
Department of Microelectronics and Computer Science

Microprocesor Systems

1

Dariusz Makowski

Department of Microelectronics and

Computer Science

tel. 631 2720

dmakow@dmcs.pl

http://neo.dmcs.pl/es

mailto:dmakow@dmcs.pl

Department of Microelectronics and Computer Science

Microprocesor Systems

2

From Acorn Computers Ltd. ARM to ARM Ltd.From Acorn Computers Ltd. ARM to ARM Ltd.

 Acorn

 Small company founded in November 1990,

Spun out of Acorn Computers (BBC Micro computer),

 Design the ARM range of RISC processor cores,

 ARM company does not fabricate silicon itself,

 Licenses ARM cores to partners: Intellectual Property Cores of ARM processors
and peripheral devices,

 Develop tools (compilers, debuggers), starter-kits for embedded system
development and creates standards, etc...

Department of Microelectronics and Computer Science

Microprocesor Systems

3

List of ARM silicon partnersList of ARM silicon partners

 Agilent, AKM, Alcatel, Altera, Atmel, Broadcom, Chip Express, Cirrus Logic, Digital
Semiconductor, eSilicon, Fujitsu, GEC Plessey, Global UniChip, HP, Hyundai, IBM, Intel,
ITRI, LG Semicon, LSI Logic, Lucent, Matsushita, Micrel, Micronas, Mitsubishi, Freescale,
NEC, OKI, Philips, Qualcomm, Rockwell, Rohm, Samsung, Samsung, Sanyo, Seagate,
Seiko Epson, Sharp, Sony, STMicroelectronics, Symbios Logic, Texas Instruments, Xilinx,
Yamaha, Zeevo, ZTEIC, ...

Department of Microelectronics and Computer Science

Microprocesor Systems

4

History of ARM ProcessorsHistory of ARM Processors

1983 – Sophie Wilson and Steve Furber fabricate the first RISC processor in Acorn
Computers Limited, Cambridge, ARM = Acorn (Advanced) RISC Machine

1985 – The first processor ARM 1 (architecture version v1)

1986 – First ARM 2 processors left company (32-bits, 26-bits address, 16 registers 16-bits,
 30.000 transistors, architecture version v2/v2a, 8 MHz)

1990 – Apple Computer and VLSI Technology start work on the next version of ARM core,

1990 – New company is created Advanced RISC Machines Ltd. Responsible for the development of
ARM cores,

1991 – The cooperation of Apple and VLSI Tech. provides new ARM 6 processor (ARM 610 applied in
Apple Newton PDA, architecture version v3, 33 MHz)

1995 – ARM company offers famous ARM7TDMI core (core architecture ARMv4T) and Intel offers
StrongARM (233 MHz)

2001 – ARM company offers ARM9TDMI core (core architecture ARMv5TEJ, 220 MHz)

2004 – Cortex M3 processor (ARMv7-M, 100 MHz)

2008 – ARM Cortex A8 (core architecture ARMv7, 1 GHz)

2012 – ARM Cortex A9/A15/A17 (ARMv7-A, 32-bit, 1-2 GHz) – MPCore architecture

2021 - 2020 – ARM Cortex A53/A65/A78 (ARMv8-A, 64-bit, 2.0-2.6 GHz) – MPCore architecture, GPU

2021 – now – ARM Cortex A510/A710 (ARMv9-A, 64-bit, 2.0-3.1 GHz) – MPCore architecture, GPU

Department of Microelectronics and Computer Science

Microprocesor Systems

5

Processors with ARM CoreProcessors with ARM Core

 ARM processors are widely used in embedded systems and mobile devices that
require low power devices

 The ARM processor is the most commonly used device in the World. You can find
the processor in hard discs, mobile phones, routers, calculators and toys,

 Currently, more than 75% of 32-bits embedded CPUs market belongs to ARM
processors,

 The most famous and successful processor is ARM7TDMI, very often used in
mobile phones,

 Processing power of ARM devices allows to install multitasking operating systems
with TCP/IP software stack and filesystem (e.g. FAT32).

 The known operating systems for ARM processors: embedded Linux (Embedded
Debian, Embedded Ubuntu), Windows CE, Symbian, NUTOS (Ethernut), RTEMS,...

Department of Microelectronics and Computer Science

Microprocesor Systems

6

ARM Powered ProductsARM Powered Products

Department of Microelectronics and Computer Science

Microprocesor Systems

7

ARM Cortex Advanced ProcessorsARM Cortex Advanced Processors

Architectural innovation, compatibility
across diverse application spectrum

ARM Cortex-A family
Applications processors for feature-rich
OS and 3rd party applications

ARM Cortex-R family
Embedded processors for real-time
signal processing, control applications

ARM Cortex-M family
Microcontroller-oriented processors for
MCU, ASSP, and SoC applications

Mali GPUs
Graphics processors for a range of
mobile devices from smartwatches to
autonomous vehicles.

Department of Microelectronics and Computer Science

Microprocesor Systems

8

Comparison of Selected ARMsComparison of Selected ARMs

Family Architecture
Version

Core Feature Cache (I/D)/MMU Typical MIPS @ MHz

ARM6 ARMv3 ARM610 Cache, no coprocessor 4K unified 17 MIPS @ 20 MHz
ARM7 ARMv3 ARM7500FE Integrated SoC. "FE" Added FPA and EDO memory controller. 4 KB unified 55 MIPS @ 56 MHz
ARM7TDMI ARMv5TEJ ARM7EJ-S Jazelle DBX, Enhanced DSP instructions, 5-stage pipeline 8 KB 120 MIPS @ 133 MHz
StrongARM ARMv4 SA-110 5-stage pipeline, MMU 16 KB/16 KB, MMU 235 MIPS @ 206 MHz

ARM8 ARMv4 ARM810[7]
5-stage pipeline, static branch prediction, double-bandwidth
memory

8 KB unified, MMU 1.0 DMIPS/MHz

ARM9TDMI ARMv4T ARM920T 5-stage pipeline 16 KB/16 KB, MMU 245 MIPS @ 250 MHz
ARM9E ARMv5TEJ ARM926EJ-S Jazelle DBX, Enhanced DSP instructions variable, TCMs, MMU 220 MIPS @ 200 MHz
ARM10E ARMv5TE ARM1020E VFP, 6-stage pipeline, Enhanced DSP instructions 32 KB/32 KB, MMU 300 MIPS @ 325 MHz
XScale ARMv5TE PXA27x MMX and SSE instruction set, four MACs, 32 Kb/32 Kb, MMU 800 MIPS @ 624 MHz
ARM11 ARMv6 ARM1136J(F)-S SIMD, Jazelle DBX, VFP, 8-stage pipeline variable, MMU 740 @ 532-665 MHz

Cortex ARMv7-A Cortex-A8
Application profile, VFP, NEON, Jazelle RCT, Thumb-2, 13-stage
superscalar pipeline

variable (L1+L2),
MMU+TrustZone

>1000 MIPS@
600 M-1 GHz

Department of Microelectronics and Computer Science

Microprocesor Systems

9

Cortex – A9 MPCoreCortex – A9 MPCore

Typical applications

Smartphones and Tablets

Cortex A Series

Combines Power
Efficiency and
performance

Primary Products

Cortex A5

Cortex A9

Some manufactures like
Qualcomm only use the
ARMv7 ISA

Department of Microelectronics and Computer Science

Microprocesor Systems

10

ARM Cortex A510 in MPCore Configuration ARM Cortex A510 in MPCore Configuration

Department of Microelectronics and Computer Science

Microprocesor Systems

11

Cortex M Microcontrollers’ Family (1)Cortex M Microcontrollers’ Family (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

12

Cortex M Microcontrollers’ Family (1)Cortex M Microcontrollers’ Family (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

13

ARM Processor Core

Department of Microelectronics and Computer Science

Microprocesor Systems

14

ARM architecture (1)ARM architecture (1)

ARM processor core – processor designed according to ARM processor architecture
described in high level description language (VHDL lub Verilog) provided as macro-cell or
Intellectual Property (IP).

Features of ARM processor cores:
Supposed to be used for further development – microcontroller, SoC

32 or 64-bits RISC architecture

Optimised for low power consumption

Support three different modes of operation:

ARM instructions, 32 bits,

Thumb instructions, 16 bits,

Jazelle DBX - Direct java instructions.

Supported Big or Little Endian

Fast Interrupt Response mode for Real-time applications

Virtual memory

List of efficient and powerful instructions selected from both RISC and CISC architectures

Hardware support for higher level software (Ada, C, C++)

Department of Microelectronics and Computer Science

Microprocesor Systems

15

ARM architecture (2)ARM architecture (2)

Nomenclature:

ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {S}
x – core family

y – implemented Memory Management Unit

z – cache memory

T – Thumb mode (16 bit command)

D – Build in debugger, (usually via JTAG interface)

M – Build in multiplier, hardware multiplier (32x32 => 64 bits)

I – In-Circuit Emulator, another ICE debugger

E – Enhanced DSP instructions, Digital Signal Processing

J – Jazelle mode

F – Floating-point unit

S – Synthesizable version, available source code for further synthesis and EDA tools

Example of ARM cores:

 ARM7TDMI ARM9TDMI-EJ-S

Department of Microelectronics and Computer Science

Microprocesor Systems

16

ARM architecture (3)ARM architecture (3)

Core in version 1, v1

Base arithmetic and logic operations,

Hardware interrupts,

8 and 32 bits operations,

26 bits address

Core in version 2, v2

Implemented Multiply ACcumulate unit,

Available coprocessor,

Additional commands for threads synchronisation ,

26 bits address

Core in version 3, v3

New registers CPSR, SPSR, MRS, MSR,

Additional modes Abort and Undef,

32 bits address

Department of Microelectronics and Computer Science

Microprocesor Systems

17

ARM architecture (4)ARM architecture (4)

Core in version 4, v4

First standardised architecture

Available 16 bits operations

THUMB - new mode of operation, 16 bits commands

Added privileged mode

PC can be incremented by 64 bits

Core in version 5, v5

Improved cooperation between ARM and THUMB modes, mode of operation can be
changed during program execution,

Added instruction CLZ

Software breakpoints

Support for multiprocessor operation

Core in version 6, v6

Improved MMU (Management Memory Unit)

Hardware support for video and sound processing (FFT, MPEG4, SIMD etc...)

Improved exception handing (new flag in PSR)

Department of Microelectronics and Computer Science

Microprocesor Systems

18

 ARM instruction sets ARM instruction sets

Taking into consideration executed commands ARM processor
can operate in one of the following modes:

 ARM – 32-bits instructions optimised for time execution (code must
be aligned to 4 bytes),

 Thumb, Thumb-2 – 16-bits instructions optimised for code size
(code must be aligned to 2 bytes, processor registers are still 32 bits
wide),

 Jazelle v1 – mode used for direct execution of Java code (without
virtual machine JVM) (1000 Caffeine Marks @ 200MHz)

Department of Microelectronics and Computer Science

Microprocesor Systems

19

Support for Java language Support for Java language

ARM core marked with 'J'

Dynamic exchange of registers and stack

Hardware decoder of Java instructions

Department of Microelectronics and Computer Science

Microprocesor Systems

20

Programming Model – RegistersProgramming Model – Registers

ARM Processor provides 37 registers (all are 32-bits wide). The
registers are arranged into several banks (accessible bank being
governed by the current processor mode):

PC (r15) – Program Counter

CPSR – Main status register, Current Program Status Register

SPSR – Copy of status register, available in different modes of operation
Saved Program Status Register

LR (r14) – Link Register, used for stack frame during execution of
subroutines or return address register

SP (r13) – used as a Stack Pointer

r0 - r12 – General purpose registers (dependent of the mode of operation)

Department of Microelectronics and Computer Science

Microprocesor Systems

21

Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during
ALU operations (QADD, QDADD, QSUB or
QDSUB, or operation of SMLAxy, SMLAWx,
result more than 32 bits)

Interrupt disable bits
I=1 Disables the IRQ

F=1 Disables the FIQ

Flags for xT architecture

T=0 Processor in ARM mode

T=1 Processor in Thumb mode

Mode bits
Specify the processor operation mode
(seven modes)

Read/Modify/Write strategy should be used to write data to PSR (to ensure further
compatibility)

Department of Microelectronics and Computer Science

Microprocesor Systems

22

Programming Model – modes of processor operationProgramming Model – modes of processor operation

Operating mode – defined which resources of processor are available, e.g. registers,
memory regions, peripheral devices, stack, etc...

ARM processor can operate in on of 7 modes:

User – user mode (not privileged), dedicated for user programs execution

FIQ – fast interrupts and high priority exceptions (used only when really necessary)

IRQ – handling of low or normal priority interrupts

Supervisor – supervisor mode gives access to all resource of the processor, used
during debugging. Available after reset or during interrupt handling.

Abort – used for handling of memory access exceptions (memory access violations)

Undef – triggered when unknown or wrong commands is detected

System – privileged mode, access to registers as in user mode, however various
memory segments are available

Department of Microelectronics and Computer Science

Microprocesor Systems

23

Exception HandlingException Handling

When an exception occurs, the ARM:

Copies CPSR into SPSR_<mode>

Sets appropriate CPSR bits

Change to ARM or Thumb state

Change to exception mode

Disable interrupts (if appropriate)

Stores the return address in LR_<mode>

Sets PC to vector address

To return, exception handler needs to:

Restore CPSR from SPSR_<mode>

Restore PC from LR_<mode>

Department of Microelectronics and Computer Science

Microprocesor Systems

24

Programming Model – registers available in User or System modes Programming Model – registers available in User or System modes

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

Department of Microelectronics and Computer Science

Microprocesor Systems

25

Programming Model – registers available in FIQ modeProgramming Model – registers available in FIQ mode

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ Mode

Department of Microelectronics and Computer Science

Microprocesor Systems

26

Programming Model – registers available in IRQ modeProgramming Model – registers available in IRQ mode

IRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Microprocesor Systems

27

Programming Model – registers available in Supervisor modeProgramming Model – registers available in Supervisor mode

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Microprocesor Systems

28

Programming Model – registers available in Abort modeProgramming Model – registers available in Abort mode

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Microprocesor Systems

29

Programming Model – registers available in Undef modeProgramming Model – registers available in Undef mode

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Microprocesor Systems

30

Programming Model – registers summaryProgramming Model – registers summary

User
mode

r0-r7,
r15,
and
cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12,
r15,
and
cpsr

T h u m b s ta te
L o w r e g is te r s

T h u m b s ta te
H ig h r e g is te rs

Note: System mode uses the User mode register set

Department of Microelectronics and Computer Science

Microprocesor Systems

31

Interrupts and Exceptions

Department of Microelectronics and Computer Science

Microprocesor Systems

32

Handling of ExceptionsHandling of Exceptions

Department of Microelectronics and Computer Science

Microprocesor Systems

33

ExceptionsExceptions

Exception – mechanism that control flow of data used in microprocessors-based
systems and programming languages to handling asynchronous and
unpredictable situations.

Exceptions can be divided into:

Faults,

Aborts,

Traps.

In addition to exceptions processor supervises also interrupts.

ARM processors can handle two different modes of interrupts:

FIQ - Fast interrupt (interrupt with low latency handling),

IRQ - Normal Interrupt.

Department of Microelectronics and Computer Science

Microprocesor Systems

34

Interrupts Interrupts

 Hardware-triggered asynchronous software routine

 Triggered by hardware signal from peripheral or external device

 Asynchronous - can happen anywhere in the program (unless interrupt is
disabled)

 Software routine - Interrupt Service Routine (ISR) runs in response to interrupt

 Fundamental mechanism of microcontrollers

 Provides efficient event-based processing rather than polling

 Provides quick response to events regardless* of program state, complexity,
location

 Allows many multithreaded embedded systems to be responsive without an
operating system (specifically task scheduler)

Department of Microelectronics and Computer Science

Microprocesor Systems

35

Interrupts Processing Sequence Interrupts Processing Sequence

Main code is running (background)

Interrupt is triggered

Processor executes context switching to ISR

Processor executed ISR (foregroung), including return from ISR at the end

Processor resumes execution of the main code

Department of Microelectronics and Computer Science

Microprocesor Systems

36

Interrupts Interrupts

Interrupt or IRQ – Interrupt ReQuest – is an asynchronous signal indicating the
need for attention or a synchronous event in software indicating the need for a
change in execution. A hardware interrupt causes the processor to save its state
of execution and begin execution of an interrupt handler. Software interrupts are
usually implemented as instructions in the instruction set, which cause a context
switch to an interrupt handler similar to a hardware interrupt. Interrupts are a
commonly used technique for computer multitasking, especially in real-time
computing. Such a system is said to be interrupt-driven.

Examples of interrupts:

Receive or transmission of data via serial interface (e.g. EIA RS232),

Change of state or detected slope on processor's pin.

Status of device can be checked using software commands, however it requires
continuous reading and checking of status register of the device. This operation
is called polling. Even simple polling usually requires a significant amount of
processing power and unnecessary loads processor, e.g. transmission of single
symbol lasts ~100 us (processor can execute hundreds of thousands of
instructions during this time).

Department of Microelectronics and Computer Science

Microprocesor Systems

37

Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during
ALU operations (QADD, QDADD, QSUB or
QDSUB, or operation of SMLAxy, SMLAWx,
result more than 32 bits)

Interrupt disable bits
I=1 Disables the IRQ

F=1 Disables the FIQ

Flags for xT architecture

T=0 Processor in ARM mode

T=1 Processor in Thumb mode

Mode bits
Specify the processor operation mode
(seven modes)

Department of Microelectronics and Computer Science

Microprocesor Systems

38

Handling of exceptionsHandling of exceptions

Execution of not allowed operation in given processor mode can cause
exception, e.g. access to protected memory segment.

Handling of exception covers all operations when the exception was
detected until the first command of exception handler.

0. Finish current instruction
1. a) Change operating mode to ARM (from Thumb or Jazelle),

b) Change to interrupt of exception mode (FIQ/IRQ),
c) Set interrupt level mask on level equal to the handling interrupt (disable

 interrupts).
d) Change registers bank:

make a copy of CPSR → SPSR and PC (r15) → Link Register (r14),
e) Make active SPSR register.

2. Calculate exception vector (interrupt).

3. Branch to the first instruction handling exception or interrupt.

4. Return from exception/interrupt:
a) Recover CPSR (r15) register,
b) Recover PC (Link Register r14),
c) Return to the interrupted program.

Department of Microelectronics and Computer Science

Microprocesor Systems

39

Exceptions (1)Exceptions (1)

Exception handling by the ARM processor is controlled through the use of an area of memory
called the vector table. This lives (normally) at the bottom of the memory map from 0x0 to
0x1c. Within this table one word is allocated to each of the various exception types. This
word will contain some form of ARM instruction that should perform a branch. It does not
contain an address.

When one of these exceptions is taken, the ARM goes through a low-overhead sequence of
actions in order to invoke the appropriate exception handler. The current instruction is always
allowed to complete (except in case of Reset).

IRQ is disabled on entry to all exceptions; FIQ is also disabled on entry to Reset and FIQ.

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Memory image

Department of Microelectronics and Computer Science

Microprocesor Systems

40

Exceptions (2)Exceptions (2)

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Vector table is located in memory address 0x0.

The base address of exception table can be
modified: 0xFFFF.0000 (ARM 7/9/10).

Memory image

Reset - executed on power on

Undef - when an invalid instruction reaches the execute
stage of the pipeline

SWI - when a software interrupt instruction is executed

Prefetch - when an instruction is fetched from memory that
is invalid for some reason, if it reaches the execute stage
then this exception is taken

Data - if a load/store instruction tries to access an invalid
memory location, then this exception is taken

IRQ - normal interrupt

FIQ - fast interrupt

Department of Microelectronics and Computer Science

Microprocesor Systems

41

Exceptions TableExceptions Table

LDR PC, =FIQ_Addr

LDR PC, =IRQ_Addr

NOP ; Reserved vector

LDR PC, =Abort_Addr

LDR PC, =Prefetch_Addr

LDR PC, =SWI_Addr

LDR PC, =Undefined_Addr

LDR PC, =Reset_Addr

Memory image

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Department of Microelectronics and Computer Science

Microprocesor Systems

42

Exception Handlers (1)Exception Handlers (1)

IRQ_Addr:
/*- Manage Exception Entry */
/*- Adjust and save LR_irq in IRQ stack */
 sub lr, lr, #4
 stmfd sp!, {lr}
/*- Save r0 and SPSR in IRQ stack */
 mrs r14, SPSR
 stmfd sp!, {r0,r14}
/*- Write in the IVR to support Protect Mode */
/*- No effect in Normal Mode */
/*- De-assert the NIRQ and clear the source in Protect Mode */
 ldr r14, =AT91C_BASE_AIC
 ldr r0 , [r14, #AIC_IVR]
 str r14, [r14, #AIC_IVR]
...

/*- Branch to the routine pointed by the AIC_IVR */
 mov r14, pc
 bx r0 /* Branch to IRQ handler */
...
/*- Restore adjusted LR_irq from IRQ stack directly in the PC */
 ldmia sp!, {pc}^ /* ^ - Recover CSPR */

Department of Microelectronics and Computer Science

Microprocesor Systems

43

Exception Handlers (2)Exception Handlers (2)

/* lowlevel.c */
/*---
 * Function Name : default_spurious_handler
 * Object : default handler for spurious interrupt
 ---/
void default_spurious_handler(void)
{
 dbgu_print_ascii("-F- Spurious Interrupt\n\r ");
 while (1);
}

/*---
 * Function Name : default_fiq_handler
 * Object : default handler for fast interrupt
 ---/
void default_fiq_handler(void)
{
 dbgu_print_ascii("-F- Unexpected FIQ Interrupt\n\r ");
 while (1);
}

Department of Microelectronics and Computer Science

Microprocesor Systems

44

Nested Vectored
Interrupt Controller (NVIC)

Chapter 13

Department of Microelectronics and Computer Science

Microprocesor Systems

45

STM32 Cortex-M4 implementation STM32 Cortex-M4 implementation

Cortex-M4 processor

Built on a high-performance
Cortex-M4 processor core

3-stage pipeline

Harvard architecture,

IEEE754- compliant single-
precision floating-point
computation

Single-cycle and SIMD
multiplication and multiply-with-
accumulate capabilities,
saturating arithmetic and
dedicated hardware division

Power control optimization of
system components

Integrated sleep modes for low
power consumption

Department of Microelectronics and Computer Science

Microprocesor Systems

46

Block diagram of NVIC of ARM processorBlock diagram of NVIC of ARM processor

Manages vectorised interrupts (up to 240 IRQs)

Can monitor up to 82 or 91 (for STM32L496xx) internal and external interrupts,

Each interrupt can be disabled/enabled (masked),

16 priority levels (0 – the highest, 15 – the lowest, 4 bits), default 0

Handles interrupts triggered with level or edge,

Dynamic reprioritization of interrupts

Low-latency exception and interrupt handling

Power management control.

Department of Microelectronics and Computer Science

Microprocesor Systems

47

Nested Vectored Interrupt Controller of ARM processorNested Vectored Interrupt Controller of ARM processor

NVIC uses system clock, however the clock signal cannot be disabled to save
power.

Interrupts can be used to wake up processor from sleep or hibernation mode.

11 exceptions (Priorities: -3..0..6)

81 or 91 interrupts assigned to peripheral devices (Priorities: 7 – 97)

Exceptions marked with negative numbers

Interrupts with positive numbers

Department of Microelectronics and Computer Science

Microprocesor Systems

48

Vectored InterruptsVectored Interrupts

Vectored interrupts - type of interrupts that allows user to modify the Interrupt
Handler (function) that is assigned to an interrupt vector.

This is a number (ID) that identifies a particular interrupt handler. This vector
may be fixed, configurable (using jumpers or switches), or programmable.

When the interrupt handler is registered its address is saved as a interrupt
vector in a table.

When the device interrupts, the system enters the interrupt acknowledge cycle,
asking the interrupting device to identify itself. The device responds with its
interrupt vector. The system then uses this vector to find the responsible interrupt
handler.

Interrupts has assigned ID numbers and assigned interrupt vector (address of
interrupt handler).

Department of Microelectronics and Computer Science

Microprocesor Systems

49

Exception Types (1)Exception Types (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

50

Vectors TableVectors Table

Department of Microelectronics and Computer Science

Microprocesor Systems

51

Exception Types (2)Exception Types (2)

Department of Microelectronics and Computer Science

Microprocesor Systems

52

Exception Types (3)Exception Types (3)

Department of Microelectronics and Computer Science

Microprocesor Systems

53

Exception Types (4)Exception Types (4)

Department of Microelectronics and Computer Science

Microprocesor Systems

54

Peripheral Devices InterruptsPeripheral Devices Interrupts

Department of Microelectronics and Computer Science

Microprocesor Systems

55

Peripheral Devices InterruptsPeripheral Devices Interrupts

Department of Microelectronics and Computer Science

Microprocesor Systems

56

NVIC Registers (1)NVIC Registers (1)

Complex 32-bit registers including:

Interrupt set-enable register (NVIC_ISERx) x=0-7

Interrupt clear-enable register (NVIC_ICERx) x=0-7

Interrupt set-pending register (NVIC_ISPRx) x=0-7

Interrupt clear-pending register (NVIC_ICPRx) x=0-7

Interrupt active bit register (NVIC_IABRx) x=0-7

Interrupt priority register (NVIC_IPRx) x=0-59

Software trigger interrupt register (NVIC_STIR) x=1

Department of Microelectronics and Computer Science

Microprocesor Systems

57

NVIC Registers (2)NVIC Registers (2)

Department of Microelectronics and Computer Science

Microprocesor Systems

58

NVIC Registers (3)NVIC Registers (3)

Department of Microelectronics and Computer Science

Microprocesor Systems

59

Interrupt Set-Enable RegisterInterrupt Set-Enable Register

For LPUART we use:

NVIC_ISER[2] = 2^6 =>
70 (2x 32 + 6) =>
0-31, 32-63, 64-70
(70 is bit 6, 0x40)

Department of Microelectronics and Computer Science

Microprocesor Systems

60

Interrupt Priority RegisterInterrupt Priority Register

For LPUART we use:

NVIC_IPR[70] = 0 (set
priority to 0),

Department of Microelectronics and Computer Science

Microprocesor Systems

61

Extended Interrupts and Events Controller (EXTI)Extended Interrupts and Events Controller (EXTI)

Can monitor up to 40 or 41 (for STM32L496xx) ext. events or interrupt requests,

26 configurable lines,

14/15 lines with dedicated functionalities,

Independent mask on each event/interrupt line

Configurable rising or falling edge (configurable lines only)

Dedicated status bit (configurable lines only)

Emulation of event/interrupt requests (configurable lines only)

Could wake up processor (from Stop 0 and Stop 1 modes, some from Stop 2)

Department of Microelectronics and Computer Science

Microprocesor Systems

62

Extended Interrupts and Events Controller (2)Extended Interrupts and Events Controller (2)

Handles interrupts triggered with level or edge,

Low-latency exception and interrupt handling

Power management control.

Department of Microelectronics and Computer Science

Microprocesor Systems

63

Extended Interrupts and Events Controller (2)Extended Interrupts and Events Controller (2)

40 or 41 interrupt/event lines are available.

Connected to 16 configurable interrupt/event lines (EXTI0 .. EXTI15)

Department of Microelectronics and Computer Science

Microprocesor Systems

64

Extended Interrupts and Events Controller – Lines MappingExtended Interrupts and Events Controller – Lines Mapping

Department of Microelectronics and Computer Science

Microprocesor Systems

65

Extended Interrupts and Events Controller – Registers (1)Extended Interrupts and Events Controller – Registers (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

66

Extended Interrupts and Events Controller – Registers (1)Extended Interrupts and Events Controller – Registers (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

67

Shared InterruptsShared Interrupts

Internal peripheral devices use a single system shared interrupt SYS (number
defined by constant AT91C_ID_SYS = 1).

Devices handled by system interrupt:

Timers PIT, RTT, WDT,

Diagnostic interface (DBGU),

DMA controller (PMC),

Reset circuit (RSTC),

Memory Controller (MC).

Therefore, the SYS handler should check state of all interrupts and execute
functions-handlers for the active interrupts (mask register AIC_MSK).

Department of Microelectronics and Computer Science

Microprocesor Systems

68

Block diagram of AICBlock diagram of AIC

Department of Microelectronics and Computer Science

Microprocesor Systems

69

Internal InterruptsInternal Interrupts

IRQ mask – AIC_IECR/IDCR (status → AIC_IMR),

Clear interrupt flag when AIC_IVR register is read (for FIQ → AIC_FVR),

Interrupt status available in AIC_IPR

Interrupt can be triggered by high level or rising edge

Department of Microelectronics and Computer Science

Microprocesor Systems

70

External InterruptsExternal Interrupts

User can select method of triggering: level (high, low) or edge (rising,
falling)

Department of Microelectronics and Computer Science

Microprocesor Systems

71

ID Numbers for Peripheral Devices ID Numbers for Peripheral Devices

// ***

// PERIPHERAL ID DEFINITIONS FOR AT91SAM9263

// ***

#define AT91C_ID_FIQ (0) // Advanced Interrupt Controller (FIQ)

#define AT91C_ID_SYS (1) // System Controller

#define AT91C_ID_PIOA (2) // Parallel IO Controller A

#define AT91C_ID_PIOB (3) // Parallel IO Controller B

#define AT91C_ID_PIOCDE (4) // Parallel IO Controller C, Parallel IO Controller D, Parallel IO Controller E

#define AT91C_ID_US0 (7) // USART 0

#define AT91C_ID_US1 (8) // USART 1

#define AT91C_ID_US2 (9) // USART 2

#define AT91C_ID_MCI0 (10) // Multimedia Card Interface 0

#define AT91C_ID_MCI1 (11) // Multimedia Card Interface 1

#define AT91C_ID_CAN (12) // CAN Controller

#define AT91C_ID_TWI (13) // Two-Wire Interface

#define AT91C_ID_SPI0 (14) // Serial Peripheral Interface

ID=0, ID=30-31 external interrupts, others are internal

Department of Microelectronics and Computer Science

Microprocesor Systems

72

Registers of AIC (1)Registers of AIC (1)

Department of Microelectronics and Computer Science

Microprocesor Systems

73

Registers of AIC – mapped as structRegisters of AIC – mapped as struct

typedef struct _AT91S_AIC {

AT91_REG AIC_SMR[32]; // Source Mode Register

AT91_REG AIC_SVR[32]; // Source Vector Register

AT91_REG AIC_IVR; // IRQ Vector Register

AT91_REG AIC_FVR; // FIQ Vector Register

AT91_REG AIC_ISR; // Interrupt Status Register

AT91_REG AIC_IPR; // Interrupt Pending Register

AT91_REG AIC_IMR; // Interrupt Mask Register

AT91_REG AIC_CISR; // Core Interrupt Status Register

...

} AT91S_AIC, *AT91PS_AIC;

#define AT91C_BASE_AIC (AT91_CAST(AT91PS_AIC) 0xFFFFF000) // (AIC)
Base Address

Department of Microelectronics and Computer Science

Microprocesor Systems

74

Registers of AIC (2)Registers of AIC (2)

AIC_SMR[32]; // Source Mode Register – configure method of int triggering, priority

AIC_SVR[32]; // Source Vector Register – 32-bit addresses for int handlers

AIC_IVR; // IRQ Vector Register – address of currently handled normal interrupt

AIC_FVR; // FIQ Vector Register – address of currently handled fast interrupt

AIC_ISR; // Interrupt Status Register – number of currently handled interrupt

AIC_IPR; // Interrupt Pending Register – register with pending interrupts, bits 0-31

AIC_IMR; // Interrupt Mask Register – register with masks for interrupts, bits 0-31

AIC_CISR; // Core Interrupt Status Register – status for IRQ/FIQ core interrupts

AIC_IECR; // Interrupt Enable Command Register – register for enabling interrupts

AIC_IDCR; // Interrupt Disable Command Register – register for disabling interrupts

AIC_ICCR; // Interrupt Clear Command Register – register for deactivating interrupts

AIC_ISCR; // Interrupt Set Command Register – register for triggering interrupts

AIC_EOICR; // End of Interrupt Command Register – inform that INT treatment is finished

AIC_SPU; // Spurious Vector Register – handler for spurious interrupt

Department of Microelectronics and Computer Science

Microprocesor Systems

75

Nested Vectored Interrupt ControllerNested Vectored Interrupt Controller

NVIC manages and prioritizes interrupts,

Can support up to 240 internal and external interrupts,

Each interrupt can be disabled/enabled (masked),

Handles normal nIRQ and fast nFIR interrupts,

Handles interrupts triggered with level or edge.

Department of Microelectronics and Computer Science

Microprocesor Systems

76

I/O – InterruptsI/O – Interrupts

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.

Department of Microelectronics and Computer Science

Microprocesor Systems

77

Keyboard interrupts configurationKeyboard interrupts configuration

Buttons are connected to Port C – interrupt generated by input signals of ports
C/D/E (use mask AT91C_ID_PIOCDE)

Configuration of interrupts for C/D/E port(s):

1. Configure both ports as inputs (left and right hand buttons), activate clock signal

2. Turn off interrupts for port C/D/E (register AIC_IDCR, mask AT91C_ID_PIOCDE)

3. Configure pointer for C/D/E port interrupt handler – use AIC_SVR table
AIC_SVR[AT91C_ID_PIOCDE] = ...

4. Configure method of interrupt triggering: high level, (AIC_SMR register, triggered by
AT91C_AIC_SRCTYPE_EXT_HIGH_LEVEL and priority, e.g. AT91C_AIC_PRIOR_HIGHEST)

5. Clear interrupt flag for port C/D/E (register AIC_ICCR)

6. Turn on interrupts for both input ports (register PIO_IER)

7. Turn on interrupts for C/D/E port (register AIC_IECR)

Department of Microelectronics and Computer Science

Microprocesor Systems

78

INT Handler for KeyboardINT Handler for Keyboard

Set address for interrupt function (handler) for the interrupt (32-bits address)

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) BUTTON_IRQ_handler;

Keyboard interrupt handler

void BUTTON_IRQ_handler (void) {

 If flag on the suitable bit-position is active the button is/was pressed (PIO_ISR)

 Read PIO_ISR status register to clear the flag

}

Department of Microelectronics and Computer Science

Microprocesor Systems

79

Interrupt from PITInterrupt from PIT

Main Counter

Secondary Counter

Department of Microelectronics and Computer Science

Microprocesor Systems

80

PIT Timer interrupts configurationPIT Timer interrupts configuration

PIT Timer generates system interrupt (ID number 1) – interrupt from
processor peripheral devices (System Controller, mask AT91C_ID_SYS)

Configuration of PIT Timer interrupts:
1. Calculate time counter value for defined period of time, e.g. 5 ms

2. Disable PIT Timer interrupts – only during configuration (AIC_IDCR, interrupt nr 1 – processor
peripheral devices, used defined constant AT91C_ID_SYS)

3. Configure pointer for timer interrupt handler – handler for processor peripheral devices, see
AIC_SVR table (AIC_SVR[AT91C_ID_SYS])

4. Configure method of interrupt triggering: level, edge, (AIC_SMR register, triggered by
AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE, and priority, e.g. AT91C_AIC_PRIOR_LOWEST)

5. Clear interrupt flag of peripheral devices (AIC_ICCR register)

6. Turn on the interrupt AT91C_ID_SYS (AIC_IECR register)

7. Turn on PIT Timer interrupt (AT91C_PITC_PITIEN register)

8. Turn on PIT Timer (AT91C_PITC_PITEN)

9. Clear local counter (variable Local_Counter) to see if Timer triggers interrupts

Department of Microelectronics and Computer Science

Microprocesor Systems

81

INT Handler for TimerINT Handler for Timer

Set address for interrupt function (handler) for the interrupt (32-bits address)

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) TIMER_INT_handler;

Timer interrupt handler

void TIMER_INT_handler (void) {

 if flag PITIE for Timer interrupt is set (PIT_MR register) /* interrupt enabled */

 if flag PITS in PIT_SR register is set /* timer requested int */

 read the PITC_PIVR register to clear PITS flag in PIT_SR

 /* delay ~100 ms */

 TimerCounter++; /* LedToggle... */

 else another device requested interrupts

 check which device requested INT,

 process INT, clear INT flag,

 if unknown device, just increase counter of unknown interrupts

}

Department of Microelectronics and Computer Science

Microprocesor Systems

82

Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU generates system interrupt (ID number 1) – interrupt from processor
peripheral devices (System Controller, mask AT91C_ID_SYS). We have
distinguish which device triggered interrupt. A few interrupts can be
triggered.

DGBU can generate the following interrupts:
RXRDY: Enable RXRDY Interrupt

TXRDY: Enable TXRDY Interrupt

ENDRX: Enable End of Receive Transfer Interrupt

ENDTX: Enable End of Transmit Interrupt

OVRE: Enable Overrun Error Interrupt

FRAME: Enable Framing Error Interrupt

PARE: Enable Parity Error Interrupt

TXEMPTY: Enable TXEMPTY Interrupt

TXBUFE: Enable Buffer Empty Interrupt

RXBUFF: Enable Buffer Full Interrupt

COMMTX: Enable COMMTX (from ARM) Interrupt

COMMRX: Enable COMMRX (from ARM) Interrupt

Department of Microelectronics and Computer Science

Microprocesor Systems

83

Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU interrupt handler

void DGBU_INT_handler (void) {

 int IntStatus;

 SysIRQCounter++; /* to have a feeling how many system INTs are triggered */

 IntStatus = DGBU->SR;

 if (IntStatus & DBGU->IMR) /* interrupt from DGBU */

 if INT from TxD /* transmitter interrupt */

 WriteNewData (); /* be careful INTcan be also generated in case of error */

 else if INT from RxD

 ReadDataToBuffer();/* INT can be also generated when error occur */

 else

 other device triggered INT;

}

Department of Microelectronics and Computer Science

Microprocesor Systems

84

Interrupt Handlers in C (1)Interrupt Handlers in C (1)

Functions used as handlers require usage of preprocessor directive __attribute__
((interrupt("IRQ")))

void INTButton_handler()__attribute__ ((interrupt("IRQ")));

void INTPIT_handler()__attribute__ ((interrupt("IRQ")));

void Soft_Interrupt_handler()__attribute__ ((interrupt("SWI")));

void Abort_Exception_handler()__attribute__ ((interrupt("ABORT")));

void Undef_Exception_handler()__attribute__ ((interrupt("UNDEF")));

void __irq IRQ_Handler(void)

Functions used as a handler is similar to normal function in C language

void INTButton_handler() {

// standard C function

}

During laboratory we do not use __attribute__ ((interrupt("IRQ"))), we use functions
provided by ATMEL, defined in startup.S file.

	Slajd 1
	Slajd 2
	Slajd 3
	Slajd 4
	Slajd 5
	Slajd 6
	Slajd 7
	Slajd 8
	Slajd 9
	Slajd 10
	Slajd 11
	Slajd 12
	Slajd 13
	Slajd 14
	Slajd 15
	Slajd 16
	Slajd 17
	Slajd 18
	Slajd 19
	Slajd 20
	Slajd 21
	Slajd 22
	Slajd 23
	Slajd 24
	Slajd 25
	Slajd 26
	Slajd 27
	Slajd 28
	Slajd 29
	Slajd 30
	Slajd 31
	Slajd 32
	Slajd 33
	Slajd 34
	Slajd 35
	Slajd 36
	Slajd 37
	Slajd 38
	Slajd 39
	Slajd 40
	Slajd 41
	Slajd 42
	Slajd 43
	Slajd 44
	Slajd 45
	Slajd 46
	Slajd 47
	Slajd 48
	Slajd 49
	Slajd 50
	Slajd 51
	Slajd 52
	Slajd 53
	Slajd 54
	Slajd 55
	Slajd 56
	Slajd 57
	Slajd 58
	Slajd 59
	Slajd 60
	Slajd 61
	Slajd 62
	Slajd 63
	Slajd 64
	Slajd 65
	Slajd 66
	Slajd 67
	Slajd 68
	Slajd 69
	Slajd 70
	Slajd 71
	Slajd 72
	Slajd 73
	Slajd 74
	Slajd 75
	Slajd 76
	Slajd 77
	Slajd 78
	Slajd 79
	Slajd 80
	Slajd 81
	Slajd 82
	Slajd 83
	Slajd 84

