914 |o | 9IMS | o | 2did | o

l N o N3 o] L8 |o| 414 o | iMS | o | 4did | o

] Bl | o | BW3 || BlH |o| 8ld |o | BIMS | o | 8dld | o

6 BNl |o| BW3 |o| 6l |o | 61d |o | 6IMS |o | Bdld | o

OL J Ol o [OLNT | | OLIH | o | Olld | o |OLUMS | o | OldId | ©

LL LW [o | NS o | LY o | LId o | HIMS| o | LdId | o

LSl o | 2lNT |o | 2llH |o | 2lld | o |2HMS | o | 2HdId | ©

CLJEWI o | EHNT || EHLH | o | Elld | o |EHMS | o | EldId | o

PL | VHWL o | PHNT | o | PLIE | o | FPLld | o | PUMS | o | FidId | ©

GL | SWWI | o | SINT | o | SHLE o | Stld | o |SHMS | o | SHdId | o

gL | 9l | o | 91NT |o | 9H1H | o | 94ld | o |9HMS | o | 9HdId | ©

L | AW | < | LINT | o

gL | BNl |o | BLNT || 8l1H |o | Blld | o |BLHMS | o | 8ldId | o

6L | 6Nl | o | 6LNT | o | BlIH | o | Blld | o |BLHMS | o | BldId | o

0Z | BNl | o | 02T || 021 | o | 0€6ld | o |0EIMS | o | 02dId | ©

LZ el | o | VW3 | o | el | o | téld | o | FEIMS | o | tedid | o

ZZl el |o|édNa |o| dlld | o | ééld | o |2EIMS | o | €édid | o

ez | €Wl | | €ENT | o

v | el | = | ¥eN3 | o

GZ | SZWI | | SZN3 | o

9z | 9ZWI | | 923 |

22 1 el) — | L2 | o

gz | %Wl [| 82N3 | o

6 | 620l | — | B2NT | o

0 | 0EWI | — | OENT | o

LE LEWI | — | LEWT | o

- — @ - @ o @ & o x o — @

o | & |a| & |8| = |8| & |8| @ |%| € |®

e | 85 [E] 5 |E] 5 (&) & [B [&] & |&
L

-

o & S S

65

Department of Microelectronics and Computer Science

Microprocesor Systems -

i3 Extended Interrupts and Events Controller — Registers (1)

Offset| Register |5|3|R [|N|S QKKK |SKS[2|=]2(2]Z[2|F[F]|2|o|=|~|o|0|[F]|o|x]|—|
HEE EE EEE R
EXTI_IMR2 HE R EEEEEE
0x20 =l =1=1=1= ===
Reset value t11jojojojop11]1
SEEEEEEEE
EXTI_EMR2 =l =z = = = = sl E =
Ox24 Wi wi w wl w| w wl w
Reset value glojojofjojojojogo
D] =] O] v
EXTI_RTSR2 2lrE e e
0x28 r|lor| o o
Reset value 0|01 01]0
| ~| o] v
EXTI_FTSR2 el e e e
0)(2‘: L) L) L) W
Reset value o|o1010
35 3| 8
EXTI_SWIER2 E E E E
0x30 w| vl vl »
Reset value ogjojojao
Q| M~ | w
EXTI_PR2 e
0x34 ool oo
Reset value 0|01 01]0

% Department of Microelectronics and Computer Science 66

Microprocesor Systems
 (od

P‘L Shared Interrupts

Internal peripheral devices use a single system shared interrupt SYS (number
defined by constant AT91C_ID_SYS =1).

Devices handled by system interrupt:
+ Timers PIT, RTT, WDT,

+ Diagnostic interface (DBGU),

+ DMA controller (PMC),

+ Reset circuit (RSTC),

+ Memory Controller (MC).

Therefore, the SYS handler should check state of all interrupts and execute
functions-handlers for the active interrupts (mask register AIC_MSK).

% Department of Microelectronics and Computer Science 67

Microprocesor Systems
 (od

{2 Block diagram of AIC

Advanced Interrupt Controller ABM
Iﬁq—» ‘ Processor
PIO External > IntFearthj t »| NFIQ
Controller Source CDI"ItFG|FET
Input |
Stage
IRQO-IRQN Fast Interrupt
FPIOIRQ]
Forcing Priority Processor
=T intemal =1 Controller Clock
Source
o] Input Power
Embedded Stage Management
Peripherals Controller
—_—
User Interface Wake Up
APB
-_r

% Department of Microelectronics and Computer Science

o

P‘L Internal Interrupts

¥ & ¢ <

Microprocesor Systems -

AIC_SMRI
(SRCTYPE)
) Level/
Source i Edge
L Edge b
Detector
Set Clear
|
AIC_ISCR
AIC_ICCR

AIC_IPR
AIC_IMR
Fast Interrupt Controller
— or
Priority Controller
AIC_IECR
|
FF
|
AIC_IDCR

IRQ mask — AIC_IECR/IDCR (status — AIC_IMR),
Clear interrupt flag when AIC_IVR register is read (for FIQ — AIC_FVR),
Interrupt status available in AIC_IPR

Interrupt can be triggered by high level or rising edge

Department of Microelectronics and Computer Science

69

Microprocesor Systems
 (od

PL External Interrupts

AIC_SMRi
High/Low ; SRCTYPE
Level/ AIC_IPR
Edge [
Source i L_AIC_IMR_|
l) - Fast Interrupt Controller
o — > or
) Priority Controller
Pos./Neg. | I AIC_IECR I
Edge
Detector FF
Set Clear
| |
| AIC_ISCR | | AIC_IDCR |

| alc_iccRr |

+ User can select method of triggering: level (high, low) or edge (rising,
falling)

% Department of Microelectronics and Computer Science 70

Microprocesor Systems
(el

PL ID Numbers for Peripheral Devices

// kkkkkhkkkkhkkkhkkkhkkkhkhkhhhhhhhhhkhkkkhkkkhkkkhkkkhhhhhhhhhhkkkhkkkkkkkkhkhhhhhkkkkkkkkk

I PERIPHERAL ID DEFINITIONS FOR AT91SAM9263

] FRERERE KRR KRR KRR IR R KRR KR KRR KRR IR R Rk Rk
#define AT91C_ID_FIQ (0) // Advanced Interrupt Controller (FIQ)
#define AT91C_ID_SYS (1) // System Controller

#define AT91C_ID_PIOA (2)// Parallel IO Controller A

#define AT91C_ID_PIOB (3)// Parallel IO Controller B

#define AT91C_ID_PIOCDE (4) // Parallel 10 Controller C, Parallel 10 Controller D, Parallel IO Controller E
#define AT91C_ID_USO (7)// USARTO

#define AT91C_ID_US1 (8)// USART 1

#define AT91C_ID_US2 (9)// USART 2

#define AT91C_ID_MCIO (10) // Multimedia Card Interface O
#define AT91C_ID_MCI1 (11) // Multimedia Card Interface 1

#define AT91C_ID_CAN (12)// CAN Controller

#define AT91C_ID_TWI (13) // Two-Wire Interface

#define AT91C_ID_SPIO (14) // Serial Peripheral Interface

ID=0, ID=30-31 external interrupts, others are internal

% Department of Microelectronics and Computer Science

71

Microprocesor Systems
.
Registers of AIC (1)

Offset Register Name Access Reset
0x00 Source Mode Register 0 AlIC_SMRO Read-write 0x0
0x04 Source Mode Register 1 AlC_SMR1 Read-write 0x0
0x7C Source Mode Register 31 AlC_SMR231 Read-write 0x0
0x80 Source Vector Register O AlIC_SVRO Read-write 0x0
0x84 Source Vector Register 1 AIC_SVR1 Read-write 0x0
OxFC Source Vector Register 31 AlC_SVR31 Read-write 0x0
0x100 Interrupt Vector Register AIC_IVR Read-only 0x0
0x104 FIQ Interrupt Vector Register AIC_FVR Read-only 0x0
0x108 Interrupt Status Register AIC_ISR Read-only 0x0
0x10C Interrupt Pending Register® AlIC _IPR Read-only oxo(
0x110 Interrupt Mask Register® AIC_IMR Read-only 0x0
Ox114 Core Interrupt Status Register AIC_CISR Read-only 0ox0
0x118 - Ox11C Reserved - - ---
0x120 Interrupt Enable Command Register® AIC_IECR Write-only -
0x124 Interrupt Disable Command Register’® AIC_IDCR Write-only -
0x128 Interrupt Clear Command Register® AIC ICCR Write-only -
0x12C Interrupt Set Command Register® AIC_ISCR Write-only -
0x130 End of Interrupt Command Register AIC_EOICR Write-only -
0x134 Spurious Interrupt Vector Register AIC_SPU Read-write 0x0
0x138 Debug Control Register AIC_DCR Read-write 0x0
0x13C Reserved = = -
0x140 Fast Forcing Enable Register® AIC_FFER Write-only
Ox144 Fast Forcing Disable Register'® AIC_FFDR Write-only
0x148 Fast Forcing Status Register® AIC_FFSR Read-only 0x0
0x14C - OX1EO Reserved -- -- ---
Ox1EC - Ox1FC Reserved

Department of Microelectronics and Computer Science

72

Microprocesor Systems

Registers of AIC — mapped as struct

typedef struct AT91S_AIC {

AT91 REG
AT91 REG
AT91_REG
AT91 _REG
AT91 _REG
AT91 _REG
AT91 _REG
AT91 _REG

AIC_SMR[32]; // Source Mode Register
AIC _SVR[32]; /I Source Vector Register

AIC IVR; // IRQ Vector Register

AIC FVR; I/l FIQ Vector Register
AIC_ISR; Il Interrupt Status Register

AIC _IPR; /I Interrupt Pending Register
AIC_IMR; /I Interrupt Mask Register

AIC CISR; /[Core Interrupt Status Register

}ATI91S_AIC, *ATI91PS_AIC;
#define AT91C_BASE_AIC (AT91_CAST(AT91PS_AIC) OxFFFFF0O0O0) // (AIC)

Base Address

i

Department of Microelectronics and Computer Science

73

Microprocesor Systems -

Registers of AIC (2)

AIC_SMR[32]; /| Source Mode Register — configure method of int triggering, priority
AIC_SVR[32]; /| Source Vector Register — 32-bit addresses for int handlers

AIC_IVR:
AIC_FVR;
AIC_ISR;
AIC_IPR:
AIC_IMR;
AIC_CISR;
AIC_IECR;
AIC_IDCR;
AIC_ICCR;
AIC_ISCR;
AIC_EOICR;
AIC_SPU:

// IRQ Vector Register — address of currently handled normal interrupt

/I FIQ Vector Register — address of currently handled fast interrupt

I Interrupt Status Register — number of currently handled interrupt

/I Interrupt Pending Register — register with pending interrupts, bits 0-31

/I Interrupt Mask Register — register with masks for interrupts, bits 0-31

I/l Core Interrupt Status Register — status for IRQ/FIQ core interrupts

Il Interrupt Enable Command Register — register for enabling interrupts

/I Interrupt Disable Command Register — register for disabling interrupts

Il Interrupt Clear Command Register — register for deactivating interrupts
/I Interrupt Set Command Register — register for triggering interrupts

I/l End of Interrupt Command Register — inform that INT treatment is finished
I/ Spurious Vector Register — handler for spurious interrupt

i

Department of Microelectronics and Computer Science 74

Microprocesor Systems -

Nested Vectored Interrupt Controller

SysTick
{System Tick
Timer)
v Cortex"-M
i ML
‘ Peripheral . . Processor
ROs Core
. F : NVIC
Peripherals s
—2 oo 3 |System
> oniguration | Ly | exceptions
_ registers P Bus interface

1

Internal bus interconnect

NVIC manages and prioritizes interrupts,

Can support up to 240 internal and external interrupts,
Each interrupt can be disabled/enabled (masked),
Handles normal nIRQ and fast nFIR interrupts,

A 4
A 4
L 4
L 4
A 4

Handles interrupts triggered with level or edge.

% Department of Microelectronics and Computer Science 75

Microprocesor Systems -

I/O — Interrupts

b
<1

) Peripheral A
Pin Data Status Reg. Interrupt Status Reg. nput
Peripheral B
| Pio_PDsrio] || PO 1sRI0] | — Input
N Up to 32 ible input
Edge (Up to possible inputs)
. Detector
Glitch 1 P1O Interrupt
Filter
| Pio_IFER[O] |
| _PIO_IFSR[O] | Pio_iERIO] |
| Plo_IFDR[0] | | Pio_mRIO]
Input Filter Diss. Reg. L Pio_ioro)_|
| Pio_IsR[31] |—
Interrupt Enable Reg. [rio_ier@z1 | :D_
PIO_IMR[31] |——
Interrupt Mask Reg. Plo_DRET |

% Department of Microelectronics and Computer Science 76

Microprocesor Systems -

Buttons are connected to Port C — interrupt generated by input signals of ports
C/D/E (use mask AT91C_ID_PIOCDE)

Keyboard interrupts configuration

Configuration of interrupts for C/D/E port(s):

1. Configure both ports as inputs (left and right hand buttons), activate clock signal
2. Turn off interrupts for port C/D/E (register AIC_IDCR, mask AT91C_ID_PIOCDE)

3. Configure pointer for C/D/E port interrupt handler — use AIC_SVR table
AIC_SVR[AT91C _ID_PIOCDE] = ...

4. Configure method of interrupt triggering: high level, (AIC_SMR register, triggered by
AT91C_AIC _SRCTYPE_EXT_HIGH_LEVEL and priority, e.g. AT91C_AIC_PRIOR_HIGHEST)

5. Clear interrupt flag for port C/D/E (register AIC_ICCR)
6. Turn on interrupts for both input ports (register PIO_IER)
7. Turn on interrupts for C/D/E port (register AIC_IECR)

% Department of Microelectronics and Computer Science 77

Microprocesor Systems

P’L INT Handler for Keyboard

Set address for interrupt function (handler) for the interrupt (32-bits address)
AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) BUTTON_IRQ_handler;

Keyboard interrupt handler
void BUTTON_IRQ_handler (void) {
If flag on the suitable bit-position is active the button is/was pressed (PIO_ISR)
Read PIO_ISR status register to clear the flag

% Department of Microelectronics and Computer Science

78

Interrupt from PIT

PIT_MR

PIV

Microprocesor Systems

PIT_MR
Main Counter l PITIEN
set
PT sk | pTs < P
l v reset
0 ! 0 1
7 12-bit
0 1/~ ¢ Adder
read PIT_PIVR
MCK 20-bit \
Counter
Secondary Counter
Y Y
MCK/16
Prescaler CPIV PIT_PIVR PICNT
I .
; l
CPIV PIT_PIIR PICNT
% Department of Microelectronics and Computer Science 79

Microprocesor Systems -

PIT Timer generates system interrupt (ID number 1) — interrupt from
processor peripheral devices (System Controller, mask AT91C_ID_SYS)

PIT Timer interrupts configuration

Configuration of PIT Timer interrupts:

1. Calculate time counter value for defined period of time, e.g. 5 ms

2. Disable PIT Timer interrupts — only during configuration (AIC_IDCR, interrupt nr 1 — processor
peripheral devices, used defined constant AT91C _ID_SYS)

3. Configure pointer for timer interrupt handler — handler for processor peripheral devices, see
AIC_SVR table (AIC_SVR[AT91C _ID_SYS])

4. Configure method of interrupt triggering: level, edge, (AIC_SMR register, triggered by
AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE, and priority, e.g. AT91C_AIC_PRIOR_LOWEST)

5. Clear interrupt flag of peripheral devices (AIC_ICCR register)

6. Turn on the interrupt AT91C_ID_SYS (AIC_IECR register)

7. Turn on PIT Timer interrupt (AT91C_PITC_PITIEN register)

8. Turn on PIT Timer (AT91C_PITC_PITEN)

9. Clear local counter (variable Local _Counter) to see if Timer triggers interrupts

% Department of Microelectronics and Computer Science 80

Microprocesor Systems
(r—_—'

P"L INT Handler for Timer

Set address for interrupt function (handler) for the interrupt (32-bits address)
AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) TIMER _INT_handler;

Timer interrupt handler
void TIMER _INT _handler (void) {
if flag PITIE for Timer interrupt is set (PIT_MR register) /* interrupt enabled */
if flag PITS in PIT_SR register is set /[* timer requested int */
read the PITC_PIVR register to clear PITS flag in PIT_SR
/* delay ~100 ms */
TimerCounter++; [* LedToggle... */
else another device requested interrupts
check which device requested INT,
process INT, clear INT flag,
if unknown device, just increase counter of unknown interrupts

% Department of Microelectronics and Computer Science 8 1

o

P'L Interrupts from DBGU transceiver

Microprocesor Systems

DGBU generates system interrupt (ID number 1) — interrupt from processor
peripheral devices (System Controller, mask AT91C _ID_SYS). We have

distinguish which device triggered interrupt. A few interrupts can be

triggered.

DGBU can generate the following interrupts:
RXRDY: Enable RXRDY Interrupt

TXRDY: Enable TXRDY Interrupt

ENDRX: Enable End of Receive Transfer Interrupt
ENDTX: Enable End of Transmit Interrupt

OVRE: Enable Overrun Error Interrupt

FRAME: Enable Framing Error Interrupt

PARE: Enable Parity Error Interrupt

TXEMPTY: Enable TXEMPTY Interrupt

TXBUFE: Enable Buffer Empty Interrupt

RXBUFF: Enable Buffer Full Interrupt

COMMTX: Enable COMMTX (from ARM) Interrupt
COMMRX: Enable COMMRX (from ARM) Interrupt

€ @€ © ¥ © ® ¢ ¢ ¥ ¥ ¥ @

% Department of Microelectronics and Computer Science

82

Microprocesor Systems
 (od

P'L Interrupts from DBGU transceiver

DGBU interrupt handler
void DGBU _INT_handler (void) {
int IntStatus;
SysIRQCounter++; /* to have a feeling how many system INTs are triggered */
IntStatus = DGBU->SR;
if (IntStatus & DBGU->IMR) /* interrupt from DGBU */
if INT from TxD [* transmitter interrupt */
WriteNewData (); /* be careful INTcan be also generated in case of error */
else if INT from RxD
ReadDataToBuffer();/* INT can be also generated when error occur */
else
other device triggered INT;

% Department of Microelectronics and Computer Science 83

Microprocesor Systems
 (od

P‘L Interrupt Handlers in C (1)

Functions used as handlers require usage of preprocessor directive __ attribute
((interrupt("IRQ")))

void INTButton_handler()__ attribute___ ((interrupt("IRQ")));
void INTPIT _handler() _attribute___ ((interrupt("IRQ")));
void Soft_Interrupt_handler()__attribute __ ((interrupt("SWI")));
void Abort_Exception_handler() __attribute _ ((interrupt("ABORT")));
void Undef Exception_handler()__attribute__ ((interrupt("UNDEF")));
void __irg IRQ_Handler(void)
Functions used as a handler is similar to normal function in C language
void INTButton_handler() {

// standard C function

}

During laboratory we do not use __ attribute__ ((interrupt("IRQ"))), we use functions
provided by ATMEL, defined in startup.S file.

% Department of Microelectronics and Computer Science 84

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84

