
Symbian Academy Training Exercises

07: Client-Server and Files

 1

07: Client-Server and Files

Tutorial / Exercise

Goal
You will create a fully working audio player application for mp3/aac/...-files based on the S60

platform. To make this work, client-server communication is demonstrated through the use of the

multimedia framework as well as the file server.

Introduction
When developing real-world applications for Symbian OS, you will almost certainly get in touch with

an API that relies on the client-server framework. Examples include sockets, messaging or – as in this

exercise – the multimedia framework and file access.

The first is used to show a higher level interface to an asynchronous service provider. With just a few

lines of code, you can create your own audio player that automatically supports all of the codecs that

are installed in the phone.

The file API is used to store and retrieve the last played track and demonstrates a more low-level

interaction with a server.

Structure of this Exercise
The project for this exercise is the first UI application. Creating those is not directly covered by the

Symbian Academy course materials. Consequently, this exercise consists of three parts:

1. User Interface (optional): Start with a new project and create the user interface yourself.

2. Multimedia Framework: Implement the communication to the audio player utility class.

3. File Access: Save and retrieve the last played track.

The first, optional part is presented as a tutorial and contains a description of the steps you have to

complete in order to create a simple UI application based on the S60 UI-Designer of Carbide.c++

Developer Edition.

If you either do not want to create the UI yourself or if you are working with Carbide.c++ Express

Edition or another IDE, start with part 2 and the supplied pre-written framework.

The two main parts of this exercise (2 & 3) can be done in two different ways:

- Through the tutorial in this document, if you did part 1 of this module yourself.

- Through the pre-written framework and the marked edit-positions, like in previous exercises.

Symbian Academy Training Exercises

07: Client-Server and Files

 2

Tutorial

Introduction
This project is based on S60 3rd Edition. The Symbian Academy course covers development for

Symbian OS in general and doesn’t describe how to work with specific UI implementations like S60

from Nokia and UIQ.

Therefore, a short tutorial explains how to create the UI application using the S60 UI designer from

Carbide.c++ Developer Edition. However, the tutorial is only intended as an overview of how to

create this specific user interface for the project and does not contain detailed explanations of the UI

framework in general.

For more information on how to create applications for the S60 user interface, find tutorials at:

- Forum Nokia: http://www.forum.nokia.com/

- symbianresources.com: http://www.symbianresources.com

If you either do not have the Developer Edition (or better) of Carbide.c++ or if you are not interested

in how to create a user interface, you can skip the first part and start directly with the provided

framework that contains the pre-written UI design. In this case, please start with the section called

“Part 2: The Client Side of the Multimedia Framework” and/or work through the edits in the source

code.

http://www.forum.nokia.com/
http://www.symbianresources.com/

Symbian Academy Training Exercises

07: Client-Server and Files

 3

Part 1: Creating the Framework
Create a new application in Carbide.c++ Developer Edition (or better) and use the “3rd Ed. GUI

Application with UI Designer”-template.

Choose “AudioPlayer” as project name. On the next page, you should at least enable the “Emulator

Debug” build configuration for the “S60_3rd_MR”-SDK. If you also want to deploy the project for the

phone, you will most likely need the debug and release-configurations for the GCCE-compiler. It is

free and is installed with the Symbian OS SDKs. The ARMV5-compiler is a commercial product; while

it creates more optimized and smaller code than the free GCCE compiler, it is usually not necessary

for 3rd party developers.

Continue to the “S60 UI Design Selection” screen. We will use the default, “Empty” template for the

audio player. On the following page, “Container Name and Type”, make sure that “Support view

switching” is enabled. While our application will only contain one view and wouldn’t need view

switching, the architecture that’s generated by the wizard with this setting is better suited to

separate UI and control logic.

Symbian Academy Training Exercises

07: Client-Server and Files

 4

Once your project is created, test it in the emulator. Make sure the proper build configuration for the

emulator is active and launch the project.

You should find the new application in the “Installat.”-folder of the menu in the emulator. Keep in

mind that S60 is not (yet) a touch screen UI, therefore you should navigate using the device keys at

the bottom of the emulator.

This is what your application should initially look like.

No menu is defined as of now; the “Exit”-button does already work. It’s important that you always

exit your application first and then close the emulator window, instead of simply directly closing the

emulator. Like our code for the console applications did, the UI-framework of the emulator

automatically compares the memory state before launching your application and after it was closed.

If memory leaks are detected, you will be warned. It’s always easier to identify and fix a memory leak

right after you wrote the code that was causing it, than having to fix several leaks at the end, when a

huge application is finished.

Symbian Academy Training Exercises

07: Client-Server and Files

 5

Adapting the Container

Now that we know that your application works, the next task is to adapt the look and functionality of

the application to our needs. The AudioPlayerContainer.uidesign file should be open by default;

if it isn’t, open it by double-clicking on the file.

To make your application more personal, you should rename the title from AudioPlayerContainer

to something better, like Audio Player. Do so by double-clicking on the title in the UI designer and

then replace the text with the new content.

To create a new menu, left-click once on the optionsMenu icon below the screen:

A menu will appear, where you can add your menu items by simply double-clicking on the “Type

here”-text and writing the name of the new menu item. In total, create four new menu items (see

the following screen shot) and save the UI design. This will make the designer automatically create

the corresponding code.

Symbian Academy Training Exercises

07: Client-Server and Files

 6

Implementing the “Exit” menu command

In this case, the application can be closed through the right softkey; nevertheless, it’s less confusing

for the user if he can also exit through the options menu. As it’s the easiest task, we will start with

implementing this functionality. Right-click on the “Exit” menu command in your UI design and

choose “Handle ‘selected’ event...”.

Whenever the user selects a menu command, the HandleCommandL() method of the current view

will be called. If the application does not handle the event in this place, it’ll be sent to the AppUi-

class, which can be seen as the level above all views of the application.

The UI designer automatically created the code to handle the menu command in HandleCommandL()

and defined a new function, where we can insert our code for the exit command. In this case, we will

transform our custom command (which just has the name “Exit”) to a Symbian OS wide exit

command and send this one to the AppUi. This class will handle it and quit the application.

TBool CAudioPlayerContainerView::HandleExitMenuItemSelectedL(TInt aCommand)

 {

 AppUi()->HandleCommandL(EEikCmdExit);

 return ETrue;

 }

When you start your application again, selecting the “Exit” menu item will close the application.

The File Selection Dialog

The next step is to implement the file selection dialog. S60 has got a powerful pre-defined dialog that

automatically handles navigating through the file system. However, the UI designer doesn’t support

creating this one yet, so it has to be done manually.

The memory selection dialog requires linking our application to an additional library. To add it, open

the AudioPlayer.mmp file (in the /group/-folder of your project) to get to the mmp file editor. Go to

the “Libraries”-tab and add the commondialogs library:

Symbian Academy Training Exercises

07: Client-Server and Files

 7

The dialog itself has to be defined through a struct in the resource file. Using the

MEMORYSELECTIONDIALOG-struct for the dialog requires including the appropriate header file. The

dialog should be defined in the AudioPlayerContainer.rssi (in the /data/-folder) file, as it

contains the contents that are displayed on the main screen. This is just a convention of the code

generated by Carbide.c++, you could also put all the resource code into a single main

AudioPlayer.rss-file.

However, it’s best if you add the following line at the top of the AudioPlayer.rss-file, as the

AudioPlayerContainer.rssi-file is simply included into the main .rss-file:

#include <CommonDialogs.rh>

To add the dialog to the container, open AudioPlayerContainer.rssi and add the following

definition at the end of the file:

RESOURCE MEMORYSELECTIONDIALOG r_file_select_dialog

 {

 locations =

 {

 LOCATION { root_path = "C:\\Data\\Sounds\\"; },

 LOCATION { root_path = "E:\\"; }

 };

 }

The two locations specified by this resource definition are the two base directories where the user

can start browsing through the file system. In this case, it only allows him to view the

\Data\Sounds\-directory on the internal memory drive C, however, he is allowed to browse through

the whole memory card.

Displaying the dialog is simple. Go to the UI designer and let it create the code to handle the “Play

file” menu item. The following source code snippet shows what the engine should look like to display

the file selection dialog:

TBool CAudioPlayerContainerView::HandlePlay_fileMenuItemSelectedL(TInt aCommand)

 {

 // Display the file selection dialog

 TFileName filename(KNullDesC);

 _LIT(KTitle, "Select audio file");

 if (AknCommonDialogs::RunSelectDlgLD(filename, R_FILE_SELECT_DIALOG, KTitle))

 {

 }

 return ETrue;

 }

Using this method requires including the following header file in AudioPlayerContainerView.cpp or

.h:

#include <akncommondialogs.h>

The drives of the mobile phone are also available on the emulator and are mapped to specific

directories. To get to the subdirectory that we specified in the resource file on drive C, put an .mp3 or

.wav-file in: C:\Symbian\9.1\S60_3rd_MR\Epoc32\winscw\c\Data\Sounds

Symbian Academy Training Exercises

07: Client-Server and Files

 8

The Audio Player Engine

Defining the Engine Class

The interaction with the client-side of the multimedia server should be handled by a dedicated class.

Therefore, create a new class called AudioPlayerEngine (source & header-files). Carbide.c++

features a very useful wizard that can create both files in one step and will even write the two phase

construction code for you. Simply go to File  New  Symbian OS C++ Class

In the following dialog, select the “Simple Symbian Style C++ Class” template. Make sure that you

only enter “AudioPlayerEngine” for the “Class name”. The wizard will automatically add the C to the

class name – because the engine is going to be a C type class, derived from CBase.

Symbian Academy Training Exercises

07: Client-Server and Files

 9

Defining the Framework of the Engine

Next, we will prepare the general interface and framework of the audio player engine, so that we can

add the real communication in the next step – where others can join in, who started with the pre-

written framework.

If you think about the tasks of the (minimal) audio engine, it should have the following features:

1. Allow to start playing a file.

2. Allow to stop the currently playing file.

3. Have an own status variable, to make sure that the engine always knows its current state.

4. Allow to query the current state of the engine.

Let’s add the required code to meet those requirements. First, define an enum called TAudioState.

It’s used to keep track of the current state of the engine. Add this code above the class definition in

AudioPlayerEngine.h:

/** Engine status */

enum TAudioState

 {

 /** No operation */

 EIdle,

 /** Preparing to play a file*/

 EPlayFilePrepare,

 /** Playing a file */

 EPlayFilePlaying

 };

Next, we need three new functions, which should be called from the outside to start / stop playing

and to query the current state. To start playing, the application should only provide the filename to

the engine, which takes care of the rest. Also, a private instance variable for keeping track of the

current internal state is defined using the new enum.

public:

 void PlayFileL(const TDesC &aFile);

 void StopPlay();

 TBool IsPlaying();

private:

 TAudioState iState;

Next, it’s time to implement those functions. To be on the safe side, it’d be a good idea to make sure

that iState is initialized with EIdle. You can do this directly through the C++ constructor.

The initial implementation of the new methods is printed on the next page. The only task that is

important for now is that the state variable is handled correctly. Note that the request to play a file

doesn’t directly switch the state to the play state, as the player has to be initialized first – more on

that later.

Symbian Academy Training Exercises

07: Client-Server and Files

 10

void CAudioPlayerEngine::PlayFileL(const TDesC &aFile)

 {

 if (iState == EIdle)

 {

 iState = EPlayFilePrepare;

 }

 }

void CAudioPlayerEngine::StopPlay()

 {

 iState = EIdle;

 }

TBool CAudioPlayerEngine::IsPlaying()

 {

 return (iState != EIdle);

 }

Connecting the Menu to the Engine

The last part of the framework is to connect the menu / the application to the engine. Additionally,

only the menu items which are logically possible at the moment should be visible to the user.

First, go to the UI design of the container again and let it create the methods for handling the

’selected’ event of the two remaining menu items (“Play last file”, “Stop”).

To let the view use the engine, add the required include statement to the header file of the
CAudioPlayerContainerView-class, then add a private instance variable:

 CAudioPlayerEngine* iAudioEngine;

As the engine is an essential part of the view, the instance of it should be created in

CAudioPlayerContainerView::ConstructL() – use the two phase construction accordingly for this

type of variable: consider if you have to use the cleanup stack of not! Don’t forget to delete the

object again in the destructor of the view class.

In the menu item handler methods, we will now add the calls to the engine, in order to prepare

everything for playing the file. This includes adapting the “Play” menu item handler method, so that

the if-statement is extended to:

 if (AknCommonDialogs::RunSelectDlgLD (filename, R_FILE_SELECT_DIALOG,

KTitle))

 {

 // User selected a file, send it to the audio engine

 iAudioEngine->PlayFileL (filename);

 }

Also, call the StopPlay()-function of the engine in the “Stop” menu item handler method of the

view class.

The last preparative step before implementing the actual communication with the audio player is to

dim the menu items, which are currently logically impossible. This is done every time the “Options”-

menu is opened and can be implemented by overriding a method called DynInitMenuPaneL() in the

view class. It is defined in the base class that our class is derived from ( CAknView) and is

automatically called by the framework every time the menu is opened by the user. It allows the

application to dynamically adapt the contents of the menu, before it is shown to the user.

Symbian Academy Training Exercises

07: Client-Server and Files

 11

Define the method in a private part of the CAudioPlayerContainerView class definition:

void DynInitMenuPaneL(TInt aResourceId, CEikMenuPane* aMenuPane);

The implementation of this method:

void CAudioPlayerContainerView::DynInitMenuPaneL(TInt aResourceId, CEikMenuPane*

aMenuPane)

 {

 if (aResourceId == R_AUDIO_PLAYER_CONTAINER_MENU_PANE1_MENU_PANE)

 {

 if (iAudioEngine->IsPlaying ())

 {

 // We're playing, so don't display the play commands

 aMenuPane->SetItemDimmed

(EAudioPlayerContainerViewPlay_fileMenuItemCommand, ETrue);

 aMenuPane->SetItemDimmed

(EAudioPlayerContainerViewPlay_last_fileMenuItemCommand, ETrue);

 }

 else

 {

 // We're not playing, so don't display stop command.

 aMenuPane->SetItemDimmed

(EAudioPlayerContainerViewStopMenuItemCommand, ETrue);

 }

 }

 }

If you followed the tutorial closely, the resource specified by the code should exist

(R_AUDIO_PLAYER_CONTAINER_MENU_PANE1_MENU_PANE). If there’s a problem when compiling the

application, make sure the resource id is an uppercase version of the MENU_PANE definition in the

AudioPlayerContainer.rssi-file. Also, you might have to adapt the IDs of the menu items (e.g.

EAudioPlayerContainerViewPlay_fileMenuItemCommand) if you didn’t choose the same labels. You

can find the menu command IDs MENU_PANE definition as well; alternatively you can take a look at the

AudioPlayerContainer.hrh-file.

The DynInitMenuPaneL()-method essentially checks if the engine is currently playing a file. If it is, it

dims both of the “start playing” menu items. If the engine is currently idle, it doesn’t allow stopping.

If a menu item isn’t explicitly set to “dimmed” either in the resource definition or this function, it is

visible.

After you select a file in the dialog, the menu should look like this:

Symbian Academy Training Exercises

07: Client-Server and Files

 12

Even though our engine doesn’t currently play a file, the menu already adapts to the (theoretical)

status of the engine. Remember: Make sure that you quit the application through the menu or the

right softkey instead of closing the emulator window. If you get an error message like shown in the

following screenshot, you have most likely forgotten to delete the instance of the engine in the view

destructor.

The same is true if you get the Windows error message which states that “epoc.exe has detected a

problem and it must be closed…”. To prevent this crash and see the real error message instead, start

the emulator with a debug run configuration instead of using the play-button.

This concludes the part of creating the framework. The following sections of this document will have

to be executed even if you start with the pre-written framework and skipped the UI design part.

Symbian Academy Training Exercises

07: Client-Server and Files

 13

Part 2: The Client Side of the Multimedia Framework
If you start with the pre-written framework, follow the marked edits. This document contains a short

description of the individual tasks. You can also use these instructions if you’ve created the

framework yourself and therefore don’t have the pre-marked edit positions.

Prepare the Engine for the Audio Player

The first steps include adding the required audio player utility from S60 to the engine. This class

handles the client-server communication to the multimedia framework and works in conjunction

with the MMdaAudioPlayerCallback interface.

Generally, your application sends requests to the asynchronous service provider (e.g. to initialize an

audio file, to start playing, etc.) and gets a call-back when this process is finished. Usually you’d have

to implement the active object required to handle this yourself – however, for several client-server

frameworks, this has already been implemented, thus making it easier for the developer. You just

have to implement the call-back interface.

Follow these steps to complete the first task. The numbers correspond to the edits if you use the pre-

written framework.

Location: AudioPlayerEngine.h

1. Create a new private instance variable for the engine:
CMdaAudioPlayerUtility* iAudioPlayer;

2. This requires including a header file – see the SDK help for CMdaAudioPlayerUtility

3. Add the library mediaclientaudio to the mmp file editor

4. Additionally derive the engine from MMdaAudioPlayerCallback

5. This implies implementing two methods from the callback interface – see the SDK help for
MMdaAudioPlayerCallback

Symbian Academy Training Exercises

07: Client-Server and Files

 14

6. To avoid the following error when working with the S60 3rd Edition MR SDK:
WARNING: Can't find following headers in System Include Path

 <mmfPluginInterfaceUIDs.hrh>

Add the /include/mmf/plugin-directory of the S60 SDK to the system include paths through

the mmp editor:

Communicating with the Audio Player Utility

Location: AudioPlayerEngine.h / .cpp

7. Initializing the audio player utility is easy – in CAudioPlayerEngine::PlayFileL(), create an

instance of the iAudioPlayer member variable.

This can be done by using CMdaAudioPlayerUtility::NewFilePlayerL(), which supports

passing a descriptor (parameter of PlayFileL()) plus a pointer to a class that implements

the call-back interface – in this case, a this-pointer, as the engine implements the

MMdaAudioPlayerCallback interface.

Creating the file player automatically causes the multimedia framework to check if it can find

a plug-in that can handle the specified file type to initializes the player. When this process is

done (successfully or with an error), the MapcInitComplete()-method of the engine class is

executed.

8. First, let’s consider if something doesn’t work. In our case, we will cancel playing the file and

do cleanup in case of an error. In a real application, the user should of course be notified

about the problem.

As the cleanup has to be done in several occasions, it’s best to put this code into an extra

function. Define and implement a method called CAudioPlayerEngine::Cleanup() and use

it to do the following tasks:

a. If iAudioPlayer exists,

b. Make sure the playback is stopped by calling Stop()

c. Close the connection through Close()

d. Delete the instance of iAudioPlayer

e. Set the pointer to NULL

f. In any case – set the status to EIdle

Symbian Academy Training Exercises

07: Client-Server and Files

 15

9. The first thing that should be done in MapcInitComplete() is to check if an error occurred.

The method has two parameters; the first is set to KErrNone if everything was ok. If the

variable contains a different value, call the Cleanup() method and instantly return from the

MapcInitComplete() method – thus cancelling playback and ignoring the error.

10. If no error occurred, the audio file was recognized and initialization was successful. In this

case, set the internal status of the engine to EPlayFilePlaying.

11. Next, start playback of the prepared file by calling the Play()-function of the audio player

utility.

With these changes, playback of the file will already work. Of course, we also have to consider how

to cancel playback and how to do proper cleanup after the file has finished playing. These tasks are

covered in the next section.

Stopping Playback and Cleanup

Location: AudioPlayerEngine.cpp

12. When playback is finished, the MapcPlayComplete() method of the engine class is executed.

The aError argument could contain the error code of any problems that occurred during

playback, e.g. underflow. For this exercise, the error can be ignored.

What should be done however is to call our Cleanup() method to simply free all the

resources. Of course, it would be possible and probably more efficient to reuse the audio

player utility class, but it’s easier this way.

13. Should the user exit the application during playback, cleanup has to be performed as well.

Therefore, execute the Cleanup() method from the destructor as well.

14. The last position where the Cleanup() method has to be called is the

CAudioPlayerEngine::StopPlay() method. This is executed from the view when the “Stop”

menu item is selected.

This concludes the second part of this exercise. Your application is now able to play any audio files

that are supported by the mobile phone – without you having to worry about any codecs or

recognizing the file type. The following screenshots show how the application should look like when

playing an mp3-file stored for the emulator in:
C:\Symbian\9.1\S60_3rd_MR\Epoc32\winscw\c\Data\Sounds\Rooga - Say.mp3

Symbian Academy Training Exercises

07: Client-Server and Files

 16

Symbian Academy Training Exercises

07: Client-Server and Files

 17

Part 3: The File API
Interacting with the S60 Multimedia Framework is one of the “real-life” client-server examples.

Thanks to the good implementation of the API, most of the tasks are already pre-implemented and

for standard use of the audio player utility, you just have to implement the call-back interface –

instead of directly using the client/server interface APIs and implementing an active object yourself.

In this part of the exercise, we will extend the application to persistently save the file that the user

played last time. This task is demonstrating how to use the file API of Symbian OS and is a bit closer

to the real interaction that is necessary for client/server communication.

Writing the Data File

In the following steps, you will create a method that can save a file containing any data in a

descriptor to the private directory of your application. In this case, the data is going be the filename,

which is externalized to a file write stream.

Location: AudioPlayerContainerView.h / .cpp

15. Define and implement the following method:
void CAudioPlayerContainerView::SaveDataFileL(const TDesC& aFilename, const

TDesC& aData)

16. In this method, first create a session to the file server and connect to it. It’s recommended to

encapsulate the connect statement into a User::LeaveIfError() statement, to turn any

error code that might be sent out into a leave. If KErrNone is returned, no leave will be

thrown.

17. Next, push the session to the cleanup stack. Make sure that you use the appropriate function

to do so, as the session has to be closed in case of a leave and not deleted!

18. Use the CreatePrivatePath(EDriveC)–method of the file server session to make sure the

private path of the application exists on drive C. You can ignore the return value of this

method, e.g. if the path does already exist. If there is a problem with the directory, creating

the file will fail in step 20.

19. Set the session path of the file server session to the private directory on drive C. Use the

SetSessionToPrivate()-method.

20. Now, create a file object.

21. Use the Replace method to either create a new file or to replace the previous one if it does

already exist. Use the aFilename parameter and open the file in write-only mode.

22. Push the file object on the cleanup stack. Make sure that you use the correct function.

23. Create a file write stream based on the file object. Look up the required header file for the

RFileWriteStream–class in the SDK documentation.

Symbian Academy Training Exercises

07: Client-Server and Files

 18

24. Push the file write stream on the cleanup stack (R type class, use the PushL() method of the

file write stream class)

25. Externalize the data to the stream. Note that the externalize operator can leave, so it was

indeed necessary to push all the objects on the cleanup stack – as they’re all local variables

and no instance variables.

26. Call the commit method of the file write stream to ensure that its contents are written to the

file.

27. Pop and destroy all three objects using the cleanup stack.

28. Now that the SavaDataFileL() method is finished, call it from the

CAudioPlayerContainerView::HandlePlay_fileMenuItemSelectedL() method. Use a

literal called KDataFilename for the filename. If you did not start with the pre-written

framework, define it to contain a filename like LastTrack.txt.

It’s time to test if the save-method already works! Start the emulator and select a file to play. Make

sure that you close the application in the emulator before closing the emulator window, so that you

are notified of any memory leaks your application may suffer from.

If everything went well, the file should have been created. You can find it in the directory

C:\Symbian\9.1\S60_3rd_MR\Epoc32\winscw\c\private\e21a1dd3 , where the last part

corresponds to the UID3 of your application – it will most likely be different if you didn’t use the pre-

written framework.

The data file should contain text like:
xC:\Data\Sounds\Rooga - Say.mp3

The first part is a representation of the length of the descriptor, which is externalized automatically.

Reading the Data File

Comparable to what we did for writing the data file, we will now write an inverse generic method

that can read a file and returns the contents of the file in a heap based buffer descriptor.

Location: AudioPlayerContainerView.h / .cpp

29. Define and implement the following method:
HBufC* CAudioPlayerContainerView::ReadFileLC(const TDesC& aFilename)

30. Like in the save method, create a file server session object and establish a connection. Then,

push the file server session onto the cleanup stack.

Note: In a real application, you shouldn't connect to the file server every time you need to

access a file, as this incurs quite a lot of overhead. Instead, you should save the session as an

instance variable and reuse it as often as possible – or even use a file server session that was

created automatically by the UI framework.

Symbian Academy Training Exercises

07: Client-Server and Files

 19

31. Set the session path of the file server session to the private directory on drive C.

32. Define an RFile object and open the file specified by the aFilename parameter. Use a read

only mode.

33. Push the file object on the cleanup stack.

34. Define a TInt variable that will contain the file size (e.g. fileSize). Use the Size() method

of the file object to store the file size into the TInt variable and leave if the return code

indicates an error. This size will be used to create the heap based buffer, which will store the

contents.

35. Create a file read stream based on the file object and push it on the cleanup stack.

36. Allocate an HBufC* descriptor based on the input stream, with the fileSize as the

maximum size. Use the NewL() method of the HBufC class, which can directly accept the

stream as the first parameter and the maximum size as the second.

Note that we don't push the descriptor on the cleanup stack yet, as we have to remove the

three other classes from the cleanup stack before we can add the HBufC - which should

remain there when returning from this method. After all, it's a stack and we can't leave the

HBufC on the top of the stack and remove the three objects beneath it.

37. Pop and destroy the three file-related objects from the cleanup stack.

38. Push the descriptor on the cleanup stack and return it.

39. Go to the method that is executed when the “Play last file” menu item is executed (e.g.

CAudioPlayerContainerView::HandlePlay_last_fileMenuItemSelectedL()).

First, read the last filename into a new HBufC* variable using the ReadFileLC() method. Use

the same filename as for the save function, e.g. KDataFilename.

40. Now, send the descriptor to the PlayFileL() method of the audio engine.

Hint: Use * to dereference the HBufC* when passing it to the method as a parameter.

41. Pop and destroy the descriptor from the cleanup stack.

Remember that the read method left it on the stack, as indicated by the trailing C of the

function name.

You’re finished with this exercise! When you select “Play last file” from the menu of the audio player

application, it will load the saved file name from the data file and automatically start playing it.

Symbian Academy Training Exercises

07: Client-Server and Files

 20

You can also test what happens if you try to use this menu command when no folder/file has been

created yet. We did not TRAP the leave, so it gets forwarded to the UI framework, which

automatically displays an error message – the application itself is not closed down. The reported

error code is -12 (KErrPathNotFound) when no folder has been created yet or -1 (KErrNotFound)

when the file is missing.

Make sure that you can still exit your application without any memory leaks, even if there is a leave!

If your application passes this test, you have just written your first fully-featured audio player – with

just very few lines of code!

