
Programowanie w chmurze 
na platformie Java EE

Wykład 4 - dr inż. Piotr Zając



Apache Ignite

• Ignite™ is a memory-centric distributed 
database, caching, and processing platform 
for transactional, analytical, and streaming 
workloads delivering in-memory speeds at 
petabyte scale 

• Ignite is Used by ING, Sberbank, HomeAway,
Wellington, American Airlines, Yahoo! Japan, 
24 Hour Fitness, JacTravel, and many more 

• Documentation: 
https://apacheignite.readme.io/docs

• Read Ignite Facts: 
https://apacheignite.readme.io/docs/ignite-
facts

https://apacheignite.readme.io/docs


Characteristics

• All nodes have the same role

• One physical machine is not limited to one Ignite node instance

• There is no Management Node - preventing from single point of failure

• By default data is stored in distributed structures in memory

• Default behavior is to work as In-Memory DataGrid

• Ignite can work with a layer containing HDFS

• Data replication - protection in case of node failure, automatic backupon other 
nodes



Apache Ignite setup

• download binaries from ignite.apache.org

• start cluster with

• bin/ignite.sh <optional configuration>

• Maven project

• Ignite ign = Ignition.start(<optional configuration>);

• default configuration file: config/default-config.xml

• you can launch visor for monitoring: 

• $ bin/ignitevisorcmd.sh

Warning: use Java 8 to avoid problems! (install Java8 and use update-
alternatives command to switch between Java versions)



Maven setup



Ignite 

• Ignite is JVM-based. A single JVM represents one or more logical Ignite 
nodes (most of the time, however, a single JVM runs just one Ignite node)

• Ignite is an elastic, horizontally scalable distributed system that supports 
adding and removing cluster nodes on demand. Ignite also allows for storing 
multiple copies of the data, making it resilient to partial cluster failures. 

• If the persistence is enabled, then data stored in Ignite will also survive full 
cluster failures. 

• Cluster restarts in Ignite can be very fast, as the data becomes operational 
instantaneously directly from disk. 



Servers and Clients

• Ignite has an optional notion of client and server nodes. Server nodes 
participate in caching, compute execution, stream processing, etc., while 
the native client nodes provide the ability to connect to the servers 
remotely. Ignite native clients support using the whole set of Ignite APIs, 
including near caching, transactions, compute, streaming, services, etc. 
from the client side.

• By default, all Ignite nodes are started as server nodes, and client mode 
needs to be explicitly enabled.



Cluster discovery

• Multicast Based Discovery

• Static IP Based Discovery

• Multicast and Static IP Based Discovery

• Amazon S3 Based Discovery



Cluster Groups
• In Ignite all nodes are equal by design, so you don't have to start any node in 

a specific order, or assign any specific roles to them. However, Ignite allows 
users to logically group cluster nodes for any application-specific purpose.

• You can limit job execution, service deployment, messaging, events, and 
other tasks to run only within some cluster group. For example, here is how 
to broadcast a job only to remote nodes (excluding the local node):



First Ignite Compute application

• Example of an application which counts the number of non-white-space 
characters in a sentence. A sentence is split it into multiple words, every 
compute job counts the number of characters in each word. In the end, 
results received from individual jobs are added to get the total count.



First Data Grid application

• Example of an application which will put and get values to/from distributed 
cache, and perform basic transactions.



Ignite features

• Durable Memory

• Ignite Persistence

• Key-Value Data Grid

• Data Loading & Streaming

• Ignite Compute Grid

• Machine Learning

• Service Grid

• In-Memory File System

Read the documentation! 
https://apacheignite.readme.io/v2.3/docs/



Compute Grid & MapReduce

• ComputeTask is the Ignite abstraction for the simplified in-memory 
MapReduce. Pure MapReduce was never built for performance and only 
works well when dealing with offline batch oriented processing (e.g. 
Hadoop MapReduce). With that in mind, Ignite introduced the ComputeTask 
API, which is a light-weight MapReduce implementation.

• ComputeTask defines jobs to execute on the cluster, and the mappings of 
those jobs to nodes. It also defines how to process (reduce) the job results. 
All IgniteCompute.execute(...) methods execute the given task on the grid. 
User applications should implement the map(...) and reduce(...) methods 
from the ComputeTask interface.



Ignite examples

• Found in <ignite directory>/examples

• Import to IntelliJ as Maven project

• Build

• Start several Ignite nodes from console (remember to adapt the 
configuration to the example that you want to run)

• Run the example Java program from IntelliJ, observe the output of the 
nodes


