

Verilog
Tutorial

25-Oct-2003
Deepak Kumar Tala

Comments :deeps@deeps.org
Website : http://www.deeps.org

Index

 Introduction.

 History of Verilog.

 Design and Tool Flow.

 My First Program in Verilog.

 Verilog HDL Syntax and Semantics.

 Verilog Gate Level Modeling Tutorial.

 Verilog Operators.

 Verilog behavioral modeling.

 Procedural Timing Controls.

 Tasks and Function.

 System Tasks and Functions.

 Art of writing test benches.

 Verilog Tutorial on Modeling Memories and FSM.

 Parameterized Modules.

 Verilog Synthesis Tutorial.

 Verilog PLI Tutorial ? : 20% Complete

 What's new in Verilog 2001? : 50% Complete

 Verilog Quick Reference.

Verilog in One Day : This tutorial is in bit lighter sense, with humor, So
take it cool and enjoy.

INTRODUCTION

 Introduction.

Verilog is a HARDWARE DESCRIPTION LANGUAGE (HDL). A hardware
description Language is a language used to describe a digital system, for
example, a microprocessor or a memory or a simple flip-flop. This just
means that, by using a HDL one can describe any hardware (digital) at any
level.

module d_ff (d, clk, q, q_bar);
 input d ,clk;
 ouput q, q_bar;

 always @ (posedge clk)
 begin
 q <= d;
 q_bar <= !d;
 end
endmodule

One can describe a simple Flip flop as that in above figure as well as one
can describe a complicated designs having 1 million gates. Verilog is one of
the HDL languages available in the industry for designing the Hardware.
Verilog allows us to design a Digital design at Behavior Level, Register
Transfer Level (RTL), Gate level and at switch level. Verilog allows
hardware designers to express their designs with behavioral constructs,
deterring the details of implementation to a later stage of design in the final
design.

Many engineers who want to learn Verilog, most often ask this question,
how much time it will take to learn Verilog?, Well my answer to them is " It
may not take more then one week, if you happen to know at least one
programming language".

 Design Styles

 Verilog like any other hardware description language, permits the designers
to design a design in either Bottom-up or Top-down methodology.

 Bottom-Up Design

 The traditional method of electronic design is bottom-up. Each design is
performed at the gate-level using the standard gates (Refer to the Digital

Section for more details) With increasing complexity of new designs this
approach is nearly impossible to maintain. New systems consist of ASIC or
microprocessors with a complexity of thousands of transistors. These
traditional bottom-up designs have to give way to new structural,
hierarchical design methods. Without these new design practices it would be
impossible to handle the new complexity.

 Top-Down Design

The desired design-style of all designers is the top-down design. A real top-
down design allows early testing, easy change of different technologies, a
structured system design and offers many other advantages. But it is very
difficult to follow a pure top-down design. Due to this fact most designs are
mix of both the methods, implementing some key elements of both design
styles.

 Figure shows a Top-Down design approach.

 Abstraction Levels of Verilog

Verilog supports a design at many different levels of abstraction. Three of
them are very important:

? Behavioral level
? Register-Transfer Level
? Gate Level

 Behavioral level

This level describes a system by concurrent algorithms (Behavioral). Each
algorithm itself is sequential, that means it consists of a set of instructions
that are executed one after the other. Functions, Tasks and Always blocks
are the main elements. There is no regard to the structural realization of the
design.

 Register-Transfer Level

Designs using the Register-Transfer Level specify the characteristics of a
circuit by operations and the transfer of data between the registers. An
explicit clock is used. RTL design contains exact timing possibility,
operations are scheduled to occur at certain times. Modern definition of a
RTL code is "Any code that is synthesizable is called RTL code".

 Gate Level

Within the logic level the characteristics of a system are described by logical
links and their timing properties. All signals are discrete signals. They can
only have definite logical values (`0', `1', `X', `Z`). The usable operations are
predefined logic primitives (AND, OR, NOT etc gates). Using gate level
modeling might not be a good idea for any level of logic design. Gate level
code is generated by tools like synthesis tools and this netlist is used for
gate level simulation and for backend.

History of Verilog

Verilog was started initially as a proprietary hardware modeling language by
Gateway Design Automation Inc. around 1984. It is rumored that the original
language was designed by taking features from the most popular HDL language
of the time, called HiLo as well as from traditional computer language such as C.
At that time, Verilog was not standardized and the language modified itself in
almost all the revisions that came out within 1984 to 1990.

Verilog simulator was first used beginning in 1985 and was extended
substantially through 1987.The implementation was the Verilog simulator sold by
Gateway. The first major extension was Verilog-XL, which added a few features
and implemented the infamous "XL algorithm" which was a very efficient method
for doing gate-level simulation.

The time was late 1990. Cadence Design System, whose primary product at that
time included Thin film process simulator, decided to acquire Gateway
Automation System. Along with other Gateway product, Cadence now became
the owner of the Verilog language, and continued to market Verilog as both a
language and a simulator. At the same time, Synopsys was marketing the top-
down design methodology, using Verilog. This was a powerful combination.

In 1990, Cadence recognized that if Verilog remained a closed language, the
pressures of standardization would eventually cause the industry to shift to
VHDL. Consequently, Cadence organized Open Verilog International (OVI), and
in 1991 gave it the documentation for the Verilog Hardware Description
Language. This was the event which "opened" the language.

OVI did a considerable amount of work to improve the Language Reference
Manual (LRM), clarifying things and making the language specification as
vendor-independent as possible.In 1990.

Soon it was realized, that if there were too many companies in the market for
Verilog, potentially everybody would like to do what Gateway did so far -
changing the language for their own benefit. This would defeat the main purpose
of releasing the language to public domain. As a result in 1994, the IEEE 1364
working group was formed to turn the OVI LRM into an IEEE standard. This effort
was concluded with a successful ballot in 1995, and Verilog became an IEEE
standard in December, 1995.

When Cadence gave OVI the LRM, several companies began working on Verilog
simulators. In 1992, the first of these were announced, and by 1993 there were
several Verilog simulators available from companies other than Cadence. The

most successful of these was VCS, the Verilog Compiled Simulator, from
Chronologic Simulation. This was a true compiler as opposed to an interpreter,
which is what Verilog-XL was. As a result, compile time was substantial, but
simulation execution speed was much faster.

In the meantime, the popularity of Verilog and PLI was rising exponentially.
Verilog as a HDL found more admirers than well-formed and federally funded
VHDL. It was only a matter of time before people in OVI realized the need of a
more universally accepted standard. Accordingly, the board of directors of OVI
requested IEEE to form a working committee for establishing Verilog as an IEEE
standard. The working committee 1364 was formed in mid 1993 and on October
14, 1993, it had its first meeting.

The standard, which combined both the Verilog language syntax and the PLI in
a single volume, was passed in May 1995 and now known as IEEE Std. 1364-
1995.

After many years, new features have been added to Verilog, and new version is
called Verilog 2001. This version seems to have fixed lot of problems that Verilog
1995 had. This version is called 1364-2000. Only waiting now is that all the tool
vendors implementing it.

DESIGN AND TOOL FLOW
 Introduction

Being new to Verilog you might want to try some examples and try
designing something new. I have listed the tool flow that could be used to
achieve this. I have personally tried this flow and found this to be working
just fine for me. Here I have taken only front end design part of the tool flow
and bit of FPGA design flow that can be done without any fat money spent
on tools. If you have any suggestions or questions please don't hesitate to
mail me. (Note : I have missed steps in P&R, Will add then shortly)

 Various stages of ASIC/FPGA

? Specification : Word processor like Word, Kwriter, AbiWord
? High Level Design : Word processor like Word, Kwriter, AbiWord,

for drawing waveform use tools like waveformer or testbencher or
Word.

? Micro Design/Low level design: Word processor like Word, Kwriter,
AbiWord, for drawing waveform use tools like waveformer or
testbencher or Word. For FSM StateCAD or some similar tool.

? RTL Coding : Vim, Emacs, conTEXT, HDL TurboWriter
? Simulation : Modelsim, VCS, Verilog-XL, Veriwell, Finsim, iVerilog,

VeriDOS.
? Synthesis : Design Compiler, FPGA Compiler, Synplify, Leonardo

Spectrum. You can download this from FPGA vendors like Altera and
Xilinx for free.

? Place & Route : For FPGA use FPGA' vendors P&R tool. ASIC tools
require expensive P&R tools like Apollo. Students can use LASI,
Magic.

 Figure : Typical Design flow

 Specification

This is the stage at which we define what are the important parameters of
the system/design that you are planning to design. Simple example would
be, like I want to design a counter, it should be 4 bit wide, should have
synchronous reset, with active high enable and reset signal, When reset is
active, counter output should go to "0". You can use Microsoft Word, or
GNU Abiword or Openoffice for entering the specification.

 High Level Design

 This is the stage at which you define various blocks in the design and how
they communicate. Lets assume that we need to design microprocessor,
High level design means splitting the design into blocks based on their
function, In our case various blocks are registers, ALU, Instruction Decode,
Memory Interface, etc. You can use Microsoft Word, or KWriter or Abiword
or Openoffice for entering high level design.

 Figure : I8155 High Level Block Diagram

 Micro Design/Low level design

Low level design or Micro design is the phase in which, designer describes
how each block is implemented. It contains details of State machines,
counters, Mux, decoders, internal registers. For state machine entry you can
use either Word, or special tools like StateCAD. It is always a good idea if
waveform is drawn at various interfaces.

Figure : Sample Low level
design

 RTL Coding

 In RTL coding, Micro Design is converted into Verilog/VHDL code, using
synthesizable constructs of the language. Normally we use vim editor, but I
prefer conTEXT and Nedit editor, it all depends on which editor you like.
Some use Emacs.

Figure : Sample RTL code

 Simulation

Simulation is the process of verifying the functional characteristics of models
at any level of abstraction. We use simulators to simulate the the Hardware
models. To test if the RTL code meets the functional requirements of the
specification, see if all the RTL blocks are functionally correct. To achieve
this we need to write testbench, which generates clk, reset and required test
vectors. A sample testbench for a counter is as shown below.

 Figure : Sample Testbench Env

We use waveform output from the simulator to see if the DUT (Device Under
Test) is functionally correct. Most of the simulators comes with waveform
viewer, As design becomes complex, we write self checking testbench,
where testbench applies the test vector, compares the output of DUT with
expected value.

There is another kind of simulation, called timing simulation, which is done
after synthesis or after P&R (Place and Route). Here we include the gate
delays and wire delays and see if DUT works at rated clock speed. This is
also called as SDF simulation or gate simulation.

 Figure : 4 bit Up Counter Waveform

 Synthesis

Synthesis is process in which synthesis tool like design compiler or Synplify
takes the RTL in Verilog or VHDL, target technology, and constrains as
input and maps the RTL to target technology primitives. Synthesis tool after
mapping the RTL to gates, also do the minimal amount of timing analysis to
see if the mapped design meeting the timing requirements. (Important thing
to note is, synthesis tools are not aware of wire delays)

 Figure : Synthesis Flow

 Figure : Synthesis output

 Place & Route

 Figure : Sample micro-processor placement

 Figure : J-K Flip-Flop
 Note : Under construction, please feel free to send your comments

My first program in Verilog

 Introduction

If you refer to any book on programming language it starts with "hello
World" program, once you have written the program, you can be sure that
you can do something in that language

Well I am also going to show how to write a "hello world" program in
Verilog, followed by "counter" design in Verilog.

 Hello World Program

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

// This is my first Verilog Program
// Design Name : hello_world
// File Name : hello_world.v
// Function : This program will print "hello
world
// Coder : Deepak"
//---
module hello_world ;

initial begin
 $display ("Hello World by Deepak");
 #10 $finish;
end

endmodule // End of Module hello_world

Words in green are comments, blue are reserved words, Any program in
Verilog starts with reserved word module <module_name>, In the above
example line 7 contains module hello_world;

Line 9 contains the initial block, this block gets executed only once after
the simulation starts and at time=0 (0ns). This block contains two
statements, which are enclosed with in begin at line 7 and end at line 12.
In Verilog if you have multiple lines within a block, you need to use begin
and end.

 Hello World Program Output

C:\www.deeps.org>veridos hello_world.v
VeriWell for Win32 HDL <Version 2.1.4> Sun Nov 04 17:52:38 2001

 This is a free version of the VeriWell for Win32 Simulator
 Distribute this freely; call 1-800-VERIWELL for ordering information
 See the file "!readme.1st" for more information

 Copyright (c) 1993-97 Wellspring Solutions, Inc.
 All rights reserved

Memory Available: 0
Entering Phase I...
Compiling source file : hello_world.v
The size of this model is [0%, 1%] of the capacity of the free version

Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
 hello_world

Hello World by Deepak
Exiting VeriWell for Win32 at time 10
0 Errors, 0 Warnings, Memory Used: 0
Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

Normal exit

 Counter Design Block

 Counter Design Specs

? 4-bit synchronous up counter.
? active high, synchronous reset.
? Active high enable.

 Counter Design

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

//---
// This is my second Verilog Design
// Design Name : counter
// File Name : counter.v
// Function : This is a 4 bit up-counter with
// Synchronous active high reset and
// with active high enable signal
//---

module counter (
clock , // Clock input ot the design
reset , // active high, synchronous Reset
input
enable , // Active high enabel signal for
counter
counter_out // 4 bit vector output of the counter
); // End of port list

//-------------Input Ports-----------------------------
input clock ;
input reset ;
input enable ;

//-------------Output Ports----------------------------
output [3:0] counter_out ;

//-------------Input ports Data Type-------------------
// By rule all the input ports should be wires
wire clock ;
wire reset ;
wire enable ;

//-------------Output Ports Data Type------------------
// Output port can be a storage element (reg) or a
wire
reg [3:0] counter_out ;

//------------Code Starts Here-------------------------
// Since this counter is a positive edge trigged one,
// We trigger the below block with respect to positive
// edge of the clock.
always @ (posedge clock)
begin : COUNTER // Block Name
// At every rising edge of clock we check if reset is
active

46
47
48
49
50
51
52
53

// If active, we load the counter output with "0000"
 if (reset == 1'b1) begin
 counter_out <= #1 4'b000;
 end
 // If enable is active, then we increment the counter
 else if (enable == 1'b1) begin
 counter_out <= #1 counter_out + 1;
 end
end // End of Block COUNTER

endmodule // End of Module counter

 Counter Test Bench

Counter testbench consists of clock generator, reset control, enable
control and compare logic. Below is the simple code of testbench without
the compare logic.

1module counter_tb();
2// Declare inputs as regs and outputs as wires
3reg clock, reset, enable
4wire [3:0] counter_out;
5// Initialize all variables
6initial begin
7 clock = 1; // initial value of clock
8 reset = 0; // initial value of reset
9 enable = 0; // initial value of enable

10 #5 reset = 1; // Assert the reset

11 #5 reset = 0; // De-assert the reset
12 #5 enable = 1; // Assert enable
13 #100 enable = 0; // De-assert enable
14 #10 $finish; // Terminate simulation
15end
16// Clock generator
17always begin
18 #5 clock = ~clock; // Toggle clock every 5 ticks
19end
20// Connect DUT to test bench
21counter U_counter (
22 clock,
23 reset,
24 enable,
25 counter_out
26);
27
28endmodule

 Counter Waveform

 Note : Simulator used for this exercise can be got from here, If this is

illegal, please let me know, I will remove it from my web page.

Verilog HDL Syntax and Semantics

 Lexical Conventions

The basic lexical conventions used by Verilog HDL are similar to those in the
C programming language. Verilog HDL is a case-sensitive language. All
keywords are in lowercase.

 White Space

White space can contain the characters for blanks, tabs, newlines, and
formfeeds. These characters are ignored except when they serve to
separate other tokens. However, blanks and tabs are significant in strings.

White space characters are :

? Blank spaces
? Tabs
? Carriage returns
? New-line
? Form-feeds

 Examples of White Spaces

Functional Equivalent Code
 module addbit(a,b,ci,sum,co);
 input a,b,ci;output sum co;
 wire a,b,ci,sum,co;

module addbit (
a,
b,
ci,
sum,
co);
input a;
input b;
input ci;
output sum;
output co;
wire a;
wire b;
wire ci;
wire sum;
wire co;

Never write code like this. Nice way to write code.

 Comments

There are two forms to introduce comments.

? Single line comments begin with the token // and end with a carriage
return

? Multi Line comments begin with the token /* and end with the token
*/

 Examples of Comments

/* 1-bit adder example for showing
few verilog */ Multi line comment
module addbit (
a,
b,
ci,
sum,
co);
// Input Ports Single line
comment
input a;
input b;
input ci;
// Output ports
output sum;
output co;
// Data Types
wire a;
wire b;
wire ci;
wire sum;
wire co;

 Case Sensitivity

Verilog HDL is case sensitive

? Lower case letters are unique from upper case letters
? All Verilog keywords are lower case

 Examples of Unique names

input // a Verilog Keyword
wire // a Verilog Keyword
WIRE // a unique name (not a keyword)
Wire // a unique name (not a keyword)

 NOTE : Never use the Verilog keywords as unique name, even if the case is
different.

 Identifiers

Identifiers are names used to give an object, such as a register or a module,
a name so that it can be referenced from other places in a description.

? Identifiers must begin with an alphabetic character or the underscore
character (a-z A-Z _)

? Identifiers may contain alphabetic characters, numeric characters, the
underscore, and the dollar sign (a-z A-Z 0-9 _ $)

? Identifiers can be up to 1024 characters long.

 Examples of legal identifiers

data_input mu
clk_input my$clk

i386 A

 Escaped Identifiers

Verilog HDL allows any character to be used in an identifier by escaping
 the identifier. Escaped identifiers provide a means of including any of the
printable ASCII characters in an identifier (the decimal values 33 through
126, or 21 through 7E in hexadecimal).

? Escaped identifiers begin with the back slash (\)
? Entire identifier is escaped by the back slash
? Escaped identifier is terminated by white space

o Characters such as commas, parentheses, and semicolons
become part of the escaped identifier unless preceded by a
white space.

? Terminate escaped identifiers with white space, otherwise characters
that should follow the identifier are considered as part of it.

 Examples of escape identifiers:

 \486_up \Q~ \1,2,3 \reset*
module \486 (q,\q~,d,clk,\reset*);

 Numbers in Verilog

You can specify constant numbers in decimal, hexadecimal, octal, or binary
format. Negative numbers are represented in 2's complement form. When
used in a number, the question mark (?) character is the Verilog alternative
for the z character. The underscore character (_) is legal anywhere in a
number except as the first character, where it is ignored.

 Integer Numbers

Verilog HDL allows integer numbers to be specified as

? Sized or unsized numbers (Unsized size is 32 bits)
? In a radix pf binary, octal, decimal, or hexadecimal
? Radix is case and hex digits (a,b,c,d,e,f) are insensitive
? Spaces are allowed between the size, radix and value

Syntax: <size>'<radix><value>

 Example of Integer Numbers

Integer Stored as Description
1 00000000000000000000000000000001 unsized 32 bits
8'hAA 10101010 sized hex
6'b10_0011 100011 sized binary
'hF 00000000000000000000000000001111 unsized hex 32 bits

Verilog expands <value> to be fill the specified <size> by working from
right-to-left

? When <size> is smaller than <value>, then left-most bits of <value>
are truncated

? When <size> is larger than <value>, then left-most bits are filled,
based on the value of the left-most bit in <value>.

o Left most '0' or '1' are filled with '0', 'Z' are filled with 'Z' and 'X'
with 'X'

 Example of Integer Numbers

Integer Stored as Description
6'hCA 001010 truncated, not 11001010
6'hA 001010 filled with two '0' on left
16'bZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z filled with 16 Z's
8'bx x x x x x x x x filled with 8 X's

 Real Numbers

? Verilog supports real constants and variables
? Verilog converts real numbers to integers by rounding
? Real Numbers can not contain 'Z' and 'X'
? Real numbers may be specified in either decimal or scientific notation

<value>.<value>
<mantissa>E<exponent>

? Real numbers are rounded off to the nearest integer.

 Example of Real Numbers

Real Number Decimal notation
1.2 1.2
0.6 0.6
3.5E6 3,500000.0

 Signed and Unsigned Numbers

Verilog Supports both the type of numbers, but with certain restrictions. Like
in C language we don't have int and unint types to say if a number is signed
integer or unsigned integer.

Any number that does not have negative sign prefix is a positive number. Or
indirect way would be "Unsigned"

Negative numbers can be specified by putting a minus sign before the size
for a constant number, thus become signed numbers. Verilog internally
represents negative numbers in 2's compliment format. An optional signed
specifier can be added for signed arithmetic.

 Examples

32'hDEAD_BEEF Unsigned or signed positive Number
-14'h1234 Signed negative number

 Below example file show how Verilog treats signed and unsigned numbers.

 Modules

? Module are the building blocks of Verilog designs
? You create design hierarchy by instantiating modules in other

modules.
? An instant of a module is a use of that module in another, higher-

level module.

 Hierarchical Identifiers

? Hierarchical path names are based on the top module identifier

 followed by module instant identifiers, separated by periods.

 Ports

? Ports allow communication between a module and its environment.
? All but the top-level modules in a hierarchy have ports.
? Ports can be associated by order or by name.

You declare ports to be input, output or inout. The port declaration syntax
is :

input [range_val:range_var] list_of_identifiers;
output [range_val:range_var] list_of_identifiers;
inout [range_val:range_var] list_of_identifiers;

 NOTE : As a good coding practice, there should be only one port identifier
per line, as shown below

 Examples : Port Declaration

 input clk ; // clock input
 input [15:0] data_in ; // 16 bit data input bus
 output [7:0] count ; // 8 bit counter output
 inout data_bi ; // Bi-Directional data bus

 Examples : A complete Example in Verilog

 Modules connected by port order (implicit):

Here order should match correctly. Normally it not a good idea to connect
ports implicit. Could cause problem in debug, when any new port is added
or deleted.

module adder (
result , // Output of the adder
carry , // Carry output of adder
r1 , // first input
r2 , // second input
ci // carry input
);
// Input Port Declarations
input [3:0] r1 ;
input [3:0] r2 ;
input ci ;
// Output Port Declarations
output [3:0] result ;
output carry ;
// Port Wires
wire [3:0] r1 ;
wire [3:0] r2 ;
wire ci ;
wire [3:0] result ;
wire carry ;
// Internal variables
wire c1 ;
wire c2 ;
wire c3 ;

// Code Starts Here
addbit u0 (
r1[0] ,
r2[0] ,
ci ,
result[0] ,
c1
);

addbit u1 (
r1[1] ,
r2[1] ,
c1 ,
result[1] ,
c2
);

addbit u2 (
r1[2] ,
r2[2] ,
c2 ,
result[2] ,
c3
);

addbit u3 (
r1[3] ,
r2[3] ,
c3 ,

 Modules connect by name (explicit) : Here name should match
correctly.

 module adder (
result , // Output of the adder
carry , // Carry output of adder
r1 , // first input
r2 , // second input
ci // carry input
);
// Input Port Declarations
input [3:0] r1 ;
input [3:0] r2 ;
input ci ;
// Output Port Declarations
output [3:0] result ;
output carry ;
// Port Wires
wire [3:0] r1 ;
wire [3:0] r2 ;
wire ci ;
wire [3:0] result ;
wire carry ;
// Internal variables
wire c1 ;
wire c2 ;
wire c3 ;

// Code Starts Here
addbit u0 (
.a (r1[0]) ,
.b (r2[0]) ,
.ci (ci) ,
.sum (result[0]) ,
.co (c1)
);

addbit u1 (
.a (r1[1]) ,
.b (r2[1]) ,
.ci (c1) ,
.sum (result[1]) ,
.co (c2)
);

addbit u2 (
.a (r1[2]) ,
.b (r2[2]) ,
.ci (c2) ,
.sum (result[2]) ,
.co (c3)
);

addbit u3 (
.a (r1[3]) ,
.b (r2[3]) ,
.ci (c3) ,

 Instantiating a module

module parity (
a , // First input
b , // Second input
c , // Third Input
d , // Fourth Input
y // Parity output
);
// Input Declaration
input a ;
input b ;
input c ;
input d ;
// Ouput Declaration
output y ;
// port data types
wire a ;
wire b ;
wire c ;
wire d ;
wire y ;
// Internal variables
wire out_0 ;
wire out_1 ;
// Code starts Here
xor u0 (
out_0 ,
a ,
b
);

xor u1 (
out_1 ,
c ,
d
);

xor u2 (
y ,
out_0 ,
out_1
);

endmodule // End Of Module parity

 Question : What is difference between u0 in module adder and u0 in
module parity?

 Schematic

 Data Types

Verilog Language has two primary data types

? Nets - represents structural connections between components.
? Registers - represent variables used to store data.

Every signal has a data type associated with it:

? Explicitly declared with a declaration in your Verilog code.
? Implicitly declared with no declaration but used to connect

structural building blocks in your code.
? Implicit declaration is always a net of type wire and is one bit wide.

 Types of Nets

 Each net type has functionality that is used to model different types of
hardware (such as PMOS, NMOS, CMOS, etc)

 Net Data Type Functionality
wire

tri Interconnecting wire - no special
resolution function

wor

trior Wired outputs OR together (models ECL)

wand

 triand Wired outputs AND together (models
open-collector)

tri0

tri1 Net pulls-down or pulls-up when not
driven

supply0

supply1 Net has a constant logic 0 or logic 1
(supply strength)

trireg

 Note : Of all the net types, wire is the one which is most widely used

 Register Data Types

? Registers store the last value assigned to them until another
assignment statement changes their value.

? Registers represent data storage constructs.
? You can create arrays of the regs called memories.
? register data types are used as variables in procedural blocks.
? A register data type is required if a signal is assigned a value within a

procedural block
o Procedural blocks begin with keyword initial and always.

Data Types Functionality
reg Unsigned variable
integer Signed variable - 32 bits
time Unsigned integer - 64 bits
real Double precision floating point variable

Note : Of all the register types, reg is the one which is most widely used

Question : What is the difference between wire and reg data type

 Strings

A string is a sequence of characters enclosed by double quotes and all
contained on a single line. Strings used as operands in expressions and
assignments are treated as a sequence of eight-bit ASCII values, with one
eight-bit ASCII value representing one character. To declare a variable to
store a string, declare a register large enough to hold the maximum number
of characters the variable will hold. Note that no extra bits are required to
hold a termination character; Verilog does not store a string termination
character. Strings can be manipulated using the standard operators.

When a variable is larger than required to hold a value being assigned,
Verilog pads the contents on the left with zeros after the assignment. This is
consistent with the padding that occurs during assignment of non-string
values.

Certain characters can be used in strings only when preceded by an
introductory character called an escape character. The following table lists
these characters in the right-hand column with the escape sequence that
represents the character in the left-hand column.

 Special Characters in Strings

\n New line character
\t Tab character
\\ Backslash (\) character
\" Double quote (") character
\ddd A character specified in 1-3 octal digits (0 <= d <= 7)
%% Percent (%) character

 Example

reg [8*17:0] version ; // Declare a register variable that is 18 bytes

initial
 version = "model version 1.0";

 Port Connection Rules

? Inputs : internally must always be type net, externally the inputs can
be connected to variable reg or net type.

? Outputs : internally can be type net or reg, externally the outputs
must be connected to a variable net type.

? Inouts : internally or externally must always be type net, can only be
connected to a variable net type.

? Width matching : It is legal to connect internal and external ports of
different sizes. But beware, synthesis tools could report problems.

? Unconnected ports : unconnected ports are allowed by using a ","
? The net data types are used to connect structure
? A net data type is required if a signal can be driven a structural

connection.

 Example : Implicit

 dff u0 (q,,clk,d,rst,pre); // Here second port is not connected

 Example : Explicit

dff u0 (
 .q (q_out),
 .q_bar (),
 .clk (clk_in),
 .d (d_in),
 .rst (rst_in),
 .pre (pre_in)
); // Here second port is not connected

Gate Level Modeling

 Introduction

Verilog has built in primitives like gates, transmission gates, and switches.
This are rarely used for in design work, but are used in post synthesis world
for modeling the ASIC/FPGA cells, this cells are then used for gate level
simulation or what is called as SDF simulation.

 Gate Primitives

 The gates have one scalar output and multiple scalar inputs. The 1st terminal
in the list of gate terminals is an output and the other terminals are inputs.

and N-input AND gate
nand N-input NAND gate
or N-input OR gate
nor N-input NOR gate
xor N-input XOR gate
xnor N-input XNOR gate

 Examples

and U1(out,in);
and U2(out,in1,in2,in3,in4);
xor U3(out,in1,in2,in3);

 Transmission Gate Primitives

not N-output invertor.
buf N-output buffer.
bufif0 Tri-state buffer, Active low en.
bufif1 Tri-state buffer, Active high en.
notif0 Tristate inverter, Low en.

notif1 Tristate inverter, High en.

 Examples

bufif0 U1(data_bus,data_drive, data_enable_low);
buf U2(out,in);
not U3(out,in);

 Switch Primitives

pmos Uni-directional PMOS switch
1

rpmos Resistive PMOS switch
nmos Uni-directional NMOS switch

2
rnmos Resistive NMOS switch
cmos Uni-directional CMOS switch

3
rcmos Resistive CMOS switch
tranif1 Bi-directional transistor (High)

4
tranif1 Resistive transistor (High)
tranif0 Bi-directional transistor (Low)

5
rtranif1 Resistive Transistor (Low)
tran Bi-directional pass transistor 6
rtran Resistive pass transistor

deeps@deeps.org

 pullup Pull up resistor.

deeps@deeps.org

 pulldown Pull down resistor.

Transmission gates are bi-directional and can be resistive or non-resistive.

Syntax: keyword unique_name (inout1, inout2, control);

tranif0 my_gate1 (net5, net8, cnt);
rtranif1 my_gate2 (net5, net12, cnt);

Transmission gates tran and rtran are permanently on and do not have a
control line. Tran can be used to interface two wires with separate drives, and
rtran can be used to weaken signals. Resistive devices reduce the signal
strength which appears on the output by one level. All the switches only pass
signals from source to drain, incorrect wiring of the devices will result in high
impedance outputs.

 Logic Values and signal Strengths
 The Verilog HDL has got four logic values

0 zero, low, false
1 one, high, true
z or Z high impendence, floating
x or X unknown, uninitialized, contention

 Verilog Strength Levels

Strength
Level Strength Specification

Keyword
7 Supply Drive supply0 supply1
6 Strong Pull strong0 strong1
5 Pull Drive pull0 pull1

4 Large Capacitance large
3 Weak Drive weak0 weak1
2 Medium Capacitance medium
1 Small Capacitance small
0 Hi Impedance highz0 highz1

 Examples

Two buffers that has output
 A : Pull 1
 B : Supply 0
Since supply 0 is stronger then
pull 1, Output C takes value of B.

Two buffers that has output
 A : Supply 1
 B : Large 1

Since Supply 1 is stronger then
Large 1, Output C takes the
value of A

 Designing Using Primitives

 AND Gate from NAND Gate

 Verilog Code

// Structural model of AND gate from two NANDS
module and_from_nand(X, Y, F);

input X, Y;
output F;
wire W;
// Two instantiations of the module NAND
nand U1(X, Y, W);
nand U2(W, W, F);

endmodule

 D-Flip flop from NAND Gate

 Verilog Code

module dff(Q,Q_BAR,D,CLK);
output Q,Q_BAR;
input D,CLK;

nand U1 (X,D,CLK) ;
nand U2 (Y,X,CLK) ;
nand U3 (Q,Q_BAR,X);
nand U4 (Q_BAR,Q,Y);

endmodule

 Multiplexer from primitives

 Verilog Code

//Module 4-2 Mux
module mux (c0,c1,c2,c3,A,B,Y);
 input c0,c1,c2,c3,A,B;
 ouput Y;
 //Invert the sel signals
 not (a_inv, A);
 not (b_inv, B);
 // 3-input AND gate
 and (y0,c0,a_inv,b_inv);
 and (y1,c1,a_inv,B);
 and (y2,c2,A,b_inv);
 and (y3,c3,A,B);
 // 4-input OR gate
 or (Y, y0,y1,y2,y3);

endmodule

 Gate and Switch delays

In real circuits , logic gates haves delays associated with them. Verilog
provides the mechanism to associate delays with gates.

? Rise, Fall and Turn-off delays.
? Minimal, Typical, and Maximum delays.

 Rise Delay

 The rise delay is associated with a gate output transition to 1 from another
value (0,x,z).

 Fall Delay :

 The fall delay is associated with a gate output transition to 0 from another
value (1,x,z).

 Turn-off Delay

 The fall delay is associated with a gate output transition to z from another
value (0,1,x).

 Min Value

 The min value is the minimum delay value that the gate is expected to
have.

 Typ Value
 The typ value is the typical delay value that the gate is expected to have.

 Max Value

 The max value is the maximum delay value that the gate is expected to
have.

 Examples

// Delay for all transitions
or #5 u_or (a,b,c);

// Rise and fall delay
and #(1,2) u_and (a,b,c);

// Rise, fall and turn off delay
nor # (1,2,3) u_nor (a,b,c);

//One Delay, min, typ and max
nand #(1:2:3) u_nand (a,b,c);

//Two delays, min,typ and max
buf #(1:4:8,4:5:6) u_buf (a,b);

//Three delays, min, typ, and max
notif1 #(1:2:3,4:5:6,7:8:9) u_notif1 (a,b,c);

 Gate Delay Code Example

module not_gate (in,out);
 input in;
 output out;

 not #(5) (out,in);

endmodule

 Gate Delay Code Example

module not_gate (in,out);
 input in;
 output out;

 not #(2,3) (out,in);

endmodule

Normally we can have three models of delays, typical, minimum and
maximum delay. During compilation of a modules one needs to specify the
delay models to use, else Simulator will use the typical model.

Verilog +minterms myfile.v

I have assumed Verilog-XL as simulator

 N-Input Primitives

The and, nand, or, nor, xor, and xnor primitives have one output and
any number of inputs

? The single output is the first terminal
? All other terminals are inputs

 Examples

// Two input AND gate
and u_and (out, in1, in2);

// four input AND gate
and u_and (out, in1, in2, in3, in4);

// three input XNOR gate
xnor u_xnor (out, in_1, in_2, in_3);

 N-Output Primitives

The buf and not primitives have any number of outputs and one input

? The output are in first terminals listed.
? The last terminal is the single input.

 Examples

// one output Buffer gate
buf u_buf (out,in);

// four output Buffer gate
buf u_buf (out_0, out_1, out_2, out_3, in);

// three output Invertor gate
not u_not (out_a, out_b, out_c, in);

Verilog Operators

 Arithmetic Operators

? Binary: +, -, *, /, % (the modulus operator)
? Unary: +, -
? Integer division truncates any fractional part
? The result of a modulus operation takes the sign of the first operand
? If any operand bit value is the unknown value x, then the entire result

value is x
? Register data types are used as unsigned values

o negative numbers are stored in two’s complement form

 Relational Operators

a<b a less than b
a>b a greater than b
a<=b a less than or equal to b
a>=b a greater than or equal to b

? The result is a scalar value:
? 0 if the relation is false
? 1 if the relation is true
? x if any of the operands has unknown x bits
? Note: If a value is x or z, then the result of that test is false

 Equality Operators

a === b a equal to b, including x and z
a !== b a not equal to b, including x and z
a == b a equal to b, resulting may be unknown
a != b a not equal to b, result may be unknown

? Operands are compared bit by bit, with zero filling if the two operands
do not have the same length

? Result is 0 (false) or 1 (true)
? For the == and != operators the result is x, if either operand contains

an x or a z
? For the === and !== operators

o bits with x and z are included in the comparison and must
match for the result to be true

o the result is always 0 or 1

 Logical Operators

! logic negation
&& logical and
|| logical or

? Expressions connected by && and || are evaluated from left to right
? Evaluation stops as soon as the result is known
? The result is a scalar value:

o 0 if the relation is false
o 1 if the relation is true
o x if any of the operands has unknown x bits

 Bit-wise Operators

~ negation
& and
| inclusive or
^ exclusive or
^~ or ~^ exclusive nor (equivalence)

? Computations include unknown bits, in the following way:
o ~x = x
o 0&x = 0
o 1&x = x&x = x
o 1|x = 1
o 0|x = x|x = x
o 0^x = 1^x = x^x = x
o 0^~x = 1^~x = x^~x = x

? When operands are of unequal bit length, the shorter operand is zero-
filled in the most significant bit positions

 Reduction Operators

& and
~& nand
| or

~| nor
^ xor

^~ or ~^ xnor

 ? Reduction operators are unary.

? They perform a bit-wise operation on a single operand to produce
a single bit result.

? Reduction unary NAND and NOR operators operate as AND and
OR respectively, but with their outputs negated.

o Unknown bits are treated as described before.

 Shift Operators

 << left shift
>> right shift

? The left operand is shifted by the number of bit positions given by
the right operand.

? The vacated bit positions are filled with zeroes.

 Concatenation Operator

? Concatenations are expressed using the brace characters { and },
with commas separating the expressions within

o Examples
? {a, b[3:0], c, 4'b1001} // if a and c are 8-bit numbers,

the results has 24 bits
? Unsized constant numbers are not allowed in concatenations
? Repetition multipliers that must be constants can be used:

o {3{a}} // this is equivalent to {a, a, a}
? Nested concatenations are possible:

o {b, {3{c, d}}} // this is equivalent to {b, c, d, c, d, c, d}

 Conditional Operator

? The conditional operator has the following C-like format:
o cond_expr ? true_expr : false_expr

? The true_expr or the false_expr is evaluated and used as a result
depending on whether cond_expr evaluates to true or false

 Example
 out = (enable) ? data : 8'bz; // Tri state buffer

 Operator Precedence

Operator Symbols
Unary, Multiply, Divide,
Modulus + - ! ~ * / %

Add, Subtract, Shift. +, - , <<, >>
Relation, Equality <,>,<=,>=,==,!=,===,!===
Reduction &, !&,^,^~,|,~|
Logic &&, ||
Conditional ?:

Verilog Behavioral Modeling

 Verilog HDL Abstraction Levels

? Behavioral Models : Higher level of modeling where behavior of
logic is modeled.

? RTL Models : Logic is modeled at register level
? Structural Models : Logic is modeled at both register level and gate

level.

 Procedural Blocks

Verilog behavioral code is inside procedures blocks, but there is a
exception, some behavioral code also exist outside procedures blocks.
We can see this in detail as we make progress.

There are two types of procedural blocks in Verilog

? initial : initial blocks execute only once at time zero (start
execution at time zero).

? always : always blocks loop to execute over and over again, in
other words as name means, it executes always.

 Example : initial and always

initial always @ (posedge clk)
 begin begin : D_FF
 clk = 0; if (reset == 1)
 reset = 0; q <= 0;
 enable = 0; else
 data = 0; q <=d;
 end end

 Procedural Assignment Statements

? Procedural assignment statements assign values to registers and
can not assign values to nets (wire data types)

? You can assign to the register (reg data type) the value of a net
(wire), constant, another register, or a specific value.

 Example : Bad and Good procedural assignment

 wire clk, reset; reg clk, reset;

reg enable, data; reg enable, data;

initial initial
 begin begin
 clk = 0; clk = 0;
 reset = 0; reset = 0;
 enable = 0; enable = 0;
 data = 0; data = 0;
 end end

 Procedural Assignment Groups

If a procedure block contains more then one statement, those statements
must be enclosed within

? Sequential begin - end block
? Parallel fork - join block

When using begin-end, we can give name to that group. This is called
named blocks.

 Example : "begin-end" and "fork - join"

initial initial
 begin fork
 #1 clk = 0; #1 clk = 0;
 #5 reset = 0; #5 reset = 0;
 #5 enable = 0; #5 enable = 0;
 #2 data = 0; #2 data = 0;
 end join

Begin : clk gets 0 after 1 time unit, reset gets 0 after 6 time units, enable
after 11 time units, data after 13 units. All the statements are executed in
sequentially.

Fork : clk gets value after 1 time unit, reset after 5 time units, enable after
5 time units, data after 2 time units. All the statements are executed in
parallel.

 Sequential Statement Groups

The begin - end keywords:

? Group several statements together.
? Cause the statements to be evaluated in sequentially (one at a

time).
o Any timing within the sequential groups is relative to the

previous statement.

o Delays in the sequence accumulate (each delay is added to
the previous delay)

o Block finishes after the last statement in the block.

 Parallel Statement Groups

The fork - join keywords:

? Group several statements together.
? Cause the statements to be evaluated in parallel (all at the same

time).
o Timing within parallel group is absolute to the beginning of

the group.
o Block finishes after the last statement completes(Statement

with high delay, it can be the first statement in the block).

 The Conditional Statement if-else

 The if - else statement controls the execution of other statements, In
programming language like c, if - else controls the flow of program.

if (condition)
 statements;

if (condition)
 statements;
else
 statements;

if (condition)
 statements;
else if (condition)
 statements;
................
................
else
 statements;

 Example

// Simple if statement
if (enable)
 q <= d;
// One else statement
if (reset == 1'b1)
 q <= 0;;
else
 q <= d;
// Nested if-else-if statements
if (reset == 1'b0)
 counter <= 4'b0000;
else if (enable == 1'b1 && up_en == 1'b1)
 counter <= counter + 1'b1;
else if (enable == 1'b1 && down_en == 1'b1);
 counter <= counter - 1'b0;
else
 counter <= counter; // Redundant code

 Note : More to be added on if-else, as this is the one which is most widely
used.

 The Case Statement

The case statement compares a expression to a series of cases and
executes the statement or statement group associated with the first
matching case

? case statement supports single or multiple statements.
? Group multiple statements using begin and end keywords.

case (<expression>)
 <case1> : <statement>
 <case2> : <statement>

 default : <statement>
endcase

 Example : case

module mux (a,b,c,d,sel,y);
 input a, b, c, d;
 input [1:0] sel;
 output y;
 reg y;
 always @ (a or b or c or d or sel)
 case (sel)
 0 : y = a;
 1 : y = b;
 2 : y = c;
 3 : y = d;
 default : $display("Error in SEL");
 endcase

endmodule

The Verilog case statement does an identity comparison (like the ===
operator), One can use the case statement to check for logic x and z
values

 Example with z and x

case(enable)
 1'bz : $display ("enable is floating");
 1'bx : $display ("enable is unknown");
 default : $display ("enable is %b",enable);
endcase

 The casez and casex statement

Special versions of the case statement allow the x ad z logic values to be
used as "don't care"

? casez uses the z as the don't care instead of as a logic value
? casex uses either the x or the z as don't care instead of as logic

values

 Example casez

casez(opcode)
 4'b1zzz : out = a; // don't care about lower 3 bits
 4'b01??: out = b; //the ? is same as z in a number
 4'b001?: out = c;
 default : out = $display ("Error xxxx does matches 0000");
endcase

 Looping Statements

Looping statements appear inside a procedural blocks only, Verilog has
four looping statements like any other programming language.

? forever
? repeat
? while
? for

 The forever statement

The forever loop executes continually, the loop never ends

syntax : forever <statement>

 Example : Free running clock generator

initial begin
 clk = 0;
 forever #5 clk = !clk;
end

 The repeat statement

The repeat loop executes statement fixed <number> of times

syntax : repeat (<number>) <statement>

 Example:

 if (opcode == 10) //perform rotate
 repeat (8) begin
 temp = data[7];
 data = {data<<1,temp};
 end

 The while loop statement

The while loop executes as long as an <expression> evaluates as true

syntax : while (<expression>) <statement>

 Example :

loc = 0;
if (data = 0) // example of a 1 detect shift value
 loc = 32;
else while (data[0] == 0); //find the first set bit
begin
 loc = loc + 1;
 data = data << 1;
end

 The for loop statement

The for loop is same as the for loop used in any other programming
language.

? Executes an <initial assignment> once at the start of the loop.
? Executes the loop as long as an <expression> evaluates as true.
? Executes a <step assignment> at the end of each pass through the

loop.

syntax : for (<initial assignment>; <expression>, <step assignment>)
<statement>

 Example :

 for (i=0;i<=63;i=i+1)
 ram[i] <= 0; // Inialize the RAM with 0

 Continuous Assignment Statements

Continuous assignment statements drives nets (wire data type). They
represent structural connections.

? They are used for modeling Tri-State buffers.
? They can be used for modeling combinational logic.
? They are outside the procedural blocks (always and initial blocks).
? The continuous assign overrides and procedural assignments.
? The left-hand side of a continuous assignment must be net data

type.

syntax : assign (strength, strength) # delay net = expression;

 Example: 1-bit Adder

module adder (a,b,sum,carry);
 input a, b;
 output sum, carry;
 assign #5 {carry,sum} = a+b;
endmodule

 Example: Tri-State Buffer

module tri_buf(a,b,enable);
 input a, enable;
 output b;
 assign b = (enable) ? a : 1'bz;
endmodule

 Propagation Delay

Continuous Assignments may have a delay specified, Only one delay for
all transitions may be specified. A minimum:typical:maximum delay range
may be specified.

 Example : Tri-State Buffer

module tri_buf(a,b,enable);
 input a, enable;
 output b;
 assign #(1:2:3) b = (enable) ? a : 1'bz;
endmodule

 Procedural Block Control

 Procedural blocks become active at simulation time zero, Use level
sensitive even controls to control the execution of a procedure.

always @ (d or enable)
if (enable)
 q = d;

An event sensitive delay at the begining of a procedure, any change in
either d or enable satisfies the even control and allows the execution of
the statements in the procedure. The procedure is sensitive to any
change in d or enable.

 Combo Logic using Procedural Coding

 To model combinational logic, a procedure block must be sensitive to any
change on the input.

 Example : 1-bit Adder

module adder (a,b,sum,carry);
 input a, b;
 output sum, carry;

reg sum, carry;
always @ (a or b)
begin
 {carry} = a + b;
end

endmodule

 The statements within the procedural block work with entire vectors at a
time.

 Example : 4-bit Adder

module adder (a,b,sum,carry);
 input [3:0] a, b;

output [3:0] sum; output carry;
reg [3:0] sum;
reg carry;
always @ (a or b)
begin
 {carry} = a + b;
end

endmodule

 A procedure can't trigger itself

 Once cannot trigger the block with the variable that block assigns value or
drive's.

 always @ (clk)
 #5 clk = !clk;

 Procedural Block Concurrency

If we have multiple always blocks inside one module, then all the blocks (
i.e. all the always blocks) will start executing at time 0 and will continue to
execute concurrently. Sometimes this is leads to race condition, if coding
is not done proper.

module procedure (a,b,c,d);
 input a,b;
 output c,d;

 always @ (c)
 a = c;

 always @ (d or a)
 b = a &d;

endmodule

 Race condition

initial
 b = 0;

initial
 b = 1;

In the above code it is difficult to say the value of b, as both the blocks are
suppose to execute at same time. In Verilog if care is not taken, race
condition is something that occurs very often.

 Named Blocks

 Blocks can be named by adding : block_name after the keyword begin.
This block can be disabled using disable statement.

 Example

module named_block (a,b,c,d);
 input a,b;
 output c,d;

 always @ (c)
 a = c;

 always @ (d or a)
 begin : my_block
 b = a &d;

 end

endmodule

 In above example, my_block is the named block. (Need to add more
practical example)

Procedural Timing Control

 Procedural blocks and timing controls.

? Delays controls.
? Edge-Sensitive Event controls
? Level-Sensitive Event controls-Wait statements
? Named Events

 Delay Controls

Delays the execution of a procedural statement by specific simulation time.

#<time> <statement>;

 Example :

module clk_gen (clk,reset);
 output clk,reset;
 reg clk, reset;
 initial begin
 clk = 0;
 reset = 0;
 #2 reset = 1;
 #5 reset = 0;
 end
 always
 #1 clk = !clk;
endmodule

 Waveform

 Edge sensitive Event Controls

Delays execution of the next statement until the specified transition on a
signal.

@ (<posedge>|<negedge> signal) <statement>;

 Example :

always @ (posedge enable)
begin
 repeat (5) // Wait for 5 clock cycles
 @ (posedge clk) ;
 trigger = 1;
end

 Waveform

 Level-Sensitive Even Controls (Wait statements)

Delays execution of the next statement until the <expression> evaluates as
true

syntax: wait (<expression>) <statement>;

 Example :

while (mem_read == 1'b1) begin
 wait (data_ready) data = data_bus;
 read_ack = 1;
end

 Intra-Assignment Timing Controls
 Intra-assignment controls evaluate the right side expression right always

and assigns the result after the delay or event control.

In non-intra-assignment controls (delay or event control on the left side)
right side expression evaluated after delay or event control.

 Example :

initial begin
 a = 1;
 b = 0;
 a = #10 0;
 b = a;
end

 Waveform

 Modeling Combinational Logic with Continuous Assignments

 Whenever any signal changes on the right hand side, the entire right-hand
side is re-evaluated and the result is assigned to the left hand side

 Example : Tri-state buffer

module tri_buf (data_in,data_out, pad,enable);
 input data_in, enable;
 output data_out;
 inout pad;
 wire pad, data_out;
 assign pad = (enable) ? data_in : 1'bz;
 assign data_out = pad;
endmodule

 Waveform

 Example : 2:1 Mux

module mux2x1 (data_in_0,data_in_1, sel, data_out);
 input data_in_0, data_in_1;
 output data_out;
 input sel;
 wire data_out;
 assign data_out = (sel) ? data_in_1 : data_in_0;
endmodule

 Waveform

Task and Function

 Task

Tasks are used in all programming languages, generally known as
Procedures or sub routines. Many lines of code are enclosed in task....end
task brackets. Data is passed to the task, the processing done, and the
result returned to a specified value. They have to be specifically called,
with data in and outs, rather than just “wired in” to the general netlist.
Included in the main body of code they can be called many times, reducing
code repetition.

? task are defined in the module in which they are used. it is possible
to define task in separate file and use compile directive 'include to
include the task in the file which instantiates the task.

? task can include timing delays, like posedge, negedge, # delay.
? task can have any number of inputs and outputs.
? The variables declared within the task are local to that task. The

order of declaration within the task defines how the variables
passed to the task by the caller are used.

? task can take drive and source global variables, when no local
variables are used. When local variables are used, it basically
assigned output only at the end of task execution.

? task can call another task or function.
? task can be used for modeling both combinational and sequential

logic.
? A task must be specifically called with a statement, it cannot be

used within an expression as a function can.

 Syntax

? task begins with keyword task and end's with keyword endtask
? input and output are declared after the keyword task.
? local variables are declared after input and output declaration.

 Example : Simple Task

task convert;
 input [7:0] temp_in;
 output [7:0] temp_out;
 begin
 temp_out = (9/5) *(temp_in + 32)

 end
endtask

 Example : Task using Global Variables

task convert;
 begin
 temp_out = (9/5) *(temp_in + 32);
 end
endtask

 Calling a Task

Lets assume that task in example 1 is stored in a file called mytask.v.
Advantage of coding task in separate file is that, it can be used in multiple
module's.

module temp_cal (temp_a, temp_b,
 temp_c, temp_d);
 input [7:0] temp_a, temp_c;
 output [7:0] temp_b, temp_d;
 reg [7:0] temp_b, temp_d;
 `include "mytask.v"

 always @ (temp_a)
 convert (temp_a, temp_b);

 always @ (temp_c)
 convert (temp_c, temp_d);

endmodule

 Function

A Verilog HDL function is same as task, with very little difference, like
function cannot drive more then one output, can not contain delays.

? function are defined in the module in which they are used. it is
possible to define function in separate file and use compile directive
'include to include the function in the file which instantiates the task.

? function can not include timing delays, like posedge, negedge, #
delay. Which means that function should be executed in "zero" time
delay.

? function can have any number of inputs and but only one output.
? The variables declared within the function are local to that function.

The order of declaration within the function defines how the
variables passed to the function by the caller are used.

? function can take drive and source global variables, when no local
variables are used. When local variables are used, it basically
assigned output only at the end of function execution.

? function can be used for modeling combinational logic.
? function can call other functions, but can not call task.

 Syntax

? function begins with keyword function and end's with keyword
endfunction

? input are declared after the keyword function. Ouputs are delcared.

 Example : Simple Function

function myfunction;
 input a, b, c, d;
 begin
 myfunction = ((a+b) + (c-d));
 end
endfunction

 Calling a Function

Lets assume that function in above example is stored in a file called
myfunction.v. Advantage of coding function in separate file is that, it can be
used in multiple module's.

module func_test(a, b, c, d, e, f);

 input a, b, c, d, e ;
 output f;
 wire f;
 `include "myfunction.v"

 assign f = (myfunction (a,b,c,d)) ? e :0;

endmodule

System Task and Function

 Introduction

There are tasks and functions that are used to generate input and output
during simulation. Their names begin with a dollar sign ($). The synthesis
tools parse and ignore system functions, and hence can be included even
in synthesizable models.

 $display, $strobe, $monitor

These commands have the same syntax, and display text on the screen
during simulation. They are much less convenient than waveform display
tools like GTKWave. or Undertow. $display and $strobe display once
every time they are executed, whereas $monitor displays every time one
of its parameters changes. The difference between $display and $strobe
is that $strobe displays the parameters at the very end of the current
simulation time unit rather than exactly where it is executed. The format
string is like that in C/C++, and may contain format characters. Format
characters include %d (decimal), %h (hexadecimal), %b (binary), %c
(character), %s (string) and %t (time), %m (hierarchy level). %5d, %5b
etc. would give exactly 5 spaces for the number instead of the space
needed. Append b, h, o to the task name to change default format to
binary, octal or hexadecimal.

 Syntax

? $display ("format_string", par_1, par_2, ...);
? $strobe ("format_string", par_1, par_2, ...);
? $monitor ("format_string", par_1, par_2, ...);
? $displayb (as above but defaults to binary..);
? $strobeh (as above but defaults to hex..);
? $monitoro (as above but defaults to octal..);

 $time, $stime, $realtime

 These return the current simulation time as a 64-bit integer, a 32-bit
integer, and a real number, respectively.

 $reset, $stop, $finish

$reset resets the simulation back to time 0; $stop halts the simulator and
puts it in the interactive mode where the user can enter commands;
$finish exits the simulator back to the operating system.

 $scope, $showscope

$scope(hierarchy_name) sets the current hierarchical scope to
hierarchy_name. $showscopes(n) lists all modules, tasks and block
names in (and below, if n is set to 1) the current scope.

 $random

$random generates a random integer every time it is called. If the
sequence is to be repeatable, the first time one invokes random give it a
numerical argument (a seed). Otherwise the seed is derived from the
computer clock.

 Syntax
 data_out = $random (seed);

 $dumpfile, $dumpvar, $dumpon, $dumpoff, $dumpall

These can dump variable changes to a simulation viewer like Debussy.
The dump files are capable of dumping all the variables in a simulation.
This is convenient for debugging, but can be very slow.

 Syntax

? $dumpfile("filename.dmp")
? $dumpvar dumps all variables in the design.
? $dumpvar(1, top) dumps all the variables in module top and below,

but not modules instantiated in top.
? $dumpvar(2, top) dumps all the variables in module top and 1 level

below.
? $dumpvar(n, top) dumps all the variables in module top and n-1

levels below.
? $dumpvar(0, top) dumps all the variables in module top and all

level below.
? $dumpon initiates the dump.
? $dumpoff stop dumping.

 $fopen, $fdisplay, $fstrobe $fmonitor and $fwrite

These commands write more selectively to files.

? $fopen opens an output file and gives the open file a handle for
use by the other commands.

? $fclose closes the file and lets other programs access it.
? $fdisplay and $fwrite write formatted data to a file whenever they

are executed. They are the same except $fdisplay inserts a new
line after every execution and $write does not.

? $strobe also writes to a file when executed, but it waits until all
other operations in the time step are complete before writing. Thus
initial #1 a=1; b=0; $fstrobe(hand1, a,b); b=1; will write write 1 1 for

a and b.
? $monitor writes to a file whenever any one of its arguments

changes.

 Syntax

? handle1=$fopen("filenam1.suffix")
? handle2=$fopen("filenam2.suffix")
? $fstrobe(handle1, format, variable list) //strobe data into

filenam1.suffix
? $fdisplay(handle2, format, variable list) //write data into

filenam2.suffix
? $fwrite(handle2, format, variable list) //write data into

filenam2.suffix all on one line. Put in the format string where a
new line is desired.

Art of Writing TestBenches

 Introduction

Writing testbench is as complex as writing the RTL code itself. This days
ASIC's are getting more and more complex and thus the challenge to verify
this complex ASIC. Typically 60-70% of time in any ASIC is spent on
verification/validation/testing. Even though above facts are well know to
most of the ASIC engineers, but still engineers think that there is no glory
in verification.

I have picked few examples from the VLSI classes that I used to teach
during 1999-2001, when I was in Chennai. Please feel free to give your
feedback on how to improve below tutorial.

 Before you Start

For writing testbench it is important to have the design specification of
"design under test" or simply DUT. Specs need to be understood clearly
and test plan is made, which basically documents the test bench
architecture and the test scenarios (test cases) in detail.

 Example : Counter

Lets assume that we have to verify a simple 4-bit up counter, which
increments its count when ever enable is high and resets to zero, when
reset is asserted high. Reset is synchronous to clock.

 Code for Counter

module counter (clk, reset, enable, count);
 input clk, reset, enable;
 output [3:0] count;
 reg [3:0] count;

 always @ (posedge clk)
 if (reset == 1'b1)
 count <= 0;
 else if (enable == 1'b1)
 count <= count + 1;

endmodule

 Test Plan
 We will write self checking test bench, but we will do this in steps to help

you understand the concept of writing automated test benches. Our
testbench env will look something like shown in below figure.

DUT is instantiated in testbench, and testbench will contain a clock
generator, reset generator, enable logic generator, compare logic, which
basically calculate the expected count value of counter and compare the
output of counter with calculated value.

 Test Cases

? Reset Test : We can start with reset deasserted, followed by
asserting reset for few clock ticks and deasserting the reset, See if
counter sets its output to zero.

? Enable Test : Assert/deassert enable after reset is applied.
? Random Assert/deassert of enable and reset.

We can add some more test cases, but then we are not here to test the
counter, but to learn how to write test bench.

 Writing TestBench

First step of any testbench creation is to creating a dummy template
which basically declares inputs to DUT as reg and outputs from
DUT as wire, instantiate the DUT as shown in code below. Note
there is no port list for the test bench.

 Test Bench

module counter_tb;
 reg clk, reset, enable;
 wire [3:0] count;

 counter U0 (
 .clk (clk),
 .reset (reset),
 .enable (enable),
 .count (count)
);

endmodule

Next step would be to add clock generator logic, this is straight forward,
as we know how to generate clock. Before we add clock generator
we need to drive all the inputs to DUT to some know state as shown
in code below.

 Test Bench with Clock gen

module counter_tb;
 reg clk, reset, enable;
 wire [3:0] count;

 counter U0 (
 .clk (clk),
 .reset (reset),
 .enable (enable),
 .count (count)
);

 initial
 begin
 clk = 0;
 reset = 0;
 enable = 0;
 end

 always
 #5 clk = !clk;

endmodule

Initial block in verilog is executed only once, thus simulator sets the
value of clk, reset and enable to 0, which by looking at the counter
code (of course you will be refering to the the DUT specs) could be
found that driving 0 makes all this signals disabled.

There are many ways to generate clock, one could use forever loop
inside a initial block as an alternate to above code. You could add

parameter or use `define to control the clock frequency. You may
writing complex clock generator, where we could introduce PPM (
Parts per million, clock width drift), control the duty cycle. All the
above depends on the specs of the DUT and creativity of a "Test
Bench Designer".

At this point, you would like test if the testbench is generating the clock
correctly, well you can compile with the Veriwell command line
compiler found here. You need to give command line option as
shown below. (Please let me know if this is illegal to have this
compiler local to this website).

C:\www.deeps.org\veridos counter.v counter_tb.v
Of course it is a very good idea to keep file names same as module

name. Ok, coming back to compiling, you will see that simulator
does not come out, or print anything on screen or does it dump any
waveform. Thus we need to add support for all the above as shown
in code below.

 Test Bench continues...

module counter_tb;
 reg clk, reset, enable;
 wire [3:0] count;

 counter U0 (
 .clk (clk),
 .reset (reset),
 .enable (enable),
 .count (count)
);

 initial
 begin
 clk = 0;
 reset = 0;
 enable = 0;
 end

 always
 #5 clk = !clk;

 initial
 begin
 $dumpfile ("counter.vcd");
 $dumpvars;
 end

 initial
 begin
 $display("\t\ttime,\tclk,\treset,\tenable,\tcount");

 $monitor("%d,\t%b,\t%b,\t%b,\t%d",$time,
clk,reset,enable,count);

 end

 initial
 #100 $finish;

 //Rest of testbench code after this line

endmodule

$dumpfile is used for specifying the file that simulator will use to store
the waveform, that can be used later to view using waveform
viewer. (Please refer to tools section for freeware version of
viewers.) $dumpvars basically instructs the Verilog compiler to start
dumping all the signals to "counter.vcd".

$display is used for printing text or variables to stdout (screen), \t is for
inserting tab. Syntax is same as printf. Second line $monitor is bit
different, $monitor keeps track of changes to the variables that are
in the list (clk, reset, enable, count). When ever anyone of them
changes, it prints their value, in the respective radix specified.

$finish is used for terminating simulation after #100 time units (note, all
the initial, always blocks start execution at time 0)

Now that we have written basic skeleton, lets compile and see what we
have just coded. Output of the simulator is shown below.

C:\www.deeps.org>veridos counter.v counter_tb.v
VeriWell for Win32 HDL <Version 2.1.4> Fri Jan 17 21:33:25 2003

This is a free version of the VeriWell for Win32 Simulator
Distribute this freely; call 1-800-VERIWELL for ordering information
See the file "!readme.1st" for more information

Copyright (c) 1993-97 Wellspring Solutions, Inc.
All rights reserved

Memory Available: 0
Entering Phase I...
Compiling source file : counter.v
Compiling source file : counter_tb.v
The size of this model is [2%, 5%] of the capacity of the free version

Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
counter_tb

time clk, reset, enable, count
0, 0, 0, 0, x
5, 1, 0, 0, x
10, 0, 0, 0, x
15, 1, 0, 0, x
20, 0, 0, 0, x
25, 1, 0, 0, x
30, 0, 0, 0, x
35, 1, 0, 0, x
40, 0, 0, 0, x
45, 1, 0, 0, x
50, 0, 0, 0, x
55, 1, 0, 0, x
60, 0, 0, 0, x
65, 1, 0, 0, x
70, 0, 0, 0, x
75, 1, 0, 0, x
80, 0, 0, 0, x
85, 1, 0, 0, x
90, 0, 0, 0, x
95, 1, 0, 0, x

Exiting VeriWell for Win32 at time 100
0 Errors, 0 Warnings, Memory Used: 0
Compile time = 0.0 Load time = 0.0 Simulation time = 0.1

Normal exit
Thank you for using VeriWell for Win32

 Adding Reset Logic

Once we have the basic logic to allow us to see what our testbench is
doing, we can next add the reset logic, If we look at the testcases, we see
that we had added a constraint that it should be possible to activate reset
anytime during simulation. To achieve this we have many approaches, but
I am going to teach something that will go long way. There is something
called 'events' in Verilog, events can be triggered, and also monitored to
see, if a event has occurred.

Lets code our reset logic in such a way that it waits for the trigger event

"reset_trigger" to happen, when this event happens, reset logic asserts
reset at negative edge of clock and de-asserts on next negative edge as
shown in code below. Also after de-asserting the reset, reset logic triggers
another event called "reset_done_trigger". This trigger event can then be
used at some where else in test bench to sync up.

 Code of reset logic

 event reset_trigger;
 event reset_done_trigger;

 initial begin
 forever begin
 @ (reset_trigger);
 @ (negedge clk);
 reset = 1;
 @ (negedge clk);
 reset = 0;
 -> reset_done_trigger;
 end
 end

 Adding test case logic

Moving forward, lets add logic to generate the test cases, ok we have three
testcases as in the first part of this tutorial. Lets list them again .

? Reset Test : We can start with reset deasserted, followed by
asserting reset for few clock ticks and deasserting the reset, See if
counter sets its output to zero.

? Enable Test : Assert/deassert enable after reset is applied.
? Random Assert/deassert of enable and reset.

Repeating it again "There are many ways" to code a test case, it all
depends on the creativity of the Test bench designer. Lets take a simple
approach and then slowly build upon it.

 Test Case # 1 : Asserting/ Deasserting reset

 In this test case, we will just trigger the event reset_trigger after 10
simulation units.

 initial
 begin: TEST_CASE
 #10 -> reset_trigger;
 end

 Test Case # 2 : Asserting/ Deasserting enable after reset is applied.

 In this test case, we will trigger the reset logic and wait for the reset logic to
complete its operation, before we start driving enable signal to logic 1.

 initial
 begin: TEST_CASE
 #10 -> reset_trigger;
 @ (reset_done_trigger);
 @ (negedge clk);
 enable = 1;
 repeat (10) begin
 @ (negedge clk);
 end
 enable = 0;
 end

 Test Case # 3 : Asserting/Deasserting enable and reset randomly.

 In this testcase we assert the reset, and then randomly drive values on to
enable and reset signal.

 initial
 begin : TEST_CASE
 #10 -> reset_trigger;
 @ (reset_done_trigger);
 fork begin
 repeat (10) begin
 @ (negedge clk);
 enable = $random;
 repeat (10) begin
 @ (negedge clk);
 reset = $random;
 end
 end
 end

Well you might ask, are all this three test case exist in same file, well the
answer is no. If we try to have all three test cases on one file, then we end
up having race condition due to three initial blocks driving reset and enable
signal. So normally, once test bench coding is done, test cases are coded
separately and included in testbench as `include directive as shown below.
(There are better ways to do this, but you have to think how you want to
do it).

If you look closely all the three test cases, you will find that, even through

test case execution is not complete, simulation terminates. To have better
control, what we can do is, add a event like "terminate_sim" and execute
$finish only when this event is triggered. We can trigger this event at the
end of test case execution. The code for $finish now could look as below.

 event terminate_sim;
 initial begin
 @ (terminate_sim);
 #5 $finish;
 end

 and the modified test case #2 would like.

 initial
 begin: TEST_CASE
 #10 -> reset_trigger;
 @ (reset_done_trigger);
 @ (negedge clk);
 enable = 1;
 repeat (10) begin
 @ (negedge clk);
 end
 enable = 0;
 #5 -> terminate_sim;
 end

Second problem with the approach that we have taken till now it that, we
need to manually check the waveform and also the output of simulator on
the screen to see if the DUT is working correctly. Part IV shows how to
automate this.

 Adding compare Logic

To make any testbench self checking/automated, first we need to develop
model that mimics the DUT in functionality. In our example, to mimic DUT,
it going to be very easy, but at times if DUT is complex, then to mimic the
DUT will be a very complex and requires lot of innovative techniques to
make self checking work.

 reg [3:0] count_compare;
 always @ (posedge clk)
 if (reset == 1'b1)
 count_compare <= 0;
 else if (enable == 1'b1)
 count_compare <= count_compare + 1;

 Once we have the logic to mimic the DUT functionality, we need to add the

checker logic, which at any given point keeps checking the expected value
with the actual value. Whenever there is any error, it print's out the
expected and actual value, and also terminates the simulation by triggering
the event "terminate_sim".

 always @ (posedge clk)
 if (count_compare != count) begin
 $display ("DUT Error at time %d", $time);

 $display (" Expected value %d, Got Value %d",
count_compare, count);

 #5 -> terminate_sim;
 end

Now that we have the all the logic in place, we can remove $display and
$monitor, as our testbench have become fully automatic, and we don't
require to manually verify the DUT input and output. Try changing the
count_compare = count_compare +2, and see how compare logic works.
This is just another way to see if our testbench is stable.
We could add some fancy printing as shown in the figure below to make
our test env more friendly.

C:\Download\work>veridos counter.v counter_tb.v
VeriWell for Win32 HDL <Version 2.1.4> Sat Jan 18 20:10:35 2003

This is a free version of the VeriWell for Win32 Simulator
Distribute this freely; call 1-800-VERIWELL for ordering information
See the file "!readme.1st" for more information

Copyright (c) 1993-97 Wellspring Solutions, Inc.
All rights reserved

Memory Available: 0
Entering Phase I...
Compiling source file : counter.v
Compiling source file : counter_tb.v
The size of this model is [5%, 6%] of the capacity of the free version

Entering Phase II...
Entering Phase III...
No errors in compilation
Top-level modules:
counter_tb

Applying reset

Came out of Reset
Terminating simulation
Simulation Result : PASSED

Exiting VeriWell for Win32 at time 96
0 Errors, 0 Warnings, Memory Used: 0
Compile time = 0.0, Load time = 0.0, Simulation time = 0.0

Normal exit
Thank you for using VeriWell for Win32

I know, you would like to see the test bench code that I used to generate
above output, well you can find it here and counter code here.
There are lot of things that I have not covered, may be when I find time, I
may add some more details on this subject.
As of books, I am yet to find a good book on writing test benches.

Modeling Memories and FSM

 Memory Modeling

To help modeling of memory, Verilog provides support of two dimension
arrays. Behavioral models of memories are modeled by declaring an array
of register variables, any word in the array may be accessed by using an
index into the array. A temporary variable is required to access a discrete
bit within the array.

 Syntax
 reg [wordsize:0] array_name [0:arraysize]

 Examples

 Declaration

reg [7:0] my_memory [0:255];

Here [7:0] is width of memory and [0:255] is depth of memory with
following parameters

? Width : 8 bits, little endian
? Depth : 256, address 0 corresponds to location 0 in array.

 Storing Values
 my_memory[address] = data_in;

 Reading Values
 data_out = my_memory[address];

 Bit Read

Sometime there may be need to just read only one bit. Unfortunately
Verilog does not allow to read only or write only one bit, the work around
for such a problem is as shown below.

data_out = my_memory[address];

data_out_it_0 = data_out[0];

 Initializing Memories

A memory array may be initialized by reading memory pattern file from disk
and storing it on the memory array. To do this, we use system task
$readmemb and $readmemh. $readmemb is used for binary

representation of memory content and $readmemh for hex representation.

 Syntax

$readmemh("file_name",mem_array,start_addr,stop_addr);

Note : start_addr and stop_addr are optional.

 Example : Simple memory

module memory;

 reg [7:0] my_memory [0:255];

 initial
 begin
 $readmemh("memory.list", my_memory);
 end
endmodule

 Example : Memory.list file

//Comments are allowed
1100_1100 // This is first address i.e 8'h00
1010_1010 // This is second address i.e 8'h01
@ 55 // Jump to new address 8'h55
0101_1010 // This is address 8'h55
0110_1001 // This is address 8'h56

$readmemh system task can also be used for reading test bench vectors. I
will cover this in detail in test bench section. When I find time.

Refer to the examples section for more details on different types of
memories.

 Introduction to FSM

State machine or FSM are the heart of any digital design, of course
counter is a simple form of FSM. When I was learning Verilog, I use to
wonder "How do I code FSM in Verilog" and "What is the best way to code
it". I will try to answer the first part of the question below and second part of
the question could be found in the tidbits section.

 State machine Types

There are two types of state machines as classified by the types of outputs
generated from each. The first is the Moore State Machine where the
outputs are only a function of the present state, the second is the Mealy
State Machine where one or more of the outputs are a function of the
present state and one or more of the inputs.

 Mealy Model

 Moore Model

State machines can also be classified based on type state encoding used.
Encoding style is also a critical factor which decides speed, and gate
complexity of the FSM. Binary, gray, one hot, one cold, and almost one hot
are the different types of encoding styles used in coding FSM states.

 Modeling State machines.

One thing that need to be kept in mind when coding FSM is that,
combinational logic and sequence logic should be in two different always
blocks. In the above two figures, next state logic is always the
combinational logic. State Registers and Output logic are sequential logic.
It is very important that any asynchronous signal to the next state logic
should be synchronized before feeding to FSM. Always try to keep FSM in
separate Verilog file.

Using constants declaration like parameter or `define to define states of the
FSM, this makes code more readable and easy to manage.

 State Diagram.

 Verilog Code

FSM code should have three sections,

? Encoding style.
? Combinational part.
? Sequential part.

 Encoding Style

 One Hot Encoding

parameter [1:0] IDLE = 3'b001,
 GNT0 = 3'b010,
 GNT1 = 3'b100;

 Binary Encoding

 parameter [1:0] IDLE = 2'b00,
 GNT0 = 2'b01,
 GNT1 = 2'b10;

 Gray Encoding

 parameter [1:0] IDLE = 2'b00,
 GNT0 = 2'b10,
 GNT1 = 2'b01;

 Combinational Section

 This section can be modeled using function, assign statement or using always
block with case statement. For time being lets see always block version

 next_state = 3'b000
 case(state)
 IDLE : if (req_0 == 1'b1)
 next_state = GNT0;
 else if (req_1 == 1'b1)
 next_state= GNT1;
 else
 next_state = IDLE;
 GNT0 : if (req_0 == 1'b1)
 next_state = GNT0;
 else
 next_state = IDLE;
 GNT1 : if (req_1 == 1'b1) begin
 next_state = GNT1;
 else
 next_state =1 IDLE;
 default : next_state = IDLE
 endcase
end

 Sequential Section.

 This section has be modeled using only edge sensitive logic such as always block
with posedge or negedge of clock

always @ (posedge clock)
begin : OUTPUT_LOGIC
 if (reset == 1'b1) begin
 gnt_0 <= #1 1'b0;
 gnt_1 <= #1 1'b0;
 state <= #1 IDLE;
 end
 else begin

 state <= #1 next_state;
 case(state)
 IDLE : begin
 gnt_0 <= #1 1'b0;
 gnt_1 <= #1 1'b0;
 end
 GNT0 : begin
 gnt_0 <= #1 1'b1;
 gnt_1 <= #1 1'b0;
 end
 GNT1 : begin
 gnt_0 <= #1 1'b0;
 gnt_1 <= #1 1'b1;
 end
 default : begin
 gnt_0 <= #1 1'b0;
 gnt_1 <= #1 1'b0;
 end
 endcase
 end
end

Parameterized Modules

 Introduction

Lets assume that we have a design, which requires us to have counters
of various width, but of same functionality. May be we can assume that
we have a design which requires lot of instants of different depth and
width of RAM's of same functionality. Normally what we do is, create
counters of different widths and then use them. Same rule applies to RAM
that we talked about.

But Verilog provides a powerful way to work around this problem, it
provides us with something called parameter, these parameters are like
constants local to that particular module.

We can override the default values with either using defparam or by
passing new set of parameters during instantiating. We call this as
parameter over riding.

 Parameters

A parameter is defined by Verilog as a constant value declared within the
module structure. The value can be used to define a set of attributes for
the module which can characterize its behavior as well as its physical
representation.

? Defined inside a module.
? Local scope.
? May be overridden at instantiation time

o If multiple parameters are defined, they must be overridden
in the order they were defined. If an overriding value is not
specified, the default parameter declaration values are
used.

? May be changed using the defparam statement

 Parameter Override using defparam

module secret_number;
 parameter my_secret = 0;
 initial
 $display("My secret number is %d", my_secret);

endmodule

module top;

 defparam U0.my_secret = 11;
 defparam U1.my_secret = 22;

 secret_number U0();
 secret_number U1();

endmodule

 Parameter Override during instantiating.

module secret_number;
 parameter my_secret = 0;
 initial

 $display("My secret number in module is %d",
my_secret);

endmodule

module top;

 secret_number #(11) U0();
 secret_number #(22) U1();

endmodule

 Passing more then one parameter

module ram_sp_sr_sw (
clk , // Clock Input
address , // Address Input
data , // Data bi-directional
cs , // Chip Select
we , // Write Enable/Read Enable
oe // Output Enable
);

parameter DATA_WIDTH = 8 ;
parameter ADDR_WIDTH = 8 ;
parameter RAM_DEPTH = 1 << ADDR_WIDTH;

for complete code refer to models section.

When instantiating more then the one parameter, parameter values
should be passed in order they are declared in sub module.

module ram_controller ();//Some ports

ram_sp_sr_sw #(16,8,256)
ram(clk,address,data,cs,we,oe);

endmodule

 Verilog 2001

 In Verilog 2001, above code will work, but the new feature makes the
code more readable and error free.

module ram_controller ();//Some ports

ram_sp_sr_sw #(.DATA_WIDTH(16),
.ADDRE_WIDTH(8), .RAM_DEPTH(256))
ram(clk,address,data,cs,we,oe);

endmodule

 Was this copied from VHDL?

Verilog Synthesis Tutorial

 What is logic synthesis ?

Logic synthesis is the process of converting a high-level description of
design into an optimized gate-level representation. Logic synthesis uses
standard cell library which have simple cells, such as basic logic gates like
and, or, and nor, or macro cells, such as adder, muxes, memory, and
flip-flops. Standard cells put together is called technology library. Normally
technology library is know by the transistor size (0.18u, 90nm).

A circuit description is written in Hardware description language (HDL)
such as Verilog. The designer should first understand the architectural
description. Then he should consider design constraints such as timing,
area, testability, and power.

We will see a typical design flow with a large example in last chapter of
Verilog tutorial.

 Life before HDL (Logic synthesis)

As you must have experience in college, that let be counter or any other
fancy logic. In college every thing has to be designed manually. Draw K-
maps, optimize the logic, Draw the schematic. This is how engineers used
to design digital logic circuits in early days. Well this works fine as long as
the design is few hundred gates.

 Impact of HDL and Logic synthesis.

High-level design is less prone to human error because designs are
described at a higher level of abstraction. High-level design is done without
significant concern about design constraints. Conversion from high-level
design to gates is done by synthesis tools, while doing so it used various
algorithms to optimize the design as a whole. This removes the problem
with varied designer styles for the different blocks in the design and
suboptimal designs. Logic synthesis tools allow technology independent
design. Design reuse is possible for technology-independent descriptions.

 What do we discuss here ?

When it comes to Verilog, the synthesis flow is same as rest of the
languages. What we intent to look in next few pages is how particular code
gets translated to gates. As you must have wondered whiled reading
earlier chapters, how could this be represented in Hardware. Example
would be "delays", There is no way we could synthesize delays, but
ofcourse we can add delay to particular signal by adding buffers. But then
this becomes too dependent on synthesis target technology. (More on this
in VLSI section).

First we will look at the constructs that are not supported by synthesis
tools, Table below shows the constructs that are supported by the
synthesis tool.

 Constructs Not Supported in Synthesis

Construct Type Notes
initial Used only in test benches.

events Events make more sense for syncing
test bench components

real Real data type not supported.
time Time data type not supported

force and release Force and release of data types not
supported

assign and deassign
assign and deassign of reg data types
is not supported. But assign on wire
data type is supported

fork join Use non-blocking assignments to get
same effect.

primitives Only gate level primitives are
supported

table UDP and tables are not supported.

 Example of Non-Synthesizable Verilog construct.
 Any code that contains above constructs are not synthesizable, but within

synthesizable constructs, bad coding could cause synthesis issues. I have
seen codes where engineers code a flip-flop with both posedge of clock
and negedge of clock in sensitivity list.

Then we have another common type of code, where one reg variable is
driven from more then one always blocks. Well it will surely cause
synthesis error.

 initial Statement

module clk_gen (clk);
 output clk;
 reg clk;

 initial begin
 clk = 0;
 end

 always begin
 #10 clk = !clk;
 end

endmodule

 Delays
 a = #10 b; This code is useful only for simulation purpose.

 Synthesis tool normally ignores such constructs, and just assumes that
there is no #10 in above statement. Thus treating above code as below.

 a = b;

 Comparison to X and Z are always ignored

module compare (a,b);
 output a;
 input b;
 reg a;

 always @ (b)
 if (b == 1'bz)
 a = 1;
 else
 a = 0;

endmodule

There seems to a common problem with all the new to hardware design
engineers. They normally tend to compare variables with X and Z. In
practice it is worst thing to do. So please avoid comparing with X and Z.
Limit your design to two state's, 0 and 1. Use tri-state only at chip IO pads
level. We will see this as a example in next few pages.

 Constructs Supported in Synthesis

Verilog is such a simple language, you could easily write code which is
easy to understand and easy to map to gates. Code which uses if, case
statements are simple and cause little headache's with synthesis tools. But
if you like fancy coding and like to have some trouble. Ok don't be scared,
you could use them after you get some experience with Verilog. Its great
fun to use high level constructs, saves time.

Most common way to model any logic is to use either assign statement or
always block. assign statement can be used for modeling only
combinational logic and always can be used for modeling both
combinational and Sequential logic.

Construct Type Keyword or
Description Notes

ports input, inout, output Use inout only at IO level.
parameters parameter This makes design more

generic
module definition module
signals and
variables wire, reg, tri Vectors are allowed

module instances instantiation

primitive gate instances Eg: nand (out,a,b) bad
idea to code RTL this way.

function and
tasks function , task Timing constructs ignored

procedural always, if, then, else,
case, casex, casez initial is not supported

procedural
blocks

begin, end, named
blocks, disable

Disabling of named blocks
allowed

data flow assign Delay information is
ignored

named Blocks
disable Disabling of named block

supported.
loops

for, while, forever
While and forever loops
must contain @(posedge
clk) or @(negedge clk)

 Operators and their Effect.

 One common problem that seems to occure, getting confused with logical
and Reduction operators. So watch out.

Operator Type Operator Symbol Operation Performed
* Multiply
/ Divide
+ Add
- Subtract
% Modulus
+ Unary plus

Arithmetic

- Unary minus
! Logical negation Logical
&& Logical and

 || Logical or
> Greater than
< Less than
>= Greater than or equal

Relational

<= Less than or equal
== Equality Equality
!= inequality
& Bitwise negation
~& nand
| or
~| nor
^ xor

Reduction

^~ ~^ xnor
>> Right shift Shift
<< Left shift

Concatenation { } Concatenation
Conditional ?: conditional

 Logic Circuit Modeling

From what we have learnt in digital design, we know that there could be
only two types of digital circuits. One is combinational circuits and second
is sequential circuits. There are very few rules that need to be followed to
get good synthesis output and avoid surprises.

 Combinational Circuit Modeling using assign

Combinational circuits modeling in Verilog can be done using assign and
always blocks. Writing simple combination circuit in Verilog using assign
statement is very straight forward. Like in example below

assign y = (a&b) | (c^d);

 Tri-state buffer

 module tri_buf (a,b,enable);
 input a;
 output b;
 input enable;
 wire b;

 assign b = (enable) ? a : 1'bz;

 endmodule

 2:1 mux

 module mux_21 (a,b,sel,y);
 input a, b;
 output y;
 input sel;
 wire y;

 assign y = (sel) ? b : a;

 endmodule

 Simple Concatenation

 module bus_con (a,b);
 input [3:0] a, b;
 output [7:0] y;
 wire [15:0] y;

 assign y = {a,b};

 endmodule

 1 bit adder with carry

 module addbit (a,b,carry,sum);
 input a, b;
 output carry,sum;
 wire carry,sum;

 assign {carry,sum} = (a + b);

 endmodule

 Multiply by 2

 module muliply (a,product);
 input [3:0] a;
 output [4:0] product;
 wire [4:0] product;

 assign product = a << 1;

 endmodule

 3 is to 8 decoder

 module decoder (in,out);
 input [2:0] in;
 output [7:0] out;
 wire [4:0] out;

assign out = (in == 3'b000) ? 8'b0000_0001 :
(in == 3'b001) ? 8'b0000_0010 :
(in == 3'b010) ? 8'b0000_0100 :
(in == 3'b011) ? 8'b0000_1000 :
(in == 3'b100) ? 8'b0001_0000 :
(in == 3'b101) ? 8'b0010_0000 :
(in == 3'b110) ? 8'b0100_0000 :
(in == 3'b111) ? 8'b1000_0000 : 8'h00;

 endmodule

 Combinational Circuit Modeling using always

While modeling using always statement, there is chance of getting latch
after synthesis if proper care is not taken care. (no one seems to like
latches in design, though they are faster, and take lesser transistor. This is
due to the fact that timing analysis tools always have problem with latches
and second reason being, glitch at enable pin of latch is another problem).

One simple way to eliminate latch with always statement is, always drive 0
to the LHS variable in the beginning of always code as shown in code
below.

 3 is to 8 decoder

 module decoder (in,out);
 input [2:0] in;
 output [7:0] out;
 reg [4:0] out;

 always @ (in)
 begin
 out = 0;
 case (in)
 3'b001 : out = 8'b0000_0001;
 3'b010 : out = 8'b0000_0010;
 3'b011 : out = 8'b0000_0100;
 3'b100 : out = 8'b0000_1000;
 3'b101 : out = 8'b0001_0000;
 3'b110 : out = 8'b0100_0000;
 3'b111 : out = 8'b1000_0000;
 endcase
 end

 endmodule

 Sequential Circuit Modeling

Sequential logic circuits are modeled by use of edge sensitive elements in
sensitive list of always blocks. Sequential logic can be modeled only by
use of always blocks. Normally we use non-blocking assignments for
sequential circuits.

 Flip-Flop

 module flif_flop (clk,reset, q, d);
 input clk, reset, d;
 output q;
 reg q;

 always @ (posedge clk)
 begin
 if (reset == 1) begin
 q <= 0;
 end
 else begin
 q <= d;
 end
 end

 endmodule

 Verilog Coding Style

If you look at the above code, you will see that I have imposed coding style
that looks cool. Every company has got its own coding guidelines and tools
like linters to check for this coding guidelines. Below is small list of
guidelines.

 Use meaningful names for signals and variables
 Don't mix level and edge sensitive in one always block
 Avoid mixing positive and negative edge-triggered flip-flops
 Use parentheses to optimize logic structure
 Use continuous assign statements for simple combo logic.
 Use non-blocking for sequential and blocking for combo logic

Don't mix blocking and non-blocking assignments in one always block. (
though Design compiler supports them!!).

 Be careful with multiple assignments to the same variable
 Define if-else or case statements explicitly.

 Note : Suggest if you want more details.

Verilog PLI Tutorial
 Introduction

Verilog PLI(Programming Language Interface) is a mechanism to invoke C
or C++ functions from Verilog code.

The function invoked in Verilog code is called a system call. An example of
a built-in system call is $display, $stop, $random. PLI allows the user to
create custom system calls, Something that Verilog syntax does not allow
us to do. Some of this are:-

? Power analysis.
? Code coverage tools.
? Can modify the Verilog simulation data structure - more accurate

delays.
? Custom output displays.
? Co-simulation.
? Design debug utilities.
? Simulation analysis.
? C-model interface to accelerate simulation.
? Testbench modeling.

To achieve above few application of PLI, C code should have the access to
the internal data structure of the Verilog simulator. To facilitate this Verilog
PLI provides with something called acc routines or simply access routines.

There is second set of routines, which are called tf routines, or simply task
and function routines. The tf and acc are PLI 1.0 routines and is very vast
and very old routines. The next set of routine, which was introduced with
latest release of Verilog 2001 is called vpi routines. This is small and
crystal clear PLI routines and thus the new version PLI 2.0.

 How it Works

? Write the functions in C/C++ code.
? Compile them to generate shared lib (*.DLL in Windows and *.so in

UNIX). Simulator like VCS allows static linking.
? Use this Functions in Verilog code (Mostly Verilog Testbench).
? Based on simulator, pass the C/C++ function details to simulator

during compile process of Verilog Code.
? Once linked just run the simulator.

 Example : Hello World

We will define a function hello, which when called will print "Hello Deepak".
This example does not use any of the PLI standard functions (ACC, TF
and VPI). For exact linking details, please refer to simulator manuals.
Each simulator implements its own way for linking C/C++ functions to
simulator.

 C Code

 #include <stdlib.h> /* ANSI C standard library */
 #include <stdio.h> /* ANSI C standard input/output library */

 void hello () {
 printf ("Hello Deepak");
 }

 Verilog Code

 module hello_pli ()

 initial begin

 $hello;
 #10 $finish;

 end
 endmodule

 Running the Simulation
 Need to add

 PLI TF and ACC interface mechanism
 Need to add

What's new in Verilog 2001

 Introduction

Well most of the changes in Verilog 2001 are picked from other
languages. Like generate, configuration, file operation was from VHDL. I
am just adding a list of most commonly used Verilog 2001 changes. You
could use the Icarus Verilog simulator for testing examples in this section.

 Comma used in sensitive list

In earlier version of Verilog ,we use to use or to specify more then one
sensitivity list elements. In the case of Verilog 2001, we use comma as
shown in example below.

always @ (a, b, c, d, e)

always @ (posedge clk, posedge reset)

 Combinational logic sensitive list

always @ *
a = ((b&c) || (c^d));

 Wire Data type

In Verilog 1995, default data type is net and its width is always 1 bit.
Where as in Verilog 2001. The width is adjusted automatically.

In Verilog 2001, we can disable default data type by `default net_type
none, This basically helps in catching the undeclared wires.

 Register Data type

Register data type is called as variable, as it created lot of confusion for
beginners. Also it is possible to specify initial value to Register/variable
data type. Reg data type can also be declared as signed.

reg [7:0] data = 0;
reg signed [7:0] data;

 New operators

<<<, >>> : Shift left, shift right : To be used on signed data type
** : exponential power operator.

 Port Declaration

module adder (
input [3:0] a,
input [3:0] b,
output [3:0] sum
);

module adder (a,b,y);
input wire [3:0] a,
input wire [3:0] b,
output reg [3:0] sum

This is equivalent to Verilog 1995 as given below
module adder (a,b,y);
input a;
input b;
output y;
wire a;
wire b;
reg sum;

 Random Generator

In Verilog 1995, each simulator used to implement its own version of
$random. In Verilog 2001, $random is standardized, so that simulations
runs across all the simulators with out any inconsistency.

 Generate Blocks

 This feature has been taken from VHDL with some modification. It is
possible to use for loop to mimic multiple instants.

 Multi Dimension Array.

More then two dimension supported.

There are lot of other changes, Which I plan to cover sometime later. Or
may be I will mix this with the actual Verilog tutorial with reference to
Verilog 2001, when ever necessary.

Verilog Quick Reference

MODULE

module MODID[({PORTID,})];
[input | output | inout [range] {PORTID,};]
[{declaration}]
[{parallel_statement}]
[specify_block]
endmodule
range ::= [constexpr : constexpr]

DECLARATIONS

parameter {PARID = constexpr,};
wire | wand | wor [range] {WIRID,};
reg [range] {REGID [range],};
integer {INTID [range],};
time {TIMID [range],};
real {REALID,};
realtime {REALTIMID,};
event {EVTID,};
task TASKID;
[{input | output | inout [range] {ARGID,};}]
[{declaration}]
begin
[{sequential_statement}]
end
endtask
function [range] FCTID;
{input [range] {ARGID,};}
[{declaration}]
begin
[{sequential_statement}]
end
endfunction

PARALLEL
STATEMENTS

assign [(strength1, strength0)] WIRID = expr;
initial sequential_statement
always sequential_statement
MODID [#({expr,})] INSTID
([{expr,} | {.PORTID(expr),}]);
GATEID [(strength1, strength0)] [#delay]
[INSTID] ({expr,});
defparam {HIERID = constexpr,};
strength ::= supply | strong | pull | weak | highz
delay ::= number | PARID | (expr [, expr [, expr]])

GATE PRIMITIVES

and (out, in1, ..., inN);
or (out, in1, ..., inN);
xor (out, in1, ..., inN);
buf (out1, ..., outN, in);
bufif0 (out, in, ctl);
notif0 (out, in, ctl);
pullup (out);
[r]pmos (out, in, ctl);
[r]nmos (out, in, ctl);
[r]cmos (out, in, nctl, pctl);
[r]tran (inout, inout);
[r]tranif1 (inout, inout, ctl);
[r]tranif0 (inout, inout, ctl);

nand (out, in1, ..., inN);
nor (out, in1, ..., inN);
xnor (out, in1, ..., inN);
not (out1, ..., outN, in);
notif1 (out, in, ctl);
bufif1 (out, in, ctl);
pulldown (out);

SEQUENTIAL
STATEMENTS

;
begin[: BLKID
[{declaration}]]
[{sequential_statement}]
end
if (expr) sequential_statement
[else sequential_statement]
case | casex | casez (expr)
[{{expr,}: sequential_statement}]
[default: sequential_statement]
endcase
forever sequential_statement
repeat (expr) sequential_statement
while (expr) sequential_statement
for (lvalue = expr; expr; lvalue = expr)
sequential_statement
#(number | (expr)) sequential_statement
@ (event [{or event}]) sequential_statement
lvalue [<]= [#(number | (expr))] expr;
lvalue [<]= [@ (event [{or event}])] expr;wait (expr)
sequential_statement
-> EVENTID;
fork[: BLKID
[{declaration}]]
[{sequential_statement}]
join
TASKID[({expr,})];
disable BLKID | TASKID;
assign lvalue = expr;
deassign lvalue;
lvalue ::=
ID[range] | ID[expr] | {{lvalue,}}
event ::= [posedge | negedge] expr

SPECIFY BLOCK
specify_block ::= specify
{specify_statement}
endspecify

SPECIFY BLOCK
STATEMENTS

specparam {ID = constexpr,};
(terminal => terminal) = path_delay;
((terminal,} *> {terminal,}) = path_delay;
if (expr) (terminal [+|-]=> terminal) = path_delay;
if (expr) ({terminal,} [+|-]*> {terminal,}) =
path_delay;
[if (expr)] ([posedge|negedge] terminal =>
(terminal [+|-]: expr)) = path_delay;
[if (expr)] ([posedge|negedge] terminal *>
({terminal,} [+|-]: expr)) = path_delay;
$setup(tevent, tevent, expr [, ID]);
$hold(tevent, tevent, expr [, ID]);
$setuphold(tevent, tevent, expr, expr [, ID]);
$period(tevent, expr [, ID]);
$width(tevent, expr, constexpr [, ID]);
$skew(tevent, tevent, expr [, ID]);
$recovery(tevent, tevent, expr [, ID]);
tevent ::= [posedge | negedge] terminal
[&&& scalar_expr]
path_delay ::=
expr | (expr, expr [, expr [, expr, expr, expr]])
terminal ::= ID[range] | ID[expr]

EXPRESSIONS

primary
unop primary
expr binop expr
expr ? expr : expr
primary ::=
literal | lvalue | FCTID({expr,}) | (expr)

UNARY OPERATORS

+, - Positive, Negative
! Logical negation
~ Bitwise negation
&, ~& Bitwise and, nand
|, ~| Bitwise or, nor
^, ~^, ^~ Bitwise xor, xnor

BINARY OPERATORS

Increasing precedence:
?: if/else
|| Logical or
&& Logical and
| Bitwise or
^, ^~ Bitwise xor, xnor
& Bitwise and
==, != , ===, !== Equality
<, <=, >, >= Inequality
<<, >> Logical shift
+, - Addition, Subtraction
*, /, % Multiply, Divide, Modulo

SIZES OF EXPRESSIONS

unsized constant 32
sized constant as specified
i op j +,-,*,/,%,&,|,^,^~ max(L(i), L(j))
op i +, -, ~ L(i)
i op j ===, !==, ==, !=
&&, ||, >, >=, <, <= 1
op i &, ~&, |, ~|, ^, ~^ 1
i op j >>, << L(i)
i ? j : k max(L(j), L(k))
{i,...,j} L(i) + ... + L(j)
{i{j,...k}} i * (L(j)+...+L(k))
i = j L(i)

SYSTEM TASKS * indicates tasks not part of the IEEE standard
but mentioned in the informative appendix.

INPUT

$readmemb(“fname”, ID [, startadd [, stopadd]]);
$readmemh(“fname”, ID [, startadd [, stopadd]]);
$sreadmemb(ID, startadd, stopadd {, string});
$sreadmemh(ID, startadd, stopadd {, string});

OUTPUT

$display[defbase]([fmtstr,] {expr,});
$write[defbase] ([fmtstr,] {expr,});
$strobe[defbase] ([fmtstr,] {expr,});
$monitor[defbase] ([fmtstr,] {expr,});
$fdisplay[defbase] (fileno, [fmtstr,] {expr,});
$fwrite[defbase] (fileno, [fmtstr,] {expr,});
$fstrobe(fileno, [fmtstr,] {expr,});
$fmonitor(fileno, [fmtstr,] {expr,});
fileno = $fopen(“filename”);
$fclose(fileno);
defbase ::= h | b | o

TIME

$time “now” as TIME
$stime “now” as INTEGER
$realtime “now” as REAL
$scale(hierid) Scale “foreign” time value
$printtimescale[(path)] Display time unit & precision
$timeformat(unit#, prec#, “unit”, minwidth)
Set time %t display format

SIMULATION CONTROL

$stop Interrupt
$finish Terminate
$save(“fn”) Save current simulation
$incsave(“fn”) Delta-save since last save
$restart(“fn”) Restart with saved simulation
$input(“fn”) Read commands from file
$log[(“fn”)] Enable output logging to file
$nolog Disable output logging
$key[(“fn”)] Enable input logging to file
$nokey Disable input logging
$scope(hiername) Set scope to hierarchy
$showscopes Scopes at current scope
$showscopes(1) All scopes at & below scope
$showvars Info on all variables in scope
$showvars(ID) Info on specified variable
$countdrivers(net)>1 driver predicate
$list[(ID)] List source of [named] block
$monitoron Enable $monitor task
$monitoroff Disable $monitor task
$dumpon Enable val change dumping
$dumpoff Disable val change dumping
$dumpfile(“fn”) Name of dump file
$dumplimit(size) Max size of dump file
$dumpflush Flush dump file buffer
$dumpvars(levels [{, MODID | VARID}])
Variables to dump
$dumpall Force a dump now
$reset[(0)] Reset simulation to time 0
$reset(1) Reset and run again
$reset(0|1, expr) Reset with
reset_value*$reset_value Reset_value of last $reset
$reset_count # of times $reset was used

MISCELLANEOUS

$random[(ID)]
$getpattern(mem) Assign mem content
$rtoi(expr) Convert real to integer
$itor(expr) Convert integer to real
$realtobits(expr) Convert real to 64-bit vector
$bitstoreal(expr) Convert 64-bit vector to real

ESCAPE SEQUENCES IN
FORMAT STRINGS

\n, \t, \\, \” newline, TAB, ‘\’, ‘“‘
\xxx character as octal value
%% character ‘%’
%[w.d]e, %[w.d]E display real in scientific form
%[w.d]f, %[w.d]F display real in decimal form
%[w.d]g, %[w.d]G display real in shortest form
%[0]h, %[0]H display in hexadecimal
%[0]d, %[0]D display in decimal
%[0]o, %[0]O display in octal
%[0]b, %[0]B display in binary
%[0]c, %[0]C display as ASCII character
%[0]v, %[0]V display net signal strength
%[0]s, %[0]S display as string
%[0]t, %[0]T display in current time format
%[0]m, %[0]M display hierarchical name

LEXICAL ELEMENTS

hierarchical identifier ::= {INSTID .} identifier
identifier ::= letter | _ { alphanumeric | $ | _}
escaped identifer ::= \ {nonwhite}
decimal literal ::=
[+|-]integer [. integer] [E|e[+|-] integer]
based literal ::= integer ‘ base {hexdigit | x | z}
base ::= b | o | d | h
comment ::= // comment newline
comment block ::= /* comment */

VERILOG IN ONE DAY

 Introduction

I wish I could learn Verilog in one day, well that's every new learners
dream. In next few pages I have made an attempt to make this dream a
real one for those new learners. There will be some theory, some
examples followed by some exercise. Only requirement for this "Verilog in
One Day" is that you should be aware of at least one programming
language. One thing that makes Verilog and software programming
languages different is that, in Verilog execution of different blocks of code
is concurrent, where as in software programming language it is sequential.
Of course this tutorial is useful for those who have some background in
Digital design back ground.

 Life before Verilog was life of Schematics, where any design, let it be of
any complexity use to designed thought schematics. This method of
schematics was difficult to verify and was error prone, thus resulting in lot
of design and verify cycles.

Whole of this tutorial is based around a arbiter design and verification. We
will follow the typical design flow found here.

? Specs
? High level design
? Low level design or micro design
? RTL coding
? Verification
? Synthesis.

For anything to be designed, we need to have the specs. So lets define
specs.

? Two agent arbiter.
? Active high asynchronous reset.
? Fixed priority, with agent 0 having highest priority.
? Grant will be asserted as long as request is asserted.

Once we have the specs, we can draw the block diagram. Since the
example that we have taken is a simple one, For the record purpose we
can have a block diagram as shown below.

 Block diagram of arbiter

Normal digital design flow dictates that we draw a stated machine, from
there we draw the truth table with next state transition for each flip-flop.
And after that we draw kmaps and from kmaps we can get the optimized
circuit. This method works just fine for small design, but with large design's
this flow becomes complicated and error prone.

You may refer to the digital section to understand this flow (I think this
flow tutorial in Digital section is still under construction).

 Low level design

 Here we can add the signals at the sub module level and also define the
state machine if any in greater detail as shown in the figure below.

 Modules

If you look at the arbiter block, we can see that it has got a name arbiter
and input/output ports. Since Verilog is a HDL, it needs to support this, for
this purpose we have reserve word "module".

module arbiter is same as block arbiter, Each module should follow with
port list as shown in code below.

 Code of module "arbiter"

If you look closely arbiter block we see that there are arrow marks,
(incoming for inputs and outgoing for outputs). In Verilog after we have
declared the module name and port names, We can define the direction of
each port. (In Verilog 2001 we can define ports and port directions at one
place), as shown in code below.

module aribiter (

clock , // clock
reset , // Active high, syn reset
req_0 , // Request 0
req_1 , // Request 1
gnt_0 , // Grant 0
gnt_1
);
/-------------Input Ports-----------------------------
input clock ;
input reset ;
input req_0 ;
input req_1 ;

//-------------Output Ports----------------------------
output gnt_0 ;
output gnt_1 ;

As you can see, we have only two types of ports, input and output. But in
real life we can have bi-directional ports also. Verilog allows us to define
bi-directional ports as "inout"

Example :

inout read_enable;

One make ask " How do I define vector signals", Well Verilog do provide
simple means to declare this too.

Example :

inout [7:0] address;

where left most bit is 7 and rightmost bit is 0. This is little endian
convesion.

Summary

? We learnt how a block/module is defined in Verilog
? We learnt how to define ports and port directions.
? How to declare vector/scalar ports.

 Data Type

Oh god what this data type has to do with hardware ?. Well nothing
special, it just that people wanted to write one more language that had
data types (need to rephrase it!!!!). No hard feelings :-).

Actually there are two types of drivers in hardware...

What is this driver ?

Driver is the one which can drive a load. (guess, I knew it).

? Driver that can store a value (example flip-flop).
? Driver that can not store value, but connects two points (example

wire).

First one is called reg data type and second data type is called wire. You
can refer to this page for getting more confused.

There are lot of other data types for making newbee life bit more harder.
Lets not worry about them for now.

Examples :

 wire and_gate_output;

 reg d_flip_flop_output;

 reg [7:0] address_bus;

Summary

? wire data type is used for connecting two points.
? reg data type is used for storing values.
? May god bless rest of the data types.

 Operators

If you have seen the pre-request for this one day nightmare, you must
have guessed now that Operators are same as the one found in any
another programming language. So just to make life easies, all operators
like in the list below are same as in C language.

Operator Type Operator Symbol Operation Performed

* Multiply
/ Divide
+ Add
- Subtract

% Modulus
+ Unary plus

Arithmetic

- Unary minus
! Logical negation

&& Logical and
Logical

|| Logical or
> Greater than
< Less than

>= Greater than or equal

Relational

<= Less than or equal
== Equality Equality
!= inequality
& Bitwise negation

~& nand
| or

~| nor
^ xor

Reduction

^~ ~^ xnor
>> Right shift Shift
<< Left shift

Concatenation { } Concatenation
Conditional ?: Conditional

Example :

? a = b + c ; // That was very easy
? a = 1 << 5; // Hum let me think, ok shift '1' left by 5 position.
? a = !b ; // Well does it invert b???
? a = ~b ; // How many times do you want to assign to 'a', it could

cause multiple-drivers.

Summary

? Lets attend C language training again.

 Control Statements

Did we come across "if else"," repeat", "while", "for" "case". Man this is
getting boring, Looks like Verilog was picked from C language.
Functionality of Verilog Control statement is same as C language. Since
Verilog is a HDL (Hardware Description Language), this control
statements should translate to Hardware, so better be careful when you
use control statements. We will see this in detail in synthesis sub-section.

 if-else

if-else statement is used for checking a condition to execute a portion of
code. If condition does not satisfy, then execute code in other portion of
code as shown in code below.

 if (enable == 1'b1) begin
 data = 10; // Decimal assigned
 address = 16'hDEAD; // Hexa decimal
 wr_enable = 1'b1; // Binary
 end else begin
 data = 32'b0;
 wr_enable = 1'b0;
 address = address + 1;
 end

One could use any operators in the condition checking as in the case of C
language. If needed we can have nested if else statements, statements
without else is also ok, but then it has its own problem when modeling
combinational logic, if statement without else results in a Latch (this is not
always true).

 case

Case statement is used where we have one variable, which needs to be
checked for multiple values. Like a address decoder, where input is
address and it needs to checked for all the values that it can take. In
Verilog we have casex and casez, This are good for reading, but for
implementation purpose just avoid them. You can read about them in
regular Verilog text.

Any case statement should begin with case reserved word, and end with
encase reserved word. It is always better to have default statement, as
this always takes care of un-covered case. Like in FSM, if all cases are
not covered and FSM enters into a un-covered statement, this could
result in FSM hanging. If we default statement with return to idle state,

could bring FSM to safe state.

 case(address)
 0 : $display ("It is 11:40PM");
 1 : $display ("I am feeling sleepy");
 2 : $display ("Let me skip this tutorial");
 default : $display ("Need to complete");
 endcase

Looks like address value was 3 and so I am still writing this tutorial. One
thing that is common to if-else and case statement is that, if you don't
cover all the cases (don't have else in if-else or default in case), and you
are trying to write a combination statement, the synthesis tool will infer
Latch.

 While

While statement checks if a condition results in Boolean true and
executed the code within the begin and end statements. Normally while
loop is not used for real life modeling, but used in Test benches

 while(free_time) begin

 $display ("Continue with webpage
development");

 end

As long as free_time variable is set, code within the begin and end will be
executed. i.e print "Continue with web development". Lets looks at a more
strange example, which uses most of the constructs of Verilog. Well you
heard it right. Verilog has very few reserve words then VHDL, and in this
few, we use even lesser few for actual coding. So good of Verilog....right.

 module counter (clk,rst,enable,count);
 input clk, rst, enable;
 output [3:0] count;
 reg [3:0] count;

 always @ (posedge clk or posedge rst)
 if (rst) begin
 count <= 0;
 end else begin : COUNT

 while (enable) begin
 count <= count + 1; disable COUNT;

 end
 end

 endmodule

We will visit this code later, you can find the RTL and Test bench for
above here.

 for loop

"for-loop" statement in Verilog is very close to C language "for-loop"
statement, only difference is that ++ and -- operators is not supported in
Verilog. So we end up using var = var + 1, as shown below.

 for(i = 0; i < 16; i = i =1) begin
 $display ("Current value of i is %d", i);
 end

Above code prints the value of i from 0 to 15. Using of for loop for RTL,
should be done only after careful analysis.

 repeat

"repeat" statement in Verilog is same as to C language "repeat"
statement, Below code is simple example of a repeat statement.

 repeat(16) begin
 $display ("Current value of i is %d", i);
 i = i + 1;
 end

Above example output will be same as the for-loop output. One question
that comes to mind, why the hell someone would like to use repeat for
implementing hardware.

Summary

? while, repeat statements are same as C language.
? if-else and case statements requires all the cases to covered for

combinational logic.
? for-loop same as C, but no ++ and -- operators.

 Variable Assignment

In digital there are two types of elements, combinational and sequential.
Of course we know this. But the question is "how do we model this in
Verilog". Well Verilog provides two ways to model the combinational logic
and only one way to model sequential logic.

? Combination elements can be modeled using assign and always

statements.
? Sequential elements can be modeled using only always statement.
? There is third type, which is used in test benches only, it is called

initial statement.

Before we discuss about this modeling, lets go back to the second
example of while statement. In that example we had used lot of features of
Verilog. Verilog allows user to give name to block of code, block of code is
something that starts with reserve word "begin" and ends with reserve
word "end". Like in the example we have "COUNT" as name of the block.
This concept is called named block.

We can disable a block of code, by using reserve word "disable <block
name>". In the above example, after the each incremented of counter,
COUNT block of code is disabled.

 Initial Blocks

initial block as name suggests, is executed only once and that too, when
simulation starts. This is useful in writing test bench. If we have multiple
initial blocks, then all of them are executed at beginning of simulation.

Example

 initial begin
 clk = 0;
 reset = 0;
 req_0 = 0;
 req_1 = 0;
 end

In the above example at the beginning of simulation, (i.e when time = 0),
all the variables inside the begin and end and driven zero.

 Always Blocks

As name suggest, always block executes always. Unlike initial block, which
executes only once, at the beginning of simulation. Second difference is
always block should have sensitive list or delay associated with it.

Sensitive list is the one which tells the always block when to execute the
block of code, as shown in figure below. @ symbol after the always
reserved word indicates that always block will be triggers "at" condition in
parenthesis after symbol @.

One important note about always block is, it can not drive a wire data type,
but can drive reg and integer data type.

 always @ (a or b or sel)
 begin
 y = 0;
 if (sel == 0) begin
 y = a;
 end else begin
 y = b;
 end
 end

Above example is a 2:1 mux, with input a and b, sel is the select input and y
is mux output. In any combination logic output is changes, whenever the
input changes. This theory when applied to always blocks means that, the
code inside always block needs to be executed when ever the input
variables (or output controlling variables) change. This variables are the one
which are included in the sensitive list, namely a, b and sel.

There are two types of sensitive list, the one which are level sensitive (like
combinational circuits) and the one which are edge sensitive (like flip-flops).
below the code is same 2:1 Mux but the output y now is output of a flip-flop.

 always @ (posedge clk)
 if (reset == 0) begin
 y <= 0;
 end else if (sel == 0) begin
 y <= a;
 end else begin
 y <= b;
 end

We normally have reset to flip-flops, thus every time clock makes transition
from 0 to 1 (posedge), we check if reset is asserted (synchronous reset),
and followed by normal logic. If look closely we see that in the case of
combinational logic we had "=" for assignment, and for the sequential block
we had "<=" operator. Well "=" is block assignment and "<=" is non-blocking
assignment. "=" executes code sequentially inside a begin and end, where
as non-blocking "<=" executes in parallel.

We can have always block without sensitive list, in that case we need to
have delay as shown in code below.

 always begin
 #5 clk = ~clk;
 end

#5 in front of the statement delays the execution of the statement by 5 time
units.

 Assign Statement

assign statement is used for modeling only combinational logic and it is
executed continuously. So assign statement called continuous assignment
statement as there is no sensitive list.

 assign out = (enable) ? data : 1'bz;

Above example is a tri-state buffer. When enable is 1, data is driven to out,
else out is pulled to high-impendence. We can have nested conditional
operator to construct mux, decoders and encoders.

 assign out = data;

Above example is a simple buffer.

 Task and Function

Just repeating same old thing again and again, Like any other programming
language, Verilog provides means to address repeated used code, this are
called Task and Functions. I wish I had something similar for the webpage,
just call it to print this programming language stuff again and again.

Below code is used for calculating even parity.

 function parity;
 input [31:0] data;
 integer i;
 begin
 parity = 0;
 for (i= 0; i < 32; i = i + 1) begin
 parity = parity ^ data[i];
 end
 end
 endfunction

function and task have same syntax, few difference is task can have delays,

where function can not have any delay. Which means function can be used
for modeling combination logic. You can find the example code here.

 Test Benches

Ok, now we have code written according to the design document, now
what?

Well we need to test it to see if it works according to specs. Most of the
time, its same as we use to do in digital labs in college days. Drive the
inputs, match the outputs with expected values. Lets look at the arbiter
testbench.

 module arbiter_tb;

 reg clock, reset, req0,req1;
 wire gnt0,gnt1;

 initial begin

 $monitor ("req0=%b, req1=%b,
gnt0=%b,gnt1=%b", req0,req0,gnt0,gnt1);

 clock = 0;
 reset = 0;
 req0 = 0;
 req1 = 0;
 #5 reset = 1;
 #15 reset = 0;
 #10 req0 = 1;S
 #10 req0 = 0;
 #10 req1 = 1;
 #10 req1 = 0;
 #10 {req0,req1} = 2'b11;
 #10 {req0,req1} = 2'b00;
 #10 $finish;

 end

 always begin
 #5 clock = !clock; // Generate clock
 end

 arbiter U0 (
 .clock (clock),
 .reset (reset),
 .req_0 (req0),
 .req_1 (req1),
 .gnt_0 (gnt0),
 .gnt_1 (gnt1)

);

 endmodule

Its looks like we have declared all the arbiter inputs as reg and outputs as
wire, well that's true. We are doing this as test bench needs to drive inputs
and needs to monitor outputs.

After we have declared all the needed variables, we initialize all the inputs to
know state, we do that in the initial block. After initialization, we assert/de-
assert reset, req0, req1 in the sequence we want to test the arbiter. Clock is
generated with always block.

After we have done with the testing, we need to stop the simulator. Well we
use $finish to terminate simulation. $monitor is used to monitor the changes
in the signal list and print them in the format we want.

req0=0, req1=0, gnt0=x,gnt1=x
req0=0, req1=0, gnt0=0,gnt1=0
req0=1, req1=0, gnt0=0,gnt1=0
req0=1, req1=0, gnt0=1,gnt1=0
req0=0, req1=0, gnt0=1,gnt1=0
req0=0, req1=1, gnt0=1,gnt1=0
req0=0, req1=1, gnt0=0,gnt1=1
req0=0, req1=0, gnt0=0,gnt1=1
req0=1, req1=1, gnt0=0,gnt1=1
req0=1, req1=1, gnt0=1,gnt1=0
req0=0, req1=0, gnt0=1,gnt1=0

I have used Icarus Verilog simulator to generate the above output. You can
get the code of the arbiter with testbench here.

