
Carnegie Mellon

1

Design of Digital Circuits 2014
Srdjan Capkun
Frank K. Gürkaynak

Adapted from Digital Design and Computer Architecture, David Money Harris & Sarah L. Harris ©2007 Elsevier

http://www.syssec.ethz.ch/education/Digitaltechnik_14

Using Verilog for Testbenches

Carnegie Mellon

2

What Will We Learn?

 How to simulate your circuit

 Applying inputs

 Seeing if the circuit does the correct thing

Carnegie Mellon

3

How Do You Know That A Circuit Works?

 You have written the Verilog code of a circuit

 Does it work correctly?

 Even if the syntax is correct, it might do what you want?

 What exactly it is that you want anyway?

 Trial and error can be costly

 You need to ‘test’ your circuit in advance

 In modern digital designs, functional verification is the
most time consuming design stage.

Carnegie Mellon

4

The Idea Behind A Testbench

 Using a computer simulator to test your circuit

 You instantiate your design

 Supply the circuit with some inputs

 See what it does

 Does it return the “correct” outputs?

Carnegie Mellon

5

Testbenches

 HDL code written to test another HDL module, the device
under test (dut), also called the unit under test (uut)

 Not synthesizeable

 Types of testbenches:

 Simple testbench

 Self-checking testbench

 Self-checking testbench with testvectors

Carnegie Mellon

6

Example

 Write Verilog code to implement the following function in
hardware:

y = (b ∙ c) + (a ∙ b)

 Name the module sillyfunction

Carnegie Mellon

7

Example

module sillyfunction(input a, b, c,

output y);

assign y = ~b & ~c | a & ~b;

endmodule

 Write Verilog code to implement the following function in
hardware:

y = (b ∙ c) + (a ∙ b)

 Name the module sillyfunction

Carnegie Mellon

8

Simple Testbench

module testbench1(); // Testbench has no inputs, outputs
reg a, b, c; // Will be assigned in initial block
wire y;

// instantiate device under test
sillyfunction dut (.a(a), .b(b), .c(c), .y(y));d

// apply inputs one at a time
initial begin // sequential block
a = 0; b = 0; c = 0; #10; // apply inputs, wait 10ns
c = 1; #10; // apply inputs, wait 10ns
b = 1; c = 0; #10; // etc .. etc..
c = 1; #10;
a = 1; b = 0; c = 0; #10;

end
endmodule

Carnegie Mellon

9

Simple Testbench

 Simple testbench instantiates the design under test

 It applies a series of inputs

 The outputs have to be observed and compared using a
simulator program.

 This type of testbench does not help with the outputs

 initial statement is similar to always, it just starts
once at the beginning, and does not repeat.

 The statements have to be blocking.

Carnegie Mellon

10

Self-checking Testbench

module testbench2();
reg a, b, c;
wire y;

// instantiate device under test
sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

// apply inputs one at a time
initial begin

a = 0; b = 0; c = 0; #10; // apply input, wait
if (y !== 1) $display("000 failed."); // check
c = 1; #10; // apply input, wait
if (y !== 0) $display("001 failed."); // check
b = 1; c = 0; #10; // etc.. etc..
if (y !== 0) $display("010 failed."); // check

end
endmodule

Carnegie Mellon

11

Self-checking Testbench

 Better than simple testbench

 This testbench also includes a statement to check the
current state

 $display will write a message in the simulator

 This is a lot of work

 Imagine a 32-bit processor executing a program (thousands of
clock cycles)

 You make the same amount of mistakes when writing
testbenches as you do writing actual code

Carnegie Mellon

12

Testbench with Testvectors

 The more elaborate testbench

 Write testvector file: inputs and expected outputs

 Usually can use a high-level model (golden model) to produce the
‘correct’ input output vectors

 Testbench:

 Generate clock for assigning inputs, reading outputs

 Read testvectors file into array

 Assign inputs, get expected outputs from DUT

 Compare outputs to expected outputs and report errors

Carnegie Mellon

13

Testbench with Testvectors

 A testbench clock is used to synchronize I/O

 The same clock can be used for the DUT clock

 Inputs are applied following a hold margin

 Outputs are sampled before the next clock edge

 The example in book uses the falling clock edge to sample

Apply inputs
after some

delay from the
clock

Check outputs
before the next

clock edge

Clock period

HOLD MARGIN
SETUP

MARGIN

Carnegie Mellon

14

Testvectors File

 We need to generate a testvector file (somehow)

 File: example.tv – contains vectors of abc_yexpected
000_1

001_0

010_0

011_0

100_1

101_1

110_0

111_0

Carnegie Mellon

15

Testbench: 1. Generate Clock

module testbench3();
reg clk, reset; // clock and reset are internal
reg a, b, c, yexpected; // values from testvectors
wire y; // output of circuit
reg [31:0] vectornum, errors; // bookkeeping variables
reg [3:0] testvectors[10000:0];// array of testvectors

// instantiate device under test
sillyfunction dut(.a(a), .b(b), .c(c), .y(y));

// generate clock
always // no sensitivity list, so it always executes
begin
clk = 1; #5; clk = 0; #5; // 10ns period

end

Carnegie Mellon

16

2. Read Testvectors into Array

// at start of test, load vectors
// and pulse reset

initial // Will execute at the beginning once
begin
$readmemb("example.tv", testvectors); // Read vectors
vectornum = 0; errors = 0; // Initialize
reset = 1; #27; reset = 0; // Apply reset wait

end

// Note: $readmemh reads testvector files written in
// hexadecimal

Carnegie Mellon

17

3. Assign Inputs and Expected Outputs

// apply test vectors on rising edge of clk
always @(posedge clk)

begin
#1; {a, b, c, yexpected} = testvectors[vectornum];

end

 Apply inputs with some delay (1ns) AFTER clock

 This is important

 Inputs should not change at the same time with clock

 Ideal circuits (HDL code) are immune, but real circuits
(netlists) may suffer from hold violations.

Carnegie Mellon

18

4. Compare Outputs with Expected Outputs

// check results on falling edge of clk
always @(negedge clk)
if (~reset) // skip during reset
begin
if (y !== yexpected)
begin

$display("Error: inputs = %b", {a, b, c});
$display(" outputs = %b (%b exp)",y,yexpected);
errors = errors + 1;

end
// Note: to print in hexadecimal, use %h. For example,
// $display(“Error: inputs = %h”, {a, b, c});

Carnegie Mellon

19

4. Compare Outputs with Expected Outputs

// increment array index and read next testvector
vectornum = vectornum + 1;
if (testvectors[vectornum] === 4'bx)
begin

$display("%d tests completed with %d errors",
vectornum, errors);

$finish; // End simulation
end

end
endmodule

// Note: === and !== can compare values that are
// x or z.

Carnegie Mellon

20

Golden Models

 A golden model represents the ideal behavior of your
circuit.

 Still it has to be developed

 It is difficult to get it right (bugs in the golden model!)

 Can be done in C, Perl, Python, Matlab or even in Verilog

 The behavior of the circuit is compared against this
golden model.

 Allows automated systems (very important)

Carnegie Mellon

21

Why is Verification difficult?

 How long would it take to test a 32-bit adder?

 In such an adder there are 64 inputs = 264 possible inputs

 That makes around 1.85 1019 possibilities

 If you test one input in 1ns, you can test 109 inputs per second

 or 8.64 x 1014 inputs per day

 or 3.15 x 1017 inputs per year

 we would still need 58.5 years to test all possibilities

 Brute force testing is not feasible for all circuits,
we need alternatives

 Formal verification methods

 Choosing ‘critical cases’

 Not an easy task

Carnegie Mellon

22

What did we learn?

 Verilog has other uses than modeling hardware

 It can be used for creating testbenches

 Three main classes of testbenches

 Applying only inputs, manual observation (not a good idea)

 Applying and checking results with inline code (cumbersome)

 Using testvector files (good for automatization)

