
Fundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Arrays

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Arrays

Introduction

• Dynamic container classes are very useful for manipulating collections of data without needing
to know in advance how much memory to allocate for their storage

• They expand as elements are added to them and do not need to be created with a fixed size

This lecture deals

• With the two families of dynamic array classes provided by Symbian OS

The fixed-length array class

• Which wraps the standard C++ [] array is also covered

2

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Dynamic Arrays in Symbian OS

‣ Demonstrate an understanding of the basics of Symbian OS dynamic arrays (CArrayX
and RArray families)

‣ Understand the different types of Symbian OS dynamic arrays with respect to memory
arrangement (flat or segmented), object storage (within array or elsewhere), object length
(fixed or variable) and object ownership.

‣ Recognize the appropriate circumstances for using a segmented-buffer array class rather
than a flat array class

3

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Arrays in Symbian OS

The logical layout of an array

• Is like a vector

The implementation of a dynamic array either:

• Uses a single heap cell as a “flat” buffer to hold the array elements

• Allocates the array buffer in a number of segments using a doubly-linked list to manage the
segmented heap memory

4

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Arrays in Symbian OS

Segmented buffers are preferable

• For large arrays which are expected to resize frequently

• Where elements are frequently inserted into or deleted from the array

Repeated reallocations of a single flat buffer may result in heap thrashing and copying

Contiguous flat buffers are typically used when

• High-speed pointer lookup is an important consideration

• Array resizing is expected to be infrequent

Insertion and deletion are typically more efficient with a segmented buffer than with a
flat buffer

• Since it does not require that all the elements after the modification point be shuffled into a new
position.

5

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Dynamic Arrays in Symbian OS

Symbian OS provides

• Two distinct class families for creating and accessing dynamic arrays

• The original array classes from the early days of Symbian OS are C classes

There are a number of different types of array class

• All of which have names prefixed by "CArray"

• e.g. CArrayFixFlat, CArrayFixSeg and CArrayVarSeg

• They are referred to generically as the "CArrayX" classes

The RArray and RPointerArray classes

• Were introduced at a later stage to improve efficiency

6

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes

The number of CArrayX classes

• Makes this array family very flexible

• But they can have a significant performance overhead (more later)

• Use is no longer encouraged

7

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes

For each class the naming scheme CArray prefix is followed by:

Fix for elements which have the same length

• And are copied so they may be contained in the array buffer

Var where the elements are of different lengths

• Each element is contained within its own heap cell and the array buffer contains pointers to
the elements

Pak for a packed array where the elements are of variable length

• Elements are copied into the array buffer, each element preceded by its length information

Ptr for an array of pointers to CBase-derived objects

8

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes

Following the Fix,Var,Pak and Ptr the array class name ends with:

Flat

• e.g. CArrayFixFlat for classes which use an underlying flat buffer for the dynamic

memory of the array

Seg

• e.g. CArrayPtrSeg for those that use a segmented buffer

9

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes

The inheritance hierarchy of the CArrayX classes is fairly straightforward

• All of the classes are C classes and thus ultimately derive from CBase

Each class is a thin template specialization

• Of one of the array base classes:

CArrayVarBase

CArrayPakBase

CArrayFixBase

10

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes

CArrayVarSeg<class T> and CArrayVarFlat<class T>

• Derive from CArrayVar<class T>

• Which is a template specialization of CArrayVarBase

CArrayVarBase owns an object

• Which derives from CBufBase the dynamic buffer base class

• Which is used to store the elements of the array

The object is a concrete instance of

• CBufFlat a flat dynamic storage buffer

• CBufSeg a segmented dynamic buffer

11

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Memory Layout of Dynamic Arrays

Fix Var or Ptr Pak

12 5 6

Element length

Flat Buffer

Granularity = 4

Segmented Buffer

Heap memory occupied by a valid element

Unoccupied element

double linked lists

12

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes Available

Array Class Description Cleanup behavior
CArrayFixFlat Elements are of fixed size and are

contained in the array itself. The array
occupies a single area in memory.

Elements are owned and destroyed
by the array.

CArrayFixSeg Elements are of fixed size and are
contained in the array itself. The array
occupies multiple areas (segments) of
memory.

Elements are owned and destroyed
by the array.

CArrayVarFlat Elements are of variable size. Each
element exists separately on the heap,
and the array consists of pointers to
those items. The array occupies a single
area in memory.

Elements are owned and destroyed
by the array.

13

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

CArrayX Classes Available

Array Class Description Cleanup behavior
CArrayVarSeg Elements are of variable size. Each

element exists separately on the heap,
and the array consists of pointers to
those items. The array occupies multiple
areas (segments) of memory.

Elements are owned and destroyed
by the array.

CArrayPtrFlat Elements are pointers to CBase-derived
objects. The array occupies a single area
in memory.

Elements must be destroyed
separately before array deletion by
calling ResetAndDestroy()

CArrayPtrSeg Elements are pointers to CBase-derived
objects. The array occupies multiple
areas (segments) of memory

Elements must be destroyed
separately before array deletion by
calling ResetAndDestroy()

14

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RArray and RPointerArray

RArray and RPointerArray are R classes

• Indicating that they own a resource which in this case is the heap memory allocated to hold
the array

RArray<class T>

• Is a thin template specialization of class RArrayBase

• It comprises a simple array of elements of the same size

• The array class uses a flat vector-like block of heap memory which is resized when necessary

15

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RArray

RArray objects

• May be either stack or heap-based

• The Close() or Reset() functions must be called to clean up properly i.e. to free the memory allocated

for the array

RArray::Close()

• Frees the memory used to store the array and closes it

RArray::Reset()

• Frees the memory associated with the array

• Resets its internal state allowing the array to be reused.

It is acceptable to call Reset()

• Before allowing the array object to go out of scope

• Since all the heap memory associated with the object will have been cleaned up

16

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

RPointerArray

RPointerArray<class T>

• Is a thin template class deriving from RPointerArrayBase

• It comprises a simple array of pointer elements and uses flat linear memory

• Each of the pointer elements addresses objects stored on the heap

• The ownership of these objects must be considered when the array is destroyed

If the objects are owned by other components

• It is sufficient to call Close() or Reset() on the array object to clean up the memory

associated with it

If the objects are owned by the array

• They are not destroyed automatically when the array is cleaned up

• Thus as part of cleanup, ResetAndDestroy() must be called to delete the heap object

associated with each pointer element in the array

17

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

 RArray, RPointerArray or CArrayX?

‣ Know the reasons for preferring RArrayX to CArrayX, and the exceptional cases
where CArrayX classes are a better choice

18

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

There are performance implications of CArrayX dynamic arrays

• The original CArrayX classes use the CBufBase base class to access the memory allocated to the

array

• CBufBase works with byte buffers and requires a TPtr8 object to be constructed for every array

access

• This results in a performance overhead even for a simple flat array containing fixed-length elements

19

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

Furthermore

• For every method which accesses the array there are a minimum of two assertion checks on the
incoming parameters - even in release builds.

For example to access a position in a CArrayFixX array ...

a. operator[] calls CArrayFixBase::At()

b. CArrayFixBase::At() uses an __ASSERT_ALWAYS statement to range-check the index

c. CArrayFixBase::At() calls CBufFlat::Ptr()

d. CBufFlat::Ptr() also asserts that the position specified lies within the array buffer

20

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

A second issue

• Is that a number of the array-manipulation functions of CArrayX, such as AppendL(), can leave

when there is insufficient memory to resize the array buffer

In cases where the kernel uses the dynamic arrays

• Or where the array must be called within a function which cannot leave

The leaving functions must be called in a TRAP macro to catch any leaves

• As described previously the TRAP macro has an associated performance overhead and it’s

undesirable to need to use one

21

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

The RArray and RPointerArray classes

• Were added to Symbian OS to provide more efficient simple flat-memory arrays

Comparing

• RArray with CArrayFixFlat

• RPointerArray with CArrayPtrFlat

The RArray and RPointerArray classes

• Have significantly better performance than CArrayX classes

RArray and RPointerArray

• So do not need a TRAP harness to ensure leave-safe operations when inserting or appending to the

array

• Thus can be used efficiently both kernel- and user-side (more on this later)

22

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

R classes have a lower overhead than C classes because they do not need the
characteristic features of a C class:

• Zero-fill on allocation

• A virtual function table pointer

• Mandatory creation on the heap

The searching and ordering functions

• Of the RArray classes were also optimized over those of the original classes

23

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

The RArray or RPointerArray classes should be used in preference to the

CArrayFixFlat and CArrayPtrFlat classes whenever the array has the

following characteristics:

• The size of an array element is bounded

The current implementation for RArray imposes an upper limit of 640 bytes

• Insertions into the array are relatively infrequent

There is no segmented-memory implementation for RArray or RPointerArray - both classes use a

fixed rather than segmented memory layout

24

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

 RArray, RPointerArray or CArrayX?

When a segmented-memory implementation is required for reasons of efficiency
(e.g. large arrays which are expected to resize frequently)

• it may be more appropriate to use the CArrayX family of dynamic arrays

For this purpose

• CArrayFixSeg and CArrayPtrSeg are useful alternatives to RArray and RPointerArray

25

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Implementation Note

For performance reasons

• RArray stores objects in the array with word (4-byte) alignment.

This means

• That some member functions do not work when RArray is used for classes which are not

word-aligned (i.e. not aligned along the 4-byte boundary)

• An unhandled exception may occur on hardware that enforces strict alignment

26

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

The functions affected are:

• The constructor RArray(TInt, T*, TInt)

• Append(const T&)

• Insert(const T&, TInt)

• Operator [], if the returned pointer is used to iterate through the array as for a C array

27

Implementation Note

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

 Array Granularities

‣ Understand the meaning of array granularity and capacity

‣ Know how to choose the granularity of an array as appropriate to its intended use

28

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Granularities

The capacity of a dynamic array

• Is the number of elements the array can hold within the space currently allocated to its buffer

When the capacity is filled

• The array dynamically resizes itself by reallocating heap memory when the next element is added

• The number of additional elements allocated to the buffer is determined by the granularity which is
specified at construction time.

All dynamic container classes

• Regardless of whether they have a segmented or flat memory layout have a granularity for reallocation

29

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Granularities

It is important to choose an array granularity consistent with the expected usage pattern of the
array

• Too small an overhead will be incurred for multiple extra allocations when a large number of elements is added
to the array

• Too large a granularity is chosen the array will waste storage space

For example, if an array typically holds 8 to 10 objects

• A granularity of 10 would be sensible

• A granularity of 100 would be unnecessary.

If there are usually 11 objects

• A granularity of 10 wastes memory for 9 objects unnecessarily

• A granularity of 1 would also be foolish since it would incur multiple reallocations

30

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

Array Sorting and Searching

‣ Demonstrate an understanding of how to sort and seek in dynamic arrays

‣ Recognize that RArray, RPointerArray and the CArrayX family can all be sorted,
although the CArrayX classes are not as efficient

31

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

For the CArrayX classes

• An array key can be used to define a property of an array element by which the entire array can be sorted
and searched

For example

• For an array of task elements that have an integer priority value and a string name

A key based on the priority

• May be used to sort the array into priority order

A key based on the name

• May be used to search for a task of a particular name

32

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

The abstract base class

• For the array key is TKey

The following TKey-derived classes implement keys for different types of

array:

• TKeyArrayFix for arrays of fixed-length elements

• TKeyArrayVar for arrays of variable-length elements

• TKeyArrayPak for arrays of packed (variable-length) elements

33

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

Accessing an element by key requires the appropriate

• TKeyArrayFix

• TKeyArrayVar

• TKeyArrayPak

Object to be passed to:

• Sort()

• InsertIsqL()

• Find() or FindIsq() array-class member function

34

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

A search can be made for elements

• For example, based on the value of a key in one of two ways:

Sequentially

• Through the array, starting with the first element performed using the Find() member function

Using a binary-search (binary-chop) technique

• Performed using the FindIsq() member function

• This technique assumes that the array elements are sorted in key sequence

Both functions

• Indicate the success or failure of the search and, if successful, supply the position of the element within the
array

35

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

RArray classes provide searching and ordering methods

• That are more efficient and easier to use than that of their CArrayX counterparts

The objects

• Contained in RArray and RPointerArray may be ordered

• Using a comparator function provided by the element class

The class typically

• Supplies a method which is used to order the objects

Which is passed

• To the InsertInOrder() or Sort() method by wrapping it in a TLinearOrder<class T>

package

See the example in the ASD Primer for how to implement sort code

36

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

Array Sorting and Searching

It is also possible

• To perform lookup operations on the RArray and RPointerArray classes in a similar manner

The RArray classes

• Have several Find() methods

• One of which is overloaded to take an object of type TIdentityRelation<class T>

This object packages a function,

• Usually provided by the element class

• Which determines whether two objects of type T match

See the example in the ASD Primer for how to implement search code

37

Curriculum Objectives

Copyright © 2001-2007 Symbian Software Ltd.

Fundamentals of Symbian OS

 TFixedArray

‣ Recognize that, when a dynamic array is not required, the TFixedArray class should be
preferred over a C++ array, since it gives the benefit of bounds checking (debug-only or
debug and release)

38

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFixedArray

TFixedArray is an alternative to dynamic arrays

• This is useful when the number of elements that will occupy an array is known at compile time

• The TFixedArray class wraps the standard fixed-length C++ array

• Adding range checking to prevent out-of-bounds access

The TFixedArray class

• Can be used as a member of a CBase class on the heap

• Or on the stack as it is a T class

39

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFixedArray

Access is automatically bounds-checked

• On both release and debug builds if the At() function is called

Where run-time efficiency is required in production code

• operator[] can be invoked instead of At() so access is bounds-checked in debug builds only

• A panic occurs if an attempt is made to use an out-of-range array index

40

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFixedArray

Once a TFixedArray has been allocated

• It cannot be resized dynamically, which is a disadvantage of the class

Because the allocation has been made

• Insertion within the bounds of the array is guaranteed to succeed at run-time

Which means

• There is no need to check for out-of-memory errors or leaves on array insertion

• Access to the array is fast in release mode

41

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFixedArray

The main drawbacks to the use of fixed-length arrays are that:

• Any additions to an array must occur at the end

• TFixedArray does not support ordering and matching

42

Dynamic ArraysFundamentals of Symbian OS

Copyright © 2001-2007 Symbian Software Ltd.

TFixedArray

The TFixedArray class has some useful additional functions which

extend the generic C++ [] array:

• Begin() and End() for navigating the array

• Count() returns the number of elements in the array

• Length() returns the size of an array element in bytes

• DeleteAll() invokes delete on each element of the array

• Reset() clears the array by filling each element with zeroes

43

Copyright © 2001-2007 Symbian Software Ltd.

Curriculum Check ListFundamentals of Symbian OS

Dynamic Arrays

✓ Dynamic Arrays in Symbian OS	

✓ RArray,RPointerArray or CArrayX?

✓ Array Granularities

✓ Array Sorting and Searching

✓ TFixedArray

44

