

 AN11177
Inter Processor Communication on LPC43xx
Rev. 2 — 20 August 2014 Application note

Document information
Info Content
Keywords LPC4350FET256, LPC4350FET180, LPC4350FBD208,

LPC4330FET256, LPC4330FET180, LPC4330FET100,
LPC4330FBD144, LPC4320FET100, LPC4320FBD144,
LPC4320FBD100, LPC4310FET100, LPC4310FBD144, LPC4300, dual
core, IPC

Abstract Inter-processor communication on dual core microcontrollers

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 2 of 39

Contact information
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Revision history
Rev Date Description
2 20140820 Bit masks updated in Fig 7 and Fig 8.

1 20120319 Initial version.

http://www.nxp.com/
mailto:salesaddresses@nxp.com

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 3 of 39

1. Introduction
This document provides information about:
• The API implementation for dual core communication on LPC43xx targets
• How to include or exclude functionality by means of a platform-wise configuration file
• System level settings and debug options to be aware of when changing the

configuration

Some application examples show the API usage, with and without RTOS (FreeRTOS)
support.

For the LPC4300 device, the M4 CPU will be referred to as “master” and the M0 CPU will
be referred to as “slave” throughout this document.

The latest code for IPC is available on at http://www.lpcware.com/.
The application note software is written in Keil IDE. The following FAQs help to run the
multi-core examples in LPCXpresso IDE.
http://www.lpcware.com/content/faq/how-run-multicore-examples-provided-lpcopen-
lpc43xx-packages

http://www.lpcware.com/content/faq/lpcxpresso/lpc43xx-multicore-apps

2. Application Programming Interface
Three alternative implementations for IPC communication are provided: an interrupt
based mechanism, a “message queue” based mechanism and a “mailbox” based
mechanism.

The interrupt mechanism is the simplest, and can be used to send a notification (or
signal) to the other core, without associated data.

The message queue mechanism follows the approach and guidelines mentioned in the
device user manual. The mailbox approach is an alternative implementation.

The pros and cons of each are detailed in the next sections.

All implementations include common APIs which allow a master processor to download a
slave processor application image, start, and halt the slave processor.

In the message queue or mailbox implementations, it is assumed that the
“communication channels” (one queue, or one specific mailbox) are not shared between
multiple tasks or functions.

For the message queue interface, this implies there is one entry point (or “gatekeeper”
task) within the sending application where messages are inserted into the queue.
Similarly, there is one entry point (or “gatekeeper” task) within the receiving application
where messages are retrieved from the queue.

For the mailbox interface, this implies there is one entry point (or “gatekeeper” task)
within the sending application where a message can be sent to one specific mailbox.
Similarly, there is one entry point (or “gatekeeper” task) within the receiving application
where a message gets processed from one specific mailbox.

The actual implementation was not designed for access sharing on one queue (or one
specific mailbox) between multiple tasks or functions.

http://www.nxp.com/redirect/lpcware.com
http://www.nxp.com/redirect/lpcware.com/content/faq/how-run-multicore-examples-provided-lpcopen-lpc43xx-packages
http://www.nxp.com/redirect/lpcware.com/content/faq/how-run-multicore-examples-provided-lpcopen-lpc43xx-packages
http://www.nxp.com/redirect/lpcware.com/content/faq/lpcxpresso/lpc43xx-multicore-apps

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 4 of 39

2.1 Interrupt
This implementation simply allows one core to send an interrupt to the other core, to be
used as a notification of some sort of application specific defined event.

The interrupt routine associated with the notification interrupt is very compact.

The user has to specify a callback function, which is executed in the interrupt routine
context when the interrupt is serviced, and can be used to perform some quick operation.
If the callback is not used, it can be left implemented as an empty function.

For signaling to the “remote” core, the “local” processor issues the dedicated instruction
SEV (send event) provided by the Cortex architecture.

Within the interrupt routine, a flag variable is also set, indicating an IPC notification has
been received. This flag variable can be used by the application running on the receiving
core to check for the status.

2.1.1 Implementation details
The module is composed of the following files:
• api\interrupt\inc
− ipc_int.h

• api\interrupt\src
− ipc_int.c

Clearing the interrupt flag is treated as a critical section, so interrupts are briefly disabled
within the function used for quitting the flag status.

The priority of the interrupt routines on the master and the slave is configurable at build
time.

On the LPC4300 implementation, on the master side all interrupts with priority equal or
lower than the HOST_IPC_PRIORITY value will be masked by programming the
BASEPRI register accordingly. On the slave side, interrupts are briefly disabled globally
since the CPU hardware does not support such a selective masking.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 5 of 39

2.1.2 Interrupt queue API set
The following APIs are provided:

Table 1. Interrupt APIs
Function name Module Return type Parameters
IPC_masterInitInterrupt ipc_int.c void intCallback_t masterCback

IPC_slaveInitInterrupt ipc_int.c void intCallback_t slaveCback

IPC_sendInterrupt ipc_int.c void Void

IPC_resetIntFlag ipc_int.c void Void

2.1.3 IPC_masterInitInterrupt
Initializes the IPC communication by configuring and enabling the IPC interrupt on the
master side, clears the interrupt pending flag, sets the master interrupt callback to the
passed masterCback parameter (the callback function pointer).

2.1.4 IPC_slaveInitInterrupt
Initializes the IPC communication by configuring and enabling the IPC interrupt on the
slave side, clears the interrupt pending flag, sets the slave interrupt callback to the
slaveCback parameter (the callback function pointer).

2.1.5 IPC_sendInterrupt
Sends an interrupt signal to the remote CPU core.

In response, the remote core is interrupted, and executes the interrupt service routine
associated with the IPC interrupt.

Within the interrupt routine, the local callback function is executed, and the local interrupt
flag variable is set to MSG_PENDING

2.1.6 IPC_resetIntFlag
Clears the interrupt flag variable to the value NO_MSG

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 6 of 39

2.1.7 Interrupt API example usage flowcharts

Fig 1. Interrupt API setup

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 7 of 39

Fig 2. Master to Slave interrupt

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 8 of 39

Fig 3. Slave to Master interrupt

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 9 of 39

Fig 4. Quitting the interrupt flag

2.2 Message queue
This implementation follows the approach detailed in the device user manual, which
should be referred to for the complete specification.

There are two areas of shared memory being defined, which are used to store the
messages that each processor wants to send to the other.

There is one buffer (HOST COMMAND BUFFER) dedicated to the commands being sent
from the master processor to the slave processor, and one other (separate) buffer
(HOST MESSAGE BUFFER) dedicated to the messages which the slave processor
sends back to the master processor.

Fig 5 shows a representation of the concept:

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 10 of 39

Fig 5. Message Queue based IPC

Only the master processor is allowed to write commands to the Command Buffer, and
will receive messages by reading out of the Message Buffer.

Only the slave processor is allowed to write messages to the Message Buffer, and
receives commands by reading out of the Command Buffer.

Once a processor writes new messages within the buffer, it notifies the other processor
that there is data (commands or messages) available to process.

For signaling to the “remote” core, an interrupt mechanism is used. For signaling to the
“remote” core, the “local” processor issues the dedicated instruction SEV (send event)
provided by the Cortex architecture.

The interrupt routine associated with the notification interrupt is very compact, and sets
just a flag variable. The application checks the flag content at its convenience in order to
determine if there is new data to process.

2.2.1 Implementation details
The module is composed of the following files:
• api\queue\inc
− ipc_queue.h
− ipc_bufdef.h

• api\queue\src
− ipc_cmd_buffer.c
− ipc_msg_buffer.c
− ipc_queue.c

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 11 of 39

The logical messages for each queue are defined within the master_msg.h and
slave_ipc_msg.h files. These are part of the platform configuration files.

One “IPC block” (defined in ipc_msg_buffer.c and ipc_cmd_buffer.c), is composed of the
following elements:
• The start address of the message queue buffer
• The end address of the message queue buffer
• One read pointer which points to the next message to be read
• One write pointer which points to the next free location
• A memory buffer which is used to hold the messages

Fig 6. IPC Block example for message queue

Modification of the write pointer is restricted to the processor which is writing messages
to the buffer. The write pointer always points to the location within the buffer where the
next message can be written (next free location).

Modification of the read pointer is restricted to the processor which is reading messages
to the buffer. The read pointer always points to the location within the buffer where the
next message can be read. The read pointer is always “following” the write pointer.

Every time a processor writes messages to the queue, care is taken that the resulting
write pointer value never gets equal or greater than the read pointer.

When the read pointer is equal to the write pointer the queue is considered empty, which
means all messages have been read out by the remote processor, and no new
messages have been inserted.

Since there is a dedicated function to notify the remote processor of the availability of
new messages, it is possible to write a burst of several messages into the queue, instead
of triggering one interrupt for every message. This can reduce the overhead on the
remote processor by reducing the rate at which interrupts are issued.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 12 of 39

The setting and clearing of the “message pending” or “command pending” is treated as a
critical section, so interrupts get disabled for a short period of time when changing the
flag status. The priority of the interrupt routines is configurable at build time.

On the LPC4300 implementation, on the master side all interrupts with priority equal or
lower than the HOST_IPC_PRIORITY value will be masked by programming the
BASEPRI register accordingly. On the slave side interrupts will be disabled globally for a
short period of time since the CPU hardware does not support such a selective masking.

2.2.2 Command and message types
The following tables list the implemented command and message types which are
included in the message queue API.

Fig 7. Command types

Fig 8. Message types

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 13 of 39

2.2.3 Message queue API set
The following APIs are provided:

Table 2. Message Queue APIs
Function name Module Return type parameters

IPC_masterInitQueue ipc_queue.c void cmdToken* cmdBuf uint32_t
cmdBufSize msgToken*
msgBuf uint32_t msgBufSize

IPC_slaveInitQueue ipc_queue.c void void

IPC_slaveFlushMsgQueue ipc_queue.c qStat void

IPC_masterFlushCmdQueue ipc_queue.c qStat void

IPC_getCmdType ipc_queue.c cmd_t cmdToken* item

IPC_masterPushCmd ipc_queue.c qStat cmdToken* item

IPC_slavePopCmd ipc_queue.c qStat maxCmd_t* item

IPC_cmdNotifySlave ipc_queue.c void void

IPC_getMsgType ipc_queue.c msg_t msgToken* token

IPC_slavePushMsg ipc_queue.c qStat msgToken* item

IPC_masterPopMsg
ipc_queue.c qStat maxMsg_t* item

IPC_msgNotifyMaster ipc_queue.c void void

IPC_msgPending
ipc_queue.c uint8_t void

IPC_cmdPending
ipc_queue.c uint8_t void

2.2.3.1 IPC_masterInitQueue

Initializes the IPC communication queues (address ranges, read and write pointers,
contents of the command and message buffer), configures and enables the IPC interrupt
on the master side.

2.2.3.2 IPC_slaveInitQueue

Configures and enables the IPC interrupt on the slave side.

2.2.3.3 IPC_slaveFlushMsgQueue

Called on the slave side and resets the queue to a known state (empty). The contents of
the queue are lost.

The function always returns the queue status value QEMPTY.

2.2.3.4 IPC_masterFlushCmdQueue

Called on the master side and resets the command queue to a known state (empty). The
contents of the queue are lost.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 14 of 39

The function returns the queue status value QEMPTY.

2.2.3.5 IPC_getCmdType

Used to determine a command type from the cmdToken parameter.

Returns the type of command supported, CMD_RD_ID or CMD_WR_ID.

In case of error, returns INVALID_CMD.

2.2.3.6 IPC_getMsgType

Used to determine a message type from the msgToken parameter.

Returns the type of command supported, CMD_RD_ID or CMD_WR_ID.

In case of error, returns INVALID_MSG.

2.2.3.7 IPC_masterPushCmd

Inserts a command in the command queue.

The parameter cmdToken* is a pointer to a command type structure. The function inserts
the command in the queue, if there is enough free space to hold it, and returns the status
of the operation.

If the operation is successful, it returns QINSERT.

If there is no more space in the queue, it returns QFULL without inserting the message.

In case the message is not valid (the passed header is incorrect) it returns QERROR.

2.2.3.8 IPC_slavePushMsg

Inserts a message in the message queue.

The parameter ipcMsgToken* is a pointer to a message type structure. The function
inserts the message in the queue by copy, if there is enough free space to hold it, and
returns the status of the operation.

If the operation is successful, it returns QINSERT.

If there is not enough space in the queue, it returns QFULL without inserting the
message.

If the message is not valid (the header is incorrect) it returns QERROR.

2.2.3.9 IPC_cmdNotifySlave

This function is used by the master to trigger an interrupt on the slave, after one or more
commands have been inserted into to command queue.

2.2.3.10 IPC_msgNotifyMaster

This function is used by the slave to trigger an interrupt on the master side, after one or
more commands have been inserted into to command queue.

2.2.3.11 IPC_slavePopCmd

This function is used by the slave to extract a command from the queue.

The parameter is a pointer to a maxCmd_t structure, which is large enough to hold the
biggest command that can be retrieved from the queue, since it is not known which kind
of command has been posted by the master.

The command data is retrieved from the queue and copied within the provided structure
pointer, after which the original contents of the queue get invalidated and QVALID is
returned.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 15 of 39

When all commands are retrieved, the function returns QEMPTY and a call to
IPC_cmdPending would return NO_TOKEN if no new commands were posted by the
master in the meantime.

In case the retrieved command is not valid (the header is incorrect) it returns QERROR.

The function is able to retrieve only one command at the time.

2.2.3.12 IPC_masterPopMsg

This function is used to extract a message from the queue.

The parameter is a pointer to a maxMsg_t structure, which is large enough to hold the
biggest message that can be retrieved from the queue, since it is not known which kind
of message has been posted by the slave.

Otherwise, the message data is retrieved and copied within the provided structure
pointer, after which the contents of the queue get invalidated. After this, the read pointer
is updated.

When all messages are retrieved, the function returns QEMPTY and a call to
IPC_msgPending would return NO_TOKEN if no new messages were posted by the
slave in the meantime.

In case the message is not valid (the header is incorrect) it returns QERROR.

The function is able to retrieve only one message at the time.

2.2.3.13 IPC_cmdPending

This function is called on the slave side and returns the status of the command queue.

If there are new commands in the queue, it returns PENDING (true)

If the message queue is empty, it returns NO_TOKEN (false)

Can be used within C code, for example in an “if” flow control statement.

Note: this function is used on the slave side. Calling this function on the master side will
lead to unpredictable results.

2.2.3.14 IPC_msgPending

This function is called on the master side and returns the status of the message queue.

If there are new messages in the queue, it returns PENDING (true)

If the message queue is empty, it returns NO_TOKEN (false)

Can be used within C code, for example in an “if” flow control statement.

Note: this function is used on the master side. Calling this function on the slave side will
lead to unpredictable results.

2.2.4 Command and Message header generation macros
To simplify the preparation of a command and message headers, some helper macros
are provided according to the header definitions detailed in Fig 7 and Fig 8.

2.2.4.1 Command header macros

MAKE_READ_CMD_HEADER(rdCmd,id,arg)

MAKE_WRITE_CMD_HEADER(wrCmd,id,arg)

The first parameter is the name of the rdCmd or wrCmd structure, id is the task ID and
arg is the argument value.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 16 of 39

2.2.4.2 Message header macros

MAKE_SRV_MSG_HEADER(srvMsg,id,sType)

The first parameter is the name of the srvMsg structure, id is the task ID and sType is the
type of service requested.

MAKE_RD_MSG_HEADER(rdMsg,id,arg)

The first parameter is the name of the rdMsg structure, id is the task ID and arg is the
argument value.

 MAKE_RDSTS_MSG_HEADER (rdStsMsg,id,arg,failCode)

The first parameter is the name of the rdStsMsg structure; id is the task ID, arg is the
argument value and failCode needs to be set to INVALID_ARG.

 MAKE_WRSTS_MSG_HEADER(wrStsMsg,id,arg,response)

The first parameter is the name of the wrStsMsg structure, id is the task ID, arg is the
argument value and response needs to be set to WRITE_SUCCESSFUL or
WRITE_FAILED.

2.2.5 Message Queue API example usage flowcharts

Fig 9. Message queue setup

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 17 of 39

Fig 10. Master sending a command to the slave processor

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 18 of 39

Note: in the example shown in Fig 10, the sending processor (in this case the master)
first fills the queue with the messages he wants to send, and then triggers the interrupt.

In some cases, it could be desirable that the receiving processor immediately starts
emptying the queue.

To achieve that, an interrupt could be triggered by calling IPC_cmdNotifySlave (or
IPC_msgNotifyMaster) after the first data item has been pushed into the queue.

In this way the receiving processor will start earlier to process the data.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 19 of 39

Fig 11. Slave sending a message to the master processor

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 20 of 39

Fig 12. Slave processing a command from the master

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 21 of 39

Fig 13. Master processing a message from the slave

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 22 of 39

2.3 Mailbox
This is an alternative implementation of an IPC model.

The principle is based on the concept of a “mailbox”, that is, a placeholder in RAM
memory where the sending processor can place a “message” for the receiving processor.
A sending processor manages a “local” mailbox where it can receive a message, and
can send a message to a “remote” mailbox (which is managed by the remote processor).

A mailbox is defined by the following items:
• Message type
• Message id, which could be a progressive number. This can be useful if the

transmission of a specific message is split into several transactions which have the
same message type, e.g., so that the ID value is used to identify the message order

• 32-bit parameter, useful to pass additional data to the other processor, for example in
form of a 32-bit pointer

• Callback function, which can be executed from the receiving processor when a new
message has been detected in the mailbox, within the interrupt routine context.

The purpose of the callback function is to allow the application to perform some
operations as soon as the mailbox interrupt has been received and the presence of a
message has been detected in the mailbox. This to reduce the IPC interrupt
processing latency, where required.

All of the above items is application specific and can be freely defined by the user.

Fig 14. Mailbox based IPC

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 23 of 39

Fig 14 shows an example where there is one mailbox (X) defined on the master side and
two mailboxes (Y and Z) defined on the slave side.

The master is calling the IPC_sendMsg function to send a message of type MSG_1 to
the mailbox Y of the slave, with message id 0x1 and parameter 0x123456.

After the data has been written, an interrupt is triggered to the slave.

The mailbox status can be queried to determine if:
• a message can be sent (mailbox is READY), or
• if the receiving core still needs to process it (mailbox is BUSY), or
• if a processing error occurred (ERROR).

Once a message has been posted to the mailbox, the remote mailbox status gets
updated (set to PROCESS) and an interrupt is triggered on the receiving side.

Within the application side, the reception of a message in a mailbox will set a flag for
signaling that there are pending items. There is one flag dedicated for each defined
mailbox, which can take the value MSG_PENDING or NO_MSG.

For deferred processing, this allows the application to query the message pending flags
at its convenience, and react as desired.

Note: the mailbox flags will be set after the callback function has been executed. Within
the callback function the mailbox message, the message Id and the parameter are
passed as parameters. The mailbox status shall not be queried by this user defined
callback function. The application is responsible to clear the mailbox status when
finished, and clear the messaging flags, by calling the appropriate API function.

The application can define any number of mailboxes on each receiving side, and it is a
user choice how to logically associate a specific mailbox with the desired IPC messages.

An example configuration could use a dedicated mailbox for each “logical event” or
message that needs to be communicated to the other core. In this way, the mailbox
number automatically identifies the type of service requested, and there is no need for
the application to determine the message type, which is then implicit.

On the other hand, an application could be configured to have just one single mailbox,
over which all possible messages are sent to the other core. In this scenario, there is less
memory being needed for the mailbox system, at the price of having to query on each
received message type, in order to determine which kind of service is being requested.

Any other mixed configuration is possible, allowing complete flexibility for the
configuration of the messaging scheme in terms of mapping between message types and
mailboxes.

The number of total mailboxes can be different on each core side, so the system does
not need to be symmetric in terms of functionality. The user can define one mailbox on
the master side, and 5 mailboxes on the slave side, for example.

Typically messages which have a low transmission rate, do not have stricter
requirements in terms of latency, or are expected to be mutually exclusive, might share
one same mailbox.

Other messages which have a much higher transmission rate, or stricter requirements in
terms of latency, might be dedicated to one (or more) separate mailboxes to improve the
communication throughput.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 24 of 39

2.3.1 Implementation details
The module is composed of the following files:
• api\mbx\inc
− ipc_mbx.h

• api\mbx\src
− ipc_mbx.c
− ipc_buffer.c

The logical messages for each mailbox are defined within the master_ipc_msg.h and
slave_ipc_msg.h files. These are part of the platform wide configuration files and are not
part of the Mailbox API implementation.

The module ipc_buffer.c defines the structures used for holding the master and slave
mailboxes.

2.3.1.1 Mailbox status

The mailbox status can be one of the following:
• READY

The mailbox is ready to accept a new message
• PROCESS

The mailbox contains a new message which shall be processed. The mailbox shall
not be overwritten with new information. The remote processor should have
received an interrupt notification, but has not started yet processing the message

• BUSY

The mailbox is still occupied by a new message, so its contents shall not be
overwritten, but the remote processor is processing the message

• ERROR_OCCURRED

The remote processor handled the message but there was an execution error
which prevented a successful completion of the command

A remote mailbox shall always be queried for the READY or ERROR_OCCURRED
status before the sending processor issues a new message for the remote CPU (by
using the IPC_sendMsg API).

The local processor can query the mailbox status periodically, to find out if it can send a
new message to the remote processor when the mailbox is READY again.

Alternatively, the user could implement a higher level protocol where the receiving
processor always acknowledges back to the sending processor with a “work completed”
message. In this scenario, the sending processor does not need to poll for the mailbox
status.

It is application dependant, which strategy fits best the application, and both ways of
communication might be used and even mixed as desired (use poll on some mailboxes,
use an acknowledge interrupt for others)

Once a new message is placed into the mailbox, by calling the IPC_sendMsg API, the
status of the remote mailbox is automatically changed to PROCESS and afterwards an
interrupt gets triggered to the remote processor for notification.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 25 of 39

The remote processor will be notified by the IPC interrupt. Within the interrupt context the
associated callback function (if used) is executed and afterwards the mailbox flag is
changed from NO_MSG to MSG_PENDING.

The remote processor shall set the mailbox status to BUSY once it acknowledges the
new message, and starts processing it. The mailbox status shall be kept to BUSY for all
the time of processing, or at least as long as the information within the mailbox has not
been completely retrieved on the remote side.

If an error occurred, the remote processor shall set the mailbox status to
ERROR_OCCURRED. It is application dependent, and user specified, how the system
handles this situation.

The sending processor might, for example, decide to resend the same message again,
or perform some other types of recovery actions.

After the processing of the message, or whenever the mailbox content has been
acquired and the receiving processor can accept a new message, the status of the
mailbox can be set back to READY. This will signal the remote processor that it can send
a new message.

2.3.2 Mailbox API set
The following APIs are provided:

Table 3. Mailbox APIs
Function name Module Return type Parameters

IPC_initMasterMbx ipc_mbx.c void CbackItem cbackTable[]
Mbx* masterMbxPtr
Mbx* slaveMbxPtr

IPC_initSlaveMbx ipc_mbx.c void CbackItem cbackTable[]
Mbx* masterMbxPtr
Mbx* slaveMbxPtr

IPC_queryLocalMbx ipc_mbx.c mbxStat_t mbxId_t mbxNum

IPC_getMsgType ipc_mbx.c msg_t mbxId_t mbxNum

IPC_getMsgId ipc_mbx.c msgId_t mbxId_t mbxNum

IPC_getMbxParameter ipc_mbx.c mbxParam_t mbxId_t mbxNum

IPC_queryRemoteMbx ipc_mbx.c mbxStat_t mbxId_t mbxNum

IPC_resetMbxFlag ipc_mbx.c void mbxId_t mbxNum

IPC_lockMbx ipc_mbx.h void mbxId_t mbxNum

IPC_freeMbx ipc_mbx.h void mbxId_t mbxNum

IPC_setMbxErr ipc_mbx.h void mbxId_t mbxNum

IPC_sendMsg ipc_mbx.c void mbxId_t mbxNum
msg_t msg
msgId_t msgNum
mbxParam_t param

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 26 of 39

2.3.2.1 IPC_initMasterMbx

This function must be called on the master side to initialize the mailbox system, and
needs to be called before using any of the mailbox APIs. It is responsible for clearing the
status, the internal variables and enabling the IPC interrupts.

It also initializes the defined user callback functions within the mailbox system by
plugging in the callback function pointers. The callback table has to be defined in file
master_mbx_callbacks.c, which is part of the platform wide configuration. The table
pointer is passed as a function argument.

The other two parameters are the addresses of the master and slave mailbox locations,
i.e. where in memory the mailboxes are located. This is also a project wide configuration
which is defined by the user.

2.3.2.2 IPC_initSlaveMbx

This function must be called on the slave side to initialize the mailbox system, and needs
to be called before using any of the mailbox APIs. It is responsible for clearing the status,
the internal variables and enabling the IPC interrupts.

It also initializes the defined user callback functions within the mailbox system by
plugging in the callback function pointers. The callback table has to be defined in file
slave_mbx_callbacks.c, which is part of the platform wide configuration. The table pointer
is passed as a function argument.

The other two parameters are the addresses of the master and slave mailbox locations,
i.e. where in memory the mailboxes are located. This is also a project wide configuration
which is defined by the user.

Note: in case for a specific mailbox no callback function is desired, a special function
named IPC_dummyCallback is provided within the API definition, which is just returning
to the caller without doing anything (an empty function). This might be specified as a
default, for all entries in the master or slave callback table which are unused.

2.3.2.3 IPC_queryLocalMbx

This function can be used by a processor to query its own (local) mailbox to determine
the status. The passed parameter is the mailbox number which is defined by the user via
an enumerated type.

2.3.2.4 IPC_getMsgType

This function is used to retrieve the type of command received in the local mailbox.

The passed parameter is the mailbox number, and the returned value is an enumerated
type which is defined by the user within the master_ipc_msg.h and slave_ipc_msg.h files.

By default this is implemented as an 8-bit unsigned integer.

2.3.2.5 IPC_getMsgId

This function is used to retrieve the message ID received in the local mailbox. The
parameter is the mailbox number, and the function returns one msgId_t type value. By
default this is implemented as a 16-bit unsigned integer.

2.3.2.6 IPC_getMbxParameter

This function is used to retrieve the local mailbox parameter, which is implemented with a
32-bit unsigned integer type.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 27 of 39

2.3.2.7 IPC_resetMbxFlag

This function is used by the receiving processor to clear the notification flag which gets
set once a message is posted and the corresponding IPC interrupt has been triggered.

The parameter is the mailbox number.

Since it needs to run in a critical section, interrupts are disabled in a short period of time.

2.3.2.8 IPC_queryRemoteMbx

This function is used to determine the status of a “remote” mailbox, and can be used by
the local processor to find out if the remote processor is ready to accept a new message.

The parameter is the mailbox number.

2.3.2.9 IPC_sendMsg

This function is used to send a message to a specific mailbox. The parameters are the
mailbox number, the message type, the message ID, and the parameter.

The application should check the mailbox status to be READY before calling this function
to send a message; otherwise the mailbox contents will be overwritten.

This function also takes care of issuing an interrupt to the remote processor for notifying
about the presence of a new message in the mailbox.

2.3.2.10 IPC_lockMbx

This macro (function) is used locally to set the mailbox status to BUSY by the receiving
processor. The parameter is the mailbox number.

2.3.2.11 IPC_freeMbx

This macro (function) is used locally to set the mailbox status to READY. This signals to
the remote processor that a new message can be sent. The parameter is the mailbox
number.

2.3.2.12 IPC_setMbxErr

This macro (function) is used locally to set the mailbox status to ERROR. This signals to
the remote processor that an error occurred. The parameter is the mailbox number.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 28 of 39

2.3.3 Callback function definition
A callback function is executed within the context of the interrupt routine, before the flag
variable associated with the mailbox is set.

The parameters provided to the callback are the message type, the message ID, and the
mailbox parameter.

The callback functions are defined by the user within the following files:
• master_mbx_callbacks.c
• master_callbacks.h
• slave_mbx_callbacks.c
• slave_mbx_callbacks.h

The callback function prototypes are defined as:

void (*mbxCallback_t) (msg_t msg, msgId_t idNum, mbxParam_t param)

The callback table needs to have one entry for each defined mailbox, and defines the
association between the mailbox number and the related callback.

The order in the table is not important, since the callback function addresses are
plugged-in at runtime by the IPC initialization routines.

2.3.4 Mailbox API usage example flowcharts

Fig 15. Mailbox setup

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 29 of 39

Fig 16. Sending a message to a mailbox (from master or slave)

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 30 of 39

Fig 17. Processing a received mailbox message (master or slave)

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 31 of 39

2.4 Slave initialization routines
The following functions are provided by the master processor to initialize the system

Table 4. Slave processor initialization functions
Function name Module Return value Parameters
IPC_downloadSlaveImage ipc_queue.c

ipc_mbx.c
void uint32_t slaveRomStart

const unsigned char slaveImage[]
uint32_t imageSize

IPC_startSlave ipc_queue.c
ipc_mbx.c

void void

IPC_haltSlave ipc_queue.c
ipc_mbx.c

void void

2.4.1 IPC_downloadSlaveImage
This function is responsible for downloading a slave processor image to a specific
memory address, assuming this is located on a volatile memory (RAM). The address
where the image should be downloaded to is defined by the parameter slaveRomStart.

The slave image consists of an array of bytes, which is passed via the slaveImage array
parameter. The third parameter imageSize represents the size in bytes of the slave
processor image.

It is the user responsibility to ensure that these parameters are all consistent between the
master and slave linker scatter files, and the definitions provided in platform_config.h.

This function prepares the slave image for execution, but does not start the slave
processor. If the slave processor is already out of reset and running, the function will
place it back in reset before downloading the image.

2.4.2 IPC_startSlave
This function is used to take the slave processor out of reset and start it. Before calling
this function, it is mandatory that a valid slave processor image has been downloaded
first by the master processor via the IPC_downloadSlaveImage function; otherwise the
behavior will be undefined.

2.4.3 IPC_haltSlave
This function places the slave processor back in reset, but does not change the content
of its code or data sections. The slave processor will remain in reset, until the
IPC_startSlave function is called again.

The application might also download a different slave image by calling
IPC_downloadSlaveImage before the next IPC_startSlave is called.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 32 of 39

3. Configuration options and platform settings

3.1 Interrupt
In the file platform_config.h the user can specify the system configuration for the
message queue system. The following IPC specific build options are provided:

3.1.1 PLATFORM
Used to specify which hardware board is being used for the tests. Currently supported
platforms are:

HITEX_BOARD

3.1.2 DEVICES
Used to specify which microcontroller device is being used. Currently supported devices
are:

LPC43xx

3.1.3 SLAVE_IMAGE_FILE
Used to specify the name of the C file which defines the byte array holding the slave
image. Default value is the string “CM0_image.c”

3.1.4 MASTER_INTERRUPT_PRIORITY
Used to specify the priority of the IPC interrupt on the master processor. The IPC
interrupt gets triggered when a slave calls the IPC_sendInterrupt function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 7 as the Cortex-M4 master has 3 priority bits implemented in the NVIC.

3.1.5 SLAVE_INTERRUPT_PRIORITY
Used to specify the priority of the IPC interrupt on the slave processor. The IPC interrupt
gets triggered when a master calls the IPC_ sendInterrupt function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 3 as the Cortex-M0 slave has 2 priority bits implemented in the NVIC.

3.2 Message queue
In the file platform_config.h, the user can specify the system configuration for the
message queue system. The following IPC specific build options are provided:

3.2.1 PLATFORM
Used to specify which hardware board is being used for the tests. Currently supported
platforms are:

HITEX_BOARD

3.3 DEVICES
Used to specify which microcontroller device is being used. Currently supported devices
are:

LPC43xx

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 33 of 39

3.4 SLAVE_IMAGE_FILE
Used to specify the name of the C file which defines the byte array holding the slave
image. Default value is the string “CM0_image.c”

3.4.1 MASTER_CMDBUF_SIZE
Integer value used to specify how many 32-bit items the command buffer can hold.
Messages with bigger total size than the simplest item (32-bit) will consume multiple
items for each message.

3.4.2 MASTER_QUEUE_PRIORITY
Used to specify the priority of the IPC interrupt on the master processor. The IPC
interrupt gets triggered when a slave calls the IPC_msgNotifyMaster function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 7 as the Cortex-M4 master has 3 priority bits implemented in the NVIC.

3.4.3 SLAVE_MSGBUF_SIZE
Integer value used to specify how many 32-bit items the command buffer can hold.
Messages with bigger size than the simplest item (32-bit) will consume multiple items for
each message.

3.4.4 SLAVE_QUEUE_PRIORITY
Used to specify the priority of the IPC interrupt on the slave processor. The IPC interrupt
gets triggered when a master calls the IPC_cmdNotifySlave function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 3 as the Cortex-M0 slave has 2 priority bits implemented in the NVIC.

3.4.5 MASTER_ROM_START, MASTER_ROM_LEN
Specifies the master code memory location and the size of the assigned range

3.4.6 MASTER_RAM_START, MASTER_RAM_LEN
Specifies the master data memory location and the size of the assigned range

3.4.7 SLAVE_ROM_START, SLAVE_ROM_LEN
Specifies the slave code memory location and the size of the assigned range

3.4.8 SLAVE_RAM_START, SLAVE_RAM_LEN
Specifies the slave data memory location and the size of the assigned range

3.4.9 MASTER_CMD_BLOCK_START
Specify the memory location at which the Command interface structure and buffer are
located

3.4.10 SLAVE_MSG_BLOCK_START
Specify the memory location at which the Message interface structure and buffer are
located

Note: items 3.4.5 to 3.4.10 need to be consistent with the linker scatter file configurations
for the two processors.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 34 of 39

3.5 Mailbox
In the file platform_config.h, the user can specify the system configuration for the mailbox
system. The following build options are provided:

3.5.1 PLATFORM
Used to specify which hardware board is being used for the tests. Currently supported
platforms are:

HITEX_BOARD

3.5.2 DEVICES
Used to specify which microcontroller device is being used. Currently supported devices
are:

LPC43xx

3.5.3 MASTER_MAILBOX_PRIORITY
Used to specify the priority of the IPC interrupt on the master processor. The IPC
interrupt gets triggered when the slave processor calls the IPC_sendMsg function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 7 as the Cortex-M4 master has 3 priority bits implemented in the NVIC

3.5.4 SLAVE_MAILBOX_PRIORITY
Used to specify the priority of the IPC interrupt on the slave processor. The IPC interrupt
gets triggered when the master processor calls the IPC_sendMsg function.

This follows the CMSIS convention, e.g., on the LPC4300 it can assume a value from 0
to 3 as the Cortex-M0 slave has 2 priority bits implemented in the NVIC.

3.5.5 MASTER_ROM_START, MASTER_ROM_LEN
Specifies the master code memory location and the size of the assigned range

3.5.6 MASTER_RAM_START, MASTER_RAM_LEN
Specifies the master data memory location and the size of the assigned range

3.5.7 SLAVE_ROM_START, SLAVE_ROM_LEN
Specifies the slave code memory location and the size of the assigned range

3.5.8 SLAVE_RAM_START, SLAVE_RAM_LEN
Specifies the slave data memory location and the size of the assigned range

3.5.9 MASTER_MBX_START, MASTER_MBX_LEN
Specify the memory location at which the mailbox data for the master processor is
located.

3.5.10 SLAVE_MBX_START, SLAVE_MBX_LEN
Specify the memory location at which the mailbox data for the slave processor is located.

Note: items 3.5.5 to 3.5.10 need to be consistent with the linker scatter file configurations
for the two processors.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 35 of 39

4. Application examples

4.1 Interrupt, Mailbox, Message Queue
In these examples, the two processors exchange asynchronously messages, and the
application shows how the interrupt, mailbox or message queue APIs could be used to
send signals, messages, access the data, and use the associated application flags.

4.2 Mailbox, Message Queue with RTOS support
In these examples, the FreeRTOS v. 7.0.2 operating system is running on both
processors independently as separate images.

Two unofficial ports for the Cortex-M4 (without FPU support, is actually the Cortex-M3
port) and the Cortex-M0 processor are provided, and the configuration file for the RTOS
(freeRTOSConfig.h) is included within each main source folder of the examples.

A template for the configuration file can be found within the FreeRTOS\config template of
the port.

For an official port of the FreeRTOS operating system on these two architectures, please
refer to the website FreeRTOS.org.

The functions which initialize the mailbox or message queue systems, as well as the
communication APIs, are provided within two separately defined tasks.

Note: in case of the mailbox example, it is potentially possible for the application to call
RTOS related APIs within the provided callback function, if used.

In this case, like for other OS related interrupts (refer to the freeRTOS documentation),
the user has to take care that the priority assigned to the IPC interrupt routine (and thus
the priority at which the callback will be executed) is configured within the range assigned
to the RTOS:

configKERNEL_INTERRUPT_PRIORITY to

configMAX_SYSCALL_INTERRUPT_PRIORITY

The freeRTOS kernel will take care that a priority ceiling mechanism is applied, for each
interrupt which might request OS services, so that there are no preemption issues which
might disrupt the scheduler operations.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 36 of 39

5. Legal information

5.1 Definitions
Draft — The document is a draft version only. The content is still under
internal review and subject to formal approval, which may result in
modifications or additions. NXP Semiconductors does not give any
representations or warranties as to the accuracy or completeness of
information included herein and shall have no liability for the consequences
of use of such information.

5.2 Disclaimers
Limited warranty and liability — Information in this document is believed to
be accurate and reliable. However, NXP Semiconductors does not give any
representations or warranties, expressed or implied, as to the accuracy or
completeness of such information and shall have no liability for the
consequences of use of such information. NXP Semiconductors takes no
responsibility for the content in this document if provided by an information
source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental,
punitive, special or consequential damages (including - without limitation -
lost profits, lost savings, business interruption, costs related to the removal
or replacement of any products or rework charges) whether or not such
damages are based on tort (including negligence), warranty, breach of
contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason
whatsoever, NXP Semiconductors’ aggregate and cumulative liability
towards customer for the products described herein shall be limited in
accordance with the Terms and conditions of commercial sale of NXP
Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make
changes to information published in this document, including without
limitation specifications and product descriptions, at any time and without
notice. This document supersedes and replaces all information supplied prior
to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed,
authorized or warranted to be suitable for use in life support, life-critical or
safety-critical systems or equipment, nor in applications where failure or
malfunction of an NXP Semiconductors product can reasonably be expected
to result in personal injury, death or severe property or environmental
damage. NXP Semiconductors and its suppliers accept no liability for
inclusion and/or use of NXP Semiconductors products in such equipment or
applications and therefore such inclusion and/or use is at the customer’s
own risk.

Applications — Applications that are described herein for any of these
products are for illustrative purposes only. NXP Semiconductors makes no
representation or warranty that such applications will be suitable for the
specified use without further testing or modification.

Customers are responsible for the design and operation of their applications
and products using NXP Semiconductors products, and NXP

Semiconductors accepts no liability for any assistance with applications or
customer product design. It is customer’s sole responsibility to determine
whether the NXP Semiconductors product is suitable and fit for the
customer’s applications and products planned, as well as for the planned
application and use of customer’s third party customer(s). Customers should
provide appropriate design and operating safeguards to minimize the risks
associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default,
damage, costs or problem which is based on any weakness or default in the
customer’s applications or products, or the application or use by customer’s
third party customer(s). Customer is responsible for doing all necessary
testing for the customer’s applications and products using NXP
Semiconductors products in order to avoid a default of the applications and
the products or of the application or use by customer’s third party
customer(s). NXP does not accept any liability in this respect.

Export control — This document as well as the item(s) described herein
may be subject to export control regulations. Export might require a prior
authorization from competent authorities.

Evaluation products — This product is provided on an “as is” and “with all
faults” basis for evaluation purposes only. NXP Semiconductors, its affiliates
and their suppliers expressly disclaim all warranties, whether express,
implied or statutory, including but not limited to the implied warranties of non-
infringement, merchantability and fitness for a particular purpose. The entire
risk as to the quality, or arising out of the use or performance, of this product
remains with customer.

In no event shall NXP Semiconductors, its affiliates or their suppliers be
liable to customer for any special, indirect, consequential, punitive or
incidental damages (including without limitation damages for loss of
business, business interruption, loss of use, loss of data or information, and
the like) arising out the use of or inability to use the product, whether or not
based on tort (including negligence), strict liability, breach of contract, breach
of warranty or any other theory, even if advised of the possibility of such
damages.

Notwithstanding any damages that customer might incur for any reason
whatsoever (including without limitation, all damages referenced above and
all direct or general damages), the entire liability of NXP Semiconductors, its
affiliates and their suppliers and customer’s exclusive remedy for all of the
foregoing shall be limited to actual damages incurred by customer based on
reasonable reliance up to the greater of the amount actually paid by
customer for the product or five dollars (US$5.00). The foregoing limitations,
exclusions and disclaimers shall apply to the maximum extent permitted by
applicable law, even if any remedy fails of its essential purpose.

5.3 Trademarks
Notice: All referenced brands, product names, service names and
trademarks are property of their respective owners.

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 37 of 39

6. List of figures

Fig 1. Interrupt API setup .. 6
Fig 2. Master to Slave interrupt 7
Fig 3. Slave to Master interrupt 8
Fig 4. Quitting the interrupt flag 9
Fig 5. Message Queue based IPC 10
Fig 6. IPC Block example for message queue 11
Fig 7. Command types .. 12
Fig 8. Message types .. 12
Fig 9. Message queue setup 16
Fig 10. Master sending a command to the slave

processor .. 17
Fig 11. Slave sending a message to the master

processor .. 19
Fig 12. Slave processing a command from the master

 .. 20
Fig 13. Master processing a message from the slave . 21
Fig 14. Mailbox based IPC .. 22
Fig 15. Mailbox setup .. 28
Fig 16. Sending a message to a mailbox (from master

or slave) .. 29
Fig 17. Processing a received mailbox message

(master or slave) ... 30

NXP Semiconductors AN11177
 IPC on LPC43xx

AN11177 All information provided in this document is subject to legal disclaimers. © NXP B.V. 2014. All rights reserved.

Application note Rev. 2 — 20 August 2014 38 of 39

7. List of tables

Table 1. Interrupt APIs .. 5
Table 2. Message Queue APIs 13
Table 3. Mailbox APIs ... 25
Table 4. Slave processor initialization functions 31

NXP Semiconductors AN11177
 IPC on LPC43xx

 Please be aware that important notices concerning this document and the product(s)
described herein, have been included in the section 'Legal information'.

© NXP B.V. 2014. All rights reserved.

For more information, visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 20 August 2014
Document identifier: AN11177

8. Contents

1. Introduction ... 3
2. Application Programming Interface 3
2.1 Interrupt .. 4
2.1.1 Implementation details 4
2.1.2 Interrupt queue API set 5
2.1.3 IPC_masterInitInterrupt 5
2.1.4 IPC_slaveInitInterrupt ... 5
2.1.5 IPC_sendInterrupt .. 5
2.1.6 IPC_resetIntFlag .. 5
2.1.7 Interrupt API example usage flowcharts 6
2.2 Message Queue ... 9
2.2.1 Implementation details 10
2.2.2 Command and message types 12
2.2.3 Message queue API set 13
2.2.4 Command and Message header generation

macros ... 15
2.2.5 Message Queue API example usage flowcharts

 ... 16
2.3 Mailbox ... 22
2.3.1 Implementation details 24
2.3.2 Mailbox API set .. 25
2.3.3 Callback function definition 28
2.3.4 Mailbox API usage example flowcharts 28
2.4 Slave initialization routines 31
2.4.1 IPC_downloadSlaveImage 31
2.4.2 IPC_startSlave ... 31
2.4.3 IPC_haltSlave .. 31
3. Configuration options and platform settings .. 32
3.1 Interrupt .. 32
3.1.1 PLATFORM .. 32
3.1.2 DEVICES ... 32
3.1.3 SLAVE_IMAGE_FILE 32
3.1.4 MASTER_INTERRUPT_PRIORITY 32
3.1.5 SLAVE_INTERRUPT_PRIORITY 32
3.2 Message Queue ... 32
3.2.1 PLATFORM .. 32
3.3 DEVICES ... 32
3.4 SLAVE_IMAGE_FILE 33
3.4.1 MASTER_CMDBUF_SIZE 33
3.4.2 MASTER_QUEUE_PRIORITY 33
3.4.3 SLAVE_MSGBUF_SIZE 33
3.4.4 SLAVE_QUEUE_PRIORITY 33
3.4.5 MASTER_ROM_START, MASTER_ROM_LEN

 ... 33
3.4.6 MASTER_RAM_START, MASTER_RAM_LEN

 ... 33

3.4.7 SLAVE_ROM_START, SLAVE_ROM_LEN 33
3.4.8 SLAVE_RAM_START, SLAVE_RAM_LEN 33
3.4.9 MASTER_CMD_BLOCK_START 33
3.4.10 SLAVE_MSG_BLOCK_START 33
3.5 Mailbox ... 34
3.5.1 PLATFORM .. 34
3.5.2 DEVICES .. 34
3.5.3 MASTER_MAILBOX_PRIORITY 34
3.5.4 SLAVE_MAILBOX_PRIORITY 34
3.5.5 MASTER_ROM_START, MASTER_ROM_LEN

 ... 34
3.5.6 MASTER_RAM_START, MASTER_RAM_LEN

 ... 34
3.5.7 SLAVE_ROM_START, SLAVE_ROM_LEN 34
3.5.8 SLAVE_RAM_START, SLAVE_RAM_LEN 34
3.5.9 MASTER_MBX_START, MASTER_MBX_LEN 34
3.5.10 SLAVE_MBX_START, SLAVE_MBX_LEN 34
4. Application examples .. 35
4.1 Interrupt, Mailbox, Message Queue 35
4.2 Mailbox, Message Queue with RTOS support .. 35
5. Legal information .. 36
5.1 Definitions ... 36
5.2 Disclaimers ... 36
5.3 Trademarks .. 36
6. List of figures ... 37
7. List of tables .. 38
8. Contents ... 39

	1. Introduction
	2. Application Programming Interface
	2.1 Interrupt
	2.1.1 Implementation details
	2.1.2 Interrupt queue API set
	2.1.3 IPC_masterInitInterrupt
	2.1.4 IPC_slaveInitInterrupt
	2.1.5 IPC_sendInterrupt
	2.1.6 IPC_resetIntFlag
	2.1.7 Interrupt API example usage flowcharts

	2.2 Message queue
	2.2.1 Implementation details
	2.2.2 Command and message types
	2.2.3 Message queue API set
	2.2.3.1 IPC_masterInitQueue
	2.2.3.2 IPC_slaveInitQueue
	2.2.3.3 IPC_slaveFlushMsgQueue
	2.2.3.4 IPC_masterFlushCmdQueue
	2.2.3.5 IPC_getCmdType
	2.2.3.6 IPC_getMsgType
	2.2.3.7 IPC_masterPushCmd
	2.2.3.8 IPC_slavePushMsg
	2.2.3.9 IPC_cmdNotifySlave
	2.2.3.10 IPC_msgNotifyMaster
	2.2.3.11 IPC_slavePopCmd
	2.2.3.12 IPC_masterPopMsg
	2.2.3.13 IPC_cmdPending
	2.2.3.14 IPC_msgPending

	2.2.4 Command and Message header generation macros
	2.2.4.1 Command header macros
	2.2.4.2 Message header macros

	2.2.5 Message Queue API example usage flowcharts

	2.3 Mailbox
	2.3.1 Implementation details
	2.3.1.1 Mailbox status

	2.3.2 Mailbox API set
	2.3.2.1 IPC_initMasterMbx
	2.3.2.2 IPC_initSlaveMbx
	2.3.2.3 IPC_queryLocalMbx
	2.3.2.4 IPC_getMsgType
	2.3.2.5 IPC_getMsgId
	2.3.2.6 IPC_getMbxParameter
	2.3.2.7 IPC_resetMbxFlag
	2.3.2.8 IPC_queryRemoteMbx
	2.3.2.9 IPC_sendMsg
	2.3.2.10 IPC_lockMbx
	2.3.2.11 IPC_freeMbx
	2.3.2.12 IPC_setMbxErr

	2.3.3 Callback function definition
	2.3.4 Mailbox API usage example flowcharts

	2.4 Slave initialization routines
	2.4.1 IPC_downloadSlaveImage
	2.4.2 IPC_startSlave
	2.4.3 IPC_haltSlave

	3. Configuration options and platform settings
	3.1 Interrupt
	3.1.1 PLATFORM
	3.1.2 DEVICES
	3.1.3 SLAVE_IMAGE_FILE
	3.1.4 MASTER_INTERRUPT_PRIORITY
	3.1.5 SLAVE_INTERRUPT_PRIORITY

	3.2 Message queue
	3.2.1 PLATFORM

	3.3 DEVICES
	3.4 SLAVE_IMAGE_FILE
	3.4.1 MASTER_CMDBUF_SIZE
	3.4.2 MASTER_QUEUE_PRIORITY
	3.4.3 SLAVE_MSGBUF_SIZE
	3.4.4 SLAVE_QUEUE_PRIORITY
	3.4.5 MASTER_ROM_START, MASTER_ROM_LEN
	3.4.6 MASTER_RAM_START, MASTER_RAM_LEN
	3.4.7 SLAVE_ROM_START, SLAVE_ROM_LEN
	3.4.8 SLAVE_RAM_START, SLAVE_RAM_LEN
	3.4.9 MASTER_CMD_BLOCK_START
	3.4.10 SLAVE_MSG_BLOCK_START

	3.5 Mailbox
	3.5.1 PLATFORM
	3.5.2 DEVICES
	3.5.3 MASTER_MAILBOX_PRIORITY
	3.5.4 SLAVE_MAILBOX_PRIORITY
	3.5.5 MASTER_ROM_START, MASTER_ROM_LEN
	3.5.6 MASTER_RAM_START, MASTER_RAM_LEN
	3.5.7 SLAVE_ROM_START, SLAVE_ROM_LEN
	3.5.8 SLAVE_RAM_START, SLAVE_RAM_LEN
	3.5.9 MASTER_MBX_START, MASTER_MBX_LEN
	3.5.10 SLAVE_MBX_START, SLAVE_MBX_LEN

	4. Application examples
	4.1 Interrupt, Mailbox, Message Queue
	4.2 Mailbox, Message Queue with RTOS support

	5. Legal information
	5.1 Definitions
	5.2 Disclaimers
	5.3 Trademarks

	6. List of figures
	7. List of tables
	8. Contents

