
Programowanie w chmurze
na platformie Java EE

Wykład 3 - dr inż. Piotr Zając

Hadoop

• Apache Hadoop is a framework for running applications on large cluster built
of commodity hardware. The Hadoop framework transparently provides
applications both reliability and data motion

• https://hadoop.apache.org/

• Hadoop implements a computational paradigm named Map/Reduce, where
the application is divided into many small fragments of work, each of which
may be executed or re-executed on any node in the cluster.

• In addition, it provides a distributed file system (HDFS) that stores data on the
compute nodes, providing very high aggregate bandwidth across the cluster.

https://hadoop.apache.org/

Hadoop HDFS

• Master/slave architecture

• Single NameNode, a master server
that manages the
file system namespace and
regulates access to files by
clients

• In addition, there are a
number of DataNodes, usually
one per node in the cluster,
which manage storage attached
to the nodes that they run on

• HDFS exposes a file system
namespace and allows user data
to be stored in files

HDFS Architecture

The Hadoop Distributed File System (HDFS) is a distributed file system designed
to run on commodity hardware. It has many similarities with existing distributed
file systems. However, the differences from other distributed file systems are
significant.

• HDFS is highly fault-tolerant

• Designed to be deployed on low-cost hardware

• Provides high throughput access to application data

• Suitable for applications that have large data sets

HDFS relaxes a few POSIX requirements to enable streaming access to file system
data. HDFS was originally built as infrastructure for the Apache Nutch web search
engine project. HDFS is part of the Apache Hadoop Core project.

HDFS Data Sets

Applications that run on HDFS have large data sets. A typical file in HDFS
is gigabytes to terabytes in size. Thus, HDFS is tuned to support large
files. It should:

• Provide high aggregate data bandwidth

• Scale to hundreds of nodes in a single cluster

• Support tens of millions of files in a single instance

„Moving Computation is Cheaper than Moving
Data”

• A computation requested by an application is much more efficient if it is
executed near the data it operates on.

• This is especially true when the size of the data set is huge. This minimises
network congestion and increases the overall throughput of the system.

• It is often better to migrate the computation closer to where the data is
located rather than moving the data to where the application is running.
HDFS provides interfaces for applications to move themselves closer to
where the data is located

Namenode

The NameNode executes file
system namespace operations
like opening, closing, and
renaming files and directories.
It also determines the mapping
of blocks to DataNodes.

Datanode

• Internally, a file is split into one
or more blocks and these
blocks are stored in a set of
DataNodes

• The DataNodes are responsible
for serving read and write
requests from the file system’s
clients

• The DataNodes also perform
block creation, deletion, and
replication upon instruction
from the NameNode.

Replication

• HDFS is designed to reliably store very
large files across machines in a large
cluster.

• It stores each file as a sequence of blocks;
all blocks in a file except the last block are
the same size.

• The blocks of a file are replicated for fault
tolerance. The block size and replication
factor are configurable per file.

• Application can specify the number of
replicas of a file. The replication factor can
be specified at file creation time and can
be changed later.

• Files in HDFS are write-once and have
strictly one writer at any time.

YARN

• YARN is the component responsible
for allocating containers to run tasks,
coordinating the execution of said
tasks, restart them in case of failure,
among other housekeeping.

• It also has 2 main components: a
ResourceManager which keeps track
of the cluster resources and
NodeManagers in each of the nodes
which communicate with the
ResourceManager and sets up
containers for execution of tasks.

Hadoop MapReduce

• input

• set of files

• directory

• output

• directory

• set of results files

• most important methods are:

• map()

• reduce()

MapReduce Stages

• Map

• Shuffle

• Reduce

MapReduce

• Typical implementation uses Mapper and Reducer interfaces

• Most important implemented methods are:

• map()

• reduce()

• Class implementing Mapper

• Class implementing Shuffling

• Class implementing Reducer

MapReduce API

public class WordCount {

public static class TokenizerMapper

extends Mapper<Object, Text, Text, IntWritable>{

public void map(Object key, Text value, Context context

) throws IOException, InterruptedException {

}

public static class IntSumReducer

extends Reducer<Text,IntWritable,Text,IntWritable> {

public void reduce(Text key, Iterable<IntWritable> values,

Context context

) throws IOException, InterruptedException {

}

}

public static void main(String[] args) throws Exception {

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new Path(args[0]));

FileOutputFormat.setOutputPath(job, new Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

}
}

Map Stage

• Parsing function maps input key/value
pairs to set of intermediate key/value
pairs

• One map for each InputSplit
generated by InputFormat

• http://hadoop.apache.org/docs/stable
/api/org/apache/hadoop/mapreduce/
Mapper.html

private Text word = new Text();

public void map(Object key, Text value,

Context context

) throws IOException,

InterruptedException {

StringTokenizer itr = new

StringTokenizer(value.toString());

while (itr.hasMoreTokens()) {

word.set(itr.nextToken());

context.write(word, one);

}

}

For the given sample input the first map
emits:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>
The second map emits:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

Shuffle Stage

Combiner:

• Mapper output is combined
according to defined rules

• Merges duplicates

• Executes local aggregation

The output of the first map:
< Hello, 1>
< World, 1>
< Bye, 1>
< World, 1>
The output of the second map:
< Hello, 1>
< Hadoop, 1>
< Goodbye, 1>
< Hadoop, 1>

public static class IntSumReducer

extends

Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key,

Iterable<IntWritable> values,

Context context

) throws IOException,

InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

Combined output of the first map:
< Bye, 1>
< Hello, 1>
< World, 2>
The combined output of the second map:
< Goodbye, 1>
< Hadoop, 2>
< Hello, 1>

Reduce stage

• Uses Mapper output as input if
there is no class defined to
proces data after Mapper

• Uses data processed by
implemented classes, that do the
processing after Mapper stage

• Computes final result

public static class IntSumReducer

extends

Reducer<Text,IntWritable,Text,IntWritable> {

private IntWritable result = new IntWritable();

public void reduce(Text key,

Iterable<IntWritable> values,

Context context

) throws IOException,

InterruptedException {

int sum = 0;

for (IntWritable val : values) {

sum += val.get();

}

result.set(sum);

context.write(key, result);

}

}

The reducer output:
< Bye, 1>
< Goodbye, 1>
< Hadoop, 2>
< Hello, 2>
< World, 2>

Job

• Primary interface for user-job
interaction with ResourceManager

• MapReduce job configuration:
setters for Mapper, Combiner,
Reducer

• Job.submit() - submit job to cluster
and return immediately

• Job.waitForCompletion(boolean) -
submit job and wait for it to finish

Configuration conf = new Configuration();

Job job = Job.getInstance(conf, "word count");

job.setJarByClass(WordCount.class);

job.setMapperClass(TokenizerMapper.class);

job.setCombinerClass(IntSumReducer.class);

job.setReducerClass(IntSumReducer.class);

job.setOutputKeyClass(Text.class);

job.setOutputValueClass(IntWritable.class);

FileInputFormat.addInputPath(job, new

Path(args[0]));

FileOutputFormat.setOutputPath(job, new

Path(args[1]));

System.exit(job.waitForCompletion(true) ? 0 : 1);

Job Input

InputFormat

• validate the input for the job

• split-up input files into InputSplit instances assigned to separate Mapper

• blocksize of FileSystem is the upper bound for splits

• blocksize can be defined by user

• it is recommended to implement RecordReader for InputSplit

Job Output

OutputFormat

• validate the output of the job - for example by checking that the output
directory doesn’t already exist

• provide RecordWriter to write job results files

Exercise 1a: Pre-Hadoop

• Create Gitlab repo:

• progchmur_2018_2019_d_imie_nazwisko

• Add piotr.zajac as developer

• Download cluster setup files from: fiona.dmcs.pl/~pzajac

• Setup cluster with 1 master and 2 slaves

• Complete the hadoop configuration files (all files in files/hadoop/..)

• Run the machines with vagrant

• ssh to hadoop-master

• Run the demo.sh script

• Push to repo

Exercise 1b: Hadoop

• Environment

• maven

• ide (e.g. IntelliJ, netbeans)

• working hadoop environment

• Write Map Reduce algorithm. The program should be started inside hadoop-multinode environment. Run it as a batch
executable with hadoop jar command

• input: file containing JSON lines (download from fiona.dmcs.pl/~pzajac)

• output: list of standard deviation calculated for each finger in series side from input file

The JSON lines contain data with metadata:
{"timestamp":1521403485000,"features2D":{"fifth":62.957324981689,"fourth":

79.980072021484,"first":58.463665008545,"third":85.255867004395,"second":

76.443199157715},"side":"R","features3D":{"palm-section":{"factor": {"value":"6.9526504101790641e-310"}},"defects-

distance-proportion":"","finger-length":"","nofinger-shape-factor":{"factor":{"value":"6.9531293302065641e-

310"}},"finger-volume": {"little":"0","index":"0","thumb":"0","middle":"0","ring":"0"}},"series":3,"sample":8}

the data fields are features2D[first], features2D[second], features2D[third], features2D[fourth], features2D[fifth]
the metadata are: side, series, sample, finger
side - hand left/right
sample - samples of single hand
series - set of hand sequence
finger - number of a hand finger, contains finger length

Exercise 1b : Hadoop

Example of MapReduce output :

…..

L-5-first stdDev(1,20)

….

L-25-second stdDev(1,20)

….

Where stdDev(1,20) is the value of the standard deviation calculated for each finger of the samples

in series side set.

Calculated standard deviation for each finger of all samples of a set defined with series, side, finger

number, there are 20 samples for each series side combination each scan contain 5 fingers

length.

Directory input should be created in users directory and the input data file placed inside.

Results should be saved in output directory in users directory.

