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Chapter 1
Introduction

1.1 The Internet Communications Engine (Ice)

The rise of object-oriented middleware in the mid-nineties was an important step 
forward toward making distributed computing available to application developers. 
For the first time, it was possibe to build distributed applications without having to 
be a networking guru: the middleware platform took care of the majority of 
networking chores, such as marshaling and unmarshaling (encoding and decoding 
data for transmission), mapping logical object addresses to physical transport 
endpoints, changing the representation of data according to the native machine 
architecture of client and server, and automatically starting servers on demand.

Despite these advances, the leading object-oriented middleware platforms 
suffered from a number of serious practical limitations that prompted ZeroC to 
develop the Internet Communications Engine, or Ice for short.1 The main design 
goals of Ice are:

• Provide an object-oriented middleware platform suitable for use in heteroge-
neous environments.

• Provide a full set of features that support development of realistic distributed 
applications for a wide variety of domains.

1. The acronym “Ice” is pronounced as a single syllable, like the word for frozen water.
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• Avoid unnecessary complexity, making the platform easy to learn and to use.

• Provide an implementation that is efficient in network bandwidth, memory 
use, and CPU overhead.

• Provide an implementation that has built-in security, making it suitable for use 
over insecure public networks.

To be more simplistic, the Ice design goals could be stated as “Let’s build a more 
powerful middleware platform that makes the developer’s life easier and avoids 
the mistakes of its predecessors.”

1.2 Organization

This book is divided into four parts and a number of appendixes:

• Part I: Ice Overview provides an overview of the features offered by Ice and 
explains the Ice object model. After reading this part, you will understand the 
major features and architecture of the Ice platform, its object model and 
request dispatch model, and know the basic steps required to build a simple 
application in C++, Java, C#, Visual Basic, Objective-C, Python, and Ruby.

• Part II: Slice explains the Slice definition language. After reading this part, 
you will have detailed knowledge of how to specify interfaces and types for a 
distributed application.

• Part III through Part IX cover language mappings. Each section shows how to 
implement an application in your language of choice.

• Part X: Advanced Ice presents many Ice features in detail and covers advanced 
aspects of server development, such as properties, threading, object life cycle, 
object location, persistence, and asynchronous as well as dynamic method 
invocation and dispatch. After reading this part, you will understand the 
advanced features of Ice and how to effectively use them to find the correct 
trade-off between performance and resource consumption as appropriate for 
your application requirements.

• Part XI: Ice Services covers the services provided with Ice, such as IceGrid (a 
sophisticated deployment tool), Glacier2 (the Ice firewall solution), IceStorm 
(the Ice messaging service), and IcePatch2 (a software patching service).2

• Appendixes contain Ice reference material and explain the feature differences 
between Ice and Ice-E (the version of Ice for embedded systems).
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NOTE: This entire manual is also available online as a set of HTML pages at 
http://www.zeroc.com/doc/Ice-3.4.1/manual.

You can always find the latest version of the manual at 
http://www.zeroc.com/Ice-Manual.html.

In addition, you can find an online reference of all the Slice APIs that are used by 
Ice and its services at http://www.zeroc.com/doc/Ice-3.4.1/reference.

You can always find the latest version of this reference at 
http://www.zeroc.com/Slice-Reference.html.

1.3 Typographical Conventions

This book uses the following typographical conventions:

• Slice source code appears in monospace.

• Programming-language source code appears in monospace.

• File names appear in monospace.

• Commands appear in monospace bold.

Occasionally, we present copy of an interactive session at a terminal. In such 
cases, we assume a Bourne shell (or one of its derivatives, such as ksh or bash). 
Output presented by the system is shown in monospace, and input is presented 
in monospace bold, for example:

$ echo hello
hello

Slice and the various programming languages often use the same identifiers. 
When we talk about an identifier in its generic, language-independent sense, we 
use monospace. When we talk about an identifier in its language-specific (for 
example, C++ or Java) sense, we use monospace.

2. If you notice a certain commonality in the theme of naming Ice features, it just goes to show that 
software developers are still inveterate punsters.

http://www.zeroc.com/Ice-Manual.html
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/manual
http://www.zeroc.com/doc/Ice-3.4.1/manual
http://www.zeroc.com/Slice-Reference.html
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1.4 Source Code Examples

Throughout the book, we use a case study to illustrate various aspects of Ice. The 
case study implements a simple distributed hierarchical file system, which we 
progressively improve to take advantage of more sophisticated features as the 
book progresses. The source code for the case study in its various stages is 
provided with the distribution of this book. We encourage you to experiment with 
these code examples (as well as the many demonstration programs that ship with 
Ice).

1.5 Contacting the Authors

We would very much like to hear from you in case you find any bugs (however 
minor) in this book. We also would like to hear your opinion on the contents, and 
any suggestions as to how it might be improved. You can contact us via e-mail at 
mailto:icebook@zeroc.com.

1.6 Ice Support

If you have a question and you cannot find an answer in this manual, you can visit 
our developer forums at http://www.zeroc.com/forums to see if another developer 
has encountered the same issue. If you still need help, feel free to post your ques-
tion on the forum, which ZeroC's developers monitor regularly. Note, however, 
that we can provide only limited free support in our forums. For guaranteed 
response and problem resolution times, we highly recommend purchasing 
commercial support.

mailto:icebook@zeroc.com
http://www.zeroc.com/forums
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Chapter 2
Ice Overview

2.1 Chapter Overview

In this chapter, we present a high-level overview of the Ice architecture. 
Section 2.2 introduces fundamental concepts and terminology, and outlines how 
Slice definitions, language mappings, and the Ice run time and protocol work in 
concert to create clients and servers. Section 2.3 briefly presents the object 
services provided by Ice, and Section 2.4 outlines the benefits that result from the 
Ice architecture.

2.2 The Ice Architecture

2.2.1 Introduction

Ice is an object-oriented middleware platform. Fundamentally, this means that Ice 
provides tools, APIs, and library support for building object-oriented client–server 
applications. Ice applications are suitable for use in heterogeneous environments: 
client and server can be written in different programming languages, can run on 
different operating systems and machine architectures, and can communicate 
using a variety of networking technologies. The source code for these applications 
is portable regardless of the deployment environment.
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2.2.2 Terminology

Every computing technology creates its own vocabulary as it evolves. Ice is no 
exception. However, the amount of new jargon used by Ice is minimal. Rather 
than inventing new terms, we have used existing terminology as much as possible. 
If you have used another middleware technology in the past, you will be familiar 
with much of what follows. (However, we suggest you at least skim the material 
because a few terms used by Ice do differ from the corresponding terms used by 
other middleware.)

Clients and Servers

The terms client and server are not firm designations for particular parts of an 
application; rather, they denote roles that are taken by parts of an application for 
the duration of a request:

• Clients are active entities. They issue requests for service to servers.

• Servers are passive entities. They provide services in response to client 
requests.

Frequently, servers are not “pure” servers, in the sense that they never issue 
requests and only respond to requests. Instead, servers often act as a server on 
behalf of some client but, in turn, act as a client to another server in order to 
satisfy their client’s request.

Similarly, clients often are not “pure” clients, in the sense that they only 
request service from an object. Instead, clients are frequently client–server 
hybrids. For example, a client might start a long-running operation on a server; as 
part of starting the operation, the client can provide a callback object to the server 
that is used by the server to notify the client when the operation is complete. In 
that case, the client acts as a client when it starts the operation, and as a server 
when it is notified that the operation is complete.

Such role reversal is common in many systems, so, frequently, client–server 
systems could be more accurately described as peer-to-peer systems.

Ice Objects

An Ice object is a conceptual entity, or abstraction. An Ice object can be character-
ized by the following points:

• An Ice object is an entity in the local or a remote address space that can 
respond to client requests.
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• A single Ice object can be instantiated in a single server or, redundantly, in 
multiple servers. If an object has multiple simultaneous instantiations, it is still 
a single Ice object.

• Each Ice object has one or more interfaces. An interface is a collection of 
named operations that are supported by an object. Clients issue requests by 
invoking operations.

• An operation has zero or more parameters as well as a return value. Parame-
ters and return values have a specific type. Parameters are named and have a 
direction: in-parameters are initialized by the client and passed to the server; 
out-parameters are initialized by the server and passed to the client. (The 
return value is simply a special out-parameter.)

• An Ice object has a distinguished interface, known as its main interface. In 
addition, an Ice object can provide zero or more alternate interfaces, known as 
facets. Clients can select among the facets of an object to choose the interface 
they want to work with.

• Each Ice object has a unique object identity. An object’s identity is an identi-
fying value that distinguishes the object from all other objects. The Ice object 
model assumes that object identities are globally unique, that is, no two 
objects within an Ice communication domain can have the same object iden-
tity.

In practice, you need not use object identities that are globally unique, such as 
UUIDs [14], only identities that do not clash with any other identity within 
your domain of interest. However, there are architectural advantages to using 
globally unique identifiers, which we explore in Chapter 34.

Proxies

For a client to be able to contact an Ice object, the client must hold a proxy for the 
Ice object. A proxy is an artifact that is local to the client’s address space; it repre-
sents the (possibly remote) Ice object for the client. A proxy acts as the local 
ambassador for an Ice object: when the client invokes an operation on the proxy, 
the Ice run time:

1. Locates the Ice object

2. Activates the Ice object’s server if it is not running

3. Activates the Ice object within the server

4. Transmits any in-parameters to the Ice object

5. Waits for the operation to complete
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6. Returns any out-parameters and the return value to the client (or throws an 
exception in case of an error)

A proxy encapsulates all the necessary information for this sequence of steps to 
take place. In particular, a proxy contains:

• Addressing information that allows the client-side run time to contact the 
correct server

• An object identity that identifies which particular object in the server is the 
target of a request

• An optional facet identifier that determines which particular facet of an object 
the proxy refers to

Section 32.11 provides more information about proxies.

Stringified Proxies

The information in a proxy can be expressed as a string. For example, the string

SimplePrinter:default -p 10000

is a human-readable representation of a proxy. The Ice run time provides API calls 
that allow you to convert a proxy to its stringified form and vice versa. This is 
useful, for example, to store proxies in database tables or text files.

Provided that a client knows the identity of an Ice object and its addressing 
information, it can create a proxy “out of thin air” by supplying that information. 
In other words, no part of the information inside a proxy is considered opaque; a 
client needs to know only an object’s identity, addressing information, and (to be 
able to invoke an operation) the object’s type in order to contact the object.

Direct Proxies

A direct proxy is a proxy that embeds an object’s identity, together with the 
address at which its server runs. The address is completely specified by:

• a protocol identifier (such TCP/IP or UDP)

• a protocol-specific address (such as a host name and port number)

To contact the object denoted by a direct proxy, the Ice run time uses the 
addressing information in the proxy to contact the server; the identity of the object 
is sent to the server with each request made by the client.
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Indirect Proxies

An indirect proxy has two forms. It may provide only an object’s identity, or it 
may specify an identity together with an object adapter identifier. An object that is 
accessible using only its identity is called a well-known object. For example, the 
string

SimplePrinter

is a valid proxy for a well-known object with the identity SimplePrinter.
An indirect proxy that includes an object adapter identifier has the stringified 

form

SimplePrinter@PrinterAdapter

Any object of the object adapter can be accessed using such a proxy, regardless of 
whether that object is also a well-known object.

Notice that an indirect proxy contains no addressing information. To deter-
mine the correct server, the client-side run time passes the proxy information to a 
location service (see Section 32.17). In turn, the location service uses the object 
identity or the object adapter identifier as the key in a lookup table that contains 
the address of the server and returns the current server address to the client. The 
client-side run time now knows how to contact the server and dispatches the client 
request as usual.

The entire process is similar to the mapping from Internet domain names to IP 
address by the Domain Name Service (DNS): when we use a domain name, such 
as www.zeroc.com, to look up a web page, the host name is first resolved to an IP 
address behind the scenes and, once the correct IP address is known, the IP 
address is used to connect to the server. With Ice, the mapping is from an object 
identity or object adapter identifier to a protocol–address pair, but otherwise very 
similar. The client-side run time knows how to contact the location service via 
configuration (just as web browsers know which DNS to use via configuration).

Direct Versus Indirect Binding

The process of resolving the information in a proxy to protocol–address pair is 
known as binding. Not surprisingly, direct binding is used for direct proxies, and 
indirect binding is used for indirect proxies.

The main advantage of indirect binding is that it allows us to move servers 
around (that is, change their address) without invalidating existing proxies that are 
held by clients. In other words, direct proxies avoid the extra lookup to locate the 
server but no longer work if a server is moved to a different machine. On the other 
hand, indirect proxies continue to work even if we move (or migrate) a server.
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Fixed Proxies

A fixed proxy is a proxy that is bound to a particular connection: instead of 
containing addressing information or an adapter name, the proxy contains a 
connection handle. The connection handle stays valid only for as long as the 
connection stays open so, once the connection is closed, the proxy no longer 
works (and will never work again). Fixed proxies cannot be marshaled, that is, 
they cannot be passed as parameters on operation invocations. Fixed proxies are 
used to allow bidirectional communication, so a server can make callbacks to a 
client without having to open a new connection (see Section 36.7).

Routed Proxies

A routed proxy is a proxy that forwards all invocations to a specific target object, 
instead of sending invocations directly to the actual target. Routed proxies are 
useful to implement services such as Glacier2, which enables clients to communi-
cate with servers that are behind a firewall (see Chapter 42).

Replication

In Ice, replication involves making object adapters (and their objects) available at 
multiple addresses. The goal of replication is usually to provide redundancy by 
running the same server on several computers. If one of the computers should 
happen to fail, a server still remains available on the others.

The use of replication implies that applications are designed for it. In partic-
ular, it means a client can access an object via one address and obtain the same 
result as from any other address. Either these objects are stateless, or their imple-
mentations are designed to synchronize with a database (or each other) in order to 
maintain a consistent view of each object’s state.

Ice supports a limited form of replication when a proxy specifies multiple 
addresses for an object. The Ice run time selects one of the addresses at random 
for its initial connection attempt (see Section 32.11) and tries all of them in the 
case of a failure. For example, consider this proxy:

SimplePrinter:tcp -h server1 -p 10001:tcp -h server2 -p 10002

The proxy states that the object with identity SimplePrinter is available 
using TCP at two addresses, one on the host server1 and another on the host 
server2. The burden falls to users or system administrators to ensure that the 
servers are actually running on these computers at the specified ports.
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Replica Groups

In addition to the proxy-based replication described above, Ice supports a more 
useful form of replication known as replica groups that requires the use of a loca-
tion service (see Section 32.17).

A replica group has a unique identifier and consists of any number of object 
adapters. An object adapter may be a member of at most one replica group; such 
an adapter is considered to be a replicated object adapter.

After a replica group has been established, its identifier can be used in an indi-
rect proxy in place of an adapter identifier. For example, a replica group identified 
as PrinterAdapters can be used in a proxy as shown below:

SimplePrinter@PrinterAdapters

The replica group is treated by the location service as a “virtual object adapter.” 
The behavior of the location service when resolving an indirect proxy containing a 
replica group id is an implementation detail. For example, the location service 
could decide to return the addresses of all object adapters in the group, in which 
case the client’s Ice run time would select one of the addresses at random using 
the limited form of replication discussed earlier. Another possibility is for the 
location service to return only one address, which it decided upon using some 
heuristic.

Regardless of the way in which a location service resolves a replica group, the 
key benefit is indirection: the location service as a middleman can add more intel-
ligence to the binding process.

Servants

As we mentioned on page 8, an Ice object is a conceptual entity that has a type, 
identity, and addressing information. However, client requests ultimately must end 
up with a concrete server-side processing entity that can provide the behavior for 
an operation invocation. To put this differently, a client request must ultimately 
end up executing code inside the server, with that code written in a specific 
programming language and executing on a specific processor.

The server-side artifact that provides behavior for operation invocations is 
known as a servant. A servant provides substance for (or incarnates) one or more 
Ice objects. In practice, a servant is simply an instance of a class that is written by 
the server developer and that is registered with the server-side run time as the 
servant for one or more Ice objects. Methods on the class correspond to the opera-
tions on the Ice object’s interface and provide the behavior for the operations.
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A single servant can incarnate a single Ice object at a time or several Ice 
objects simultaneously. If the former, the identity of the Ice object incarnated by 
the servant is implicit in the servant. If the latter, the servant is provided the iden-
tity of the Ice object with each request, so it can decide which object to incarnate 
for the duration of the request.

Conversely, a single Ice object can have multiple servants. For example, we 
might choose to create a proxy for an Ice object with two different addresses for 
different machines. In that case, we will have two servers, with each server 
containing a servant for the same Ice object. When a client invokes an operation 
on such an Ice object, the client-side run time sends the request to exactly one 
server. In other words, multiple servants for a single Ice object allow you to build 
redundant systems: the client-side run time attempts to send the request to one 
server and, if that attempt fails, sends the request to the second server. An error is 
reported back to the client-side application code only if that second attempt fails 
as well.

At-Most-Once Semantics

Ice requests have at-most-once semantics: the Ice run time does its best to deliver 
a request to the correct destination and, depending on the exact circumstances, 
may retry a failed request. Ice guarantees that it will either deliver the request, or, 
if it cannot deliver the request, inform the client with an appropriate exception; 
under no circumstances is a request delivered twice, that is, retries are attempted 
only if it is known that a previous attempt definitely failed.1

At-most-once semantics are important because they guarantee that operations 
that are not idempotent can be used safely. An idempotent operation is an opera-
tion that, if executed twice, has the same effect as if executed once. For example, 
x = 1; is an idempotent operation: if we execute the operation twice, the end 
result is the same as if we had executed it once. On the other hand, x++; is not 
idempotent: if we execute the operation twice, the end result is not the same as if 
we had executed it once.

Without at-most-once semantics, we can build distributed systems that are 
more robust in the presence of network failures. However, realistic systems 
require non-idempotent operations, so at-most-once semantics are a necessity, 
even though they make the system less robust in the presence of network failures. 

1. One exception to this rule are datagram invocations over UDP transports. For these, duplicated 
UDP packets can lead to a violation of at-most-once semantics.
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Ice permits you to mark individual operations as idempotent. For such operations, 
the Ice run time uses a more aggressive error recovery mechanism than for non-
idempotent operations.

Synchronous Method Invocation

By default, the request dispatch model used by Ice is a synchronous remote proce-
dure call: an operation invocation behaves like a local procedure call, that is, the 
client thread is suspended for the duration of the call and resumes when the call 
completes (and all its results are available).

Asynchronous Method Invocation

Ice also supports asynchronous method invocation (AMI): clients can invoke oper-
ations asynchronously, that is, the client uses a proxy as usual to invoke an opera-
tion but, in addition to passing the normal parameters, also passes a callback 
object and the client invocation returns immediately. Once the operation 
completes, the client-side run time invokes a method on the callback object passed 
initially, passing the results of the operation to the callback object (or, in case of 
failure, passing exception information).

The server cannot distinguish an asynchronous invocation from a synchronous 
one—either way, the server simply sees that a client has invoked an operation on 
an object.

Asynchronous Method Dispatch

Asynchronous method dispatch (AMD) is the server-side equivalent of AMI. For 
synchronous dispatch (the default), the server-side run time up-calls into the appli-
cation code in the server in response to an operation invocation. While the opera-
tion is executing (or sleeping, for example, because it is waiting for data), a thread 
of execution is tied up in the server; that thread is released only when the opera-
tion completes.

With asynchronous method dispatch, the server-side application code is 
informed of the arrival of an operation invocation. However, instead of being 
forced to process the request immediately, the server-side application can choose 
to delay processing of the request and, in doing so, releases the execution thread 
for the request. The server-side application code is now free to do whatever it 
likes. Eventually, once the results of the operation are available, the server-side 
application code makes an API call to inform the server-side Ice run time that a 
request that was dispatched previously is now complete; at that point, the results 
of the operation are returned to the client.
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Asynchronous method dispatch is useful if, for example, a server offers opera-
tions that block clients for an extended period of time. For example, the server 
may have an object with a get operation that returns data from an external, asyn-
chronous data source and that blocks clients until the data becomes available. 
With synchronous dispatch, each client waiting for data to arrive ties up an execu-
tion thread in the server. Clearly, this approach does not scale beyond a few dozen 
clients. With asynchronous dispatch, hundreds or thousands of clients can be 
blocked in the same operation invocation without tying up any threads in the 
server.

Another way to use asynchronous method dispatch is to complete an opera-
tion, so the results of the operation are returned to the client, but to keep the execu-
tion thread of the operation beyond the duration of the operation invocation. This 
allows you to continue processing after results have been returned to the client, for 
example, to perform cleanup or write updates to persistent storage.

Synchronous and asynchronous method dispatch are transparent to the client, 
that is, the client cannot tell whether a server chose to process a request synchro-
nously or asynchronously.

Oneway Method Invocation

Clients can invoke an operation as a oneway operation. A oneway invocation has 
“best effort” semantics. For a oneway invocation, the client-side run time hands 
the invocation to the local transport, and the invocation completes on the client 
side as soon as the local transport has buffered the invocation. The actual invoca-
tion is then sent asynchronously by the operating system. The server does not 
reply to oneway invocations, that is, traffic flows only from client to server, but not 
vice versa.

Oneway invocations are unreliable. For example, the target object may not 
exist, in which case the invocation is simply lost. Similarly, the operation may be 
dispatched to a servant in the server, but the operation may fail (for example, 
because parameter values are invalid); if so, the client receives no notification that 
something has gone wrong.

Oneway invocations are possible only on operations that do not have a return 
value, do not have out-parameters, and do not throw user exceptions (see 
Chapter 4).

To the application code on the server-side, oneway invocations are transparent, 
that is, there is no way to distinguish a twoway invocation from a oneway invoca-
tion.
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Oneway invocations are available only if the target object offers a stream-
oriented transport, such as TCP/IP or SSL.

Note that, even though oneway operations are sent over a stream-oriented 
transport, they may be processed out of order in the server. This can happen 
because each invocation may be dispatched in its own thread: even though the 
invocations are initiated in the order in which the invocations arrive at the server, 
this does not mean that they will be processed in that order—the vagaries of 
thread scheduling can result in a oneway invocation to complete before other 
oneway invocations that were received earlier.

Batched Oneway Method Invocation

Each oneway invocation sends a separate message to the server. For a series of 
short messages, the overhead of doing so is considerable: the client- and server-
side run time each must switch between user mode and kernel mode for each 
message and, at the networking level, each message incurs the overheads of flow-
control and acknowledgement.

Batched oneway invocations allow you to send a series of oneway invocations 
as a single message: every time you invoke a batched oneway operation, the invo-
cation is buffered in the client-side run time. Once you have accumulated all the 
oneway invocations you want to send, you make a separate API call to send all the 
invocations at once. The client-side run time then sends all of the buffered invoca-
tions in a single message, and the server receives all of the invocations in a single 
message. This avoids the overhead of repeatedly trapping into the kernel for both 
client and server, and is much easier on the network between them because one 
large message can be transmitted more efficiently than many small ones.

The individual invocations in a batched oneway message are dispatched by a 
single thread in the order in which they were placed into the batch. This guaran-
tees that the individual operations in a batched oneway message are processed in 
order in the server.

Batched oneway invocations are particularly useful for messaging services, 
such as IceStorm (see Chapter 44), and for fine-grained interfaces that offer set 
operations for small attributes.

Datagram Invocations

Datagram invocations have similar “best effort” semantics to oneway invocations. 
However, datagram invocations require the object to offer UDP as a transport 
(whereas oneway invocations require TCP/IP).



18 Ice Overview

Like a oneway invocation, a datagram invocation can be made only if the oper-
ation does not have a return value, out-parameters, or user exceptions. A datagram 
invocation uses UDP to invoke the operation. The operation returns as soon as the 
local UDP stack has accepted the message; the actual operation invocation is sent 
asynchronously by the network stack behind the scenes.

Datagrams, like oneway invocations, are unreliable: the target object may not 
exist in the server, the server may not be running, or the operation may be invoked 
in the server but fail due to invalid parameters sent by the client. As for oneway 
invocations, the client receives no notification of such errors.

However, unlike oneway invocations, datagram invocations have a number of 
additional error scenarios:

• Individual invocations may simply be lost in the network.

This is due to the unreliable delivery of UDP packets. For example, if you 
invoke three operations in sequence, the middle invocation may be lost. (The 
same thing cannot happen for oneway invocations—because they are deliv-
ered over a connection-oriented transport, individual invocations cannot be 
lost.)

• Individual invocations may arrive out of order.

Again, this is due to the nature of UDP datagrams. Because each invocation is 
sent as a separate datagram, and individual datagrams can take different paths 
through the network, it can happen that invocations arrive in an order that 
differs from the order in which they were sent.

Datagram invocations are well suited for small messages on LANs, where the 
likelihood of loss is small. They are also suited to situations in which low latency 
is more important than reliability, such as for fast, interactive internet applications. 
Finally, datagram invocations can be used to multicast messages to multiple 
servers simultaneously.

Batched Datagram Invocations

As for batched oneway invocations, batched datagram invocations allow you to 
accumulate a number of invocations in a buffer and then send the entire buffer as a 
single datagram by making an API call to flush the buffer. Batched datagrams 
reduce the overhead of repeated system calls and allow the underlying network to 
operate more efficiently. However, batched datagram invocations are useful only 
for batched messages whose total size does not substantially exceed the PDU limit 
of the network: if the size of a batched datagram gets too large, UDP fragmenta-
tion makes it more likely that one or more fragments are lost, which results in the 
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loss of the entire batched message. However, you are guaranteed that either all 
invocations in a batch will be delivered, or none will be delivered. It is impossible 
for individual invocations within a batch to be lost.

Batched datagrams use a single thread in the server to dispatch the individual 
invocations in a batch. This guarantees that the invocations are made in the order 
in which they were queued—invocations cannot appear to be reordered in the 
server.

Run-Time Exceptions

Any operation invocation can raise a run-time exception. Run-time exceptions are 
pre-defined by the Ice run time and cover common error conditions, such as 
connection failure, connection timeout, or resource allocation failure. Run-time 
exceptions are presented to the application as native exceptions and so integrate 
neatly with the native exception handling capabilities of languages that support 
exception handling.

User Exceptions

User exceptions are used to indicate application-specific error conditions to 
clients. User exceptions can carry an arbitrary amount of complex data and can be 
arranged into inheritance hierarchies, which makes it easy for clients to handle 
categories of errors generically, by catching an exception that is further up the 
inheritance hierarchy. Like run-time exceptions, user exceptions map to native 
exceptions.

Properties

Much of the Ice run time is configurable via properties. Properties are name–value 
pairs, such as Ice.Default.Protocol=tcp. Properties are typically stored 
in text files and parsed by the Ice run time to configure various options, such as the 
thread pool size, the level of tracing, and various other configuration parameters.

2.2.3 Slice (Specification Language for Ice)

As mentioned on page 9, each Ice object has an interface with a number of opera-
tions. Interfaces, operations, and the types of data that are exchanged between 
client and server are defined using the Slice language. Slice allows you to define 
the client-server contract in a way that is independent of a specific programming 
language, such as C++, Java, or C#. The Slice definitions are compiled by a 
compiler into an API for a specific programming language, that is, the part of the 
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API that is specific to the interfaces and types you have defined consists of gener-
ated code.

2.2.4 Language Mappings
The rules that govern how each Slice construct is translated into a specific 
programming language are known as language mappings. For example, for the 
C++ mapping (see Chapter 6), a Slice sequence appears as an STL vector, 
whereas, for the Java mapping (see Chapter 10), a Slice sequence appears as a 
Java array. In order to determine what the API for a specific Slice construct looks 
like, you only need the Slice definition and knowledge of the language mapping 
rules. The rules are simple and regular enough to make it unnecessary to read the 
generated code to work out how to use the generated API.

Of course, you are free to peruse the generated code. However, as a rule, that is 
inefficient because the generated code is not necessarily suitable for human 
consumption. We recommend that you familiarize yourself with the language 
mapping rules; that way, you can mostly ignore the generated code and need to 
refer to it only when you are interested in some specific detail.

Currently, Ice provides language mappings for C++, Java, C#, Python, Objec-
tive-C, and, for the client side, PHP and Ruby.

http://www.zeroc.com/languages.html
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2.2.5 Client and Server Structure
Ice clients and servers have the logical internal structure shown in Figure 2.1

Figure 2.1. Ice Client and Server Structure

Both client and server consist of a mixture of application code, library code, and 
code generated from Slice definitions:

• The Ice core contains the client- and server-side run-time support for remote 
communication. Much of this code is concerned with the details of 
networking, threading, byte ordering, and many other networking-related 
issues that we want to keep away from application code. The Ice core is 
provided as a number of libraries that client and server use.

• The generic part of the Ice core (that is, the part that is independent of the 
specific types you have defined in Slice) is accessed through the Ice API. You 
use the Ice API to take care of administrative chores, such as initializing and 
finalizing the Ice run time. The Ice API is identical for clients and servers 
(although servers use a larger part of the API than clients).

• The proxy code is generated from your Slice definitions and, therefore, 
specific to the types of objects and data you have defined in Slice. The proxy 
code has two major functions:

• It provides a down-call interface for the client. Calling a function in the 
generated proxy API ultimately ends up sending an RPC message to the 
server that invokes a corresponding function on the target object.
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• It provides marshaling and unmarshaling code.

Marshaling is the process of serializing a complex data structure, such as a 
sequence or a dictionary, for transmission on the wire. The marshaling code 
converts data into a form that is standardized for transmission and indepen-
dent of the endian-ness and padding rules of the local machine.

Unmarshaling is the reverse of marshaling, that is, deserializing data that 
arrives over the network and reconstructing a local representation of the data 
in types that are appropriate for the programming language in use.

• The skeleton code is also generated from your Slice definition and, therefore, 
specific to the types of objects and data you have defined in Slice. The skel-
eton code is the server-side equivalent of the client-side proxy code: it 
provides an up-call interface that permits the Ice run time to transfer the thread 
of control to the application code you write. The skeleton also contains 
marshaling and unmarshaling code, so the server can receive parameters sent 
by the client, and return parameters and exceptions to the client.

• The object adapter is a part of the Ice API that is specific to the server side: 
only servers use object adapters. An object adapter has several functions:

• The object adapter maps incoming requests from clients to specific methods 
on programming-language objects. In other words, the object adapter tracks 
which servants with what object identity are in memory.

• The object adapter is associated with one or more transport endpoints. If 
more than one transport endpoint is associated with an adapter, the servants 
incarnating objects within the adapter can be reached via multiple trans-
ports. For example, you can associate both a TCP/IP and a UDP endpoint 
with an adapter, to provide alternate quality-of-service and performance 
characteristics.

• The object adapter is responsible for the creation of proxies that can be 
passed to clients. The object adapter knows about the type, identity, and 
transport details of each of its objects and embeds the correct details when 
the server-side application code requests the creation of a proxy.

Note that, as far as the process view is concerned, there are only two processes 
involved: the client and the server. All the run time support for distributed commu-
nication is provided by the Ice libraries and the code that is generated from Slice 
definitions. (For indirect proxies, a third process, IceGrid, is required to resolve 
proxies to transport endpoints.)
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2.2.6 The Ice Protocol

Ice provides an RPC protocol that can use either TCP/IP or UDP as an underlying 
transport. In addition, Ice also allows you to use SSL as a transport, so all commu-
nication between client and server is encrypted.

The Ice protocol defines:

• a number of message types, such as request and reply message types,

• a protocol state machine that determines in what sequence different message 
types are exchanged by client and server, together with the associated connec-
tion establishment and tear-down semantics for TCP/IP,

• encoding rules that determine how each type of data is represented on the 
wire,

• a header for each message type that contains details such as the message type, 
the message size, and the protocol and encoding version in use.

Ice also supports compression on the wire: by setting a configuration parameter, 
you can arrange for all network traffic to be compressed to conserve bandwidth. 
This is useful if your application exchanges large amounts of data between client 
and server.

The Ice protocol is suitable for building highly-efficient event forwarding 
mechanisms because it permits forwarding of a message without knowledge of the 
details of the information inside a message. This means that messaging switches 
need not do any unmarshaling and remarshaling of messages—they can forward a 
message by simply treating it as an opaque buffer of bytes.

The Ice protocol also supports bidirectional operation: if a server wants to 
send a message to a callback object provided by the client, the callback can be 
made over the connection that was originally created by the client. This feature is 
especially important when the client is behind a firewall that permits outgoing 
connections, but not incoming connections.

2.3 Ice Services

The Ice core provides a sophisticated client–server platform for distributed appli-
cation development. However, realistic applications usually require more than just 
a remoting capability: typically, you also need a way to start servers on demand, 
distribute proxies to clients, distribute asynchronous events, configure your appli-
cation, distribute patches for an application, and so on.
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Ice ships with a number of services that provide these and other features. The 
services are implemented as Ice servers to which your application acts as a client. 
None of the services use Ice-internal features that are hidden from application 
developers so, in theory, you could develop equivalent services yourself. However, 
having these services available as part of the platform allows you to focus on 
application development instead of having to build a lot of infrastructure first. 
Moreover, building such services is not a trivial effort, so it pays to know what is 
available and use it instead of reinventing your own wheel.

2.3.1 Freeze and FreezeScript

Ice has a built-in object persistence service, known as Freeze. Freeze makes it 
easy to store object state in a database: you define the state stored by your objects 
in Slice, and the Freeze compiler generates code that stores and retrieves object 
state to and from a database. Freeze uses Berkeley DB [18] as its database. We 
discuss Freeze in detail in Chapter 39.

Ice also offers a tool called FreezeScript that makes it easier to maintain data-
bases and to migrate the contents of existing databases to a new schema if the type 
definitions of objects change. We discuss FreezeScript in Chapter 40.

2.3.2 IceGrid

IceGrid is an implementation of an Ice location service that resolves the symbolic 
information in an indirect proxy to a protocol–address pair for indirect binding. A 
location service is only the beginning of IceGrid’s capabilities:

• IceGrid allows you to register servers for automatic start-up: instead of 
requiring a server to be running at the time a client issues a request, IceGrid 
starts servers on demand, when the first client request arrives.

• IceGrid provides tools that make it easy to configure complex applications 
containing several servers.

• IceGrid supports replication and load-balancing.

• IceGrid automates the distribution and patching of server executables and 
dependent files.

• IceGrid provides a simple query service that allows clients to obtain proxies 
for objects they are interested in.
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2.3.3 IceBox

IceBox is a simple application server that can orchestrate the starting and stopping 
of a number of application components. Application components can be deployed 
as a dynamic library instead of as a process. This reduces overall system load, for 
example, by allowing you to run several application components in a single Java 
virtual machine instead of having multiple processes, each with its own virtual 
machine.

2.3.4 IceStorm

IceStorm is a publish–subscribe service that decouples clients and servers. Funda-
mentally, IceStorm acts as a distribution switch for events. Publishers send events 
to the service, which, in turn, passes the events to subscribers. In this way, a single 
event published by a publisher can be sent to multiple subscribers. Events are 
categorized by topic, and subscribers specify the topics they are interested in. 
Only events that match a subscriber’s topic are sent to that subscriber. The service 
permits selection of a number of quality-of-service criteria to allow applications to 
choose the appropriate trade-off between reliability and performance.

IceStorm is particularly useful if you have a need to distribute information to 
large numbers of application components. (A typical example is a stock ticker 
application with a large number of subscribers.) IceStorm decouples the 
publishers of information from subscribers and takes care of the redistribution of 
the published events. In addition, IceStorm can be run as a federated service, that 
is, multiple instances of the service can be run on different machines to spread the 
processing load over a number of CPUs.

2.3.5 IcePatch2

IcePatch22 is a software patching service. It allows you to easily distribute soft-
ware updates to clients. Clients simply connect to the IcePatch2 server and request 
updates for a particular application. The service automatically checks the version 
of the client’s software and downloads any updated application components in a 
compressed format to conserve bandwidth. Software patches can be secured using 
the Glacier2 service, so only authorized clients can download software updates.

2. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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2.3.6 Glacier2

Glacier23 is the Ice firewall traversal service: it allows clients and servers to 
securely communicate through a firewall without compromising security. Client-
server traffic is SSL-encrypted using public key certificates and is bidirectional. 
Glacier2 offers support for mutual authentication as well as secure session 
management.

2.4 Architectural Benefits of Ice

The Ice architecture provides a number of benefits to application developers:

• Object-oriented semantics

Ice fully preserves the object-oriented paradigm “across the wire.” All opera-
tion invocations use late binding, so the implementation of an operation is 
chosen depending on the actual run-time (not static) type of an object.

• Support for synchronous and asynchronous messaging

Ice provides both synchronous and asynchronous operation invocation and 
dispatch, as well as publish–subscribe messaging via IceStorm. This allows 
you to choose a communication model according to the needs of your applica-
tion instead of having to shoe-horn the application to fit a single model.

• Support for multiple interfaces

With facets, objects can provide multiple, unrelated interfaces while retaining 
a single object identity across these interfaces. This provides great flexibility, 
particularly as an application evolves but needs to remain compatible with 
older, already deployed clients.

• Machine independence

Clients and servers are shielded form idiosyncrasies of the underlying 
machine architecture. Issues such as byte ordering and padding are hidden 
from application code.

• Language independence

Client and server can be developed independently and in different program-
ming languages. The Slice definition used by both client and server estab-

3. Glacier2 supersedes Glacier, which was a previous version of this service.
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lishes the interface contract between them and is the only thing they need to 
agree on.

• Implementation independence

Clients are unaware of how servers implement their objects. This means that 
the implementation of a server can be changed after clients are deployed, for 
example, to use a different persistence mechanism or even a different 
programming language.

• Operating system independence

The Ice APIs are fully portable, so the same source code compiles and runs 
under both Windows and Unix.

• Threading support

The Ice run time is fully threaded and APIs are thread-safe. No effort (beyond 
synchronizing access to shared data) is required on part of the application 
developer to develop threaded, high-performance clients and servers.

• Transport independence

Ice currently offers both TCP/IP and UDP as transport protocols. Neither 
client nor server code are aware of the underlying transport. (The desired 
transport can be chosen by a configuration parameter.)

• Location and server transparency

The Ice run time takes care of locating objects and managing the underlying 
transport mechanism, such as opening and closing connections. Interactions 
between client and server appear connection-less. Via IceGrid, you can 
arrange for servers to be started on demand if they are not running at the time 
a client invokes an operation. Servers can be migrated to different physical 
addresses without breaking proxies held by clients, and clients are completely 
unaware how object implementations are distributed over server processes.

• Security

Communications between client and server can be fully secured with strong 
encryption over SSL, so applications can use unsecured public networks to 
communicate securely. Via Glacier2, you can implement secure forwarding of 
requests through a firewall, with full support for callbacks.

• Built-in persistence

With Freeze, creating persistent object implementations becomes trivial. Ice 
comes with built-in support for Berkeley DB [18], which is a high-perfor-
mance database.
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• Source code availability

The source code for Ice is available. While it is not necessary to have access to 
the source code to use the platform, it allows you to see how things are imple-
mented or port the code to a new operating system.

Overall, Ice provides a state-of-the art development and deployment environment 
for distributed computing that is more complete than any other platform we are 
aware of.
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Chapter 3
A Hello World Application

3.1 Chapter Overview

In this chapter, we will see how to create a very simple client–server application in 
C++ (Section 3.3), Java (Section 3.4), C# (Section 3.5), Visual Basic 
(Section 3.6), Objective-C (Section 3.7), Python (Section 3.8), Ruby 
(Section 3.9), and PHP (Section 3.10). Rather than reading the entire chapter, we 
suggest that you read Section 3.2 and then skip to the section that deals with the 
programming language of your choice.

The application enables remote printing: a client sends the text to be printed to 
a server, which in turn sends that text to a printer. For simplicity (and because we 
do not want to concern ourselves with the idiosyncrasies of print spoolers for 
various platforms), our printer will simply print to a terminal instead of a real 
printer. This is no great loss: the purpose of the exercise is to show how a client 
can communicate with a server; once the thread of control has reached the server 
application code, that code can of course do anything it likes (including sending 
the text to a real printer). How to do this is independent of Ice and therefore not 
relevant here.

Note that much of the detail of the source code will remain unexplained for 
now. The intent is to show you how to get started and give you a feel for what the 
development environment looks like; we will provide all the detail throughout the 
remainder of this book.
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3.2 Writing a Slice Definition

The first step in writing any Ice application is to write a Slice definition containing 
the interfaces that are used by the application. For our minimal printing applica-
tion, we write the following Slice definition:

module Demo {
    interface Printer {
        void printString(string s);
    };
};

We save this text in a file called Printer.ice.
Our Slice definitions consist of the module Demo containing a single interface 

called Printer. For now, the interface is very simple and provides only a single 
operation, called printString. The printString operation accepts a string as its 
sole input parameter; the text of that string is what appears on the (possibly 
remote) printer.

3.3 Writing an Ice Application with C++

This section shows how to create an Ice application with C++.

Compiling a Slice Definition for C++

The first step in creating our C++ application is to compile our Slice definition to 
generate C++ proxies and skeletons. Under Unix, you can compile the definition 
as follows:

$ slice2cpp Printer.ice

The slice2cpp compiler produces two C++ source files from this definition, 
Printer.h and Printer.cpp.

• Printer.h

The Printer.h header file contains C++ type definitions that correspond to 
the Slice definitions for our Printer interface. This header file must be 
included in both the client and the server source code.

• Printer.cpp

The Printer.cpp file contains the source code for our Printer interface. 
The generated source contains type-specific run-time support for both clients 
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and servers. For example, it contains code that marshals parameter data (the 
string passed to the printString operation) on the client side and unmarshals 
that data on the server side.

The Printer.cpp file must be compiled and linked into both client and 
server.

Writing and Compiling a Server

The source code for the server takes only a few lines and is shown in full here:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer {
public:
    virtual void printString(const string& s,
                             const Ice::Current&);
};

void 
PrinterI::
printString(const string& s, const Ice::Current&)
{
    cout << s << endl;
}

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectAdapterPtr adapter
            = ic->createObjectAdapterWithEndpoints(
                "SimplePrinterAdapter", "default -p 10000");
        Ice::ObjectPtr object = new PrinterI;
        adapter->add(object,
                     ic->stringToIdentity("SimplePrinter"));
        adapter->activate();
        ic->waitForShutdown();
    } catch (const Ice::Exception& e) {
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        cerr << e << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const Ice::Exception& e) {
            cerr << e << endl;
            status = 1;
        }
    }
    return status;
}

There appears to be a lot of code here for something as simple as a server that just 
prints a string. Do not be concerned by this: most of the preceding code is boiler 
plate that never changes. For this very simple server, the code is dominated by this 
boiler plate.

Every Ice source file starts with an include directive for Ice.h, which 
contains the definitions for the Ice run time. We also include Printer.h, which 
was generated by the Slice compiler and contains the C++ definitions for our 
printer interface, and we import the contents of the std and Demo namespaces 
for brevity in the code that follows:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

Our server implements a single printer servant, of type PrinterI. Looking at 
the generated code in Printer.h, we find the following (tidied up a little to get 
rid of irrelevant detail):

namespace Demo {
    class Printer : virtual public Ice::Object {
    public:
        virtual void printString(const std::string&,
                                 const Ice::Current&
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                                 = Ice::Current()
                                ) = 0;
    };
};

The Printer skeleton class definition is generated by the Slice compiler. (Note 
that the printString method is pure virtual so the skeleton class cannot be 
instantiated.) Our servant class inherits from the skeleton class to provide an 
implementation of the pure virtual printString method. (By convention, we 
use an I-suffix to indicate that the class implements an interface.)

class PrinterI : public Printer {
public:
    virtual void printString(const string& s,
                             const Ice::Current&);
};

The implementation of the printString method is trivial: it simply writes its 
string argument to stdout:

void 
PrinterI::
printString(const string& s, const Ice::Current&)
{
    cout << s << endl;
}

Note that printString has a second parameter of type Ice::Current. As 
you can see from the definition of Printer::printString, the Slice 
compiler generates a default argument for this parameter, so we can leave it 
unused in our implementation. (We will examine the purpose of the 
Ice::Current parameter in Section 32.6.)

What follows is the server main program. Note the general structure of the 
code:

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {

        // Server implementation here...

    } catch (const Ice::Exception& e) {
        cerr << e << endl;
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        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const Ice::Exception& e) {
            cerr << e << endl;
            status = 1;
        }
    }
    return status;
}

The body of main contains the declaration of two variables, status and ic. 
The status variable contains the exit status of the program and the ic variable, 
of type Ice::CommunicatorPtr, contains the main handle to the Ice run 
time.

Following these declarations is a try block in which we place all the server 
code, followed by two catch handlers. The first handler catches all exceptions 
that may be thrown by the Ice run time; the intent is that, if the code encounters an 
unexpected Ice run-time exception anywhere, the stack is unwound all the way 
back to main, which prints the exception and then returns failure to the operating 
system. The second handler catches string constants; the intent is that, if we 
encounter a fatal error condition somewhere in our code, we can simply throw a 
string literal with an error message. Again, this unwinds the stack all the way back 
to main, which prints the error message and then returns failure to the operating 
system.

Following the try block, we see a bit of cleanup code that calls the destroy 
method on the communicator (provided that the communicator was initialized). 
The cleanup call is outside the first try block for a reason: we must ensure that 
the Ice run time is finalized whether the code terminates normally or terminates 
due to an exception.1

The body of the first try block contains the actual server code:

1. Failure to call destroy on the communicator before the program exits results in undefined 
behavior.
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        ic = Ice::initialize(argc, argv);
        Ice::ObjectAdapterPtr adapter
            = ic->createObjectAdapterWithEndpoints(
                "SimplePrinterAdapter", "default -p 10000");
        Ice::ObjectPtr object = new PrinterI;
        adapter->add(object, ic->stringToIdentity("SimplePrinter")
);
        adapter->activate();
        ic->waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice::initialize. (We pass 
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not 
require any command-line arguments.) The call to initialize returns a 
smart pointer to an Ice::Communicator object, which is the main handle to 
the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.) The server starts to process incoming 
requests from clients as soon as the adapter is activated.

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice::Application—see Section 8.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: six lines for the definition of the 
PrinterI class, plus three2 lines to instantiate a PrinterI object and register 
it with the object adapter.

Assuming that we have the server code in a file called Server.cpp, we can 
compile it as follows:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Server.cpp

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICE_HOME environment variable is set to the 
top-level directory containing the Ice run time. (For example, if you have installed 
Ice in /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you 
may have to add additional include directives or other options to the compiler 
(such as an include directive for the STLport headers, or to control template 
instantiation); please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ -o server Printer.o Server.o \
-L$ICE_HOME/lib -lIce -lIceUtil

Again, depending on the platform, the actual list of libraries you need to link 
against may be longer. The demo programs that ship with Ice contain all the detail. 
The important point to note here is that the Ice run time is shipped in two libraries, 
libIce and libIceUtil.

Writing and Compiling a Client

The client code looks very similar to the server. Here it is in full:

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int

2. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy(
                                "SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

Note that the overall code layout is the same as for the server: we include the 
headers for the Ice run time and the header generated by the Slice compiler, and 
we use the same try block and catch handlers to deal with errors.

The code in the try block does the following:

1. As for the server, we initialize the Ice run time by calling 
Ice::initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, 
which is at the root of the inheritance tree for interfaces and classes. But to 
actually talk to our printer, we need a proxy for a Printer interface, not an 
Object interface. To do this, we need to do a down-cast by calling Print-



38 A Hello World Application

erPrx::checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy to a Printer; otherwise, if the proxy denotes an interface of 
some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ c++ -I. -I$ICE_HOME/include -c Printer.cpp Client.cpp
$ c++ -o client Printer.o Client.o -L$ICE_HOME/lib -lIce -lIceUtil

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Section 8.3.1.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get:

Network.cpp:471: Ice::ConnectFailedException:
connect failed: Connection refused

Note that, to successfully run client and server, you will have to set some plat-
form-dependent environment variables. For example, under Linux, you need to 
add the Ice library directory to your LD_LIBRARY_PATH. Please have a look at 
the demo applications that ship with Ice for the details for your platform.
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3.4 Writing an Ice Application with Java

This section shows how to create an Ice application with Java.

Compiling a Slice Definition for Java

The first step in creating our Java application is to compile our Slice definition to 
generate Java proxies and skeletons. Under Unix, you can compile the definition 
as follows:3

$ mkdir generated
$ slice2java --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2java compiler produces a number of Java 
source files from this definition. The exact contents of these files do not concern 
us for now—they contain the generated code that corresponds to the Printer 
interface we defined in Printer.ice.

Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file PrinterI.java:

public class PrinterI extends Demo._PrinterDisp {
    public void
    printString(String s, Ice.Current current)
    {
        System.out.println(s);
    }
}

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2java compiler. The base class is abstract and 
contains a printString method that accepts a string for the printer to print and 
a parameter of type Ice.Current. (For now we will ignore the 
Ice.Current parameter. We will see its purpose in detail in Section 32.6.) Our 

3. Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.
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implementation of the printString method simply writes its argument to the 
terminal.

The remainder of the server code is in a source file called Server.java, 
shown in full here:

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            Ice.ObjectAdapter adapter
                = ic.createObjectAdapterWithEndpoints(
                    "SimplePrinterAdapter", "default -p 10000");
            Ice.Object object = new PrinterI();
            adapter.add(
                    object,
                    ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note the general structure of the code:
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public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            Ice.ObjectAdapter adapter
                = ic.createObjectAdapterWithEndpoints(
                    "SimplePrinterAdapter", "default -p 10000");
            Ice.Object object = new PrinterI();
            adapter.add(
                    object,
                    ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

The body of main contains a try block in which we place all the server code, 
followed by two catch blocks. The first block catches all exceptions that may be 
thrown by the Ice run time; the intent is that, if the code encounters an unexpected 
Ice run-time exception anywhere, the stack is unwound all the way back to main, 
which prints the exception and then returns failure to the operating system. The 
second block catches Exception exceptions; the intent is that, if we encounter a 
fatal error condition somewhere in our code, we can simply throw an exception 
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with an error message. Again, this unwinds the stack all the way back to main, 
which prints the error message and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our try block contains the actual server code:

            ic = Ice.Util.initialize(args);
            Ice.ObjectAdapter adapter
                = ic.createObjectAdapterWithEndpoints(
                    "SimplePrinterAdapter", "default -p 10000");
            Ice.Object object = new PrinterI();
            adapter.add(
                    object,
                    ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
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that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 12.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: seven lines for the definition of 
the PrinterI class, plus four4 lines to instantiate a PrinterI object and 
register it with the object adapter.

We can compile the server code as follows:

$ mkdir classes
$ javac -d classes -classpath classes:$ICEJ_HOME/lib/Ice.jar\
-source 1.4 Server.java PrinterI.java generated/Demo/*.java

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICEJ_HOME environment variable is set to 
the top-level directory containing the Ice run time. (For example, if you have 
installed Ice in /opt/Icej, set ICEJ_HOME to that path.) Note that Ice for Java 
uses the ant build environment to control building of source code. (ant is 
similar to make, but more flexible for Java applications.) You can have a look at 
the demo code that ships with Ice to see how to use this tool.

Writing and Compiling a Client

The client code, in Client.java, looks very similar to the server. Here it is in 
full:

public class Client {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;

4. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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        try {
            ic = Ice.Util.initialize(args);
            Ice.ObjectPrx base = ic.stringToProxy(
                    "SimplePrinter:default -p 10000");
            Demo.PrinterPrx printer
                = Demo.PrinterPrxHelper.checkedCast(base);
            if (printer == null)
                throw new Error("Invalid proxy");

            printer.printString("Hello World!");
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note that the overall code layout is the same as for the server: we use the same 
try and catch blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)
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3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ javac -d classes -classpath classes:$ICEJ_HOME/lib/Ice.jar\
-source 1.4 Client.java PrinterI.java generated/Demo/*.java

Running Client and Server

To run client and server, we first start the server in a separate window:

$ java Server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ java Client
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 12.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Ice.ConnectFailedException
        at IceInternal.Network.doConnect(Network.java:201)
        at IceInternal.TcpConnector.connect(TcpConnector.java:26)
        at
IceInternal.OutgoingConnectionFactory.create(OutgoingConnectionFac
tory.java:80)
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        at Ice._ObjectDelM.setup(_ObjectDelM.java:251)
        at Ice.ObjectPrxHelper.__getDelegate(ObjectPrxHelper.java:
642)
        at Ice.ObjectPrxHelper.ice_isA(ObjectPrxHelper.java:41)
        at Ice.ObjectPrxHelper.ice_isA(ObjectPrxHelper.java:30)
        at Demo.PrinterPrxHelper.checkedCast(Unknown Source)
        at Client.main(Unknown Source)
Caused by: java.net.ConnectException: Connection refused
        at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method
)
        at
sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:
518)
        at IceInternal.Network.doConnect(Network.java:173)
        ... 8 more

Note that, to successfully run client and server, your CLASSPATH must include 
the Ice library and the classes directory, for example:

$ export CLASSPATH=$CLASSPATH:./classes:$ICEJ_HOME/lib/Ice.jar

Please have a look at the demo applications that ship with Ice for the details for 
your platform.

3.5 Writing an Ice Application with C#

This section shows how to create an Ice application with C#.

Compiling a Slice Definition for C#

The first step in creating our C# application is to compile our Slice definition to 
generate C# proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2cs compiler produces a single source file, 
Printer.cs, from this definition. The exact contents of this file do not concern 
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.
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Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file Server.cs:

using System;

public class PrinterI : Demo.PrinterDisp_
{
   public override void printString(string s, Ice.Current current)
   {
      Console.WriteLine(s);
   }
}

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2cs compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server.cs and is shown in full 
here:

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(ref args);
            Ice.ObjectAdapter adapter
                = ic.createObjectAdapterWithEndpoints(
                    "SimplePrinterAdapter", "default -p 10000");
            Ice.Object obj = new PrinterI();
            adapter.add(
                    obj,
                    ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
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        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note the general structure of the code:

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {

            // Server implementation here...

        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

The body of Main contains a try block in which we place all the server code, 
followed by a catch block. The catch block catches all exceptions that may be 
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thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which 
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our try block contains the actual server code:

            ic = Ice.Util.initialize(ref args);
            Ice.ObjectAdapter adapter
                = ic.createObjectAdapterWithEndpoints(
                    "SimplePrinterAdapter", "default -p 10000");
            Ice.Object obj = new PrinterI();
            adapter.add(
                    obj,
                    ic.stringToIdentity("SimplePrinter"));
            adapter.activate();
            ic.waitForShutdown();

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
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that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 16.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: seven lines for the definition of 
the PrinterI class, plus four5 lines to instantiate a PrinterI object and 
register it with the object adapter.

We can compile the server code as follows:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Server.cs \
generated\Printer.cs

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICE_HOME environment variable is set to the 
top-level directory containing the Ice run time. (For example, if you have installed 
Ice in C:\opt\Ice, set ICE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client.cs, looks very similar to the server. Here it is in full:

using System;
using Demo;

public class Client
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(ref args);
            Ice.ObjectPrx obj = ic.stringToProxy(

5. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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                    "SimplePrinter:default -p 10000");
            PrinterPrx printer
                    = PrinterPrxHelper.checkedCast(obj);
            if (printer == null)
                throw new ApplicationException("Invalid proxy");

            printer.printString("Hello World!");
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note that the overall code layout is the same as for the server: we use the same 
try and catch blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
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effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin Client.cs \
generated\Printer.cs

Running Client and Server

To run client and server, we first start the server in a separate window:

$ server.exe

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Ice.ConnectionRefusedException
    error = 0
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichi\src\ice\cs\src\Ice\ProxyFactory.cs:line 167
   at Ice.ObjectPrxHelperBase.handleException__(ObjectDel_ delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hi\src\ice\cs\src\Ice\Proxy.cs:line 970
   at Ice.ObjectPrxHelperBase.ice_isA(String id__, Dictionary`2 co
ntext__, Boolean explicitContext__) in c:\cygwin\home\
michi\src\ice\cs\src\Ice\Proxy.cs:line 201
   at Ice.ObjectPrxHelperBase.ice_isA(String id__) in c:\cygwin\ho
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me\michi\src\ice\cs\src\Ice\Proxy.cs:line 170
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b) in C:\cygwin\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:line 140
   at Client.Main(String[] args) in C:\cygwin\home\michi\src\ice\c
s\demo\book\printer\Client.cs:line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
ld be made because the target machine actively refused
 it

Note that, to successfully run client and server, the C# run time must be able to 
locate the Ice.dll library. (Under Windows, one way to ensure this is to copy 
the library into the current directory. Please consult the documentation for your 
C# run time to see how it locates libraries.)

3.6 Writing an Ice Application with Visual Basic

This section shows how to create an Ice application with Visual Basic.

Overview

As of version 3.3, Ice no longer includes a separate compiler to create Visual 
Basic source code from Slice definitions. Instead, you need to use the Slice-to-C# 
compiler slice2cs to create C# source code and compile the generated C# 
source code with a C# compiler into a DLL that contains the compiled generated 
code for your Slice definitions. Your Visual Basic application then links with this 
DLL and the Ice-for-.NET DLL (Ice.dll).6

6. This approach works not only with Visual Basic, but with any language that targets the .NET run 
time. However, ZeroC does not provide support for languages other than C# and Visual Basic.
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Figure 3.1 illustrates this development process.

Figure 3.1. Developing a Visual Basic application with Ice.

Compiling a Slice Definition for Visual Basic

The first step in creating our VB application is to compile our Slice definition to 
generate proxies and skeletons. You can compile the definition as follows:

$ mkdir generated
$ slice2cs --output-dir generated Printer.ice

The --output-dir option instructs the compiler to place the generated files 
into the generated directory. This avoids cluttering the working directory with 
the generated files. The slice2cs compiler produces a single source file, 
Printer.cs, from this definition. The exact contents of this file do not concern 
us for now—it contains the generated code that corresponds to the Printer inter-
face we defined in Printer.ice.

We now need to compile this generated code into a DLL:

$ csc /reference:Ice.dll /lib:%ICE_HOME%\bin /t:library 
/out:Printer.dll generated\Printer.cs

This creates a DLL called Printer.dll that contains the code we generated 
from the Slice definitions.
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Writing and Compiling a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI and placed into a source file Server.vb:

Imports System
Imports Demo

Public Class PrinterI
    Inherits PrinterDisp_

    Public Overloads Overrides Sub printString( _
                                ByVal s As String, _
                                ByVal current As Ice.Current)
        Console.WriteLine(s)
    End Sub

End Class

The PrinterI class inherits from a base class called _PrinterDisp, which 
is generated by the slice2cs compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code follows in Server.vb and is shown in full 
here:

Module Server

    Public Sub Main(ByVal args() As String)

        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try
            ic = Ice.Util.initialize(args)
            Dim adapter As Ice.ObjectAdapter = _
                ic.createObjectAdapterWithEndpoints( _
                    "SimplePrinterAdapter", "default -p 10000")
            Dim obj As Ice.Object = New PrinterI
            adapter.add(obj, ic.stringToIdentity( _
                                        "SimplePrinter"))
            adapter.activate()
            ic.waitForShutdown()
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        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
        Environment.Exit(status)
    End Sub

End module

Note the general structure of the code:

Module Server

    Public Sub Main(ByVal args() As String)

        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try

            ' Server implementation here...

        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
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        Environment.Exit(status)
    End Sub

End module

The body of Main contains a Try block in which we place all the server code, 
followed by a Catch block. The catch block catches all exceptions that may be 
thrown by the code; the intent is that, if the code encounters an unexpected run-
time exception anywhere, the stack is unwound all the way back to Main, which 
prints the exception and then returns failure to the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our Try block contains the actual server code:

            ic = Ice.Util.initialize(args)
            Dim adapter As Ice.ObjectAdapter = _
                ic.createObjectAdapterWithEndpoints( _
                    "SimplePrinterAdapter", "default -p 10000")
            Dim obj As Ice.Object = New PrinterI
            adapter.add(obj, ic.stringToIdentity( _
                                        "SimplePrinter"))
            adapter.activate()
            ic.waitForShutdown()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.Util.initialize. (We 
pass args to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
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plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 16.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: ten lines for the definition of the 
PrinterI class, plus three7 lines to instantiate a PrinterI object and register 
it with the object adapter.

We can compile the server code as follows:

$ vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin 
/reference:Printer.dll /out:server.exe Server.vb

This compiles our application code and links it with the Ice-for-.NET run time and 
the DLL we generated earlier. We assume that the ICE_HOME environment vari-
able is set to the top-level directory containing the Ice run time. (For example, if 
you have installed Ice in C:\opt\Ice, set ICE_HOME to that path.)

Writing and Compiling a Client

The client code, in Client.vb, looks very similar to the server. Here it is in full:

Imports System
Imports Demo

Module Client


7. Well, two lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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    Public Sub Main(ByVal args() As String)
        Dim status As Integer = 0
        Dim ic As Ice.Communicator = Nothing
        Try
            ic = Ice.Util.initialize(args)
            Dim obj As Ice.ObjectPrx = ic.stringToProxy( _
                                "SimplePrinter:default -p 10000")
            Dim printer As PrinterPrx = _
                                PrinterPrxHelper.checkedCast(obj)
            If printer Is Nothing Then
                Throw New ApplicationException("Invalid proxy")
            End If

            printer.printString("Hello World!")
        Catch e As Exception
            Console.Error.WriteLine(e)
            status = 1
        End Try
        If Not ic Is Nothing Then
            ' Clean up
            '
            Try
                ic.destroy()
            Catch e As Exception
                Console.Error.WriteLine(e)
                status = 1
            End Try
        End If
        Environment.Exit(status)
    End Sub

End Module

Note that the overall code layout is the same as for the server: we use the same 
Try and Catch blocks to deal with errors. The code in the Try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.Util.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
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bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Printer interface, not an Object inter-
face. To do this, we need to do a down-cast by calling PrinterPrx-
Helper.checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Printer interface?” If so, the call 
returns a proxy of type Demo::Printer; otherwise, if the proxy denotes an 
interface of some other type, the call returns null.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling the client looks much the same as for the server:

$ vbc /reference:Ice.dll /libpath:%ICE_HOME%\bin 
/reference:Printer.dll /out:client.exe Client.vb

Running Client and Server

To run client and server, we first start the server in a separate window:

$ server.exe

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ client.exe
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 16.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:
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Ice.ConnectionRefusedException
    error = 0
   at IceInternal.ProxyFactory.checkRetryAfterException(LocalExcep
tion ex, Reference ref, Int32 cnt) in c:\cygwin\home\m
ichi\src\ice\cs\src\Ice\ProxyFactory.cs:line 167
   at Ice.ObjectPrxHelperBase.handleException__(ObjectDel_ delegat
e, LocalException ex, Int32 cnt) in c:\cygwin\home\mic
hi\src\ice\cs\src\Ice\Proxy.cs:line 970
   at Ice.ObjectPrxHelperBase.ice_isA(String id__, Dictionary`2 co
ntext__, Boolean explicitContext__) in c:\cygwin\home\
michi\src\ice\cs\src\Ice\Proxy.cs:line 201
   at Ice.ObjectPrxHelperBase.ice_isA(String id__) in c:\cygwin\ho
me\michi\src\ice\cs\src\Ice\Proxy.cs:line 170
   at Demo.PrinterPrxHelper.checkedCast(ObjectPrx b) in C:\cygwin\
home\michi\src\ice\cs\demo\book\printer\generated\Prin
ter.cs:line 140
   at Client.Main(String[] args) in C:\cygwin\home\michi\src\ice\c
s\demo\book\printer\Client.cs:line 23
Caused by: System.ComponentModel.Win32Exception: No connection cou
ld be made because the target machine actively refused
 it

Note that, to successfully run client and server, the VB run time must be able to 
locate the Ice.dll library. (Under Windows, one way to ensure this is to copy 
the library into the current directory. Please consult the documentation for your 
VB run time to see how it locates libraries.)

3.7 Writing an Ice Application with Objective-C

This section shows how to create an Ice application with Objective-C.

Compiling a Slice Definition for Objective-C

The first step in creating our Objective-C application is to compile our Slice defi-
nition to generate Objective-C proxies and skeletons. Under Unix, you can 
compile the definition as follows:

$ slice2objc Printer.ice

The slice2objc compiler produces two Objective-C source files from this 
definition, Printer.h and Printer.m.
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• Printer.h

The Printer.h header file contains Objective-C type definitions that corre-
spond to the Slice definitions for our Printer interface. This header file must 
be included in both the client and the server source code.

• Printer.m

The Printer.m file contains the source code for our Printer interface. The 
generated source contains type-specific run-time support for both clients and 
servers. For example, it contains code that marshals parameter data (the string 
passed to the printString operation) on the client side and unmarshals that 
data on the server side.

The Printer.m file must be compiled and linked into both client and server.

Writing and Compiling a Server

The source code for the server takes only a few lines and is shown in full here:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current
{
    printf("%s\n", [s UTF8String]);
}
@end

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];
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        id<ICEObjectAdapter> adapter =
            [communicator createObjectAdapterWithEndpoints:
                                   @"SimplePrinterAdapter"
                                   endpoints:@"default -p 10000"];

        ICEObject *object = [[[PrinterI alloc] init] autorelease];
        [adapter add:object identity:[communicator
                              stringToIdentity:@"SimplePrinter"]];
        [adapter activate];

        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

There appears to be a lot of code here for something as simple as a server that just 
prints a string. Do not be concerned by this: most of the preceding code is boiler 
plate that never changes. For this very simple server, the code is dominated by this 
boiler plate.

Every Ice source file starts with an include directive for Ice.h, which 
contains the definitions for the Ice run time. We also include Printer.h, which 
was generated by the Slice compiler and contains the Objective-C definitions for 
our printer interface. We also import headers to allow us to use an autorelease pool 
and to produce output:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>
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Our server implements a single printer servant, of type PrinterI. Looking at 
the generated code in Printer.h, we find the following (tidied up a little to get 
rid of irrelevant detail):

@protocol DemoPrinter <ICEObject>
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current;
@end

@interface DemoPrinter : ICEObject
// ...
@end

The DemoPrinter protocol and class definitions are generated by the Slice 
compiler. The protocol defines the printString method, which we must 
implement in our servant. The DemoPrinter class contains methods that are 
internal to the mapping, so we are not concerned with these. However, our servant 
must derive from this skeleton class:

@interface PrinterI : DemoPrinter <DemoPrinter>
@end

@implementation PrinterI
-(void) printString:(NSMutableString *)s
                    current:(ICECurrent *)current
{
    printf("%s\n", [s UTF8String]);
}
@end

As you can see, the implementation of the printString method is trivial: it 
simply writes its string argument to stdout.

Note that printString has a second parameter of type ICECurrent. The 
Ice run time passes additional information about an incoming request to the 
servant in this parameter. For now, we will ignore it. (See Section 32.6 for more 
information about this parameter.)

What follows is the server main program. Note the general structure of the 
code:

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
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    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];

        // Server implementation here...

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

The body of main instantiates an autorelease pool, which it releases before 
returning to ensure that the program does not leak memory. main contains the 
declaration of two variables, status and communicator. The status vari-
able contains the exit status of the program and the communicator variable, of 
type id<ICECommunicator>, contains the main handle to the Ice run time.

Following these declarations is a try block in which we place all the server 
code, followed by a catch handler that logs any unhandled exceptions.

Before returning, main executes a bit of cleanup code that calls the destroy 
method on the communicator. The cleanup call is outside the first try block for a 
reason: we must ensure that the Ice run time is finalized whether the code termi-
nates normally or terminates due to an exception.8

The body of the first try block contains the actual server code:

        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter =

8. Failure to call destroy on the communicator before the program exits results in undefined 
behavior.
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            [communicator createObjectAdapterWithEndpoints:
                                   @"SimplePrinterAdapter"
                                   endpoints:@"default -p 10000"];

        ICEObject *object = [[[PrinterI alloc] init] autorelease];
        [adapter add:object identity:[communicator
                              stringToIdentity:@"SimplePrinter"]];
        [adapter activate];

        [communicator waitForShutdown];

The code goes through the following steps:

1. We initialize the Ice run time by calling createCommunicator. (We pass 
argc and argv to this call because the server may have command-line argu-
ments that are of interest to the run time; for this example, the server does not 
require any command-line arguments.) The call to createCommunicator 
returns a pointer to an Ice::Communicator object, which is the main handle 
to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.

4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.) The server starts to process incoming 
requests from clients as soon as the adapter is activated.

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)
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Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. As far as actual application code is concerned, the 
server contains only a few lines: nine lines for the definition of the PrinterI 
class, plus three9 lines to instantiate a PrinterI object and register it with the 
object adapter.

Assuming that we have the server code in a file called Server.m, we can 
compile it as follows:

$ cc -c -I. -I$ICE_HOME/include Printer.m Server.m

This compiles both our application code and the code that was generated by the 
Slice compiler. We assume that the ICE_HOME environment variable is set to the 
top-level directory containing the Ice run time. (For example, if you have installed 
Ice in /opt/Ice, set ICE_HOME to that path.) Depending on your platform, you 
may have to add additional include directives or other options to the compiler; 
please see the demo programs that ship with Ice for the details.

Finally, we need to link the server into an executable:

$ c++ Printer.o Server.o -o server \
-L$ICE_HOME/lib -lIceObjC -framework Foundation

Again, depending on the platform, the actual list of libraries you need to link 
against may be longer. The demo programs that ship with Ice contain all the detail.

Writing and Compiling a Client

The client code looks very similar to the server. Here it is in full:

#import <Ice/Ice.h>
#import <Printer.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    

9. Well, fewer lines, really: printing space limitations force us to break source lines more often than 
you would in your actual source files.
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    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];
        id<ICEObjectPrx> base = [communicator
                stringToProxy:@"SimplePrinter:default -p 10000"];
        id<DemoPrinterPrx> printer =
            [DemoPrinterPrx checkedCast:base];
        if(!printer)
            [NSException raise:@"Invalid proxy" format:nil];

        [printer printString:@"Hello World!"];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

Note that the overall code layout is the same as for the server: we include the 
headers for the Ice run time and the header generated by the Slice compiler, and 
we use the same try block and catch handlers to deal with errors.

The code in the try block does the following:

1. As for the server, we initialize the Ice run time by calling createCommuni-
cator.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)
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3. The proxy returned by stringToProxy is of type id<ICEObjectPrx>, 
which is at the root of the inheritance tree for interfaces and classes. But to 
actually talk to our printer, we need a proxy for a Printer interface, not an 
Object interface. To do this, we need to do a down-cast by calling the 
checkedCast class method on the DemoPrinterPrx class. A checked 
cast sends a message to the server, effectively asking “is this a proxy for a 
Printer interface?” If so, the call returns a proxy to a Printer; otherwise, if 
the proxy denotes an interface of some other type, the call returns a null proxy.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Compiling and linking the client looks much the same as for the server:

$ cc -c -I. -I$ICE_HOME/include Printer.m Client.m

$ c++ Printer.o Client.o -o client \
-L$ICE_HOME/lib -lIceObjC -framework Foundation

Running Client and Server

To run client and server, we first start the server in a separate window:

$ ./server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ./client
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now.

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get:

Network.cpp:1218: Ice::ConnectionRefusedException:
connection refused: Connection refused

Note that, to successfully run client and server, you may have to set 
DYLD_LIBRARY_PATH to include the Ice library directory. Please see the instal-
lation instructions and the demo applications that ship with Ice Touch for details.
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3.8 Writing an Ice Application with Python

This section shows how to create an Ice application with Python.

Compiling a Slice Definition for Python

The first step in creating our Python application is to compile our Slice definition 
to generate Python proxies and skeletons. You can compile the definition as 
follows:10

$ slice2py Printer.ice

The slice2py compiler produces a single source file, Printer_ice.py, 
from this definition. The compiler also creates a Python package for the Demo 
module, resulting in a subdirectory named Demo. The exact contents of the source 
file do not concern us for now—it contains the generated code that corresponds to 
the Printer interface we defined in Printer.ice.

Writing a Server

To implement our Printer interface, we must create a servant class. By conven-
tion, servant classes use the name of their interface with an I-suffix, so our servant 
class is called PrinterI:

class PrinterI(Demo.Printer):
    def printString(self, s, current=None):
        print s

The PrinterI class inherits from a base class called Demo.Printer, which 
is generated by the slice2py compiler. The base class is abstract and contains a 
printString method that accepts a string for the printer to print and a param-
eter of type Ice.Current. (For now we will ignore the Ice.Current param-
eter. We will see its purpose in detail in Section 32.6.) Our implementation of the 
printString method simply writes its argument to the terminal.

The remainder of the server code, in Server.py, follows our servant class 
and is shown in full here:

10.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.
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import sys, traceback, Ice
import Demo

class PrinterI(Demo.Printer):
    def printString(self, s, current=None):
        print s

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    adapter = ic.createObjectAdapterWithEndpoints(
        "SimplePrinterAdapter", "default -p 10000")
    object = PrinterI()
    adapter.add(object, ic.stringToIdentity("SimplePrinter"))
    adapter.activate()
    ic.waitForShutdown()
except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note the general structure of the code:

status = 0
ic = None
try:

    # Server implementation here...

except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    try:
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        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

The body of the main program contains a try block in which we place all the 
server code, followed by an except block. The except block catches all 
exceptions that may be thrown by the code; the intent is that, if the code encoun-
ters an unexpected run-time exception anywhere, the stack is unwound all the way 
back to the main program, which prints the exception and then returns failure to 
the operating system.

Before the code exits, it destroys the communicator (if one was created 
successfully). Doing this is essential in order to correctly finalize the Ice run time: 
the program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.

The body of our try block contains the actual server code:

ic = Ice.initialize(sys.argv)
adapter = ic.createObjectAdapterWithEndpoints(
    "SimplePrinterAdapter", "default -p 10000")
object = PrinterI()
adapter.add(object, ic.stringToIdentity("SimplePrinter"))
adapter.activate()
ic.waitForShutdown()

The code goes through the following steps:

1. We initialize the Ice run time by calling Ice.initialize. (We pass 
sys.argv to this call because the server may have command-line arguments 
that are of interest to the run time; for this example, the server does not require 
any command-line arguments.) The call to initialize returns an 
Ice::Communicator reference, which is the main handle to the Ice run time.

2. We create an object adapter by calling createObjectAdapterWith-
Endpoints on the Communicator instance. The arguments we pass are 
"SimplePrinterAdapter" (which is the name of the adapter) and 
"default -p 10000", which instructs the adapter to listen for incoming 
requests using the default protocol (TCP/IP) at port number 10000.

3. At this point, the server-side run time is initialized and we create a servant for 
our Printer interface by instantiating a PrinterI object.
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4. We inform the object adapter of the presence of a new servant by calling add 
on the adapter; the arguments to add are the servant we have just instantiated, 
plus an identifier. In this case, the string "SimplePrinter" is the name of 
the servant. (If we had multiple printers, each would have a different name or, 
more correctly, a different object identity.)

5. Next, we activate the adapter by calling its activate method. (The adapter 
is initially created in a holding state; this is useful if we have many servants 
that share the same adapter and do not want requests to be processed until after 
all the servants have been instantiated.)

6. Finally, we call waitForShutdown. This call suspends the calling thread 
until the server implementation terminates, either by making a call to shut 
down the run time, or in response to a signal. (For now, we will simply inter-
rupt the server on the command line when we no longer need it.)

Note that, even though there is quite a bit of code here, that code is essentially the 
same for all servers. You can put that code into a helper class and, thereafter, will 
not have to bother with it again. (Ice ships with such a helper class, called 
Ice.Application—see Section 24.3.1.) As far as actual application code is 
concerned, the server contains only a few lines: three lines for the definition of the 
PrinterI class, plus two lines to instantiate a PrinterI object and register it 
with the object adapter.

Writing a Client

The client code, in Client.py, looks very similar to the server. Here it is in full:

import sys, traceback, Ice
import Demo

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    base = ic.stringToProxy("SimplePrinter:default -p 10000")
    printer = Demo.PrinterPrx.checkedCast(base)
    if not printer:
        raise RuntimeError("Invalid proxy")

    printer.printString("Hello World!")
except:
    traceback.print_exc()
    status = 1
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if ic:
    # Clean up
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note that the overall code layout is the same as for the server: we use the same 
try and except blocks to deal with errors. The code in the try block does the 
following:

1. As for the server, we initialize the Ice run time by calling 
Ice.initialize.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Demo::Printer interface, not an Object 
interface. To do this, we need to do a down-cast by calling Demo.Print-
erPrx.checkedCast. A checked cast sends a message to the server, effec-
tively asking “is this a proxy for a Demo::Printer interface?” If so, the call 
returns a proxy of type Demo.PrinterPrx; otherwise, if the proxy denotes 
an interface of some other type, the call returns None.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Running Client and Server

To run client and server, we first start the server in a separate window:

$ python Server.py
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At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ python Client.py
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

Traceback (most recent call last):
  File "Client.py", line 10, in ?
    printer = Demo.PrinterPrx.checkedCast(base)
  File "Printer_ice.py", line 43, in checkedCast
    return Demo.PrinterPrx.ice_checkedCast(proxy, '::Demo::Printer
', facet)
ConnectionRefusedException: Ice.ConnectionRefusedException:
Connection refused

Note that, to successfully run the client and server, the Python interpreter must be 
able to locate the Ice extension for Python. See the Ice for Python installation 
instructions for more information.

3.9 Writing an Ice Application with Ruby

This section shows how to create an Ice client application with Ruby.

Compiling a Slice Definition for Ruby

The first step in creating our Ruby application is to compile our Slice definition to 
generate Ruby proxies. You can compile the definition as follows:11

$ slice2rb Printer.ice

11.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.



76 A Hello World Application

The slice2rb compiler produces a single source file, Printer.rb, from this 
definition. The exact contents of the source file do not concern us for now—it 
contains the generated code that corresponds to the Printer interface we defined 
in Printer.ice.

Writing a Client

The client code, in Client.rb, is shown below in full:

require 'Printer.rb'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    base = ic.stringToProxy("SimplePrinter:default -p 10000")
    printer = Demo::PrinterPrx::checkedCast(base)
    if not printer
        raise "Invalid proxy"
    end

    printer.printString("Hello World!")
rescue
    puts $!
    puts $!.backtrace.join("\n")
    status = 1
end

if ic
    # Clean up
    begin
        ic.destroy()
    rescue
        puts $!
        puts $!.backtrace.join("\n")
        status = 1
    end
end

exit(status)

The program begins with a require statement, which loads the Ruby code we 
generated from our Slice definition in the previous section. It is not necessary for 
the client to explicitly load the Ice module because Printer.rb already does 
that.
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The body of the main program contains a begin block in which we place all 
the client code, followed by a rescue block. The rescue block catches all 
exceptions that may be thrown by the code; the intent is that, if the code encoun-
ters an unexpected run-time exception anywhere, the stack is unwound all the way 
back to the main program, which prints the exception and then returns failure to 
the operating system.

The body of our begin block goes through the following steps:

1. We initialize the Ice run time by calling Ice::initialize. (We pass 
ARGV to this call because the client may have command-line arguments that 
are of interest to the run time; for this example, the client does not require any 
command-line arguments.) The call to initialize returns an Ice::Commu-
nicator reference, which is the main handle to the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Demo::Printer interface, not an Object 
interface. To do this, we need to do a down-cast by calling Demo::Print-
erPrx::checkedCast. A checked cast sends a message to the server, 
effectively asking “is this a proxy for a Demo::Printer interface?” If so, the 
call returns a proxy of type Demo::PrinterPrx; otherwise, if the proxy 
denotes an interface of some other type, the call returns nil.

4. We test that the down-cast succeeded and, if not, throw an error message that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created success-
fully). Doing this is essential in order to correctly finalize the Ice run time: the 
program must call destroy on any communicator it has created; otherwise, 
undefined behavior results.



78 A Hello World Application

Running the Client

The server must be started before the client. Since Ice for Ruby does not support 
server-side behavior, we need to use a server from another language mapping. In 
this case, we will use the C++ server (see Chapter 9):

$ server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window:

$ ruby Client.rb
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

exception ::Ice::ConnectionRefusedException
{
    error = 111
}

Note that, to successfully run the client, the Ruby interpreter must be able to 
locate the Ice extension for Ruby. See the Ice for Ruby installation instructions for 
more information.

3.10 Writing an Ice Application with PHP

This section shows how to create an Ice client application with PHP.

Compiling a Slice Definition for PHP

The first step in creating our PHP application is to compile our Slice definition to 
generate PHP code. You can compile the definition as follows:12

12.Whenever we show Unix commands in this book, we assume a Bourne or Bash shell. The 
commands for Windows are essentially identical and therefore not shown.
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$ slice2php Printer.ice

The slice2php compiler produces a single source file, Printer.php, from 
this definition. The exact contents of the source file do not concern us for now—it 
contains the generated code that corresponds to the Printer interface we defined 
in Printer.ice.

Writing a Client

The client code, in Client.php, is shown below in full:

<?php
require 'Ice.php';
require 'Printer.php';

$ic = null;
try
{
    $ic = Ice_initialize();
    $base = $ic->stringToProxy("SimplePrinter:default -p 10000");
    $printer = Demo_PrinterPrxHelper::checkedCast($base);
    if(!$printer)
        throw new RuntimeException("Invalid proxy");

    $printer->printString("Hello World!");
}
catch(Exception $ex)
{
    echo $ex;
}

if($ic)
{
    // Clean up
    try
    {
        $ic->destroy();
    }
    catch(Exception $ex)
    {
        echo $ex;
    }
}
?>
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The program begins with require statements to load the Ice run-time defini-
tions (Ice.php) and the code we generated from our Slice definition in the 
previous section (Printer.php).

The body of the main program contains a try block in which we place all the 
client code, followed by a catch block. The catch block catches all exceptions 
that may be thrown by the code; the intent is that, if the code encounters an unex-
pected run-time exception anywhere, the stack is unwound all the way back to the 
main program, which prints the exception and then returns failure to the operating 
system.

The body of our try block goes through the following steps:

1. We initialize the Ice run time by calling Ice_initialize. The call to 
initialize returns an Ice::Communicator reference, which is the main 
handle to the Ice run time.

2. The next step is to obtain a proxy for the remote printer. We create a proxy by 
calling stringToProxy on the communicator, with the string 
"SimplePrinter:default -p 10000". Note that the string contains 
the object identity and the port number that were used by the server. (Obvi-
ously, hard-coding object identities and port numbers into our applications is a 
bad idea, but it will do for now; we will see more architecturally sound ways 
of doing this in Chapter 38.)

3. The proxy returned by stringToProxy is of type Ice::ObjectPrx, which is 
at the root of the inheritance tree for interfaces and classes. But to actually talk 
to our printer, we need a proxy for a Demo::Printer interface, not an Object 
interface. To do this, we need to do a down-cast by calling 
Demo_PrinterPrxHelper::checkedCast. A checked cast sends a 
message to the server, effectively asking “is this a proxy for a Demo::Printer 
interface?” If so, the call returns a proxy narrowed to the Printer interface; 
otherwise, if the proxy denotes an interface of some other type, the call returns 
null.

4. We test that the down-cast succeeded and, if not, throw an exception that 
terminates the client.

5. We now have a live proxy in our address space and can call the print-
String method, passing it the time-honored "Hello World!" string. The 
server prints that string on its terminal.

Before the code exits, it destroys the communicator (if one was created success-
fully). Doing this is essential in order to correctly finalize the Ice run time. If a 
script neglects to destroy the communicator, Ice destroys it automatically.
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Running the Client

The server must be started before the client. Since Ice for PHP does not support 
server-side behavior, we need to use a server from another language mapping. In 
this case, we will use the C++ server (see Chapter 9):

$ server

At this point, we won’t see anything because the server simply waits for a client to 
connect to it. We run the client in a different window using PHP’s command-line 
interpreter:

$ php -f Client.php
$

The client runs and exits without producing any output; however, in the server 
window, we see the "Hello World!" that is produced by the printer. To get rid 
of the server, we interrupt it on the command line for now. (We will see cleaner 
ways to terminate a server in Chapter 24.)

If anything goes wrong, the client will print an error message. For example, if 
we run the client without having first started the server, we get something like the 
following:

exception ::Ice::ConnectionRefusedException
{
    error = 111
}

Note that, to successfully run the client, the PHP interpreter must be able to locate 
the Ice extension for PHP. See the Ice for PHP installation instructions for more 
information.

3.11 Summary

This chapter presented a very simple (but complete) client and server. As we saw, 
writing an Ice application involves the following steps:

1. Write a Slice definition and compile it.

2. Write a server and compile it.

3. Write a client and compile it.

If someone else has written the server already and you are only writing a client, 
you do not need to write the Slice definition, only compile it (and, obviously, you 
do not need to write the server in that case).
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Do not be concerned if, at this point, much appears unclear. The intent of this 
chapter is to give you an idea of the development process, not to explain the Ice 
APIs in intricate detail. We will cover all the detail throughout the remainder of 
this book.
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Chapter 4
The Slice Language

4.1 Chapter Overview

In this chapter we present the Slice language. We start by discussing the role and 
purpose of Slice, explaining how language-independent specifications are 
compiled for particular implementation languages to create actual implementa-
tions. Sections 4.10 and 4.11 cover the core Slice concepts of interfaces, opera-
tions, exceptions, and inheritance. These concepts have profound influence on the 
behavior of a distributed system and should be read in detail. 

This chapter also presents slice2docbook, which you can use to automate 
generation of documentation for Slice definitions.

4.2 Introduction

Slice1 (Specification Language for Ice) is the fundamental abstraction mechanism 
for separating object interfaces from their implementations. Slice establishes a 
contract between client and server that describes the types and object interfaces 
used by an application. This description is independent of the implementation 

1. Even though Slice is an acronym, it is pronounced as single syllable, like a slice of bread.
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language, so it does not matter whether the client is written in the same language 
as the server.

Slice definitions are compiled for a particular implementation language by a 
compiler. The compiler translates the language-independent definitions into 
language-specific type definitions and APIs. These types and APIs are used by the 
developer to provide application functionality and to interact with Ice. The trans-
lation algorithms for various implementation languages are known as language 
mappings. Currently, Ice defines language mappings for C++, Java, C#, Python, 
Objective-C, Ruby, and PHP.

Because Slice describes interfaces and types (but not implementations), it is a 
purely declarative language; there is no way to write executable statements in 
Slice.

Slice definitions focus on object interfaces, the operations supported by those 
interfaces, and exceptions that may be raised by operations. In addition, Slice 
offers features for object persistence (see Chapter 39). This requires quite a bit of 
supporting machinery; in particular, quite a bit of Slice is concerned with the defi-
nition of data types. This is because data can be exchanged between client and 
server only if their types are defined in Slice. You cannot exchange arbitrary C++ 
data between client and server because it would destroy the language indepen-
dence of Ice. However, you can always create a Slice type definition that corre-
sponds to the C++ data you want to send, and then you can transmit the Slice type.

We present the full syntax and semantics of Slice here. Because much of Slice 
is based on C++ and Java, we focus on those areas where Slice differs from C++ 
or Java or constrains the equivalent C++ or Java feature in some way. Slice 
features that are identical to C++ and Java are mentioned mostly by example.

4.3 Compilation

A Slice compiler produces source files that must be combined with application 
code to produce client and server executables.

The outcome of the development process is a client executable and a server 
executable. These executables can be deployed anywhere, whether the target envi-
ronments use the same or different operating systems and whether the executables 
are implemented using the same or different languages. The only constraint is that 
the host machines must provide the necessary run-time environment, such as any 
required dynamic libraries, and that connectivity can be established between 
them.
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4.3.1 Single Development Environment for Client and Server

Figure 4.1 shows the situation when both client and server are developed in C++. 
The Slice compiler generates two files from a Slice definition in a source file 
Printer.ice: a header file (Printer.h) and a source file (Printer.cpp).

Figure 4.1. Development process if client and server share the same development environment.

• The Printer.h header file contains definitions that correspond to the types 
used in the Slice definition. It is included in the source code of both client and 
server to ensure that client and server agree about the types and interfaces used 
by the application.

• The Printer.cpp source file provides an API to the client for sending 
messages to remote objects. The client source code (Client.cpp, written 
by the client developer) contains the client-side application logic. The gener-
ated source code and the client code are compiled and linked into the client 
executable.

The Printer.cpp source file also contains source code that provides an up-
call interface from the Ice run time into the server code written by the devel-
oper and provides the connection between the networking layer of Ice and the 
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application code. The server implementation file (Server.cpp, written by 
the server developer) contains the server-side application logic (the object 
implementations, properly termed servants). The generated source code and 
the implementation source code are compiled and linked into the server 
executable.

Both client and server also link with an Ice library that provides the necessary run-
time support.

You are not limited to a single implementation of a client or server. For 
example, you can build multiple servers, each of which implements the same 
interfaces but uses different implementations (for example, with different perfor-
mance characteristics). Multiple such server implementations can coexist in the 
same system. This arrangement provides one fundamental scalability mechanism 
in Ice: if you find that a server process starts to bog down as the number of objects 
increases, you can run an additional server for the same interfaces on a different 
machine. Such federated servers provide a single logical service that is distributed 
over a number of processes on different machines. Each server in the federation 
implements the same interfaces but hosts different object instances. (Of course, 
federated servers must somehow ensure consistency of any databases they share 
across the federation.)

Ice also provides support for replicated servers. Replication permits multiple 
servers to each implement the same set of object instances. This improves perfor-
mance and scalability (because client load can be shared over a number of servers) 
as well as redundancy (because each object is implemented in more than one 
server).

4.3.2 Different Development Environments for Client and Server

Client and server cannot share any source or binary components if they are devel-
oped in different languages. For example, a client written in Java cannot include a 
C++ header file.

Figure 4.2 shows the situation when a client written in Java and the corre-
sponding server is written in C++. In this case, the client and server developers are 
completely independent, and each uses his or her own development environment 
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and language mapping. The only link between client and server developers is the 
Slice definition each one uses.

Figure 4.2. Development process for different development environments.

For Java, the slice compiler creates a number of files whose names depend on 
the names of various Slice constructs. (These files are collectively referred to as 
*.java in Figure 4.2.)

4.4 Source Files

Slice defines a number of rules for the naming and contents of Slice source files.
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4.4.1 File Naming

Files containing Slice definitions must end in a .ice file extension, for example, 
Clock.ice is a valid file name. Other file extensions are rejected by the 
compilers.

For case-insensitive file systems (such as DOS), the file extension may be 
written as uppercase or lowercase, so Clock.ICE is legal. For case-sensitive file 
systems (such as Unix), Clock.ICE is illegal. (The extension must be in lower-
case.)

4.4.2 File Format

Slice is a free-form language so you can use spaces, horizontal and vertical tab 
stops, form feeds, and newline characters to lay out your code in any way you 
wish. (White space characters are token separators). Slice does not attach seman-
tics to the layout of a definition. You may wish to follow the style we have used 
for the Slice examples throughout this book.

Slice files can be ASCII text files or use the UTF-8 character encoding with a 
byte order marker (BOM) at the beginning of each file. However, Slice identifiers 
are limited to ASCII letters and digits; non-ASCII letters can appear only in 
comments.

4.4.3 Preprocessing

Slice is preprocessed by the C++ preprocessor, so you can use the usual prepro-
cessor directives, such as #include and macro definitions. However, Slice permits 
#include directives only at the beginning of a file, before any Slice definitions.

If you use #include directives, it is a good idea to protect them with guards to 
prevent double inclusion of a file:

// File Clock.ice
#ifndef _CLOCK_ICE
#define _CLOCK_ICE

// #include directives here...
// Definitions here...

#endif _CLOCK_ICE

#include directives permit a Slice definition to use types defined in a different 
source file. The Slice compilers parse all of the code in a source file, including the 
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code in #included files. However, the compilers generate code only for the top-
level file(s) nominated on the command line. You must separately compile 
#included files to obtain generated code for all the files that make up your Slice 
definition.

Note that you should avoid #include with double quotes:

#include "Clock.ice" // Not recommended!

While double quotes will work, the directory in which the preprocessor tries to 
locate the file can vary depending on the operating system, so the included file 
may not always be found where you expect it. Instead, use angle brackets (<>); 
you can control which directories are searched for the file with the -I option of 
the Slice compiler (see page 169).

Also note that, if you include a path separator in a #include directive, you 
must use a forward slash:

#include <SliceDefs/Clock.ice>  // OK

You cannot use a backslash in #include directives:

#include <SliceDefs\Clock.ice>  // Illegal

4.4.4 Definition Order

Slice constructs, such as modules, interfaces, or type definitions, can appear in any 
order you prefer. However, identifiers must be declared before they can be used.

4.5 Lexical Rules

Slice’s lexical rules are very similar to those of C++ and Java, except for some 
differences for identifiers.

4.5.1 Comments

Slice definitions permit both the C and the C++ style of writing comments:

/*
 * C-style comment.
 */

// C++-style comment extending to the end of this line.
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4.5.2 Keywords

Slice uses a number of keywords, which must be spelled in lowercase. For 
example, class and dictionary are keywords and must be spelled as shown. 
There are two exceptions to this lowercase rule: Object and LocalObject are 
keywords and must be capitalized as shown. You can find a full list of Slice 
keywords in Appendix A.

4.5.3 Identifiers

Identifiers begin with an alphabetic character followed by any number of alpha-
betic characters or digits. Underscores are also permitted in identifiers with the 
following limitations:

• an identifier cannot begin or end with an underscore

• an identifier cannot contain multiple consecutive underscores

Given these rules, the identifier get_account_name is legal but not _account, 
account_, or get__account.

Slice identifiers are restricted to the ASCII range of alphabetic characters and 
cannot contain non-English letters, such as Å. (Supporting non-ASCII identifiers 
would make it very difficult to map Slice to target languages that lack support for 
this feature.)

Case Sensitivity

Identifiers are case-insensitive but must be capitalized consistently. For example, 
TimeOfDay and TIMEOFDAY are considered the same identifier within a naming 
scope. However, Slice enforces consistent capitalization. After you have intro-
duced an identifier, you must capitalize it consistently throughout; otherwise, the 
compiler will reject it as illegal. This rule exists to permit mappings of Slice to 
languages that ignore case in identifiers as well as to languages that treat differ-
ently capitalized identifiers as distinct.

Identifiers That Are Keywords

You can define Slice identifiers that are keywords in one or more implementation 
languages. For example, switch is a perfectly good Slice identifier but is a C++ 
and Java keyword. Each language mapping defines rules for dealing with such 
identifiers. The solution typically involves using a prefix to map away from the 
keyword. For example, the Slice identifier switch is mapped to _cpp_switch 
in C++ and _switch in Java.
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The rules for dealing with keywords can result in hard-to-read source code. 
Identifiers such as native, throw, or export will clash with C++ or Java 
keywords (or both). To make life easier for yourself and others, try to avoid Slice 
identifiers that are implementation language keywords. Keep in mind that 
mappings for new languages may be added to Ice in the future. While it is not 
reasonable to expect you to compile a list of all keywords in all popular program-
ming languages, you should make an attempt to avoid at least common keywords. 
Slice identifiers such as self, import, and while are definitely not a good idea.

Escaped Identifiers

It is possible to use a Slice keyword as an identifier by prefixing the keyword with 
a backslash, for example:

struct dictionary {     // Error!
    // ...
};

struct \dictionary {    // OK
    // ...
};

struct \foo {           // Legal, same as "struct foo"
    // ...
};

The backslash escapes the usual meaning of a keyword; in the preceding example, 
\dictionary is treated as the identifier dictionary. The escape mechanism 
exists to permit keywords to be added to the Slice language over time with 
minimal disruption to existing specifications: if a pre-existing specification 
happens to use a newly-introduced keyword, that specification can be fixed by 
simply prepending a backslash to the new keyword. Note that, as a matter of style, 
you should avoid using Slice keywords as identifiers (even though the backslash 
escapes allow you to do this).

It is legal (though redundant) to precede an identifier that is not a keyword 
with a backslash—the backslash is ignored in that case.

Reserved Identifiers

Slice reserves the identifier Ice and all identifiers beginning with Ice (in any 
capitalization) for the Ice implementation. For example, if you try to define a type 
named Icecream, the Slice compiler will issue an error message.2
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Slice identifiers ending in any of the suffixes Helper, Holder, Prx, and Ptr are 
also reserved. These endings are used by the various language mappings and are 
reserved to prevent name clashes in the generated code.

4.6 Modules

A common problem in large systems is pollution of the global namespace: over 
time, as isolated systems are integrated, name clashes become quite likely. Slice 
provides the module construct to alleviate this problem:

module ZeroC {
    module Client {
        // Definitions here...
    };
    module Server {
        // Definitions here...
    };
};

A module can contain any legal Slice construct, including other module defini-
tions. Using modules to group related definitions together avoids polluting the 
global namespace and makes accidental name clashes quite unlikely. (You can use 
a well-known name, such as a company or product name, as the name of the outer-
most module.)

Slice requires all definitions to be nested inside a module, that is, you cannot 
define anything other than a module at global scope. For example, the following is 
illegal:

interface I {   // Error: only modules can appear at global scope
    // ...
};

Definitions at global scope are prohibited because they cause problems with some 
implementation languages (such as Python, which does not have a true global 
scope).

2. You can suppress this behavior by using the --ice compiler option, which enables definition of 
identifiers beginning with Ice. However, do not use this option unless you are compiling the 
Slice definitions for the Ice run time itself.



4.7 The Ice Module 95

NOTE: Throughout the remainder of this book, you will occasionally see Slice definitions 
that are not nested inside a module. This is to keep the examples short and free of 
clutter. Whenever you see such a definition, assume that it is nested in a module.

Modules can be reopened:

module ZeroC {
    // Definitions here...
};

// Possibly in a different source file:

module ZeroC {  // OK, reopened module
    // More definitions here...
};

Reopened modules are useful for larger projects: they allow you to split the 
contents of a module over several different source files. The advantage of doing 
this is that, when a developer makes a change to one part of the module, only files 
dependent on the changed part need be recompiled (instead of having to recompile 
all files that use the module).

Modules map to a corresponding scoping construct in each programming 
language. (For example, for C++ and C#, Slice modules map to namespaces 
whereas, for Java, they map to packages.) This allows you to use an appropriate 
C++ using or Java import declaration to avoid excessively long identifiers in 
the source code.

4.7 The Ice Module

APIs for the Ice run time, apart from a small number of language-specific calls 
that cannot be expressed in Ice, are defined in the Ice module. In other words, 
most of the Ice API is actually expressed as Slice definitions. The advantage of 
doing this is that a single Slice definition is sufficient to define the API for the Ice 
run time for all supported languages. The respective language mapping rules then 
determine the exact shape of each Ice API for each implementation language.

We will incrementally explore the contents of the Ice module throughout the 
remainder of this book.
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4.8 Basic Slice Types

Slice provides a number of built-in basic types, shown in Table 4.1.

All the basic types (except byte) are subject to changes in representation as they 
are transmitted between clients and servers. For example, a long value is byte-
swapped when sent from a little-endian to a big-endian machine. Similarly, strings 
undergo translation in representation if they are sent, for example, from an 
EBCDIC to an ASCII implementation, and the characters of a string may also 
change in size. (Not all architectures use 8-bit characters). However, these 
changes are transparent to the programmer and do exactly what is required.

4.8.1 Integer Types

Slice provides integer types short, int, and long, with 16-bit, 32-bit, and 64-bit 
ranges, respectively. Note that, on some architectures, any of these types may be 
mapped to a native type that is wider. Also note that no unsigned types are 
provided. (This choice was made because unsigned types are difficult to map into 
languages without native unsigned types, such as Java. In addition, the unsigned 
integers add little value to a language. See [9] for a good treatment of the topic.)

Table 4.1. Slice basic types.

Type Range of Mapped Type Size of Mapped Type

bool false or true bit

byte  or a

a. The range depends on whether byte maps to a signed or an unsigned type.

 bits

short  to   bits

int  to   bits

long  to   bits

float IEEE single-precision  bits

double IEEE double-precision  bits

string All Unicode characters, excluding
the character with all bits zero.

Variable-length
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4.8.2 Floating-Point Types

These types follow the IEEE specification for single- and double-precision 
floating-point representation [6]. If an implementation cannot support IEEE 
format floating-point values, the Ice run time converts values into the native 
floating-point representation (possibly at a loss of precision or even magnitude, 
depending on the capabilities of the native floating-point format).

4.8.3 Strings

Slice strings use the Unicode character set. The only character that cannot appear 
inside a string is the zero character.3

The Slice data model does not have the concept of a null string (in the sense of 
a C++ null pointer). This decision was made because null strings are difficult to 
map to languages without direct support for this concept (such as Python). Do not 
design interfaces that depend on a null string to indicate “not there” semantics. If 
you need the notion of an optional string, use a class (see Section 4.11), a 
sequence of strings (see Section 4.9.3), or use an empty string to represent the idea 
of a null string. (Of course, the latter assumes that the empty string is not other-
wise used as a legitimate string value by your application.)

4.8.4 Booleans

Boolean values can have only the values false and true. Language mappings use 
the corresponding native boolean type if one is available.

4.8.5 Bytes

The Slice type byte is an (at least) 8-bit type that is guaranteed not to undergo any 
changes in representation as it is transmitted between address spaces. This guar-
antee permits exchange of binary data such that it is not tampered with in transit. 
All other Slice types are subject to changes in representation during transmission.

3. This decision was made as a concession to C++, with which it becomes impossibly difficult to 
manipulate strings with embedded zero characters using standard library routines, such as 
strlen or strcat.
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4.9 User-Defined Types

In addition to providing the built-in basic types, Slice allows you to define 
complex types: enumerations, structures, sequences, and dictionaries.

4.9.1 Enumerations
A Slice enumerated type definition looks like the C++ version:

enum Fruit { Apple, Pear, Orange };

This definition introduces a type named Fruit that becomes a new type in its own 
right. Slice does not define how ordinal values are assigned to enumerators. For 
example, you cannot assume that the enumerator Orange will have the value 2 in 
different implementation languages. Slice guarantees only that the ordinal values 
of enumerators increase from left to right, so Apple compares less than Pear in all 
implementation languages.

Unlike C++, Slice does not permit you to control the ordinal values of 
enumerators (because many implementation languages do not support such a 
feature):

enum Fruit { Apple = 0, Pear = 7, Orange = 2 }; // Syntax error

In practice, you do not care about the values used for enumerators as long as you 
do not transmit the ordinal value of an enumerator between address spaces. For 
example, sending the value 0 to a server to mean Apple can cause problems 
because the server may not use 0 to represent Apple. Instead, simply send the 
value Apple itself. If Apple is represented by a different ordinal value in the 
receiving address space, that value will be appropriately translated by the Ice run 
time.

As with C++, Slice enumerators enter the enclosing namespace, so the 
following is illegal:

enum Fruit { Apple, Pear, Orange };
enum ComputerBrands { Apple, IBM, Sun, HP };    // Apple redefined

Slice does not permit empty enumerations.

4.9.2 Structures
Slice supports structures containing one or more named members of arbitrary 
type, including user-defined complex types. For example:
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struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

As in C++, this definition introduces a new type called TimeOfDay. Structure defi-
nitions form a namespace, so the names of the structure members need to be 
unique only within their enclosing structure.

Data member definitions using a named type are the only construct that can 
appear inside a structure. It is impossible to, for example, define a structure inside 
a structure:

struct TwoPoints {
    struct Point {      // Illegal!
                short x;
                short y;
    };
    Point       coord1;
    Point       coord2;
};

This rule applies to Slice in general: type definitions cannot be nested (except for 
modules, which do support nesting—see Section 4.6). The reason for this rule is 
that nested type definitions can be difficult to implement for some target 
languages and, even if implementable, greatly complicate the scope resolution 
rules. For a specification language, such as Slice, nested type definitions are 
unnecessary—you can always write the above definitions as follows (which is 
stylistically cleaner as well):

struct Point {
    short x;
    short y;
};

struct TwoPoints {      // Legal (and cleaner!)
    Point coord1;
    Point coord2;
};

You can specify a default value for a data member that has one of the following 
types:

• An integral type (bool, byte, short, int, long, or an enumerated type)

• float or double
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• string

For example:

struct Location {
    string name;
    Point pt;
    bool display = true;
    string source = "GPS";
};

The legal syntax for literal values is the same as for Slice constants (see 
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.

4.9.3 Sequences
Sequences are variable-length collections of elements:

sequence<Fruit> FruitPlatter;

A sequence can be empty — that is, it can contain no elements, or it can hold any 
number of elements up to the memory limits of your platform.

Sequences can contain elements that are themselves sequences. This arrange-
ment allows you to create lists of lists:

sequence<FruitPlatter> FruitBanquet;

Sequences are used to model a variety of collections, such as vectors, lists, queues, 
sets, bags, or trees. (It is up to the application to decide whether or not order is 
important; by discarding order, a sequence serves as a set or bag.)

One particular use of sequences has become idiomatic, namely, the use of a 
sequence to indicate an optional value. For example, we might have a Part struc-
ture that records the details of the parts that go into a car. The structure could 
record things such as the name of the part, a description, weight, price, and other 
details. Spare parts commonly have a serial number, which we can model as a 
long value. However, some parts, such as simple screws, often do not have a serial 
number, so what are we supposed to put into the serial number field of a screw? 
There are a number of options for dealing with this situation:

• Use a sentinel value, such as zero, to indicate the “no serial number” condi-
tion.

This approach is workable, provided that a sentinel value is actually available. 
While it may seem unlikely that anyone would use a serial number of zero for 
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a part, it is not impossible. And, for other values, such as a temperature value, 
all values in the range of their type can be legal, so no sentinel value is avail-
able.

• Change the type of the serial number from long to string.

Strings come with their own built-in sentinel value, namely, the empty string 
so we can use an empty string to indicate the “no serial number” case. This is 
workable, but leaves a bad taste in most people’s mouth: we should not have 
to change the natural data type of something to string just so we get a 
sentinel value.

• Add an indicator as to whether the contents of the serial number are valid:

struct Part {
    string name;
    string description;
    // ...
    bool   serialIsValid;  // true if part has serial number
    long   serialNumber;
};

This is distasteful to most people and guaranteed to get you into trouble even-
tually: sooner or later, some programmer will forget to check whether the 
serial number is valid before using it and create havoc.

• Use a sequence to model the optional field.

This technique uses the following convention:

sequence<long> SerialOpt;

struct Part {
    string    name;
    string    description;
    // ...
    SerialOpt serialNumber; // optional: zero or one element
};

By convention, the Opt suffix is used to indicate that the sequence is used to 
model an optional value. If the sequence is empty, the value is obviously not 
there; if it contains a single element, that element is the value. The obvious 
drawback of this scheme is that someone could put more than one element into 
the sequence. This could be rectified by adding a special-purpose Slice 
construct for optional values. However, optional values are not used 
frequently enough to justify the complexity of adding a dedicated language 
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feature. (As we will see in Section 4.11, you can also use class hierarchies to 
model optional fields.)

4.9.4 Dictionaries

A dictionary is a mapping from a key type to a value type. For example:

struct Employee {
    long   number;
    string firstName;
    string lastName;
};

dictionary<long, Employee> EmployeeMap;

This definition creates a dictionary named EmployeeMap that maps from an 
employee number to a structure containing the details for an employee. Whether 
or not the key type (the employee number, of type long in this example) is also 
part of the value type (the Employee structure in this example) is up to you—as far 
as Slice is concerned, there is no need to include the key as part of the value.

Dictionaries can be used to implement sparse arrays, or any lookup data struc-
ture with non-integral key type. Even though a sequence of structures containing 
key–value pairs could be used to model the same thing, a dictionary is more 
appropriate:

• A dictionary clearly signals the intent of the designer, namely, to provide a 
mapping from a domain of values to a range of values. (A sequence of struc-
tures of key–value pairs does not signal that same intent as clearly.)

• At the programming language level, sequences are implemented as vectors (or 
possibly lists), that is, they are not well suited to model sparsely populated 
domains and require a linear search to locate an element with a particular 
value. On the other hand, dictionaries are implemented as a data structure 
(typically a hash table or red-black tree) that supports efficient searching in 
O(log n) average time or better.

The key type of a dictionary need not be an integral type. For example, we could 
use the following definition to translate the names of the days of the week:

dictionary<string, string> WeekdaysEnglishToGerman;

The server implementation would take care of initializing this map with the key–
value pairs Monday–Montag, Tuesday–Dienstag, and so on.
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The value type of a dictionary can be any user-defined type. However, the key 
type of a dictionary is limited to one of the following types:

• Integral types (byte, short, int, long, bool, and enumerated types)

• string

• structures containing only data members of integral type or string

Complex nested types, such as nested structures, sequences, or dictionaries, and 
floating-point types (float and double) cannot be used as the key type. Complex 
nested types are disallowed because they complicate the language mappings for 
dictionaries, and floating-point types are disallowed because representational 
changes of values as they cross machine boundaries can lead to ill-defined seman-
tics for equality.

4.9.5 Constant Definitions and Literals

Slice allows you to define constants. Constant definitions must be of one of the 
following types:

• An integral type (bool, byte, short, int, long, or an enumerated type)

• float or double

• string

Here are a few examples:

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

The syntax for literals is the same as for C++ and Java (with a few minor excep-
tions):

• Boolean constants can only be initialized with the keywords false and true. 
(You cannot use 0 and 1 to represent false and true.)

• As for C++, integer literals can be specified in decimal, octal, or hexadecimal 
notation. For example:
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const byte TheAnswer = 42;
const byte TheAnswerInOctal = 052;
const byte TheAnswerInHex = 0x2A;       // or 0x2a

Be aware that, if you interpret byte as a number instead of a bit pattern, you 
may get different results in different languages. For example, for C++, byte 
maps to unsigned char whereas, for Java, byte maps to byte, which is a 
signed type.

Note that suffixes to indicate long and unsigned constants (l, L, u, U, used by 
C++) are illegal:

const long Wrong = 0u;          // Syntax error
const long WrongToo = 1000000L; // Syntax error

The value of an integer literal must be within the range of its constant type, as 
shown in Table 4.1 on page 96; otherwise the compiler will issue a diagnostic.

• Floating-point literals use C++ syntax, except that you cannot use an l or L 
suffix to indicate an extended floating-point constant; however, f and F are 
legal (but are ignored). Here are a few examples:

const float P1 = -3.14f;    // Integer & fraction, with suffix
const float P2 = +3.1e-3;   // Integer, fraction, and exponent
const float P3 = .1;        // Fraction part only
const float P4 = 1.;        // Integer part only
const float P5 = .9E5;      // Fraction part and exponent
const float P6 = 5e2;       // Integer part and exponent

Floating-point literals must be within the range of the constant type (float or 
double); otherwise, the compiler will issue a diagnostic.

• String literals support the same escape sequences as C++. Here are some 
examples:

const string AnOrdinaryString = "Hello World!";

const string DoubleQuote =      "\"";
const string TwoSingleQuotes =  "'\'";     // ' and \' are OK
const string Newline =          "\n";
const string CarriageReturn =   "\r";
const string HorizontalTab =    "\t";
const string VerticalTab =      "\v";
const string FormFeed =         "\f";
const string Alert =            "\a";
const string Backspace =        "\b";
const string QuestionMark =     "\?";
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const string Backslash =        "\\";

const string OctalEscape =      "\007";    // Same as \a
const string HexEscape =        "\x07";    // Ditto

const string UniversalCharName = "\u03A9"; // Greek Omega

As for C++, adjacent string literals are concatenated:

const string MSG1 = "Hello World!";
const string MSG2 = "Hello" " " "World!";       // Same message

/*
 * Escape sequences are processed before concatenation,
 * so the string below contains two characters,
 * '\xa' and 'c'.
 */

const string S = "\xa" "c";

Note that Slice has no concept of a null string:

const string nullString = 0;    // Illegal!

Null strings simply do not exist in Slice and, therefore, do not exist as a legal 
value for a string anywhere in the Ice platform. The reason for this decision is 
that null strings do not exist in many programming languages.4

4.10 Interfaces, Operations, and Exceptions

The central focus of Slice is on defining interfaces, for example:

struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};


4. Many languages other than C and C++ use a byte array as the internal string representation. Null 
strings do not exist (and would be very difficult to map) in such languages.
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interface Clock {
    TimeOfDay getTime();
    void setTime(TimeOfDay time);
};

This definition defines an interface type called Clock. The interface supports two 
operations: getTime and setTime. Clients access an object supporting the Clock 
interface by invoking an operation on the proxy for the object: to read the current 
time, the client invokes the getTime operation; to set the current time, the client 
invokes the setTime operation, passing an argument of type TimeOfDay.

Invoking an operation on a proxy instructs the Ice run time to send a message 
to the target object. The target object can be in another address space or can be 
collocated (in the same process) as the caller—the location of the target object is 
transparent to the client. If the target object is in another (possibly remote) address 
space, the Ice run time invokes the operation via a remote procedure call; if the 
target is collocated with the client, the Ice run time uses an ordinary function call 
instead, to avoid the overhead of marshaling.

You can think of an interface definition as the equivalent of the public part of a 
C++ class definition or as the equivalent of a Java interface, and of operation defi-
nitions as (virtual) member functions. Note that nothing but operation definitions 
are allowed to appear inside an interface definition. In particular, you cannot 
define a type, an exception, or a data member inside an interface. This does not 
mean that your object implementation cannot contain state—it can, but how that 
state is implemented (in the form of data members or otherwise) is hidden from 
the client and, therefore, need not appear in the object’s interface definition.

An Ice object has exactly one (most derived) Slice interface type (or class 
type—see Section 4.11). Of course, you can create multiple Ice objects that have 
the same type; to draw the analogy with C++, a Slice interface corresponds to a 
C++ class definition, whereas an Ice object corresponds to a C++ class instance 
(but Ice objects can be implemented in multiple different address spaces).

Ice also provides multiple interfaces via a feature called facets. We discuss 
facets in detail in Chapter 33.

A Slice interface defines the smallest grain of distribution in Ice: each Ice 
object has a unique identity (encapsulated in its proxy) that distinguishes it from 
all other Ice objects; for communication to take place, you must invoke operations 
on an object’s proxy. There is no other notion of an addressable entity in Ice. You 
cannot, for example, instantiate a Slice structure and have clients manipulate that 
structure remotely. To make the structure accessible, you must create an interface 
that allows clients to access the structure.
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The partition of an application into interfaces therefore has profound influence 
on the overall architecture. Distribution boundaries must follow interface (or 
class) boundaries; you can spread the implementation of interfaces over multiple 
address spaces (and you can implement multiple interfaces in the same address 
space), but you cannot implement parts of interfaces in different address spaces.

4.10.1 Parameters and Return Values

An operation definition must contain a return type and zero or more parameter 
definitions. For example, the getTime operation on page 105 has a return type of 
TimeOfDay and the setTime operation has a return type of void. You must use 
void to indicate that an operation returns no value—there is no default return type 
for Slice operations.

An operation can have one or more input parameters. For example, setTime 
accepts a single input parameter of type TimeOfDay called time. Of course, you 
can use multiple input parameters, for example:

interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
    // ...
};

Note that the parameter name (as for Java) is mandatory. You cannot omit the 
parameter name, so the following is in error:

interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay, TimeOfDay);  // Error!
    // ...
};

By default, parameters are sent from the client to the server, that is, they are input 
parameters. To pass a value from the server to the client, you can use an output 
parameter, indicated by the out keyword. For example, an alternative way to 
define the getTime operation on page 105 would be:

void getTime(out TimeOfDay time);

This achieves the same thing but uses an output parameter instead of the return 
value. As with input parameters, you can use multiple output parameters:
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interface CircadianRhythm {
    void setSleepPeriod(TimeOfDay startTime, TimeOfDay stopTime);
    void getSleepPeriod(out TimeOfDay startTime,
                        out TimeOfDay stopTime);
    // ...
};

If you have both input and output parameters for an operation, the output parame-
ters must follow the input parameters:

void changeSleepPeriod(    TimeOfDay startTime,     // OK
                           TimeOfDay stopTime,
                       out TimeOfDay prevStartTime,
                       out TimeOfDay prevStopTime);
void changeSleepPeriod(out TimeOfDay prevStartTime,
                       out TimeOfDay prevStopTime,
                           TimeOfDay startTime,     // Error
                           TimeOfDay stopTime);

Slice does not support parameters that are both input and output parameters (call 
by reference). The reason is that, for remote calls, reference parameters do not 
result in the same savings that one can obtain for call by reference in program-
ming languages. (Data still needs to be copied in both directions and any gains in 
marshaling efficiency are negligible.) Also, reference (or input–output) parame-
ters result in more complex language mappings, with concomitant increases in 
code size.

Style of Operation Definition

As you would expect, language mappings follow the style of operation definition 
you use in Slice: Slice return types map to programming language return types, 
and Slice parameters map to programming language parameters.

For operations that return only a single value, it is common to return the value 
from the operation instead of using an out-parameter. This style maps naturally 
into all programming languages. Note that, if you use an out-parameter instead, 
you impose a different API style on the client: most programming languages 
permit the return value of a function to be ignored whereas it is typically not 
possible to ignore an output parameter.

For operations that return multiple values, it is common to return all values as 
out-parameters and to use a return type of void. However, the rule is not all that 
clear-cut because operations with multiple output values can have one particular 
value that is considered more “important” than the remainder. A common example 
of this is an iterator operation that returns items from a collection one-by-one:
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bool next(out RecordType r);

The next operation returns two values: the record that was retrieved and a 
Boolean to indicate the end-of-collection condition. (If the return value is false, 
the end of the collection has been reached and the parameter r has an undefined 
value.) This style of definition can be useful because it naturally fits into the way 
programmers write control structures. For example:

while (next(record))
    // Process record...

if (next(record))
    // Got a valid record...

Overloading

Slice does not support any form of overloading of operations. For example:

interface CircadianRhythm {
    void modify(TimeOfDay startTime,
                TimeOfDay endTime);
    void modify(    TimeOfDay startTime,        // Error
                    TimeOfDay endTime,
                out timeOfDay prevStartTime,
                out TimeOfDay prevEndTime);
};

Operations in the same interface must have different names, regardless of what 
type and number of parameters they have. This restriction exists because over-
loaded functions cannot sensibly be mapped to languages without built-in support 
for overloading.5

Idempotent Operations

Some operations, such as getTime on page 105, do not modify the state of the 
object they operate on. They are the conceptual equivalent of C++ const 
member functions. Similary, setTime does modify the state of the object, but is 
idempotent. You can indicate this in Slice as follows:

5. Name mangling is not an option in this case: while it works fine for compilers, it is unacceptable 
to humans.
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interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

This marks the getTime and setTime operations as idempotent. An operation is 
idempotent if two successive invocations of the operation have the same effect as a 
single invocation. For example, x = 1; is an idempotent operation because it 
does not matter whether it is executed once or twice—either way, x ends up with 
the value . On the other hand, x += 1; is not an idempotent operation because 
executing it twice results in a different value for x than executing it once. Obvi-
ously, any read-only operation is idempotent.

The idempotent keyword is useful because it allows the Ice run time to 
attempt more aggressive error recovery. Specifically, Ice guarantees at-most-once 
semantics for operation invocations:

• For normal (not idempotent) operations, the Ice run time has to be conserva-
tive about how it deals with errors. For example, if a client sends an operation 
invocation to a server and then loses connectivity, there is no way for the 
client-side run time to find out whether the request it sent actually made it to 
the server. This means that the run time cannot attempt to recover from the 
error by re-establishing a connection and sending the request a second time 
because that could cause the operation to be invoked a second time and violate 
at-most-once semantics; the run time has no option but to report the error to 
the application.

• For idempotent operations, on the other hand, the client-side run time can 
attempt to re-establish a connection to the server and safely send the failed 
request a second time. If the server can be reached on the second attempt, 
everything is fine and the application never notices the (temporary) failure. 
Only if the second attempt fails need the run time report the error back to the 
application. (The number of retries can be increased with an Ice configuration 
parameter.)

4.10.2 User Exceptions

Looking at the setTime operation on page 105, we find a potential problem: given 
that the TimeOfDay structure uses short as the type of each field, what will 
happen if a client invokes the setTime operation and passes a TimeOfDay value 
with meaningless field values, such as -199 for the minute field, or 42 for the 
hour? Obviously, it would be nice to provide some indication to the caller that this 
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is meaningless. Slice allows you to define user exceptions to indicate error condi-
tions to the client. For example:

exception Error {}; // Empty exceptions are legal

exception RangeError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
};

A user exception is much like a structure in that it contains a number of data 
members. However, unlike structures, exceptions can have zero data members, 
that is, be empty.

You can specify a default value for an exception data member that has one of 
the following types:

• An integral type (bool, byte, short, int, long, or an enumerated type)

• float or double

• string

For example:

exception RangeError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
    string reason = "out of range";
};

The legal syntax for literal values is the same as for Slice constants (see 
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.

Exceptions allow you to return an arbitrary amount of error information to the 
client if an error condition arises in the implementation of an operation. Opera-
tions use an exception specification to indicate the exceptions that may be 
returned to the client:

interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time)
                        throws RangeError, Error;
};
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This definition indicates that the setTime operation may throw either a Rang-
eError or an Error user exception (and no other type of exception). If the client 
receives a RangeError exception, the exception contains the TimeOfDay value that 
was passed to setTime and caused the error (in the errorTime member), as well 
as the minimum and maximum time values that can be used (in the minTime and 
maxTime members). If setTime failed because of an error not caused by an illegal 
parameter value, it throws Error. Obviously, because Error does not have data 
members, the client will have no idea what exactly it was that went wrong—it 
simply knows that the operation did not work.

An operation can throw only those user exceptions that are listed in its excep-
tion specification. If, at run time, the implementation of an operation throws an 
exception that is not listed in its exception specification, the client receives a run-
time exception (see Section 4.10.4) to indicate that the operation did something 
illegal. To indicate that an operation does not throw any user exception, simply 
omit the exception specification. (There is no empty exception specification in 
Slice.)

Exceptions are not first-class data types and first-class data types are not 
exceptions:

• You cannot pass an exception as a parameter value.

• You cannot use an exception as the type of a data member.

• You cannot use an exception as the element type of a sequence.

• You cannot use an exception as the key or value type of a dictionary.

• You cannot throw a value of non-exception type (such as a value of type int 
or string).

The reason for these restrictions is that some implementation languages use a 
specific and separate type for exceptions (in the same way as Slice does). For such 
languages, it would be difficult to map exceptions if they could be used as an ordi-
nary data type. (C++ is somewhat unusual among programming languages by 
allowing arbitrary types to be used as exceptions.)

4.10.3 Exception Inheritance

Exceptions support inheritance. For example:

exception ErrorBase {
    string reason;
};
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enum RTError {
    DivideByZero, NegativeRoot, IllegalNull /* ... */
};

exception RuntimeError extends ErrorBase {
    RTError err;
};

enum LError { ValueOutOfRange, ValuesInconsistent, /* ... */ };

exception LogicError extends ErrorBase {
    LError err;
};

exception RangeError extends LogicError {
    TimeOfDay errorTime;
    TimeOfDay minTime;
    TimeOfDay maxTime;
};

These definitions set up a simple exception hierarchy:

• ErrorBase is at the root of the tree and contains a string explaining the cause 
of the error.

• Derived from ErrorBase are RuntimeError and LogicError. Each of these 
exceptions contains an enumerated value that further categorizes the error.

• Finally, RangeError is derived from LogicError and reports the details of the 
specific error.

Setting up exception hierarchies such as this not only helps to create a more read-
able specification because errors are categorized, but also can be used at the 
language level to good advantage. For example, the Slice C++ mapping preserves 
the exception hierarchy so you can catch exceptions generically as a base excep-
tion, or set up exception handlers to deal with specific exceptions.

Looking at the exception hierarchy on page 112, it is not clear whether, at run 
time, the application will only throw most derived exceptions, such as Rang-
eError, or if it will also throw base exceptions, such as LogicError, Runti-
meError, and ErrorBase. If you want to indicate that a base exception, interface, 
or class is abstract (will not be instantiated), you can add a comment to that effect.

Note that, if the exception specification of an operation indicates a specific 
exception type, at run time, the implementation of the operation may also throw 
more derived exceptions. For example:
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exception Base {
    // ...
};

exception Derived extends Base {
    // ...
};

interface Example {
    void op() throws Base;      // May throw Base or Derived
};

In this example, op may throw a Base or a Derived exception, that is, any excep-
tion that is compatible with the exception types listed in the exception specifica-
tion can be thrown at run time.

As a system evolves, it is quite common for new, derived exceptions to be 
added to an existing hierarchy. Assume that we initially construct clients and 
server with the following definitions:

exception Error {
    // ...
};

interface Application {
    void doSomething() throws Error;
};

Also assume that a large number of clients are deployed in field, that is, when you 
upgrade the system, you cannot easily upgrade all the clients. As the application 
evolves, a new exception is added to the system and the server is redeployed with 
the new definition:

exception Error {
    // ...
};

exception FatalApplicationError extends Error {
    // ...
};

interface Application {
    void doSomething() throws Error;
};
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This raises the question of what should happen if the server throws a FatalAppli-
cationError from doSomething. The answer depends whether the client was 
built using the old or the updated definition: 

• If the client was built using the same definition as the server, it simply 
receives a FatalApplicationError.

• If the client was built with the original definition, that client has no knowledge 
that FatalApplicationError even exists. In this case, the Ice run time auto-
matically slices the exception to the most-derived type that is understood by 
the receiver (Error, in this case) and discards the information that is specific 
to the derived part of the exception. (This is exactly analogous to catching 
C++ exceptions by value—the exception is sliced to the type used in the 
catch-clause.)

Exceptions support single inheritance only. (Multiple inheritance would be diffi-
cult to map into many programming languages.)

4.10.4 Ice Run-Time Exceptions
As mentioned in Section 2.2.2, in addition to any user exceptions that are listed in 
an operation’s exception specification, an operation can also throw Ice run-time 
exceptions. Run-time exceptions are predefined exceptions that indicate platform-
related run-time errors. For example, if a networking error interrupts communica-
tion between client and server, the client is informed of this by a run-time excep-
tion, such as ConnectTimeoutException or SocketException.

The exception specification of an operation must not list any run-time excep-
tions. (It is understood that all operations can raise run-time exceptions and you 
are not allowed to restate that.)
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Inheritance Hierarchy for Exceptions

All the Ice run-time and user exceptions are arranged in an inheritance hierarchy, 
as shown in Figure 4.3.

Figure 4.3. Inheritance structure for exceptions.

Ice::Exception is at the root of the inheritance hierarchy. Derived from that are 
the (abstract) types Ice::LocalException and Ice::UserException. In turn, all 
run-time exceptions are derived from Ice::LocalException, and all user excep-
tions are derived from Ice::UserException.

LocalException UserException

Exception

Specific Run-Time Exceptions... Specific User Exceptions...
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Figure 4.4 shows the complete hierarchy of the Ice run-time exceptions.6

Figure 4.4. Ice run-time exception hierarchy. (Shaded exceptions can be sent by the server.)

6. We use the Unified Modeling Language (UML) for the object model diagrams in this book 
(see [1] and [13] for details).
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Note that Figure 4.4 groups several exceptions into a single box to save space 
(which, strictly, is incorrect UML syntax). Also note that some run-time excep-
tions have data members, which, for brevity, we have omitted in Figure 4.4. These 
data members provide additional information about the precise cause of an error.

Many of the run-time exceptions have self-explanatory names, such as Memor-
yLimitException. Others indicate problems in the Ice run time, such as Encap-
sulationException. Still others can arise only through application programming 
errors, such as TwowayOnlyException. In practice, you will likely never see most 
of these exceptions. However, there are a few run-time exceptions you will 
encounter and whose meaning you should know.

Local Versus Remote Exceptions

Most error conditions are detected on the client side. For example, if an attempt to 
contact a server fails, the client-side run time raises a ConnectTimeoutExcep-
tion. However, there are three specific error conditions (shaded in Figure 4.4) that 
are detected by the server and made known explicitly to the client-side run time 
via the Ice protocol:

• ObjectNotExistException

This exception indicates that a request was delivered to the server but the 
server could not locate a servant with the identity that is embedded in the 
proxy. In other words, the server could not find an object to dispatch the 
request to.

An ObjectNotExistException is a death certificate: it indicates that the 
target object in the server does not exist.7 Most likely, this is the case because 
the object existed some time in the past and has since been destroyed, but the 
same exception is also raised if a client uses a proxy with the identity of an 
object that has never been created. If you receive this exception, you are 
expected to clean up whatever resources you might have allocated that relate 
to the specific object for which you receive this exception.

• FacetNotExistException

The client attempted to contact a non-existent facet of an object, that is, the 
server has at least one servant with the given identity, but no servant with a 
matching facet name. (See Chapter 33 for a discussion of facets.)

7. The Ice run time raises ObjectNotExistException only if there are no facets in existence 
with a matching identity; otherwise, it raises FacetNotExistException (see Chapter 33).
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• OperationNotExistException

This exception is raised if the server could locate an object with the correct 
identity but, on attempting to dispatch the client’s operation invocation, the 
server found that the target object does not have such an operation. You will 
see this exception in only two cases:

• You have used an unchecked down-cast on a proxy of the incorrect type. 
(See page 208 and page 345 for unchecked down-casts.)

• Client and server have been built with Slice definitions for an interface that 
disagree with each other, that is, the client was built with an interface defini-
tion for the object that indicates that an operation exists, but the server was 
built with a different version of the interface definition in which the opera-
tion is absent.

Any error condition on the server side that is not described by one of the three 
preceding exceptions is made known to the client as one of three generic excep-
tions (shaded in Figure 4.4):

• UnknownUserException

This exception indicates that an operation implementation has thrown a Slice 
exception that is not declared in the operation’s exception specification (and is 
not derived from one of the exceptions in the operation’s exception specifica-
tion).

• UnknownLocalException

If an operation implementation raises a run-time exception other than Object-
NotExistException, FacetNotExistException, or OperationNotExistEx-
ception (such as a NotRegisteredException), the client receives an 
UnknownLocalException. In other words, the Ice protocol does not transmit 
the exact exception that was encountered in the server, but simply returns a bit 
to the client in the reply to indicate that the server encountered a run-time 
exception.

A common cause for a client receiving an UnknownLocalException is failure 
to catch and handle all exceptions in the server. For example, if the implemen-
tation of an operation encounters an exception it does not handle, the excep-
tion propagates all the way up the call stack until the stack is unwound to the 
point where the Ice run time invoked the operation. The Ice run time catches 
all Ice exceptions that “escape” from an operation invocation and returns them 
to the client as an UnknownLocalException.



120 The Slice Language

• UnknownException

An operation has thrown a non-Ice exception. For example, if the operation in 
the server throws a C++ exception, such as a char *, or a Java exception, 
such as a ClassCastException, the client receives an UnknownExcep-
tion.

All other run-time exceptions (not shaded in Figure 4.4) are detected by the client-
side run time and are raised locally.

It is possible for the implementation of an operation to throw Ice run-time 
exceptions (as well as user exceptions). For example, if a client holds a proxy to 
an object that no longer exists in the server, your server application code is 
required to throw an ObjectNotExistException. If you do throw run-time excep-
tions from your application code, you should take care to throw a run-time excep-
tion only if appropriate, that is, do not use run-time exceptions to indicate 
something that really should be a user exception. Doing so can be very confusing 
to the client: if the application “hijacks” some run-time exceptions for its own 
purposes, the client can no longer decide whether the exception was thrown by the 
Ice run time or by the server application code. This can make debugging very 
difficult.

4.10.5 Interface Semantics and Proxies
Building on the Clock example, we can create definitions for a world-time server:

exception GenericError {
    string reason;
};

struct TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

exception BadTimeVal extends GenericError {};

interface Clock {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time) throws BadTimeVal;
};

dictionary<string, Clock*> TimeMap; // Time zone name to clock map
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exception BadZoneName extends GenericError {};

interface WorldTime {
    idempotent void addZone(string zoneName, Clock* zoneClock);
    void removeZone(string zoneName) throws BadZoneName;
    idempotent Clock* findZone(string zoneName)
                                    throws BadZoneName;
    idempotent TimeMap listZones();
    idempotent void setZones(TimeMap zones);
};

The WorldTime interface acts as a collection manager for clocks, one for each 
time zone. In other words, the WorldTime interface manages a collection of pairs. 
The first member of each pair is a time zone name; the second member of the pair 
is the clock that provides the time for that zone. The interface contains operations 
that permit you to add or remove a clock from the map (addZone and remove-
Zone), to search for a particular time zone by name (findZone), and to read or 
write the entire map (listZones and setZones).

The WorldTime example illustrates an important Slice concept: note that 
addZone accepts a parameter of type Clock* and findZone returns a parameter of 
type Clock*. In other words, interfaces are types in their own right and can be 
passed as parameters. The * operator is known as the proxy operator. Its left-hand 
argument must be an interface (or class—see Section 4.11) and its return type is a 
proxy. A proxy is like a pointer that can denote an object. The semantics of 
proxies are very much like those of C++ class instance pointers:

• A proxy can be null (see page 126).

• A proxy can dangle (point at an object that is no longer there)

• Operations dispatched via a proxy use late binding: if the actual run-time type 
of the object denoted by the proxy is more derived than the proxy’s type, the 
implementation of the most-derived interface will be invoked.

When a client passes a Clock proxy to the addZone operation, the proxy denotes 
an actual Clock object in a server. The Clock Ice object denoted by that proxy 
may be implemented in the same server process as the WorldTime interface, or in 
a different server process. Where the Clock object is physically implemented 
matters neither to the client nor to the server implementing the WorldTime inter-
face; if either invokes an operation on a particular clock, such as getTime, an RPC 
call is sent to whatever server implements that particular clock. In other words, a 
proxy acts as a local “ambassador” for the remote object; invoking an operation on 
the proxy forwards the invocation to the actual object implementation. If the 
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object implementation is in a different address space, this results in a remote 
procedure call; if the object implementation is collocated in the same address 
space, the Ice run time uses an ordinary local function call from the proxy to the 
object implementation.

Note that proxies also act very much like pointers in their sharing semantics: if 
two clients have a proxy to the same object, a state change made by one client 
(such as setting the time) will be visible to the other client.

Proxies are strongly typed (at least for statically typed languages, such as C++ 
and Java). This means that you cannot pass something other than a Clock proxy to 
the addZone operation; attempts to do so are rejected at compile time.

4.10.6 Interface Inheritance

Interfaces support inheritance. For example, we could extend our world-time 
server to support the concept of an alarm clock:

interface AlarmClock extends Clock {
    idempotent TimeOfDay getAlarmTime();
    idempotent void       setAlarmTime(TimeOfDay alarmTime)
                                         throws BadTimeVal;
};

The semantics of this are the same as for C++ or Java: AlarmClock is a subtype of 
Clock and an AlarmClock proxy can be substituted wherever a Clock proxy is 
expected. Obviously, an AlarmClock supports the same getTime and setTime 
operations as a Clock but also supports the getAlarmTime and setAlarmTime 
operations.

Multiple interface inheritance is also possible. For example, we can construct 
a radio alarm clock as follows:

interface Radio {
    void setFrequency(long hertz) throws GenericError;
    void setVolume(long dB) throws GenericError;
};

enum AlarmMode { RadioAlarm, BeepAlarm };

interface RadioClock extends Radio, AlarmClock {
    void      setMode(AlarmMode mode);
    AlarmMode getMode();
};
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RadioClock extends both Radio and AlarmClock and can therefore be passed 
where a Radio, an AlarmClock, or a Clock is expected. The inheritance diagram 
for this definition looks as follows:

Figure 4.5. Inheritance diagram for RadioClock.

Interfaces that inherit from more than one base interface may share a common 
base interface. For example, the following definition is legal:

interface B { /* ... */ };
interface I1 extends B { /* ... */ };
interface I2 extends B { /* ... */ };
interface D extends I1, I2 { /* ... */ };

This definition results in the familiar diamond shape:

Figure 4.6. Diamond-shaped inheritance.
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Interface Inheritance Limitations

If an interface uses multiple inheritance, it must not inherit the same operation 
name from more than one base interface. For example, the following definition is 
illegal:

interface Clock {
    void set(TimeOfDay time);                   // set time
};

interface Radio {
    void set(long hertz);                       // set frequency
};

interface RadioClock extends Radio, Clock {     // Illegal!
    // ...
};

This definition is illegal because RadioClock inherits two set operations, 
Radio::set and Clock::set. The Slice compiler makes this illegal because 
(unlike C++) many programming languages do not have a built-in facility for 
disambiguating the different operations. In Slice, the simple rule is that all inher-
ited operations must have unique names. (In practice, this is rarely a problem 
because inheritance is rarely added to an interface hierarchy “after the fact”. To 
avoid accidental clashes, we suggest that you use descriptive operation names, 
such as setTime and setFrequency. This makes accidental name clashes less 
likely.)
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Implicit Inheritance from Object

All Slice interfaces are ultimately derived from Object. For example, the inheri-
tance hierarchy from Figure 4.5 would be shown more correctly as in Figure 4.7.

Figure 4.7. Implicit inheritance from Object.

Because all interfaces have a common base interface, we can pass any type of 
interface as that type. For example:

interface ProxyStore {
    idempotent  void    putProxy(string name, Object* o);
    idempotent Object* getProxy(string name);
};

Object is a Slice keyword (note the capitalization) that denotes the root type of 
the inheritance hierarchy. The ProxyStore interface is a generic proxy storage 
facility: the client can call putProxy to add a proxy of any type under a given 
name and later retrieve that proxy again by calling getProxy and supplying that 
name. The ability to generically store proxies in this fashion allows us to build 
general-purpose facilities, such as a naming service that can store proxies and 
deliver them to clients. Such a service, in turn, allows us to avoid hard-coding 
proxy details into clients and servers (see Chapter 38).

Inheritance from type Object is always implicit. For example, the following 
Slice definition is illegal:

interface MyInterface extends Object { /* ... */ }; // Error!
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It is understood that all interfaces inherit from type Object; you are not allowed to 
restate that.

Type Object is mapped to an abstract type by the various language mappings, 
so you cannot instantiate an Ice object of that type.

Null Proxies

Looking at the ProxyStore interface once more, we notice that getProxy does 
not have an exception specification. The question then is what should happen if a 
client calls getProxy with a name under which no proxy is stored? Obviously, we 
could add an exception to indicate this condition to getProxy. However, another 
option is to return a null proxy. Ice has the built-in notion of a null proxy, which is 
a proxy that “points nowhere”. When such a proxy is returned to the client, the 
client can test the value of the returned proxy to check whether it is null or denotes 
a valid object.

A more interesting question is: “which approach is more appropriate, throwing 
an exception or returning a null proxy?” The answer depends on the expected 
usage pattern of an interface. For example, if, in normal operation, you do not 
expect clients to call getProxy with a non-existent name, it is better to throw an 
exception. (This is probably the case for our ProxyStore interface: the fact that 
there is no list operation makes it clear that clients are expected to know which 
names are in use.)

On the other hand, if you expect that clients will occasionally try to look up 
something that is not there, it is better to return a null proxy. The reason is that 
throwing an exception breaks the normal flow of control in the client and requires 
special handling code. This means that you should throw exceptions only in 
exceptional circumstances. For example, throwing an exception if a database 
lookup returns an empty result set is wrong; it is expected and normal that a result 
set is occasionally empty.

It is worth paying attention to such design issues: well-designed interfaces that 
get these details right are easier to use and easier to understand. Not only do such 
interfaces make life easier for client developers, they also make it less likely that 
latent bugs cause problems later.

Self-Referential Interfaces

Proxies have pointer semantics, so we can define self-referential interfaces. For 
example:
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interface Link {
    idempotent SomeType getValue();
    idempotent Link*    next();
};

The Link interface contains a next operation that returns a proxy to a Link inter-
face. Obviously, this can be used to create a chain of interfaces; the final link in 
the chain returns a null proxy from its next operation.

Empty Interfaces

The following Slice definition is legal:

interface Empty {};

The Slice compiler will compile this definition without complaint. An interesting 
question is: “why would I need an empty interface?” In most cases, empty inter-
faces are an indication of design errors. Here is one example:

interface ThingBase {};

interface Thing1 extends ThingBase {
    // Operations here...
};

interface Thing2 extends ThingBase {
    // Operations here...
};

Looking at this definition, we can make two observations:

• Thing1 and Thing2 have a common base and are therefore related.

• Whatever is common to Thing1 and Thing2 can be found in interface Thing-
Base.

Of course, looking at ThingBase, we find that Thing1 and Thing2 do not share 
any operations at all because ThingBase is empty. Given that we are using an 
object-oriented paradigm, this is definitely strange: in the object-oriented model, 
the only way to communicate with an object is to send a message to the object. 
But, to send a message, we need an operation. Given that ThingBase has no oper-
ations, we cannot send a message to it, and it follows that Thing1 and Thing2 are 
not related because they have no common operations. But of course, seeing that 
Thing1 and Thing2 have a common base, we conclude that they are related, other-
wise the common base would not exist. At this point, most programmers begin to 
scratch their head and wonder what is going on here.



128 The Slice Language

One common use of the above design is a desire to treat Thing1 and Thing2 
polymorphically. For example, we might continue the previous definition as 
follows:

interface ThingUser {
    void putThing(ThingBase* thing);
};

Now the purpose of having the common base becomes clear: we want to be able to 
pass both Thing1 and Thing2 proxies to putThing. Does this justify the empty 
base interface? To answer this question, we need to think about what happens in 
the implementation of putThing. Obviously, putThing cannot possibly invoke an 
operation on a ThingBase because there are no operations. This means that 
putThing can do one of two things:

1. putThing can simply remember the value of thing.

2. putThing can try to down-cast to either Thing1 or Thing2 and then invoke an 
operation. The pseudo-code for the implementation of putThing would look 
something like this:

void putThing(ThingBase thing)
{
    if (is_a(Thing1, thing)) {
        // Do something with Thing1...
    } else if (is_a(Thing2, thing)) {
        // Do something with Thing2...
    } else {
        // Might be a ThingBase?
        // ...
    }
}

The implementation tries to down-cast its argument to each possible type in 
turn until it has found the actual run-time type of the argument. Of course, any 
object-oriented text book worth its price will tell you that this is an abuse of 
inheritance and leads to maintenance problems.

If you find yourself writing operations such as putThing that rely on artificial 
base interfaces, ask yourself whether you really need to do things this way. For 
example, a more appropriate design might be:

interface Thing1 {
    // Operations here...
};
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interface Thing2 {
    // Operations here...
};

interface ThingUser {
    void putThing1(Thing1* thing);
    void putThing2(Thing2* thing);
};

With this design, Thing1 and Thing2 are not related, and ThingUser offers a sepa-
rate operation for each type of proxy. The implementation of these operations does 
not need to use any down-casts, and all is well in our object-oriented world.

Another common use of empty base interfaces is the following:

interface PersistentObject {};

interface Thing1 extends PersistentObject {
    // Operations here...
};

interface Thing2 extends PersistentObject {
    // Operations here...
};

Clearly, the intent of this design is to place persistence functionality into the 
PersistentObject base implementation and require objects that want to have 
persistent state to inherit from PersistentObject. On the face of things, this is 
reasonable: after all, using inheritance in this way is a well-established design 
pattern, so what can possibly be wrong with it? As it turns out, there are a number 
of things that are wrong with this design:

• The above inheritance hierarchy is used to add behavior to Thing1 and 
Thing2. However, in a strict OO model, behavior can be invoked only by 
sending messages. But, because PersistentObject has no operations, no 
messages can be sent.

This raises the question of how the implementation of PersistentObject 
actually goes about doing its job; presumably, it knows something about the 
implementation (that is, the internal state) of Thing1 and Thing2, so it can 
write that state into a database. But, if so, PersistentObject, Thing1, and 
Thing2 can no longer be implemented in different address spaces because, in 
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that case, PersistentObject can no longer get at the state of Thing1 and 
Thing2.

Alternatively, Thing1 and Thing2 use some functionality provided by 
PersistentObject in order to make their internal state persistent. But 
PersistentObject does not have any operations, so how would Thing1 and 
Thing2 actually go about achieving this? Again, the only way that can work is 
if PersistentObject, Thing1, and Thing2 are implemented in a single 
address space and share implementation state behind the scenes, meaning that 
they cannot be implemented in different address spaces.

• The above inheritance hierarchy splits the world into two halves, one 
containing persistent objects and one containing non-persistent ones. This has 
far-reaching ramifications:

• Suppose you have an existing application with already implemented, non-
persistent objects. Requirements change over time and you find that you 
now would like to make some of your objects persistent. With the above 
design, you cannot do this unless you change the type of your objects 
because they now must inherit from PersistentObject. Of course, this is 
extremely bad news: not only do you have to change the implementation of 
your objects in the server, you also need to locate and update all the clients 
that are currently using your objects because they suddenly have a 
completely new type. What is worse, there is no way to keep things back-
ward compatible: either all clients change with the server, or none of them 
do. It is impossible for some clients to remain “unupgraded”.

• The design does not scale to multiple features. Imagine that we have a 
number of additional behaviors that objects can inherit, such as serializa-
tion, fault-tolerance, persistence, and the ability to be searched by a search 
engine. We quickly end up in a mess of multiple inheritance. What is worse, 
each possible combination of features creates a completely separate type 
hierarchy. This means that you can no longer write operations that generi-
cally operate on a number of object types. For example, you cannot pass a 
persistent object to something that expects a non-persistent object, even if 
the receiver of the object does not care about the persistence aspects of the 
object. This quickly leads to fragmented and hard-to-maintain type systems. 
Before long, you will either find yourself rewriting your application or end 
up with something that is both difficult to use and difficult to maintain.

The foregoing discussion will hopefully serve as a warning: Slice is an interface 
definition language that has nothing to do with implementation (but empty inter-
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faces almost always indicate that implementation state is shared via mechanisms 
other than defined interfaces). If you find yourself writing an empty interface defi-
nition, at least step back and think about the problem at hand; there may be a more 
appropriate design that expresses your intent more cleanly. If you do decide to go 
ahead with an empty interface regardless, be aware that, almost certainly, you will 
lose the ability to later change the distribution of the object model over physical 
server processes because you cannot place an address space boundary between 
interfaces that share hidden state.

Interface Versus Implementation Inheritance

Keep in mind that Slice interface inheritance applies only to interfaces. In partic-
ular, if two interfaces are in an inheritance relationship, this in no way implies that 
the implementations of those interfaces must also inherit from each other. You can 
choose to use implementation inheritance when you implement your interfaces, 
but you can also make the implementations independent of each other. (To C++ 
programmers, this often comes as a surprise because C++ uses implementation 
inheritance by default, and interface inheritance requires extra effort to imple-
ment.)

In summary, Slice inheritance simply establishes type compatibility. It says 
nothing about how interfaces are implemented and, therefore, keeps implementa-
tion choices open to whatever is most appropriate for your application.

4.11 Classes

In addition to interfaces, Slice permits the definition of classes. Classes are like 
interfaces in that they can have operations and are like structures in that they can 
have data members. This leads to hybrid objects that can be treated as interfaces 
and passed by reference, or can be treated as values and passed by value. Classes 
provide much architectural flexibility. For example, classes allow behavior to be 
implemented on the client side, whereas interfaces allow behavior to be imple-
mented only on the server side.

Classes support inheritance and are therefore polymorphic: at run time, you 
can pass a class instance to an operation as long as the actual class type is derived 
from the formal parameter type in the operation’s signature. This also permits 
classes to be used as type-safe unions, similarly to Pascal’s discriminated variant 
records.
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4.11.1 Simple Classes

A Slice class definition is similar to a structure definition, but uses the class 
keyword. For example:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

Apart from the keyword class, this definition is identical to the structure defini-
tion we saw on page 99. You can use a Slice class wherever you can use a Slice 
structure (but, as we will see shortly, for performance reasons, you should not use 
a class where a structure is sufficient). Unlike structures, classes can be empty:

class EmptyClass {};    // OK
struct EmptyStruct {};  // Error

Much the same design considerations as for empty interfaces (see page 127) apply 
to empty classes: you should at least stop and rethink your approach before 
committing yourself to an empty class.

You can specify a default value for a class data member that has one of the 
following types:

• An integral type (bool, byte, short, int, long, or an enumerated type)

• float or double
• string

For example:

class Location {
    string name;
    Point pt;
    bool display = true;
    string source = "GPS";
};

The legal syntax for literal values is the same as for Slice constants (see 
Section 4.9.5). The language mapping guarantees that data members are initial-
ized to their declared default values using a language-specific mechanism.

4.11.2 Class Inheritance

Unlike structures, classes support inheritance. For example:
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class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

This example illustrates one major reason for using a class: a class can be 
extended by inheritance, whereas a structure is not extensible. The previous 
example defines DateTime to extend the TimeOfDay class with a date.8

Classes only support single inheritance. The following is illegal:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class Date {
    short day;
    short month;
    short year;
};

class DateTime extends TimeOfDay, Date {   // Error!
    // ...
};

A derived class also cannot redefine a data member of its base class:

8. If you are puzzled by the comment about the year 1753, search the Web for “1752 date change”. 
The intricacies of calendars for various countries prior to that year can keep you occupied for 
months…
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class Base {
    int integer;
};

class Derived extends Base {
    int integer;                // Error, integer redefined
};

4.11.3 Class Inheritance Semantics

Classes use the same pass-by-value semantics as structures. If you pass a class 
instance to an operation, the class and all its members are passed. The usual type 
compatibility rules apply: you can pass a derived instance where a base instance is 
expected. If the receiver has static type knowledge of the actual derived run-time 
type, it receives the derived instance; otherwise, if the receiver does not have static 
type knowledge of the derived type, the instance is sliced to the base type. For an 
example, suppose we have the following definitions:

// In file Clock.ice:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

interface Clock {
    TimeOfDay getTime();
    void setTime(TimeOfDay time);
};


// In file DateTime.ice:

#include <Clock.ice>

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

Because DateTime is a sub-class of TimeOfDay, the server can return a DateTime 
instance from getTime, and the client can pass a DateTime instance to setTime. 
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In this case, if both client and server are linked to include the code generated for 
both Clock.ice and DateTime.ice, they each receive the actual derived 
DateTime instance, that is, the actual run-time type of the instance is preserved.

Contrast this with the case where the server is linked to include the code 
generated for both Clock.ice and DateTime.ice, but the client is linked 
only with the code generated for Clock.ice. In other words, the server under-
stands the type DateTime and can return a DateTime instance from getTime, but 
the client only understands TimeOfDay. In this case, the derived DateTime instance 
returned by the server is sliced to its TimeOfDay base type in the client. (The infor-
mation in the derived part of the instance is simply lost to the client.)

Class hierarchies are useful if you need polymorphic values (instead of poly-
morphic interfaces). For example:

class Shape {
    // Definitions for shapes, such as size, center, etc.
};

class Circle extends Shape {
    // Definitions for circles, such as radius...
};

class Rectangle extends Shape {
    // Definitions for rectangles, such as width and length...
};

sequence<Shape> ShapeSeq;

interface ShapeProcessor {
    void processShapes(ShapeSeq ss);
};

Note the definition of ShapeSeq and its use as a parameter to the processShapes 
operation: the class hierarchy allows us to pass a polymorphic sequence of shapes 
(instead of having to define a separate operation for each type of shape).

The receiver of a ShapeSeq can iterate over the elements of the sequence and 
down-cast each element to its actual run-time type. (The receiver can also ask each 
element for its type ID to determine its type—see Section 6.14.1 and 
Section 10.11.2.)
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4.11.4 Classes as Unions

Slice does not offer a dedicated union construct because it is redundant. By 
deriving classes from a common base class, you can create the same effect as with 
a union:

interface ShapeShifter {
    Shape translate(Shape s, long xDistance, long yDistance);
};

The parameter s of the translate operation can be viewed as a union of two 
members: a Circle and a Rectangle. The receiver of a Shape instance can use the 
type ID (see Section 4.13) of the instance to decide whether it received a Circle 
or a Rectangle. Alternatively, if you want something more along the lines of a 
conventional discriminated union, you can use the following approach:

class UnionDiscriminator {
    int d;
};

class Member1 extends UnionDiscriminator {
    // d == 1
    string s;
    float f;
};

class Member2 extends UnionDiscriminator {
    // d == 2
    byte b;
    int i;
};

With this approach, the UnionDiscriminator class provides a discriminator 
value. The “members” of the union are the classes that are derived from Union-
Discriminator. For each derived class, the discriminator takes on a distinct 
value. The receiver of such a union uses the discriminator value in a switch 
statement to select the active union member.

4.11.5 Self-Referential Classes

Classes can be self-referential. For example:
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class Link {
    SomeType value;
    Link next;
};

This looks very similar to the self-referential interface example on page 127, but 
the semantics are very different. Note that value and next are data members, not 
operations, and that the type of next is Link (not Link*). As you would expect, 
this forms the same linked list arrangement as the Link interface on page 127: 
each instance of a Link class contains a next member that points at the next link 
in the chain; the final link’s next member contains a null value. So, what looks 
like a class including itself really expresses pointer semantics: the next data 
member contains a pointer to the next link in the chain.

You may be wondering at this point what the difference is then between the 
Link interface on page 127 and the Link class on page 136. The difference is that 
classes have value semantics, whereas proxies have reference semantics. To illus-
trate this, consider the Link interface from page 127 once more:

interface Link {
    idempotent SomeType getValue();
    idempotent Link*    next();
};

Here, getValue and next are both operations and the return value of next is 
Link*, that is, next returns a proxy. A proxy has reference semantics, that is, it 
denotes an object somewhere. If you invoke the getValue operation on a Link 
proxy, a message is sent to the (possibly remote) servant for that proxy. In other 
words, for proxies, the object stays put in its server process and we access the state 
of the object via remote procedure calls. Compare this with the definition of our 
Link class:

class Link {
    SomeType value;
    Link next;
};

Here, value and next are data members and the type of next is Link, which has 
value semantics. In particular, while next looks and feels like a pointer, it cannot 
denote an instance in a different address space. This means that if we have a chain 
of Link instances, all of the instances are in our local address space and, when we 
read or write a value data member, we are performing local address space opera-
tions. This means that an operation that returns a Link instance, such as getHead, 
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does not just return the head of the chain, but the entire chain, as shown in 
Figure 4.8.

Figure 4.8. Class version of Link before and after calling getHead.

On the other hand, for the interface version of Link, we do not know where all the 
links are physically implemented. For example, a chain of four links could have 
each object instance in its own physical server process; those server processes 
could be each in a different continent. If you have a proxy to the head of this four-
link chain and traverse the chain by invoking the next operation on each link, you 
will be sending four remote procedure calls, one to each object

Self-referential classes are particularly useful to model graphs. For example, 
we can create a simple expression tree along the following lines:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {};

class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand extends Node {
    long val;
};

Client Client ServerServer

getHead
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The expression tree consists of leaf nodes of type Operand, and interior nodes of 
type UnaryOperator and BinaryOperator, with one or two descendants, respec-
tively. All three of these classes are derived from a common base class Node. Note 
that Node is an empty class. This is one of the few cases where an empty base class 
is justified. (See the discussion on page 127; once we add operations to this class 
hierarchy (see Section 4.11.7), the base class is no longer empty.)

If we write an operation that, for example, accepts a Node parameter, passing 
that parameter results in transmission of the entire tree to the server:

interface Evaluator {
    long eval(Node expression); // Send entire tree for evaluation
};

Self-referential classes are not limited to acyclic graphs; the Ice run time permits 
loops: it ensures that no resources are leaked and that infinite loops are avoided 
during marshaling.

4.11.6 Classes Versus Structures

One obvious question to ask is: why does Ice provide structures as well as classes, 
when classes obviously can be used to model structures? The answer has to do 
with the cost of implementation: classes provide a number of features that are 
absent for structures:

• Classes support inheritance.

• Classes can be self-referential.

• Classes can have operations (see Section 4.11.7).

• Classes can implement interfaces (see Section 4.11.9).

Obviously, an implementation cost is associated with the additional features of 
classes, both in terms of the size of the generated code and the amount of memory 
and CPU cycles consumed at run time. On the other hand, structures are simple 
collections of values (“plain old structs”) and are implemented using very efficient 
mechanisms. This means that, if you use structures, you can expect better perfor-
mance and smaller memory footprint than if you would use classes (especially for 
languages with direct support for “plain old structures”, such as C++ and C#). Use 
a class only if you need at least one of its more powerful features.
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4.11.7 Classes with Operations

Classes, in addition to data members, can have operations. The syntax for opera-
tion definitions in classes is identical to the syntax for operations in interfaces. For 
example, we can modify the expression tree from Section 4.11.5 as follows:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
    idempotent long eval();
};

class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand {
    long val;
};

The only change compared to the version in Section 4.11.5 is that the Node class 
now has an eval operation. The semantics of this are as for a virtual member 
function in C++: each derived class inherits the operation from its base class and 
can choose to override the operation’s definition. For our expression tree, the 
Operand class provides an implementation that simply returns the value of its val 
member, and the UnaryOperator and BinaryOperator classes provide imple-
mentations that compute the value of their respective subtrees. If we call eval on 
the root node of an expression tree, it returns the value of that tree, regardless of 
whether we have a complex expression or a tree that consists of only a single 
Operand node.

Operations on classes are normally executed in the caller’s address space, that 
is, operations on classes are local operations that do not result in a remote proce-
dure call.9 Of course, this immediately raises an interesting question: what 
happens if a client receives a class instance with operations from a server, but 
client and server are implemented in different languages? Classes with operations 
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require the receiver to supply a factory for instances of the class. The Ice run time 
only marshals the data members of the class. If a class has operations, the receiver 
of the class must provide a class factory that can instantiate the class in the 
receiver’s address space, and the receiver is responsible for providing an imple-
mentation of the class’s operations.

Therefore, if you use classes with operations, it is understood that client and 
server each have access to an implementation of the class’s operations. No code is 
shipped over the wire (which, in an environment of heterogeneous nodes using 
different operating systems and languages is infeasible).

4.11.8 Architectural Implications of Classes

Classes have a number of architectural implications that are worth exploring in 
some detail.

Classes without Operations

Classes that do not use inheritance and only have data members (whether self-
referential or not) pose no architectural problems: they simply are values that are 
marshaled like any other value, such as a sequence, structure, or dictionary. 
Classes using derivation also pose no problems: if the receiver of a derived 
instance has knowledge of the derived type, it simply receives the derived type; 
otherwise, the instance is sliced to the most-derived type that is understood by the 
receiver. This makes class inheritance useful as a system is extended over time: 
you can create derived class without having to upgrade all parts of the system at 
once.

Classes with Operations

Classes with operations require additional thought. Here is an example: suppose 
that you are creating an Ice application. Also assume that the Slice definitions use 
quite a few classes with operations. You sell your clients and servers (both written 
in Java) and end up with thousands of deployed systems.

As time passes and requirements change, you notice a demand for clients 
written in C++. For commercial reasons, you would like to leave the development 

9. It is possible to invoke an operation on a remote class instance—see the relevant language 
mapping chapter for details.
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of C++ clients to customers or a third party but, at this point, you discover a glitch: 
your application has lots of classes with operations along the following lines:

class ComplexThingForExpertsOnly {
    // Lots of arcane data members here...
    MysteriousThing mysteriousOperation(/* parameters */);
    ArcaneThing arcaneOperation(/* parameters */);
    ComplexThing complexOperation(/* parameters */);
    // etc...
};

It does not matter what exactly these operations do. (Presumably, you decided to 
off-load some of the processing for your application onto the client side for 
performance reasons.) Now that you would like other developers to write C++ 
clients, it turns out that your application will work only if these developers 
provide implementations of all the client-side operations and, moreover, if the 
semantics of these operations exactly match the semantics of your Java implemen-
tations. Depending on what these operations do, providing exact semantic equiva-
lents in a different language may not be trivial, so you decide to supply the C++ 
implementations yourself. But now, you discover another problem: the C++ 
clients need to be supported for a variety of operating systems that use a variety of 
different C++ compilers. Suddenly, your task has become quite daunting: you 
really need to supply implementations for all the combinations of operating 
systems and compiler versions that are used by clients. Given the different state of 
compliance with the ISO C++ standard of the various compilers, and the idiosyn-
crasies of different operating systems, you may find yourself facing a develop-
ment task that is much larger than anticipated. And, of course, the same scenario 
will arise again should you need client implementations in yet another language.

The moral of this story is not that classes with operations should be avoided; 
they can provide significant performance gains and are not necessarily bad. But, 
keep in mind that, once you use classes with operations, you are, in effect, using 
client-side native code and, therefore, you can no longer enjoy the implementation 
transparencies that are provided by interfaces. This means that classes with opera-
tions should be used only if you can tightly control the deployment environment 
of clients. If not, you are better off using interfaces and classes without operations. 
That way, all the processing stays on the server and the contract between client 
and server is provided solely by the Slice definitions, not by the semantics of the 
additional client-side code that is required for classes with operations.



4.11 Classes 143

Classes for Persistence

Ice also provides a built-in persistence mechanism that allows you to store the 
state of a class in a database with very little implementation effort. To get access 
to these persistence features, you must define a Slice class whose members store 
the state of the class. We discuss the persistence features of Slice in detail in 
Chapter 39.

4.11.9 Classes Implementing Interfaces

A Slice class can also be used as a servant in a server, that is, an instance of a class 
can be used to provide the behavior for an interface, for example:

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
    TimeOfDay time;
};

The implements keyword indicates that the class Clock provides an implementa-
tion of the Time interface. The class can provide data members and operations of 
its own; in the preceding example, the Clock class stores the current time that is 
accessed via the Time interface. A class can implement several interfaces, for 
example:

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

interface Radio {
    idempotent void setFrequency(long hertz);
    idempotent void setVolume(long dB);
};

class RadioClock implements Time, Radio {
    TimeOfDay time;
    long hertz;
};

The class RadioClock implements both Time and Radio interfaces.
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A class, in addition to implementing an interface, can also extend another 
class:

interface Time {
    idempotent TimeOfDay getTime();
    idempotent void setTime(TimeOfDay time);
};

class Clock implements Time {
    TimeOfDay time;
};

interface AlarmClock extends Time {
    idempotent TimeOfDay getAlarmTime();
    idempotent void setAlarmTime(TimeOfDay alarmTime);
};

interface Radio {
    idempotent void setFrequency(long hertz);
    idempotent void setVolume(long dB);
};

class RadioAlarmClock extends Clock
                      implements AlarmClock, Radio {
    TimeOfDay alarmTime;
    long hertz;
};

These definitions result in the inheritance graph shown in Figure 4.9:

Figure 4.9. A Class using implementation and interface inheritance.
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For this definition, Radio and AlarmClock are abstract interfaces, and Clock and 
RadioAlarmClock are concrete classes. As for Java, a class can implement 
multiple interfaces, but can extend at most one class.

4.11.10 Class Inheritance Limitations

As for interface inheritance, a class cannot redefine an operation or data member 
that it inherits from a base interface or class. For example:

interface BaseInterface {
    void op();
};

class BaseClass {
    int member;
};

class DerivedClass extends BaseClass implements BaseInterface {
    void someOperation();       // OK
    int op();                   // Error!
    int  someMember;            // OK
    long member;                // Error!
};

4.11.11 Pass-by-Value Versus Pass-by-Reference

As we saw in Section 4.11.5, classes naturally support pass-by-value semantics: 
passing a class transmits the data members of the class to the receiver. Any 
changes made to these data members by the receiver affect only the receiver’s 
copy of the class; the data members of the sender’s class are not affected by the 
changes made by the receiver.

In addition to passing a class by value, you can pass a class by reference. For 
example:

class TimeOfDay {
    short hour;
    short minute;
    short second;
    string format();
};
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interface Example {
     TimeOfDay* get();  // Note: returns a proxy!
};

Note that the get operation returns a proxy to a TimeOfDay class and not a 
TimeOfDay instance itself. The semantics of this are as follows:

• When the client receives a TimeOfDay proxy from the get call, it holds a 
proxy that differs in no way from an ordinary proxy for an interface.

• The client can invoke operations via the proxy, but cannot access the data 
members. This is because proxies do not have the concept of data members, 
but represent interfaces: even though the TimeOfDay class has data members, 
only its operations can be accessed via a the proxy.

The net effect is that, in the preceding example, the server holds an instance of the 
TimeOfDay class. A proxy for that instance was passed to the client. The only 
thing the client can do with this proxy is to invoke the format operation. The 
implementation of that operation is provided by the server and, when the client 
invokes format, it sends an RPC message to the server just as it does when it 
invokes an operation on an interface. The implementation of the format operation 
is entirely up to the server. (Presumably, the server will use the data members of 
the TimeOfDay instance it holds to return a string containing the time to the client.)

The preceding example looks somewhat contrived for classes only. However, 
it makes perfect sense if classes implement interfaces: parts of your application 
can exchange class instances (and, therefore, state) by value, whereas other parts 
of the system can treat these instances as remote interfaces. For example:

interface Time {
    string format();
    // ...
};

class TimeOfDay implements Time {
    short hour;
    short minute;
    short second;
};

interface I1 {
     TimeOfDay get();           // Pass by value
     void put(TimeOfDay time);  // Pass by value
};
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interface I2 {
    Time* get();                // Pass by reference
};

In this example, clients dealing with interface I1 are aware of the TimeOfDay class 
and pass it by value whereas clients dealing with interface I2 deal only with the 
Time interface. However, the actual implementation of the Time interface in the 
server uses TimeOfDay instances.

Be careful when designing systems that use such mixed pass-by-value and 
pass-by-reference semantics. Unless you are clear about what parts of the system 
deal with the interface (pass by reference) aspects and the class (pass by value) 
aspects, you can end up with something that is more confusing than helpful.

A good example of putting this feature to use can be found in Freeze (see 
Chapter 39), which allows you to add classes to an existing interface to implement 
persistence.

4.11.12 Passing Interfaces by Value

Consider the following definitions:

interface Time {
    idempotent TimeOfDay getTime();
    // ...
};

interface Record {
    void addTimeStamp(Time t); // Note: Time t, not Time* t
    // ...
};

Note that addTimeStamp accepts a parameter of type Time, not of type Time*. The 
question is, what does it mean to pass an interface by value? Obviously, at run 
time, we cannot pass an an actual interface to this operation because interfaces are 
abstract and cannot be instantiated. Neither can we pass a proxy to a Time object 
to addTimeStamp because a proxy cannot be passed where an interface is 
expected.

However, what we can pass to addTimeStamp is something that is not abstract 
and derives from the Time interface. For example, at run time, we could pass an 
instance of our TimeOfDay class from the previous section. Because the 
TimeOfDay class derives from the Time interface, the class type is compatible with 
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the formal parameter type Time and, at run time, what is sent over the wire to the 
server is the TimeOfDay class instance.

4.12 Forward Declarations

Both interfaces and classes can be forward declared. Forward declarations permit 
the creation of mutually dependent objects, for example:

module Family {
    interface Child;            // Forward declaration

    sequence<Child*> Children;  // OK

    interface Parent {
        Children getChildren(); // OK
    };

    interface Child {           // Definition
        Parent* getMother();
        Parent* getFather();
    };
};

Without the forward declaration of Child, the definition obviously could not 
compile because Child and Parent are mutually dependent interfaces. You can 
use forward-declared interfaces and classes to define types (such as the Children 
sequence in the previous example). Forward-declared interfaces and classes are 
also legal as the type of a structure, exception, or class member, as the value type 
of a dictionary, and as the parameter and return type of an operation. However, 
you cannot inherit from a forward-declared interface or class until after its defini-
tion has been seen by the compiler:

interface Base;                         // Forward declaration

interface Derived1 extends Base {};     // Error!

interface Base {};                      // Definition

interface Derived2 extends Base {};     // OK, definition was seen
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Not inheriting from a forward-declared base interface or class until its definition is 
seen is necessary because, otherwise, the compiler could not enforce that derived 
interfaces must not redefine operations that appear in base interfaces.10

4.13 Type IDs

Each user-defined Slice type has an internal type identifier, known as its type ID. 
The type ID is simply the fully-qualified name of each type. For example, the type 
ID of the Child interface in the preceding example is ::Family::Chil-
dren::Child. All type IDs for user-defined types start with a leading ::, so the 
type ID of the Family module is ::Family (not Family). In general, a type ID is 
formed by starting with the global scope (::) and forming the fully-qualified 
name of a type by appending each module name in which the type is nested, and 
ending with the name of the type itself; the components of the type ID are sepa-
rated by ::.

The type ID of a proxy is formed by appending a * to the type ID of an inter-
face or class. For example, the type ID of a Child proxy is ::Family::Chil-
dren::Child*.

The type ID of the Slice Object type is ::Ice::Object and the type ID of an 
Object proxy is ::Ice::Object*.

The type IDs for the remaining built-in types, such as int, bool, and so on, are 
the same as the corresponding keyword. For example, the type ID of int is int, 
and the type ID of string is string.

Type IDs are used internally by the Ice run time as a unique identifier for each 
type. For example, when an exception is raised, the marshaled form of the excep-
tion that is returned to the client is preceded by its Type ID on the wire. The client-
side run time first reads the Type ID and, based on that, unmarshals the remainder 
of the data as appropriate for the type of the exception.

Type IDs are also used by the ice_isA operation (see page 150).

10.A multi-pass compiler could be used, but the added complexity is not worth it.
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4.14 Operations on Object

The Object interface has a number of operations. We cannot define type Object 
in Slice because Object is a keyword; regardless, here is what (part of) the defini-
tion of Object would look like if it were legal:

sequence<string> StrSeq;

interface Object {                      // "Pseudo" Slice!
    idempotent void   ice_ping();
    idempotent bool   ice_isA(string typeID);
    idempotent string ice_id();
    idempotent StrSeq ice_ids();
    // ...
};

Note that, apart from the illegal use of the keyword Object as the interface name, 
the operation names all contain the ice_ prefix. This prefix is reserved for use by 
Ice and cannot clash with a user-defined operation. This means that all Slice inter-
faces can inherit from Object without name clashes. There are three built-in oper-
ations that are commonly used:

• ice_ping

All interfaces support the ice_ping operation. That operation is useful for 
debugging because it provides a basic reachability test for an object: if the 
object exists and a message can successfully be dispatched to the object, 
ice_ping simply returns without error. If the object cannot be reached or does 
not exist, ice_ping throws a run-time exception that provides the reason for 
the failure.

• ice_isA

The ice_isA operation accepts a type identifier (such as the identifier returned 
by ice_id) and tests whether the target object supports the specified type, 
returning true if it does. You can use this operation to check whether a target 
object supports a particular type. For example, referring to Figure 4.7 once 
more, assume that you are holding a proxy to a target object of type Alarm-
Clock. Table 4.2 illustrates the result of calling ice_isA on that proxy with 
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various arguments. (We assume that all type in Figure 4.7 are defined in a 
module Times):

As expected, ice_isA returns true for ::Times::Clock and 
::Times::AlarmClock and also returns true for ::Ice::Object (because all 
interfaces support that type). Obviously, an AlarmClock supports neither the 
Radio nor the RadioClock interfaces, so ice_isA returns false for these types.

• ice_id

The ice_id operation returns the type ID (see Section 4.13) of the most-
derived type of an interface.

• ice_ids

The ice_ids operation returns a sequence of type IDs that contains all of the 
type IDs supported by an interface. For example, for the RadioClock interface 
in Figure 4.7, ice_ids returns a sequence containing the type IDs 
::Ice::Object, ::Times::Clock, ::Times::AlarmClock, ::Times::Radio, 
and ::Times::RadioClock.

4.15 Local Types

In order to access certain features of the Ice run time, you must use APIs that are 
provided by libraries. However, instead of defining an API that is specific to each 
implementation language, Ice defines its APIs in Slice using the local keyword. 
The advantage of defining APIs in Slice is that a single definition suffices to 

Table 4.2. Calling ice_isA on a proxy denoting an object of type AlarmClock.

Argument Result

::Ice::Object true

::Times::Clock true

::Times::AlarmClock true

::Times::Radio false

::Times::RadioClock false



152 The Slice Language

define the API for all possible implementation languages. The actual language-
specific API is then generated by the Slice compiler for each implementation 
language. Types that are provided by Ice libraries are defined using the Slice 
local keyword. For example:

module Ice {
    local interface ObjectAdapter {
        // ...
    };
};

Any Slice definition (not just interfaces) can have a local modifier. If the local 
modifier is present, the Slice compiler does not generate marshaling code for the 
corresponding type. This means that a local type can never be accessed remotely 
because it cannot be transmitted between client and server. (The Slice compiler 
prevents use of local types in non-local contexts.)

In addition, local interfaces and local classes do not inherit from 
Ice::Object. Instead, local interfaces and classes have their own, completely 
separate inheritance hierarchy. At the root of this hierarchy is the type 
Ice::LocalObject, as shown in Figure 4.10.

Figure 4.10. Inheritance from LocalObject

Because local interfaces form a completely separate inheritance hierarchy, you 
cannot pass a local interface where a non-local interface is expected and vice-
versa.

You rarely need to define local types for your own applications—the local 
keyword exists mainly to allow definition of APIs for the Ice run time. (Because 
local objects cannot be invoked remotely, there is little point for an application to 
define local objects; it might as well define ordinary programming-language 
objects instead.) However, there is one exception to this rule: servant locators 
must be implemented as local objects (see Section 32.7).

LocalObject
«interface»

Other local 
interfaces...

ObjectAdapter
«interface»
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4.16 Names and Scoping

Slice has a number of rules regarding identifiers. You will typically not have to 
concern yourself with these. However, occasionally, it is good to know how Slice 
uses naming scopes and resolves identifiers.

4.16.1 Naming Scopes

The following Slice constructs establish a naming scope:

• the global (file) scope

• modules

• interfaces

• classes

• structures

• exceptions

• parameter lists

Within a naming scope, identifiers must be unique, that is, you cannot use the 
same identifier for different purposes. For example:

interface Bad {
    void op(int p, string p);   // Error!
};

Because a parameter list forms a naming scope, it is illegal to use the same 
identifier p for different parameters. Similarly, data members, operation names, 
interface and class names, etc. must be unique within their enclosing scope.

4.16.2 Case Sensitivity

Identifiers that differ only in case are considered identical, so you must use identi-
fiers that differ not only in capitalization within a naming scope. For example:

struct Bad {
    int    m;
    string M;   // Error!
};
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The Slice compiler also enforces consistent capitalization for identifiers. Once 
you have defined an identifier, you must use the same capitalization for that iden-
tifier thereafter. For example, the following is in error:

sequence<string> StringSeq;

interface Bad {
    stringSeq op();     // Error!
};

Note that identifiers must not differ from a Slice keyword in case only. For 
example, the following is in error:

interface Module {      // Error, "module" is a keyword
    // ...
};

4.16.3 Qualified Names

The scope-qualification operator :: allows you to refer to a type in a non-local 
scope. For example:

module Types {
    sequence<long> LongSeq;
};

module MyApp {
    sequence<Types::LongSeq> NumberTree;
};

Here, the qualified name Types::LongSeq refers to LongSeq defined in module 
Types. The global scope is denoted by a leading ::, so we could also refer to 
LongSeq as ::Types::LongSeq.

The scope-qualification operator also allows you to create mutually dependent 
interfaces that are defined in different modules. The obvious attempt to do this 
fails:

module Parents {
    interface Children::Child;  // Syntax error!
    interface Mother {
        Children::Child* getChild();
    };
    interface Father {
        Children::Child* getChild();
    };
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};

module Children {
    interface Child {
        Parents::Mother* getMother();
        Parents::Father* getFather();
    };
};

This fails because it is syntactically illegal to forward-declare an interface in a 
different module. To make it work, we must use a reopened module:

module Children {
    interface Child;                    // Forward declaration
};

module Parents {
    interface Mother {
        Children::Child* getChild();    // OK
    };
    interface Father {
        Children::Child* getChild();    // OK
    };
};

module Children {                       // Reopen module
    interface Child {                   // Define Child
        Parents::Mother* getMother();
        Parents::Father* getFather();
    };
};

While this technique works, it is probably of dubious value: mutually dependent 
interfaces are, by definition, tightly coupled. On the other hand, modules are 
meant to be used to place related definitions into the same module, and unrelated 
definitions into different modules. Of course, this begs the question: if the inter-
faces are so closely related that they depend on each other, why are they defined in 
different modules? In the interest of clarity, you probably should avoid this 
construct, even though it is legal.

4.16.4 Names in Nested Scopes

Names defined in an enclosing scope can be redefined in an inner scope. For 
example, the following is legal:
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module Outer {
    sequence<string> Seq;

    module Inner {
        sequence<short> Seq;
    };
};

Within module Inner, the name Seq refers to a sequence of short values and 
hides the definition of Outer::Seq. You can still refer to the other definition by 
using explicit scope qualification, for example:

module Outer {
    sequence<string> Seq;

    module Inner {
        sequence<short> Seq;

        struct Confusing {
            Seq          a;     // Sequence of short
            ::Outer::Seq b;     // Sequence of string
        };
    };
};

Needless to say, you should try to avoid such redefinitions—they make it harder 
for the reader to follow the meaning of a specification.

Same-named constructs cannot be nested inside each other. For example, a 
module named M cannot (recursively) contain any construct also named M. The 
same is true for interfaces, classes, structures, exceptions, and operations. For 
example, the following examples are all in error:

module M {
    interface M { /* ... */ };  // Error!

    interface I {
        void I();               // Error!
        void op(string op);     // Error!
    };

    struct S {
        long s;                 // Error, even if case differs!
    };

};
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module Outer {
    module Inner {
        interface Outer {       // Error!
            // ...
        };
    };
};

The reason for this restriction is that nested types that have the same name are 
difficult to map into some languages. For example, C++ and Java reserve the name 
of a class as the name of the constructor, so an interface I could not contain an 
operation named I without artificial rules to avoid the name clash.

Similarly, some languages (such as C# prior to version 2.0) do not permit a 
qualified name to be anchored at the global scope. If a nested module or type is 
permitted to have the same name as the name of an enclosing module, it can 
become impossible to generate legal code in some cases.

In the interest of simplicity, Slice simply prohibits the name of a nested 
module or type to be the same as the name of one of its enclosing modules.

4.16.5 Introduced Identifiers

Within a naming scope, an identifier is introduced at the point of first use; there-
after, within that naming scope, the identifier cannot change meaning. For 
example:

module M {
    sequence<string> Seq;

    interface Bad {
        Seq op1();      // Seq and op1 introduced here
        int Seq();      // Error, Seq has changed meaning
    };
};

The declaration of op1 uses Seq as its return type, thereby introducing Seq into the 
scope of interface Bad. Thereafter, Seq can only be used as a type name that 
denotes a sequence of strings, so the compiler flags the declaration of the second 
operation as an error.

Note that fully-qualified identifiers are not introduced into the current scope:
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module M {
    sequence<string> Seq;

    interface Bad {
        ::M::Seq op1(); // Only op1 introduced here
        int Seq();      // OK
    };
};

In general, a fully-qualified name (one that is anchored at the global scope and, 
therefore, begins with a :: scope resolution operator) does not introduce any 
name into the current scope. On the other hand, a qualified name that is not 
anchored at the global scope introduces only the first component of the name:

module M {
    sequence<string> Seq;

    interface Bad {
        M::Seq op1();   // M and op1 introduced here, but not Seq
        int Seq();      // OK
    };
};

4.16.6 Name Lookup Rules
When searching for the definition of a name that is not anchored at the global 
scope, the compiler first searches backward in the current scope of a definition of 
the name. If it can find the name in the current scope, it uses that definition. Other-
wise, the compiler successively searches enclosing scopes for the name until it 
reaches the global scope. Here is an example to illustrate this:

module M1 {
    sequence<double> Seq;

    module M2 {
        sequence<string> Seq;   // OK, hides ::M1::Seq

        interface Base {
            Seq op1();          // Returns sequence of string
        };
    };

    module M3 {
        interface Derived extends M2::Base {
            Seq op2();          // Returns sequence of double
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        };

        sequence<bool> Seq;     // OK, hides ::M1::Seq

        interface I {
            Seq op();           // Returns sequence of bool
        };
    };

    interface I {
        Seq op();               // Returns sequence of double
    };
};

Note that M2::Derived::op2 returns a sequence of double, even though 
M1::Base::op1 returns a sequence of string. That is, the meaning of a type in a 
base interface is irrelevant to determining its meaning in a derived interface—the 
compiler always searches for a definition only in the current scope and enclosing 
scopes, and never takes the meaning of a name from a base interface or class.

4.17 Metadata

Slice has the concept of a metadata directive. For example:

["java:type:java.util.LinkedList"] sequence<int> IntSeq;

A metadata directive can appear as a prefix to any Slice definition. Metadata 
directives appear in a pair of square brackets and contain one or more string 
literals separated by commas. For example, the following is a syntactically valid 
metadata directives containing two strings:

["a", "b"] interface Example {};

Metadata directives are not part of the Slice language per se: the presence of a 
metadata directive has no effect on the client–server contract, that is, metadata 
directives do not change the Slice type system in any way. Instead, metadata direc-
tives are targeted at specific back-ends, such as the code generator for a particular 
language mapping. In the preceding example, the java: prefix indicates that the 
directive is targeted at the Java code generator.

Metadata directives permit you to provide supplementary information that 
does not change the Slice types being defined, but somehow influences how the 
compiler will generate code for these definitions. For example, a metadata direc-
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tive java:type:java.util.LinkedList instructs the Java code generator to map 
a sequence to a linked list instead of an array (which is the default).

Metadata directives are also used to create proxies and skeletons that support 
Asynchronous Method Invocation (AMI) and Asynchronous Method Dispatch 
(AMD).

Apart from metadata directives that are attached to a specific definition, there 
are also global metadata directives. For example:

[["java:package:com.acme"]]

Note that a global metadata directive is enclosed by double square brackets, 
whereas a local metadata directive (one that is attached to a specific definition) is 
enclosed by single square brackets. Global metadata directives are used to pass 
instructions that affect the entire compilation unit. For example, the preceding 
metadata directive instructs the Java code generator to generate the contents of the 
source file into the Java package com.acme. Global metadata directives must 
precede any definitions in a file (but can appear following any #include direc-
tives).

We discuss specific metadata directives in the relevant chapters to which they 
apply.

You can find a summary of all metadata directives in Appendix B.

4.18 Serializable Objects

Ice for Java and Ice for .NET allow you to send native Java and CLR objects as 
operation parameters. The Ice run time automatically serializes and deserializes 
the objects as part of an invocation. This mechanism allows you to transmit Java 
and CLR objects that do not have a corresponding Slice definition.

4.18.1 The serializable Metadata Directive
To enable serialization, the parameter type must be a byte sequence with appro-
priate metadata. For example:

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;

interface JavaExample {
    void sendJavaObj(JavaObj o);
};
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["clr:serializable:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;

interface CLRExample {
    void sendCLRObj(CLRObj o);
};

The java:serializable metadata indicates that the corresponding byte sequence 
holds a Java serializable type named SomePackage.JavaClass. Your 
program must provide an implementation of this class; the class must be derived 
from java.io.Serializable. (See Section 10.15 for details of the language 
mapping.)

Similarly, the clr:serializable metadata indicates that the corresponding 
byte sequences holds a CLR serializable type named Some-
Namespace.CLRClass. Your program must provide an implementation of this 
class; the class must be marked with the Serializable attribute. (See 
Section 14.14 for the details of the language mapping.)

4.18.2 Architectural Implications

The serializable metadata directive permits you to transmit arbitrary Java and 
CLR objects across the network without the need to define corresponding Slice 
classes or structures. This is mainly a convenience feature: you could achieve the 
same thing by using ordinary Slice byte sequences and explicitly serializing your 
Java or CLR objects into byte sequences at the sending end, and deserializing 
them at the receiving end. The serializable metadata conveniently takes care of 
these chores for you and so is simpler to use.

Despite its convenience, you should use this feature with caution because it 
destroys language transparency. For example, a serialized Java object is useless to 
a C++ server. All the C++ server can do with such an object is to pass it on to 
some other process as a byte sequence. (Of course, if that receiving process is a 
Java process, it can deserialize the byte sequence.)

Further, similar to Slice classes with methods (see Section 4.11.8), a serialized 
object can be deserialized only if client and server agree on the definition of the 
serialized class. In Java, this is enforced by the serialVersionUID field of 
each instance; in the CLR, client and server must reference identical assembly 
versions. This creates much tighter coupling of client and server than exchanging 
Slice-defined types.
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And, of course, if you build a system that relies on, for example, the exchange 
of serialized Java objects and you later find that you need to add C++ or C# 
components to the system, these components cannot do anything with the serial-
ized Java objects other than pass them around as a blob of bytes.

So, if you do use these features, be clear that this implies tighter coupling 
between client and server, and that it creates additional library versioning and 
distribution issues because all parts of the system must agree on the implementa-
tion of the serialized objects.

4.19 Deprecating Slice Definitions

All Slice compilers support a metadata directive that allows you to deprecate a 
Slice definition. For example:

interface Example {
    ["deprecated:someOperation() has been deprecated, \
    use alternativeOperation() instead."]
    void someOperation();

    void alternativeOperation();
};

The [“deprecated”] metadata directive causes the compiler to emit code that 
generates a warning if you compile application code that uses a deprecated 
feature. This is useful if you want to remove a feature from a Slice definition but 
do not want to cause a hard error.

The message that follows the colon is optional; if you omit the message and 
use [“deprecated”], the Slice compilers insert a default message into the gener-
ated code.

You can apply the [“deprecated”] metadata directive to Slice constructs 
other than operations (for example, a structure or sequence definition).
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4.20 Using the Slice Compilers

Ice provides a separate Slice compiler for each language mapping, as shown in 
Table 4.3.

The compilers share a similar command-line syntax:

<compiler-name> [options] file…

Regardless of which compiler you use, a number of command-line options are 
common to the compilers for any language mapping. (See the appropriate 
language mapping chapter for options that are specific to a particular language 
mapping.) The common command-line options are:

• -h, --help

Displays a help message.

• -v, --version

Displays the compiler version.

• -DNAME

Defines the preprocessor symbol NAME.

• -DNAME=DEF

Defines the preprocessor symbol NAME with the value DEF.

Table 4.3. The Slice compilers.

Language Compiler

C++ slice2cpp

Java slice2java

C# slice2cs

Python slice2py

Ruby slice2rb

Objective-C slice2objc
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• -UNAME

Undefines the preprocessor symbol NAME.

• -IDIR

Add the directory DIR to the search path for #include directives.

• -E

Print the preprocessor output on stdout.

• --output-dir DIR

Place the generated files into directory DIR.

• -d, --debug

Print debug information showing the operation of the Slice parser.

• --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option 
only when compiling the source code for the Ice run time.

• --underscore

Permit use of underscores in Slice identifiers.

The Slice compilers permit you to compile more than a single source file, so you 
can compile several Slice definitions at once, for example:

slice2cpp -I. file1.ice file2.ice file3.ice

4.21 Slice Checksums

As distributed applications evolve, developers and system administrators must be 
careful to ensure that deployed components are using the same client–server 
contract. Unfortunately, mistakes do happen, and it is not always readily apparent 
when they do.

To minimize the chances of this situation, the Slice compilers support an 
option that generates checksums for Slice definitions, thereby enabling two peers 
to verify that they share an identical client–server contract. The checksum for a 
Slice definition includes details such as parameter and member names and the 
order in which operations are defined, but ignores information that is not relevant 
to the client–server contract, such as metadata, comments, and formatting.

This option causes the Slice compiler to construct a dictionary that maps Slice 
type identifiers to checksums. A server typically supplies an operation that returns 
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its checksum dictionary for the client to compare with its local version, at which 
point the client can take action if it discovers a mismatch.

The dictionary type is defined in the file Ice/SliceChecksumDict.ice 
as follows:

module Ice {
    dictionary<string, string> SliceChecksumDict;
};

This type can be incorporated into an application’s Slice definitions like this:

#include <Ice/SliceChecksumDict.ice>

interface MyServer {
    idempotent Ice::SliceChecksumDict getSliceChecksums();
    // ...
};

The key of each element in the dictionary is a Slice type ID (see Section 4.13), and 
the value is the checksum of that type.

For more information on generating and using Slice checksums, see the appro-
priate language mapping chapter.

4.22 Generating Slice Documentation

If you look at the online Slice reference, you will find reference documentation for 
all the Slice definitions used by Ice and its services. In the binary distributions of 
Ice, you will also find HTML documentation that contains the same information. 
Both the PDF and the HTML documentation are generated from special 
comments in the Slice definitions by slice2html, a tool that scans Slice defini-
tions for special comments and generates HTML pages for those comments.

As an example of documentation comments, here is the definition of 
Ice::Current:

/**
 *
 * Information about the current method invocation for servers.
 * Each operation on the server has a [Current] as its implicit
 * final parameter. [Current] is mostly used for Ice services.
 * Most applications ignore this parameter.
 *
 **/

http://www.zeroc.com/doc/Ice-3.4.1/reference
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local struct Current {
    /**
     * The object adapter.
     **/
    ObjectAdapter adapter;
    
    /**
     * Information about the connection over which the current
     * method invocation was received. If the invocation is direct
     * due to collocation optimization, this value is set to null.
     **/
    Connection con;

    /**
     * The Ice object identity.
     **/
    Identity id;

    /**
     * The facet.
     ***/
    string facet;

    /**
     * The operation name.
     **/
    string operation;

    /**
     * The mode of the operation.
     **/
    OperationMode mode;

    /**
     * The request context, as received from the client.
     **/
    Context ctx;

    /**
     * The request id unless oneway (0) or collocated (-1).
     **/
    int requestId;
};
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If you look at the comments, you will see these reflected in the documentation for 
Ice::Current in the online Slice API Reference.

4.22.1 Documentation Comments

Any comment that starts with /** and ends with **/ is a documentation 
comment. Such a comment can precede any Slice construct, such as a module, 
interface, structure, operation, and so on. Within a documentation comment, you 
can either start each line with a *, or you can leave the beginning of the line 
blank—slice2html can handle either convention:

/**
 *
 * This is a documentation comment for which every line
 * starts with a '*' character.
 **/

/**

 This is a documentation comment without a leading '*'
 for each line. Either style of comment is fine.

 **/

The first sentence of the documentation comment for a Slice construct should be a 
summary sentence. slice2html generates an index of all Slice constructs; the 
first sentence of the comments for each Slice construct is ued as a summary in that 
index.

Hyperlinks

Any Slice identifier enclosed in square brackets is presented as a hyperlink in code 
font. For example:

/**
 * An empty [name] denotes a null object.
 **/

This generates a hyperlink for the name markup that points at the definition of the 
corresponding Slice symbol. (The symbol can denote any Slice construct, such as 
a type, interface, parameter, or structure member.)

http://www.zeroc.com/doc/Ice-3.4.1/reference
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Explicit Cross-References

The directive @see is recognized by slice2html. Where it appears, the gener-
ated HTML contains a separate section titled “See Also”, followed by a list of 
Slice identifiers. For example:

/**
 * The object adapter, which is responsible for receiving requests
 * from endpoints, and for mapping between servants, identities,
 * and proxies.
 *
 * @see Communicator
 * @see ServantLocator
 **/

The Slice identifiers are listed in the corresponding “See Also” section as hyper-
links in code font.

Markup for Operations

There are three directives specifically to document Slice operations: @param, 
@return, and @throws. For example:

/**
 * Look for an item with the specified
 * primary and secondary key.
 *
 * @param p The primary search key.
 *
 * @param s The secondary search key.
 *
 * @return The item that matches the specified keys.
 *
 * @throws NotFound Raised if no item matches the specified keys.
 **/

Item findItem(Key p, Key s) throws NotFound;

slice2html generates separate “Parameters”, “Return Value”, and “Excep-
tions” sections for these directives. Parameters are listed in the same order as they 
appear in the comments. (For clarity, that order should match the order of declara-
tion of parameters for the corresponding operation.)
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General HTML Markup

A documentation comment can contain any markup that is permitted by HTML in 
that place. For example, you can create separate paragraphs with <P> and </P> 
elements:

/**
 * This is a comment for some Slice construct.</p>
 *
 * <p>This comment appears in a separate paragraph.
 **/

Note that you must neither begin a documentation comment with a <p> element 
nor end it with a </p> element because, in the generated HTML, documentation 
comments are already surrounded by <p> and </p> elements.

There are various other ways to create markup—for example, you can use 
<table> or <ul> elements. Please see the HTML specification [25] for details.

4.22.2 Using slice2html

slice2html uses the following syntax:

slice2html [options] slice_file…

If you have cross-references that span Slice files, you must compile all of the Slice 
files with a single invocation of slice2html.

The command supports the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays the compiler version.

• -DNAME

Defines the preprocessor symbol NAME.

• -DNAME=DEF

Defines the preprocessor symbol NAME with the value DEF.

• -UNAME

Undefines the preprocessor symbol NAME.

• -IDIR

Add the directory DIR to the search path for #include directives.
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• -E

Print the preprocessor output on stdout.

• --output-dir DIR

Place the generated files into the directory DIR. (The default setting is the 
current directory.)

• --hdr FILE

Prepend FILE to each generated HTML file (except for _sindex.html). 
This allows you to replace the HTML header and other preamble information 
with a custom version, so you can connect style sheets to the generated pages. 
The specified file must include the <body> tag (but need not end with a 
<body> tag).

FILE is expected to contain the string TITLE on a line by itself, starting in 
column one. slice2html replaces the TITLE string with the fully-scoped name 
of the Slice symbol that is documented on the corresponding page.

• --ftr FILE

Append FILE to each generated HTML file (except for _sindex.html). 
This allows you to add, for example, a custom footer to each generated page.

FILE is must end with a </body> tag.

• --indexhdr FILE

slice2html generates a file _sindex.html that contains a table of 
contents of all Slice symbols that hyperlink to the corresponding page. This 
option allows you to replace the standard header with a custom header, for 
example, to attach a JavaScript. The specified file must include the <body> 
tag (but need not end with a <body> tag).

The default value is the setting of --hdr (if any).

• --indexftr FILE

Append FILE to the generated_sindex.html page. This allows you to 
add, for example, a custom footer to the table of contents, or to invoke a 
JavaScript.

FILE is must end with a </body> tag.

The default value is the setting of --ftr (if any).

• --image-dir DIR

With this option, slice2html looks in the specified directory for images to 
use for the generated navigation hyperlinks. (Without this option, text links 
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are used instead.) Please see the generated HTML for the names of the various 
image files. (They can easily be found by looking for img elements.)

• --logo-url URL

Use the specified URL as a hyperlink for the company logo that is added to 
each page (if --image-dir is specified). The company logo is expected to 
be in <image-dir>/logo.gif.

• --search ACTION

If this option is specified, the generated pages contain a search box that allows 
you to connect the generated pages to a search engine. On pressing the 
“Search” button, the specified ACTION is carrid out.

• --index NUM

slice2html generates sub-indexes for various Slice symbols. This option 
controls how many entries must be present before a sub-index is generated. 
For example, if NUM is set to 3, a sub-index will be generated only if there are 
three or more symbols that appear in that index. The default settings is 1, 
meaning that a sub-index is always generated. To disable sub-indexes entirely, 
set NUM to 0.

• --summary NUM

If this option is set, summary sentences that exceed NUM characters generate a 
warning.

• -d, --debug

Print debug information showing the operation of the Slice parser.

• --ice

Permit use of the normally reserved prefix Ice for identifiers. Use this option 
if your Slice definitions include Slice files for Ice or its services.

4.23 Summary

Slice is the fundamental mechanism for defining the client–server contract. By 
defining data types and interfaces in Slice, you create a language-independent API 
definition that are translated by a compiler into an API specific for a particular 
programming language.

Slice provides the usual built-in types and allows you to create user-defined 
types of arbitrary complexity, such as sequences, enumerations, structures, 
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dictionaries, and classes. Polymorphism is catered for via inheritance of inter-
faces, classes, and exceptions. In turn, exceptions provide you with facilities that 
permit sophisticated error reporting and handling. Modules permit you to group 
related parts of a specification and prevent pollution of the global namespace, and 
metadata can be used to augment Slice definitions with directives for specific 
compiler backends.

slice2html permits you to integrate Slice documentation with existing 
documentation tools.



173

Chapter 5
Slice for a Simple File System

5.1 Chapter Overview

The remainder of this book uses a file system application to illustrate various 
aspects of Ice. Throughout the book, we progressively improve and modify the 
application such that it evolves into an application that is realistic and illustrates 
the architectural and coding aspects of Ice. This allows us to explore the capabili-
ties of the platform to a realistic degree of complexity without overwhelming you 
with an inordinate amount of detail early on. Section 5.2 outlines the file system 
functionality, Section 5.3 develops the data types and interfaces that are required 
for the file system, and Section 5.4 presents the complete Slice definition for the 
application.

5.2 The File System Application

Our file system application implements a simple hierarchical file system, similar 
to the file systems we find in Windows or Unix. To keep code examples to 
manageable size, we ignore many aspects of a real file system, such as ownership, 
permissions, symbolic links, and a number of other features. However, we build 
enough functionality to illustrate how you could implement a fully-featured file 
system, and we pay attention to things such as performance and scalability. In this 
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way, we can create an application that presents us with real-world complexity 
without getting buried in large amounts of code.

Our file system consists of directories and files. Directories are containers that 
can contain either directories or files, meaning that the file system is hierarchical. 
A dedicated directory is at the root of the file system. Each directory and file has a 
name. Files and directories with a common parent directory must have different 
names (but files and directories with different parent directories can have the same 
name). In other words, directories form a naming scope, and entries with a single 
directory must have unique names. Directories allow you to list their contents.

For now, we do not have a concept of pathnames, or the creation and destruc-
tion of files and directories. Instead, the server provides a fixed number of directo-
ries and files. (We will address the creation and destruction of files and directories 
in Chapter 34.)

Files can be read and written but, for now, reading and writing always replace 
the entire contents of a file; it is impossible to read or write only parts of a file.

5.3 Slice Definitions for the File System

Given the very simple requirements we just outlined, we can start designing inter-
faces for the system. Files and directories have something in common: they have a 
name and both files and directories can be contained in directories. This suggests a 
design that uses a base type that provides the common functionality, and derived 
types that provide the functionality specific to directories and files, as shown in 
Figure 5.1.

Figure 5.1. Inheritance Diagram of the File System.

The Slice definitions for this look as follows:

File
«interface»

Directory
«interface»

Node
«interface»
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interface Node { 
    // ...
}; 

interface File extends Node { 
    // ...
}; 

interface Directory extends Node { 
    // ...
}; 

Next, we need to think about what operations should be provided by each inter-
face. Seeing that directories and files have names, we can add an operation to 
obtain the name of a directory or file to the Node base interface:

interface Node { 
    idempotent string name();
}; 

The File interface provides operations to read and write a file. For simplicity, we 
limit ourselves to text files and we assume that read operations never fail and that 
only write operations can encounter error conditions. This leads to the following 
definitions:

exception GenericError {
    string reason;
};

sequence<string> Lines;

interface File extends Node { 
    idempotent Lines read();
    idempotent void write (Lines text) throws GenericError;
}; 

Note that read and write are marked idempotent because either operation can 
safely be invoked with the same parameter value twice in a row: the net result of 
doing so is the same has having (successfully) called the operation only once.

The write operation can raise an exception of type GenericError. The excep-
tion contains a single reason data member, of type string. If a write operation 
fails for some reason (such as running out of file system space), the operation 
throws a GenericError exception, with an explanation of the cause of the failure 
provided in the reason data member.
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Directories provide an operation to list their contents. Because directories can 
contain both directories and files, we take advantage of the polymorphism 
provided by the Node base interface:

sequence<Node*> NodeSeq; 

interface Directory extends Node { 
    idempotent NodeSeq list(); 
}; 

The NodeSeq sequence contains elements of type Node*. Because Node is a base 
interface of both Directory and File, the NodeSeq sequence can contain proxies 
of either type. (Obviously, the receiver of a NodeSeq must down-cast each element 
to either File or Directory in order to get at the operations provided by the 
derived interfaces; only the name operation in the Node base interface can be 
invoked directly, without doing a down-cast first. Note that, because the elements 
of NodeSeq are of type Node* (not Node), we are using pass-by-reference seman-
tics: the values returned by the list operation are proxies that each point to a 
remote node on the server.

These definitions are sufficient to build a simple (but functional) file system. 
Obviously, there are still some unanswered questions, such as how a client obtains 
the proxy for the root directory. We will address these questions in the relevant 
implementation chapter.

5.4 The Complete Definition

We wrap our definitions in a module, resulting in the final definition as follows:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
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    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 
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Chapter 6
Client-Side Slice-to-C++ Mapping

6.1 Chapter Overview

In this chapter, we present the client-side Slice-to-C++ mapping (see Chapter 8 
for the server-side mapping). One part of the client-side C++ mapping concerns 
itself with rules for representing each Slice data type as a corresponding C++ 
type; we cover these rules in Section 6.3 to Section 6.10. Another part of the 
mapping deals with how clients can invoke operations, pass and receive parame-
ters, and handle exceptions. These topics are covered in Section 6.11 to 
Section 6.13. Slice classes have the characteristics of both data types and inter-
faces and are covered in Section 6.14. Section 6.15 presents asynchronous method 
invocations and, finally, Sections 6.16 and 6.17 show you how to use the Slice 
compiler and Slice checksums.

6.2 Introduction

The client-side Slice-to-C++ mapping defines how Slice data types are translated 
to C++ types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the C++ mapping is intuitive. For example, Slice sequences map 
to STL vectors, so there is essentially nothing new you have to learn in order to 
use Slice sequences in C++.
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The rules that make up the C++ mapping are simple and regular. In particular, 
the mapping is free from the potential pitfalls of memory management: all types 
are self-managed and automatically clean up when instances go out of scope. This 
means that you cannot accidentally introduce a memory leak by, for example, 
ignoring the return value of an operation invocation or forgetting to deallocate 
memory that was allocated by a called operation.

The C++ mapping is fully thread-safe. For example, the reference counting 
mechanism for classes (see Section 6.14.6) is interlocked against parallel access, 
so reference counts cannot be corrupted if a class instance is shared among a 
number of threads. Obviously, you must still synchronize access to data from 
different threads. For example, if you have two threads sharing a sequence, you 
cannot safely have one thread insert into the sequence while another thread is iter-
ating over the sequence. However, you only need to concern yourself with concur-
rent access to your own data—the Ice run time itself is fully thread safe, and none 
of the Ice API calls require you to acquire or release a lock before you safely can 
make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 6.9 to 
Section 6.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C++ mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the C++ mapping rules. In particular, looking through the generated header files 
in order to discern how to use the C++ mapping is likely to be confusing because 
the header files are not necessarily meant for human consumption and, occasion-
ally, contain various cryptic constructs to deal with operating system and compiler 
idiosyncrasies. Of course, occasionally, you may want to refer to a header file to 
confirm a detail of the mapping, but we recommend that you otherwise use the 
material presented here to see how to write your client-side code.

6.3 Mapping for Identifiers

Slice identifiers map to an identical C++ identifier. For example, the Slice identi-
fier Clock becomes the C++ identifier Clock. There is one exception to this rule: 
if a Slice identifier is the same as a C++ keyword, the corresponding C++ identi-
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fier is prefixed with _cpp_. For example, the Slice identifier while is mapped as 
_cpp_while.1

A single Slice identifier often results in several C++ identifiers. For example, 
for a Slice interface named Foo, the generated C++ code uses the identifiers Foo 
and FooPrx (among others). If the interface has the name while, the generated 
identifiers are _cpp_while and whilePrx (not _cpp_whilePrx), that is, 
the prefix is applied only to those generated identifiers that actually require it.

6.4 Mapping for Modules

Slice modules map to C++ namespaces. The mapping preserves the nesting of the 
Slice definitions. For example:

module M1 {
    module M2 {
        // ...
    };
    // ...
};

// ...

module M1 {     // Reopen M1
    // ...
};

This definition maps to the corresponding C++ definition:

namespace M1 {
    namespace M2 {
        // ...
    }
    // ...
}

// ...

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as 
possible.
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namespace M1 {  // Reopen M1
    // ...
}

If a Slice module is reopened, the corresponding C++ namespace is reopened as 
well.

6.5 The Ice Namespace

All of the APIs for the Ice run time are nested in the Ice namespace, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice namespace are generated from Slice definitions; other parts of the Ice 
namespace provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice namespace 
throughout the remainder of the book.

6.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to C++ types as shown in Table 6.1.

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++

bool bool

byte Ice::Byte

short Ice::Short

int Ice::Int

long Ice::Long

float Ice::Float

double Ice::Double
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Slice bool and string map to C++ bool and std::string. The remaining 
built-in Slice types map to C++ type definitions instead of C++ native types. This 
allows the Ice run time to provide a definition as appropriate for each target archi-
tecture. (For example, Ice::Int might be defined as long on one architecture 
and as int on another.)

Note that Ice::Byte is a typedef for unsigned char. This guarantees 
that byte values are always in the range .

All the basic types are guaranteed to be distinct C++ types, that is, you can 
safely overload functions that differ in only the types in Table 6.1.

6.6.1 Alternate String Mapping

You can use a metadata directive, ["cpp:type:wstring"], to map strings to C++ 
std::wstring. This is useful for applications that use languages with alpha-
bets that cannot be represented in 8-bit characters. The metadata directive can be 
applied to any Slice construct. For containers (such as modules, interfaces, or 
structures), the metadata directive applies to all strings within the container. A 
corresponding metadata directive, ["cpp:type:string"] can be used to selec-
tively override the mapping defined by the enclosing container. For example:

["cpp:type:wstring"]
struct S1 {
    string x;             // Maps to std::wstring
    ["cpp:type:wstring"]
    string y;             // Maps to std::wstring
    ["cpp:type:string"]
    string z;             // Maps to std::string
};

struct S2 {
    string x;             // Maps to std::string
    ["cpp:type:string"]

string std::string

Table 6.1. Mapping of Slice built-in types to C++.

Slice C++
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    string y;             // Maps to std::string
    ["cpp:type:wstring"]
    string z;             // Maps to std::wstring
};

With these metadata directives, the strings are mapped as indicated by the 
comments. By default, narrow strings are encoded as UTF-8, and wide strings use 
Unicode in an encoding that is appropriate for the platform on which the applica-
tion executes. You can override the encoding for narrow and wide strings by regis-
tering a string converter with the Ice run time. (See Section 32.24 for details.)

6.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

6.7.1 Mapping for Enumerations

Enumerations map to the corresponding enumeration in C++. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C++ definition is identical:

enum Fruit { Apple, Pear, Orange };

6.7.2 Mapping for Structures

The mapping for structures maps Slice structures to C++ structures by default. In 
addition, you can use a metadata directive to map structures to classes (see 
page 189).

Default Mapping for Structures

Slice structures map to C++ structures with the same name. For each Slice data 
member, the C++ structure contains a public data member. For example, here is 
our Employee structure from Section 4.9.4 once more:
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struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-C++ compiler generates the following definition for this structure:

struct Employee {
    Ice::Long   number;
    std::string firstName;
    std::string lastName;
    bool operator==(const Employee&) const;
    bool operator!=(const Employee&) const;
    bool operator<(const Employee&) const;
    bool operator<=(const Employee&) const;
    bool operator>(const Employee&) const;
    bool operator>=(const Employee&) const;
};

For each data member in the Slice definition, the C++ structure contains a corre-
sponding public data member of the same name. Constructors are intentionally 
omitted so that the C++ structure qualifies as a plain old datatype (POD).

Note that the structure also contains comparison operators. These operators 
have the following behavior:

• operator==

Two structures are equal if (recursively), all its members are equal.

• operator!=

Two structures are not equal if (recursively), one or more of its members are 
not equal.

• operator<
operator<=
operator>
operator>=

The comparison operators treat the members of a structure as sort order 
criteria: the first member is considered the first criterion, the second member 
the second criterion, and so on. Assuming that we have two Employee struc-
tures, s1 and s2, this means that the generated code uses the following algo-
rithm to compare s1 and s2:

bool Employee::operator<(const Employee& rhs) const
{
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    if (this == &rhs)   // Short-cut self-comparison
        return false;

    // Compare first members
    //
    if (number < rhs.number)
        return true;
    else if (rhs.number < number)
        return false;

    // First members are equal, compare second members
    //
    if (firstName < rhs.firstName)
        return true;
    else if (rhs.firstName < firstName)
        return false;
    
    // Second members are equal, compare third members
    //
    if (lastName < rhs.lastName)
        return true;
    else if (rhs.lastName < lastName)
        return false;

    // All members are equal, so return false
    return false;
}

The comparison operators are provided to allow the use of structures as the key 
type of Slice dictionaries, which are mapped to std::map in C++ (see 
Section 6.7.5).

Note that copy construction and assignment always have deep-copy semantics. 
You can freely assign structures or structure members to each other without 
having to worry about memory management. The following code fragment illus-
trates both comparison and deep-copy semantics:

Employee e1, e2;
e1.firstName = "Bjarne";
e1.lastName = "Stroustrup";
e2 = e1;                        // Deep copy
assert(e1 == e2);
e2.firstName = "Andrew";        // Deep copy
e2.lastName = "Koenig";         // Deep copy
assert(e2 < e1);
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Because strings are mapped to std::string, there are no memory manage-
ment issues in this code and structure assignment and copying work as expected. 
(The default member-wise copy constructor and assignment operator generated by 
the C++ compiler do the right thing.)

Class Mapping for Structures

Occasionally, the mapping of Slice structures to C++ structures can be inefficient. 
For example, you may need to pass structures around in your application, but want 
to avoid having to make expensive copies of the structures. (This overhead 
becomes noticeable for structures with many complex data members, such as 
sequences or strings.) Of course, you could pass the structures by const reference, 
but that can create its own share of problems, such as tracking the life time of the 
structures to avoid ending up with dangling references.

For this reason, you can enable an alternate mapping that maps Slice struc-
tures to C++ classes. Classes (as opposed to structures) are reference-counted. 
Because the Ice C++ mapping provides smart pointers for classes (see 
Section 6.14.6), you can keep references to a class instance in many places in the 
code without having to worry about either expensive copying or life time issues.

The alternate mapping is enabled by a metadata directive, ["cpp:class"]. 
Here is our Employee structure once again, but this time with the additional meta-
data directive:

["cpp:class"] struct Employee {
    long number;
    string firstName;
    string lastName;
};

Here is the generated class:

class Employee : public IceUtil::Shared {
public:
    Employee() {}
    Employee(::Ice::Long,
             const ::std::string&,
             const ::std::string&);
    ::Ice::Long number;
    ::std::string firstName;
    ::std::string lastName;

    bool operator==(const Employee&) const;
    bool operator!=(const Employee&) const;
    bool operator<(const Employee&) const;
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    bool operator<=(const Employee&) const;
    bool operator>(const Employee&) const;
    bool operator>=(const Employee&) const;
};

Note that the generated class, apart from a default constructor, has a constructor 
that accepts one argument for each member of the structure. This allows you to 
instantiate and initialize the class in a single statement (instead of having to first 
instantiate the class and then assign to its members).

As for the default structure mapping, the class contains one public data 
member for each data member of the corresponding Slice structure.

The comparison operators behave as for the default structure mapping.

For details on how to instantiate classes, and how to access them via smart 
pointers, please Section 6.14—the class mapping described there applies equally 
to Slice structures that are mapped to classes.

Constructors

Structures have an implicit default constructor that default-constructs each data 
member. Members having a complex type, such as strings, sequences, and diction-
aries, are initialized by their own default constructor. However, the default 
constructor performs no initialization for members having one of the simple 
built-in types boolean, integer, floating point, or enumeration. For such a member, 
it is not safe to assume that the member has a reasonable default value. This is 
especially true for enumerated types as the member’s default value may be outside 
the legal range for the enumeration, in which case an exception will occur during 
marshaling unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to 
reasonable values, you can declare default values in your Slice definition (see 
Section 4.9.2). The default constructor initializes each of these data members to 
its declared value.

The Slice compiler also generates a second constructor for structures that use 
the class mapping, and for structures having at least one member with a default 
value. This one-shot constructor has one parameter for each data member, 
allowing you to construct and initialize an instance in a single statement (instead 
of first having to construct the instance and then assigning to its members).
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6.7.3 Mapping for Sequences

Here is the definition of our FruitPlatter sequence from Section 4.9.3 once 
more:

sequence<Fruit> FruitPlatter;

The Slice compiler generates the following C++ definition for the FruitPlatter 
sequence:

typedef std::vector<Fruit> FruitPlatter;

As you can see, the sequence simply maps to an STL vector. As a result, you can 
use the sequence like any other STL vector, for example:

// Make a small platter with one Apple and one Orange
//
FruitPlatter p;
p.push_back(Apple);
p.push_back(Orange);

As you would expect, you can use all the usual STL iterators and algorithms with 
this vector.

6.7.4 Custom Sequence Mapping

In addition to the default mapping of sequences to vectors, Ice supports three addi-
tional custom mappings for sequences.

STL Container Mapping for Sequences

You can override the default mapping of Slice sequences to C++ vectors with a 
metadata directive, for example:

[["cpp:include:list"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:std::list< ::Food::Fruit>"]
    sequence<Fruit> FruitPlatter;

};

With this metadata directive, the sequence now maps to a C++ std::list:
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#include <list>

namespace Food {

    typedef std::list< Food::Fruit> FruitPlatter;

    // ...
}

The cpp:type metadata directive must be applied to a sequence definition; 
anything following the cpp:type: prefix is taken to be the name of the type. For 
example, we could use ["cpp:type:::std::list< ::Food::Fruit>"]. In that 
case, the compiler would use a fully-qualified name to define the type:

typedef ::std::list< ::Food::Fruit> FruitPlatter;

Note that the code generator inserts whatever string you specify following the 
cpp:type: prefix literally into the generated code. This means that, to avoid C++ 
compilation failures due to unknown symbols, you should use a qualified name 
for the type.

Also note that, to avoid compilation errors in the generated code, you must 
instruct the compiler to generate an appropriate include directive with the 
cpp:include global metadata directive. This causes the compiler to add the line

#include <list>

to the generated header file.

Instead of std::list, you can specify a type of your own as the sequence 
type, for example:

[["cpp:include:FruitBowl.h"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    ["cpp:type:FruitBowl"]
    sequence<Fruit> FruitPlatter;

};

With these metadata directives, the compiler will use a C++ type FruitBowl as 
the sequence type, and add an include directive for the header file FruitBowl.h 
to the generated code.
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You can use any class of your choice as a sequence type, but the class must 
meet certain requirements. (vector, list, and deque happen to meet these 
requirements.)

• The class must have a default constructor and a single-argument constructor 
that takes the size of the sequence as an argument of unsigned integral type.

• The class must have a copy constructor.

• The class must provide a member function size that returns the number 
elements in the sequence as an unsigned integral type.

• The class must provide a member function swap that swaps the contents of 
the sequence with another sequence of the same type.

• The class must define iterator and const_iterator types and must 
provide begin and end member functions with the usual semantics; the iter-
ators must be comparable for equality and inequality.

Less formally, this means that if the class looks like a vector, list, or deque 
with respect to these points, you can use it as a custom sequence implementation.

In addition to modifying the type of a sequence itself, you can also modify the 
mapping for particular return values or parameters (see Section 6.12). For 
example:

[["cpp:include:list"]]
[["cpp:include:deque"]]

module Food {

    enum Fruit { Apple, Pear, Orange };

    sequence<Fruit> FruitPlatter;

    interface Market {
        ["cpp:type:list< ::Food::Fruit>"]
        FruitPlatter
        barter(
            ["cpp:type:deque< ::Food::Fruit>"] FruitPlatter offer
        );
    };

};

With this definition, the default mapping of FruitPlatter to a C++ vector still 
applies but the return value of barter is mapped as a list, and the offer param-
eter is mapped as a deque.
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Array Mapping for Sequences

The array mapping for sequences applies to input parameters (see Section 6.12) 
and to out parameters of AMI (see Section 6.15) and AMD (see Section 8.8) oper-
ations . For example:

interface File {
    void write(["cpp:array"] Ice::ByteSeq contents);
};

The cpp:array metadata directive instructs the compiler to map the contents 
parameter to a pair of pointers. With this directive, the write method on the 
proxy has the following signature:

void write(const std::pair<const Ice::Byte*,
                           const Ice::Byte*>& contents);

To pass a byte sequence to the server, you pass a pair of pointers; the first pointer 
points at the beginning of the sequence, and the second point points one element 
past the end of the sequence.

Similarly, for the server side, the write method on the skeleton has the 
following signature:

virtual void write(const ::std::pair<const ::Ice::Byte*,
                                     const ::Ice::Byte*>&,
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed pointers denote the beginning and end of the sequence as a range 
[first, last) (that is, they use the usual STL semantics for iterators).

The array mapping is useful to achieve zero-copy passing of sequences. The 
pointers point directly into the server-side transport buffer; this allows the server-
side run time to avoid creating a vector to pass to the operation implementation, 
thereby avoiding both allocating memory for the sequence and copying its 
contents into that memory.

Note that you can use the array mapping for any sequence type. However, it 
provides a performance advantage only for byte sequences (on all platforms) and 
for sequences of integral or floating point types (x86 platforms only).

Also note that the called operation in the server must not store a pointer into 
the passed sequence because the transport buffer into which the pointer points is 
deallocated as soon as the operation completes.

Range Mapping for Sequences

The range mapping for sequences is similar to the array mapping and exists for the 
same purpose, namely, to enable zero-copy of sequence parameters:
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interface File {
    void write(["cpp:range"] Ice::ByteSeq contents);
};

The cpp:range metadata directive instructs the compiler to map the contents 
parameter to a pair of const_iterator. With this directive, the write 
method on the proxy has the following signature:

void write(const std::pair<Ice::ByteSeq::const_iterator,
                           Ice::ByteSeq::const_iterator>& contents
);

Similarly, for the server side, the write method on the skeleton has the following 
signature:

virtual void write(const ::std::pair<
                        ::Ice::ByteSeq::const_iterator,
                        ::Ice::ByteSeq::const_iterator>&,
                   const ::Ice::Current& = ::Ice::Current()) = 0;

The passed iterators denote the beginning and end of the sequence as a range 
[first, last) (that is, they use the usual STL semantics for iterators).

The motivation for the range mapping is the same as for the array mapping: 
the passed iterators point directly into the server-side transport buffer and so avoid 
the need to create a temporary vector to pass to the operation.

As for the array mapping, the range mapping can be used with any sequence 
type, but offers a performance advantage only for byte sequences (on all plat-
forms) and for sequences of integral type (x86 platforms only).

The operation must not store an iterator into the passed sequence because the 
transport buffer into which the iterator points is deallocated as soon as the opera-
tion completes.

You can optionally add a type name to the cpp:range metadata directive, for 
example:

interface File {
    void write(
        ["cpp:range:std::deque<Ice::Byte>"]
        Ice::ByteSeq contents);
};

This instructs the compiler to generate a pair of const_iterator for the spec-
ified type:
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virtual void write(const ::std::pair<
                        std::deque<Ice::Byte>::const_iterator,
                        std::deque<Ice::Byte>::const_iterator>&,
                   const ::Ice::Current& = ::Ice::Current()) = 0;

This is useful if you want to combine the range mapping with a custom sequence 
type that behaves like an STL container.

6.7.5 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

typedef std::map<Ice::Long, Employee> EmployeeMap;

Again, there are no surprises here: a Slice dictionary simply maps to an STL map. 
As a result, you can use the dictionary like any other STL map, for example:

EmployeeMap em;
Employee e;

e.number = 42;
e.firstName = "Stan";
e.lastName = "Lippman";
em[e.number] = e;

e.number = 77;
e.firstName = "Herb";
e.lastName = "Sutter";
em[e.number] = e;

Obviously, all the usual STL iterators and algorithms work with this map just as 
well as with any other STL container.

6.8 Mapping for Constants

Slice constant definitions map to corresponding C++ constant definitions. Here 
are the constant definitions we saw in Section 4.9.5 on page 103 once more:
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const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

const bool          AppendByDefault = true;
const Ice::Byte     LowerNibble =     15;
const std::string   Advice =          "Don't Panic!";
const Ice::Short    TheAnswer =       42;
const Ice::Double   PI =              3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit         FavoriteFruit =   Pear;

All constants are initialized directly in the header file, so they are compile-time 
constants and can be used in contexts where a compile-time constant expression is 
required, such as to dimension an array or as the case label of a switch state-
ment.

6.9 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError: public Ice::UserException {
public:
    std::string reason;

    GenericError() {}
    explicit GenericError(const string&);
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    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
    // Other member functions here...
};

class BadTimeVal: public GenericError {
public:
    BadTimeVal() {}
    explicit BadTimeVal(const string&);

    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
    // Other member functions here...
};

class BadZoneName: public GenericError {
public:
    BadZoneName() {}
    explicit BadZoneName(const string&);

    virtual const std::string&  ice_name() const;
    virtual Ice::Exception*     ice_clone() const;
    virtual void                ice_throw() const;
};

Each Slice exception is mapped to a C++ class with the same name. For each 
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Each exception has three additional member functions:

• ice_name

As the name suggests, this member function returns the name of the exception. 
For example, if you call the ice_name member function of a BadZone-
Name exception, it (not surprisingly) returns the string "BadZoneName". 
The ice_name member function is useful if you catch exceptions generi-
cally and want to produce a more meaningful diagnostic, for example:

try {
    // ...
} catch (const Ice::GenericError& e) {
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    cerr << "Caught an exception: " << e.ice_name() << endl;
}

If an exception is raised, this code prints the name of the actual exception 
(BadTimeVal or BadZoneName) because the exception is being caught by 
reference (to avoid slicing).

• ice_clone

This member function allows you to polymorphically clone an exception. For 
example:

try {
    // ...
} catch (const Ice::UserException& e) {
   Ice::UserException* copy = e.clone();
} 

ice_clone is useful if you need to make a copy of an exception without 
knowing its precise run-time type. This allows you to remember the exception 
and throw it later by calling ice_throw.

• ice_throw

ice_throw allows you to throw an exception without knowing its precise 
run-time type. It is implemented as:

void
GenericError::ice_throw() const
{
    throw *this;
}

You can call ice_throw to throw an exception that you previously cloned 
with ice_clone.

Each exception has a default constructor. This constructor performs memberwise 
initialization; for simple built-in types, such as integers, the constructor performs 
no initialization, whereas complex types, such as strings, sequences, and diction-
aries are initialized by their respective default constructors.

An exception also has a second constructor that accepts one argument for each 
exception member. This constructor allows you to instantiate and initialize an 
exception in a single statement, instead of having to first instantiate the exception 
and then assign to its members. For derived exceptions, the constructor accepts 
one argument for each base exception member, plus one argument for each 
derived exception member, in base-to-derived order.
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Note that the generated exception classes contain other member functions that 
are not shown on page 197. However, those member functions are internal to the 
C++ mapping and are not meant to be called by application code.

All user exceptions ultimately inherit from Ice::UserException. In 
turn, Ice::UserException inherits from Ice::Exception (which is an 
alias for IceUtil::Exception):

namespace IceUtil {
    class Exception {
        virtual const std::string& ice_name() const;
        Exception*                 ice_clone() const;
        void                       ice_throw() const;
        virtual void               ice_print(std::ostream&) const;
        // ...
    };
    std::ostream& operator<<(std::ostream&, const Exception&);
    // ...
}

namespace Ice {
    typedef IceUtil::Exception Exception;

    class UserException: public Exception {
    public:
        virtual const std::string& ice_name() const = 0;
        // ...
    };
}

Ice::Exception forms the root of the exception inheritance tree. Apart from 
the usual ice_name, ice_clone, and ice_throw member functions, it 
contains the ice_print member functions. ice_print prints the name of the 
exception. For example, calling ice_print on a BadTimeVal exception 
prints:

BadTimeVal

To make printing more convenient, operator<< is overloaded for 
Ice::Exception, so you can also write:

try {
    // ...
} catch (const Ice::Exception& e) {
    cerr << e << endl;
}
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This produces the same output because operator<< calls ice_print inter-
nally. 

For Ice run time exceptions, ice_print also shows the file name and line 
number at which the exception was thrown.

Constructors

Exceptions have a default constructor that default-constructs each data member. 
Members having a complex type, such as strings, sequences, and dictionaries, are 
initialized by their own default constructor. However, the default constructor 
performs no initialization for members having one of the simple built-in types 
boolean, integer, floating point, or enumeration. For such a member, it is not safe 
to assume that the member has a reasonable default value. This is especially true 
for enumerated types as the member’s default value may be outside the legal range 
for the enumeration, in which case an exception will occur during marshaling 
unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to 
reasonable values, you can declare default values in your Slice definition (see 
Section 4.10.2). The default constructor initializes each of these data members to 
its declared value.

Exceptions also have a second constructor that has one parameter for each 
data member. This allows you to construct and initialize a class instance in a 
single statement (instead of first having to construct the instance and then 
assigning to its members). For derived exceptions, this constructor has one param-
eter for each of the base class’s data members, plus one parameter for each of the 
derived class’s data members, in base-to-derived order.

6.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice::LocalException (which, in turn, derives from Ice::Exception). 
Ice::LocalException has the usual member functions (ice_name, 
ice_clone, ice_throw, and (inherited from Ice::Exception), 
ice_print, ice_file, and ice_line).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 117. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:
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• Ice::Exception

This is the root of the complete inheritance tree. Catching Ice::Excep-
tion catches both user and run-time exceptions.

• Ice::UserException

This is the root exception for all user exceptions. Catching Ice::UserEx-
ception catches all user exceptions (but not run-time exceptions).

• Ice::LocalException

This is the root exception for all run-time exceptions. Catching 
Ice::LocalException catches all run-time exceptions (but not user 
exceptions).

• Ice::TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice::ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

For example, a ConnectTimeoutException can be handled as Connect-
TimeoutException, TimeoutException, LocalException, or 
Exception.

You will probably have little need to catch run-time exceptions as their most-
derived type and instead catch them as LocalException; the fine-grained 
error handling offered by the remainder of the hierarchy is of interest mainly in 
the implementation of the Ice run time. An exception to this rule are FacetNo-
tExistException (see Chapter 33) and ObjectNotExistException 
(see Chapter 34), which you may want to catch explicitly.

6.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a member function on a local class instance that represents the 
remote object. This makes the mapping easy and intuitive to use because, for all 
intents and purposes (apart from error semantics), making a remote procedure call 
is no different from making a local procedure call.
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6.11.1 Proxy Classes and Proxy Handles

On the client side, interfaces map to classes with member functions that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

module M {
    interface Simple {
        void op();
    };
};

The Slice compiler generates the following definitions for use by the client:

namespace IceProxy {
    namespace M {
        class Simple;
    }
}

namespace M {
    class Simple;
    typedef IceInternal::ProxyHandle< ::IceProxy::M::Simple>
                                                   SimplePrx;
    typedef IceInternal::Handle< ::M::Simple> SimplePtr;
}

namespace IceProxy {
    namespace M {
        class Simple : public virtual IceProxy::Ice::Object {
        public:
            typedef ::M::SimplePrx ProxyType;
            typedef ::M::SimplePtr PointerType;

            void op();
            void op(const Ice::Context&);
            // ...
        };
    };
}

As you can see, the compiler generates a proxy class Simple in the 
IceProxy::M namespace, as well as a proxy handle M::SimplePrx. In 
general, for a module M, the generated names are ::IceProxy::M::<inter-
face-name> and ::M::<interface-name>Prx.
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In the client’s address space, an instance of IceProxy::M::Simple is the 
local ambassador for a remote instance of the Simple interface in a server and is 
known as a proxy class instance. All the details about the server-side object, such 
as its address, what protocol to use, and its object identity are encapsulated in that 
instance.

Note that Simple inherits from IceProxy::Ice::Object. This reflects 
the fact that all Ice interfaces implicitly inherit from Ice::Object. For each oper-
ation in the interface, the proxy class has two overloaded member functions of the 
same name. For the preceding example, we find that the operation op has been 
mapped to two member functions op.

One of the overloaded member functions has a trailing parameter of type 
Ice::Context. This parameter is for use by the Ice run time to store informa-
tion about how to deliver a request; normally, you do not need to supply a value 
here and can pretend that the trailing parameter does not exist. (We examine the 
Ice::Context parameter in detail in Chapter 32. The parameter is also used by 
IceStorm—see Chapter 44.)

Client-side application code never manipulates proxy class instances directly. 
In fact, you are not allowed to instantiate a proxy class directly. The following 
code will not compile because Ice::Object is an abstract base class with a 
protected constructor and destructor:

IceProxy::M::Simple s;  // Compile-time error!

Proxy instances are always instantiated on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly. When the client 
receives a proxy from the run time, it is given a proxy handle to the proxy, of type 
<interface-name>Prx (SimplePrx for the preceding example). The 
client accesses the proxy via its proxy handle; the handle takes care of forwarding 
operation invocations to its underlying proxy, as well as reference-counting the 
proxy. This means that no memory-management issues can arise: deallocation of a 
proxy is automatic and happens once the last handle to the proxy disappears (goes 
out of scope).

Because the application code always uses proxy handles and never touches the 
proxy class directly, we usually use the term proxy to denote both proxy handle 
and proxy class. This reflects the fact that, in actual use, the proxy handle looks 
and feels like the underlying proxy class instance. If the distinction is important, 
we use the terms proxy class, proxy class instance, and proxy handle.

Also note that the generated proxy class contains type definitions for Proxy-
Type and PointerType. These are provided so you can refer to the proxy type 
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and smart pointer type (see Section 6.14.6) in template definitions without having 
to resort to preprocessor trickery, for example:

template<typename T>
class ProxyWrapper {
public:
    T::ProxyType proxy() const;
    // ...
};

6.11.2 Methods on Proxy Handles

As we saw for the preceding example, the handle is actually a template of type 
IceInternal::ProxyHandle that takes the proxy class as the template 
parameter. This template has the usual constructor, copy constructor, and assign-
ment operator:

• Default constructor

You can default-construct a proxy handle. The default constructor creates a 
proxy that points nowhere (that is, points at no object at all.) If you invoke an 
operation on such a null proxy, you get an
IceUtil::NullHandleException:

try {
    SimplePrx s;        // Default-constructed proxy
    s->op();            // Call via nil proxy
    assert(0);          // Can't get here
} catch (const IceUtil::NullHandleException&) {
    cout << "As expected, got a NullHandleException" << endl;
}

• Copy constructor

The copy constructor ensures that you can construct a proxy handle from 
another proxy handle. Internally, this increments a reference count on the 
proxy; the destructor decrements the reference count again and, once the count 
drops to zero, deallocates the underlying proxy class instance. That way, 
memory leaks are avoided:

{                               // Enter new scope
    SimplePrx s1 = ...;         // Get a proxy from somewhere
    SimplePrx s2(s1);           // Copy-construct s2
    assert(s1 == s2);           // Assertion passes
}                               // Leave scope; s1, s2, and the
                                // underlying proxy instance
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                                // are deallocated

Note the assertion in this example: proxy handles support comparison (see 
Section 6.11.4).

• Assignment operator

You can freely assign proxy handles to each other. The handle implementation 
ensures that the appropriate memory-management activities take place. Self-
assignment is safe and you do not have to guard against it:

SimplePrx s1 = ...;     // Get a proxy from somewhere
SimplePrx s2;           // s2 is nil
s2 = s1;                // both point at the same object
s1 = 0;                 // s1 is nil
s2 = 0;                 // s2 is nil

Widening assignments work implicitly. For example, if we have two inter-
faces, Base and Derived, we can widen a DerivedPrx to a BasePrx 
implicitly:

BasePrx base;
DerivedPrx derived;
base = derived;         // Fine, no problem
derived = base;         // Compile-time error

Implicit narrowing conversions result in a compile error, so the usual C++ 
semantics are preserved: you can always assign a derived type to a base type, 
but not vice versa.

• Checked cast

Proxy handles provide a checkedCast method:

namespace IceInternal {
  template<typename T>
  class ProxyHandle : public IceUtil::HandleBase<T> {
  public:
    template<class Y>
    static ProxyHandle checkedCast(const ProxyHandle<Y>& r);

    template<class Y>
    static ProxyHandle checkedCast(const ProxyHandle<Y>& r,
                                   const ::Ice::Context& c);

    // ...
  };
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}

A checked cast has the same function for proxies as a C++ dynamic_cast 
has for pointers: it allows you to assign a base proxy to a derived proxy. If the 
base proxy’s actual run-time type is compatible with the derived proxy’s static 
type, the assignment succeeds and, after the assignment, the derived proxy 
denotes the same object as the base proxy. Otherwise, if the base proxy’s run-
time type is incompatible with the derived proxy’s static type, the derived 
proxy is set to null. Here is an example to illustrate this:

BasePrx base = ...;     // Initialize base proxy
DerivedPrx derived;
derived = DerivedPrx::checkedCast(base);
if (derived) {
        // Base has run-time type Derived,
        // use derived...
} else {
        // Base has some other, unrelated type
}

The expression DerivedPrx::checkedCast(base) tests whether 
base points at an object of type Derived (or an object with a type that is 
derived from Derived). If so, the cast succeeds and derived is set to point at 
the same object as base. Otherwise, the cast fails and derived is set to the 
null proxy.

Note that checkedCast is a static member function so, to do a down-cast, 
you always use the syntax <interface-name>Prx::checkedCast.

Also note that you can use proxies in boolean contexts. For example, 
if (proxy) returns true if the proxy is not null (see Section 6.11.4).

A checkedCast typically results in a remote message to the server.2 The 
message effectively asks the server “is the object denoted by this reference of 
type Derived?” The reply from the server is communicated to the application 
code in form of a successful (non-null) or unsuccessful (null) result. Sending a 
remote message is necessary because, as a rule, there is no way for the client 
to find out what the actual run-time type of a proxy is without confirmation 
from the server. (For example, the server may replace the implementation of 

2. In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the 
optimization applies only in narrowly-defined circumstances, so you cannot rely on a 
checkedCast not sending a message.
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the object for an existing proxy with a more derived one.) This means that you 
have to be prepared for a checkedCast to fail. For example, if the server is 
not running, you will receive a ConnectFailedException; if the server 
is running, but the object denoted by the proxy no longer exists, you will 
receive an ObjectNotExistException.

• Unchecked cast

In some cases, it is known that an object supports a more derived interface 
than the static type of its proxy. For such cases, you can use an unchecked 
down-cast:

namespace IceInternal {
  template<typename T>
  class ProxyHandle : public IceUtil::HandleBase<T> {
  public:
    template<class Y>
    static ProxyHandle uncheckedCast(const ProxyHandle<Y>& r);
    // ...
  };
}

An uncheckedCast provides a down-cast without consulting the server as 
to the actual run-time type of the object, for example:

BasePrx base = ...;     // Initialize to point at a Derived
DerivedPrx derived;
derived = DerivedPrx::uncheckedCast(base);
// Use derived...

You should use an uncheckedCast only if you are certain that the proxy 
indeed supports the more derived type: an uncheckedCast, as the name 
implies, is not checked in any way; it does not contact the object in the server 
and, if it fails, it does not return null. (An unchecked cast is implemented 
internally like a C++ static_cast, no checks of any kind are made). If you 
use the proxy resulting from an incorrect uncheckedCast to invoke an 
operation, the behavior is undefined. Most likely, you will receive an Opera-
tionNotExistException, but, depending on the circumstances, the Ice 
run time may also report an exception indicating that unmarshaling has failed, 
or even silently return garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the 
cost of sending a message to the server. And, particularly during initialization 
(see Chapter 7), it is common to receive a proxy of static type 
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Ice::Object, but with a known run-time type. In such cases, an 
uncheckedCast saves the overhead of sending a remote message.

• Stream insertion and stringification

For convenience, proxy handles also support insertion of a proxy into a 
stream, for example:

Ice::ObjectPrx p = ...;
cout << p << endl;

This code is equivalent to writing:

Ice::ObjectPrx p = ...;
cout << p->ice_toString() << endl;

Either code prints the stringified proxy (see Appendix E). You could also 
achieve the same thing by writing:

Ice::ObjectPrx p = ...;
cout << communicator->proxyToString(p) << endl;

The advantage of using the ice_toString member function instead of 
proxyToString is that you do not need to have the communicator avail-
able at the point of call.

6.11.3 Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:

Ice::ObjectPrx proxy = communicator->stringToProxy(...);
proxy = proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a down-cast after using a factory 
method. The example below demonstrates these semantics:

Ice::ObjectPrx base = communicator->stringToProxy(...);
HelloPrx hello = HelloPrx::checkedCast(base);
hello = hello->ice_timeout(10000); # Type is preserved
hello->sayHello();



210 Client-Side Slice-to-C++ Mapping

The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return a base proxy that you must subsequently down-cast to 
an appropriate type.

6.11.4 Object Identity and Proxy Comparison

Apart from the methods discussed in Section 6.11.2, proxy handles also support 
comparison. Specifically, the following operators are supported:

• operator==
operator!=

These operators permit you to compare proxies for equality and inequality. To 
test whether a proxy is null, use a comparison with the literal 0, for example:

if (proxy == 0)
    // It's a nil proxy
else
    // It's a non-nil proxy

• operator<
operator<=
operator>
operator>=

Proxies support comparison. This allows you to place proxies into STL 
containers such as maps or sorted lists.

• Boolean comparison

Proxies have a conversion operator to bool. The operator returns true if a 
proxy is not null, and false otherwise. This allows you to write:

BasePrx base = ...;
if (base)
        // It's a non-nil proxy
else
        // It's a nil proxy

Note that proxy comparison uses all of the information in a proxy for the compar-
ison. This means that not only the object identity must match for a comparison to 
succeed, but other details inside the proxy, such as the protocol and endpoint 
information, must be the same. In other words, comparison with == and != tests 
for proxy identity, not object identity. A common mistake is to write code along 
the following lines:
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Ice::ObjectPrx p1 = ...;        // Get a proxy...
Ice::ObjectPrx p2 = ...;        // Get another proxy...

if (p1 != p2) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with ==, we know that the two proxies denote the same 
object (because they are identical in all respects); however, if two proxies compare 
unequal with ==, we know absolutely nothing: the proxies may or may not denote 
the same object.

To compare the object identities of two proxies, you can use helper functions 
in the Ice namespace:

namespace Ice {

    bool proxyIdentityLess(const ObjectPrx&,
                           const ObjectPrx&);
    bool proxyIdentityEqual(const ObjectPrx&,
                            const ObjectPrx&);
    bool proxyIdentityAndFacetLess(const ObjectPrx&,
                                   const ObjectPrx&);
    bool proxyIdentityAndFacetEqual(const ObjectPrx&,
                                    const ObjectPrx&);

}

The proxyIdentityEqual function returns true if the object identities 
embedded in two proxies are the same and ignores other information in the 
proxies, such as facet and transport information. To include the facet name (see 
Chapter 33) in the comparison, use proxyIdentityAndFacetEqual 
instead.

The proxyIdentityLess function establishes a total ordering on proxies. 
It is provided mainly so you can use object identity comparison with STL sorted 
containers. (The function uses name as the major ordering criterion, and cate-
gory as the minor ordering criterion.) The proxyIdentityAndFacetLess 
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function behaves similarly to proxyIdentityLess, except that it also 
compares the facet names of the proxies when their identities are equal.

proxyIdentityEqual and proxyIdentityAndFacetLess allow 
you to correctly compare proxies for object identity. The example below demon-
strates how to use proxyIdentityEqual:

Ice::ObjectPrx p1 = ...;        // Get a proxy...
Ice::ObjectPrx p2 = ...;        // Get another proxy...

if (!Ice::proxyIdentityEqual(p1, p2) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

6.12 Mapping for Operations

As we saw in Section 6.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy handle. For example, here is part of the defini-
tions for our file system from Section 5.4:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
    // ...
}; 

The proxy class for the Node interface, tidied up to remove irrelevant detail, is as 
follows:

namespace IceProxy {
    namespace Filesystem {
        class Node : virtual public IceProxy::Ice::Object {
        public:
            std::string name();
            // ...
        };
        typedef IceInternal::ProxyHandle<Node> NodePrx;
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        // ...
    }
    // ...
}

The name operation returns a value of type string. Given a proxy to an object 
of type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy
string name = node->name();     // Get name via RPC

The proxy handle overloads operator-> to forward method calls to the under-
lying proxy class instance which, in turn, sends the operation invocation to the 
server, waits until the operation is complete, and then unmarshals the return value 
and returns it to the caller.

Because the return value is of type string, it is safe to ignore the return 
value. For example, the following code contains no memory leak:

NodePrx node = ...;             // Initialize proxy
node->name();                   // Useless, but no leak

This is true for all mapped Slice types: you can safely ignore the return value of an 
operation, no matter what its type—return values are always returned by value. If 
you ignore the return value, no memory leak occurs because the destructor of the 
returned value takes care of deallocating memory as needed.

6.12.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy methods is concerned, idempotent has no effect. For 
example, consider the following interface:

interface Example {
                string op1();
    idempotent  string op2();
    idempotent  void op3(string s);
};

The proxy class for this interface looks like this:

namespace IceProxy {
    class Example : virtual public IceProxy::Ice::Object {
    public:
        std::string op1();
        std::string op2();              // idempotent



214 Client-Side Slice-to-C++ Mapping

        void op3(const std::string&);   // idempotent
        // ...
    };
}

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the mapping to be unaffected by the idempotent keyword.

6.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the C++ mapping are very simple: parameters are 
passed either by value (for small values) or by const reference (for values that 
are larger than a machine word). Semantically, the two ways of passing parame-
ters are identical: it is guaranteed that the value of a parameter will not be changed 
by the invocation (with some caveats—see page 217 and page 1093).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

struct NumberAndString {
    Ice::Int x;
    std::string str;
    // ...
};

typedef std::vector<std::string> StringSeq;
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typedef std::map<Ice::Long, StringSeq> StringTable;

namespace IceProxy {
    class ClientToServer : virtual public IceProxy::Ice::Object {
    public:
        void op1(Ice::Int, Ice::Float, bool, const std::string&);
        void op2(const NumberAndString&,
                 const StringSeq&,
                 const StringTable&);
        void op3(const ClientToServerPrx&);
        // ...
    };
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy...

p->op1(42, 3.14, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14;
bool b = true;
string s = "Hello world!";
p->op1(i, f, b, s);                     // Pass simple variables

NumberAndString ns = { 42, "The Answer" };
StringSeq ss;
ss.push_back("Hello world!");
StringTable st;
st[0] = ss;
p->op2(ns, ss, st);                     // Pass complex variables

p->op3(p);                              // Pass proxy

You can pass either literals or variables to the various operations. Because every-
thing is passed by value or const reference, there are no memory-management 
issues to consider.

Out-Parameters

The C++ mapping passes out-parameters by reference. Here is the Slice definition 
from page 214 once more, modified to pass all parameters in the out direction:
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struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for this definition:

namespace IceProxy {
    class ServerToClient : virtual public IceProxy::Ice::Object {
    public:
       void op1(Ice::Int&, Ice::Float&, bool&, std::string&);
       void op2(NumberAndString&, StringSeq&, StringTable&);
       void op3(ServerToClientPrx&);
       // ...
    };
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

ServerToClientPrx p = ...;      // Get proxy...

int i;
float f;
bool b;
string s;

p->op1(i, f, b, s);
// i, f, b, and s contain updated values now

NumberAndString ns;
StringSeq ss;
StringTable st;

p->op2(ns, ss, st);
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// ns, ss, and st contain updated values now

p->op3(p);
// p has changed now!

Again, there are no surprises in this code: the caller simply passes variables to an 
operation; once the operation completes, the values of those variables will be set 
by the server.

It is worth having another look at the final call:

p->op3(p);      // Weird, but well-defined

Here, p is the proxy that is used to dispatch the call. That same variable p is also 
passed as an out-parameter to the call, meaning that the server will set its value. In 
general, passing the same parameter as both an input and output parameter is safe: 
the Ice run time will correctly handle all locking and memory-management activi-
ties.

Another, somewhat pathological example is the following:

sequence<int> Row;
sequence<Row> Matrix;

interface MatrixArithmetic {
    void multiply(Matrix m1,
                  Matrix m2,
                  out Matrix result);
};

Given a proxy to a MatrixArithmetic interface, the client code could do the 
following:

MatrixArithmeticPrx ma = ...;      // Get proxy...
Matrix m1 = ...;                   // Initialize one matrix
Matrix m2 = ...;                   // Initialize second matrix
ma->squareAndCubeRoot(m1, m2, m1); // !!!

This code is technically legal, in the sense that no memory corruption or locking 
issues will arise, but it has surprising behavior: because the same variable m1 is 
passed as an input parameter as well as an output parameter, the final value of m1 
is indeterminate—in particular, if client and server are collocated in the same 
address space, the implementation of the operation will overwrite parts of the 
input matrix m1 in the process of computing the result because the result is written 
to the same physical memory location as one of the inputs. In general, you should 
take care when passing the same variable as both an input and output parameter 
and only do so if the called operation guarantees to be well-behaved in this case.
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Chained Invocations

Consider the following simple interface containing two operations, one to set a 
value and one to get it:

interface Name {
    string getName();
    void setName(string name);
};

Suppose we have two proxies to interfaces of type Name, p1 and p2, and chain 
invocations as follows:

p2->setName(p1->getName());

This works exactly as intended: the value returned by p1 is transferred to p2. 
There are no memory-management or exception safety issues with this code.

6.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 6.10 on 
page 201) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 6.9 on page 197). Suppose we have the following 
simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as C++ exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:

ChildPrx child = ...;           // Get proxy...
try {
    child->askToCleanUp();      // Give it a try...
} catch (const Tantrum& t) {
    cout << "The child says: " << t.reason << endl;
}
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Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be dealt with by exception handlers higher in the hierarchy. For example:

void run()
{
    ChildPrx child = ...;       // Get proxy...
    try {
        child->askToCleanUp();  // Give it a try...
    } catch (const Tantrum& t) {
        cout << "The child says: " << t.reason << endl;

        child->scold();         // Recover from error...
    }
    child->praise();            // Give positive feedback...
}

int
main(int argc, char* argv[])
{
    int status = 1;
    try {
        // ...
        run();
        // ...
        status = 0;
    } catch (const Ice::Exception& e) {
        cerr << "Unexpected run-time error: " << e << endl;
    }
    // ...
    return status;
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

For efficiency reasons, you should always catch exceptions by const refer-
ence. This permits the compiler to avoid calling the exception’s copy constructor 
(and, of course, prevents the exception from being sliced to a base type).

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may have still have its original value 
or may have been changed by the operation’s implementation in the target object. 
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In other words, for out-parameters, Ice provides the weak exception 
guarantee [21] but does not provide the strong exception guarantee.3

Exceptions and Return Values

For return values, C++ provides the guarantee that a variable receiving the return 
value of an operation will not be overwritten if an exception is thrown. (Of course, 
this guarantee holds only if you do not use the same variable as both an out-
parameter and to receive the return value of an invocation (see page 217).)

6.14 Mapping for Classes

Slice classes are mapped to C++ classes with the same name. The generated class 
contains a public data member for each Slice data member, and a virtual member 
function for each operation. Consider the following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:4

class TimeOfDay;

typedef IceInternal::ProxyHandle<IceProxy::TimeOfDay> TimeOfDayPrx
;
typedef IceInternal::Handle<TimeOfDay> TimeOfDayPtr;

class TimeOfDay : virtual public Ice::Object {
public:
    Ice::Short hour;
    Ice::Short minute;
    Ice::Short second;

3. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.

4. The ProxyType and PointerType definitions are for template programming (see 
page 204).
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    virtual std::string format() = 0;

    TimeOfDay() {};
    TimeOfDay(Ice::Short, Ice::Short, Ice::Short);

    virtual bool ice_isA(const std::string&);
    virtual const std::string& ice_id();
    static const std::string& ice_staticId();

    typedef TimeOfDayPrx ProxyType;
    typedef TimeOfDayPtr PointerType;

    // ...
};

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice::Object. This means 
that all classes implicitly inherit from Ice::Object, which is the ultimate 
ancestor of all classes. Note that Ice::Object is not the same as 
IceProxy::Ice::Object. In other words, you cannot pass a class where 
a proxy is expected and vice versa. (However, you can pass a proxy for the 
class—see Section 6.14.6.)

2. The generated class contains a public member for each Slice data member.

3. The generated class has a constructor that takes one argument for each data 
member, as well as a default constructor.

4. The generated class contains a pure virtual member function for each Slice 
operation.

5. The generated class contains additional member functions: ice_isA, 
ice_id, ice_staticId, and ice_factory.

6. The compiler generates a type definition TimeOfDayPtr. This type imple-
ments a smart pointer that wraps dynamically-allocated instances of the class. 
In general, the name of this type is <class-name>Ptr. Do not confuse this 
with <class-name>Prx—that type exists as well, but is the proxy handle 
for the class, not a smart pointer.

There is quite a bit to discuss here, so we will look at each item in turn.
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6.14.1 Inheritance from Ice::Object

Like interfaces, classes implicitly inherit from a common base class, 
Ice::Object. However, as shown in Figure 6.1, classes inherit from 
Ice::Object instead of Ice::ObjectPrx (which is at the base of the inher-
itance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 6.1. Inheritance from Ice::ObjectPrx and Ice::Object.

Ice::Object contains a number of member functions:

namespace Ice {
    class Object : public virtual IceInternal::GCShared {
    public:
        virtual bool ice_isA(const std::string&,
                             const Current& = Current()) const;
        virtual void ice_ping(const Current&  = Current()) const;
        virtual std::vector<std::string> ice_ids(
                             const Current& = Current()) const;
        virtual const std::string& ice_id(
                             const Current& = Current()) const;
        static const std::string& ice_staticId();
        virtual Ice::Int ice_getHash() const;
        virtual ObjectPtr ice_clone() const;

        virtual void ice_preMarshal();
        virtual void ice_postUnmarshal();

        virtual DispatchStatus ice_dispatch(
                  Ice::Request&,
                  const DispatchInterceptorAsyncCallbackPtr& = 0);

        virtual bool operator==(const Object&) const;
        virtual bool operator!=(const Object&) const;

Ice::ObjectPrx

Proxies... Classes...

Ice::Object
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        virtual bool operator<(const Object&) const;
        virtual bool operator<=(const Object&) const;
        virtual bool operator>(const Object&) const;
        virtual bool operator>=(const Object&) const;
    };
}

The member functions of Ice::Object behave as follows:

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a smart pointer to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_staticId

This function returns the static type ID of a class.

• ice_getHash

This method returns a hash value for the class, allowing you to easily place 
classes into hash tables.

• ice_clone

This function makes a polymorphic shallow copy of a class (see page 236).

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.
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• ice_dispatch

This function dispatches an incoming request to a servant. It is used in the 
implementation of dispatch interceptors (see Section 32.23).

• operator==
operator!=
operator<
operator<=
operator>
operator>=

The comparison operators permit you to use classes as elements of STL sorted 
containers. Note that sort order, unlike for structures (see Section 6.12), is 
based on the memory address of the class, not on the contents of its data 
members of the class.

6.14.2 Data Members of Classes

By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility 
using the protected metadata directive. The presence of this directive causes the 
Slice compiler to generate the data member with protected visibility. As a result, 
the member can be accessed only by the class itself or by one of its subclasses. For 
example, the TimeOfDay class shown below has the protected metadata directive 
applied to each of its data members:

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

class TimeOfDay : virtual public Ice::Object {
public:

    virtual std::string format() = 0;

    // ...
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protected:

    Ice::Short hour;
    Ice::Short minute;
    Ice::Short second;
};

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

6.14.3 Class Constructors

Classes have a default constructor that default-constructs each data member. 
Members having a complex type, such as strings, sequences, and dictionaries, are 
initialized by their own default constructor. However, the default constructor 
performs no initialization for members having one of the simple built-in types 
boolean, integer, floating point, or enumeration. For such a member, it is not safe 
to assume that the member has a reasonable default value. This is especially true 
for enumerated types as the member’s default value may be outside the legal range 
for the enumeration, in which case an exception will occur during marshaling 
unless the member is explicitly set to a legal value.

If you wish to ensure that data members of primitive types are initialized to 
reasonable values, you can declare default values in your Slice definition (see 
Section 4.11.1). The default constructor initializes each of these data members to 
its declared value.

Classes also have a second constructor that has one parameter for each data 
member. This allows you to construct and initialize a class instance in a single 
statement (instead of first having to construct the instance and then assigning to its 
members).

For derived classes, the constructor has one parameter for each of the base 
class’s data members, plus one parameter for each of the derived class’s data 
members, in base-to-derived order. For example:
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class Base {
    int i;
};

class Derived extends Base {
    string s;
};

This generates:

class Base : virtual public ::Ice::Object
{
public:
    ::Ice::Int i;

    Base() {};
    explicit Base(::Ice::Int);

    // ...
};

class Derived : public Base
{
public:
    ::std::string s;

    Derived() {};
    Derived(::Ice::Int, const ::std::string&);

    // ...
};

Note that single-parameter constructors are defined as explicit, to prevent 
implicit argument conversions.

By default, derived classes derive non-virtually from their base class. If you 
need virtual inheritance, you can enable it using the ["cpp:virtual"] metadata 
directive (see Appendix B).

6.14.4 Operations of Classes

Operations of classes are mapped to pure virtual member functions in the gener-
ated class. This means that, if a class contains operations (such as the format 
operation of our TimeOfDay class), you must provide an implementation of the 
operation in a class that is derived from the generated class. For example:5
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class TimeOfDayI : virtual public TimeOfDay {
public:
    virtual std::string format() {
        std::ostringstream s;
        s << setw(2) << setfill('0') << hour << ":";
        s << setw(2) << setfill('0') << minute << ":";
        s << setw(2) << setfill('0') << second;
        return s.c_str();
    }

protected:
    virtual ~TimeOfDayI() {}  // Optional
};

6.14.5 Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };


5. We discuss the motivation for the protected destructor on page 238.
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    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };
};

The object factory’s create operation is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy operation is called by the 
Ice run time when its communicator is destroyed. A possible implementation of 
our object factory is:

class ObjectFactory : public Ice::ObjectFactory {
public:
    virtual Ice::ObjectPtr create(const std::string& type) {
        assert(type == M::TimeOfDay::ice_staticId());
        return new TimeOfDayI;
    }
    virtual void destroy() {}
};

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.
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Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Ice::CommunicatorPtr ic = ...;
ic->addObjectFactory(new ObjectFactory,
                     M::TimeOfDay::ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

6.14.6 Smart Pointers for Classes

A recurring theme for C++ programmers is the need to deal with memory alloca-
tions and deallocations in their programs. The difficulty of doing so is well 
known: in the face of exceptions, multiple return paths from functions, and callee-
allocated memory that must be deallocated by the caller, it can be extremely diffi-
cult to ensure that a program does not leak resources. This is particularly impor-
tant in multi-threaded programs: if you do not rigorously track ownership of 
dynamic memory, a thread may delete memory that is still used by another thread, 
usually with disastrous consequences.
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To alleviate this problem, Ice provides smart pointers for classes. These smart 
pointers use reference counting to keep track of each class instance and, when the 
last reference to a class instance disappears, automatically delete the instance.6 
Smart pointers are generated by the Slice compiler for each class type. For a Slice 
class <class-name>, the compiler generates a C++ smart pointer called 
<class-name>Ptr. Rather than showing all the details of the generated class, 
here is the basic usage pattern: whenever you allocate a class instance on the heap, 
you simply assign the pointer returned from new to a smart pointer for the class. 
Thereafter, memory management is automatic and the class instance is deleted 
once the last smart pointer for it goes out of scope:

{                                       // Open scope
    TimeOfDayPtr tod = new TimeOfDayI;  // Allocate instance
    // Initialize...
    tod->hour = 18;
    tod->minute = 11;
    tod->second = 15;
    // ...
}                                       // No memory leak here!

As you can see, you use operator-> to access the members of the class via its 
smart pointer. When the tod smart pointer goes out of scope, its destructor runs 
and, in turn, the destructor takes care of calling delete on the underlying class 
instance, so no memory is leaked.

The smart pointers perform reference counting of their underlying class 
instance:

• The constructor of a class sets its reference count to zero.

• Initializing a smart pointer with a dynamically-allocated class instance causes 
the smart pointer to increment the reference count for the class by one.

• Copy constructing a smart pointer increments the reference count for the class 
by one.

• Assigning one smart pointer to another increments the target’s reference count 
and decrements the source’s reference count. (Self-assignment is safe.)

• The destructor of a smart pointer decrements the reference count by one and 
calls delete on its class instance if the reference count drops to zero.

6. Smart pointer classes are an example of the RAII (Resource Acquisition Is Initialization) 
idiom [20].
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Figure 6.2 shows the situation after default-constructing a smart pointer as 
follows:

TimeOfDayPtr tod;

This creates a smart pointer with an internal null pointer.

Figure 6.2. Newly initialized smart pointer.

Constructing a class instance creates that instance with a reference count of zero; 
the assignment to the class pointer causes the smart pointer to increment the 
class’s reference count:

tod = new TimeOfDayI;   // Refcount == 1

The resulting situation is shown in Figure 6.3.

Figure 6.3. Initialized smart pointer.

Assigning or copy-constructing a smart pointer assigns and copy-constructs the 
smart pointer (not the underlying instance) and increments the reference count of 
the instance:

TimeOfDayPtr tod2(tod); // Copy-construct tod2
TimeOfDayPtr tod3;
tod3 = tod;             // Assign to tod3

tod

tod
1
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The situation after executing these statements is shown in Figure 6.4:

Figure 6.4. Three smart pointers pointing at the same class instance.

Continuing the example, we can construct a second class instance and assign it to 
one of the original smart pointers, tod2:

tod2 = new TimeOfDayI;

This decrements the reference count of the class originally denoted by tod2 
and increments the reference count of the class that is assigned to tod2. The 
resulting situation is shown in Figure 6.5.

Figure 6.5. Three smart pointers and two instances.

You can clear a smart pointer by assigning zero to it:

tod = 0;        // Clear handle

tod
3

tod2

tod3

tod
2

tod2

tod3

1
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As you would expect, this decrements the reference count of the instance, as 
shown in Figure 6.6.

Figure 6.6. Decremented reference count after clearing a smart pointer.

If a smart pointer goes out of scope, is cleared, or has a new instance assigned to 
it, the smart pointer decrements the reference count of its instance; if the reference 
count drops to zero, the smart pointer calls delete to deallocate the instance. 
The following code snippet deallocates the instance on the right by assigning 
tod2 to tod3:

tod3 = tod2;

This results in the situation shown in Figure 6.7.

Figure 6.7. Deallocation of an instance with a reference count of zero.

Copying and Assignment of Classes

Classes have a default memberwise copy constructor and assignment operator, so 
you can copy and assign class instances:

TimeOfDayPtr tod = new TimeOfDayI(2, 3, 4); // Create instance
TimeOfDayPtr tod2 = new TimeOfDayI(*tod);   // Copy instance

TimeOfDayPtr tod3 = new TimeOfDayI;
*tod3 = *tod;                               // Assign instance

tod
1

tod2

tod3

1

tod
0

tod2

tod3

2
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Copying and assignment in this manner performs a memberwise shallow copy 
or assignment, that is, the source members are copied into the target members; if a 
class contains class members (which are mapped as smart pointers), what is 
copied or assigned is the smart pointer, not the target of the smart pointer.

To illustrate this, consider the following Slice definitions:

class Node {
    int i;
    Node next;
};

Assume that we initialize two instances of type Node as follows:

NodePtr p1 = new Node(99, new Node(48, 0));
NodePtr p2 = new Node(23, 0);

// ...

*p2 = *p1; // Assignment

After executing the first two statements, we have the situation shown in 
Figure 6.8.

Figure 6.8. Class instances prior to assignment.

p1
1 1

i: 48
next:

i: 99
next:

p2
1

i: 23
next:
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After executing the assignment statement, we end up with the result shown in 
Figure 6.9.

Figure 6.9. Class instances after assignment.

Note that copying and assignment also works for the implementation of abstract 
classes, such as our TimeOfDayI class, for example:

class TimeOfDayI;

typedef IceUtil::Handle<TimeOfDayI> TimeOfDayIPtr;

class TimeOfDayI : virtual public TimeOfDay {
    // As before...
};

The default copy constructor and assignment operator will perform a memberwise 
copy or assignment of your implementation class:

TimeOfDayIPtr tod1 = new TimeOfDayI;
TimeOfDayIPtr tod2 = new TimeOfDayI(*tod1);     // Make copy

Of course, if your implementation class contains raw pointers (for which a 
memberwise copy would almost certainly be inappropriate), you must implement 
your own copy constructor and assignment operator that take the appropriate 
action (and probably call the base copy constructor or assignment operator to take 
care of the base part).

Note that the preceding code uses TimeOfDayIPtr as a typedef for 
IceUtil::Handle<TimeOfDayI>. This class is a template that contains the 
smart pointer implementation. If you want smart pointers for the implementation 
of an abstract class, you must define a smart pointer type as illustrated by this type 
definition.

p1
1 2

i: 48
next:

i: 99
next:

p2
1

i: 99
next:
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Copying and assignment of classes also works correctly for derived classes: 
you can assign a derived class to a base class, but not vice-versa; during such an 
assignment, the derived part of the source class is sliced, as per the usual C++ 
assignment semantics.

Polymorphic Copying of Classes

As shown in Section 6.14.1 on page 222, the C++ mapping generates an 
ice_clone member function for every class:

class TimeOfDay : virtual public Ice::Object {
public:
    // ...

    virtual Ice::ObjectPtr ice_clone() const;
};

This member function makes a polymorphic shallow copy of a class: members 
that are not class members are deep copied; all members that are class members 
are shallow copied. To illustrate, consider the following class definition:

class Node {
    Node n1;
    Node n2;
};

Assume that we have an instance of this class, with the n1 and n2 members 
initialized to point at separate instances, as shown in Figure 6.10.

Figure 6.10. A class instance pointing at two other instances.

n1

n2
p1
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If we call ice_clone on the instance on the left, we end up with the situation 
shown in Figure 6.11.

Figure 6.11. Resulting graph after calling ice_clone on the left-most instance of Figure 6.10.

As you can see, class members are shallow copied, that is, ice_clone makes a 
copy of the class instance on which it is invoked, but does not copy any class 
instances that are pointed at by the copied instance.

Note that ice_clone returns a value of type Ice::ObjectPtr, to avoid 
problems with compilers that do not support covariant return types. The generated 
Ptr classes contain a dynamicCast member that allows you to safely down-
cast the return value of ice_clone. For example, the code to achieve the situa-
tion shown in Figure 6.11 looks as follows:

NodePtr p1 = new Node(new Node, new Node);
NodePtr p2 = NodePtr::dynamicCast(p1->ice_clone());

ice_clone is generated by the Slice compiler for concrete classes (that is, 
classes that do not have operations). However, because classes with operations are 
abstract, for abstract classes, the generated ice_clone cannot know how to 
instantiate an instance of the derived concrete class (because the name of the 
derived class is not known). This means that, for abstract classes, the generated 
ice_clone throws a CloneNotImplementedException.

If you want to clone the implementation of an abstract class, you must over-
ride the virtual ice_clone member in your concrete implementation class. For 
example:

class TimeOfDayI : public TimeOfDay {
public:
    virtual Ice::ObjectPtr ice_clone() const
    {
        return new TimeOfDayI(*this);
    }
};

n1

n2

n1

n2

p1

p2
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Null Smart Pointers

A null smart pointer contains a null C++ pointer to its underlying instance. This 
means that if you attempt to dereference a null smart pointer, you get an 
IceUtil::NullHandleException:

TimeOfDayPtr tod;               // Construct null handle

try {
    tod->minute = 0;            // Dereference null handle
    assert(false);              // Cannot get here
} catch (const IceUtil::NullHandleException&) {
    ; // OK, expected
} catch (...) {
    assert(false);              // Must get NullHandleException
}

Preventing Stack-Allocation of Class Instances

The Ice C++ mapping expects class instances to be allocated on the heap. Allo-
cating class instances on the stack or in static variables is pragmatically useless 
because all the Ice APIs expect parameters that are smart pointers, not class 
instances. This means that, to do anything with a stack-allocated class instance, 
you must initialize a smart pointer for the instance. However, doing so does not 
work because it inevitably leads to a crash:

{                               // Enter scope
    TimeOfDayI t;               // Stack-allocated class instance
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance

    todp = &t;                  // Legal, but dangerous
    // ...
}                               // Leave scope, looming crash!

This goes badly wrong because, when todp goes out of scope, it decrements the 
reference count of the class to zero, which then calls delete on itself. However, 
the instance is stack-allocated and cannot be deleted, and we end up with unde-
fined behavior (typically, a core dump).

The following attempt to fix this is also doomed to failure:

{                               // Enter scope
    TimeOfDayI t;               // Stack-allocated class instance
    TimeOfDayPtr todp;          // Handle for a TimeOfDay instance
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    todp = &t;                  // Legal, but dangerous
    // ...
    todp = 0;                   // Crash imminent!
}

This code attempts to circumvent the problem by clearing the smart pointer 
explicitly. However, doing so also causes the smart pointer to drop the reference 
count on the class to zero, so this code ends up with the same call to delete on 
the stack-allocated instance as the previous example.

The upshot of all this is: never allocate a class instance on the stack or in a 
static variable. The C++ mapping assumes that all class instances are allocated on 
the heap and no amount of coding trickery will change this.7

You can prevent allocation of class instances on the stack or in static variables 
by adding a protected destructor to your implementation of the class: if a class has 
a protected destructor, allocation must be made with new, and static or stack allo-
cation causes a compile time error. In addition, explicit calls to delete on a 
heap-allocated instance also are flagged at compile time. You may want to habitu-
ally add a protected destructor to your implementation of abstract Slice classes to 
protect yourself from accidental heap allocation, as shown on page 226. (For Slice 
classes that do not have operations, the Slice compiler automatically adds a 
protected destructor.)

Smart Pointers and Constructors

Slice classes inherit their reference-counting behavior from the 
IceUtil::Shared class (see Appendix F), which ensures that reference 
counts are managed in a thread-safe manner. When a stack-allocated smart pointer 
goes out of scope, the smart pointer invokes the __decRef function on the refer-
ence-counted object. Ignoring thread-safety issues, __decRef is implemented 
like this:

void
IceUtil::Shared::__decRef()
{
    if (--_ref == 0 && !_noDelete)
        delete this;
}

7. You could abuse the __setNoDelete member to disable deallocation, but we strongly 
discourage you from doing this.
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In other words, when the smart pointer calls __decRef on the pointed-at 
instance and the reference count reaches zero (which happens when the last smart 
pointer for a class instance goes out of scope), the instance self-destructs by 
calling delete this.

However, as you can see, the instance self-destructs only if _noDelete is 
false (which it is by default, because the constructor initializes it to false). You can 
call __setNoDelete(true) to prevent this self-destruction and, later, call 
__setNoDelete(false) to enable it again. This is necessary if, for example, 
a class in its constructor needs to pass this to another function:

void someFunction(const TimeOfDayPtr& t)
{
    // ...
}

TimeOfDayI::TimeOfDayI()
{
    someFunction(this); // Trouble looming here!
}

At first glance, this code looks innocuous enough. While TimeOfDayI is being 
constructed, it passes this to someFunction, which expects a smart pointer. 
The compiler constructs a temporary smart pointer at the point of call (because the 
smart pointer template has a single-argument constructor that accepts a pointer to 
a heap-allocated instance, so the constructor acts a conversion function). However, 
this code fails badly. The TimeOfDayI instance is constructed with a statement 
such as:

TimeOfDayPtr tod = new TimeOfDayI;

The constructor of TimeOfDayI is called by operator new and, when the 
constructor starts executing, the reference count of the instance is zero (because 
that is what the reference count is initialized to by the Shared base class of 
TimeOfDayI). When the constructor calls someFunction, the compiler 
creates a temporary smart pointer, which increments the reference count of the 
instance and, once someFunction completes, the compiler dutifully destroys 
that temporary smart pointer again. But, of course, that drops the reference count 
back to zero and causes the TimeOfDayI instance to self-destruct by calling 
delete this. The net effect is that the call to new TimeOfDayI returns a 
pointer to an already deleted object, which is likely to cause the program to crash.

To get around the problem, you can call __setNoDelete:
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TimeOfDayI::TimeOfDayI()
{
    __setNoDelete(true);
    someFunction(this);
    __setNoDelete(false);
}

The code disables self-destruction while someFunction uses its temporary 
smart pointer by calling __setNoDelete(true). By doing this, the reference 
count of the instance is incremented before someFunction is called and decre-
mented back to zero when someFunction completes without causing the 
object to self-destruct. The constructor then re-enables self-destruction by calling 
__setNoDelete(false) before returning, so the statement

TimeOfDayPtr tod = new TimeOfDayI;

does the usual thing, namely to increment the reference count of the object to 1, 
despite the fact that a temporary smart pointer existed while the constructor ran.

In general, whenever a class constructor passes this to a function or another 
class that accepts a smart pointer, you must temporarily disable self-destruction.

Smart Pointers and Exception Safety

Smart pointers are exception safe: if an exception causes the thread of execution to 
leave a scope containing a stack-allocated smart pointer, the C++ run time ensures 
that the smart pointer’s destructor is called, so no resource leaks can occur:

{ // Enter scope...

    TimeOfDayPtr tod = new TimeOfDayI; // Allocate instance

    someFuncThatMightThrow();          // Might throw...

    // ...

} // No leak here, even if an exception is thrown

If an exception is thrown, the destructor of tod runs and ensures that it deallo-
cates the underlying class instance.

There is one potential pitfall you must be aware of though: if a constructor of a 
base class throws an exception, and another class instance holds a smart pointer to 
the instance being constructed, you can end up with a double deallocation. You 
can use the __setNoDelete mechanism to temporarily disable self-destruction 
in this case, as described in the previous section.
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Smart Pointers and Cycles

One thing you need to be aware of is the inability of reference counting to deal 
with cyclic dependencies. For example, consider the following simple self-refer-
ential class:

class Node {
    int val;
    Node next;
};

Intuitively, this class implements a linked list of nodes. As long as there are no 
cycles in the list of nodes, everything is fine, and our smart pointers will correctly 
deallocate the class instances. However, if we introduce a cycle, we have a 
problem:

{                          // Open scope...

    NodePtr n1 = new Node; // N1 refcount == 1
    NodePtr n2 = new Node; // N2 refcount == 1
    n1->next = n2;         // N2 refcount == 2
    n2->next = n1;         // N1 refcount == 2

} // Destructors run:      // N2 refcount == 1,
                           // N1 refcount == 1, memory leak!

The nodes pointed to by n1 and n2 do not have names but, for the sake of illustra-
tion, let us assume that n1’s node is called N1, and n2’s node is called N2. When 
we allocate the N1 instance and assign it to n1, the smart pointer n1 increments 
N1’s reference count to 1. Similarly, N2’s reference count is 1 after allocating the 
node and assigning it to n2. The next two statements set up a cyclic dependency 
between n1 and n2 by making their next pointers point at each other. This sets 
the reference count of both N1 and N2 to 2. When the enclosing scope closes, the 
destructor of n2 is called first and decrements N2’s reference count to 1, followed 
by the destructor of n1, which decrements N1’s reference count to 1. The net 
effect is that neither reference count ever drops to zero, so both N1 and N2 are 
leaked.

Garbage Collection of Class Instances

The previous example illustrates a problem that is generic to using reference 
counts for deallocation: if a cyclic dependency exists anywhere in a graph 
(possibly via many intermediate nodes), all nodes in the cycle are leaked.
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To avoid memory leaks due to such cycles, Ice for C++ contains a garbage 
collector. The collector identifies class instances that are part of one or more 
cycles but are no longer reachable from the program and deletes such instances:

• By default, garbage is collected whenever you destroy a communicator. This 
means that no memory is leaked when your program exits. (Of course, this 
assumes that you correctly destroy your communicators as described in 
Section 8.3.)

• You can also explicitly call the garbage collector by calling 
Ice::collectGarbage. For example, the leak caused by the preceding 
example can be avoided as follows:

{                          // Open scope...

    NodePtr n1 = new Node; // N1 refcount == 1
    NodePtr n2 = new Node; // N2 refcount == 1
    n1->next = n2;         // N1 refcount == 2
    n2->next = n1;         // N2 refcount == 2

} // Destructors run:      // N2 refcount == 1,
                           // N1 refcount == 1

Ice::collectGarbage();     // Deletes N1 and N2

The call to Ice::collectGarbage deletes the no longer reachable 
instances N1 and N2 (as well as any other non-reachable instances that may 
have accumulated earlier).

• Deleting leaked memory with explicit calls to the garbage collector can be 
inconvenient because it requires polluting the code with calls to the collector. 
You can ask the Ice run time to run a garbage collection thread that periodi-
cally cleans up leaked memory by setting the property Ice.GC.Interval 
to a non-zero value.8 For example, setting Ice.GC.Interval to 5 causes 
the collector thread to run the garbage collector once every five seconds. You 
can trace the execution of the collector by setting Ice.Trace.GC to a non-
zero value (Appendix D).

Note that the garbage collector is useful only if your program actually creates 
cyclic class graphs. There is no point in running the garbage collector in programs 
that do not create such cycles. (For this reason, the collector thread is disabled by 

8. See Chapter 30 for how to set properties.
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default and runs only if you explicitly set Ice.GC.Interval to a non-zero 
value.)

Smart Pointer Comparison

As for proxy handles (see Section 6.11.4 on page 210), class handles support the 
comparison operators ==, !=, and <. This allows you to use class handles in STL 
sorted containers. Be aware that, for smart pointers, object identity is not used for 
the comparison, because class instances do not have identity. Instead, these opera-
tors simply compare the memory address of the classes they point to. This means 
that operator== returns true only if two smart pointers point at the same phys-
ical class instance:

// Create a class instance and initialize
//
TimeOfDayIPtr p1 = new TimeOfDayI;
p1->hour = 23;
p1->minute = 10;
p1->second = 18;

// Create another class instance with
// the same member values
//
TimeOfDayIPtr p2 = new TimeOfDayI;
p2->hour = 23;
p2->minute = 10;
p2->second = 18;

assert(p1 != p2);       // The two do not compare equal

TimeOfDayIPtr p3 = p1;  // Point at first class again

assert(p1 == p3);       // Now they compare equal

6.15 Asynchronous Method Invocation (AMI)

NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation. 
This section describes this API. You can find documentation for the previous API 
in Appendix K. Note that the old API is deprecated and will be removed in a 
future release.
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Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and poll or wait for completion of the invocation, or receive 
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether 
a client sent a request synchronously or asynchronously.

6.15.1 Basic Asynchronous API

Consider the following simple Slice definition:

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Proxy Methods

Besides the synchronous proxy methods, slice2cpp generates the following 
asynchronous proxy methods:9

Ice::AsyncResultPtr begin_getName(Ice::Int number);
Ice::AsyncResultPtr begin_getName(Ice::Int number,
                                  const Ice::Context& __ctx)

std::string end_getName(const Ice::AsyncResultPtr&);

As you can see, the single getName operation results in begin_getName and 
end_getName methods. (The begin_ method is overloaded so you can pass a 
per-invocation context—see Section 32.12.)

• The begin_getName method sends (or queues) an invocation of getName. 
This method does not block the calling thread.

9. There are four additional overloads of begin_getName that we discuss in Sections 6.15.4 and 
6.15.5.
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• The end_getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not 
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to 
end_getName, the method returns immediately with the result.

A client could call these methods as follows:

EmployeesPrx e = ...;
Ice::AsyncResultPtr r = e->begin_getName(99);

// Continue to do other things here...

string name = e->end_getName(r);

Because begin_getName does not block, the calling thread can do other things 
while the operation is in progress.

Note that begin_getName returns a value of type AsyncResultPtr. 
The AsyncResult associated with this smart pointer contains the state that the 
Ice run time requires to keep track of the asynchronous invocation. You must pass 
the AsyncResultPtr that is returned by the begin_ method to the corre-
sponding end_ method.

The begin_ method has one parameter for each in-parameter of the corre-
sponding Slice operation. Similarly, the end_ method has one out-parameter for 
each out-parameter of the corresponding Slice operation (plus the AsyncRe-
sultPtr parameter). For example, consider the following operation:

double op(int inp1, string inp2, out bool outp1, out long outp2);

The begin_op and end_op methods have the following signature:

Ice::AsyncResultPtr begin_op(Ice::Int inp1,
                             const ::std::string& inp2)

Ice::Double end_op(bool& outp1, Ice::Long& outp2,
                   const Ice::AsyncResultPtr&);

Exception Handling

If an invocation raises an exception, the exception is thrown by the end_ method, 
even if the actual error condition for the exception was encountered during the 
begin_ method (“on the way out”). The advantage of this behavior is that all 
exception handling is located with the code that calls the end_ method (instead of 
being present twice, once where the begin_ method is called, and again where 
the end_ method is called).
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There is one exception to the above rule: if you destroy the communicator and 
then make an asynchronous invocation, the begin_ method throws Communi-
catorDestroyedException. This is necessary because, once the run time is 
finalized, it can no longer throw an exception from the end_ method.

The only other exception that is thrown by the begin_ and end_ methods is 
IceUtil::IllegalArgumentException. This exception indicates that 
you have used the API incorrectly. For example, the begin_ method throws this 
exception if you call an operation that has a return value or out-parameters on a 
oneway proxy. Similarly, the end_ method throws this exception if you use a 
different proxy to call the end_ method than the proxy you used to call the 
begin_ method, or if the AsyncResult you pass to the end_ method was 
obtained by calling the begin_ method for a different operation.

6.15.2 The AsyncResult Class

The AsyncResult that is returned by the begin_ method encapsulates the 
state of the asynchronous invocation:

class AsyncResult
    : virtual public IceUtil::Shared,
      private IceUtil::noncopyable {
public:
    virtual bool operator==(const AsyncResult&) const;
    virtual bool operator<(const AsyncResult&) const;

    virtual Int getHash() const;

    virtual CommunicatorPtr getCommunicator() const;
    virtual ConnectionPtr getConnection() const;
    virtual ObjectPrx getProxy() const;
    const string& getOperation() const;
    LocalObjectPtr getCookie() const;

    bool isCompleted() const;
    void waitForCompleted();

    bool isSent() const;
    void waitForSent();

    bool sentSynchronously() const;

};
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The methods have the following semantics:

• bool operator==(const AsyncResult&) const
bool operator<(const AsyncResult&) const
Int getHash() const

These methods allow you to create ordered or hashed collections of pending 
asynchronous invocations. This is useful, for example, if you can have a 
number of outstanding requests, and need to pass state between the begin_ 
and the end_ methods. In this case, you can use the returned AsyncRe-
sults as the key into a map that stores the state for each call.

• CommunicatorPtr getCommunicator() const

This method returns the communicator that sent the invocation.

• virtual ConnectionPtr getConnection() const

This method returns the connection that was used for the invocation.

• virtual ObjectPrx getProxy() const

This method returns the proxy that was used to call the begin_ method.

• const string& getOperation() const

This method returns the name of the operation.

• LocalObjectPtr getCookie() const

This method returns the cookie that was passed to the begin_ method (see 
Section 6.15.4). If you did not pass a cookie to the begin_ method, the 
return value is null.

• bool isCompleted() const

This method returns true if, at the time it is called, the result of an invocation 
is available, indicating that a call to the end_ method will not block the caller. 
Otherwise, if the result is not yet available, the method returns false.

• void waitForCompleted()

This method blocks the caller until the result of an invocation becomes avail-
able.

• bool isSent() const

When you call the begin_ method, the Ice run time attempts to write the 
corresponding request to the client-side transport. If the transport cannot 
accept the request, the Ice run time queues the request for later transmission. 
isSent returns true if, at the time it is called, the request has been written to 
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the local transport (whether it was initially queued or not). Otherwise, if the 
request is still queued, isSent returns false.

• void waitForSent()

This method blocks the calling thread until a request has been written to the 
client-side transport.

• bool sentSynchronously() const

This method returns true if a request was written to the client-side transport 
without first being queued. If the request was initially queued, sentSyn-
chronously returns false (independent of whether the request is still in the 
queue or has since been written to the client-side transport).

6.15.3 Polling for Completion
The AsyncResult methods allow you to poll for call completion. Polling is 
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls send to send a chunk of the file, indicating at which 
offset in the file the chunk belongs. A naïve way to transmit a file would be along 
the following lines:

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;

Ice::Int offset = 0;
while (!file.eof()) {
    ByteSeq bs;
    bs = file.read(chunkSize); // Read a chunk
    ft->send(offset, bs);      // Send the chunk
    offset += bs.size();
}

This works, but not very well: because the client makes synchronous calls, it 
writes each chunk on the wire and then waits for the server to receive the data, 
process it, and return a reply before writing the next chunk. This means that both 
client and server spend much of their time doing nothing—the client does nothing 
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while the server processes the data, and the server does nothing while it waits for 
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
Ice::Int offset = 0;

list<Ice::AsyncResultPtr> results;
const int numRequests = 5;

while (!file.eof()) {
    ByteSeq bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice::AsyncResultPtr r = ft->begin_send(offset, bs);
    offset += bs.size();

    // Wait until this request has been passed to the transport.
    r->waitForSent();
    results.push_back(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.size() > numRequests) {
        Ice::AsyncResultPtr r = results.front();
        results.pop_front();
        r->waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (!results.empty()) {
    Ice::AsyncResultPtr r = results.front();
    results.pop_front();
    r->waitForCompleted();
}

With this code, the client sends up to numRequests + 1 chunks before it waits 
for the least recent one of these requests to complete. In other words, the client 
sends the next request without waiting for the preceding request to complete, up to 
the limit set by numRequests. In effect, this allows the client to “keep the pipe 
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to the server full of data”: the client keeps sending data, so both client and server 
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the 
bandwidth of the network as well as the amount of time taken by the server to 
process each request. However, with a little testing, you can quickly zoom in on 
the point where making the requests larger or queuing more requests no longer 
improves performance. With this technique, you can realize the full bandwidth of 
the link to within a percent or two of the theoretical bandwidth limit of a native 
socket connection.

6.15.4 Generic Completion Callbacks

The begin_ method is overloaded to allow you to provide completion callbacks. 
Here are the corresponding methods for the getName operation:

Ice::AsyncResultPtr begin_getName(
                        Ice::Int number,
                        const Ice::CallbackPtr& __del,
                        const Ice::LocalObjectPtr& __cookie = 0);

Ice::AsyncResultPtr begin_getName(
                        Ice::Int number,
                        const Ice::Context& __ctx,
                        const Ice::CallbackPtr& __del,
                        const Ice::LocalObjectPtr& __cookie = 0);

The second version of begin_getName lets you override the default context. 
(We discuss the purpose of the cookie parameter in the next section.) Following 
the in-parameters, the begin_ method accepts a parameter of type 
Ice::CallbackPtr. This is a smart pointer to a callback class that is provided 
by the Ice run time. This class stores an instance of a callback class that you 
implement. The Ice run time invokes a method on your callback instance when an 
asynchronous operation completes. Your callback class must provide a method 
that returns void and accepts a single parameter of type 
const AsyncResultPtr&, for example:

class MyCallback : public IceUtil::Shared {
public:
    void finished(const Ice::AsyncResultPtr& r) {
        EmployeesPrx e =
            EmployeesPrx::uncheckedCast(r->getProxy());
        try {
            string name = e->end_getName(r);
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            cout << "Name is: " << name << endl;
        } catch (const Ice::Exception& ex) {
            cerr << "Exception is: " << ex << endl;
        }
    }
};
typedef IceUtil::Handle<MyCallback> MyCallbackPtr;

Note that your callback class must derive from IceUtil::Shared. The call-
back method can have any name you prefer but its signature must match the 
preceding example.

The implementation of your callback method must call the end_ method. The 
proxy for the call is available via the getProxy method on the AsyncResult 
that is passed by the Ice run time. The return type of getProxy is 
Ice::ObjectPrx, so you must down-cast the proxy to its correct type. (You 
should always use an uncheckedCast to do this, otherwise you send an addi-
tional message to the server to verify the proxy type.)

Your callback method should catch and handle any exceptions that may be 
thrown by the end_ method. If you allow an exception to escape from the call-
back method, the Ice run time produces a log entry by default and ignores the 
exception. (You can disable the log message by setting the property 
Ice.Warn.AMICallback to zero.)

To inform the Ice run time that you want to receive a callback for the comple-
tion of the asynchronous call, you pass the callback instance to the begin_ 
method:

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;
Ice::CallbackPtr d = Ice::newCallback(cb, &MyCallback::finished);

e->begin_getName(99, d); 

Note the call to Ice::newCallback in this example. This helper function 
expects a smart pointer to your callback instance and a member function pointer 
that specifies your callback method.

Using Cookies

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin_ method. As an example, consider an 
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results. 
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In this case, the begin_ method knows which user interface element should 
receive the update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is an 
instance of a class that you write; the class can contain whatever data you want to 
pass, as well as any methods you may want to add to manipulate that data.

The only requirement on the cookie class is that it must derive from 
Ice::LocalObject. Here is an example implementation that stores a 
WidgetHandle. (We assume that this class provides whatever methods are 
needed by the end_ method to update the display.)

class Cookie : public Ice::LocalObject
{
public:
    Cookie(WidgetHandle h) : _h(h) {}
    WidgetHandle getWidget() { return _h; }

private:
    WidgetHandle _h;
};
typedef IceUtil::Handle<Cookie> CookiePtr;

When you call the begin_ method, you pass the appropriate cookie instance to 
inform the end_ method how to update the display:

// Make cookie for call to getName(99).
CookiePtr cookie1 = new Cookie(widgetHandle1);

// Make cookie for call to getName(42);
CookiePtr cookie2 = new Cookie(widgetHandle2);

// Invoke the getName operation with different cookies.
e->begin_getName(99, getNameCB, cookie1);
e->begin_getName(24, getNameCB, cookie2);

The end_ method can retrieve the cookie from the AsyncResult by calling 
getCookie. For this example, we assume that widgets have a writeString 
method that updates the relevant UI element:

void
MyCallback::getName(const Ice::AsyncResultPtr& r)
{
    EmployeesPrx e = EmployeesPrx::uncheckedCast(r->getProxy());
    CookiePtr cookie = CookiePtr::dynamicCast(r->getCookie());
    try {
        string name = e->end_getName(r);
        cookie->getWidget()->writeString(name);
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    } catch (const Ice::Exception& ex) {
        handleException(ex);
    }
}

The cookie provides a simple and effective way for you to pass state between the 
point where an operation is invoked and the point where its results are processed. 
Moreover, if you have a number of operations that share common state, you can 
pass the same cookie instance to multiple invocations.

6.15.5 Type-Safe Completion Callbacks

The generic callback API we saw in Section 6.15.4 is not entirely type-safe:

• You must down-cast the return value of getProxy to the correct proxy type 
before you can call the end_ method.

• You must call the correct end_ method to match the operation called by the 
begin_ method.

• If you use a cookie, you must down-cast the cookie to the correct type before 
you can access the data inside the cookie.

• You must remember to catch exceptions when you call the end_ method; if 
you forget to do this, you will not know that the operation failed.

slice2cpp generates an additional type-safe API that takes care of these chores 
for you. The type-safe API is provided as a template that works much like the 
Ice::Callback class of the generic API, but requires strongly-typed method 
signatures.

To use type-safe callbacks, you must implement a callback class that provides 
two callback methods:

• a success callback that is called if the operation succeeds

• a failure callback that is called if the operation raises an exception

As for the generic API, your callback class must derive from 
IceUtil::Shared. Here is a callback class for an invocation of the getName 
operation:

class MyCallback : public IceUtil::Shared
{
public:
    void getNameCB(const string& name) {
        cout << "Name is: " << name << endl;
    }
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    void failureCB(const Ice::Exception& ex) {
        cerr << "Exception is: << ex << endl;
    }
};

The callback methods can have any name you prefer and must have void return 
type. The failure callback always has a single parameter of type 
const Ice::Exception&. The success callback parameters depend on the 
operation signature. If the operation has non-void return type, the first parameter 
of the success callback is the return value. The return value (if any) is followed by 
a parameter for each out-parameter of the corresponding Slice operation, in the 
order of declaration.

To receive these callbacks, you instantiate your callback instance and specify 
the methods you have defined before passing a smart pointer to a callback wrapper 
instance to the begin_ method:

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(
        cb, &MyCallback::getNameCB, &MyCallback::failureCB);

Callback_Employees_getNumberPtr getNumberCB =
    newCallback_Employees_getNumber(
        cb, &MyCallback::getNumberCB, &MyCallback::failureCB);

e->begin_getName(99, getNameCB);
e->begin_getNumber("Fred", getNumberCB);

Note how this code creates instances of two smart pointer types generated by 
slice2cpp named Callback_Employees_getNamePtr and 
Callback_Employees_getNumberPtr. Each smart pointer points to a 
template instance that encapsulates your callback instance and two member func-
tion pointers for the callback methods. The name of this smart pointer type is
<module>::Callback_<interface>_<operation>Ptr.

Also note that the code uses helper functions to initialize the smart pointers. 
The first argument to the helper function is your callback instance, and the two 
following arguments are the success and failure member function pointers, respec-
tively. The name of this helper function is 
<module>::newCallback_<interface>_<operation>.

It is legal to pass a null pointer as the success or failure callback. For the 
success callback, this is legal only for operations that have void return type and no 
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out-parameters. This is useful if you do not care when the operation completes but 
want to know if the call failed. If you pass a null exception callback, the Ice run 
time will ignore any exception that is raised by the invocation.

The type of the success and exception member function pointers is provided as 
Response and Exception typedefs by the callback template. For example, 
you can ignore exceptions for an invocation of getName as follows:

Callback_Employees_op::Exception nullException = 0;

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(
        cb, &MyCallback::getNameCB, nullException);

e->begin_getName(99, getNameCB); // Ignores exceptions

Using Cookies

The begin_ method optionally accepts a cookie as a trailing parameter. As for 
the generic API, you can use the cookie to share state between the begin_ and 
end_ methods. However, with the type-safe API, there is no need to down-cast 
the cookie. Instead, the cookie parameter that is passed to the end_ method is 
strongly typed. Assuming that you have defined a Cookie class and Cook-
iePtr smart pointer, you can pass a cookie to the begin_ method as follows:

MyCallbackPtr cb = new MyCallback;

Callback_Employees_getNamePtr getNameCB =
    newCallback_Employees_getName(
        cb, &MyCallback::getNameCB, &MyCallback::failureCB);

CookiePtr cookie = new Cookie(widgetHandle);
e->begin_getName(99, getNameCB, cookie);

The callback methods of your callback class simply add the cookie parameter:

class MyCallback : public IceUtil::Shared
{
public:
    void getNameCB(const string& name, const CookiePtr& cookie) {
        cookie->getWidget()->writeString(name);
    }

    void failureCB(const Ice::Exception& ex,
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                   const CookiePtr& cookie) {
        cookie->getWidget()->writeError(ex.what());
    }
};

6.15.6 Oneway Invocations
You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise 
user exceptions. If you call the begin_ method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin_ method throws an 
IceUtil::IllegalArgumentException.

For the generic API, the callback method looks exactly as for a twoway invo-
cation. However, for oneway invocations, the Ice run time does not call the call-
back method unless the invocation raised an exception during the begin_ 
method (“on the way out”).

For the type-safe API, the newCallback helper for void operations is over-
loaded so you can omit the success callback. For example, here is how you could 
call ice_ping asynchronously:

MyCallbackPtr cb = new MyCallback;

Ice::Callback_Object_ice_pingPtr callback =
    Ice::newCallback_Object_ice_ping(cb, &MyCallback::failureCB);

p->begin_opVoid(callback);

6.15.7 Flow Control
Asynchronous method invocations never block the thread that calls the begin_ 
method: the Ice run time checks to see whether it can write the request to the local 
transport. If it can, it does so immediately in the caller’s thread. (In that case, 
AsyncResult::sentSynchronously returns true.) Alternatively, if the 
local transport does not have sufficient buffer space to accept the request, the Ice 
run time queues the request internally for later transmission in the background. (In 
that case, AsyncResult::sentSynchronously returns false.)

This creates a potential problem: if a client sends many asynchronous requests 
at the time the server is too busy to keep up with them, the requests pile up in the 
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the 
number of requests that are queued so, if that number exceeds some threshold, the 
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client stops invoking more operations until some of the queued operations have 
drained out of the local transport.

For the generic API, you can create an additional callback method:

class MyCallback : public IceUtil::Shared {
public:
    void finished(const Ice::AsyncResultPtr&);
    void sent(const Ice::AsyncResultPtr&);
};
typedef IceUtil::Handle<MyCallback> MyCallbackPtr;

As with any other callback method, you are free to choose any name you like. For 
this example, the name of the callback method is sent. You inform the Ice run 
time that you want to be informed when a call has been passed to the local trans-
port by specifying the sent method as an additional parameter when you create 
the Ice::Callback:

EmployeesPrx e = ...;

MyCallbackPtr cb = new MyCallback;
Ice::CallbackPtr d = Ice::newCallback(cb,
                                      &MyCallback::finished,
                                      &MyCallback::sent);

e->begin_getName(99, d); 

 If the Ice run time can immediately pass the request to the local transport, it does 
so and invokes the sent method from the thread that calls the begin_ method. 
On the other hand, if the run time has to queue the request, it calls the sent 
method from a different thread once it has written the request to the local trans-
port. In addition, you can find out from the AsyncResult that is returned by the 
begin_ method whether the request was sent synchronously or was queued, by 
calling sentSynchronously.

For the generic API, the sent method has the following signature:

void sent(const Ice::AsyncResult&);

For the type-safe API, there are two versions, one without and one with a cookie:

void sent(bool sentSynchronously);
void sent(bool sentSynchronously, const <CookiePtr>& cookie);

For the version with a cookie, <CookiePtr> is replaced with the actual type of 
the cookie smart pointer you passed to the begin_ method.
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The sent methods allow you to limit the number of queued requests by 
counting the number of requests that are queued and decrementing the count when 
the Ice run time passes a request to the local transport.

6.15.8 Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides asynchronous versions of this method so you can 
flush batch requests asynchronously.

begin_ice_flushBatchRequests and 
end_ice_flushBatchRequests are proxy methods that flush any batch 
requests queued by that proxy.

In addition, similar methods are available on the communicator and the 
Connection object that is returned by AsyncResult::getConnection. 
These methods flush batch requests sent via the same communicator and via the 
same connection, respectively.

6.15.9 Concurrency

The Ice run time always invokes your callback methods from a separate thread. 
This means that you can safely use a non-recursive mutex without risking dead-
lock. There is one exception to this rule: the run time calls the sent callback 
from the thread calling the begin_ method if the request could be sent synchro-
nously. In the sent callback, you know which thread is calling the callback by 
looking at the sentSynchronously member or parameter, so you can take 
appropriate action to avoid a self-deadlock.

6.15.10 Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to 
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the 
servant happens to be collocated; the request is sent normally if the servant is not 
collocated. Section 32.21 provides more information about this optimization and 
describes how to disable it when necessary.
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6.16 slice2cpp Command-Line Options

The Slice-to-C++ compiler, slice2cpp, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --header-ext EXT

Changes the file extension for the generated header files from the default h to 
the extension specified by EXT.

You can also change the header file extension with a global metadata direc-
tive:

[["cpp:header-ext:hpp"]]

// ...

Only one such directive can appear in each source file. If you specify a header 
extension on both the command line and with a metadata directive, the meta-
data directive takes precedence. This ensures that included Slice files that 
were compiled separately get the correct header extension (provided that the 
included Slice files contain a corresponding metadata directive). For example:

// File example.ice
#include <Ice/BuiltinSequences.ice>

// ...

Compiling this file with

$ slice2cpp --header-ext=hpp -I/opt/Ice/include \ 
example.ice

generates example.hpp, but the #include directive in that file is for 
Ice/BuiltinSequences.h (not Ice/BuiltinSequences.hpp) 
because BuiltinSequences.ice contains a metadata directive 
[[”cpp:header-ext:h”]].

You normally will not need to use this metadata directive. The directive is 
necessary only if:

• You #include a Slice file in one of your own Slice files.

• The included Slice file is part of a library you link against.

• The library ships with the included Slice file’s header.
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• The library header uses a different header extension than your own code.

For example, if the library uses .hpp as the header extension, but your own 
code uses .h, the library’s Slice file should contain a 
[[”cpp:header-ext:hpp”]] directive. (If the directive is missing, you can 
add it to the library’s Slice file.)

• --source-ext EXT

Changes the file extension for the generated source files from the default cpp 
to the extension specified by EXT.

• --add-header HDR[,GUARD]

This option adds an include directive for the specified header at the beginning 
of the generated source file (preceding any other include directives). If GUARD 
is specified, the include directive is protected by the specified guard. For 
example, --add-header precompiled.h,__PRECOMPILED_H__ 
results in the following directives at the beginning of the generated source file:

#ifndef __PRECOMPILED_H__
#define __PRECOMPILED_H__
#include <precompiled.h>
#endif

The option can be repeated to create include directives for several files.

As suggested by the preceding example, this option is useful mainly to inte-
grate the generated code with a compiler’s precompiled header mechanism.

• --include-dir DIR

Modifies #include directives in source files to prepend the path name of 
each header file with the directory DIR. See Section 6.16.1 for more informa-
tion.

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --depend

Prints makefile dependency information to standard output. No code is gener-
ated when this option is specified. The output generally needs to be filtered 
before it can be included in a makefile; the Ice build system uses the script 
config/makedepend.py for this purpose.
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• --dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. This option allows you to 
selectively export or import global symbols in the generated code. As an 
example, compiling a Slice definition with

$ slice2cpp --dll-export ENABLE_DLL x.ice

results in the following additional code being generated into x.h:

#ifndef ENABLE_DLL
#   ifdef ENABLE_DLL_EXPORTS
#       define ENABLE_DLL ICE_DECLSPEC_EXPORT
#   else
#       define ENABLE_DLL ICE_DECLSPEC_IMPORT
#   endif
#endif

ICE_DECLSPEC_EXPORT and ICE_DECLSPEC_IMPORT are platform-
specific macros. For example, for Windows, they are defined as 
__declspec(dllexport) and __declspec(dllimport), respec-
tively; for Solaris using CC version 5.5 or later, ICE_DECLSPEC_EXPORT is 
defined as __global, and ICE_DECLSPEC_IMPORT is empty.10

The symbol name you specify on the command line (ENABLE_DLL in this 
example) is used by the generated code to export or import any symbols that 
must be visible to code outside the generated compilation unit. The net effect 
is that, if you want to create a DLL that includes x.cpp, but also want to use 
the generated types in compilation units outside the DLL, you can arrange for 
the relevant symbols to be exported by compiling x.cpp with 
-DENABLE_DLL_EXPORTS.

• --checksum

Generate checksums for Slice definitions.

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

10.Similar definitions exist for other platforms. For platforms that do not have any concept of 
explicit export or import of shared library symbols, both macros are empty.
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6.16.1 Include Directives
The #include directives generated by the Slice-to-C++ compiler can be a 
source of confusion if the semantics governing their generation are not well-
understood. The generation of #include directives is influenced by the 
command-line options -I and --include-dir; these options are discussed in 
more detail below. The --output-dir option directs the translator to place all 
generated files in a particular directory, but has no impact on the contents of the 
generated code.

Given that the #include directives in header files and source files are gener-
ated using different semantics, we describe them in separate sections.

Header Files

In most cases, the compiler generates the appropriate #include directives by 
default. As an example, suppose file A.ice includes B.ice using the following 
statement:

// A.ice
#include <B.ice>

Assuming both files are in the current working directory, we run the compiler as 
shown below:

$ slice2cpp -I. A.ice

The generated file A.h contains this #include directive:

// A.h
#include <B.h>

If the proper include paths are specified to the C++ compiler, everything should 
compile correctly.

Similarly, consider the common case where A.ice includes B.ice from a 
subdirectory:

// A.ice
#include <inc/B.ice>

Assuming both files are in the inc subdirectory, we run the compiler as shown 
below:

$ slice2cpp -I. inc/A.ice

The default output of the compiler produces this #include directive in A.h:

// A.h
#include <inc/B.h>
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Again, it is the user’s responsibility to ensure that the C++ compiler is configured 
to find inc/B.h during compilation.

Now let us consider a more complex example, in which we do not want the 
#include directive in the header file to match that of the Slice file. This can be 
necessary when the organizational structure of the Slice files does not match the 
application’s C++ code. In such a case, the user may need to relocate the gener-
ated files from the directory in which they were created, and the #include 
directives must be aligned with the new structure.

For example, let us assume that B.ice is located in the subdirectory 
slice/inc:

// A.ice
#include <slice/inc/B.ice>

However, we do not want the slice subdirectory to appear in the #include 
directive generated in the header file, therefore we specify the additional compiler 
option -Islice:

$ slice2cpp -I. -Islice slice/inc/A.ice

The generated code demonstrates the impact of this extra option:

// A.h
#include <inc/B.h>

As you can see, the #include directives generated in header files are affected 
by the include paths that you specify when running the compiler. Specifically, the 
include paths are used to abbreviate the path name in generated #include direc-
tives.

When translating an #include directive from a Slice file to a header file, the 
compiler compares each of the include paths against the path of the included file. 
If an include path matches the leading portion of the included file, the compiler 
removes that leading portion when generating the #include directive in the 
header file. If more than one include path matches, the compiler selects the one 
that results in the shortest path for the included file.

For example, suppose we had used the following options when compiling 
A.ice:

$ slice2cpp -I. -Islice -Islice/inc slice/inc/A.ice

In this case, the compiler compares all of the include paths against the included 
file slice/inc/B.ice and generates the following directive:

// A.h
#include <B.h>



6.16 slice2cpp Command-Line Options 265

The option -Islice/inc produces the shortest result, therefore the default path 
for the included file (slice/inc/B.h) is replaced with B.h.

In general, the -I option plays two roles: it enables the preprocessor to locate 
included Slice files, and it provides you with a certain amount of control over the 
generated #include directives. In the last example above, the preprocessor 
locates slice/inc/B.ice using the include path specified by the -I. option. 
The remaining -I options do not help the preprocessor locate included files; they 
are simply hints to the compiler.

Finally, we recommend using caution when specifying include paths. If the 
preprocessor is able to locate an included file via multiple include paths, it always 
uses the first include path that successfully locates the file. If you intend to modify 
the generated #include directives by specifying extra -I options, you must 
ensure that your include path hints match the include path selected by the prepro-
cessor to locate the included file. As a general rule, you should avoid specifying 
include paths that enable the preprocessor to locate a file in multiple ways.

Source Files

By default, the compiler generates #include directives in source files using 
only the base name of the included file. This behavior is usually appropriate when 
the source file and header file reside in the same directory.

For example, suppose A.ice includes B.ice from a subdirectory, as shown 
in the following snippet of A.ice:

// A.ice
#include <inc/B.ice>

We generate the source file using this command:

$ slice2cpp -I. inc/A.ice

Upon examination, we see that the source file contains the following #include 
directive:

// A.cpp
#include <B.h>

However, suppose that we wish to enforce a particular standard for generated 
#include directives so that they are compatible with our C++ compiler’s 
existing include path settings. In this case, we use the --include-dir option 
to modify the generated code. For example, consider the compiler command 
shown below:

$ slice2cpp --include-dir src -I. inc/A.ice
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The source file now contains the following #include directive:

// A.cpp
#include <src/B.h>

Any leading path in the included file is discarded as usual, and the value of the 
--include-dir option is prepended.

6.17 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cpp, the --checksum option causes the 
compiler to generate code in each C++ source file that accumulates checksums in 
a global map. A copy of this map can be obtained by calling a function defined in 
the header file Ice/SliceChecksums.h:

namespace Ice {
    Ice::SliceChecksumDict sliceChecksums();
}

In order to verify a server’s checksums, a client could simply compare the diction-
aries using the equality operator. However, this is not feasible if it is possible that 
the server might be linked with more Slice definitions than the client. A more 
general solution is to iterate over the local checksums as demonstrated below:

Ice::SliceChecksumDict serverChecksums = ...
Ice::SliceChecksumDict localChecksums = Ice::sliceChecksums();

for (Ice::SliceChecksumDict::const_iterator
     p = localChecksums.begin();
     p != localChecksums.end(); ++p) {

    Ice::SliceChecksumDict::const_iterator q
        = serverChecksums.find(p->first);
    if (q == serverChecksums.end()) {
        // No match found for type id!
    } else if (p->second != q->second) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 7
Developing a File System Client in 
C++

7.1 Chapter Overview

In this chapter, we present the source code for a C++ client that accesses the file 
system we developed in Chapter 5 (see Chapter 9 for the corresponding server).

7.2 The C++ Client

We now have seen enough of the client-side C++ mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
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        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

#include <Ice/Ice.h>
#include <Filesystem.h>
#include <iostream>
#include <iterator>

using namespace std;
using namespace Filesystem;

static void
listRecursive(const DirectoryPrx& dir, int depth = 0)
{
    // ...
}

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        // Create a communicator
        //
        ic = Ice::initialize(argc, argv);

        // Create a proxy for the root directory
        //
        Ice::ObjectPrx base
            = ic->stringToProxy("RootDir:default -p 10000");
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        if (!base)
            throw "Could not create proxy";

        // Down-cast the proxy to a Directory proxy
        //
        DirectoryPrx rootDir = DirectoryPrx::checkedCast(base);
        if (!rootDir)
            throw "Invalid proxy";

        // Recursively list the contents of the root directory
        //
        cout << "Contents of root directory:" << endl;
        listRecursive(rootDir);
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }

    // Clean up
    //
    if (ic)
        ic->destroy();

    return status;
}

1. The code includes a few header files:

1.Ice/Ice.h

This file is always included in both client and server source files. It provides 
definitions that are necessary for accessing the Ice run time.

2.Filesystem.h

This is the header that is generated by the Slice compiler from the Slice defi-
nitions in Filesystem.ice.

3.iostream

The client uses the iostream library to produce its output.

4.iterator

The implementation of listRecursive uses an STL iterator.
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2. The code adds using declarations for the std and Filesystem 
namespaces.

3. The structure of the code in main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

4. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive:

// Recursively print the contents of directory "dir" in
// tree fashion. For files, show the contents of each file.
// The "depth" parameter is the current nesting level
// (for indentation).

static void
listRecursive(const DirectoryPrx& dir, int depth = 0)
{
    string indent(++depth, '\t');

    NodeSeq contents = dir->list();

    for (NodeSeq::const_iterator i = contents.begin();
         i != contents.end();
         ++i) {
        DirectoryPrx dir = DirectoryPrx::checkedCast(*i);
        FilePrx file = FilePrx::uncheckedCast(*i);
        cout << indent << (*i)->name()
             << (dir ? " (directory):" : " (file):") << endl;
        if (dir) {
            listRecursive(dir, depth);
        } else {
            Lines text = file->read();
            for (Lines::const_iterator j = text.begin();
                 j != text.end();
                 ++j) {
                cout << indent << "\t" << *j << endl;
            }
        }
    }
}
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The function is passed a proxy to a directory to list, and an indent level. (The 
indent level increments with each recursive call and allows the code to print the 
name of each node at an indent level that corresponds to the depth of the tree at 
that node.) listRecursive calls the list operation on the directory and iter-
ates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 7.1. A small file system.

The output produced by the client for this file system is:

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

7.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the C++ code hardly 
differs from the code you would write for an ordinary C++ program. This is one of 
the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local C++ object. This allows you to put your effort where 
you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs. As we will see in Chapter 9, this is true for 
the server side as well, meaning that you can develop distributed applications 
easily and efficiently.
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Chapter 8
Server-Side Slice-to-C++ Mapping

8.1 Chapter Overview

In this chapter, we present the server-side Slice-to-C++ mapping (see Chapter 6 
for the client-side mapping). Section 8.3 discusses how to initialize and finalize 
the server-side run time, sections 8.4 to 8.6 show how to implement interfaces and 
operations, and Section 8.7 discusses how to register objects with the server-side 
Ice run time. Finally, Section 8.8 shows how to implement operations asynchro-
nously.

8.2 Introduction

The mapping for Slice data types to C++ is identical on the client side and server 
side. This means that everything in Chapter 6 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.
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We discuss these topics in the remainder of this chapter.

8.3 The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice::initialize before you can do anything else in your server. 
Ice::initialize returns a smart pointer to an instance of an Ice::Communi-
cator:

int
main(int argc, char* argv[])
{
    Ice::CommunicatorPtr ic
        = Ice::initialize(argc, argv);
    // ...
}

Ice::initialize accepts a C++ reference to argc and argv. The function 
scans the argument vector for any command-line options that are relevant to the 
Ice run time; any such options are removed from the argument vector so, when 
Ice::initialize returns, the only options and arguments remaining are 
those that concern your application. If anything goes wrong during initialization, 
initialize throws an exception.1

Before leaving your main function, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation implementations that are still executing in the 
server to complete. In addition, destroy ensures that any outstanding threads 
are joined with and reclaims a number of operating system resources, such as file 
descriptors and memory. Never allow your main function to terminate without 
calling destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

#include <Ice/Ice.h>

int
main(int argc, char* argv[])

1. Ice::initialize has additional overloads to permit other information to be passed to the 
Ice run time (see Section 32.3).
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{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);

        // Server code here...

    } catch (const Ice::Exception& e) {
        cerr << e << endl;
        status = 1;
    } catch (const std::string& msg) {
        cerr << msg << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic) {
        try {
            ic->destroy();
        } catch (const std::string& msg) {
            cerr << msg << endl;
            status = 1;
        }
    }
    return status;
}

Note that the code places the call to Ice::initialize in to a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

The catch handlers for const std::string & and const char * 
are in place as a convenience feature: if we encounter a fatal error condition 
anywhere in the server code, we can simply throw a string or a string literal 
containing an error message; this causes the stack to be unwound back to main, at 
which point the error message is printed and, after destroying the communicator, 
main terminates with non-zero exit status.
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8.3.1 The Ice::Application Class

The preceding structure for the main function is so common that Ice offers a 
class, Ice::Application, that encapsulates all the correct initialization and 
finalization activities. The definition of the class is as follows (with some detail 
omitted for now):

namespace Ice {
    enum SignalPolicy { HandleSignals, NoSignalHandling };

    class Application /* ... */ {
    public:
        Application(SignalPolicy = HandleSignals);
        virtual ~Application();

        int main(int argc, char*[] argv);
        int main(int argc, char*[] argv, const char* config);
        int main(int argc, char*[] argv,
                 const Ice::InitializationData& id);
        int main(int argc, char* const [] argv);
        int main(int argc, char* const [] argv, const char* config
);
        int main(int argc, char* const [] argv,
                 const Ice::InitializationData& id);
        int main(const Ice::StringSeq&);
        int main(const Ice::StringSeq&, const char* config);
        int main(const Ice::StringSeq&,
                 const Ice::InitializationData& id);

#ifdef _WIN32
        int main(int argc, wchar_t*[] argv);
        int main(int argc, wchar_t*[] argv, const char* config);
        int main(int argc, wchar_t*[] argv,
                 const Ice::InitializationData& id);
#endif

        virtual int run(int, char*[]) = 0;

        static  const char* appName();
        static  CommunicatorPtr communicator();
        // ...
    };
}

The intent of this class is that you specialize Ice::Application and imple-
ment the pure virtual run method in your derived class. Whatever code you 



8.3 The Server-Side main Function 277

would normally place in main goes into the run method instead. Using 
Ice::Application, our program looks as follows:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {

        // Server code here...

        return 0;
    }
};

int
main(int argc, char* argv[])
{
    MyApplication app;
    return app.main(argc, argv);
}

Note that Application::main is overloaded: you can pass a string sequence 
instead of an argc/argv pair. This is useful if you need to parse application-
specific property settings on the command line (see Section 30.9.3). You also can 
call main with an optional file name or an InitializationData structure 
(see Section 32.3 and Section 30.9). 

If you pass a configuration file name to main, the settings in this file are over-
ridden by settings in a file identified by the ICE_CONFIG environment variable 
(if defined). Property settings supplied on the command line take precedence over 
all other settings.

The Application::main function does the following:

1. It installs an exception handler for Ice::Exception. If your code fails to 
handle an Ice exception, Application::main prints the exception details 
on stderr before returning with a non-zero return value.

2. It installs exception handlers for const std::string & and 
const char *. This allows you to terminate your server in response to a 
fatal error condition by throwing a std::string or a string literal. 
Application::main prints the string on stderr before returning a non-
zero return value.

3. It initializes (by calling Ice::initialize) and finalizes (by calling 
Communicator::destroy) a communicator. You can get access to the 
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communicator for your server by calling the static communicator() 
member.

4. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

5. It provides the name of your application via the static appName member 
function. The return value from this call is argv[0], so you can get at 
argv[0] from anywhere in your code by calling Ice::Applica-
tion::appName (which is usually required for error messages).

6. It creates an IceUtil::CtrlCHandler that properly destroys the 
communicator.

7. It installs a per-process logger (see Section 32.19.5) if the application has not 
already configured one. The per-process logger uses the value of the 
Ice.ProgramName property (see Section 30.8) as a prefix for its messages 
and sends its output to the standard error channel. An application can specify 
an alternate logger as described in Section 32.19.

Using Ice::Application ensures that your program properly finalizes the 
Ice run time, whether your server terminates normally or in response to an excep-
tion or signal. We recommend that all your programs use this class; doing so 
makes your life easier. In addition, Ice::Application also provides features 
for signal handling and configuration that you do not have to implement yourself 
when you use this class.

Using Ice::Application on the Client Side

You can use Ice::Application for your clients as well: simply implement a 
class that derives from Ice::Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice::Application ensures that the communicator is destroyed correctly 
even in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
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larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice::Application encapsulates 
the platform-independent signal handling capabilities provided by the class 
IceUtil::CtrlCHandler (see Section 31.10). This allows you to cleanly 
shut down on receipt of a signal and to use the same source code regardless of the 
underlying operating system and threading package:

namespace Ice {
    class Application : /* ... */ {
    public:
        // ...
        static void destroyOnInterrupt();
        static void shutdownOnInterrupt();
        static void ignoreInterrupt();
        static void callbackOnInterrupt();
        static void holdInterrupt();
        static void releaseInterrupt();
        static bool interrupted();

        virtual void interruptCallback(int);
    };
}

You can use Ice::Application under both Windows and Unix: for Unix, the 
member functions control the behavior of your application for SIGINT, SIGHUP, 
and SIGTERM; for Windows, the member functions control the behavior of your 
application for CTRL_C_EVENT, CTRL_BREAK_EVENT, 
CTRL_CLOSE_EVENT, CTRL_LOGOFF_EVENT, and 
CTRL_SHUTDOWN_EVENT.

The functions behave as follows:

• destroyOnInterrupt

This function creates an IceUtil::CtrlCHandler that destroys the 
communicator when one of the monitored signals is raised. This is the default 
behavior.

• shutdownOnInterrupt

This function creates an IceUtil::CtrlCHandler that shuts down the 
communicator when one of the monitored signals is raised.

• ignoreInterrupt

This function causes signals to be ignored.
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• callbackOnInterrupt

This function configures Ice::Application to invoke interrupt-
Callback when a signal occurs, thereby giving the subclass responsibility 
for handling the signal. Note that if the signal handler needs to terminate the 
program, you must call _exit (instead of exit). This prevents global 
destructors from running which, depending on the activities of other threads in 
the program, could cause deadlock or assertion failures.

• holdInterrupt

This function causes signals to be held.

• releaseInterrupt

This function restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This function returns true if a signal caused the communicator to shut down, 
false otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

• interruptCallback

A subclass overrides this function to respond to signals. The Ice run time may 
call this function concurrently with any other thread. If the function raises an 
exception, the Ice run time prints a warning on cerr and ignores the excep-
tion.

By default, Ice::Application behaves as if destroyOnInterrupt was 
invoked, therefore our server main function requires no change to ensure that the 
program terminates cleanly on receipt of a signal. (You can disable the signal-
handling functionality of Ice::Application by passing the enumerator 
NoSignalHandling to the constructor. In that case, signals retain their default 
behavior, that is, terminate the process.) However, we add a diagnostic to report 
the occurrence of a signal, so our main function now looks like:

#include <Ice/Ice.h>

class MyApplication : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {

        // Server code here...
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        if (interrupted())
            cerr << appName() << ": terminating" << endl;

        return 0;
    }
};

int
main(int argc, char* argv[])
{
    MyApplication app;
    return app.main(argc, argv);
}

Note that, if your server is interrupted by a signal, the Ice run time waits for all 
currently executing operations to finish. This means that an operation that updates 
persistent state cannot be interrupted in the middle of what it was doing and cause 
partial update problems.

Under Unix, if you handle signals with your own handler (by deriving a 
subclass from Ice::Application and calling callbackOnInterrupt), 
the handler is invoked synchronously from a separate thread. This means that the 
handler can safely call into the Ice run time or make system calls that are not 
async-signal-safe without fear of deadlock or data corruption. Note that 
Ice::Application blocks delivery of SIGINT, SIGHUP, and SIGTERM. If 
your application calls exec, this means that the child process will also ignore 
these signals; if you need the default behavior of these signals in the exec’d 
process, you must explicitly reset them to SIG_DFL before calling exec.

Ice::Application and Properties

Apart from the functionality shown in this section, Ice::Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. We 
discuss Ice properties in more detail in Chapter 30.

Limitations of Ice::Application

Ice::Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice::Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicators).
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8.3.2 The Ice::Service Class

The Ice::Application class described in Section 8.3.1 is very convenient 
for general use by Ice client and server applications. In some cases, however, an 
application may need to run at the system level as a Unix daemon or Windows 
service. For these situations, Ice includes Ice::Service, a singleton class that 
is comparable to Ice::Application but also encapsulates the low-level, plat-
form-specific initialization and shutdown procedures common to system services. 
The Ice::Service class is defined as follows:

namespace Ice {
    class Service {
    public:
        Service();

        virtual bool shutdown();
        virtual void interrupt();

        int main(int& argc, char* argv[],
                 const Ice::InitializationData& =
                     Ice::InitializationData());
        int main(Ice::StringSeq& args,
                 const Ice::InitializationData& =
                     Ice::InitializationData());

        Ice::CommunicatorPtr communicator() const;

        static Service* instance();

        bool service() const;
        std::string name() const;
        bool checkSystem() const;

        int run(int& argc, char* argv[],
                const Ice::InitializationData&);

#ifdef _WIN32
        int main(int& argc, wchar_t* argv[],
                  const InitializationData& =
                      InitializationData());

        void configureService(const std::string& name);
#else
        void configureDaemon(bool changeDir,
                             bool closeFiles,
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                             const std::string& pidFile);
#endif

        virtual void handleInterrupt(int);

    protected:
        virtual bool start(int argc, char* argv[],
                           int& status) = 0;
        virtual void waitForShutdown();
        virtual bool stop();
        virtual Ice::CommunicatorPtr initializeCommunicator(
            int& argc, char* argv[],
            const Ice::InitializationData&);

        virtual void syserror(const std::string& msg);
        virtual void error(const std::string& msg);
        virtual void warning(const std::string& msg);
        virtual void trace(const std::string& msg);
        virtual void print(const std::string& msg);

        void enableInterrupt();
        void disableInterrupt();

        // ...
    };
}

At a minimum, an Ice application that uses the Ice::Service class must 
define a subclass and override the start member function, which is where the 
service must perform its startup activities, such as processing command-line argu-
ments, creating an object adapter, and registering servants. The application’s 
main function must instantiate the subclass and typically invokes its main 
member function, passing the program’s argument vector as parameters. The 
example below illustrates a minimal Ice::Service subclass:

#include <Ice/Service.h>

class MyService : public Ice::Service {
protected:
    virtual bool start(int, char*[]);
private:
    Ice::ObjectAdapterPtr _adapter;
};

bool
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MyService::start(int argc, char* argv[], int& status)
{
    _adapter = communicator()->createObjectAdapter("MyAdapter");
    _adapter->addWithUUID(new MyServantI);
    _adapter->activate();
    status = EXIT_SUCCESS;
    return true;
}

int
main(int argc, char* argv[])
{
    MyService svc;
    return svc.main(argc, argv);
}

The Service::main member function performs the following sequence of 
tasks:

1. Scans the argument vector for reserved options that indicate whether the 
program should run as a system service and removes these options from the 
argument vector (argc is adjusted accordingly). Additional reserved options 
are supported for administrative tasks.

2. Configures the program for running as a system service (if necessary) by 
invoking configureService or configureDaemon, as appropriate for 
the platform.

3. Invokes the run member function and returns its result.

Note that, as for Application::main, Service::main is overloaded to 
accept a string sequence instead of an argc/argv pair. This is useful if you need 
to parse application-specific property settings on the command line (see 
Section 30.9.3).

The Service::run member function executes the service in the steps 
shown below:

1. Installs an IceUtil::CtrlCHandler (see Section 31.10) for proper 
signal handling.

2. Invokes the initializeCommunicator member function to obtain a 
communicator. The communicator instance can be accessed using the 
communicator member function.

3. Invokes the start member function. If start returns false to indicate 
failure, run destroys the communicator and returns immediately using the 
exit status provided in status.
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4. Invokes the waitForShutdown member function, which should block until 
shutdown is invoked.

5. Invokes the stop member function. If stop returns true, run considers 
the application to have terminated successfully.

6. Destroys the communicator.

7. Gracefully terminates the system service (if necessary).

If an unhandled exception is caught by Service::run, a descriptive message is 
logged, the communicator is destroyed and the service is terminated.

Ice::Service Member Functions

The virtual member functions in Ice::Service represent the points at which a 
subclass can intercept the service activities. All of the virtual member functions 
(except start) have default implementations.

• void handleInterrupt(int sig)

Invoked by the CtrlCHandler when a signal occurs. The default imple-
mentation ignores the signal if it represents a logoff event and the 
Ice.Nohup property is set to a value larger than zero, otherwise it invokes 
the interrupt member function.

• Ice::CommunicatorPtr
initializeCommunicator(int & argc, char * argv[],
                       const Ice::InitializationData & data)

Initializes a communicator. The default implementation invokes 
Ice::initialize and passes the given arguments.

• void interrupt()

Invoked by the signal handler to indicate a signal was received. The default 
implementation invokes the shutdown member function.

• bool shutdown()

Causes the service to begin the shutdown process. The default implementation 
invokes shutdown on the communicator. The subclass must return true if 
shutdown was started successfully, and false otherwise.

• bool start(int argc, char * argv[], int & status)

Allows the subclass to perform its startup activities, such as scanning the 
provided argument vector for recognized command-line options, creating an 
object adapter, and registering servants. The subclass must return true if 
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startup was successful, and false otherwise. The subclass can set an exit 
status via the status parameter. This status is returned by main.

• bool stop()

Allows the subclass to clean up prior to termination. The default implementa-
tion does nothing but return true. The subclass must return true if the 
service has stopped successfully, and false otherwise.

• void syserror(const std::string & msg)

• void error(const std::string & msg)

• void warning(const std::string & msg)

• void trace(const std::string & msg)

• void print(const std::string & msg)

Convenience functions for logging messages to the communicator’s logger. 
The syserror member function includes a description of the system’s 
current error code.

• void waitForShutdown()

Waits indefinitely for the service to shut down. The default implementation 
invokes waitForShutdown on the communicator.

The non-virtual member functions shown in the class definition are described 
below:

• bool checkSystem() const

Returns true if the operating system supports Windows services or Unix 
daemons. This function returns false on Windows 95/98/ME.

• Ice::CommunicatorPtr communicator() const

Returns the communicator used by the service, as created by initial-
izeCommunicator.

• void configureDaemon(bool chdir, bool close,
                     const std::string & pidFile)

Configures the program to run as a Unix daemon. The chdir parameter 
determines whether the daemon changes its working directory to the root 
directory. The close parameter determines whether the daemon closes 
unnecessary file descriptors (i.e., stdin, stdout, etc.). If a non-empty string is 
provided in the pidFile parameter, the daemon writes its process ID to the 
given file.
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• void configureService(const std::string & name)

Configures the program to run as a Windows service with the given name.

• void disableInterrupt()

Disables the signal handling behavior in Ice::Service. When disabled, 
signals are ignored.

• void enableInterrupt()

Enables the signal handling behavior in Ice::Service. When enabled, the 
occurrence of a signal causes the handleInterrupt member function to 
be invoked.

• static Service * instance()

Returns the singleton Ice::Service instance.

• int main(int & argc, char * argv[],
         const Ice::InitializationData & data =
             Ice::InitializationData())
int main(Ice::StringSeq& args,
         const Ice::InitializationData& =
             Ice::InitializationData());
int main(int & argc, wchar_t * argv[],
         const Ice::InitializationData & data =
             Ice::InitializationData())

The primary entry point of the Ice::Service class. The tasks performed 
by this function are described earlier in this section. The function returns 
EXIT_SUCCESS for success, EXIT_FAILURE for failure. For Windows, 
this function is overloaded to allow you to pass a wchar_t argument vector.

• std::string name() const

Returns the name of the service. If the program is running as a Windows 
service, the return value is the Windows service name, otherwise it returns the 
value of argv[0].

• int run(int & argc, char * argv[],
        const Ice::InitializationData & data)

Alternative entry point for applications that prefer a different style of service 
configuration. The program must invoke configureService (Windows) 
or configureDaemon (Unix) in order to run as a service. The tasks 
performed by this function are described earlier in this section. The function 
normally returns EXIT_SUCCESS or EXIT_FAILURE, but the start 
method can also supply a different value via its status argument.
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• bool service() const

Returns true if the program is running as a Windows service or Unix daemon, 
or false otherwise.

Unix Daemons

On Unix platforms, Ice::Service recognizes the following command-line 
options:

• --daemon

Indicates that the program should run as a daemon. This involves the creation 
of a background child process in which Service::main performs its tasks. 
The parent process does not terminate until the child process has successfully 
invoked the start member function2. Unless instructed otherwise, 
Ice::Service changes the current working directory of the child process 
to the root directory, and closes all unnecessary file descriptors. Note that the 
file descriptors are not closed until after the communicator is initialized, 
meaning standard input, standard output, and standard error are available for 
use during this time. For example, the IceSSL plug-in may need to prompt for 
a passphrase on standard input, or Ice may print the child’s process id on stan-
dard output if the property Ice.PrintProcessId is set.

• --pidfile FILE

This option writes the process ID of the service into the specified file. (This 
option requires --daemon.)

• --noclose

Prevents Ice::Service from closing unnecessary file descriptors. This 
can be useful during debugging and diagnosis because it provides access to the 
output from the daemon’s standard output and standard error.

• --nochdir

Prevents Ice::Service from changing the current working directory.

The --noclose and --nochdir options can only be specified in conjunction 
with --daemon. These options are removed from the argument vector that is 
passed to the start member function.

2. This behavior avoids the uncertainty often associated with starting a daemon from a shell script, 
because it ensures that the command invocation does not complete until the daemon is ready to 
receive requests.
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Windows Services

On Windows, Ice::Service recognizes the following command-line options:

• --service NAME

Run as a Windows service named NAME, which must already be installed. 
This option is removed from the argument vector that is passed to the start 
member function.

Installing and configuring a Windows service is outside the scope of the 
Ice::Service class. Ice includes a utility for installing its services (see 
Appendix H) which you can use as a model for your own applications.

The Ice::Service class supports the Windows service control codes 
SERVICE_CONTROL_INTERROGATE and SERVICE_CONTROL_STOP. Upon 
receipt of SERVICE_CONTROL_STOP, Ice::Service invokes the shut-
down member function.

Logging Considerations

A service that uses a custom logger has several ways of configuring it:

• as a process-wide logger (see Section 32.19.5),

• in the InitializationData argument that is passed to main,

• by overriding the initializeCommunicator member function.

On Windows, Ice::Service installs its own logger that uses the Windows 
Application event log if no custom logger is defined. The source name for the 
event log is the service’s name unless a different value is specified using the prop-
erty Ice.EventLog.Source (see Appendix D).

On Unix, the default Ice logger (which logs to the standard error output) is 
used when no other logger is configured. For daemons, this is not appropriate 
because the output will be lost. To change this, you can either implement a custom 
logger or set the Ice.UseSyslog property, which selects a logger implementa-
tion that logs to the syslog facility. Alternatively, you can set the 
Ice.LogFile property to write log messages to a file.

Note that Ice::Service may encounter errors before the communicator is 
initialized. In this situation, Ice::Service uses its default logger unless a 
process-wide logger is configured. Therefore, even if a failing service is config-
ured to use a different logger implementation, you may find useful diagnostic 
information in the Application event log (on Windows) or sent to standard 
error (on Unix).



290 Server-Side Slice-to-C++ Mapping

8.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing virtual functions in a servant class, you provide the hook 
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

8.4.1 Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 6.11). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure 
virtual member function for each operation on the corresponding interface. For 
example, consider the Slice definition for the Node interface we defined in 
Chapter 5 once more:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem {

    class Node : virtual public Ice::Object {
    public:
        virtual std::string name(const Ice::Current& =
                                    Ice::Current()) = 0;
        // ...
    };
    // ...
}

For the moment, we will ignore a number of other member functions of this class. 
The important points to note are:

• As for the client side, Slice modules are mapped to C++ namespaces with the 
same name, so the skeleton class definition is nested in the namespace File-
system.

• The name of the skeleton class is the same as the name of the Slice interface 
(Node).
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• The skeleton class contains a pure virtual member function for each operation 
in the Slice interface.

• The skeleton class is an abstract base class because its member functions are 
pure virtual.

• The skeleton class inherits from Ice::Object (which forms the root of the 
Ice object hierarchy).

8.4.2 Servant Classes
In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

#include <Filesystem.h> // Slice-generated header

class NodeI : public virtual Filesystem::Node {
public:
    NodeI(const std::string&);
    virtual std::string name(const Ice::Current&);
private:
    std::string _name;
};

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.)

Note that NodeI inherits from Filesystem::Node, that is, it derives from 
its skeleton class. It is a good idea to always use virtual inheritance when defining 
servant classes. Strictly speaking, virtual inheritance is necessary only for servants 
that implement interfaces that use multiple inheritance; however, the virtual 
keyword does no harm and, if you add multiple inheritance to an interface hier-
archy half-way through development, you do not have to go back and add a 
virtual keyword to all your servant classes.

As far as Ice is concerned, the NodeI class must implement only a single 
member function: the pure virtual name function that it inherits from its skeleton. 
This makes the servant class a concrete class that can be instantiated. You can add 
other member functions and data members as you see fit to support your imple-
mentation. For example, in the preceding definition, we added a _name member 
and a constructor. Obviously, the constructor initializes the _name member and 
the name function returns its value:
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NodeI::NodeI(const std::string& name) : _name(name)
{
}

std::string
NodeI::name(const Ice::Current&) const
{
    return _name;
}

Normal and idempotent Operations

The name member function of the NodeI skeleton on page 291 is not a const 
member function. However, given that the operation does not modify the state of 
its object, it really should be a const member function. We can achieve this by 
adding the [“cpp:const”] metadata directive. For example:

interface Example {
                void normalOp();

    idempotent  void idempotentOp();

    ["cpp:const"]
    idempotent  void readonlyOp();
};

The skeleton class for this interface looks like this:

class Example : virtual public Ice::Object {
public:
    virtual void normalOp(const Ice::Current&
                                = Ice::Current()) = 0;
    virtual void idempotentOp(const Ice::Current&
                                = Ice::Current()) = 0;
    virtual void readonlyOp(const Ice::Current&
                                = Ice::Current()) const = 0;
    // ...
};

Note that readonlyOp is mapped as a const member function due to the 
["cpp:const"] metadata directive; normal and idempotent operations 
(without the metadata directive) are mapped as ordinary, non-const member 
functions.
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8.5 Parameter Passing

For each parameter of a Slice operation, the C++ mapping generates a corre-
sponding parameter for the virtual member function in the skeleton. In addition, 
every operation has an additional, trailing parameter of type Ice::Current. 
For example, the name operation of the Node interface has no parameters, but the 
name member function of the Node skeleton class has a single parameter of type 
Ice::Current. We explain the purpose of this parameter in Section 32.6 and 
will ignore it for now.

Parameter passing on the server side follows the rules for the client side:

• in-parameters are passed by value or const reference.

• out-parameters are passed by reference.

• return values are passed by value

To illustrate the rules, consider the following interface that passes string parame-
ters in all possible directions:

module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated skeleton class for this interface looks as follows:

namespace M {
    class Example : virtual public ::Ice::Object {
    public:
        virtual std::string
                    op(const std::string&, std::string&,
                       const Ice::Current& = Ice::Current()) = 0;
        // ...
    };
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

std::string
ExampleI::op(const std::string& sin,
                   std::string& sout,
             const Ice::Current&)
{
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    cout << sin << endl;        // In parameters are initialized
    sout = "Hello World!";      // Assign out parameter
    return "Done";              // Return a string
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal C++ rules and do not require special-purpose API calls 
or memory management.

8.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
    // Try to write the file contents here...
    // Assume we are out of space...
    if (error) {
        Filesystem::GenericError e;
        e.reason = "file too large";
        throw e;
    }
};

No memory management issues arise in the presence of exceptions.

Note that the Slice compiler never generates exception specifications for oper-
ations, regardless of whether the corresponding Slice operation definition has an 
exception specification or not. This is deliberate: C++ exception specifications do 
not add any value and are therefore not used by the Ice C++ mapping. (See [22] 
for an excellent treatment of the problems associated with C++ exception specifi-
cations.)

If you throw an arbitrary C++ exception (such as an int or other unexpected 
type), the Ice run time catches the exception and then returns an UnknownExcep-
tion to the client. Similarly, if you throw an “impossible” user exception (a user 
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exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw a run-time exception, such as MemoryLimitException, the client 
receives an UnknownLocalException.3 For that reason, you should never throw 
system exceptions from operation implementations. If you do, all the client will 
see is an UnknownLocalException, which does not tell the client anything useful.

8.7 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 8.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must follow the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

8.7.1 Instantiating a Servant
Instantiating a servant means to allocate an instance on the heap:

NodePtr servant = new NodeI("Fred");

This code creates a new NodeI instance on the heap and assigns its address to a 
smart pointer of type NodePtr (see also page 238). This works because NodeI 
is derived from Node, so a smart pointer of type NodePtr can also look after an 
instance of type NodeI. However, if we want to invoke a member function of the 
derived NodeI class at this point, we have a problem: we cannot access member 
functions of the derived NodeI class through a NodePtr smart pointer, only 
member functions of Node base class. (The C++ type rules prevent us from 

3. There are three system exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Section 4.10.4 and 
Chapter 33.
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accessing a member of a derived class through a pointer to a base class.) To get 
around this, we can modify the code as follows:

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI("Fred");

This code makes use of the smart pointer template we presented in Section 6.14.6 
by defining NodeIPtr as a smart pointer to NodeI instances. Whether you use 
a smart pointer of type NodePtr or NodeIPtr depends solely on whether you 
want to invoke a member function of the NodeI derived class; if you only want to 
invoke member functions that are defined in the Node skeleton base class, it is 
sufficient to use a NodePtr and you need not define the NodeIPtr type.

Whether you use NodePtr or NodeIPtr, the advantages of using a smart 
pointer class should be obvious from the discussion in Section 6.14.6: they make 
it impossible to accidentally leak memory.

8.7.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.4 An Ice object identity is a structure with the 
following Slice definition:

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 32.7 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice::Identity id;
id.name = "Fred"; // Not unique, but good enough for now

4. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See Chapter 34 for further discussion.
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8.7.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter->add(servant, id);

Note the two arguments to add: the smart pointer to the servant and the object 
identity. Calling add on the object adapter adds the servant pointer and the 
servant’s identity to the adapter’s servant map and links the proxy for an Ice object 
to the correct servant instance in the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
pointer from the servant map and dispatches the incoming request into the 
correct member function on the servant.

Assuming that the object adapter is in the active state (see Section 32.4.5), client 
requests are dispatched to the servant as soon as you call add.

Servant Life Time and Reference Counts

Putting the preceding points together, we can write a simple function that instanti-
ates and activates one of our NodeI servants. For this example, we use a simple 
helper function called activateServant that creates and activates a servant 
with a given identity:

void
activateServant(const string& name)
{
    NodePtr servant = new NodeI(name);          // Refcount == 1
    Ice::Identity id;
    id.name = name;
    _adapter->add(servant, id);                 // Refcount == 2
}                                               // Refcount == 1

Note that we create the servant on the heap and that, once activateServant 
returns, we lose the last remaining handle to the servant (because the servant 
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variable goes out of scope). The question is, what happens to the heap-allocated 
servant instance? The answer lies in the smart pointer semantics:

• When the new servant is instantiated, its reference count is initialized to 0.

• Assigning the servant’s address to the servant smart pointer increments the 
servant’s reference count to 1.

• Calling add passes the servant smart pointer to the object adapter which 
keeps a copy of the handle internally. This increments the reference count of 
the servant to 2.

• When activateServant returns, the destructor of the servant variable 
decrements the reference count of the servant to 1.

The net effect is that the servant is retained on the heap with a reference count of 1 
for as long as the servant is in the servant map of its object adapter. (If we deacti-
vate the servant, that is, remove it from the servant map, the reference count drops 
to zero and the memory occupied by the servant is reclaimed; we discuss these life 
cycle issues in Chapter 34.)

8.7.4 UUIDs as Identities

The Ice object model assumes that object identities are globally unique. One way 
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14] 
as identities. The IceUtil namespace contains a helper function to create such 
identities:

#include <IceUtil/UUID.h>
#include <iostream>

using namespace std;

int
main()
{
    cout << IceUtil::generateUUID() << endl;
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to genera-
teUUID creates a string that differs from all previous ones.5 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
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map in a single step. Using this operation, we can rewrite the code on page 297 
like this:

void
activateServant(const string& name)
{
    NodePtr servant = new NodeI(name);
    _adapter->addWithUUID(servant);
}

8.7.5 Creating Proxies

Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

typedef IceUtil::Handle<NodeI> NodeIPtr;
NodeIPtr servant = new NodeI(name);
NodePrx proxy = NodePrx::uncheckedCast(
                                _adapter->addWithUUID(servant));

// Pass proxy to client...

5. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice::ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice::Identity id;
id.name = IceUtil::generateUUID();
ObjectPrx o = _adapter->createProxy(id);

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy 
to a client and the client invokes an operation on the proxy, the client will receive 
an ObjectNotExistException. (We examine these life cycle issues in more detail 
in Chapter 34.)

8.8 Asynchronous Method Dispatch (AMD)

The number of simultaneous synchronous requests a server is capable of 
supporting is determined by the number of threads in the server’s thread pool (see 
Section 32.10). If all of the threads are busy dispatching long-running operations, 
then no threads are available to process new requests and therefore clients may 
experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI 
(see Section 6.15), addresses this scalability issue. Using AMD, a server can 
receive a request but then suspend its processing in order to release the dispatch 
thread as soon as possible. When processing resumes and the results are available, 
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the server sends a response explicitly using a callback object provided by the Ice 
run time.

AMD is transparent to the client, that is, there is no way for a client to distin-
guish a request that, in the server, is processed synchronously from a request that 
is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., 
the callback object and operation arguments) for later processing by an applica-
tion thread (or thread pool). In this way, the server minimizes the use of dispatch 
threads and becomes capable of efficiently supporting thousands of simultaneous 
clients.

An alternate use case for AMD is an operation that requires further processing 
after completing the client’s request. In order to minimize the client’s delay, the 
operation returns the results while still in the dispatch thread, and then continues 
using the dispatch thread for additional work.

8.8.1 Enabling AMD with Metadata
To enable asynchronous dispatch, you must add an ["amd"] metadata directive to 
your Slice definitions. The directive applies at the interface and the operation 
level. If you specify ["amd"] at the interface level, all operations in that interface 
use asynchronous dispatch; if you specify ["amd"] for an individual operation, 
only that operation uses asynchronous dispatch. In either case, the metadata direc-
tive replaces synchronous dispatch, that is, a particular operation implementation 
must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

["amd"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"] void startProcess();
  int endProcess();
};

In this example, both operations of interface I use asynchronous dispatch, 
whereas, for interface J, startProcess uses asynchronous dispatch and endPro-
cess uses synchronous dispatch.

Specifying metadata at the operation level (rather than at the interface or class 
level) minimizes the amount of generated code and, more importantly, minimizes 
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complexity: although the asynchronous model is more flexible, it is also more 
complicated to use. It is therefore in your best interest to limit the use of the asyn-
chronous model to those operations that need it, while using the simpler synchro-
nous model for the rest.

8.8.2 AMD Mapping

The C++ mapping emits the following code for each AMD operation:

1. A callback class used by the implementation to notify the Ice run time about 
the completion of an operation. The name of this class is formed using the 
pattern AMD_class_op. For example, an operation named foo defined in 
interface I results in a class named AMD_I_foo. The class is generated in the 
same scope as the interface or class containing the operation. Several methods 
are provided:

void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

void ice_exception(const std::exception &);

This version of ice_exception allows the server to raise any standard 
exception, Ice run-time exception, or Ice user exception.

void ice_exception()

This version of ice_exception allows the server to report an UnknownEx-
ception.

Neither ice_response nor ice_exception throw any exceptions to the 
caller.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a smart pointer to an instance of the 
callback class described above. The remaining parameters comprise the in-
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:
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interface I {
  ["amd"] int foo(short s, out long l);
};

The callback class generated for operation foo is shown below:

class AMD_I_foo : public ... {
public:
    void ice_response(Ice::Int, Ice::Long);
    void ice_exception(const std::exception&);
    void ice_exception();
};

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

void foo_async(const AMD_I_fooPtr&, Ice::Short);

8.8.3 Exceptions

There are two processing contexts in which the logical implementation of an 
AMD operation may need to report an exception: the dispatch thread (the thread 
that receives the invocation), and the response thread (the thread that sends the 
response).6 Although we recommend that the callback object be used to report all 
exceptions to the client, it is legal for the implementation to raise an exception 
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be 
caught by the Ice run time; the application’s run-time environment determines 
how such an exception is handled. Therefore, a response thread must ensure that it 
traps all exceptions and sends the appropriate response using the callback object. 
Otherwise, if a response thread is terminated by an uncaught exception, the 
request may never be completed and the client might wait indefinitely for a 
response.

Whether raised in a dispatch thread or reported via the callback object, user 
exceptions are validated as described in Section 4.10.2, and local exceptions may 
undergo the translation described in Section 4.10.4.

6. These are not necessarily two different threads: it is legal to send the response from the dispatch 
thread.
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8.8.4 Example

To demonstrate the use of AMD in Ice, let us define the Slice interface for a 
simple computational engine:

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way.

Our servant class derives from Demo::Model and supplies a definition for 
the interpolate_async method:

class ModelI : virtual public Demo::Model,
               virtual public IceUtil::Mutex {
public:
    virtual void interpolate_async(
        const Demo::AMD_Model_interpolatePtr&,
        const Demo::Grid&,
        Ice::Float,
        const Ice::Current&);

private:
  std::list<JobPtr> _jobs;
};

The implementation of interpolate_async uses synchronization to safely 
record the callback object and arguments in a Job that is added to a queue:

void ModelI::interpolate_async(
    const Demo::AMD_Model_interpolatePtr& cb,
    const Demo::Grid& data,
    Ice::Float factor,
    const Ice::Current& current)
{
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    IceUtil::Mutex::Lock sync(*this);
    JobPtr job = new Job(cb, data, factor);
    _jobs.push_back(job);
}

After queuing the information, the operation returns control to the Ice run time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute to perform 
the interpolation. Job is defined as follows:

class Job : public IceUtil::Shared {
public:
    Job(
        const Demo::AMD_Model_interpolatePtr&,
        const Demo::Grid&,
        Ice::Float);
    void execute();

private:
    bool interpolateGrid();

    Demo::AMD_Model_interpolatePtr _cb;
    Demo::Grid _grid;
    Ice::Float _factor;
};
typedef IceUtil::Handle<Job> JobPtr;

The implementation of execute uses interpolateGrid (not shown) to 
perform the computational work:

Job::Job(
    const Demo::AMD_Model_interpolatePtr& cb,
    const Demo::Grid& grid,
    Ice::Float factor) :
    _cb(cb), _grid(grid), _factor(factor)
{
}

void Job::execute()
{
    if (!interpolateGrid()) {
        _cb->ice_exception(Demo::RangeError());
        return;
    }
    _cb->ice_response(_grid);
}
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If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

8.9 Summary

This chapter presented the server-side C++ mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 32), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any C++ mapping 
rules beyond those we described here.
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Chapter 9
Developing a File System Server in 
C++

9.1 Chapter Overview

In this chapter, we present the source code for a C++ server that implements the 
file system we developed in Chapter 5 (see Chapter 7 for the corresponding 
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Chapter 31.)

9.2 Implementing a File System Server

We have now seen enough of the server-side C++ mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5 before studying the source 
code.)

Our server is composed of two source files:

• Server.cpp

This file contains the server main program.

• FilesystemI.cpp

This file contains the implementation for the file system servants.
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9.2.1 The Server main Program
Our server main program, in the file Server.cpp, uses the
Ice::Application class we discussed in Section 8.3.1. The run method 
installs a signal handler, creates an object adapter, instantiates a few servants for 
the directories and files in the file system, and then activates the adapter. This 
leads to a main program as follows:

#include <Ice/Ice.h>
#include <FilesystemI.h>

using namespace std;
using namespace Filesystem;

class FilesystemApp : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {
        // Terminate cleanly on receipt of a signal
        //
        shutdownOnInterrupt();

        // Create an object adapter.
        //
        Ice::ObjectAdapterPtr adapter =
            communicator()->createObjectAdapterWithEndpoints(
                        "SimpleFilesystem", "default -p 10000");

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root =
            new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains "
                       "a collection of poetry.");
        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge =
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            new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

        // All objects are created, allow client requests now
        //
        adapter->activate();

        // Wait until we are done
        //
        communicator()->waitForShutdown();
        if (interrupted()) {
            cerr << appName()
                 << ": received signal, shutting down" << endl;
        }

        return 0;
    };
};

int
main(int argc, char* argv[])
{
    FilesystemApp app;
    return app.main(argc, argv);
}

There is quite a bit of code here, so let us examine each section in detail:

#include <FilesystemI.h>
#include <Ice/Application.h>

using namespace std;
using namespace Filesystem;
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The code includes the header file FilesystemI.h (see page 319). That file 
includes Ice/Ice.h as well as the header file that is generated by the Slice 
compiler, Filesystem.h. Because we are using Ice::Application, we 
need to include Ice/Application.h as well.

Two using declarations, for the namespaces std and Filesystem, permit 
us to be a little less verbose in the source code.

The next part of the source code is the definition of FilesystemApp, which 
derives from Ice::Application and contains the main application logic in 
its run method:

class FilesystemApp : virtual public Ice::Application {
public:
    virtual int run(int, char*[]) {
        // Terminate cleanly on receipt of a signal
        //
        shutdownOnInterrupt();

        // Create an object adapter.
        //
        Ice::ObjectAdapterPtr adapter =
            communicator()->createObjectAdapterWithEndpoints(
                        "SimpleFilesystem", "default -p 10000");

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root =
            new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains "
                       "a collection of poetry.");
        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge =
            new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);
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        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

        // All objects are created, allow client requests now
        //
        adapter->activate();

        // Wait until we are done
        //
        communicator()->waitForShutdown();
        if (interrupted()) {
            cerr << appName()
                 << ": received signal, shutting down" << endl;
        }

        return 0;
    };
};

Much of this code is boiler plate that we saw previously: we create an object 
adapter, and, towards the end, activate the object adapter and call waitFor-
Shutdown.



312 Developing a File System Server in C++

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 9.1.

Figure 9.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts three parameters: the communicator, the name of the directory or 
file to be created, and a handle to the servant for the parent directory. (For the root 
directory, which has no parent, we pass a null parent handle.) Thus, the statement

DirectoryIPtr root = new DirectoryI(communicator(), "/", 0);

creates the root directory, with the name "/" and no parent directory. Note that 
we use the smart pointer class we discussed in Section 6.14.6 to hold the return 
value from new; that way, we avoid any memory management issues. The types 
DirectoryIPtr and FileIPtr are defined as follows in a header file File-
systemI.h (see page 319):

typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;
typedef IceUtil::Handle<FileI> FileIPtr;

Here is the code that establishes the structure in Figure 9.1:

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryIPtr root =
            new DirectoryI(communicator(), "/", 0);
        root->activate(adapter);

        // Create a file called "README" in the root directory
        //
        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains "
                       "a collection of poetry.");
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        file->write(text);
        file->activate(adapter);

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryIPtr coleridge =
            new DirectoryI(communicator(), "Coleridge", root);
        coleridge->activate(adapter);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI(communicator(), "Kubla_Khan", coleridge);
        text.erase(text.begin(), text.end());
        text.push_back("In Xanadu did Kubla Khan");
        text.push_back("A stately pleasure-dome decree:");
        text.push_back("Where Alph, the sacred river, ran");
        text.push_back("Through caverns measureless to man");
        text.push_back("Down to a sunless sea.");
        file->write(text);
        file->activate(adapter);

We first create the root directory and a file README within the root directory. 
(Note that we pass the handle to the root directory as the parent pointer when we 
create the new node of type FileI.)

After creating each servant, the code calls activate on the servant. (We will 
see the definition of this member function shortly.) The activate member 
function adds the servant to the ASM.

The next step is to fill the file with text:

        FileIPtr file = new FileI(communicator(), "README", root);
        Lines text;
        text.push_back("This file system contains "
                       "a collection of poetry.");
        file->write(text);
        file->activate(adapter);

Recall from Section 6.7.3 that Slice sequences map to STL vectors. The Slice type 
Lines is a sequence of strings, so the C++ type Lines is a vector of strings; we 
add a line of text to our README file by calling push_back on that vector.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

        file->write(text);
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This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a smart class pointer (of type 
FilePtr) and not via a proxy (of type FilePrx), the Ice run time does not 
know that this call is even taking place—such a direct call into a servant is not 
mediated by the Ice run time in any way and is dispatched as an ordinary C++ 
function call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 9.1.

9.2.2 The Servant Class Definitions

We must provide servants for the concrete interfaces in our Slice specification, 
that is, we must provide servants for the File and Directory interfaces in the 
C++ classes FileI and DirectoryI. This means that our servant classes 
might look as follows:

namespace Filesystem {
  class FileI : virtual public File {
    // ...
  };

  class DirectoryI : virtual public Directory {
     // ...
  };
}

This leads to the C++ class structure as shown in Figure 9.2.

Figure 9.2. File system servants using interface inheritance.
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The shaded classes in Figure 9.2 are skeleton classes and the unshaded classes are 
our servant implementations. If we implement our servants like this, FileI must 
implement the pure virtual operations it inherits from the File skeleton (read 
and write), as well as the operation it inherits from the Node skeleton (name). 
Similarly, DirectoryI must implement the pure virtual function it inherits 
from the Directory skeleton (list), as well as the operation it inherits from 
the Node skeleton (name). Implementing the servants in this way uses interface 
inheritance from Node because no implementation code is inherited from that 
class.

Alternatively, we can implement our servants using the following definitions:

namespace Filesystem {
  class NodeI : virtual public Node {
    // ...
  };

  class FileI : virtual public File,
                virtual public NodeI {
    // ...
  };

  class DirectoryI : virtual public Directory,
                     virtual public NodeI {
    // ...
  };
}
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This leads to the C++ class structure shown in Figure 9.3.

Figure 9.3. File system servants using implementation inheritance.

In this implementation, NodeI is a concrete base class that implements the name 
operation it inherits from the Node skeleton. FileI and DirectoryI use 
multiple inheritance from NodeI and their respective skeletons, that is, FileI 
and DirectoryI use implementation inheritance from their NodeI base class.

Either implementation approach is equally valid. Which one to choose simply 
depends on whether we want to re-use common code provided by NodeI. For the 
implementation that follows, we have chosen the second approach, using imple-
mentation inheritance.

Given the structure in Figure 9.3 and the operations we have defined in the 
Slice definition for our file system, we can add these operations to the class defini-
tion for our servants:

namespace Filesystem {
  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
  };
  
  class FileI : virtual public File,
                virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&,
                       const Ice::Current&);
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  };
  
  class DirectoryI : virtual public Directory,
                     virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&);
  };
}

This simply adds signatures for the operation implementations to each class. Note 
that the signatures must exactly match the operation signatures in the generated 
skeleton classes—if they do not match exactly, you end up overloading the pure 
virtual function in the base class instead of overriding it, meaning that the servant 
class cannot be instantiated because it will still be abstract. To avoid signature 
mismatches, you can copy the signatures from the generated header file (File-
system.h), or you can use the --impl option with slice2cpp to generate 
header and implementation files that you can add your application code to (see 
Section 6.16).

Now that we have the basic structure in place, we need to think about other 
methods and data members we need to support our servant implementation. Typi-
cally, each servant class hides the copy constructor and assignment operator, and 
has a constructor to provide initial state for its data members. Given that all nodes 
in our file system have both a name and a parent directory, this suggests that the 
NodeI class should implement the functionality relating to tracking the name of 
each node, as well as the parent–child relationships:

namespace Filesystem {
  class DirectoryI;
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
    NodeI(const Ice::CommunicatorPtr&,
          const std::string&,
          const DirectoryIPtr&);
    void activate(const Ice::ObjectAdapterPtr&);
  private:
    std::string _name;
    Ice::Identity _id;
    DirectoryIPtr _parent;
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    NodeI(const NodeI&);                // Copy forbidden
    void operator=(const NodeI&);       // Assignment forbidden
  };
}

The NodeI class has a private data member to store its name (of type 
std::string) and its parent directory (of type DirectoryIPtr). The 
constructor accepts parameters that set the value of these data members. For the 
root directory, by convention, we pass a null handle to the constructor to indicate 
that the root directory has no parent. The constructor also requires the communi-
cator to be passed to it. This is necessary because the constructor creates the iden-
tity for the servant, which requires access to the communicator. The activate 
member function adds the servant to the ASM (which requires access to the object 
adapter) and connects the child to its parent.

The FileI servant class must store the contents of its file, so it requires a 
data member for this. We can conveniently use the generated Lines type (which 
is a std::vector<std::string>) to hold the file contents, one string for 
each line. Because FileI inherits from NodeI, it also requires a constructor that 
accepts the communicator, file name, and parent directory, leading to the 
following class definition:

namespace Filesystem {
  class FileI : virtual public File,
                virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&,
                       const Ice::Current&);
    FileI(const Ice::CommunicatorPtr&,
          const std::string&,
          const DirectoryIPtr&);
  private:
    Lines _lines;
  };
}

For directories, each directory must store its list of child notes. We can conve-
niently use the generated NodeSeq type (which is a vector<NodePrx>) to do 
this. Because DirectoryI inherits from NodeI, we need to add a constructor 
to initialize the directory name and its parent directory. As we will see shortly, we 
also need a private helper function, addChild, to make it easier to connect a 
newly created directory to its parent. This leads to the following class definition:
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namespace Filesystem {
  class DirectoryI : virtual public Directory,
                     virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&) const;
    DirectoryI(const Ice::CommunicatorPtr&,
               const std::string&,
               const DirectoryIPtr&);
    void addChild(NodePrx child);
  private:
    NodeSeq _contents;
  };
}

Putting all this together, we end up with a servant header file, FilesystemI.h, 
as follows:

#include <Ice/Ice.h>
#include <Filesystem.h>

namespace Filesystem {
  class DirectoryI;
  typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;
  
  class NodeI : virtual public Node {
  public:
    virtual std::string name(const Ice::Current&);
    NodeI(const Ice::CommunicatorPtr&,
          const std::string&,
          const DirectoryIPtr&);
    void activate(const Ice::ObjectAdapterPtr&);
  private:
    std::string _name;
    Ice::Identity _id;
    DirectoryIPtr _parent;
    NodeI(const NodeI&);            // Copy forbidden
    void operator=(const NodeI&);   // Assignment forbidden
  };
  
  typedef IceUtil::Handle<NodeI> NodeIPtr;

  class FileI : virtual public File,
                virtual public NodeI {
  public:
    virtual Lines read(const Ice::Current&);
    virtual void write(const Lines&,
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    const Ice::Current& = Ice::Current());
    FileI(const Ice::CommunicatorPtr&,
          const std::string&,
          const DirectoryIPtr&);
  private:
    Lines _lines;
  };
  
  typedef IceUtil::Handle<FileI> FileIPtr;

  class DirectoryI : virtual public Directory,
                     virtual public NodeI {
  public:
    virtual NodeSeq list(const Ice::Current&);
    DirectoryI(const Ice::CommunicatorPtr&,
               const std::string&,
               const DirectoryIPtr&);
    void addChild(const Filesystem::NodePrx&);
  private:
    Filesystem::NodeSeq _contents;
  };
}

9.2.3 The Servant Implementation

The implementation of our servants is mostly trivial, following from the class 
definitions in our FilesystemI.h header file.

Implementing FileI

The implementation of the read and write operations for files is trivial: we 
simply store the passed file contents in the _lines data member. The constructor 
is equally trivial, simply passing its arguments through to the NodeI base class 
constructor:

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&)
{
    return _lines;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
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    _lines = text;
}

Filesystem::FileI::FileI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent
                        ) : NodeI(communicator, name, parent)
{
}

Implementing DirectoryI

The implementation of DirectoryI is equally trivial: the list operation 
simply returns the _contents data member and the constructor passes its argu-
ments through to the NodeI base class constructor:

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current&)
{
    return _contents;
}

Filesystem::DirectoryI::DirectoryI(
                const Ice::CommunicatorPtr& communicator,
                const string& name,
                const DirectoryIPtr& parent
            ) : NodeI(name, parent)
{
}

void
Filesystem::DirectoryI::addChild(const NodePrx child)
{
    _contents.push_back(child);
}

The only noteworthy thing is the implementation of addChild: when a new 
directory or file is created, the constructor of the NodeI base class calls 
addChild on its own parent, passing it the proxy to the newly-created child. The 
implementation of addChild appends the passed reference to the contents list of 
the directory it is invoked on (which is the parent directory).

Implementing NodeI

The name operation of our NodeI class is again trivial: it simply returns the 
_name data member:
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std::string
Filesystem::NodeI::name(const Ice::Current&)
{
    return _name;
}

The NodeI constructor creates an identity for the servant:

Filesystem::NodeI::NodeI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : _name(name), _parent(parent)
{
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

For the root directory, we use the fixed identity "RootDir". This allows the 
client to create a proxy for the root directory (see Section 7.2). For directories 
other than the root directory, we use a UUID as the identity (see page 298).

Finally, NodeI provides the activate member function that adds the 
servant to the ASM and connects the child node to its parent directory:

void
Filesystem::NodeI::activate(const Ice::ObjectAdapterPtr& a)
{
    NodePrx thisNode = NodePrx::uncheckedCast(a->add(this, _id));
    if(_parent)
    {
        _parent->addChild(thisNode);
    }
}

This completes our servant implementation. The complete source code is shown 
here once more:

#include <IceUtil/IceUtil.h>
#include <FilesystemI.h>

using namespace std;

// Slice Node::name() operation

std::string
Filesystem::NodeI::name(const Ice::Current&)
{
    return _name;
}
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// NodeI constructor

Filesystem::NodeI::NodeI(const Ice::CommunicatorPtr& communicator,
                         const string& name,
                         const DirectoryIPtr& parent)
    : _name(name), _parent(parent)
{
    // Create an identity. The root directory has the fixed identi
ty "RootDir"
    //
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

// NodeI activate() member function

void
Filesystem::NodeI::activate(const Ice::ObjectAdapterPtr& a)
{
    NodePrx thisNode = NodePrx::uncheckedCast(a->add(this, _id));
    if(_parent)
    {
        _parent->addChild(thisNode);
    }
}

// Slice File::read() operation

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&)
{
    return _lines;
}

// Slice File::write() operation

void
Filesystem::FileI::write(const Filesystem::Lines& text, const Ice:
:Current&)
{
    _lines = text;
}

// FileI constructor

Filesystem::FileI::FileI(const Ice::CommunicatorPtr& communicator,
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                         const string& name,
                         const DirectoryIPtr& parent)
    : NodeI(communicator, name, parent)
{
}

// Slice Directory::list() operation

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c)
{
    return _contents;
}

// DirectoryI constructor

Filesystem::DirectoryI::DirectoryI(
                    const Ice::CommunicatorPtr& communicator,
                    const string& name,
                    const DirectoryIPtr& parent)
    : NodeI(communicator, name, parent)
{
}

// addChild is called by the child in order to add
// itself to the _contents member of the parent

void
Filesystem::DirectoryI::addChild(const NodePrx& child)
{
    _contents.push_back(child);
}

9.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.
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Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe: a single data 
member and two lines of source code are sufficient to achieve this. We discuss 
how to write thread-safe servant implementations in Chapter 31.
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Chapter 10
Client-Side Slice-to-Java Mapping

10.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Java mapping (see Chapter 12 
for the server-side mapping). One part of the client-side Java mapping concerns 
itself with rules for representing each Slice data type as a corresponding Java type; 
we cover these rules in Section 10.3 to Section 10.10. Another part of the mapping 
deals with how clients can invoke operations, pass and receive parameters, and 
handle exceptions. These topics are covered in Section 10.11 to Section 10.13. 
Slice classes have the characteristics of both data types and interfaces and are 
covered in Section 10.14. In Section 10.16, we show how you can customize the 
Slice-to-Java mapping using metadata. Section 10.17 describes asynchronous 
method invocation. Section 10.18 lists the command-line options for the Slice-to-
Java compiler and describes how to use the Slice compiler in ant projects. Finally, 
Section 10.19 covers the use of Slice checksums in the Java mapping.

10.2 Introduction

The client-side Slice-to-Java mapping defines how Slice data types are translated 
to Java types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the Java mapping is intuitive. For example, Slice sequences map 
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to Java arrays, so there is essentially nothing new you have to learn in order to use 
Slice sequences in Java.

The Java API to the Ice run time is fully thread-safe. Obviously, you must still 
synchronize access to data from different threads. For example, if you have two 
threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 10.9 to 
Section 10.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Java mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the Java mapping rules. In particular, looking through the generated code in 
order to discern how to use the Java mapping is likely to be inefficient, due to the 
amount of detail. Of course, occasionally, you may want to refer to the generated 
code to confirm a detail of the mapping, but we recommend that you otherwise 
use the material presented here to see how to write your client-side code.

10.3 Mapping for Identifiers

Slice identifiers map to an identical Java identifier. For example, the Slice identi-
fier Clock becomes the Java identifier Clock. There is one exception to this rule: 
if a Slice identifier is the same as a Java keyword or is an identifier reserved by the 
Ice run time (such as checkedCast), the corresponding Java identifier is prefixed 
with an underscore. For example, the Slice identifier while is mapped as 
_while.1

A single Slice identifier often results in several Java identifiers. For example, 
for a Slice interface named Foo, the generated Java code uses the identifiers Foo 
and FooPrx (among others). If the interface has the name while, the generated 

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as 
possible.
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identifiers are _while and whilePrx (not _whilePrx), that is, the under-
score prefix is applied only to those generated identifiers that actually require it.

10.4 Mapping for Modules

Slice modules map to Java packages with the same name as the Slice module. The 
mapping preserves the nesting of the Slice definitions. For example:

// Definitions at global scope here...

module M1 {
    // Definitions for M1 here...
    module M2 {
        // Definitions for M2 here...
    };
};

// ...

module M1 {     // Reopen M1
    // More definitions for M1 here...
};

This definition maps to the corresponding Java definitions:

package M1;
// Definitions for M1 here...

package M1.M2;
// Definitions for M2 here...

package M1;
// Definitions for M1 here...

Note that these definitions appear in the appropriate source files; source files for 
definitions in module M1 are generated in directory M1 underneath the top-level 
directory, and source files for definitions for module M2 are generated in 
directory M1/M2 underneath the top-level directory. You can set the top-level 
output directory using the --output-dir option with slice2java (see 
Section 4.20).
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10.5 The Ice Package

All of the APIs for the Ice run time are nested in the Ice package, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice package are generated from Slice definitions; other parts of the Ice 
package provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice package 
throughout the remainder of the book.

10.6 Mapping for Simple Built-in Types

The Slice built-in types are mapped to Java types as shown in Table 10.1.

10.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

Table 10.1. Mapping of Slice built-in types to Java.

Slice Java

bool boolean

byte byte

short short

int int

long long

float float

double double

string String
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10.7.1 Mapping for Enumerations

A Slice enum type maps to the Java enum type. Consider the following example:

enum Fruit { Apple, Pear, Orange };

The Java mapping for Fruit is shown below:

public enum Fruit implements java.io.Serializable {
    Apple,
    Pear,
    Orange;

    // ...
}

Given the above definitions, we can use enumerated values as follows:

Fruit favoriteFruit = Fruit.Apple;
Fruit otherFavoriteFruit = Fruit.Orange;

if (favoriteFruit == Fruit.Apple) // Compare with constant
    // ...

if (f1 == f2)                     // Compare two enums
    // ...

switch (f2) {             // Switch on enum
case Fruit.Apple:
    // ...
    break;
case Fruit.Pear
    // ...
    break;
case Fruit.Orange
    // ...
    break;
}

Note that the generated class contains a number of other members, which we have 
not shown. These members are internal to the Ice run time and you must not use 
them in your application code (because they may change from release to release).
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10.7.2 Mapping for Structures

Slice structures map to Java classes with the same name. For each Slice data 
member, the Java class contains a corresponding public data member. For 
example, here is our Employee structure from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-Java compiler generates the following definition for this structure:

public final class Employee implements java.lang.Cloneable,
                                       java.io.Serializable {
    public long number;
    public String firstName;
    public String lastName;

    public Employee {}

    public Employee(long number,
                    String firstName,
                    String lastName) {
        this.number = number;
        this.firstName = firstName;
        this.lastName = lastName;
    }

    public boolean equals(java.lang.Object rhs) {
        // ...
    }
    public int hashCode() {
        // ...
    }

    public java.lang.Object clone()
        java.lang.Object o;
        try
        {
            o = super.clone();
        }
        catch(java.lang.CloneNotSupportedException ex)
        {
            assert false; // impossible
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        }
        return o;
    }
}

For each data member in the Slice definition, the Java class contains a corre-
sponding public data member of the same name. Refer to Section 10.16.3 for 
additional information on data members.

The equals member function compares two structures for equality. Note that 
the generated class also provides the usual hashCode and clone methods. 
(clone has the default behavior of making a shallow copy.)

Constructors

Structures have a default constructor that default-constructs each data member. 
This means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize members of structure and enumerated types because 
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.9.2). The default constructor initializes each of these data 
members to its declared value.

Structures also have a second constructor that has one parameter for each data 
member. This allows you to construct and initialize a class instance in a single 
statement (instead of first having to construct the instance and then assigning to its 
members).

10.7.3 Mapping for Sequences

Slice sequences map to Java arrays. This means that the Slice-to-Java compiler 
does not generate a separate named type for a Slice sequence. For example:

sequence<Fruit> FruitPlatter;

This definition simply corresponds to the Java type Fruit[]. Naturally, because 
Slice sequences are mapped to Java arrays, you can take advantage of all the array 
functionality provided by Java, such as initialization, assignment, cloning, and the 
length member. For example:

Fruit[] platter = { Fruit.Apple, Fruit.Pear };
assert(platter.length == 2);
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See Section 10.16 for information on alternate mappings for sequence types.

10.7.4 Mapping for Dictionaries
Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

As for sequences, the Java mapping does not create a separate named type for this 
definition. Instead, the dictionary is simply an instance of the generic type 
java.util.Map<K, V>, where K is the mapping of the key type and V is the 
mapping of the value type. In the example above, EmployeeMap is mapped to the 
Java type java.util.Map<Long, Employee>. The following code demon-
strates how to allocate and use an instance of EmployeeMap:

java.util.Map<Long, Employee> em =
    new java.util.HashMap<Long, Employee>();

Employee e = new Employee();
e.number = 31;
e.firstName = "James";
e.lastName = "Gosling";

em.put(e.number, e);

The typesafe nature of the mapping makes iterating over the dictionary quite 
convenient:

for (java.util.Map.Entry<Long, Employee> i : em.entrySet()) {
    long num = i.getKey();
    Employee emp = i.getValue();
    System.out.println(emp.firstName + " was employee #" + num);
}

See Section 10.16 for information on alternate mappings for dictionary types.

10.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
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const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public interface AppendByDefault {
    boolean value = true;
}

public interface LowerNibble {
    byte value = 15;
}

public interface Advice {
    String value = "Don't Panic!";
}

public interface TheAnswer {
    short value = 42;
}

public interface PI {
    double value = 3.1416;
}

public interface FavoriteFruit {
    Fruit value = Fruit.Pear;
}

As you can see, each Slice constant is mapped to a Java interface with the same 
name as the constant. The interface contains a member named value that holds 
the value of the constant.

10.9 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:
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exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public class GenericError extends Ice.UserException {
    public String reason;

    public GenericError() {}

    public GenericError(String reason)
    {
        this.reason = reason;
    }

    public String ice_name() {
        return "GenericError";
    }
}

public class BadTimeVal extends GenericError {
    public BadTimeVal() {}

    public BadTimeVal(String reason)
    {
        super(reason);
    }

    public String ice_name() {
        return "BadTimeVal";
    }
}

public class BadZoneName extends GenericError {
    public BadZoneName() {}

    public BadZoneName(String reason)
    {
        super(reason);
    }
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    public String ice_name() {
        return "BadZoneName";
    }
}

Each Slice exception is mapped to a Java class with the same name. For each data 
member, the corresponding class contains a public data member. (Obviously, 
because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.) Refer to Section 10.16.3 
for additional information on data members.

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

Each exception also defines the ice_name member function, which returns 
the name of the exception.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Ice.UserException, in turn, derives from 
java.lang.Exception.

Ice.UserException implements a clone method that is inherited by its 
derived exceptions, so you can make memberwise shallow copies of exceptions.

Note that the generated exception classes contain other member functions that 
are not shown. However, those member functions are internal to the Java mapping 
and are not meant to be called by application code.

Constructors

Exceptions have a default constructor that default-constructs each data member. 
This means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize members of structure and enumerated types because 
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.10.2). The default constructor initializes each of these data 
members to its declared value.

Exceptions also have a second constructor that has one parameter for each 
data member. This allows you to construct and initialize a class instance in a 
single statement (instead of first having to construct the instance and then 
assigning to its members). For derived exceptions, this constructor accepts one 
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argument for each base exception member, plus one argument for each derived 
exception member, in base-to-derived order.

10.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice.LocalException (which, in turn, derives from java.lang.Runti-
meException).

Ice.LocalExceptions implements a clone method that is inherited by 
its derived exceptions, so you can make memberwise shallow copies of excep-
tions.

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 117. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice.LocalException

This is the root of the inheritance tree for run-time exceptions.

• Ice.UserException

This is the root of the inheritance tree for user exceptions.

• Ice.TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice.ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining run-time exceptions; the 
fine-grained error handling offered by the remainder of the hierarchy is of interest 
mainly in the implementation of the Ice run time. However, there is one exception 
you will probably be interested in specifically: Ice.ObjectNotExistEx-
ception. This exception is raised if a client invokes an operation on an Ice 
object that no longer exists. In other words, the client holds a dangling reference 
to an object that probably existed some time in the past but has since been perma-
nently destroyed.
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10.11 Mapping for Interfaces

Slice interfaces map to proxies on the client side. A proxy is simply a Java inter-
face with operations that correspond to the operations defined in the Slice inter-
face.

The compiler generates quite few source files for each Slice interface. In 
general, for an interface <interface-name>, the following source files are created 
by the compiler:

• <interface-name>.java

This source file declares the <interface-name> Java interface.

• <interface-name>Holder.java

This source file defines a holder type for the interface (see page 353).

• <interface-name>Prx.java

This source file defines the <interface-name>Prx interface (see 
page 342).

• <interface-name>PrxHelper.java

This source file defines the helper type for the interface’s proxy (see 
page 345).

• <interface-name>PrxHolder.java

This source file defines the holder type for the interface’s proxy (see 
page 353).

• _<interface-name>Operations.java
_<interface-name>OperationsNC.java

These source files each define an interface that contains the operations corre-
sponding to the Slice interface.

These are the files that contain code that is relevant to the client side. The 
compiler also generates a file that is specific to the server side, plus three addi-
tional files:

• _<interface-name>Disp.java

This file contains the definition of the server-side skeleton class.

• _<interface-name>Del.java

• _<interface-name>DelD.java
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• _<interface-name>DelM.java

These files contain code that is internal to the Java mapping; they do not 
contain any functions of relevance to application programmers. 

10.11.1 Proxy Interfaces

On the client side, Slice interfaces map to Java interfaces with member functions 
that correspond to the operations on those interfaces. Consider the following 
simple interface:

interface Simple {
    void op();
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx extends Ice.ObjectPrx {
    public void op();
    public void op(java.util.Map<String, String> __context);
}

As you can see, the compiler generates a proxy interface SimplePrx. In general, 
the generated name is <interface-name>Prx. If an interface is nested in a 
module M, the generated class is part of package M, so the fully-qualified name is 
M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simple interface in a server and is known as a 
proxy instance. All the details about the server-side object, such as its address, 
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a member function of 
the same name. For the preceding example, we find that the operation op has been 
mapped to the member function op. Also note that op is overloaded: the second 
version of op has a parameter __context of type 
java.util.Map<String, String>. This parameter is for use by the Ice 
run time to store information about how to deliver a request. You normally do not 
need to use it. (We examine the __context parameter in detail in Chapter 32. 
The parameter is also used by IceStorm—see Chapter 44.)

Because all the <interface-name>Prx types are interfaces, you cannot 
instantiate an object of such a type. Instead, proxy instances are always instanti-
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ated on behalf of the client by the Ice run time, so client code never has any need 
to instantiate a proxy directly.The proxy references handed out by the Ice run time 
are always of type <interface-name>Prx; the concrete implementation of 
the interface is part of the Ice run time and does not concern application code.

A value of null denotes the null proxy. The null proxy is a dedicated value 
that indicates that a proxy points “nowhere” (denotes no object).

10.11.2 The Ice.ObjectPrx Interface

All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

package Ice;

public interface ObjectPrx {
    boolean equals(java.lang.Object r);
    Identity ice_getIdentity();
    boolean ice_isA(String __id);
    boolean ice_isA(String __id,
                    java.util.Map<String, String> ctx);
    String[] ice_ids();
    String[] ice_ids(java.util.Map<String, String> ctx);
    String ice_id();
    String ice_id(java.util.Map<String, String> ctx);
    void ice_ping();
    void ice_ping(java.util.Map<String, String> ctx);
    // ...
}

The methods behave as follows:

• equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:
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module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

Ice.ObjectPrx o1 = ...;
Ice.ObjectPrx o2 = ...;
Ice.Identity i1 = o1.ice_getIdentity();
Ice.Identity i2 = o2.ice_getIdentity();

if (i1.equals(i2))
    // o1 and o2 denote the same object
else
    // o1 and o2 denote different objects

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

Ice.ObjectPrx o = ...;
if (o != null && o.ice_isA("::Printer"))
    // o denotes a Printer object
else
    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke 
the ice_isA method. This avoids getting a NullPointerException if 
the proxy is null.

• ice_ids

This method returns an array of strings representing all of the type IDs that the 
object denoted by the proxy supports.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
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BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be ::Base, or it might something more derived, such as ::Derived.

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExist-
Exception or ConnectTimeoutException.

The ice_isA, ice_ids, ice_id, and ice_ping methods are remote opera-
tions and therefore support an additional overloading that accepts a request 
context. Also note that there are other methods in ObjectPrx (not shown here) 
that provide different ways to dispatch a call. We discuss these topics in 
Chapter 32.

10.11.3 Proxy Helpers
For each Slice interface, apart from the proxy interface, the Slice-to-Java compiler 
creates a helper class: for an interface Simple, the name of the generated helper 
class is SimplePrxHelper. The helper classes contains two methods that 
support down-casting:

public final class SimplePrxHelper
        extends Ice.ObjectPrxHelper implements SimplePrx {
    public static SimplePrx checkedCast(Ice.ObjectPrx b) {
        // ...
    }

    public static SimplePrx checkedCast(Ice.ObjectPrx b,
                                        Ice.Context ctx) {
        // ...
    }

    public static SimplePrx uncheckedCast(Ice.ObjectPrx b) {
        // ...
    }

    // ...
}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a non-null reference to a 
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proxy of type SimplePrx; otherwise, if the passed proxy denotes an object of a 
different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast(obj);
if (simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of a proxy in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException. (This also explains the need 
for the helper class: the Ice run time must contact the server, so we cannot use a 
Java down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:
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Ice.ObjectPrx obj = ...;                    // Get proxy...
ProcessPrx process
    = ProcessPrxHelper.uncheckedCast(obj);  // No worries...
process.launch(40, 60);                     // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or 
an uncheckedCast to down-cast a proxy. If you use a Java cast, the behavior is 
undefined.

10.11.4 Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:

Ice.ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a checkedCast or 
uncheckedCast after using a factory method. However, a regular cast is still 
required, as shown in the example below:

Ice.ObjectPrx base = communicator.stringToProxy(...);
HelloPrx hello = HelloPrxHelper.checkedCast(base);
hello = (HelloPrx)hello.ice_timeout(10000); # Type is preserved
hello.sayHello();
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The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return a base proxy that you must subsequently down-cast to 
an appropriate type.

10.11.5 Object Identity and Proxy Comparison

Proxies provide an equals method that compares proxies:

interface ObjectPrx {
    boolean equals(java.lang.Object r);
}

Note that proxy comparison with equals uses all of the information in a proxy 
for the comparison. This means that not only the object identity must match for a 
comparison to succeed, but other details inside the proxy, such as the protocol and 
endpoint information, must be the same. In other words, comparison with 
equals tests for proxy identity, not object identity. A common mistake is to write 
code along the following lines:

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (p1.equals(p2)) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with equals, we know that the two proxies denote the 
same object (because they are identical in all respects); however, if two proxies 
compare unequal with equals, we know absolutely nothing: the proxies may or 
may not denote the same object.

To compare the object identities of two proxies, you can use a helper function 
in the Ice.Util class:
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package Ice;

public final class Util {
    public static int proxyIdentityCompare(ObjectPrx lhs,
                                           ObjectPrx rhs);
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs,
                                                   ObjectPrx rhs);
    // ...
}

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

The function returns 0 if the identities are equal, 1 if p1 is less than p2, and 1 if 
p1 is greater than p2. (The comparison uses name as the major and category 
as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but 
compares both the identity and the facet name (see Chapter 33).

In addition, the Java mapping provides two wrapper classes that allow you to 
wrap a proxy for use as the key of a hashed collection:

package Ice;

public class ProxyIdentityKey {
    public ProxyIdentityKey(Ice.ObjectPrx proxy);
    public int hashCode();
    public boolean equals(java.lang.Object obj);
    public Ice.ObjectPrx getProxy();
}

public class ProxyIdentityFacetKey {
    public ProxyIdentityFacetKey(Ice.ObjectPrx proxy);
    public int hashCode();
    public boolean equals(java.lang.Object obj);
    public Ice.ObjectPrx getProxy();
}
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The constructor caches the identity and the hash code of the passed proxy, so calls 
to hashCode and equals can be evaluated efficiently. The getProxy method 
returns the proxy that was passed to the constructor.

As for the comparison functions, ProxyIdentityKey only uses the 
proxy’s identity, whereas ProxyIdentityFacetKey also includes the facet 
name.

10.11.6 Deserializing Proxies

Proxy objects implement the java.io.Serializable interface that enables 
serialization of proxies to and from a byte stream. You can use the standard class 
java.io.ObjectInputStream to deserialize all Slice types except proxies; 
proxies are a special case because they must be created by a communicator.

To supply a communicator for use in deserializing proxies, an application 
must use the class Ice.ObjectInputStream:

package Ice;

public class ObjectInputStream extends java.io.ObjectInputStream
{
    public ObjectInputStream(Communicator communicator,
                             java.io.InputStream stream)
        throws java.io.IOException;

    public Communicator getCommunicator();
}

The code shown below demonstrates how to use this class:

Ice.Communicator communicator = ...
byte[] bytes = ... // data to be deserialized
java.io.ByteArrayInputStream byteStream =
    new java.io.ByteArrayInputStream(bytes);
Ice.ObjectInputStream in =
    new Ice.ObjectInputStream(communicator, byteStream);
Ice.ObjectPrx proxy = (Ice.ObjectPrx)in.readObject();

Ice raises java.io.IOException if an application attempts to deserialize a 
proxy without supplying a communicator.



10.12 Mapping for Operations 351

10.12 Mapping for Operations

As we saw in Section 10.11, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy. For example, here is part of the definitions for 
our file system from Section 5.4:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy
String name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are 
returned by reference for complex types, and by value for simple types (such as 
int or double).

10.12.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy method is concerned, idempotent has no effect. For 
example, consider the following interface:

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy interface for this is:

public interface ExamplePrx extends Ice.ObjectPrx {
    public String op1();
    public String op2();
}

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the two methods to be mapped the same.
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10.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the Java mapping are very simple: parameters are 
passed either by value (for simple types) or by reference (for complex types and 
type String). Semantically, the two ways of passing parameters are identical: it 
is guaranteed that the value of a parameter will not be changed by the invocation 
(with some caveats—see page 1093).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx {
    public void op1(int i, float f, boolean b, String s);
    public void op2(NumberAndString ns,
                    String[] ss,
                    java.util.Map st);
    public void op3(ClientToServerPrx proxy);
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy...

p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14f;
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boolean b = true;
String s = "Hello world!";
p.op1(i, f, b, s);                      // Pass simple variables

NumberAndString ns = new NumberAndString();
ns.x = 42;
ns.str = "The Answer";
String[] ss = { "Hello world!" };
java.util.HashMap st = new java.util.HashMap();
st.put(new Long(0), ns);
p.op2(ns, ss, st);                      // Pass complex variables

p.op3(p);                               // Pass proxy

Out-Parameters

Java does not have pass-by-reference: parameters are always passed by value. For 
a function to modify one of its arguments, we must pass a reference (by value) to 
an object; the called function can then modify the object’s contents via the passed 
reference.

To permit the called function to modify a parameter, the Java mapping uses so-
called holder classes. For example, for each of the built-in Slice types, such as int 
and string, the Ice package contains a corresponding holder class. Here are the 
definitions for the holder classes Ice.IntHolder and Ice.StringHolder:

package Ice;

public final class IntHolder {
    public IntHolder() {}
    public IntHolder(int value)
        this.value = value;
    }
    public int value;
}

public final class StringHolder {
    public StringHolder() {}
    public StringHolder(String value) {
        this.value = value;
    }
    public String value;
}
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A holder class has a public value member that stores the value of the parameter; 
the called function can modify the value by assigning to that member. The class 
also has a default constructor and a constructor that accepts an initial value.

For user-defined types, such as structures, the Slice-to-Java compiler generates 
a corresponding holder type. For example, here is the generated holder type for 
the NumberAndString structure we defined on page 352:

public final class NumberAndStringHolder {
    public NumberAndStringHolder() {}

    public NumberAndStringHolder(NumberAndString value) {
        this.value = value;
    }

    public NumberAndString value;
}

This looks exactly like the holder classes for the built-in types: we get a default 
constructor, a constructor that accepts an initial value, and the public value 
member.

Note that holder classes are generated for every Slice type you define. For 
example, for sequences, such as the FruitPlatter sequence we saw on page 335, 
the compiler does not generate a special Java FruitPlatter type because 
sequences map to Java arrays. However, the compiler does generate a Fruit-
PlatterHolder class, so we can pass a FruitPlatter array as an out-
parameter.

To pass an out-parameter to an operation, we simply pass an instance of a 
holder class and examine the value member of each out-parameter when the call 
completes. Here is the same Slice definition we saw on page 352 once more, but 
this time with all parameters being passed in the out direction:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
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             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for this definition:

public interface ClientToServerPrx extends Ice.ObjectPrx {
    public void op1(Ice.IntHolder i, Ice.FloatHolder f,
                    Ice.BooleanHolder b, Ice.StringHolder s);
    public void op2(NumberAndStringHolder ns,
                    StringSeqHolder ss, StringTableHolder st);
    public void op3(ClientToServerPrxHolder proxy);
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy...

Ice.IntHolder ih = new Ice.IntHolder();
Ice.FloatHolder fh = new Ice.FloatHolder();
Ice.BooleanHolder bh = new Ice.BooleanHolder();
Ice.StringHolder sh = new Ice.StringHolder();
p.op1(ih, fh, bh, sh);

NumberAndStringHolder nsh = new NumberAndString();
StringSeqHolder ssh = new StringSeqHolder();
StringTableHolder sth = new StringTableHolder();
p.op2(nsh, ssh, sth);

ServerToClientPrxHolder stcph = new ServerToClientPrxHolder();
p.op3(stch);

System.out.writeln(ih.value);   // Show one of the values

Again, there are no surprises in this code: the various holder instances contain 
values once the operation invocation completes and the value member of each 
instance provides access to those values.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
sequences, dictionaries, and strings all can be null, but the corresponding Slice 
types do not have the concept of a null value. To make life with these types easier, 
whenever you pass null as a parameter or return value of type sequence, 
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dictionary, or string, the Ice run time automatically sends an empty sequence, 
dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested 
data types, members that are sequences, dictionaries, or strings automatically 
arrive as an empty value at the receiving end. This saves you having to explicitly 
initialize, for example, every string element in a large sequence before sending the 
sequence in order to avoid NullPointerExceptions. Note that using null 
parameters in this way does not create null semantics for Slice sequences, diction-
aries, or strings. As far as the object model is concerned, these do not exist (only 
empty sequences, dictionaries, and strings do). For example, whether you send a 
string as null or as an empty string makes no difference to the receiver: either 
way, the receiver sees an empty string.

10.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 10.10 on 
page 340) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 10.9 on page 337). Suppose we have the following 
simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Java exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:

ChildPrx child = ...;   // Get child proxy...

try {
    child.askToCleanUp();
} catch (Tantrum t) {
    System.out.write("The child says: ");
    System.out.writeln(t.reason);
}
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Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

public class Client {
    static void run() {
        ChildPrx child = ...;   // Get child proxy...
        try {
            child.askToCleanUp();
        } catch (Tantrum t) {
            System.out.print("The child says: ");
            System.out.println(t.reason);
            child.scold();          // Recover from error...
        }
        child.praise();             // Give positive feedback...
    }

    public static void
    main(String[] args)
    {
        try {
            // ...
            run();
            // ...
        } catch (Ice.LocalException e) {
            e.printStackTrace();
        } catch (Ice.UserException e) {
            System.err.println(e.getMessage());
        }
    }
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may still have its original value or 
may have been changed by the operation’s implementation in the target object. In 
other words, for out-parameters, Ice provides the weak exception guarantee [21] 
but does not provide the strong exception guarantee.2
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10.14 Mapping for Classes

Slice classes are mapped to Java classes with the same name. The generated class 
contains a public data member for each Slice data member (just as for structures 
and exceptions), and a member function for each operation. Consider the 
following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

public interface _TimeOfDayOperations {
    String format(Ice.Current current);
}

public interface _TimeOfDayOperationsNC {
    String format();
}

public abstract class TimeOfDay extends Ice.ObjectImpl
                                implements _TimeOfDayOperations,
                                           _TimeOfDayOperationsNC 
{
    public short hour;
    public short minute;
    public short second;

    public TimeOfDay();
    public TimeOfDay(short hour, short minute, short second);
    // ...
}

There are a number of things to note about the generated code:

2. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.



10.14 Mapping for Classes 359

1. The compiler generates “operations interfaces” called 
_TimeOfDayOperations and _TimeOfDayOperationsNC. These 
interfaces contain a method for each Slice operation of the class.

2. The generated class TimeOfDay inherits (indirectly) from Ice.Object. 
This means that all classes implicitly inherit from Ice.Object, which is the 
ultimate ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a 
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from 
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

10.14.1 Operations Interfaces

The methods in the _<interface-name>Operations interface have an 
additional trailing parameter of type Ice.Current, whereas the methods in the 
_<interface-name>OperationsNC interface lack this additional trailing 
parameter. The methods without the Current parameter simply forward to the 
methods with a Current parameter, supplying a default Current. For now, 
you can ignore this parameter and pretend it does not exist. (We look at it in more 
detail in Section 32.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the _<interface-name>Operations and _<inter-
face-name>OperationsNC interfaces.

10.14.2 Inheritance from Ice.Object

Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 10.1, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inheri-
tance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 



360 Client-Side Slice-to-Java Mapping

expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 10.1. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

package Ice;

public interface Object
{
    boolean ice_isA(String s);
    boolean ice_isA(String s, Current current);

    void ice_ping();
    void ice_ping(Current current);

    String[] ice_ids();
    String[] ice_ids(Current current);

    String ice_id();
    String ice_id(Current current);

    void ice_preMarshal();
    void ice_postUnmarshal();

    DispatchStatus ice_dispatch(
        Request request,
        DispatchInterceptorAsyncCallback cb);
}

The member functions of Ice.Object behave as follows:

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

• ice_dispatch

This function dispatches an incoming request to a servant. It is used in the 
implementation of dispatch interceptors (see Section 32.23).

Note that the generated class does not override hashCode and equals. This 
means that classes are compared using shallow reference equality, not value 
equality (as is used for structures).

All Slice classes derive from Ice.Object via the Ice.ObjectImpl 
abstract base class. ObjectImpl implements the java.io.Serializable 
interface to support Java’s serialization facility (see Section 10.15). Object-
Impl also supplies an implementation of clone that returns a shallow member-
wise copy.

10.14.3 Data Members of Classes
By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility 
using the protected metadata directive. The presence of this directive causes the 
Slice compiler to generate the data member with protected visibility. As a result, 
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the member can be accessed only by the class itself or by one of its subclasses. For 
example, the TimeOfDay class shown below has the protected metadata directive 
applied to each of its data members:

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

public abstract class TimeOfDay extends Ice.ObjectImpl
                                implements _TimeOfDayOperations,
                                           _TimeOfDayOperationsNC 
{
    protected short hour;
    protected short minute;
    protected short second;

    public TimeOfDay();
    public TimeOfDay(short hour, short minute, short second);
    // ...
}

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

Refer to Section 10.16.3 for additional information on data members.

10.14.4 Operations of Classes

Operations of classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:
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public class TimeOfDayI extends TimeOfDay {
    public String format(Ice.Current current) {
        DecimalFormat df
            = (DecimalFormat)DecimalFormat.getInstance();
        df.setMinimumIntegerDigits(2);
        return new String(df.format(hour) + ":" +
                          df.format(minute) + ":" +
                          df.format(second));
    }
}

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};
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To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory implements Ice.ObjectFactory {
    public Ice.Object create(String type) {
        if (type.equals(M.TimeOfDay.ice_staticId())) {
            return new TimeOfDayI();
        }
        assert(false);
        return null;
    }

    public void destroy() {
        // Nothing to do
    }
}

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Ice.Communicator ic = ...;
ic.addObjectFactory(new ObjectFactory(),
                    M.TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.
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The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

10.14.5 Class Constructors

Classes have a default constructor that default-constructs each data member. This 
means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize members of structure and enumerated types because 
the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.11.1). The default constructor initializes each of these data 
members to its declared value.

The generated class also contains a second constructor that accepts one argu-
ment for each member of the class. This allows you to create and initialize a class 
in a single statement, for example:

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 14:45pm

For derived classes, the constructor requires an argument for every member of the 
class, including inherited members. For example, consider the the definition from 
Section 4.11.2 once more:
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class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

The constructors for the generated classes are as follows:

public class TimeOfDay extends Ice.ObjectImpl {
    public TimeOfDay() {}

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

public class DateTime extends TimeOfDay
{
    public DateTime()
    {
        super();
    }

    public DateTime(short hour, short minute, short second,
                    short day, short month, short year)
    {
        super(hour, minute, second);
        this.day = day;
        this.month = month;
        this.year = year;
    }

    // ...
}
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If you want to instantiate and initialize a DateTime instance, you must either use 
the default constructor or provide values for all of the data members of the 
instance, including data members of any base classes.

10.15 Serializable Objects

In Java terminology, a serializable object typically refers to an object that imple-
ments the java.io.Serializable interface and therefore supports serial-
ization to and from a byte stream. All Java classes generated from Slice 
definitions implement the java.io.Serializable interface.

In addition to serializing Slice types, applications may also need to incorpo-
rate foreign types into their Slice definitions. As discussed in Section 4.18, you 
can pass Java serializable objects directly as operation parameters or as fields of 
another data type. For example:

["java:serializable:SomePackage.JavaClass"]
sequence<byte> JavaObj;
struct MyStruct {
    int i;
    JavaObj o;
};

interface Example {
    void op(JavaObj inObj, MyStruct s, out JavaObj outObj);
};

The generated code for MyStruct contains a member i of type int and a 
member o of type SomePackage.JavaClass:

public final class MyStruct implements java.lang.Cloneable {
    public int i;
    public SomePackage.JavaClass o;

    // ...
}

Similarly, the signature for op has parameters of type JavaClass and 
MyStruct for the in-parameters, and Ice.Holder<SomePackage.Java-
Class> for the out-parameter. (Out-parameters are always passed as 
Ice.Holder<class>.)
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void op(SomePackage.JavaClass inObj,
        MyStruct s,
        Ice.Holder<SomePackage.JavaClass> outObj);

Of course, your client and server code must have an implementation of Java-
Class that derives from java.io.Serializable:

package SomePackage;

public class JavaClass implements java.io.Serializable {
    // ...
}

You can implement this class in any way you see fit—the Ice run time does not 
place any other requirements on the implementation.

10.16 Customizing the Java Mapping

You can customize the code that the Slice-to-Java compiler produces by anno-
tating your Slice definitions with metadata (see Section 4.17). This section 
describes how metadata influences several aspects of the generated Java code.

10.16.1 Packages

By default, the scope of a Slice definition determines the package of its mapped 
Java construct. A Slice type defined in a module hierarchy is mapped to a type 
residing in the equivalent Java package (see Section 10.4 for more information on 
the module mapping).

There are times when applications require greater control over the packaging 
of generated Java classes. For instance, a company may have software develop-
ment guidelines that require all Java classes to reside in a designated package. One 
way to satisfy this requirement is to modify the Slice module hierarchy so that the 
generated code uses the required package by default. In the example below, we 
have enclosed the original definition of Workflow::Document in the modules 
com::acme so that the compiler will create the class in the com.acme package:

module com {
    module acme {
        module Workflow {
            class Document {
                // ...
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            };
        };
    };
};

There are two problems with this workaround:

1. It incorporates the requirements of an implementation language into the appli-
cation’s interface specification.

2. Developers using other languages, such as C++, are also affected.

The Slice-to-Java compiler provides a better way to control the packages of gener-
ated code through the use of global metadata (see Section 4.17). The example 
above can be converted as follows:

[["java:package:com.acme"]]
module Workflow {
    class Document {
        // ...
    };
};

The global metadata directive java:package:com.acme instructs the 
compiler to generate all of the classes resulting from definitions in this Slice file 
into the Java package com.acme. The net effect is the same: the class for Docu-
ment is generated in the package com.acme.Workflow. However, we have 
addressed the two shortcomings of the first solution by reducing our impact on the 
interface specification: the Slice-to-Java compiler recognizes the package meta-
data directive and modifies its actions accordingly, whereas the compilers for 
other language mappings simply ignore it.

Package Configuration Properties

Using global metadata to alter the default package of generated classes has ramifi-
cations for the Ice run time when unmarshaling exceptions and concrete class 
types. The Ice run time dynamically loads generated classes by translating their 
Slice type ids into Java class names. For example, the Ice run time translates the 
Slice type id ::Workflow::Document into the class name Work-
flow.Document.

However, when the generated classes are placed in a user-specified package, 
the Ice run time can no longer rely on the direct translation of a Slice type id into a 
Java class name, and therefore must be configured in order to successfully locate 
the generated classes. Two configuration properties are supported:
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• Ice.Package.Module=package

Associates a top-level3 Slice module with the package in which it was gener-
ated.

• Ice.Default.Package=package

Specifies a default package to use if other attempts to load a class have failed.

The behavior of the Ice run time when unmarshaling an exception or concrete 
class is described below:

1. Translate the Slice type id into a Java class name and attempt to load the class.

2. If that fails, extract the top-level module from the type id and check for an 
Ice.Package property with a matching module name. If found, prepend 
the specified package to the class name and try to load the class again.

3. If that fails, check for the presence of Ice.Default.Package. If found, 
prepend the specified package to the class name and try to load the class again.

4. If the class still cannot be loaded, the instance may be sliced according to the 
rules described in Section 37.2.11.

Continuing our example from the previous section, we can define the following 
property:

Ice.Package.Workflow=com.acme

Alternatively, we could achieve the same result with this property:

Ice.Default.Package=com.acme

10.16.2 Custom Types

One of the more powerful applications of metadata is the ability to tailor the Java 
mapping for sequence and dictionary types to match the needs of your application.

Metadata

The metadata for specifying a custom type has the following format:

java:type:instance-type[:formal-type]

3. Only top-level module names are allowed; the semantics of global metadata prevent a nested 
module from being generated into a different package than its enclosing module.
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The formal type is optional; the compiler uses a default value if one is not defined. 
The instance type must satisfy an is-A relationship with the formal type: either the 
same class is specified for both types, or the instance type must be derived from 
the formal type.

The Slice-to-Java compiler generates code that uses the formal type for all 
occurrences of the modified Slice definition except when the generated code must 
instantiate the type, in which case the compiler uses the instance type instead.

The compiler performs no validation on your custom types. Misspellings and 
other errors will not be apparent until you compile the generated code.

Defining a Custom Sequence Type

Although the default mapping of a sequence type to a native Java array is efficient 
and typesafe, it is not always the most convenient representation of your data. To 
use a different representation, specify the type information in a metadata directive, 
as shown in the following example:

["java:type:java.util.LinkedList<String>"]
sequence<string> StringList;

It is your responsibility to use a type parameter for the Java class (String in the 
example above) that is the correct mapping for the sequence’s element type.

The compiler requires the formal type to implement java.util.List<E>, 
where E is the Java mapping of the element type. If you do not specify a formal 
type, the compiler uses java.util.List<E> by default.

Note that extra care must be taken when defining custom types that contain 
nested generic types, such as a custom sequence whose element type is also a 
custom sequence. The Java compiler strictly enforces type safety, therefore any 
compatibility issues in the custom type metadata will be apparent when the gener-
ated code is compiled.

Defining a Custom Dictionary Type

The default instance type for a dictionary is java.util.HashMap<K, V>, 
where K is the Java mapping of the key type and V is the Java mapping of the 
value type. If the semantics of a HashMap are not suitable for your application, 
you can specify an alternate type using metadata as shown in the example below:

["java:type:java.util.TreeMap<String, String>"]
dictionary<string, string> StringMap;
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It is your responsibility to use type parameters for the Java class (String in the 
example above) that are the correct mappings for the dictionary’s key and value 
types.

The compiler requires the formal type to implement java.util.Map<K, 
V>. If you do not specify a formal type, the compiler uses this type by default.

Note that extra care must be taken when defining dictionary types that contain 
nested generic types, such as a dictionary whose element type is a custom 
sequence. The Java compiler strictly enforces type safety, therefore any compati-
bility issues in the custom type metadata will be apparent when the generated code 
is compiled.

Usage

You can define custom type metadata in a variety of situations. The simplest 
scenario is specifying the metadata at the point of definition:

["java:type:java.util.LinkedList<String>"]
sequence<string> StringList;

Defined in this manner, the Slice-to-Java compiler uses 
java.util.List<String> (the default formal type) for all occurrences of 
StringList, and java.util.LinkedList<String> when it needs to 
instantiate StringList.

You may also specify a custom type more selectively by defining metadata for 
a data member, parameter or return value. For instance, the mapping for the orig-
inal Slice definition might be sufficient in most situations, but a different mapping 
is more convenient in particular cases. The example below demonstrates how to 
override the sequence mapping for the data member of a structure as well as for 
several operations:

sequence<string> StringSeq;

struct S {
    ["java:type:java.util.LinkedList<String>"] StringSeq seq;
};

interface I {
    ["java:type:java.util.ArrayList<String>"] StringSeq
    modifiedReturnValue();

    void modifiedInParam(
        ["java:type:java.util.ArrayList<String>"] StringSeq seq);
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    void modifiedOutParam(
        out ["java:type:java.util.ArrayList<String>"]
        StringSeq seq);
};

As you might expect, modifying the mapping for an operation’s parameters or 
return value may require the application to manually convert values from the orig-
inal mapping to the modified mapping. For example, suppose we want to invoke 
the modifiedInParam operation. The signature of its proxy operation is shown 
below:

void modifiedInParam(java.util.List<String> seq, Ice.Current curr)

The metadata changes the mapping of the seq parameter to java.util.List, 
which is the default formal type. If a caller has a StringSeq value in the original 
mapping, it must convert the array as shown in the following example:

String[] seq = new String[2];
seq[0] = "hi";
seq[1] = "there";
IPrx proxy = ...;
proxy.modifiedInParam(java.util.Arrays.asList(seq));

Although we specified the instance type java.util.ArrayList<String> 
for the parameter, we are still able to pass the result of asList because its return 
type (java.util.List<String>) is compatible with the parameter’s formal 
type declared by the proxy method. In the case of an operation parameter, the 
instance type is only relevant to a servant implementation, which may need to 
make assumptions about the actual type of the parameter.

Mapping for Modified Out Parameters

The mapping for an out parameter uses a generated “holder” class to convey the 
parameter value (see Section 10.12.2). If you modify the mapping of an out 
parameter, as discussed in the previous section, it is possible that the holder class 
for the parameter’s unmodified type is no longer compatible with the custom type 
you have specified. The holder class generated for StringSeq is shown below:

public final class StringSeqHolder
{
    public
    StringSeqHolder()
    {
    }
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    public
    StringSeqHolder(String[] value)
    {
        this.value = value;
    }

    public String[] value;
}

An out parameter of type StringSeq would normally map to a proxy method that 
used StringSeqHolder to hold the parameter value. When the parameter is 
modified, as is the case with the modifiedOutParam operation, the Slice-to-Java 
compiler cannot use StringSeqHolder to hold an instance of 
java.util.List<String>, because StringSeqHolder is only appro-
priate for the default mapping to a native array.

As a result, the compiler handles these situations using instances of the 
generic class Ice.Holder<T>, where T is the parameter’s formal type. 
Consider the following example:

sequence<string> StringSeq;

interface I {
    void modifiedOutParam(
        out ["java:type:java.util.ArrayList<String>"]
        StringSeq seq);
};

The compiler generates the following mapping for the modifiedOutParam proxy 
method:

void modifiedOutParam(
    Ice.Holder<java.util.List<java.lang.String> > seq,
    Ice.Current curr)

The formal type of the parameter is java.util.List<String>, therefore 
the holder class becomes Ice.Holder<java.util.List<String>>.

10.16.3 JavaBean Mapping

The Java mapping optionally generates JavaBean-style methods for the data 
members of class, structure and exception types.
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Generated Methods

For each data member val of type T, the mapping generates the following 
methods:

public T getVal();
public void setVal(T v);

The mapping generates an additional method if T is the bool type:

public boolean isVal();

Finally, if T is a sequence type with an element type E, two methods are generated 
to provide direct access to elements:

public E getVal(int index);
public void setVal(int index, E v);

Note that these element methods are only generated for sequence types that use 
the default mapping.

The Slice-to-Java compiler considers it a fatal error for a JavaBean method of 
a class data member to conflict with a declared operation of the class. In this situ-
ation, you must rename the operation or the data member, or disable the genera-
tion of JavaBean methods for the data member in question.

Metadata

The JavaBean methods are generated for a data member when the member or its 
enclosing type is annotated with the java:getset metadata. The following 
example demonstrates both styles of usage:

sequence<int> IntSeq;

class C {
    ["java:getset"] int i;
    double d;
};

["java:getset"]
struct S {
    bool b;
    string str;
};

["java:getset"]
exception E {
    IntSeq seq;
};
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JavaBean methods are generated for all members of struct S and exception E, but 
for only one member of class C. Relevant portions of the generated code are shown 
below:

public class C extends Ice.ObjectImpl
{
    ...

    public int i;

    public int
    getI()
    {
        return i;
    }

    public void
    setI(int _i)
    {
        i = _i;
    }

    public double d;
}

public final class S implements java.lang.Cloneable
{
    public boolean b;

    public boolean
    getB()
    {
        return b;
    }

    public void
    setB(boolean _b)
    {
        b = _b;
    }

    public boolean
    isB()
    {
        return b;
    }
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    public String str;

    public String
    getStr()
    {
        return str;
    }

    public void
    setStr(String _str)
    {
        str = _str;
    }

    ...
}

public class E extends Ice.UserException
{
    ...

    public int[] seq;

    public int[]
    getSeq()
    {
        return seq;
    }

    public void
    setSeq(int[] _seq)
    {
        seq = _seq;
    }

    public int
    getSeq(int _index)
    {
        return seq[_index];
    }

    public void
    setSeq(int _index, int _val)
    {
        seq[_index] = _val;
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    }

    ...
}
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10.17 Asynchronous Method Invocation (AMI)

NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation. 
This section describes this API. You can find documentation for the previous API 
in Appendix K. Note that the old API is deprecated and will be removed in a 
future release.

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and poll or wait for completion of the invocation, or receive 
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether 
a client sent a request synchronously or asynchronously.

10.17.1 Basic Asynchronous API

Consider the following simple Slice definition:

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Proxy Methods

Besides the synchronous proxy methods, slice2java generates the following 
asynchronous proxy methods:4

4. There are four additional overloads of begin_getName that we discuss in Sections 10.17.4 
and 10.17.6.
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public interface EmployeesPrx extends Ice.ObjectPrx
{
    // ...

    public Ice.AsyncResult begin_getName(int number);
    public Ice.AsyncResult begin_getName(
                            int number,
                            java.util.Map<String, String> __ctx);

    public String end_getName(Ice.AsyncResult __result);
}

As you can see, the single getName operation results in begin_getName and 
end_getName methods. (The begin_ method is overloaded so you can pass a 
per-invocation context—see Section 32.12).

• The begin_getName method sends (or queues) an invocation of getName. 
This method does not block the calling thread.

• The end_getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not 
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to 
end_getName, the method returns immediately with the result.

A client could call these methods as follows:

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin_getName(99);

// Continue to do other things here...

String name = e.end_getName(r);

Because begin_getName does not block, the calling thread can do other things 
while the operation is in progress.

Note that begin_getName returns a value of type AsyncResult. This 
value contains the state that the Ice run time requires to keep track of the asyn-
chronous invocation. You must pass the AsyncResult that is returned by the 
begin_ method to the corresponding end_ method.

The begin_ method has one parameter for each in-parameter of the corre-
sponding Slice operation. Similarly, the end_ method has one out-parameter for 
each out-parameter of the corresponding Slice operation (plus the AsyncRe-
sult parameter). For example, consider the following operation:

double op(int inp1, string inp2, out bool outp1, out long outp2);
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The begin_op and end_op methods have the following signature:

Ice.AsyncResult begin_op(int inp1, String inp2);
Ice.AsyncResult begin_op(int inp1, String inp2,
                         java.util.Map<String, String> __ctx);
double end_op(Ice.BooleanHolder outp1, Ice.LongHolder outp2,
              Ice.AsyncResult r);

Exception Handling

If an invocation raises an exception, the exception is thrown by the end_ method, 
even if the actual error condition for the exception was encountered during the 
begin_ method (“on the way out”). The advantage of this behavior is that all 
exception handling is located with the code that calls the end_ method (instead of 
being present twice, once where the begin_ method is called, and again where 
the end_ method is called).

There is one exception to the above rule: if you destroy the communicator and 
then make an asynchronous invocation, the begin_ method throws Communi-
catorDestroyedException. This is necessary because, once the run time is 
finalized, it can no longer throw an exception from the end_ method.

The only other exception that is thrown by the begin_ and end_ methods is 
java.lang.IllegalArgumentException. This exception indicates that 
you have used the API incorrectly. For example, the begin_ method throws this 
exception if you call an operation that has a return value or out-parameters on a 
oneway proxy. Similarly, the end_ method throws this exception if you use a 
different proxy to call the end_ method than the proxy you used to call the 
begin_ method, or if the AsyncResult you pass to the end_ method was 
obtained by calling the begin_ method for a different operation.

10.17.2 The AsyncResult Class
The AsyncResult that is returned by the begin_ method encapsulates the 
state of the asynchronous invocation:

public class AsyncResult {
    public Communicator getCommunicator();
    public Connection getConnection();
    public ObjectPrx getProxy();
    public String getOperation();

    public boolean isCompleted();
    public void waitForCompleted();
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    public boolean isSent();
    public void waitForSent();

    public boolean sentSynchronously();
}

The methods have the following semantics:

• Communicator getCommunicator()

This method returns the communicator that sent the invocation.

• Connection getConnection()

This method returns the connection that was used for the invocation.

• ObjectPrx getProxy()

This method returns the proxy that was used to call the begin_ method.

• String getOperation()

This method returns the name of the operation.

• boolean isCompleted()

This method returns true if, at the time it is called, the result of an invocation 
is available, indicating that a call to the end_ method will not block the caller. 
Otherwise, if the result is not yet available, the method returns false.

• void waitForCompleted()

This method blocks the caller until the result of an invocation becomes avail-
able.

• boolean isSent()

When you call the begin_ method, the Ice run time attempts to write the 
corresponding request to the client-side transport. If the transport cannot 
accept the request, the Ice run time queues the request for later transmission. 
isSent returns true if, at the time it is called, the request has been written to 
the local transport (whether it was initially queued or not). Otherwise, if the 
request is still queued, isSent returns false.

• void waitForSent()

This method blocks the calling thread until a request has been written to the 
client-side transport.

• boolean sentSynchronously()

This method returns true if a request was written to the client-side transport 
without first being queued. If the request was initially queued, sentSyn-
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chronously returns false (independent of whether the request is still in the 
queue or has since been written to the client-side transport).

10.17.3 Polling for Completion
The AsyncResult methods allow you to poll for call completion. Polling is 
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls send to send a chunk of the file, indicating at which 
offset in the file the chunk belongs. A naïve way to transmit a file would be along 
the following lines:

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize); // Read a chunk
    ft.send(offset, bs);       // Send the chunk
    offset += bs.length;
}

This works, but not very well: because the client makes synchronous calls, it 
writes each chunk on the wire and then waits for the server to receive the data, 
process it, and return a reply before writing the next chunk. This means that both 
client and server spend much of their time doing nothing—the client does nothing 
while the server processes the data, and the server does nothing while it waits for 
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

FileHandle file = open(...);
FileTransferPrx ft = ...;
int chunkSize = ...;
int offset = 0;

LinkedList<Ice.AsyncResult> results =
    new LinkedList<Ice.AsyncResult>();
int numRequests = 5;
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while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice.AsyncResult r = ft.begin_send(offset, bs);
    offset += bs.length;

    // Wait until this request has been passed to the transport.
    r.waitForSent();
    results.add(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.size() > numRequests) {
        Ice.AsyncResult r = results.getFirst();
        results.removeFirst();
        r.waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (results.size() > 0) {
    Ice.AsyncResult r = results.getFirst();
    results.removeFirst();
    r.waitForCompleted();
}

With this code, the client sends up to numRequests + 1 chunks before it waits 
for the least recent one of these requests to complete. In other words, the client 
sends the next request without waiting for the preceding request to complete, up to 
the limit set by numRequests. In effect, this allows the client to “keep the pipe 
to the server full of data”: the client keeps sending data, so both client and server 
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the 
bandwidth of the network as well as the amount of time taken by the server to 
process each request. However, with a little testing, you can quickly zoom in on 
the point where making the requests larger or queuing more requests no longer 
improves performance. With this technique, you can realize the full bandwidth of 
the link to within a percent or two of the theoretical bandwidth limit of a native 
socket connection.
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10.17.4 Generic Completion Callbacks

The begin_ method is overloaded to allow you to provide completion callbacks. 
Here are the corresponding methods for the getName operation:

Ice.AsyncResult begin_getName(int number, Ice.Callback __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Ice.Callback __cb);

The second version of begin_getName lets you override the default context. 
Following the in-parameters, the begin_ method accepts a parameter of type 
Ice.Callback, which is a callback class with a completed method that you 
must provide. The Ice run time invokes the completed method when an asyn-
chronous operation completes. For example:

public class MyCallback extends Ice.Callback
{
    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            System.out.println("Name is: " + name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

Note that your callback class must derive from Ice.Callback. The implemen-
tation of your callback method must call the end_ method. The proxy for the call 
is available via the getProxy method on the AsyncResult that is passed by 
the Ice run time. The return type of getProxy is Ice.ObjectPrx, so you 
must down-cast the proxy to its correct type. 

Your callback method should catch and handle any exceptions that may be 
thrown by the end_ method. If an operation can throw user exceptions, this 
means that you need an additional catch handler for Ice.UserException (or 
catch all possible user exceptions explicitly). If you allow an exception to escape 
from the callback method, the Ice run time produces a log entry by default and 
ignores the exception. (You can disable the log message by setting the property 
Ice.Warn.AMICallback to zero.)
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To inform the Ice run time that you want to receive a callback for the comple-
tion of the asynchronous call, you pass the callback instance to the begin_ 
method:

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

A more terse way to make an invocation is to use an anonymous class:

EmployeesPrx e = ...;

e.begin_getName(
        99,
        new Ice.AsyncCallback()
        {
            public void completed(Ice.AsyncResult r)
            {
                EmployeesPrx p = (EmployeesPrx)r.getProxy();
                try {
                    String name = p.end_getName(r);
                    System.out.println("Name is: " + name);
                } catch (Ice.LocalException ex) {
                    System.err.println("Exception: " + ex);
                }
            }
        });

This style is useful particularly for callbacks that do only a small amount of work 
because the code that starts the call and the code that processes the results are 
physically close together.

10.17.5 Sharing State Between the begin_ and end_ Method

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin_ method. As an example, consider an 
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results. 
In this case, the begin_ method knows which user interface element should 
receive the update, and the end_ method needs access to that element.

Assuming that we have a Widget class that designates a particular user inter-
face element, you could pass different widgets by storing the widget to be used as 
a member of your callback class:
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public class MyCallback extends Ice.AsyncCallback
{
    public MyCallback(Widget w)
    {
        _w = w;
    }

    private Widget _w;

    public void completed(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            String name = e.end_getName(r);
            _w.writeString(name);
        } catch (Ice.LocalException ex) {
            System.err.println("Exception is: " + ex);
        }
    }
}

For this example, we assume that widgets have a writeString method that 
updates the relevant UI element.

When you call the begin_ method, you pass the appropriate callback 
instance to inform the end_ method how to update the display:

EmployeesPrx e = ...;
Widget widget1 = ...;
Widget widget2 = ...;

// Invoke the getName operation with different widget callbacks.
e.begin_getName(99, new MyCallback(widget1));
e.begin_getName(24, new MyCallback(widget2));

The callback class provides a simple and effective way for you to pass state 
between the point where an operation is invoked and the point where its results are 
processed. Moreover, if you have a number of operations that share common state, 
you can pass the same callback instance to multiple invocations. (If you do this, 
your callback methods may need to use synchronization.) 

10.17.6 Type-Safe Completion Callbacks

The generic callback API we saw in Section 10.17.4 is not entirely type-safe:
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• You must down-cast the return value of getProxy to the correct proxy type 
before you can call the end_ method.

• You must call the correct end_ method to match the operation called by the 
begin_ method.

• You must remember to catch exceptions when you call the end_ method; if 
you forget to do this, you will not know that the operation failed.

slice2java generates an additional type-safe API that takes care of these 
chores for you. To use type-safe callbacks, you must implement a callback class 
that provides two callback methods:

• a response method that is called if the operation succeeds

• an exception method that is called if the operation raises an exception

Your callback class must derive from the base class that is generated by 
slice2java. The name of this base class is 
<module>.Callback_<interface>_<operation>. Here is a callback 
class for an invocation of the getName operation:

public class MyCallback extends Demo.Callback_Employees_getName
{
    public void response(String name)
    {
        System.out.println("Name is: " + name);
    }

    public void exception(Ice.LocalException ex)
    {
        System.err.println("Exception is: " + ex);
    }
}

The response callback parameters depend on the operation signature. If the 
operation has non-void return type, the first parameter of the response call-
back is the return value. The return value (if any) is followed by a parameter for 
each out-parameter of the corresponding Slice operation, in the order of declara-
tion.

The exception callback is invoked if the invocation fails because of an Ice 
run time exception. If the Slice operation can also raise user exceptions, your call-
back class must supply an additional overloading of exception that accepts an 
argument of type Ice.UserException.

The proxy methods are overloaded to accept this callback instance:
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Ice.AsyncResult begin_getName(int number,
                              Callback_Employees_getName __cb);

Ice.AsyncResult begin_getName(int number,
                              java.util.Map<String, String> __ctx,
                              Callback_Employees_getName __cb);

You pass the callback to an invocation as you would with the generic API:

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb); 

10.17.7 Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise 
user exceptions. If you call the begin_ method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin_ method throws an 
IllegalArgumentException.

The callback methods looks exactly as for a twoway invocation. For the 
generic API, the Ice run time does not call the completed callback method 
unless the invocation raised an exception during the begin_ method (“on the 
way out”). For the type-safe API, the response method is never called.

10.17.8 Flow Control

Asynchronous method invocations never block the thread that calls the begin_ 
method: the Ice run time checks to see whether it can write the request to the local 
transport. If it can, it does so immediately in the caller’s thread. (In that case, 
AsyncResult.sentSynchronously returns true.) Alternatively, if the 
local transport does not have sufficient buffer space to accept the request, the Ice 
run time queues the request internally for later transmission in the background. (In 
that case, AsyncResult.sentSynchronously returns false.)

This creates a potential problem: if a client sends many asynchronous requests 
at the time the server is too busy to keep up with them, the requests pile up in the 
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the 
number of requests that are queued so, if that number exceeds some threshold, the 
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client stops invoking more operations until some of the queued operations have 
drained out of the local transport.

For the generic API, you can override the sent method:

public class MyCallback extends Ice.AsyncCallback
{
    public void completed(Ice.AsyncResult r)
    {
        // ...
    }

    public void sent(Ice.AsyncResult r)
    {
        // ...
    }
}

You inform the Ice run time that you want to be informed when a call has been 
passed to the local transport as usual:

e.begin_getName(99, new MyCallback());

If the Ice run time can immediately pass the request to the local transport, it does 
so and invokes the sent method from the thread that calls the begin_ method. 
On the other hand, if the run time has to queue the request, it calls the sent 
method from a different thread once it has written the request to the local trans-
port. In addition, you can find out from the AsyncResult that is returned by the 
begin_ method whether the request was sent synchronously or was queued, by 
calling sentSynchronously.

For the generic API, the sent method has the following signature:

void sent(Ice.AsyncResult r);

For the type-safe API, the signature is:

void sent(boolean sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously 
by calling sentSynchronously on the AsyncResult. For the type-safe 
API, the boolean sentSynchronously parameter provides the same informa-
tion.

The sent methods allow you to limit the number of queued requests by 
counting the number of requests that are queued and decrementing the count when 
the Ice run time passes a request to the local transport. 
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10.17.9 Batch Requests
Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides asynchronous versions of this method so you can 
flush batch requests asynchronously.

begin_ice_flushBatchRequests and 
end_ice_flushBatchRequests are proxy methods that flush any batch 
requests queued by that proxy.

In addition, similar methods are available on the communicator and the 
Connection object that is returned by AsyncResult.getConnection. 
These methods flush batch requests sent via the same communicator and via the 
same connection, respectively.

10.17.10 Concurrency
The Ice run time always invokes your callback methods from a separate thread, 
with one exception: it calls the sent callback from the thread calling the 
begin_ method if the request could be sent synchronously. In the sent call-
back, you know which thread is calling the callback by looking at the sentSyn-
chronously member or parameter.

10.17.11 Limitations
AMI invocations cannot be sent using collocated optimization. If you attempt to 
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the 
servant happens to be collocated; the request is sent normally if the servant is not 
collocated. Section 32.21 provides more information about this optimization and 
describes how to disable it when necessary.
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10.18 Slice Compiler

10.18.1 slice2java Command-Line Options

The Slice-to-Java compiler, slice2java, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --tie

Generate tie classes (see Section 12.7).

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --impl-tie

Generate sample implementation files using ties (see Section 12.7). This 
option will not overwrite an existing file.

• --checksum CLASS

Generate checksums for Slice definitions into the class CLASS. The given 
class name may optionally contain a package specifier. The generated class 
contains checksums for all of the Slice files being translated by this invocation 
of the compiler. For example, the command below causes slice2java to 
generate the file Checksums.java containing the checksums for the Slice 
definitions in File1.ice and File2.ice:

slice2java --checksum Checksums File1.ice File2.ice

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

• --meta META

Define the global metadata directive META. Using this option is equivalent to 
defining the global metadata META in each named Slice file, as well as in any 
file included by a named Slice file.

Global metadata specified with --meta overrides any corresponding global 
metadata directive in the files being compiled.
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10.18.2 Ant Task

The Ice for Java build system makes extensive use of an ant task named 
Slice2JavaTask that automates the Slice-to-Java compiler and may also be 
useful for Ice developers. The task and its supporting classes reside in the JAR file 
named ant-ice.jar, which normally can be found in the lib subdirectory of 
your Ice installation.

Execution Environment

The Slice2JavaTask must be able to locate and spawn the slice2java 
executable. You can specify the directory of your Ice installation by defining the 
ice.home ant property or the ICE_HOME environment variable, in which case 
the task assumes that the Slice compiler’s executable is located in the bin subdi-
rectory of the specified installation directory. For example, if ICE_HOME is set to 
/opt/Ice on Linux, the task assumes that the executable path name is 
/opt/Ice/bin/slice2java. Furthermore, the task also configures its 
shared library search path (if necessary for your platform) to ensure the executable 
can resolve its library dependencies.

If both ice.home and ICE_HOME are defined, ice.home takes prece-
dence. If neither are defined, the task assumes that the executable can already be 
found in your PATH and that your shared library search path is configured 
correctly.

Finally, you can use a task parameter to specify the full path name of the Slice 
compiler. Again, the task assumes that your shared library search path is config-
ured correctly.

Dependencies

The task minimizes recompilation by maintaining dependencies between Slice 
files. The task stores this information in a file named .depend in the output 
directory and updates the dependencies after each invocation. (You can specify a 
different name for this file using a task parameter.)

Note that the task does not maintain dependencies between a Slice file and its 
generated Java source files. Consequently, removing the generated Java source 
files does not cause the task to recompile a Slice file. In fact, the task only 
compiles a Slice file when any of the following conditions are true:

• no dependency file exists

• no dependency information is found for the Slice file
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• the modification time of the Slice file is later than the modification time of the 
dependency file

• the Slice file includes another Slice file that is eligible for compilation

The simplest way to force the task to recompile all of your Slice files is to remove 
the dependency file.

Parameters

The task supports the parameters listed in Table 10.2:

Table 10.2. Ant task parameters

Attribute Description Required

checksum Specifies the name of a class to contain the 
Slice checksums. See Section 10.19 for more 
information.

No

dependencyfile Specifies an alternate name for the dependency 
file. If you specify a relative filename, it is rel-
ative to ant’s current working directory. If not 
specified, the task uses the name .depend by 
default. If you do not define this attribute and 
outputdir is defined, the task creates the 
.depend file in the designated output direc-
tory (see outputdir).

No

ice Instructs the Slice compiler to permit symbols 
that have the reserved prefix Ice. This param-
eter is used in the Ice build system and is not 
normally required by applications.

No

outputdir Specifies the directory in which the Slice com-
piler generates Java source files. If not speci-
fied, the task uses ant’s current working 
directory.

No

stream Indicates whether to generate streaming sup-
port (see Section 35.2). If not specified, 
streaming support is not generated.

No

tie Indicates whether to generate TIE classes (see 
Section 12.7). If not specified, TIE classes are 
not generated.

No

translator Specifies the path name of the Slice compiler. 
If not specified, the task locates the Slice com-
piler in its execution environment as described 
on page 393.

No
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For the flag parameters (ice, stream, and tie), legal positive values are on, 
true, or yes; negative values are off, false, or no.

Nested Elements

Several Slice compiler options must be defined as nested elements of the task:

• define

Defines a preprocessor macro. The element supports the attributes name and 
(optionally) value, as shown below:

<define name="FOO">
<define name="BAR" value="5">

These definitions are equivalent to the command-line options -DFOO and
-DBAR=5, respectively.

• fileset

Specifies the set of Slice files to be compiled. Refer to the ant documentation 
of its FileSet type for more information.

• includepath

Specifies the include file search path for Slice files. In ant terminology, 
includepath is a path-like structure. Refer to the ant documentation of its 
Path type for more information.

• meta

Defines a global metadata directive in each Slice file as well as in each 
included Slice file. The element supports name and value attributes.

Using the Task

Define the following taskdef element in your project’s build file to enable the 
task:

<taskdef name="slice2java" classname="Slice2JavaTask"/>

This configuration assumes that ant-ice.jar is already present in ant’s class 
path. Alternatively, you can specify the JAR explicitly as follows:

<taskdef name="slice2java" classpath="/opt/Ice/lib/ant-ice.jar"
    classname="Slice2JavaTask"/>

Once activated, you can invoke the task to translate your Slice files. The example 
shown below is a simplified version of the ant project for the hello demo:
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<target name="generate" depends="init">
    <mkdir dir="generated"/>
    <slice2java outputdir="generated">
        <fileset dir="." includes="Hello.ice"/>
    </slice2java>
</target>

<target name="compile" depends="generate">
    <mkdir dir="classes"/>
    <javac srcdir=".:generated" destdir="classes">
        <exclude name="generated/**"/>
        ...
    </javac>
</target>

<target name="all" depends="compile"/>

<target name="clean">
    <delete dir="generated"/>
    <delete dir="classes"/>
</target>

This project demonstrates some practices that we encourage you to adopt in your 
own projects. First, it is helpful to keep the source files generated by the Slice 
compiler separate from your application’s source files by dedicating an output 
directory for the exclusive use of the Slice compiler. Doing so helps to minimize 
confusion and makes it easier to configure a source-code management system to 
ignore generated files.

Next, we also recommend that you include a clean target in your ant project 
that removes this output directory. Assuming that the dependency file (.depend) 
is also stored in this directory, removing the output directory is an efficient way to 
clean up your project’s source tree and guarantees that all of your Slice files are 
recompiled in the next build.

Finally, after seeing the exclude element in the invocation of javac you 
might infer that the generated code was not being compiled, but the presence of 
the output directory in the srcdir attribute ensures that the generated code is 
included in the build. The purpose of the exclude element is to prevent ant from 
including the generated files twice in its target list.
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10.19 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2java, the --checksum option causes 
the compiler to generate a new Java class that adds checksums to a static map 
member. Assuming we supplied the option --checksum Checksums to 
slice2java, the generated class Checksums.java looks like this:

public class Checksums {
    public static java.util.Map checksums;
}

The read-only map checksums is initialized automatically prior to first use; no 
action is required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the equals method. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:

java.util.Map serverChecksums = ...
java.util.Iterator i = Checksums.checksums.entrySet().iterator();
while(i.hasNext()) {
    java.util.Map.Entry e = (java.util.Map.Entry)i.next();
    String id = (String)e.getKey();
    String checksum = (String)e.getValue();
    String serverChecksum = (String)serverChecksums.get(id);
    if (serverChecksum == null) {
        // No match found for type id!
    } else if (!checksum.equals(serverChecksum)) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.





399

Chapter 11
Developing a File System Client in 
Java

11.1 Chapter Overview

In this chapter, we present the source code for a Java client that accesses the file 
system we developed in Chapter 5 (see Chapter 13 for the corresponding server).

11.2 The Java Client

We now have seen enough of the client-side Java mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
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        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

import Filesystem.*;

public class Client {

    // Recursively print the contents of directory "dir" in
    // tree fashion.  For files, show the contents of each file.
    // The "depth" parameter is the current nesting level
    // (for indentation).

    static void
    listRecursive(DirectoryPrx dir, int depth)
    {
        char[] indentCh = new char[++depth];
        java.util.Arrays.fill(indentCh, '\t');
        String indent = new String(indentCh);

        NodePrx[] contents = dir.list();

        for (int i = 0; i < contents.length; ++i) {
            DirectoryPrx subdir
                = DirectoryPrxHelper.checkedCast(contents[i]);
            FilePrx file
                = FilePrxHelper.uncheckedCast(contents[i]);
            System.out.println(indent + contents[i].name() +
                (subdir != null ? " (directory):" : " (file):"));
            if (subdir != null) {
                listRecursive(subdir, depth);
            } else {
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                String[] text = file.read();
                for (int j = 0; j < text.length; ++j)
                    System.out.println(indent + "\t" + text[j]);
            }
        }
    }

    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            // Create a communicator
            //
            ic = Ice.Util.initialize(args);

            // Create a proxy for the root directory
            //
            Ice.ObjectPrx base
                = ic.stringToProxy("RootDir:default -p 10000");
            if (base == null)
                throw new RuntimeException("Cannot create proxy");

            // Down-cast the proxy to a Directory proxy
            //
            DirectoryPrx rootDir
                = DirectoryPrxHelper.checkedCast(base);
            if (rootDir == null)
                throw new RuntimeException("Invalid proxy");

            // Recursively list the contents of the root directory
            //
            System.out.println("Contents of root directory:");
            listRecursive(rootDir, 0);
        } catch (Ice.LocalException e) {
            e.printStackTrace();
            status = 1;
        } catch (Exception e) {
            System.err.println(e.getMessage());
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
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                ic.destroy();
            } catch (Exception e) {
                System.err.println(e.getMessage());
                status = 1;
            }
        }
        System.exit(status);
    }
}

After importing the Filesystem package, the Client class defines two 
methods: listRecursive, which is a helper function to print the contents of 
the file system, and main, which is the main program. Let us look at main first:

1. The structure of the code in main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.
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• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 11.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

11.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Java code hardly 
differs from the code you would write for an ordinary Java program. This is one of 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local Java object. This allows you to put your effort where 
you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs. As we will see in Chapter 13, this is true 
for the server side as well, meaning that you can develop distributed applications 
easily and efficiently.
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Chapter 12
Server-Side Slice-to-Java Mapping

12.1 Chapter Overview

In this chapter, we present the server-side Slice-to-Java mapping (see Chapter 10 
for the client-side mapping). Section 12.3 discusses how to initialize and finalize 
the server-side run time, sections 12.4 to 12.7 show how to implement interfaces 
and operations, and Section 12.8 discusses how to register objects with the server-
side Ice run time. Finally, Section 12.9 shows how to implement operations asyn-
chronously.

12.2 Introduction

The mapping for Slice data types to Java is identical on the client side and server 
side. This means that everything in Chapter 10 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.
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We discuss these topics in the remainder of this chapter.

12.3 The Server-Side main Method

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.Util.initialize before you can do anything else in your 
server. Ice.Util.initialize returns a reference to an instance of an 
Ice.Communicator:

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            // ...
        } catch (Exception e) {
            e.printStackTrace();
            status = 1;
        }
        // ...
    }
}

Ice.Util.initialize accepts the argument vector that is passed to main 
by the operating system. The function scans the argument vector for any 
command-line options that are relevant to the Ice run time, but does not remove 
those options.1 If anything goes wrong during initialization, initialize 
throws an exception.

Before leaving your main function, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation implementations that are still executing in the 
server to complete. In addition, destroy ensures that any outstanding threads 

1. The semantics of Java arrays prevents Ice.Util.initialize from modifying the size of 
the argument vector. However, another overloading of Ice.Util.initialize is provided 
that allows the application to obtain a new argument vector with the Ice options removed.
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are joined with and reclaims a number of operating system resources, such as file 
descriptors and memory. Never allow your main function to terminate without 
calling destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

public class Server {
    public static void
    main(String[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            ic = Ice.Util.initialize(args);
            // ...
        } catch (Exception e) {
            e.printStackTrace();
            status = 1;
        }
        if (ic != null) {
            try {
                ic.destroy();
            } catch (Exception e) {
                e.printStackTrace();
                status = 1;
            }
        }
        System.exit(status);
    }
}

Note that the code places the call to Ice::initialize into a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

12.3.1 The Ice.Application Class

The preceding structure for the main function is so common that Ice offers a 
class, Ice.Application, that encapsulates all the correct initialization and 
finalization activities. The synopsis of the class is as follows (with some detail 
omitted for now):
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package Ice;

public enum SignalPolicy { HandleSignals, NoSignalHandling }

public abstract class Application {
    public Application()

    public Application(SignalPolicy signalPolicy)

    public final int main(String appName, String[] args)

    public final int main(String appName, String[] args,
                          String configFile)

    public final int main(String appName, String[] args,
                          InitializationData initData)

    public abstract int run(String[] args);

    public static String appName()

    public static Communicator communicator()

    // ...
}

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        // Server code here...

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server();
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        int status = app.main("Server", args);
        System.exit(status);
    }
}

Note that Application.main is overloaded: you can pass an optional file 
name or an InitializationData structure (see Section 32.3 and 
Section 30.9). 

If you pass a configuration file name to main, the settings in this file are over-
ridden by settings in a file identified by the ICE_CONFIG environment variable 
(if defined). Property settings supplied on the command line take precedence over 
all other settings.

The Application.main function does the following:

1. It installs an exception handler for java.lang.Exception. If your code 
fails to handle an exception, Application.main prints the name of an 
exception and a stack trace on System.err before returning with a non-zero 
return value.

2. It initializes (by calling Ice.Util.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator accessor.

3. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName member 
function. The return value from this call is the first argument in the call to 
Application.main, so you can get at this name from anywhere in your 
code by calling Ice.Application.appName (which is usually required 
for error messages). In the example above, the return value from appName 
would be Server.

5. It installs a shutdown hook that properly shuts down the communicator.

6. It installs a per-process logger (see Section 32.19.5) if the application has not 
already configured one. The per-process logger uses the value of the 
Ice.ProgramName property (see Section 30.8) as a prefix for its messages 
and sends its output to the standard error channel. An application can specify 
an alternate logger as described in Section 32.19.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception. 
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We recommend that all your programs use this class; doing so makes your life 
easier. In addition Ice.Application also provides features for signal 
handling and configuration that you do not have to implement yourself when you 
use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

Java does not provide direct support for signals, but it does allow an applica-
tion to register a shutdown hook that is invoked when the JVM is shutting down. 
There are several events that trigger JVM shutdown, such as a call to 
System.exit or an interrupt signal from the operating system, but the shut-
down hook is not provided with the reason for the shut down.

Ice.Application registers a shutdown hook by default, allowing you to 
cleanly terminate your application prior to JVM shutdown.

package Ice;

public abstract class Application {
    // ...

    synchronized public static void destroyOnInterrupt()
    synchronized public static void shutdownOnInterrupt()
    synchronized public static void setInterruptHook(Thread t)
    synchronized public static void defaultInterrupt()
    synchronized public static boolean interrupted()
}

The functions behave as follows:
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• destroyOnInterrupt

This function installs a shutdown hook that calls destroy on the communi-
cator. This is the default behavior.

• shutdownOnInterrupt

This function installs a shutdown hook that calls shutdown on the communi-
cator.

• setInterruptHook

This function installs a custom shutdown hook that takes responsibility for 
performing whatever action is necessary to terminate the application. Refer to 
the Java documentation for Runtime.addShutdownHook for more infor-
mation on the semantics of shutdown hooks.

• defaultInterrupt

This function removes the shutdown hook.

• interrupted

This function returns true if the shutdown hook caused the communicator to 
shut down, false otherwise. This allows us to distinguish intentional shutdown 
from a forced shutdown that was caused by the JVM. This is useful, for 
example, for logging purposes.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server main function requires no change to ensure that the 
program terminates cleanly on JVM shutdown. (You can disable this default shut-
down hook by passing the enumerator NoSignalHandling to the constructor. 
In that case, shutdown is not intercepted and terminates the VM.) However, we 
add a diagnostic to report the occurrence, so our main function now looks like:

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        // Server code here...

        if (interrupted())
            System.err.println(appName() + ": terminating");

        return 0;
    }

    public static void
    main(String[] args)
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    {
        Server app = new Server();
        int status = app.main("Server", args);
        System.exit(status);
    }
}

During the course of normal execution, the JVM does not terminate until all non-
daemon threads have completed. If an interrupt occurs, the JVM ignores the status 
of active threads and terminates as soon as it has finished invoking all of the 
installed shutdown hooks.

In a subclass of Ice.Application, the default shutdown hook (as 
installed by destroyOnInterrupt) blocks until the application’s main thread 
completes. As a result, an interrupted application may not terminate successfully 
if the main thread is blocked. For example, this can occur in an interactive applica-
tion when the main thread is waiting for console input. To remedy this situation, 
the application can install an alternate shutdown hook that does not wait for the 
main thread to finish:

public class Server extends Ice.Application {
    class ShutdownHook extends Thread {
        public void
        run()
        {
            try
            {
                communicator().destroy();
            }
            catch(Ice.LocalException ex)
            {
                ex.printStackTrace();
            }
        }
    }

    public int
    run(String[] args)
    {
        setInterruptHook(new ShutdownHook());

        // ...
    }
}
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After replacing the default shutdown hook using setInterruptHook, the 
JVM will terminate as soon as the communicator is destroyed.

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main function of Ice.Application is overloaded; the second version allows 
you to specify the name of a configuration file that will be processed during 
initialization. We discuss Ice properties in more detail in Chapter 30.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

12.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing member functions in a servant class, you provide the hook 
that gets the thread of control from the Ice server-side run time into your applica-
tion code.

12.4.1 Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has a pure 
virtual member function for each operation on the corresponding interface. For 
example, consider the Slice definition for the Node interface we defined in 
Chapter 5 once more:
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module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

package Filesystem;

public interface _NodeOperations
{
    String name(Ice.Current current);
}

public interface _NodeOperationsNC
{
    String name();
}

public interface Node extends Ice.Object,
                              _NodeOperations,
                              _NodeOperationsNC {}

public abstract class _NodeDisp extends Ice.ObjectImpl
                                implements Node
{
    // Mapping-internal code here...
}

The important points to note here are:

• As for the client side, Slice modules are mapped to Java packages with the 
same name, so the skeleton class definitions are part of the Filesystem 
package.

• For each Slice interface <interface-name>, the compiler generates Java 
interfaces _<interface-name>Operations and
_<interface-name>OperationsNC (_NodeOperations and 
_NodeOperationsNC in this example). These interfaces contains a 
member function for each operation in the Slice interface. (You can ignore the 
Ice.Current parameter for the time being—we discuss it in detail in 
Section 32.6.)
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• For each Slice interface <interface-name>, the compiler generates a Java 
interface <interface-name> (Node in this example). That interface 
extends Ice.Object and the two operations interfaces.

• For each Slice interface <interface-name>, the compiler generates an 
abstract class _<interface-name>Disp (_NodeDisp in this example). 
This abstract class is the actual skeleton class; it is the base class from which 
you derive your servant class.

12.4.2 Servant Classes

In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

package Filesystem;

public final class NodeI extends _NodeDisp {

    public NodeI(String name)
    {
        _name = name;
    }

    public String name(Ice.Current current)
    {
        return _name;
    }

    private String _name;
}

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can choose any name you prefer 
for your servant classes.) Note that NodeI extends _NodeDisp, that is, it 
derives from its skeleton class.

As far as Ice is concerned, the NodeI class must implement only a single 
method: the name method that it inherits from its skeleton. This makes the servant 
class a concrete class that can be instantiated. You can add other member func-
tions and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
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constructor. (Obviously, the constructor initializes the _name member and the 
name function returns its value.)

Normal and idempotent Operations

Whether an operation is an ordinary operation or an idempotent operation has no 
influence on the way the operation is mapped. To illustrate this, consider the 
following interface:

interface Example {
               void   normalOp();
    idempotent void   idempotentOp();
    idempotent string readonlyOp();
};

The operations class for this interface looks like this:

public interface _ExampleOperations
{
    void normalOp(Ice.Current current);
    void idempotentOp(Ice.Current current);
    String readonlyOp(Ice.Current current);
}

Note that the signatures of the member functions are unaffected by the idempo-
tent qualifier.

12.5 Parameter Passing

For each parameter of a Slice operation, the Java mapping generates a corre-
sponding parameter for the corresponding method in the
_<interface-name>Operations interface. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name member 
function of the _NodeOperations interface has a single parameter of type 
Ice.Current. We explain the purpose of this parameter in Section 32.6 and 
will ignore it for now.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:
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module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated skeleton class for this interface looks as follows:

public interface _ExampleOperations
{
    String op(String sin, Ice.StringHolder sout,
              Ice.Current current);
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

public final class ExampleI extends M._ExampleDisp {

    public String op(String sin, Ice.StringHolder sout,
                     Ice.Current current)
    {
        System.out.println(sin);     // In params are initialized
        sout.value = "Hello World!"; // Assign out param
        return "Done";
    }
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal Java rules and do not require special-purpose API 
calls.

12.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

// ...

public void
write(String[] text, Ice.Current current)
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    throws GenericError

{
    // Try to write file contents here...
    // Assume we are out of space...
    if (error) {
        GenericError e = new GenericError();
        e.reason = "file too large";
        throw e;
    }
}

If you throw an arbitrary Java run-time exception (such as a ClassCastEx-
ception), the Ice run time catches the exception and then returns an Unknown-
Exception to the client. Similarly, if you throw an “impossible” user exception (a 
user exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw an Ice run-time exception, such as MemoryLimitException, the 
client receives an UnknownLocalException.2 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

12.7 Tie Classes

The mapping to skeleton classes we saw in Section 12.4 requires the servant class 
to inherit from its skeleton class. Occasionally, this creates a problem: some class 
libraries require you to inherit from a base class in order to access functionality 
provided by the library; because Java does not support multiple inheritance, this 
means that you cannot use such a class library to implement your servants because 
your servants cannot inherit from both the library class and the skeleton class 
simultaneously.

To allow you to still use such class libraries, Ice provides a way to write 
servants that replaces inheritance with delegation. This approach is supported by 
tie classes. The idea is that, instead of inheriting from the skeleton class, you 

2. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 33.
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simply create a class (known as an implementation class or delegate class) that 
contains methods corresponding to the operations of an interface. You use the 
--tie option with the slice2java compiler to create a tie class. For example, 
for the Node interface we saw in Section 12.4.1, the --tie option causes the 
compiler to create exactly the same code as we saw previously, but to also emit an 
additional tie class. For an interface <interface-name>, the generated tie class 
has the name _<interface-name>Tie:

package Filesystem;

public class _NodeTie extends _NodeDisp implements Ice.TieBase {

    public _NodeTie() {}

    public
    _NodeTie(_NodeOperations delegate)
    {
        _ice_delegate = delegate;
    }

    public java.lang.Object
    ice_delegate()
    {
        return _ice_delegate;
    }

    public void
    ice_delegate(java.lang.Object delegate)
    {
        _ice_delegate = (_NodeOperations)delegate;
    }

    public boolean
    equals(java.lang.Object rhs)
    {
        if (this == rhs)
        {
            return true;
        }
        if (!(rhs instanceof _NodeTie))
        {
            return false;
        }

        return _ice_delegate.equals(((_NodeTie)rhs)._ice_delegate)
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;
    }

    public int
    hashCode()
    {
        return _ice_delegate.hashCode();
    }

    public String
    name(Ice.Current current)
    {
        return _ice_delegate.name(current);
    }

    private _NodeOperations _ice_delegate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a 
servant class (it extends _NodeDisp) that delegates each invocation of a method 
that corresponds to a Slice operation to your implementation class (see 
Figure 12.1).

Figure 12.1. A skeleton class, tie class, and implementation class.

The generated tie class also implements the Ice.TieBase interface, which 
defines methods for obtaining and changing the delegate object:

package Ice;

public interface TieBase {
    java.lang.Object ice_delegate();
    void ice_delegate(java.lang.Object delegate);
}

The delegate has type java.lang.Object in these methods in order to allow a 
tie object’s delegate to be manipulated without knowing its actual type. However, 
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the ice_delegate modifier raises ClassCastException if the given dele-
gate object is not of the correct type.

Given this machinery, we can create an implementation class for our Node 
interface as follows:

package Filesystem;

public final class NodeI implements _NodeOperations {
{
    public NodeI(String name)
    {
        _name = name;
    }

    public String name(Ice.Current current)
    {
        return _name;
    }

    private String _name;
}

Note that this class is identical to our previous implementation, except that it 
implements the _NodeOperations interface and does not extend 
_NodeDisp (which means that you are now free to extend any other class to 
support your implementation).

To create a servant, you instantiate your implementation class and the tie class, 
passing a reference to the implementation instance to the tie constructor:

NodeI fred = new NodeI("Fred");         // Create implementation
_NodeTie servant = new _NodeTie(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate 
instance by calling ice_delegate:

_NodeTie servant = new _NodeTie();      // Create tie
// ...
NodeI fred = new NodeI("Fred");         // Create implementation
// ...
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the 
servant, not your delegate. Furthermore, you must not use a tie instance to incar-
nate (see Section 12.8) an Ice object until the tie has a delegate. Once you have set 
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the delegate, you must not change it for the lifetime of the tie; otherwise, unde-
fined behavior results.

You should use the tie approach only if you need to, that is, if you need to 
extend some base class in order to implement your servants: using the tie 
approach is more costly in terms of memory because each Ice object is incarnated 
by two Java objects instead of one, the tie and the delegate. In addition, call 
dispatch for ties is marginally slower than for ordinary servants because the tie 
forwards each operation to the delegate, that is, each operation invocation requires 
two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the dele-
gate back to the tie. If you need to navigate back to the tie from the delegate, you 
can store a reference to the tie in a member of the delegate. (The reference can, for 
example, be initialized by the constructor of the delegate.)

12.8 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 12.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

12.8.1 Instantiating a Servant

Instantiating a servant means to allocate an instance:

Node servant = new NodeI("Fred");

This code creates a new NodeI instance and assigns its address to a reference of 
type Node. This works because NodeI is derived from Node, so a Node refer-
ence can refer to an instance of type NodeI. However, if we want to invoke a 
member function of the NodeI class at this point, we must use a NodeI refer-
ence:
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NodeI servant = new NodeI("Fred");

Whether you use a Node or a NodeI reference depends purely on whether you 
want to invoke a member function of the NodeI class: if not, a Node reference 
works just as well as a NodeI reference.

12.8.2 Creating an Identity
Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 32.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice.Identity id = new Ice.Identity();
id.name = "Fred"; // Not unique, but good enough for now

12.8.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter.add(servant, id);

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See Chapter 34 for further discussion.
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Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
member function on the servant.

Assuming that the object adapter is in the active state (see Section 32.4), client 
requests are dispatched to the servant as soon as you call add.

12.8.4 UUIDs as Identities

The Ice object model assumes that object identities are globally unique. One way 
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14] 
as identities. The Ice.Util package contains a helper function to create such 
identities:

public class Example {
    public static void
    main(String[] args)
    {
        System.out.println(Ice.Util.generateUUID());
    }
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to genera-
teUUID creates a string that differs from all previous ones.4 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 

4. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

_adapter.addWithUUID(new NodeI("Fred"));

12.8.5 Creating Proxies
Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

NodePrx proxy = NodePrxHelper.uncheckedCast(
                    _adapter.addWithUUID(new NodeI("Fred")));

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};
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Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice.Identity id = new Ice.Identity();
id.name = Ice.Util.generateUUID();
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy 
to a client and the client invokes an operation on the proxy, the client will receive 
an ObjectNotExistException. (We examine these life cycle issues in more detail 
in Chapter 34.)

12.9 Asynchronous Method Dispatch (AMD)

The number of simultaneous synchronous requests a server is capable of 
supporting is determined by the number of threads in the server’s thread pool (see 
Section 32.10). If all of the threads are busy dispatching long-running operations, 
then no threads are available to process new requests and therefore clients may 
experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI 
(see Section 10.17), addresses this scalability issue. Using AMD, a server can 
receive a request but then suspend its processing in order to release the dispatch 
thread as soon as possible. When processing resumes and the results are available, 
the server sends a response explicitly using a callback object provided by the Ice 
run time.

AMD is transparent to the client, that is, there is no way for a client to distin-
guish a request that, in the server, is processed synchronously from a request that 
is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., 
the callback object and operation arguments) for later processing by an applica-
tion thread (or thread pool). In this way, the server minimizes the use of dispatch 
threads and becomes capable of efficiently supporting thousands of simultaneous 
clients.

An alternate use case for AMD is an operation that requires further processing 
after completing the client’s request. In order to minimize the client’s delay, the 
operation returns the results while still in the dispatch thread, and then continues 
using the dispatch thread for additional work.
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12.9.1 Enabling AMD with Metadata

To enable asynchronous dispatch, you must add an ["amd"] metadata directive to 
your Slice definitions. The directive applies at the interface and the operation 
level. If you specify ["amd"] at the interface level, all operations in that interface 
use asynchronous dispatch; if you specify ["amd"] for an individual operation, 
only that operation uses asynchronous dispatch. In either case, the metadata direc-
tive replaces synchronous dispatch, that is, a particular operation implementation 
must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

["amd"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"] void startProcess();
  int endProcess();
};

In this example, both operations of interface I use asynchronous dispatch, 
whereas, for interface J, startProcess uses asynchronous dispatch and endPro-
cess uses synchronous dispatch.

Specifying metadata at the operation level (rather than at the interface or class 
level) minimizes the amount of generated code and, more importantly, minimizes 
complexity: although the asynchronous model is more flexible, it is also more 
complicated to use. It is therefore in your best interest to limit the use of the asyn-
chronous model to those operations that need it, while using the simpler synchro-
nous model for the rest.

12.9.2 AMD Mapping

The Java mapping emits the following code for each AMD operation:

1. A callback interface used by the implementation to notify the Ice run time 
about the completion of an operation. The name of this interface is formed 
using the pattern AMD_class_op. For example, an operation named foo 
defined in interface I results in an interface named AMD_I_foo. The inter-
face is generated in the same scope as the interface or class containing the 
operation. Two methods are provided:
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public void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

public void ice_exception(java.lang.Exception ex);

The ice_exception method allows the server to raise an exception. With 
respect to exceptions, there is less compile-time type safety in an AMD imple-
mentation because there is no throws clause on the dispatch method and any 
exception type could conceivably be passed to ice_exception. However, 
the Ice run time validates the exception value using the same semantics as for 
synchronous dispatch (see Section 4.10.4).

Neither ice_response nor ice_exception throw any exceptions to the 
caller.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a reference to an instance of the call-
back interface described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I {
  ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation foo is shown below:

public interface AMD_I_foo {
    void ice_response(int __ret, long l);
    void ice_exception(java.lang.Exception ex);
}

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

void foo_async(AMD_I_foo __cb, short s);

12.9.3 Exceptions
There are two processing contexts in which the logical implementation of an 
AMD operation may need to report an exception: the dispatch thread (the thread 
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that receives the invocation), and the response thread (the thread that sends the 
response).5 Although we recommend that the callback object be used to report all 
exceptions to the client, it is legal for the implementation to raise an exception 
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be 
caught by the Ice run time; the application’s run time environment determines how 
such an exception is handled. Therefore, a response thread must ensure that it 
traps all exceptions and sends the appropriate response using the callback object. 
Otherwise, if a response thread is terminated by an uncaught exception, the 
request may never be completed and the client might wait indefinitely for a 
response.

Whether raised in a dispatch thread or reported via the callback object, user 
exceptions are validated as described in Section 4.10.2, and local exceptions may 
undergo the translation described in Section 4.10.4.

12.9.4 Example

To demonstrate the use of AMD in Ice, let us define the Slice interface for a 
simple computational engine:

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way.

Our servant class derives from Demo._ModelDisp and supplies a definition 
for the interpolate_async method that creates a Job to hold the callback 

5. These are not necessarily two different threads: it is legal to send the response from the dispatch 
thread.
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object and arguments, and adds the Job to a queue. The method is synchronized 
to guard access to the queue:

public final class ModelI extends Demo._ModelDisp {
    synchronized public void interpolate_async(
        Demo.AMD_Model_interpolate cb,
        float[][] data,
        float factor,
        Ice.Current current)
            throws RangeError
    {
        _jobs.add(new Job(cb, data, factor));
    }

    java.util.LinkedList _jobs = new java.util.LinkedList();
}

After queuing the information, the operation returns control to the Ice run time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

class Job {
    Job(Demo.AMD_Model_interpolate cb,
        float[][] grid,
        float factor)
    {
        _cb = cb;
        _grid = grid;
        _factor = factor;
    }

    void execute()
    {
        if (!interpolateGrid()) {
            _cb.ice_exception(new Demo.RangeError());
            return;
        }
        _cb.ice_response(_grid);
    }

    private boolean interpolateGrid() {
        // ...
    }
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    private Demo.AMD_Model_interpolate _cb;
    private float[][] _grid;
    private float _factor;
}

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

12.10 Summary

This chapter presented the server-side Java mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 32), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any Java mapping 
rules beyond those we described here.
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Chapter 13
Developing a File System Server in 
Java

13.1 Chapter Overview

In this chapter, we present the source code for a Java server that implements the 
file system we developed in Chapter 5 (see Chapter 11 for the corresponding 
client). The code we present here is fully functional, apart from the required inter-
locking for threads. (We examine threading issues in detail in Section 32.10.)

13.2 Implementing a File System Server

We have now seen enough of the server-side Java mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5.4 before studying the source 
code.)

Our server is composed of three source files:

• Server.java

This file contains the server main program.

• Filesystem/DirectoryI.java

This file contains the implementation for the Directory servants.
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• Filesystem/FileI.java

This file contains the implementation for the File servants.

13.2.1 The Server main Program

Our server main program, in the file Server.java, uses the
Ice.Application class we discussed in Section 12.3.1. The run method 
installs a shutdown hook, creates an object adapter, instantiates a few servants for 
the directories and files in the file system, and then activates the adapter. This 
leads to a main program as follows:

import Filesystem.*;

public class Server extends Ice.Application {
    public int
    run(String[] args)
    {
        // Create an object adapter (stored in the _adapter
        // static members)
        //
        Ice.ObjectAdapter adapter
            = communicator().createObjectAdapterWithEndpoints(
                        "SimpleFilesystem", "default -p 10000");
        DirectoryI._adapter = adapter;
        FileI._adapter = adapter;

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file "README" in the root directory
        //
        File file = new FileI("README", root);
        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // Create a directory "Coleridge" in the root directory
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        //
        DirectoryI coleridge
            = new DirectoryI("Coleridge", root);

        // Create a file "Kubla_Khan" in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new String[]{ "In Xanadu did Kubla Khan",
                             "A stately pleasure-dome decree:",
                             "Where Alph, the sacred river, ran",
                             "Through caverns measureless to man",
                             "Down to a sunless sea." };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // All objects are created, allow client requests now
        //
        adapter.activate();

        // Wait until we are done
        //
        communicator().waitForShutdown();

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server();
        System.exit(app.main("Server", args));
    }
}

The code imports the contents of the Filesystem package. This avoids having 
to continuously use fully-qualified identifiers with a Filesystem. prefix.

The next part of the source code is the definition of the Server class, which 
derives from Ice.Application and contains the main application logic in its 
run method. Much of this code is boiler plate that we saw previously: we create 
an object adapter, and, towards the end, activate the object adapter and call wait-
ForShutdown.
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The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 13.1.

Figure 13.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass a null parent.) Thus, the statement

DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 13.1:

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file "README" in the root directory
        //
        File file = new FileI("README", root);
        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

        // Create a directory "Coleridge" in the root directory
        //
        DirectoryI coleridge

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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            = new DirectoryI("Coleridge", root);

        // Create a file "Kubla_Khan" in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new String[]{ "In Xanadu did Kubla Khan",
                             "A stately pleasure-dome decree:",
                             "Where Alph, the sacred river, ran",
                             "Through caverns measureless to man",
                             "Down to a sunless sea." };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        String[] text;
        text = new String[] {
            "This file system contains a collection of poetry."
        };
        try {
            file.write(text, null);
        } catch (GenericError e) {
            System.err.println(e.reason);
        }

Recall from Section 10.7.3 that Slice sequences by default map to Java arrays. The 
Slice type Lines is simply an array of strings; we add a line of text to our README 
file by initializing the text array to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

            file.write(text, null);

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary Java function call.
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In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 13.1.

13.2.2 The FileI Servant Class

Our FileI servant class has the following basic structure:

public class FileI extends _FileDisp
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private String _name;
    private DirectoryI _parent;
    private String[] _lines;
}

The class has a number of data members:

• _adapter

This static member stores a reference to the single object adapter we use in our 
server.

• _name

This member stores the name of the file incarnated by the servant.

• _parent

This member stores the reference to the servant for the file’s parent directory.

• _lines

This member holds the contents of the file.

The _name and _parent data members are initialized by the constructor:

public
FileI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;

    assert(_parent != null);

    // Create an identity
    //
    Ice.Identity myID = new Ice.Identity();
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    myID.name = Ice.Util.generateUUID();

    // Add the identity to the object adapter
    //
    _adapter.add(this, myID);

    // Create a proxy for the new node and
    // add it as a child to the parent
    //
    NodePrx thisNode
        = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
    _parent.addChild(thisNode);
}

After initializing the _name and _parent members, the code verifies that the 
reference to the parent is not null because every file must have a parent directory. 
The constructor then generates an identity for the file by calling 
Ice.Util.generateUUID and adds itself to the servant map by calling 
ObjectAdapter.add. Finally, the constructor creates a proxy for this file and 
calls the addChild method on its parent directory. addChild is a helper func-
tion that a child directory or file calls to add itself to the list of descendant nodes 
of its parent directory. We will see the implementation of this function on 
page 441.

The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

// Slice Node::name() operation

public String
name(Ice.Current current)
{
    return _name;
}

// Slice File::read() operation

public String[]
read(Ice.Current current)
{
    return _lines;
}

// Slice File::write() operation

public void
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write(String[] text, Ice.Current current)
    throws GenericError
{
    _lines = text;
}

The name method is inherited from the generated Node interface (which is a base 
interface of the _FileDisp class from which FileI is derived). It simply 
returns the value of the _name member.

The read and write methods are inherited from the generated File inter-
face (which is a base interface of the _FileDisp class from which FileI is 
derived) and simply return and set the _lines member.

13.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

package Filesystem;

public final class DirectoryI extends _DirectoryDisp
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private String _name;
    private DirectoryI _parent;
    private java.util.ArrayList _contents
        = new java.util.ArrayList();
}

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds a null reference.) In addition, we have a _contents data member that 
stores the list of child directories. These data members are initialized by the 
constructor:

public
DirectoryI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;

    // Create an identity. The parent has the
    // fixed identity "RootDir"
    //
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    Ice.Identity myID = new Ice.Identity();
    myID.name = _parent != null ? Ice.Util.generateUUID() : "RootD
ir";

    // Add the identity to the object adapter
    //
    _adapter.add(this, myID);

    // Create a proxy for the new node and add it as a
    // child to the parent
    //
    NodePrx thisNode
        = NodePrxHelper.uncheckedCast(_adapter.createProxy(myID));
    if (_parent != null)
        _parent.addChild(thisNode);
}

The constructor creates an identity for the new directory by calling 
Ice.Util.generateUUID. (For the root directory, we use the fixed identity 
"RootDir".) The servant adds itself to the servant map by calling ObjectA-
dapter.add and then creates a reference to itself and passes it to the 
addChild helper function.

addChild simply adds the passed reference to the _contents list:

void
addChild(NodePrx child)
{
    _contents.add(child);
}

The remainder of the operations, name and list, are trivial:

public String
name(Ice.Current current)
{
    return _name;
}

// Slice Directory::list() operation

public NodePrx[]
list(Ice.Current current)
{
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    NodePrx[] result = new NodePrx[_contents.size()];
    _contents.toArray(result);
    return result;
}

Note that the _contents member is of type java.util.ArrayList, which 
is convenient for the implementation of the addChild method. However, this 
requires us to convert the list into a Java array in order to return it from the list 
operation.

13.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe. We discuss 
thread safety in Section 32.10.
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Chapter 14
Client-Side Slice-to-C# Mapping

14.1 Chapter Overview

In this chapter, we present the client-side Slice-to-C# mapping (see Chapter 16 for 
the server-side mapping). One part of the client-side C# mapping concerns itself 
with rules for representing each Slice data type as a corresponding C# type; we 
cover these rules in Section 14.3 to Section 14.9. Another part of the mapping 
deals with how clients can invoke operations, pass and receive parameters, and 
handle exceptions. These topics are covered in Section 14.10 to Section 14.12. 
Slice classes have the characteristics of both data types and interfaces and are 
covered in Section 14.13. Sections 14.14 and 14.15 cover serializable objects and 
metadata directives, and Section 14.16 discusses asynchronous invocations. 
Finally, Sections 14.17 and 14.18 explain how to use the Slice compiler and Slice 
checksums.

14.2 Introduction

The client-side Slice-to-C# mapping defines how Slice data types are translated to 
C# types, and how clients invoke operations, pass parameters, and handle errors. 
Much of the C# mapping is intuitive. For example, by default, Slice sequences 
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map to C# arrays, so there is little you have learn in order to use Slice dictionaries 
in C#.

The C# API to the Ice run time is fully thread-safe. Obviously, you must still 
synchronize access to data from different threads. For example, if you have two 
threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 14.9 to 
Section 14.12 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the C# mapping, you should 
need no more than the Slice definition of your application and knowledge of the 
C# mapping rules. In particular, looking through the generated code in order to 
discern how to use the C# mapping is likely to be inefficient, due to the amount of 
detail. Of course, occasionally, you may want to refer to the generated code to 
confirm a detail of the mapping, but we recommend that you otherwise use the 
material presented here to see how to write your client-side code.

14.3 Mapping for Identifiers

Slice identifiers map to an identical C# identifier. For example, the Slice identifier 
Clock becomes the C# identifier Clock. If a Slice identifier is the same as a C# 
keyword, the corresponding C# identifier is a verbatim identifier (an identifier 
prefixed with @). For example, the Slice identifier while is mapped as @while.1

The Slice-to-C# compiler generates classes that inherit from interfaces or base 
classes in the .NET framework. These interfaces and classes introduce a number 
of methods into derived classes. To avoid name clashes between Slice identifiers 
that happen to be the same as an inherited method, such identifiers are prefixed 
with ice_ and suffixed with _ in the generated code. For example, the Slice iden-

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such Slice identifiers as much 
as possible.
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tifier Clone maps to the C# identifier ice_Clone_ if it would clash with an 
inherited Clone. The complete list of identifiers that are so changed is:

Note that Slice identifiers in this list are translated to the corresponding C# identi-
fier only where necessary. For example, structures do not derive from IClone-
able, so if a Slice structure contains a member named Clone, the corresponding 
C# structure’s member is named Clone as well. On the other hand, classes do 
derive from ICloneable, so, if a Slice class contains a member named Clone, 
the corresponding C# class’s member is named ice_Clone_.

Also note that, for the purpose of prefixing, Slice identifiers are case-insensi-
tive, that is, both Clone and clone are escaped and map to ice_Clone_ and 
ice_clone_, respectively.

14.4 Mapping for Modules

Slice modules map to C# namespaces with the same name as the Slice module. 
The mapping preserves the nesting of the Slice definitions. For example:

module M1 {
    // Definitions for M1 here...
    module M2 {
        // Definitions for M2 here...
    };
};

// ...

module M1 {     // Reopen M1
    // More definitions for M1 here...
};

This definition maps to the corresponding C# definitions:

namespace M1
{
    namespace M2
    {
        // ...

Clone Equals Finalize
GetBaseException GetHashCode GetObjectData
GetType MemberwiseClone ReferenceEquals
ToString checkedCast uncheckedCast
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    }
    // ...
}

// ...

namespace M1    // Reopen M1
{
    // ...
}

If a Slice module is reopened, the corresponding C# namespace is reopened as 
well.

14.5 The Ice Namespace

All of the APIs for the Ice run time are nested in the Ice namespace, to avoid 
clashes with definitions for other libraries or applications. Some of the contents of 
the Ice namespace are generated from Slice definitions; other parts of the Ice 
namespace provide special-purpose definitions that do not have a corresponding 
Slice definition. We will incrementally cover the contents of the Ice namespace 
throughout the remainder of the book.

14.6 Mapping for Simple Built-in Types

The Slice built-in types are mapped to C# types as shown in Table 14.1.

Table 14.1. Mapping of Slice built-in types to C#.

Slice C#

bool bool

byte byte

short short

int int
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14.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

14.7.1 Mapping for Enumerations

Enumerations map to the corresponding enumeration in C#. For example:

enum Fruit { Apple, Pear, Orange };

Not surprisingly, the generated C# definition is identical:

enum Fruit { Apple, Pear, Orange };

14.7.2 Mapping for Structures

Ice for .NET supports two different mappings for structures. By default, Slice 
structures map to C# structures if they (recursively) contain only value types. If a 
Slice structure (recursively) contains a string, proxy, class, sequence, or dictionary 
member, it maps to a C# class. A metadata directive (see Section 4.17) allows you 
to force the mapping to a C# class for Slice structures that contain only value 
types.

In addition, for either mapping, you can control whether Slice data members 
are mapped to fields or to properties (see page 453).

long long

float float

double double

string string

Table 14.1. Mapping of Slice built-in types to C#.

Slice C#
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Structure Mapping for Structures

Consider the following structure:

struct Point {
    double x;
    double y;
};

This structure consist of only value types and so, by default, maps to a C# partial 
structure:

public partial struct Point
{
    public double x;
    public double y;

    public Point(double x, double y);

    public override int GetHashCode();
    public override bool Equals(object other);

    public static bool operator==(Point lhs, Point rhs);
    public static bool operator!=(Point lhs, Point rhs);
}

For each data member in the Slice definition, the C# structure contains a corre-
sponding public data member of the same name.

The generated constructor accepts one argument for each structure member, in 
the order in which they are defined in the Slice definition. This allows you to 
construct and initialize a structure in a single statement:

Point p = new Point(5.1, 7.8);

Note that C# does not allow a value type to declare a default constructor or to 
assign default values to data members.

The structure overrides the GetHashCode and Equals methods to allow 
you to use it as the key type of a dictionary. (Note that the static two-argument 
version of Equals is inherited from System.Object.) Two structures are 
equal if (recursively) all their data members are equal. Otherwise, they are not 
equal. For structures that contain reference types, Equals performs a deep 
comparison; that is, reference types are compared for value equality, not reference 
equality.
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Class Mapping for Structures

The mapping for Slice structures to C# structures provides value semantics. 
Usually, this is appropriate, but there are situations where you may want to change 
this:

• If you use structures as members of a collection, each access to an element of 
the collection incurs the cost of boxing or unboxing. Depending on your situa-
tion, the performance penalty may be noticeable.

• On occasion, it is useful to be able to assign null to a structure, for example, to 
support “not there” semantics (such as when implementing parameters that are 
conceptually optional).

To allow you to choose the correct performance and functionality trade-off, the 
Slice-to-C# compiler provides an alternative mapping of structures to classes, for 
example:

["clr:class"] struct Point {
    double x;
    double y;
};

The "clr:class" metadata directive instructs the Slice-to-C# compiler to 
generate a mapping to a C# partial class for this structure. The generated code is 
almost identical, except that the keyword struct is replaced by the keyword 
class2 and that the class has a default constructor and inherits from IClone-
able:

public partial class Point : _System.ICloneable
{
    public double x;
    public double y;

    public Point();
    public Point(double x, double y);

    public object Clone();

    public override int GetHashCode();
    public override bool Equals(object other);

2. Some of the generated marshaling code differs for the class mapping of structures, but this is 
irrelevant to application code.
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    public static bool operator==(Point lhs, Point rhs);
    public static bool operator!=(Point lhs, Point rhs);
}

The class has a default constructor that default-constructs each data member. This 
means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize a member whose type is a class-mapped structure 
because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.9.2). The default constructor initializes each of these data 
members to its declared value.

The class also provides a second constructor that has one parameter for each 
data member. This allows you to construct and initialize a class instance in a 
single statement:

Point p = new Point(5.1, 7.8);

The Clone method performs a shallow memberwise copy, and the comparison 
methods have the usual semantics (they perform value comparison).

Note that you can influence the mapping for structures only at the point of 
definition of a structure, that is, for a particular structure type, you must decide 
whether you want to use the structure or the class mapping. (You cannot override 
the structure mapping elsewhere, for example, for individual structure members or 
operation parameters.)

As we mentioned previously, if a Slice structure (recursively) contains a 
member of reference type, it is automatically mapped to a C# class. (The compiler 
behaves as if you had explicitly specified the “clr:class” metadata directive for 
the structure.)

Here is our Employee structure from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The structure contains two strings, which are reference types, so the Slice-to-C# 
compiler generates a C# class for this structure:
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public partial class Employee : _System.ICloneable
{
    public long number;
    public string firstName;
    public string lastName;

    public Employee();
    public Employee(long number,
                    string firstName,
                    string lastName);

    public object Clone();

    public override int GetHashCode();
    public override bool Equals(object other);

    public static bool operator==(Employee lhs, Employee rhs);
    public static bool operator!=(Employee lhs, Employee rhs);
}

Property Mapping for Structures

You can instruct the compiler to emit property definitions instead of public data 
members. For example:

["clr:property"] struct Point {
    double x;
    double y;
};

The “clr:property” metadata directive causes the compiler to generate a prop-
erty for each Slice data member:

public partial struct Point
{
    private double x_prop;
    public double x {
        get {
            return x_prop;
        }
        set {
            x_prop = value;
        }
    }

    private double y_prop;
    public double y {
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        get {
            return y_prop;
        }
        set {
            y_prop = value;
        }
    }

    // Other methods here...
}

Note that the properties are non-virtual because C# structures cannot have virtual 
properties. However, if you apply the “clr:property” directive to a structure that 
contains a member of reference type, or if you combine the “clr:property” and 
“clr:class” directives, the generated properties are virtual. For example:

["clr:property", "clr:class"]
struct Point {
    double x;
    double y;
};

This generates the following code:

public partial class Point : System.ICloneable
{
    private double x_prop;
    public virtual double x {
        get {
            return x_prop;
        }
        set {
            x_prop = value;
        }
    }

    private double y_prop;
    public virtual double y {
        get {
            return y_prop;
        }
        set {
            y_prop = value;
        }
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    }

    // Other methods here...
}

14.7.3 Mapping for Sequences

Ice for .NET supports several different mappings for sequences. By default, 
sequences are mapped to arrays. You can use metadata directives (see 
Section 4.17) to map sequences to a number of alternative types:

• System.Collections.Generic.List

• System.Collections.Generic.LinkedList

• System.Collections.Generic.Queue

• System.Collections.Generic.Stack

• Types derived from Ice.CollectionBase (which is a drop-in replace-
ment for System.Collections.CollectionBase)3

• User-defined custom types that derive from System.Collec-
tions.Generic.IEnumerable<T>.

The different mappings allow you to map sequences to a container type that 
provides the correct performance trade-off for your application.

Array Mapping for Sequences

By default, the Slice-to-C# compiler maps sequences to arrays. Interestingly, no 
code is generated in this case; you simply define an array of elements to model the 
Slice sequence. For example:

sequence<Fruit> FruitPlatter;

Given this definition, to create a sequence containing an apple and an orange, you 
could write:

Fruit[] fp = { Fruit.Apple, Fruit.Orange };

Or, alternatively:

3. This mapping is provided mainly for compatibility with Ice versions prior to 3.3.
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Fruit fp[] = new Fruit[2];
fp[0] = Fruit.Apple;
fp[1] = Fruit.Orange;

The array mapping for sequences is both simple and efficient, especially for 
sequences that do not need to provide insertion or deletion other than at the end of 
the sequence.

Mapping to Predefined Generic Containers for Sequences

With metadata directives, you can change the default mapping for sequences to 
use generic containers provided by .NET. For example:

["clr:generic:List"] sequence<string> StringSeq;
["clr:generic:LinkedList"] sequence<Fruit> FruitSeq;
["clr:generic:Queue"] sequence<int> IntQueue;
["clr:generic:Stack"] sequence<double> DoubleStack;

The "clr:generic:<type>" metadata directive causes the slice2cs compiler 
to the map the corresponding sequence to one of the containers in the 
System.Collections.Generic namespace. For example, the Queue 
sequence maps to System.Collections.Generic.Queue<int> due to 
its metadata directive.

The predefined containers allow you to select an appropriate space–perfor-
mance trade-off, depending on how your application uses a sequence. In addition, 
if a sequence contains value types, such as int, the generic containers do not 
incur the cost of boxing and unboxing and so are quite efficient. (For example, 
System.Collections.Generic.List<int> performs within a few 
percentage points of an integer array for insertion and deletion at the end of the 
sequence, but has the advantage of providing a richer set of operations.)

Generic containers can be used for sequences of any element type except 
objects. For sequences of objects, only List is supported because it provides the 
functionality required for efficient unmarshaling. Metadata that specifies any 
other generic type is ignored with a warning:

class MyClass {
    // ...
};

["clr:generic:List"]
sequence<MyClass> MyClassList; // OK

["clr:generic:LinkedList"]
sequence<MyClass> MyClassLinkedList; // Ignored
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In this example, sequence type MyClassList maps to the generic container 
System.Collections.Generic.List<MyClass>, but sequence type 
MyClassLinkedList uses the default array mapping.

Mapping to Custom Types for Sequences

If the array mapping and the predefined containers are unsuitable for your applica-
tion (for example, because may need a priority queue, which does not come with 
.NET), you can implement your own custom containers and direct slice2cs to 
map sequences to these custom containers. For example:

["clr:generic:MyTypes.PriorityQueue"] sequence<int> Queue;

This metadata directive causes the Slice Queue sequence to be mapped to the type 
MyTypes.PriorityQueue. You must specify the fully-qualified name of 
your custom type following the clr:generic: prefix. This is because the gener-
ated code prepends a global:: qualifier to the type name you provide; for the 
preceding example, the generated code refers to your custom type as 
global::MyTypes.PriorityQueue<int>.

Your custom type can have whatever interface you deem appropriate, but it 
must meet the following requirements:

• The custom type must derive from System.Collec-
tions.Generic.IEnumerable<T>.

• The custom type must provide a readable Count property that returns the 
number of elements in the collection.

• The custom type must provide an Add method that appends an element to the 
end of the collection.

• If (and only if) the Slice sequence contains elements that are Slice classes, the 
custom type must provide an indexer that sets the value of an element at a 
specific index. (Indexes, as usual, start at zero.)

As an example, here is a minimal class (omitting implementation) that meets these 
criteria:

public class PriorityQueue<T> : IEnumerable<T>
{
    public IEnumerator<T> GetEnumerator();

    public int Count
        get;

    public void Add(T elmt);
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    public T this[int index] // Needed for class elements only.
        set;


    // Other methods and data members here...
}

CollectionBase Mapping for Sequences

The CollectionBase mapping is provided mainly for compatibility with Ice 
versions prior to 3.3. Internally, CollectionBase is implemented using 
System.Collections.Generic.List<T>, so it offers the same perfor-
mance trade-offs as List<T>. (For value types, Ice.CollectionBase is 
considerably faster than System.Collections.CollectionBase, 
however.)

Ice.CollectionBase is not as type-safe as List<T> because, in order 
to remain source code compatible with System.Collections.Collec-
tionBase, it provides methods that accept elements of type object. This 
means that, if you pass an element of the wrong type, the problem will be diag-
nosed only at run time, instead of at compile time. For this reason, we suggest that 
you do not use the CollectionBase mapping for new code.

To enable the CollectionBase mapping, you must use the "clr:collec-
tion" metadata directive:

["clr:collection"] sequence<Fruit> FruitPlatter;

With this directive, slice2cs generates a type that derives from 
Ice.CollectionBase:

public class FruitPlatter : Ice.CollectionBase<M.Fruit>,
                            System.ICloneable
{
    public FruitPlatter();
    public FruitPlatter(int capacity);
    public FruitPlatter(Fruit[] a);
    public FruitPlatter(
        System.Collections.Generic.IEnumerable<Fruit> l);

    public static implicit operator
        _System.Collections.Generic.List<Fruit>(FruitPlatter s);

    public virtual FruitPlatter GetRange(int index, int count);




14.7 Mapping for User-Defined Types 459

    public static FruitPlatter Repeat(Fruit value, int count);

    public object Clone();
}

The generated FruitPlatter class provides the following methods:

• FruitPlatter();
FruitPlatter(int capacity);
FruitPlatter(Fruit[] a);
FruitPlatter(IEnumerable<Fruit> l);

Apart from calling the default constructor, you can also specify an initial 
capacity for the sequence or, using the array constructor, initialize a sequence 
from an array. In addition, you can initialize the class to contain the same 
elements as any enumerable collection with the same element type.

• FruitPlatter GetRange(int index, int count);

This method returns a new sequence with count elements that are copied 
from the source sequence beginning at index.

• FruitPlatter Repeat(Fruit value, int count);

This method returns a sequence with count elements that are initialized to 
value.

• object Clone()

The Clone method returns a shallow copy of the source sequence.

• static implicit operator List<Fruit>
                            (FruitPlatter s);

This operator performs an implicit conversion of a FruitPlatter instance 
to a List<Fruit>, so you can pass a FruitPlatter sequence where a 
List<Fruit>, IEnumerable<Fruit>, or System.Collec-
tions.IEnumerable is expected.

The remaining methods are provided by the generic Ice.CollectionBase 
base class. This class provides the following methods:

• CollectionBase();
CollectionBase(int capacity);
CollectionBase(T[] a);
CollectionBase(IEnumerable<T> l);

The constructors initialize the sequence as for the concrete derived class.

• int Count { get; }
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This property returns the number of elements of the sequence.

• int Capacity { get; set; }

This property controls the capacity of the sequence. Its semantics are as for the 
corresponding property of List<T>.

• virtual void TrimToSize();

This method sets the capacity of the sequence to the actual number of 
elements.

• int Add(object o);
int Add(T value);

These methods append value at the end of the sequence. They return the 
index at which the element is inserted (which always is the value of Count 
prior the call to Add.)

• void Insert(int index, object o);
void insert(int index, T value);

These methods insert an element at the specified index.

• virtual void InsertRange(int index,
                         CollectionBase<T> c);
virtual void InsertRange(int index, T[] c);

These methods insert a range of values into the sequence starting at the given 
index.

• virtual void SetRange(int index,
                      CollectionBase<T> c);
virtual void SetRange(int index, T[] c);

These methods copy the provided sequence over a range of elements in the 
target sequence, starting at the provided index, with semantics as for 
System.Collections.ArrayList

• void RemoveAt(int index);

This method deletes the element at the specified index.

• void Remove(object o);
void Remove(T value);

These methods search for the specified element and, if present, delete that 
element. If the element is not in the sequence, the methods do nothing.

• virtual void RemoveRange(int index, int count);

This method removes count elements, starting at the given index.
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• void Clear();

This method deletes all elements of the sequence.

• bool Contains(object o);
bool Contains(T value);

These methods return true if the sequence contains value; otherwise, they 
return false.

• int IndexOf(object o);
int IndexOf(T value);

These methods return the index of the specified element. If the element is not 
in the sequence, the return value is -1.

• virtual int LastIndexOf(T value);
virtual int LastIndexOf(T value,
                        int startIndex);
virtual int LastIndexOf(T value, int startIndex,
                         int count);

These methods search for the provided element and return its last occurrence 
in the sequence, as for
System.Collections.ArrayList.LastIndexOf.

• object this[int index] { get; set; }
T this[int index] { get; set; }

The indexers allow you to read and write elements using array subscript nota-
tion.

• IEnumerator<T> GetEnumerator();

This method returns an enumerator that you can use to iterate over the collec-
tion.

• static implicit operator List<T>
                            (CollectionBase<T> s);

As for the derived class, this operator permits implicit conversion to a 
List<T>.

• void CopyTo(T[] a);
void CopyTo(T[] a, int i);
void CopyTo(int i, T[] a, int ai, int c);
void CopyTo(System.Array a, int i);

These methods copy the contents of a sequence into an array. The semantics 
are the same as for the corresponding methods of List<T>.
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• T[] ToArray();

The ToArray method returns the contents of the sequence as an array.

• void AddRange(CollectionBase<T> s);
void AddRange(T[] a);

The AddRange methods append the contents of a sequence or an array to the 
current sequence, respectively.

• virtual void Sort();
virtual void Sort(System.Collections.IComparer
                  comparer);
virtual void Sort(int index, int count,
    System.Collections.IComparer comparer);

These methods sort the sequence.

• virtual void Reverse();
virtual void Reverse(int index, int count);

These methods reverse the order of elements of the sequence.

• virtual int BinarySearch(T value);
virtual int BinarySearch(T value,
    System.Collections.IComparer comparer);
virtual int BinarySearch(int index, int count,
    T value,
    System.Collections.IComparer comparer);

The methods perform a binary search on the sequence, with semantics as for 
System.Collections.ArrayList.

• static FruitPlatter Repeat(Fruit value, int count);

This method returns a sequence with count elements that are initialized to 
value.

Note that for all methods that return sequences, these methods perform a shallow 
copy, that is, if you have a sequence whose elements have reference type, what is 
copied are the references, not the objects denoted by those references.

Ice.CollectionBase also provides the usual GetHashCode and 
Equals methods, as well as the comparison operators for equality and inequality. 
(Two sequences are equal if they have the same number of elements and all 
elements in corresponding positions are equal, as determined by the Equals 
method of the elements.)
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Ice.CollectionBase also implements the inherited IsFixedSize, 
IsReadOnly, and IsSynchronized properties (which return false), and the 
inherited SyncRoot property (which returns this).

Creating a sequence containing an apple and an orange is simply a matter of 
writing:

FruitPlatter fp = new FruitPlatter();
fp.Add(Fruit.Apple);
fp.Add(Fruit.Orange);

Multi-Dimensional Sequences

Slice permits you to define sequences of sequences, for example:

enum Fruit { Apple, Orange, Pear };
["clr:generic:List"] sequence<Fruit> FruitPlatter;
["clr:generic:LinkedList"] sequence<FruitPlatter> Cornucopia;

If we use these definitions as shown, the type of FruitPlatter in the generated code 
is:

System.Collections.Generic.LinkedList<
    System.Collections.Generic.List<Fruit>
>

As you can see, the outer sequence contains elements of type List<Fruit>, as 
you would expect.

Now let us modify the definition to change the mapping of FruitPlatter to 
an array:

enum Fruit { Apple, Orange, Pear };
sequence<Fruit> FruitPlatter;
["clr:LinkedList"] sequence<FruitPlatter> Cornucopia;

With this definition, the type of Cornucopia becomes:

System.Collections.Generic.LinkedList<Fruit[]>

As you can see, the generated code now no longer mentions the type Fruit-
Platter anywhere and deals with the outer sequence elements as an array of 
Fruit instead.

14.7.4 Mapping for Dictionaries
Ice for .NET supports three different mappings for dictionaries. By default, 
dictionaries are mapped to System.Collec-
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tions.Generic.Dictionary<T>. You can use metadata directives (see 
Section 4.17) to map dictionaries to two other types:

• System.Collections.Generic.SortedDictionary

• Types derived from Ice.DictionaryBase (which is a drop-in replace-
ment for System.Collections.DictionaryBase)4

Mapping to Predefined Containers for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

By default, he Slice-to-C# compiler maps the dictionary to the following type:

System.Collections.Generic.Dictionary<Employee>

You can use the "clr:generic:SortedDictionary" metadata directive to 
change the mapping to a sorted dictionary:

["clr:generic:SortedDictionary"]
dictionary<long, Employee> EmployeeMap;

With this definition, the type of the dictionary becomes:

System.Collections.Generic.SortedDictionary<Employee>

DictionaryBase mapping for Dictionaries

The DictionaryBase mapping is provided mainly for compatibility with Ice 
versions prior to 3.3. Internally, DictionaryBase is implemented using 
System.Collections.Generic.Dictionary<T>, so it offers the same 
performance trade-offs as Dictionary<T>. (For value types, 
Ice.DictionaryBase is considerably faster than System.Collec-
tions.DictionaryBase, however.)

Ice.DictionaryBase is not as type-safe as Dictionary<T> because, 
in order to remain source code compatible with System.Collec-
tions.DictionaryBase, it provides methods that accept elements of type 
object. This means that, if you pass an element of the wrong type, the problem 
will be diagnosed only at run time, instead of at compile time. For this reason, we 
suggest that you do not use the DictionaryBase mapping for new code.

4. This mapping is provided mainly for compatibility with Ice versions prior to 3.3.
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To enable the DictionaryBase mapping, you must use the "clr:collec-
tion" metadata directive:

["clr:collection"] dictionary<long, Employee> EmployeeMap;

With this directive, slice2cs generates a type that derives from 
Ice.CollectionBase:

public class EmployeeMap : Ice.DictionaryBase<long, Employee>,
                           System.ICloneable
{
    public void AddRange(EmployeeMap m);
    public object Clone();
}

Note that the generated EmployeeMap class derives from Ice.Dictionary-
Base, which provides a super-set of the interface of the .NET 
System.Collections.DictionaryBase class. Apart from methods 
inherited from DictionaryBase, the class provides a Clone method and an 
AddRange method that allows you to append the contents of one dictionary to 
another. If the target dictionary contains a key that is also in the source dictionary, 
the target dictionary’s value is preserved. For example:

Employee e1 = new Employee();
e1.number = 42;
e1.firstName = "Herb";
e1.lastName = "Sutter";

EmployeeMap em1 = new EmployeeMap();
em[42] = e;

Employee e2 = new Employee();
e2.number = 42;
e2.firstName = "Stan";
e2.lastName = "Lipmann";

EmployeeMap em2 = new EmployeeMap();
em[42] = e2;

// Add contents of em2 to em1
//
em1.AddRange(em2);

// Equal keys preserve the original value
//
Debug.Assert(em1[42].firstName.Equals("Herb"));
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The DictionaryBase class provides the following methods:

public abstract class DictionaryBase<KT, VT>
    : System.Collections.IDictionary
{
    public DictionaryBase();

    public int Count { get; }

    public void Add(KT key, VT value);
    public void Add(object key, object value);

    public void CopyTo(System.Array a, int index);

    public void Remove(KT key);
    public void Remove(object key);

    public void Clear();

    public System.Collections.ICollection Keys { get; }
    public System.Collections.ICollection Values { get; }

    public VT this[KT key] { get; set; }
    public object this[object key] { get; set; }

    public bool Contains(KT key);
    public bool Contains(object key);

    public override int GetHashCode();
    public override bool Equals(object other);
    public static bool operator==(DictionaryBase<KT, VT> lhs,
                                  DictionaryBase<KT, VT> rhs);
    public static bool operator!=(DictionaryBase<KT, VT> lhs,
                                  DictionaryBase<KT, VT> rhs);

    public System.Collections.IEnumerator GetEnumerator();

    public bool IsFixedSize { get; }
    public bool IsReadOnly { get; }
    public bool IsSynchronized { get; }
    public object SyncRoot { get; }
}

The methods have the same semantics as the corresponding methods in the .NET 
Framework. The Equals method returns true if two dictionaries contain the 
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same number of entries and, for each entry, the key and value are the same (as 
determined by their Equals methods).

The Clone method performs a shallow copy.

The class also implements the inherited IsFixedSize, IsReadOnly, and 
IsSynchronized properties (which return false), and the SyncRoot property 
(which returns this).

14.7.5 Collection Comparison

A utility class, Ice.CollectionComparer allows you to compare collec-
tions for equality:

public class CollectionComparer {
    public static bool
    Equals(System.Collections.IDictionary d1,
           System.Collections.IDictionary d2);

    public static bool
    Equals(System.Collections.ICollection c1,
           System.Collections.ICollection c2);

    public static bool
    Equals(System.Collections.IEnumerable c1,
           System.Collections.IEnumerable c2);
}

Equality of the elements in a collection is determined by calling the elements’ 
Equals method.

Two dictionaries are equal if they contain the same number of entries with 
identical keys and values.

Two collections that derive from ICollection or IEnumerable are 
equal if they contain the same number of entries and entries compare equal. Note 
that order is significant, so corresponding entries must not only be equal but must 
also appear in the same position.

14.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:
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const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

public abstract class AppendByDefault
{
    public const bool value = true;
}

public abstract class LowerNibble
{
    public const byte value = 15;
}

public abstract class Advice
{
    public const string value = "Don't Panic!";
}

public abstract class TheAnswer
{
    public const short value = 42;
}

public abstract class PI
{
    public const double value = 3.1416;
}

public enum Fruit { Apple, Pear, Orange }

public abstract class FavoriteFruit
{
    public const Fruit value = Fruit.Pear;
}

As you can see, each Slice constant is mapped to a class with the same name as 
the constant. The class contains a member named value that holds the value of 
the constant.5
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14.9 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 14.1

Figure 14.1. Inheritance structure for exceptions.

The ancestor of all exceptions is System.Exception. Derived from that is 
Ice.Exception, which provides the definitions of a number of constructors. 
Ice.LocalException and Ice.UserException are derived from 
Ice.Exception and form the base of all run-time and user exceptions, respec-
tively.

The constructors defined in Ice.Exception have the following signatures:

public abstract class Exception : System.Exception
{
    public Exception();
    public Exception(System.Exception ex);
}

5. The mapping to classes instead of to plain constants is necessary because C# does not permit 
constant definitions at namespace scope.

Ice.LocalException Ice.UserException

Ice.Exception

Specific Run-Time Exceptions... Specific User Exceptions...

System.Exception
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Each concrete derived exception class implements these constructors. The second 
constructor initializes the InnerException property of System.Excep-
tion. (Both constructors set the Message property to the empty string.)

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:

exception GenericError {
    string reason;
};

exception BadTimeVal extends GenericError {};

exception BadZoneName extends GenericError {};

These exception definitions map as follows:

public partial class GenericError : Ice.UserException
{
    public string reason;

    public GenericError();
    public GenericError(System.Exception ex__);
    public GenericError(string reason);
    public GenericError(string reason, System.Exception ex__);

    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

public partial class BadTimeVal : M.GenericError
{
    public BadTimeVal();
    public BadTimeVal(System.Exception ex__);
    public BadTimeVal(string reason);
    public BadTimeVal(string reason, System.Exception ex__);

    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

public partial class BadZoneName : M.GenericError
{
    public BadZoneName();
    public BadZoneName(System.Exception ex__);
    public BadZoneName(string reason);
    public BadZoneName(string reason, System.Exception ex__);
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    // GetHashCode and comparison methods defined here,
    // as well as mapping-internal methods.
}

Each Slice exception is mapped to a C# partial class with the same name. For each 
exception member, the corresponding class contains a public data member. (Obvi-
ously, because BadTimeVal and BadZoneName do not have members, the generated 
classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so BadTimeVal and BadZoneName inherit from GenericError.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice.LocalException, and you can catch all Ice excep-
tions with a handler for Ice.Exception.

If an exception (or one of its base exceptions) contains data members, the 
mapping generates two additional constructors. These constructors allow you to 
instantiate and initialize an exception in a single statement, instead of having to 
first instantiate the exception and then assign to its members. For derived excep-
tions, the constructors accept one argument for each base exception member, plus 
one argument for each derived exception member, in base-to-derived order. The 
second of these constructors has a trailing parameter of type System.Excep-
tion which initializes the InnerException property of the 
System.Exception base exception.

All exceptions also provide the usual GetHashCode and Equals methods, 
as well as the == and != comparison operators.

The generated exception classes also contain other member functions that are 
not shown here; these member functions are internal to the C# mapping and are 
not meant to be called by application code.

Constructors

Exceptions have a default constructor that default-constructs each data member. 
This means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize a member whose type is a class-mapped structure 
because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
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tion (see Section 4.10.2). The default constructor initializes each of these data 
members to its declared value.

Exceptions also provide constructors that accept one parameter for each data 
member. This allows you to construct and initialize a class instance in a single 
statement (instead of first having to construct the instance and then assigning to its 
members). For derived exceptions, these constructors accept one argument for 
each base exception member, plus one argument for each derived exception 
member, in base-to-derived order.

14.10 Mapping for Interfaces

On the client side, Slice interfaces map to C# interfaces with member functions 
that correspond to the operations on those interfaces. Consider the following 
simple interface:

interface Simple {
    void op();
};

The Slice compiler generates the following definition for use by the client:

public interface SimplePrx : Ice.ObjectPrx
{
    void op();
    void op(System.Collections.Generic.Dictionary<string, string>
                __context);
}

As you can see, the compiler generates a proxy interface SimplePrx. In general, 
the generated name is <interface-name>Prx. If an interface is nested in a 
module M, the generated interface is part of namespace M, so the fully-qualified 
name is M.<interface-name>Prx.

In the client’s address space, an instance of SimplePrx is the local ambas-
sador for a remote instance of the Simple interface in a server and is known as a 
proxy instance. All the details about the server-side object, such as its address, 
what protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a member function of 
the same name. For the preceding example, we find that the operation op has been 
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mapped to the method op. Also note that op is overloaded: the second version of 
op has a parameter __context, which is a dictionary of string pairs. This 
parameter is for use by the Ice run time to store information about how to deliver a 
request. You normally do not need to use it. (We examine the __context 
parameter in detail in Chapter 32. The parameter is also used by IceStorm—see 
Chapter 44.)

Because all the <interface-name>Prx types are interfaces, you cannot 
instantiate an object of such a type. Instead, proxy instances are always instanti-
ated on behalf of the client by the Ice run time, so client code never has any need 
to instantiate a proxy directly.The proxy references handed out by the Ice run time 
are always of type <interface-name>Prx; the concrete implementation of 
the interface is part of the Ice run time and does not concern application code.

A value of null denotes the null proxy. The null proxy is a dedicated value 
that indicates that a proxy points “nowhere” (denotes no object).

14.10.1 The Ice.ObjectPrx Interface

All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

namespace Ice
{
    public interface ObjectPrx
    {
        Identity ice_getIdentity();
        bool ice_isA(string id);
        string ice_id();
        void ice_ping();

        int GetHashCode();
        bool Equals(object r);

        // Defined in a helper class:
        //
        public static bool Equals(Ice.ObjectPrx lhs,
                                  Ice.ObjectPrx rhs);
        public static bool operator==(ObjectPrx lhs,
                                      ObjectPrx rhs);
        public static bool operator!=(ObjectPrx lhs,
                                      ObjectPrx rhs);
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        // ...
    }
}

Note that the static methods are not actually defined Ice.ObjectPrx, but in a 
helper class that becomes a base class of an instantiated proxy. However, this is 
simply an internal detail of the C# mapping—conceptually, these methods belong 
with Ice.ObjectPrx, so we discuss them here.

The methods behave as follows:

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

Ice.ObjectPrx o1 = ...;
Ice.ObjectPrx o2 = ...;
Ice.Identity i1 = o1.ice_getIdentity();
Ice.Identity i2 = o2.ice_getIdentity();

if (i1.Equals(i2))
    // o1 and o2 denote the same object
else
    // o1 and o2 denote different objects

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

Ice.ObjectPrx o = ...;
if (o != null && o.ice_isA("::Printer"))
    // o denotes a Printer object
else
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    // o denotes some other type of object

Note that we are testing whether the proxy is null before attempting to invoke 
the ice_isA method. This avoids getting a NullReferenceException 
if the proxy is null.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be ::Base, or it might something more derived, such as ::Derived.

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExist-
Exception or ConnectTimeoutException.

• Equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call and also provide access to an 
object’s facets; we discuss these methods in Chapter 32 and Chapter 33.

14.10.2 Proxy Helpers

For each Slice interface, apart from the proxy interface, the Slice-to-C# compiler 
creates a helper class: for an interface Simple, the name of the generated helper 
class is SimplePrxHelper.6 The helper class contains two methods of interest:

6. You can ignore the ObjectPrxHelperBase base class—it exists for mapping-internal 
purposes.
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public class SimplePrxHelper : Ice.ObjectPrxHelperBase, SimplePrx
{
    public static SimplePrx checkedCast(Ice.ObjectPrx b);
    public static SimplePrx checkedCast(Ice.ObjectPrx b,
                        System.Collections.Generic.Dictionary
                            <string, string> ctx);
    public static SimplePrx uncheckedCast(Ice.ObjectPrx b)

    // ...
}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a non-null reference to a 
proxy of type SimplePrx; otherwise, if the passed proxy denotes an object of a 
different type (or if the passed proxy is null), the cast returns a null reference.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

Ice.ObjectPrx obj = ...;        // Get a proxy from somewhere...

SimplePrx simple = SimplePrxHelper.checkedCast(obj);
if (simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of an object in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException. (This also explains the need 
for the helper class: the Ice run time must contact the server, so we cannot use a 
C# down-cast.)

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
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up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

Ice.ObjectPrx obj = ...;                   // Get proxy...
ProcessPrx process
    = ProcessPrxHelper.uncheckedCast(obj); // No worries...
process.launch(40, 60);                    // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

A final warning about down-casts: you must use either a checkedCast or 
an uncheckedCast to down-cast a proxy. If you use a C# cast, the behavior is 
undefined.

14.10.3 Using Proxy Methods
The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:
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Ice.ObjectPrx proxy = communicator.stringToProxy(...);
proxy = proxy.ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a checkedCast or 
uncheckedCast after using a factory method. However, a regular cast is still 
required, as shown in the example below:

Ice.ObjectPrx base = communicator.stringToProxy(...);
HelloPrx hello = HelloPrxHelper.checkedCast(base);
hello = (HelloPrx)hello.ice_timeout(10000); # Type is preserved
hello.sayHello();

The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return a base proxy that you must subsequently down-cast to 
an appropriate type.

14.10.4 Object Identity and Proxy Comparison

As mentioned on page 475, proxies provide an Equals operation. Proxy compar-
ison with Equals uses all of the information in a proxy for the comparison. This 
means that not only the object identity must match for a comparison to succeed, 
but other details inside the proxy, such as the protocol and endpoint information, 
must be the same. In other words, comparison with Equals (or == and !=) tests 
for proxy identity, not object identity. A common mistake is to write code along 
the following lines:

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (p1.Equals(p2)) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each use a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
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be contacted via several different transport endpoints). In other words, if two 
proxies compare equal with Equals, we know that the two proxies denote the 
same object (because they are identical in all respects); however, if two proxies 
compare unequal with Equals, we know absolutely nothing: the proxies may or 
may not denote the same object.

To compare the object identities of two proxies, you must use a helper func-
tion in the Ice.Util class:

public sealed class Util {
    public static int proxyIdentityCompare(ObjectPrx lhs,
                                           ObjectPrx rhs);
    public static int proxyIdentityAndFacetCompare(ObjectPrx lhs,
                                                   ObjectPrx rhs);
// ...

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

Ice.ObjectPrx p1 = ...;        // Get a proxy...
Ice.ObjectPrx p2 = ...;        // Get another proxy...

if (Ice.Util.proxyIdentityCompare(p1, p2) != 0) {
    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

The function returns 0 if the identities are equal, 1 if p1 is less than p2, and 1 if 
p1 is greater than p2. (The comparison uses name as the major and category 
as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but 
compares both the identity and the facet name (see Chapter 33).

The C# mapping also provides two helper classes in the Ice namespace that 
allow you to insert proxies into hashtables or ordered collections, based on the 
identity, or the identity plus the facet name:

public class ProxyIdentityKey
    : System.Collections.IHashCodeProvider,
      System.Collections.IComparer {

    public int GetHashCode(object obj);
    public int Compare(object obj1, object obj2);
}

public class ProxyIdentityFacetKey
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    : System.Collections.IHashCodeProvider,
      System.Collections.IComparer {

    public int GetHashCode(object obj);
    public int Compare(object obj1, object obj2);
}

Note these classes derive from IHashCodeProvider and IComparer, so 
they can be used for both hash tables and ordered collections.

14.11 Mapping for Operations

As we saw in Section 14.10, for each operation on an interface, the proxy class 
contains a corresponding member function with the same name. To invoke an 
operation, you call it via the proxy. For example, here is part of the definitions for 
our file system from Section 5.4:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

NodePrx node = ...;             // Initialize proxy
string name = node.name();      // Get name via RPC

This illustrates the typical pattern for receiving return values: return values are 
returned by reference for complex types, and by value for simple types (such as 
int or double).

14.11.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy method is concerned idempotent has no effect. For 
example, consider the following interface:
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interface Example {
                string op1();
    idempotent  string op2();
};

The proxy interface for this is:

public interface ExamplePrx : Ice.ObjectPrx
{
    string op1();
    string op2();
}

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the two methods to be mapped the same.

14.11.2 Passing Parameters

In-Parameters

The parameter passing rules for the C# mapping are very simple: parameters are 
passed either by value (for value types) or by reference (for reference types). 
Semantically, the two ways of passing parameters are identical: it is guaranteed 
that the value of a parameter will not be changed by the invocation (with some 
caveats—see page 1093).

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:
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public interface ClientToServerPrx : Ice.ObjectPrx
{
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, string[] ss,
             Dictionary<long, string[]> st);
    void op3(ClientToServerPrx proxy);
}

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy...

p.op1(42, 3.14f, true, "Hello world!"); // Pass simple literals

int i = 42;
float f = 3.14f;
bool b = true;
string s = "Hello world!";
p.op1(i, f, b, s);                      // Pass simple variables

NumberAndString ns = new NumberAndString();
ns.x = 42;
ns.str = "The Answer";
string[] ss = new string[1];
ss[0] = "Hello world!";
Dictionary<long, string[]> st
    = new Dictionary<long, string[]>();
st[0] = ss;
p.op2(ns, ss, st);                      // Pass complex variables

p.op3(p);                               // Pass proxy

Out-Parameters

Slice out parameters simply map to C# out parameters.
Here is the same Slice definition we saw on page 481 once more, but this time 

with all parameters being passed in the out direction:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;
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interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Slice compiler generates the following code for this definition:

public interface ServerToClientPrx : Ice.ObjectPrx
{
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out string[] ss,
             out Dictionary<long, string[]> st);
    void op3(out ServerToClientPrx proxy);
}

Given a proxy to a ServerToClient interface, the client code can pass parameters 
as in the following example:

ClientToServerPrx p = ...;              // Get proxy...

int i;
float f;
bool b;
string s;
p.op1(out i, out f, out b, out s);

NumberAndString ns;
string[] ss;
Dictionary<long, string[]> st;
p.op2(out ns, out ss, out st);

ServerToClientPrx stc;
p.op3(out stc);

System.Console.WriteLine(i);   // Show one of the values

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
C# sequences (if mapped to CollectionBase), dictionaries, strings, and struc-
tures (if mapped to classes) all can be null, but the corresponding Slice types do 
not have the concept of a null value.
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• Slice sequences, dictionaries, and strings cannot be null, but can be empty. To 
make life with these types easier, whenever you pass a C# null reference as 
a parameter or return value of type sequence, dictionary, or string, the Ice run 
time automatically sends an empty sequence, dictionary, or string to the 
receiver. 

• If you pass a C# null reference to a Slice structure that is mapped to a C# 
class as a parameter or return value, the Ice run time automatically sends a 
structure whose elements are default-initialized. This means that all proxy 
members are initialized to null, sequence and dictionary members are 
initialized to empty collections, strings are initialized to the empty string, and 
members that have a value type are initialized to their default values.

This behavior is useful as a convenience feature: especially for deeply-nested data 
types, members that are structures, sequences, dictionaries, or strings automati-
cally arrive as an empty value at the receiving end. This saves you having to 
explicitly initialize, for example, every string element in a large sequence before 
sending the sequence in order to avoid NullReferenceExceptions. Note 
that using null parameters in this way does not create null semantics for Slice 
sequences, dictionaries, or strings. As far as the object model is concerned, these 
do not exist (only empty sequences, dictionaries, and strings do). For example, 
whether you send a string as null or as an empty string makes no difference to 
the receiver: either way, the receiver sees an empty string.

14.12 Exception Handling

Any operation invocation may throw a run-time exception (see Section 14.9 on 
page 469) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 14.9 on page 469). Suppose we have the following 
simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as C# exceptions, so you can simply enclose one or 
more operation invocations in a try–catch block:
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ChildPrx child = ...;   // Get child proxy...

try
{
    child.askToCleanUp();
}
catch (Tantrum t)
{
    System.Console.Write("The child says: ");
    System.Console.WriteLine(t.reason);
}

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be handled by exception handlers higher in the hierarchy. For example:

public class Client
{
    private static void run() {
        ChildPrx child = ...;       // Get child proxy...
        try
        {
            child.askToCleanUp();
        }
        catch (Tantrum t)
        {
            System.Console.Write("The child says: ");
            System.Console.WriteLine(t.reason);
            child.scold();          // Recover from error...
        }
        child.praise();             // Give positive feedback...
    }

    static void Main(string[] args)
    {
        try
        {
            // ...
            run();
            // ...
        }
        catch (Ice.Exception e)
        {
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            System.Console.WriteLine(e);
        }
    }
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 15.)

Note that the ToString method of exceptions prints the name of the excep-
tion, any inner exceptions, and the stack trace. Of course, you can be more selec-
tive in the way exceptions are displayed. For example, e.GetType().Name 
returns the (unscoped) name of an exception.

Exceptions and Out-Parameters

The Ice run time makes no guarantees about the state of out-parameters when an 
operation throws an exception: the parameter may still have its original value or 
may have been changed by the operation’s implementation in the target object. In 
other words, for out-parameters, Ice provides the weak exception guarantee [21] 
but does not provide the strong exception guarantee.7

14.13 Mapping for Classes

Slice classes are mapped to C# classes with the same name. By default, the gener-
ated class contains a public data member for each Slice data member (just as for 
structures and exceptions), and a member function for each operation.

Note that classes also support the "clr:property" metadata directive, so you 
can generate classes with virtual properties instead of data members. (See 
page 453 for details on “clr:property”.)

Consider the following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

7. This is done for reasons of efficiency: providing the strong exception guarantee would require 
more overhead than can be justified.
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The Slice compiler generates the following code for this definition:

public interface TimeOfDayOperations_
{
    string format(Ice.Current __current);
}

public interface TimeOfDayOperationsNC_
{
    string format();
}

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    public short hour;
    public short minute;
    public short second;

    public TimeOfDay()
    {
    }

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    public string format()
    {
        return format(new Ice.Current());
    }

    public abstract string format(Ice.Current __current);
}

There are a number of things to note about the generated code:

1. The compiler generates “operations interfaces” called 
TimeOfDayOperations_ and TimeOfDayOperationsNC_. These 
interfaces contain a method for each Slice operation of the class.
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2. The generated class TimeOfDay inherits (indirectly) from Ice.Object. 
This means that all classes implicitly inherit from Ice.Object, which is the 
ultimate ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.

If a class has only data members, but no operations, the compiler generates a 
non-abstract class.

3. The generated class contains a public member for each Slice data member.

4. The generated class inherits member functions for each Slice operation from 
the operations interfaces.

5. The generated class contains two constructors.

There is quite a bit to discuss here, so we will look at each item in turn.

14.13.1 Operations Interfaces

The methods in the <interface-name>Operations_ interface have an 
additional trailing parameter of type Ice.Current, whereas the methods in the 
<interface-name>OperationsNC_ interface lack this additional trailing 
parameter. The methods without the Current parameter simply forward to the 
methods with a Current parameter, supplying a default Current. For now, 
you can ignore this parameter and pretend it does not exist. (We look at it in more 
detail in Section 32.6.)

If a class has only data members, but no operations, the compiler omits gener-
ating the <interface-name>Operations_ and <inter-
face-name>OperationsNC_ interfaces.

14.13.2 Inheritance from Ice.Object

Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 14.2, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inheri-
tance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
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expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 14.2. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

namespace Ice
{
    public interface Object : System.ICloneable
    {
        bool ice_isA(string s);
        bool ice_isA(string s, Current current);

        void ice_ping();
        void ice_ping(Current current);

        string[] ice_ids();
        string[] ice_ids(Current current);

        string ice_id();
        string ice_id(Current current);

        void ice_preMarshal();
        void ice_postUnmarshal();

        DispatchStatus ice_dispatch(
            Request request,
            DispatchInterceptorAsyncCallback cb);
    }
}

The member functions of Ice.Object behave as follows:

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

• ice_dispatch

This function dispatches an incoming request to a servant. It is used in the 
implementation of dispatch interceptors (see Section 32.23).

Note that the generated class does not override GetHashCode and Equals. 
This means that classes are compared using shallow reference equality, not value 
equality (as is used for structures).

The class also provides a Clone method (whose implementation is inherited 
from Ice.ObjectImpl); the Clone method returns a shallow memberwise 
copy.

14.13.3 Data Members of Classes

By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding public data member.

If you wish to restrict access to a data member, you can modify its visibility 
using the protected metadata directive. The presence of this directive causes the 
Slice compiler to generate the data member with protected visibility. As a result, 
the member can be accessed only by the class itself or by one of its subclasses. For 
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example, the TimeOfDay class shown below has the protected metadata directive 
applied to each of its data members:

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    protected short hour;
    protected short minute;
    protected short second;

    public TimeOfDay()
    {
    }

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};
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If a protected data member also has the clr:property directive, the generated 
property has protected visibility. Consider the TimeOfDay class once again:

["protected", "clr:property"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The effects of combining these two metadata directives are shown in the generated 
code below:

public abstract partial class TimeOfDay
    : Ice.ObjectImpl,
      TimeOfDayOperations_,
      TimeOfDayOperationsNC_
{
    private short hour_prop;
    protected short hour {
        get {
            return hour_prop;
        }
        set {
            hour_prop = value;
        }
    }

    // ...
}

See page 453 for more information on the property mapping for data members.

14.13.4 Operations of Classes

Operations of classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:

public class TimeOfDayI : TimeOfDay
{
    public string format(Ice.Current current)
    {
        return   hour.ToString("D2") + ":"
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               + minute.ToString("D2") + ":"
               + second.ToString("D2");
    }
}

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory : Ice.ObjectFactory
{
    public Ice.Object create(string type)
    {
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        if (type.Equals(M.TimeOfDay.ice_staticId()))
            return new TimeOfDayI();
        System.Diagnostics.Debug.Assert(false);
        return null;
    }

    public void destroy()
    {
        // Nothing to do
    }
}

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

Ice.Communicator ic = ...;
ic.addObjectFactory(new ObjectFactory(),
                    M.TimeOfDay.ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance, which returns a TimeOfDayI instance to the Ice run time.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
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idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

14.13.5 Class Constructors

Classes have a default constructor that default-constructs each data member. This 
means members of primitive type are initialized to the equivalent of zero, and 
members of reference type are initialized to null. Note that applications must 
always explicitly initialize a member whose type is a class-mapped structure 
because the Ice run time does not accept null as a legal value for these types.

If you wish to ensure that data members of primitive and enumerated types are 
initialized to specific values, you can declare default values in your Slice defini-
tion (see Section 4.11.1). The default constructor initializes each of these data 
members to its declared value.

Classes also provide a constructor that accepts one argument for each member 
of the class. This allows you to create and initialize a class in a single statement, 
for example:

TimeOfDayI tod = new TimeOfDayI(14, 45, 00); // 2:45pm

For derived classes, the constructor requires one argument of all of the members 
of the class, including inherited members. For example, consider the the definition 
from Section 4.11.2 once more:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};
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class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

The constructors for the generated classes are as follows:

public partial class TimeOfDay : Ice.ObjectImpl
{
    public TimeOfDay() {}

    public TimeOfDay(short hour, short minute, short second)
    {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }

    // ...
}

public partial class DateTime : TimeOfDay
{
    public DateTime() : base() {}

    public DateTime(short hour,
                    short minute,
                    short second,
                    short day,
                    short month,
                    short year) : base(hour, minute, second)
    {
        this.day = day;
        this.month = month;
        this.year = year;
    }

    // ...
}

If you want to instantiate and initialize a DateTime instance, you must either use 
the default constructor or provide values for all of the data members of the 
instance, including data members of any base classes.
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14.14 Serializable Objects

As discussed in Section 4.18, you can pass CLR serializable objects directly as 
operation parameters or as fields of another data type. For example:

["clr:serializable:SomeNamespace.CLRClass"]
sequence<byte> CLRObj;
struct MyStruct {
    int i;
    CLRObj o;
};

interface Example {
    void op(CLRObj o, MyStruct s);
};

The generated code for MyStruct contains member i of type int and a 
member o of type SomeNamespace.CLRClass:

public partial class MyStruct : _System.ICloneable {
    public int i;
    SomeNamespace.CLRClass o;

    // ...
}

Similarly, the signature for op has parameters of type CLRClass and 
MyStruct:

void op(SomeNamespace.CLRClass o, MyStruct s);

Of course, your client and server code must have an implementation of 
CLRClass that sets the Serializable attribute:

namespace SomeNamespace {
    [Serializable]
    public class CLRClass {
        // ...
    }
}

You can implement this class in any way you see fit—the Ice run time does not 
place any other requirements on the implementation. However, note that the CLR 
requires the class to reside in the same assembly for client and server.
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14.15 C#-Specific Metadata Directives

The slice2cs compiler supports metadata directives that allow you inject C# 
attribute specifications into the generated code. The metadata directive is 
cs:attribute:. For example:

["cs:attribute:System.Serializable"]
struct Point {
    double x;
    double y;
};

This results in the following code being generated for S:

[System.Serializable]
public partial struct Point
{
    public double x;
    public double y;
    // ...
}

You can apply this metadata directive to any slice construct, such as structure, 
operation, or parameter definitions.

You can use this directive also at global level. For example:

[["cs:attribute:assembly: AssemblyDescription(\"My assembly\")"]]

This results in the following code being inserted following any using directives 
and preceding any definitions:

[assembly: AssemblyDescription("My assembly")]

14.16 Asynchronous Method Invocation (AMI)

NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation. 
This section describes this API. You can find documentation for the previous API 
in Appendix K. Note that the old API is deprecated and will be removed in a 
future release.

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
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oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and poll or wait for completion of the invocation, or receive 
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether 
a client sent a request synchronously or asynchronously.

14.16.1 Basic Asynchronous API

Consider the following simple Slice definition:

module Demo { 
    interface Employees {
        string getName(int number);
    };
};

Proxy Methods

Besides the synchronous proxy methods, slice2cs generates the following 
asynchronous proxy methods:8

public interface EmployeesPrx : Ice.ObjectPrx {
    Ice.AsyncResult<Demo.Callback_Employees_getName>
        begin_getName(int number);

    Ice.AsyncResult<Demo.Callback_Employees_getName>
        begin_getName(
            int number,
            _System.Collections.Generic.Dictionary
                                <string, string> ctx__);

    string end_getName(Ice.AsyncResult r__);
}

As you can see, the single getName operation results in begin_getName and 
end_getName methods. (The begin_ method is overloaded so you can pass a 
per-invocation context—see Section 32.12).

8. There are two additional overloads of begin_getName that we discuss in Section 14.16.4.
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• The begin_getName method sends (or queues) an invocation of getName. 
This method does not block the calling thread.

• The end_getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not 
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to 
end_getName, the method returns immediately with the result.

A client could call these methods as follows:

EmployeesPrx e = ...;
Ice.AsyncResult r = e.begin_getName(99);

// Continue to do other things here...

string name = e.end_getName(r);

Because begin_getName does not block, the calling thread can do other things 
while the operation is in progress.

Note that begin_getName returns a value of type Ice.AsyncResult. 
(The class derives from System.IAsyncResult.) This value contains the 
state that the Ice run time requires to keep track of the asynchronous invocation. 
You must pass the AsyncResult that is returned by the begin_ method to the 
corresponding end_ method.

The begin_ method has one parameter for each in-parameter of the corre-
sponding Slice operation. Similarly, the end_ method has one out-parameter for 
each out-parameter of the corresponding Slice operation (plus the AsyncRe-
sult parameter). For example, consider the following operation:

double op(int inp1, string inp2, out bool outp1, out long outp2);

The begin_op and end_op methods have the following signature:

Ice.AsyncResult<Demo.Callback_Employees_op>
    begin_op(int inp1, string inp2);

double end_op(out bool outp1,
              out long outp2,
              Ice.AsyncResult r__);

Exception Handling

If an invocation raises an exception, the exception is thrown by the end_ method, 
even if the actual error condition for the exception was encountered during the 
begin_ method (“on the way out”). The advantage of this behavior is that all 
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exception handling is located with the code that calls the end_ method (instead of 
being present twice, once where the begin_ method is called, and again where 
the end_ method is called).

There is one exception to the above rule: if you destroy the communicator and 
then make an asynchronous invocation, the begin_ method throws Communi-
catorDestroyedException. This is necessary because, once the run time is 
finalized, it can no longer throw an exception from the end_ method.

The only other exception that is thrown by the begin_ and end_ methods is 
System.ArgumentException. This exception indicates that you have used 
the API incorrectly. For example, the begin_ method throws this exception if 
you call an operation that has a return value or out-parameters on a oneway proxy. 
Similarly, the end_ method throws this exception if you use a different proxy to 
call the end_ method than the proxy you used to call the begin_ method, or if 
the AsyncResult you pass to the end_ method was obtained by calling the 
begin_ method for a different operation.

14.16.2 The AsyncResult Class

The AsyncResult that is returned by the begin_ method encapsulates the 
state of the asynchronous invocation:

public interface AsyncResult : System.IAsyncResult
{
    Ice.Communicator getCommunicator();
    Ice.Connection getConnection();
    ObjectPrx getProxy();
    string getOperation();
    object AsyncState { get; }


    bool IsCompleted { get; }
    void waitForCompleted();

    bool isSent();
    void waitForSent();

    bool sentSynchronously();

    AsyncResult whenSent(Ice.AsyncCallback cb);
    AsyncResult whenSent(Ice.SentCallback cb);
    AsyncResult whenCompleted(Ice.ExceptionCallback ex);
}
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public interface AsyncResult<T> : AsyncResult
{
    AsyncResult<T> whenCompleted(T cb,
                                 Ice.ExceptionCallback excb);

    new AsyncResult<T> whenCompleted(Ice.ExceptionCallback excb);
    new AsyncResult<T> whenSent(Ice.SentCallback cb);
}

The methods and properties have the following semantics:

• Communicator getCommunicator()

This method returns the communicator that sent the invocation.

• Connection getConnection()

This method returns the connection that was used for the invocation.

• ObjectPrx getProxy()

This method returns the proxy that was used to call the begin_ method.

• string getOperation()

This method returns the name of the operation.

• object AsyncState { get; }

This property stores an object that you can use to pass shared state from the 
begin_ to the end_ method.

• bool IsCompleted { get; }

This property is true if, at the time it is called, the result of an invocation is 
available, indicating that a call to the end_ method will not block the caller. 
Otherwise, if the result is not yet available, the method returns false.

• void waitForCompleted()

This method blocks the caller until the result of an invocation becomes avail-
able.

• bool isSent()

When you call the begin_ method, the Ice run time attempts to write the 
corresponding request to the client-side transport. If the transport cannot 
accept the request, the Ice run time queues the request for later transmission. 
isSent returns true if, at the time it is called, the request has been written to 
the local transport (whether it was initially queued or not). Otherwise, if the 
request is still in its queue, isSent returns false.
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• void waitForSent()

This method blocks the calling thread until a request has been written to the 
client-side transport.

• bool sentSynchronously()

This method returns true if a request was written to the client-side transport 
without first being queued. If the request was initially queued, sentSyn-
chronously returns false (independent of whether the request is still in the 
queue or has since been written to the client-side transport).

• AsyncResult whenSent(Ice.AsyncCallback cb)
AsyncResult whenSent(Ice.SentCallback cb)
AsyncResult<T> whenSent(Ice.SentCallback cb)
AsyncResult whenCompleted(Ice.ExceptionCallback ex)
AsyncResult<T> whenCompleted(
                  T cb,
                  Ice.ExceptionCallback excb)
AsyncResult<T> whenCompleted(
                   Ice.ExceptionCallback excb)

These methods allow you to specify callback methods that are called by the 
Ice run time. The whenSent methods set a callback that triggers when an 
asynchronous invocation is written to the client-side transport. The when-
Completed methods set a callback that triggers when an asynchronous invo-
cation completes (see Section 14.16.4).

14.16.3 Polling for Completion

The AsyncResult methods allow you to poll for call completion. Polling is 
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls send to send a chunk of the file, indicating at which 
offset in the file the chunk belongs. A naïve way to transmit a file would be along 
the following lines:



504 Client-Side Slice-to-C# Mapping

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;
while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize); // Read a chunk
    ft.send(offset, bs);       // Send the chunk
    offset += bs.Length;
}

This works, but not very well: because the client makes synchronous calls, it 
writes each chunk on the wire and then waits for the server to receive the data, 
process it, and return a reply before writing the next chunk. This means that both 
client and server spend much of their time doing nothing—the client does nothing 
while the server processes the data, and the server does nothing while it waits for 
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

FileHandle file = open(...);
FileTransferPrx ft = ...;
const int chunkSize = ...;
int offset = 0;

LinkedList<Ice.AsyncResult> results =
    new LinkedList<Ice.AsyncResult>();
const int numRequests = 5;

while (!file.eof()) {
    byte[] bs;
    bs = file.read(chunkSize);

    // Send up to numRequests + 1 chunks asynchronously.
    Ice.AsyncResult r = ft.begin_send(offset, bs);
    offset += bs.Length;

    // Wait until this request has been passed to the transport.
    r.waitForSent();
    results.AddLast(r);

    // Once there are more than numRequests, wait for the least
    // recent one to complete.
    while (results.Count > numRequests) {
        Ice.AsyncResult r = results.First;
        results.RemoveFirst();
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        r.waitForCompleted();
    }
}

// Wait for any remaining requests to complete.
while (results.Count > 0) {
    Ice.AsyncResult r = results.First;
    results.RemoveFirst();
    r.waitForCompleted();
}

With this code, the client sends up to numRequests + 1 chunks before it waits 
for the least recent one of these requests to complete. In other words, the client 
sends the next request without waiting for the preceding request to complete, up to 
the limit set by numRequests. In effect, this allows the client to “keep the pipe 
to the server full of data”: the client keeps sending data, so both client and server 
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the 
bandwidth of the network as well as the amount of time taken by the server to 
process each request. However, with a little testing, you can quickly zoom in on 
the point where making the requests larger or queuing more requests no longer 
improves performance. With this technique, you can realize the full bandwidth of 
the link to within a percent or two of the theoretical bandwidth limit of a native 
socket connection.

14.16.4 Generic Completion Callbacks

The begin_ method is overloaded to allow you to provide completion callbacks. 
Here are the corresponding methods for the getName operation:

Ice.AsyncResult begin_getName(
        int number,
        Ice.AsyncCallback cb__,
        object cookie__);

Ice.AsyncResult begin_getName(
        int number,
        _System.Collections.Generic.Dictionary
                            <string, string> ctx__,
        Ice.AsyncCallback cb__,
        object cookie__);
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The second version of begin_getName lets you override the default context. 
(We discuss the purpose of the cookie parameter in the next section.) Following 
the in-parameters, the begin_ method accepts a parameter of type 
Ice.AsyncCallback, which is a delegate for a callback method. The Ice run 
time invokes the callback method when an asynchronous operation completes. 
Your callback method must have void return type and accept a single parameter 
of type AsyncResult, for example:

private class MyCallback
{
    public void finished(Ice.AsyncResult r)
    {
        EmployeesPrx e = (EmployeesPrx)r.getProxy();
        try {
            string name = e.end_getName(r);
            System.Console.WriteLine("Name is: " + name);
        } catch (Ice.Exception ex) {
            System.Console.Err.WriteLine("Exception is: " + ex);
        }
    }
}

The implementation of your callback method must call the end_ method. The 
proxy for the call is available via the getProxy method on the AsyncResult 
that is passed by the Ice run time. The return type of getProxy is 
Ice.ObjectPrx, so you must down-cast the proxy to its correct type.

Your callback method should catch and handle any exceptions that may be 
thrown by the end_ method. If you allow an exception to escape from the call-
back method, the Ice run time produces a log entry by default and ignores the 
exception. (You can disable the log message by setting the property 
Ice.Warn.AMICallback to zero.)

To inform the Ice run time that you want to receive a callback for the comple-
tion of the asynchronous call, you pass a delegate for your callback method to the 
begin_ method:

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
Ice.AsyncCallback del = new Ice.AsyncCallback(cb.finished);

e.begin_getName(99, del, null); 

The trailing null argument specifies a cookie, which we will discuss shortly.
You can avoid explicit instantiation of the delegate and, more tersely, write:



14.16 Asynchronous Method Invocation (AMI) 507

EmployeesPrx e = ...;

MyCallback cb = new MyCallback();
e.begin_getName(99, cb.finished, null); 

Using Cookies

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin_ method. As an example, consider an 
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results. 
In this case, the begin_ method knows which user interface element should 
receive the update, and the end_ method needs access to that element.

The API allows you to pass such state by providing a cookie. A cookie is any 
class instance; the class can contain whatever data you want to pass, as well as any 
methods you may want to add to manipulate that data.

Here is an example implementation that stores a Widget. (We assume that 
this class provides whatever methods are needed by the end_ method to update 
the display.) When you call the begin_ method, you pass the appropriate cookie 
instance to inform the end_ method how to update the display:

// Invoke the getName operation with different widget cookies.
e.begin_getName(99, getNameCB, widget1);
e.begin_getName(24, getNameCB, widget2);

The end_ method can retrieve the cookie from the AsyncResult by reading 
the AsyncState property. For this example, we assume that widgets have a 
writeString method that updates the relevant UI element:

public void getNameCB(Ice.AsyncResult r)
{
    EmployeesPrx e = (EmployeesPrx)r.getProxy();
    Widget widget = (Widget)r.AsyncState;
    try {
        string name = e.end_getName(r);
        widget.writeString(name);
    } catch (Ice.Exception ex) {
        handleException(ex);
    }
}

The cookie provides a simple and effective way for you to pass state between the 
point where an operation is invoked and the point where its results are processed. 
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Moreover, if you have a number of operations that share common state, you can 
pass the same cookie instance to multiple invocations.

14.16.5 Type-Safe Completion Callbacks

The generic callback API we saw in Section 14.16.4 is not entirely type-safe:

• You must down-cast the return value of getProxy to the correct proxy type 
before you can call the end_ method.

• You must call the correct end_ method to match the operation called by the 
begin_ method.

• You must remember to catch exceptions when you call the end_ method; if 
you forget to do this, you will not know that the operation failed.

slice2cs generates an additional type-safe API that takes care of these chores 
for you. To use type-safe callbacks, you must implement a callback class that 
provides two callback methods:

• a success callback that is called if the operation succeeds

• a failure callback that is called if the operation raises an exception

Here is a callback class for an invocation of the getName operation:

public class MyCallback
{
    public void getNameCB(string name)
    {
        System.Console.WriteLine("Name is: " + name);
    }

    public void failureCB(Ice.Exception ex)
    {
        System.Console.Err.WriteLine("Exception is: " + ex);
    }
}

The callback methods can have any name you prefer and must have void return 
type. The failure callback always has a single parameter of type Ice.Excep-
tion. The success callback parameters depend on the operation signature. If the 
operation has non-void return type, the first parameter of the success callback is 
the return value. The return value (if any) is followed by a parameter for each out-
parameter of the corresponding Slice operation, in the order of declaration.

At the calling end, you call the begin_ method as follows:
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MyCallback cb = new MyCallback();

e.begin_getName(99).whenCompleted(cb.getNameCB, cb.failureCB);

Note the whenCompleted method on the AsyncResult that is returned by 
the begin_ method. This method establishes the link between the begin_ 
method and the callbacks that are called by the Ice run time by setting the dele-
gates for the success and failure methods.

It is legal to pass a null delegate for the success or failure methods. For the 
success callback, this is legal only for operations that have void return type and no 
out-parameters. This is useful if you do not care when the operation completes but 
want to know if the call failed. If you pass a null exception delegate, the Ice run 
time will ignore any exception that is raised by the invocation.

Using Cookies

The type-safe API does not support cookies. If you want to pass state from the 
begin_ method to the end_ method, you must use the generic API or, alterna-
tively, place the state into the callback class containing the callback methods. Here 
is a simple implementation of a callback class that stores a widget that can be 
retrieved by the end_ method:

public class MyCallback
{
    public MyCallback(Widget w)
    {
        _w = w;
    }

    private Widget _w;

    public void getNameCB(string name)
    {
        _w.writeString(name);
    }

    public void failureCB(Ice.Exception ex)
    {
        _w.writeError(ex);
    }
}

When you call the begin_ method, you pass the appropriate callback 
instance to inform the end_ method how to update the display:
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EmployeesPrx e = ...;
Widget widget1 = ...;
Widget widget2 = ...;

// Invoke the getName operation with different widget callbacks.

e.begin_getName(99,
                new MyCallback(widget1)).
                    whenCompleted(getNameCB, failureCB);

e.begin_getName(24,
                new MyCallback(widget2)).
                    whenCompleted(getNameCB, failureCB);

14.16.6 Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise 
user exceptions. If you call the begin_ method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin_ method throws a 
System.ArgumentException.

For the generic API, the callback method looks exactly as for a twoway invo-
cation. However, for oneway invocations, the Ice run time does not call the call-
back method unless the invocation raised an exception during the begin_ 
method (“on the way out”).

For the type-safe API, you only specify a delegate for the failure method. For 
example, here is how you could call ice_ping asynchronously:

ObjectPrx p = ...;
MyCallback cb = new MyCallback();
p.begin_ice_ping().whenCompleted(cb.failureCB);

14.16.7 Flow Control

Asynchronous method invocations never block the thread that calls the begin_ 
method: the Ice run time checks to see whether it can write the request to the local 
transport. If it can, it does so immediately in the caller’s thread. (In that case, 
AsyncResult.sentSynchronously returns true.) Alternatively, if the 
local transport does not have sufficient buffer space to accept the request, the Ice 
run time queues the request internally for later transmission in the background. (In 
that case, AsyncResult.sentSynchronously returns false.)
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This creates a potential problem: if a client sends many asynchronous requests 
at the time the server is too busy to keep up with them, the requests pile up in the 
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the 
number of requests that are queued so, if that number exceeds some threshold, the 
client stops invoking more operations until some of the queued operations have 
drained out of the local transport.

For the generic API, you can create an additional callback method:

public class MyCallback
{
    public void finished(Ice.AsyncResult r)
    {
        // ...
    }

    public void sent(Ice.AsyncResult r)
    {
        // ...
    }
}

As with any other callback method, you are free to choose any name you like. For 
this example, the name of the callback method is sent. You inform the Ice run 
time that you want to be informed when a call has been passed to the local trans-
port by calling whenSent:

MyCallback cb = new MyCallback();

e.begin_getName(99).whenCompleted(cb.getNameCB,
                                  cb.failureCB).whenSent(cb.sent);

If the Ice run time can immediately pass the request to the local transport, it does 
so and invokes the sent method from the thread that calls the begin_ method. 
On the other hand, if the run time has to queue the request, it calls the sent 
method from a different thread once it has written the request to the local trans-
port. In addition, you can find out from the AsyncResult that is returned by the 
begin_ method whether the request was sent synchronously or was queued, by 
calling sentSynchronously.

For the generic API, the sent method has the following signature:

void sent(Ice.AsyncResult r);

For the type-safe API, the signature is:
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void sent(bool sentSynchronously);

For the generic API, you can find out whether the request was sent synchronously 
by calling sentSynchronously on the AsyncResult. For the type-safe 
API, the boolean sentSynchronously parameter provides the same informa-
tion.

The sent methods allow you to limit the number of queued requests by 
counting the number of requests that are queued and decrementing the count when 
the Ice run time passes a request to the local transport. 

14.16.8 Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides asynchronous versions of this method so you can 
flush batch requests asynchronously.

begin_ice_flushBatchRequests and 
end_ice_flushBatchRequests are proxy methods that flush any batch 
requests sent queued by that proxy.

In addition, similar methods are available on the communicator and the 
Connection object that is returned by AsyncResult.getConnection. 
These methods flush batch requests sent via the same communicator and via the 
same connection, respectively.

14.16.9 Concurrency

The Ice run time always invokes your callback methods from a separate thread, 
with one exception: it calls the sent callback from the thread calling the 
begin_ method if the request could be sent synchronously. In the sent call-
back, you know which thread is calling the callback by looking at the sentSyn-
chronously member or parameter.

14.16.10 Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to 
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the 
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servant happens to be collocated; the request is sent normally if the servant is not 
collocated. Section 32.21 provides more information about this optimization and 
describes how to disable it when necessary.

14.17 slice2cs Command-Line Options

The Slice-to-C# compiler, slice2cs, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --tie

Generate tie classes (see Section 16.7).

• --impl

Generate sample implementation files. This option will not overwrite an 
existing file.

• --impl-tie

Generate sample implementation files using ties (see Section 16.7). This 
option will not overwrite an existing file.

• --checksum

Generate checksums for Slice definitions.

• --stream

Generate streaming helper functions for Slice types (see Section 35.2).

14.18 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2cs, the --checksum option causes the 
compiler to generate checksums in each C# source file that are added to a member 
of the Ice.SliceChecksums class:

namespace Ice {
    public sealed class SliceChecksums {
        public readonly static SliceChecksumDict checksums;
    };
}

The checksums map is initialized automatically prior to first use; no action is 
required by the application.
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In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the Equals function. However, this is not feasible if it is 
possible that the server might be linked with more Slice definitions than the client. 
A more general solution is to iterate over the local checksums as demonstrated 
below:

Ice.SliceChecksumDict serverChecksums = ...
foreach(System.Collections.DictionaryEntry e
        in Ice.SliceChecksums.checksums) {
    string checksum = serverChecksums[e.Key];
    if (checksum == null) {
        // No match found for type id!
    } else if (!checksum.Equals(e.Value)) {
        // Checksum mismatch!
    }
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 15
Developing a File System Client in 
C#

15.1 Chapter Overview

In this chapter, we present the source code for a C# client that accesses the file 
system we developed in Chapter 5 (see Chapter 17 for the corresponding server).

15.2 The C# Client

We now have seen enough of the client-side C# mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
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        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

using System;
using Filesystem;

public class Client
{
    // Recursively print the contents of directory "dir"
    // in tree fashion. For files, show the contents of
    // each file. The "depth" parameter is the current
    // nesting level (for indentation).

    static void listRecursive(DirectoryPrx dir, int depth)
    {
        string indent = new string('\t', ++depth);

        NodePrx[] contents = dir.list();

        foreach (NodePrx node in contents)
            DirectoryPrx subdir
                = DirectoryPrxHelper.checkedCast(node);
            FilePrx file = FilePrxHelper.uncheckedCast(node);
            Console.WriteLine(indent + node.name() +
                (subdir != null ? " (directory):" : " (file):"));
            if (subdir != null) {
                listRecursive(subdir, depth);
            } else {
                string[] text = file.read();
                for (int j = 0; j < text.Length; ++j)
                    Console.WriteLine(indent + "\t" + text[j]);
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            }
        }
    }

    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator ic = null;
        try {
            // Create a communicator
            //
            ic = Ice.Util.initialize(ref args);

            // Create a proxy for the root directory
            //
            Ice.ObjectPrx obj
                = ic.stringToProxy("RootDir:default -p 10000");

            // Down-cast the proxy to a Directory proxy
            //
            DirectoryPrx rootDir
                = DirectoryPrxHelper.checkedCast(obj);

            // Recursively list the contents of the root directory
            //
            Console.WriteLine("Contents of root directory:");
            listRecursive(rootDir, 0);
        } catch (Exception e) {
            Console.Error.WriteLine(e);
            status = 1;
        }
        if (ic != null) {
            // Clean up
            //
            try {
                ic.destroy();
            } catch (Exception e) {
                Console.Error.WriteLine(e);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}
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The Client class defines two methods: listRecursive, which is a helper 
function to print the contents of the file system, and Main, which is the main 
program. Let us look at Main first:

1. The structure of the code in Main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 15.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

15.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the C# code hardly differs 
from the code you would write for an ordinary C# program. This is one of the 
biggest advantages of using Ice: accessing a remote object is as easy as accessing 
an ordinary, local C# object. This allows you to put your effort where you should, 
namely, into developing your application logic instead of having to struggle with 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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arcane networking APIs. As we will see in Chapter 17, this is true for the server 
side as well, meaning that you can develop distributed applications easily and effi-
ciently.
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Chapter 16
Server-Side Slice-to-C# Mapping

16.1 Chapter Overview

In this chapter, we present the server-side Slice-to-C# mapping (see Chapter 14 
for the client-side mapping). Section 16.3 discusses how to initialize and finalize 
the server-side run time, sections 16.4 to 16.7 show how to implement interfaces 
and operations, and Section 16.8 discusses how to register objects with the server-
side Ice run time. Finally, Section 16.9 shows how to implement operations asyn-
chronously.

16.2 Introduction

The mapping for Slice data types to C# is identical on the client side and server 
side. This means that everything in Chapter 14 also applies to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.
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We discuss these topics in the remainder of this chapter.

16.3 The Server-Side Main Method

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.Util.initialize before you can do anything else in your 
server. Ice.Util.initialize returns a reference to an instance of an 
Ice.Communicator:

using System;

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator communicator = null;
        
        try {
            communicator = Ice.Util.initialize(ref args);
            // ...
        } catch (Exception ex) {
            Console.Error.WriteLine(ex);
            status = 1;
        }
        // ...
    }
}

Ice.Util.initialize accepts the argument vector that is passed to Main 
by the operating system. The method scans the argument vector for any 
command-line options that are relevant to the Ice run time; any such options are 
removed from the argument vector so, when Ice.Util.initialize returns, 
the only options and arguments remaining are those that concern your application. 
If anything goes wrong during initialization, initialize throws an exception.

Before leaving your Main method, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation implementations that are still executing in the 
server to complete. In addition, destroy ensures that any outstanding threads 
are joined with and reclaims a number of operating system resources, such as file 
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descriptors and memory. Never allow your Main method to terminate without 
calling destroy first; doing so has undefined behavior.

The general shape of our server-side Main method is therefore as follows:

using System;

public class Server
{
    public static void Main(string[] args)
    {
        int status = 0;
        Ice.Communicator communicator = null;
        
        try {
            communicator = Ice.Util.initialize(ref args);
            // ...
        } catch (Exception ex) {
            Console.Error.WriteLine(ex);
            status = 1;
        }
        if (communicator != null) {
            try {
                communicator.destroy();
            } catch (Exception ex) {
                Console.Error.WriteLine(ex);
                status = 1;
            }
        }
        Environment.Exit(status);
    }
}

Note that the code places the call to Ice.Util.initialize into a try block 
and takes care to return the correct exit status to the operating system. Also note 
that an attempt to destroy the communicator is made only if the initialization 
succeeded.

16.3.1 The Ice.Application Class

The preceding structure for the Main method is so common that Ice offers a class, 
Ice.Application, that encapsulates all the correct initialization and finaliza-
tion activities. The synopsis of the class is as follows (with some detail omitted for 
now):
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namespace Ice
{
    public abstract class Application
    {
        public abstract int run(string[] args);

        public Application();

        public Application(SignalPolicy signalPolicy);

        public int main(string[] args);
        public int main(string[] args, string configFile);
        public int main(string[] args, InitializationData init);

        public static string appName();

        public static Communicator communicator();
    }
}

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in Main goes into the run method instead. Using Ice.Appli-
cation, our program looks as follows:

using System;

public class Server
{
    class App : Ice.Application
    {
        public override int run(string[] args)
        {
            // Server code here...

            return 0;
        }
    }

    public static void Main(string[] args)
    {
        App app = new App();
        Environment.Exit(app.main(args));
    }
}
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Note that Application.main is overloaded: you can pass an optional file 
name or an InitializationData structure (see Section 32.3 and 
Section 30.9). 

If you pass a configuration file name to main, the settings in this file are over-
ridden by settings in a file identified by the ICE_CONFIG environment variable 
(if defined). Property settings supplied on the command line take precedence over 
all other settings.

The Application.main method does the following:

1. It installs an exception handler for System.Exception. If your code fails 
to handle an exception, Application.main prints the name of the excep-
tion and a stack trace on Console.Error before returning with a non-zero 
return value.

2. It initializes (by calling Ice.Util.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling he static communicator accessor.

3. It scans the argument vector for options that are relevant to the Ice run time 
and removes any such options. The argument vector that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName method. You 
can get at the application name from anywhere in your code by calling 
Ice.Application.appName (which is usually required for error 
messages).

5. It installs a signal handler that properly destroys the communicator.

6. It installs a per-process logger (see Section 32.19.5) if the application has not 
already configured one. The per-process logger uses the value of the 
Ice.ProgramName property (see Section 30.8) as a prefix for its messages 
and sends its output to the standard error channel. An application can specify 
an alternate logger as described in Section 32.19.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception. 
We recommend that all your programs use this class; doing so makes your life 
easier. In addition Ice.Application also provides features for signal 
handling and configuration that you do not have to implement yourself when you 
use this class.



528 Server-Side Slice-to-C# Mapping

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice.Application encapsulates the 
low-level signal handling tasks, allowing you to cleanly shut down on receipt of a 
signal.

namespace Ice
{
    public abstract class Application
    {
        // ...

        public static void destroyOnInterrupt();
        public static void shutdownOnInterrupt();
        public static void ignoreInterrupt();
        public static void callbackOnInterrupt();
        public static void holdInterrupt();
        public static void releaseInterrupt();

        public static bool interrupted();

        public virtual void interruptCallback(int sig);
    }
}

The methods behave as follows:

• destroyOnInterrupt

This method installs a handler that destroys the communicator if it is inter-
rupted. This is the default behavior.
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• shutdownOnInterrupt

This method installs a handler that shuts down the communicator if it is inter-
rupted.

• ignoreInterrupt

This method causes signals to be ignored.

• callbackOnInterrupt

This method configures Ice.Application to invoke interruptCall-
back when a signal occurs, thereby giving the subclass responsibility for 
handling the signal.

• holdInterrupt

This method temporarily blocks signal delivery.

• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns true if a signal caused the communicator to shut down, 
false otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

• interruptCallback

A subclass overrides this method to respond to signals. The method may be 
called concurrently with any other thread and must not raise exceptions.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server Main method requires no change to ensure that the 
program terminates cleanly on receipt of a signal. (You can disable the signal-
handling functionality of Ice.Application by passing the enumerator 
NoSignalHandling to the constructor. In that case, signals retain their default 
behavior, that is, terminate the process.) However, we add a diagnostic to report 
the occurrence, so our run method now looks like:

using System;

public class Server
{
    class App : Ice.Application
    {
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        public override int run(string[] args)
        {
            // Server code here...

            if (interrupted())
                Console.Error.WriteLine(
                    appName() + ": terminating");

            return 0;
        }
    }

    public static void Main(string[] args)
    {
        App app = new App();
        Environment.Exit(app.main(args));
    }
}

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main method of Ice.Application is overloaded; the second version allows 
you to specify the name of a configuration file that will be processed during 
initialization. We discuss Ice properties in more detail in Chapter 30.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

16.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.
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16.4.1 Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is a class that has an 
abstract method for each operation on the corresponding interface. For example, 
consider the Slice definition for the Node interface we defined in Chapter 5 once 
more:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Slice compiler generates the following definition for this interface:

namespace Filesystem
{
    public interface NodeOperations_
    {
        string name(Ice.Current __current);
    }

    public interface NodeOperationsNC_
    {
        string name();
    }

    public interface Node : Ice.Object,
                            NodeOperations_, NodeOperationsNC_
    {
    }

    public abstract class NodeDisp_ : Ice.ObjectImpl, Node
    {
        public string name()
        {
            return name(new Ice.Current());
        }

        public abstract string name(Ice.Current __current);

        // Mapping-internal code here...
    }
}
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The important points to note here are:

• As for the client side, Slice modules are mapped to C# namespaces with the 
same name, so the skeleton class definitions are part of the Filesystem 
namespace.

• For each Slice interface <interface-name>, the compiler generates C# inter-
faces <interface-name>Operations_ and
<interface-name>OperationsNC_ (NodeOperations_ and 
NodeOperationsNC_ in this example). These interfaces contain a method 
for each operation in the Slice interface. (You can ignore the Ice.Current 
parameter for the time being—we discuss it in detail in Section 32.6.)

• For each Slice interface <interface-name>, the compiler generates a C# 
interface <interface-name> (Node in this example). That interface 
extends Ice.Object and the two operations interfaces.

• For each Slice interface <interface-name>, the compiler generates an 
abstract class <interface-name>Disp_ (NodeDisp_ in this example). 
This abstract class is the actual skeleton class; it is the base class from which 
you derive your servant class.

16.4.2 Servant Classes

In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

public class NodeI : NodeDisp_
{
    public NodeI(string name)
    {
        _name = name;
    }

    public override string name(Ice.Current current)
    {
        return _name;
    }

    private string _name;
}

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
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only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.) Note that NodeI extends NodeDisp_, that is, it 
derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the abstract name method that it inherits from its skeleton. This makes 
the servant class a concrete class that can be instantiated. You can add other 
methods and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
constructor. (Obviously, the constructor initializes the _name member and the 
name method returns its value.)

Normal and idempotent Operations

Whether an operation is an ordinary operation or an idempotent operation has no 
influence on the way the operation is mapped. To illustrate this, consider the 
following interface:

interface Example {
   void              normalOp();
   idempotent void   idempotentOp();
};

The operations class for this interface looks like this:

public interface ExampleOperations_
{
    void normalOp(Ice.Current __current);
    void idempotentOp(Ice.Current __current);
}

Note that the signatures of the methods are unaffected by the idempotent quali-
fier.

16.5 Parameter Passing

For each parameter of a Slice operation, the C# mapping generates a corre-
sponding parameter for the corresponding method in the
<interface-name>Operations_ interface. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name method of 
the NodeOperations_ interface has a single parameter of type 
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Ice.Current. We explain the purpose of this parameter in Section 32.6 and 
will ignore it for now.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:

module M {
    interface Example {
        string op(string sin, out string sout);
    };
};

The generated method for op looks as follows:

public interface ExampleOperations_
{
    string op(string sin, out string sout, Ice.Current __current);
}

As you can see, there are no surprises here. For example, we could implement op 
as follows:

using System;

public class ExampleI : ExampleDisp_
{
    public override string op(string sin, out string sout,
                              Ice.Current current)
    {
        Console.WriteLine(sin);      // In params are initialized
        sout = "Hello World!";       // Assign out param
        return "Done";
    }
}

This code is in no way different from what you would normally write if you were 
to pass strings to and from a method; the fact that remote procedure calls are 
involved does not affect your code in any way. The same is true for parameters of 
other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal C# rules and do not require special-purpose API calls.

16.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:
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// ...
public override void write(string[] text, Ice.Current current)
{
    try
    {
        // Try to write file contents here...
    }
    catch(System.Exception ex)
    {
        GenericError e = new GenericError("cannot write file", ex)
;
        e.reason = "Exception during write operation";
        throw e;
    }
}

Note that, for this example, we have supplied the optional second parameter to the 
GenericError constructor (see Section 14.9). This parameter sets the 
InnerException member of System.Exception and preserves the orig-
inal cause of the error for later diagnosis.

// ...

public void
write(String[] text, Ice.Current current)
    throws GenericError

{
    // Try to write file contents here...
    // Assume we are out of space...
    if (error) {
        GenericError e = new GenericError();
        e.reason = "file too large";
        throw e;
    }
}

If you throw an arbitrary C# run-time exception (such as an InvalidCastEx-
ception), the Ice run time catches the exception and then returns an Unknown-
Exception to the client. Similarly, if you throw an “impossible” user exception (a 
user exception that is not listed in the exception specification of the operation), the 
client receives an UnknownUserException.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.1 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
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will see is an UnknownLocalException, which does not tell the client anything 
useful.

16.7 Tie Classes

The mapping to skeleton classes we saw in Section 16.4 requires the servant class 
to inherit from its skeleton class. Occasionally, this creates a problem: some class 
libraries require you to inherit from a base class in order to access functionality 
provided by the library; because C# does not support multiple implementation 
inheritance, this means that you cannot use such a class library to implement your 
servants because your servants cannot inherit from both the library class and the 
skeleton class simultaneously.

To allow you to still use such class libraries, Ice provides a way to write 
servants that replaces inheritance with delegation. This approach is supported by 
tie classes. The idea is that, instead of inheriting from the skeleton class, you 
simply create a class (known as an implementation class or delegate class) that 
contains methods corresponding to the operations of an interface. You use the 
--tie option with the slice2cs compiler to create a tie class. For example, 
for the Node interface we saw in Section 16.4.1, the --tie option causes the 
compiler to create exactly the same code as we saw previously, but to also emit an 
additional tie class. For an interface <interface-name>, the generated tie class 
has the name <interface-name>Tie_:

public class NodeTie_ : NodeDisp_, Ice.TieBase
{
    public NodeTie_()
    {
    }

    public NodeTie_(NodeOperations_ del)
    {
        _ice_delegate = del;
    }

    public object ice_delegate()

1. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 33.
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    {
        return _ice_delegate;
    }

    public void ice_delegate(object del)
    {
        _ice_delegate = (NodeOperations_)del;
    }

    public override int GetHashCode()
    {
        return _ice_delegate == null
                                ? 0
                                : _ice_delegate.GetHashCode();
    }

    public override bool Equals(object rhs)
    {
       if (object.ReferenceEquals(this, rhs))
       {
           return true;
       }
       if (!(rhs is NodeTie_))
       {
           return false;
       }
       if (_ice_delegate == null)
       {
           return ((NodeTie_)rhs)._ice_delegate == null;
       }
       return _ice_delegate.Equals(((NodeTie_)rhs)._ice_delegate);
    }

    public override string name(Ice.Current __current)
    {
        return _ice_delegate.name(__current);
    }

    private NodeOperations_ _ice_delegate;
}

This looks a lot worse than it is: in essence, the generated tie class is simply a 
servant class (it extends NodeDisp_) that delegates each invocation of a method 
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that corresponds to a Slice operation to your implementation class (see 
Figure 16.1).

Figure 16.1. A skeleton class, tie class, and implementation class.

The Ice.TieBase interface defines the ice_delegate methods that allow 
you to get and set the delegate.

Given this machinery, we can create an implementation class for our Node 
interface as follows:

public class NodeI : NodeOperations_
{
    public NodeI(string name)
    {
        _name = name;
    }

    public override string name(Ice.Current current)
    {
        return _name;
    }

    private string _name;
}

Note that this class is identical to our previous implementation, except that it 
implements the NodeOperations_ interface and does not extend 
NodeDisp_ (which means that you are now free to extend any other class to 
support your implementation).

To create a servant, you instantiate your implementation class and the tie class, 
passing a reference to the implementation instance to the tie constructor:

NodeI fred = new NodeI("Fred");         // Create implementation
NodeTie_ servant = new NodeTie_(fred);  // Create tie

Alternatively, you can also default-construct the tie class and later set its delegate 
instance by calling ice_delegate:

NodeTie_
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«interface»
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Class
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Class
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NodeTie_ servant = new NodeTie_();      // Create tie
// ...
NodeI fred = new NodeI("Fred");         // Create implementation
// ...
servant.ice_delegate(fred);             // Set delegate

When using tie classes, it is important to remember that the tie instance is the 
servant, not your delegate. Furthermore, you must not use a tie instance to incar-
nate (see Section 16.8) an Ice object until the tie has a delegate. Once you have set 
the delegate, you must not change it for the lifetime of the tie; otherwise, unde-
fined behavior results.

You should use the tie approach only if you need to, that is, if you need to 
extend some base class in order to implement your servants: using the tie 
approach is more costly in terms of memory because each Ice object is incarnated 
by two C# objects instead of one, the tie and the delegate. In addition, call 
dispatch for ties is marginally slower than for ordinary servants because the tie 
forwards each operation to the delegate, that is, each operation invocation requires 
two function calls instead of one.

Also note that, unless you arrange for it, there is no way to get from the dele-
gate back to the tie. If you need to navigate back to the tie from the delegate, you 
can store a reference to the tie in a member of the delegate. (The reference can, for 
example, be initialized by the constructor of the delegate.)

16.8 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 16.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

16.8.1 Instantiating a Servant
Instantiating a servant means to allocate an instance:



540 Server-Side Slice-to-C# Mapping

Node servant = new NodeI("Fred");

This code creates a new NodeI instance and assigns its address to a reference of 
type Node. This works because NodeI is derived from Node, so a Node refer-
ence can refer to an instance of type NodeI. However, if we want to invoke a 
method of the NodeI class at this point, we must use a NodeI reference:

NodeI servant = new NodeI("Fred");

Whether you use a Node or a NodeI reference depends purely on whether you 
want to invoke a method of the NodeI class: if not, a Node reference works just 
as well as a NodeI reference.

16.8.2 Creating an Identity

Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.2 An Ice object identity is a structure with the 
following Slice definition:

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 32.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

Ice.Identity id = new Ice.Identity();
id.name = "Fred"; // Not unique, but good enough for now

2. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See Chapter 34 for further discussion.
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16.8.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the _adapter 
variable, we can write:

_adapter.add(servant, id);

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
method on the servant.

Assuming that the object adapter is in the active state (see Section 32.4), client 
requests are dispatched to the servant as soon as you call add.

16.8.4 UUIDs as Identities
The Ice object model assumes that object identities are globally unique. One way 
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14] 
as identities. The Ice.Util package contains a helper function to create such 
identities:

public class Example
{
    public static void Main(string[] args)
    {
        System.Console.WriteLine(Ice.Util.generateUUID());
    }
}

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to genera-
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teUUID creates a string that differs from all previous ones.3 You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

_adapter.addWithUUID(new NodeI("Fred"));

16.8.5 Creating Proxies

Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

NodePrx proxy = NodePrxHelper.uncheckedCast(
                    _adapter.addWithUUID(new NodeI("Fred")));

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

3. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

Ice.Identity id = new Ice.Identity();
id.name = Ice.Util.generateUUID();
Ice.ObjectPrx o = _adapter.createProxy(id);

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy 
to a client and the client invokes an operation on the proxy, the client will receive 
an ObjectNotExistException. (We examine these life cycle issues in more detail 
in Chapter 34.)

16.9 Asynchronous Method Dispatch (AMD)

The number of simultaneous synchronous requests a server is capable of 
supporting is determined by the number of threads in the server’s thread pool (see 
Section 32.10). If all of the threads are busy dispatching long-running operations, 
then no threads are available to process new requests and therefore clients may 
experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI 
(see Section 14.16), addresses this scalability issue. Using AMD, a server can 
receive a request but then suspend its processing in order to release the dispatch 
thread as soon as possible. When processing resumes and the results are available, 
the server sends a response explicitly using a callback object provided by the Ice 
run time.

AMD is transparent to the client, that is, there is no way for a client to distin-
guish a request that, in the server, is processed synchronously from a request that 
is processed asynchronously.
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In practical terms, an AMD operation typically queues the request data (i.e., 
the callback object and operation arguments) for later processing by an applica-
tion thread (or thread pool). In this way, the server minimizes the use of dispatch 
threads and becomes capable of efficiently supporting thousands of simultaneous 
clients.

An alternate use case for AMD is an operation that requires further processing 
after completing the client’s request. In order to minimize the client’s delay, the 
operation returns the results while still in the dispatch thread, and then continues 
using the dispatch thread for additional work.

16.9.1 Enabling AMD with Metadata

To enable asynchronous dispatch, you must add an ["amd"] metadata directive to 
your Slice definitions. The directive applies at the interface and the operation 
level. If you specify ["amd"] at the interface level, all operations in that interface 
use asynchronous dispatch; if you specify ["amd"] for an individual operation, 
only that operation uses asynchronous dispatch. In either case, the metadata direc-
tive replaces synchronous dispatch, that is, a particular operation implementation 
must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

["amd"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"] void startProcess();
  int endProcess();
};

In this example, both operations of interface I use asynchronous dispatch, 
whereas, for interface J, startProcess uses asynchronous dispatch and endPro-
cess uses synchronous dispatch.

Specifying metadata at the operation level (rather than at the interface or class 
level) minimizes the amount of generated code and, more importantly, minimizes 
complexity: although the asynchronous model is more flexible, it is also more 
complicated to use. It is therefore in your best interest to limit the use of the asyn-
chronous model to those operations that need it, while using the simpler synchro-
nous model for the rest.
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16.9.2 AMD Mapping

The C# mapping emits the following code for each AMD operation:

1. A callback interface used by the implementation to notify the Ice run time 
about the completion of an operation. The name of this interface is formed 
using the pattern AMD_class_op. For example, an operation named foo 
defined in interface I results in an interface named AMD_I_foo. The inter-
face is generated in the same scope as the interface or class containing the 
operation. Two methods are provided:

public void ice_response(<params>);

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

public void ice_exception(System.Exception ex);

The ice_exception method allows the server to raise an exception.

Neither ice_response nor ice_exception throw any exceptions to the 
caller.

2. The dispatch method, whose name has the suffix _async. This method has a 
void return type. The first parameter is a reference to an instance of the call-
back interface described above. The remaining parameters comprise the in 
parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I {
  ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation foo is shown below:

public interface AMD_I_foo
{
    void ice_response(int __ret, long l);
    void ice_exception(System.Exception ex);
}

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:
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public abstract void foo_async(AMD_I_foo __cb, short s,
                               Ice.Current __current);

16.9.3 Exceptions

There are two processing contexts in which the logical implementation of an 
AMD operation may need to report an exception: the dispatch thread (the thread 
that receives the invocation), and the response thread (the thread that sends the 
response).4 Although we recommend that the callback object be used to report all 
exceptions to the client, it is legal for the implementation to raise an exception 
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be 
caught by the Ice run time; the application’s run time environment determines how 
such an exception is handled. Therefore, a response thread must ensure that it 
traps all exceptions and sends the appropriate response using the callback object. 
Otherwise, if a response thread is terminated by an uncaught exception, the 
request may never be completed and the client might wait indefinitely for a 
response.

Whether raised in a dispatch thread or reported via the callback object, user 
exceptions are validated as described in Section 4.10.2, and local exceptions may 
undergo the translation described in Section 4.10.4.

16.9.4 Example

To demonstrate the use of AMD in Ice, let us define the Slice interface for a 
simple computational engine:

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {

4. These are not necessarily two different threads: it is legal to send the response from the dispatch 
thread.
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        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way.

Our servant class derives from Demo._ModelDisp and supplies a definition 
for the interpolate_async method that creates a Job to hold the callback 
object and arguments, and adds the Job to a queue. The method uses a lock 
statement to guard access to the queue:

public class ModelI : Demo.ModelDisp_
{
    public override void interpolate_async(
        Demo.AMD_Model_interpolate cb,
        float[][] data,
        float factor,
        Ice.Current current)
    {
        lock(this)
        {
            _jobs.Add(new Job(cb, data, factor));
        }
    }

    private System.Collections.ArrayList _jobs
                = new System.Collections.ArrayList();
}

After queuing the information, the operation returns control to the Ice run time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

public class Job {
    public Job(Demo.AMD_Model_interpolate cb,
               float[][] grid, float factor)
    {
        _cb = cb;
        _grid = grid;
        _factor = factor;
    }
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    public void execute()
    {
        if (!interpolateGrid()) {
            _cb.ice_exception(new Demo.RangeError());
            return;
        }
        _cb.ice_response(_grid);
    }

    private boolean interpolateGrid()
    {
        // ...
    }

    private Demo.AMD_Model_interpolate _cb;
    private float[][] _grid;
    private float _factor;
}

If interpolateGrid returns false, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.

16.10 Summary

This chapter presented the server-side C# mapping. Because the mapping for Slice 
data types is identical for clients and servers, the server-side mapping only adds a 
few additional mechanisms to the client side: a small API to initialize and finalize 
the run time, plus a few rules for how to derive servant classes from skeletons and 
how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 32), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any C# mapping rules 
beyond those we described here.
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Chapter 17
Developing a File System Server in 
C#

17.1 Chapter Overview

In this chapter, we present the source code for a C# server that implements the file 
system we developed in Chapter 5 (see Chapter 15 for the corresponding client). 
The code we present here is fully functional, apart from the required interlocking 
for threads. (We examine threading issues in detail in Section 32.10.)

17.2 Implementing a File System Server

We have now seen enough of the server-side C# mapping to implement a server 
for the file system we developed in Chapter 5. (You may find it useful to review 
the Slice definition for our file system in Section 5.4 before studying the source 
code.)

Our server is composed of three source files:

• Server.cs

This file contains the server main program.

• DirectoryI.cs

This file contains the implementation for the Directory servants.
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• FileI.cs

This file contains the implementation for the File servants.

17.2.1 The Server Main Program

Our server main program, in the file Server.cs, uses the Ice.Applica-
tion class we discussed in Section 16.3.1. The run method installs a signal 
handler, creates an object adapter, instantiates a few servants for the directories 
and files in the file system, and then activates the adapter. This leads to a Main 
method as follows:

using Filesystem;
using System;

public class Server
{
    class App : Ice.Application
    {
        public override int run(string[] args)
        {
            // Terminate cleanly on receipt of a signal
            //
            shutdownOnInterrupt();

            // Create an object adapter (stored in the _adapter
            // static members)
            //
            Ice.ObjectAdapter adapter
                = communicator().createObjectAdapterWithEndpoints(
                      "SimpleFilesystem", "default -p 10000");
            DirectoryI._adapter = adapter;
            FileI._adapter = adapter;

            // Create the root directory (with name "/" and no
            // parent)
            //
            DirectoryI root = new DirectoryI("/", null);

            // Create a file called "README" in the root directory
            //
            File file = new FileI("README", root);
            string[] text;
            text = new string[]{ "This file system contains "
                                 + "a collection of poetry." };
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            try {
                file.write(text);
            } catch (GenericError e) {
                Console.Error.WriteLine(e.reason);
            }

            // Create a directory called "Coleridge"
            // in the root directory
            //
            DirectoryI coleridge =
                new DirectoryI("Coleridge", root);

            // Create a file called "Kubla_Khan"
            // in the Coleridge directory
            //
            file = new FileI("Kubla_Khan", coleridge);
            text = new string[]{
                "In Xanadu did Kubla Khan",
                "A stately pleasure-dome decree:",
                "Where Alph, the sacred river, ran",
                "Through caverns measureless to man",
                "Down to a sunless sea." };
            try {
                file.write(text);
            } catch (GenericError e) {
                Console.Error.WriteLine(e.reason);
            }

            // All objects are created, allow client requests now
            //
            adapter.activate();

            // Wait until we are done
            //
            communicator().waitForShutdown();

            if (interrupted())
                Console.Error.WriteLine(
                    appName() + ": terminating");

            return 0;
        }
    }

    public static void Main(string[] args)
    {
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        App app = new App();
        Environment.Exit(app.main(args));
    }
}

The code uses a using directive for the Filesystem namespace. This avoids 
having to continuously use fully-qualified identifiers with a Filesystem. 
prefix.

The next part of the source code is the definition of the Server class, which 
includes a nested class that derives from Ice.Application and contains the 
main application logic in its run method. Much of this code is boiler plate that we 
saw previously: we create an object adapter, and, towards the end, activate the 
object adapter and call waitForShutdown.

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 17.1.

Figure 17.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass a null parent.) Thus, the statement

        DirectoryI root = new DirectoryI("/", null);

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 17.1:

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI root = new DirectoryI("/", null);

        // Create a file called "README" in the root directory
        //
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        File file = new FileI("README", root);
        string[] text;
        text = new string[]{ "This file system contains "
                             + "a collection of poetry." };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }

        // Create a directory called "Coleridge"
        // in the root directory
        //
        DirectoryI coleridge = new DirectoryI("Coleridge", root);

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = new FileI("Kubla_Khan", coleridge);
        text = new string[]{ "In Xanadu did Kubla Khan",
                             "A stately pleasure-dome decree:",
                             "Where Alph, the sacred river, ran",
                             "Through caverns measureless to man",
                             "Down to a sunless sea." };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }

We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        string[] text;
        text = new string[]{ "This file system contains "
                             + "a collection of poetry." };
        try {
            file.write(text);
        } catch (GenericError e) {
            Console.Error.WriteLine(e.reason);
        }
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Recall from Section 14.7.3 that Slice sequences by default map to C# arrays. The 
Slice type Lines is simply an array of strings; we add a line of text to our README 
file by initializing the text array to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

            file.write(text);

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary C# method call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 17.1.

17.2.2 The FileI Servant Class

Our FileI servant class has the following basic structure:

using Filesystem;
using System;

public class FileI : FileDisp_
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private string _name;
    private DirectoryI _parent;
    private string[] _lines;
}

The class has a number of data members:

• _adapter

This static member stores a reference to the single object adapter we use in our 
server.

• _name

This member stores the name of the file incarnated by the servant.
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• _parent

This member stores the reference to the servant for the file’s parent directory.

• _lines

This member holds the contents of the file.

The _name and _parent data members are initialized by the constructor:

    public FileI(string name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;

        Debug.Assert(_parent != null);

        // Create an identity
        //
        Ice.Identity myID = new Ice.Identity();
        myId.name = Ice.Util.generateUUID();

        // Add the identity to the object adapter
        //
        _adapter.add(this, myID);

        // Create a proxy for the new node and
        // add it as a child to the parent
        //
        NodePrx thisNode = NodePrxHelper.uncheckedCast(
                                _adapter.createProxy(myID));
        _parent.addChild(thisNode);
    }

After initializing the _name and _parent members, the code verifies that the 
reference to the parent is not null because every file must have a parent directory. 
The constructor then generates an identity for the file by calling 
Ice.Util.generateUUID and adds itself to the servant map by calling 
ObjectAdapter.add. Finally, the constructor creates a proxy for this file and 
calls the addChild method on its parent directory. addChild is a helper func-
tion that a child directory or file calls to add itself to the list of descendant nodes 
of its parent directory. We will see the implementation of this function on 
page 557.

The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:
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    // Slice Node::name() operation

    public override string name(Ice.Current current)
    {
        return _name;
    }

    // Slice File::read() operation

    public override string[] read(Ice.Current current)
    {
        return _lines;
    }

    // Slice File::write() operation

    public override void write(string[] text, Ice.Current current)
    {
        _lines = text;
    }

The name method is inherited from the generated Node interface (which is a base 
interface of the _FileDisp class from which FileI is derived). It simply 
returns the value of the _name member.

The read and write methods are inherited from the generated File inter-
face (which is a base interface of the _FileDisp class from which FileI is 
derived) and simply return and set the _lines member.

17.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

using Filesystem;
using System;
using System.Collections;

public class DirectoryI : DirectoryDisp_
{
    // Constructor and operations here...

    public static Ice.ObjectAdapter _adapter;
    private string _name;
    private DirectoryI _parent;
    private ArrayList _contents = new ArrayList();
}
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As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds a null reference.) In addition, we have a _contents data member that 
stores the list of child directories. These data members are initialized by the 
constructor:

    public DirectoryI(string name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;

        // Create an identity. The
        // parent has the fixed identity "RootDir"
        //
        Ice.Identity myID = new Ice.Identity();
        myID.name = _parent != null ? Ice.Util.generateUUID() : "R
ootDir";

        // Add the identity to the object adapter
        //
        _adapter.add(this, myID);

        // Create a proxy for the new node and
        // add it as a child to the parent
        //
        NodePrx thisNode = NodePrxHelper.uncheckedCast(
                                _adapter.createProxy(myID));
        if (_parent != null)
            _parent.addChild(thisNode);
    }

The constructor creates an identity for the new directory by calling 
Ice.Util.generateUUID. (For the root directory, we use the fixed identity 
"RootDir".) The servant adds itself to the servant map by calling ObjectA-
dapter.add and then creates a proxy to itself and passes it to the addChild 
helper function.

addChild simply adds the passed reference to the _contents list:

    public void addChild(NodePrx child)
    {
        _contents.Add(child);
    }

The remainder of the operations, name and list, are trivial:



558 Developing a File System Server in C#

    public override string name(Ice.Current current)
    {
        return _name;
    }

    public override NodePrx[] list(Ice.Current current)
    {
        return (NodePrx[])_contents.ToArray(typeof(NodePrx));
    }

Note that the _contents member is of type System.Collec-
tions.ArrayList, which is convenient for the implementation of the 
addChild method. However, this requires us to convert the list into a C# array in 
order to return it from the list operation.

17.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
it is trivial to make the read and write operations thread-safe. We discuss 
thread safety in Section 32.10.
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Chapter 18
Client-Side Slice-to-Objective-C 
Mapping

18.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Objective-C mapping (see 
Chapter 20 for the server-side mapping). One part of the client-side Objective-C 
mapping concerns itself with rules for representing each Slice data type as a corre-
sponding Objective-C type; we cover these rules in Sections 18.3 to 18.11. 
Another part of the mapping deals with how clients can invoke operations, pass 
and receive parameters, and handle exceptions. These topics are covered in 
Sections 18.12 to 18.14. Slice classes have the characteristics of both data types 
and interfaces and are covered in Sections 18.15 and 18.16. Section 18.17 presents 
asynchronous invocations, and Section 18.18 discusses how to use the 
slice2objc compiler.

18.2 Introduction

The client-side Slice-to-Objective-C mapping defines how Slice data types are 
translated to Objective-C types, and how clients invoke operations, pass parame-
ters, and handle errors. Much of the Objective-C mapping is intuitive. For 
example, Slice dictionaries map to Cocoa framework dictionaries, so there is little 
new you have to learn in order to use Slice dictionaries in Objective-C.
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The Objective-C mapping is thread-safe. For example, you can concurrently 
invoke operations on an object from different threads without the risk of race 
conditions or corrupting data structures in the Ice run time, but you must still 
synchronize access to application data from different threads. For example, if you 
have two threads sharing a sequence, you cannot safely have one thread insert into 
the sequence while another thread is iterating over the sequence. However, you 
only need to concern yourself with concurrent access to your own data—the Ice 
run time itself is fully thread safe, and none of the Ice API calls require you to 
acquire or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Sections 18.11 to 18.13 in 
detail because these sections cover how to call operations from a client, pass 
parameters, and handle exceptions.

A word of advice before you start: in order to use the Objective-C mapping, 
you should need no more than the Slice definition of your application and knowl-
edge of the Objective-C mapping rules. In particular, looking through the gener-
ated code in order to discern how to use the Objective-C mapping is likely to be 
confusing because the generated code is not necessarily meant for human 
consumption and, occasionally, contains various cryptic constructs to deal with 
mapping internals. Of course, occasionally, you may want to refer to the generated 
code to confirm a detail of the mapping, but we recommend that you otherwise 
use the material presented here to see how to write your client-side code.

18.3 Mapping for Modules

Because Objective-C does not support namespaces, a Slice module maps to a 
prefix for the identifiers defined inside the modules. By default, the prefix is the 
same as the name of the module:

module example
{
    enum Color { Red, Green, Blue };
};

With this definition, the Slice Color identifier is mapped to the Objective-C iden-
tifier exampleColor.

For nested modules, by default, the module identifiers are concatenated. For 
example, consider the following Slice definition:
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module outer {
    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition, the Slice identifier Color becomes outerinnerColor in 
Objective-C.

You can use a metadata directive to change the default mapping to a different 
prefix. For example:

["objc:prefix:OUT"]
module outer {
    enum Vehicle { Car, Truck, Bicycle };

    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition, Vehicle maps to OUTVehicle. However, Color still maps 
to outerinnerColor, that is, the metadata directive applies only to types 
defined in the outer module, but not to types that are defined in nested modules. 
If you want to assign a prefix for types in the nested module, you must use a sepa-
rate metadata directive, for example:

["objc:prefix:OUT"]
module outer {
    enum Vehicle { Car, Truck, Bicycle };

    ["objc:prefix:IN"]
    module inner {
        enum Color { Red, Green, Blue };
    };
};

With this definition, Vehicle maps to OUTVehicle, and Color maps to 
INColor.

For the remainder of the examples in this chapter, we assume that Slice defini-
tions are enclosed by a module Example with a ["objc:prefix:EX"] metadata 
directive.
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18.4 The ICE Prefix

All of the APIs for the Ice run time are prefixed by ICE, to avoid clashes with 
definitions for other libraries or applications. Parts of the Ice API are generated 
from Slice definitions; other parts provide special-purpose definitions that do not 
have a corresponding Slice definition. Regardless of they way they are defined, 
the ICE prefix universally applies to all entry points in the Ice run time. We will 
incrementally cover the contents of the Ice API throughout the remainder of the 
book.

18.5 Mapping for Identifiers

Objective-C identifiers are derived from Slice identifiers. The exact Objective-C 
identifier that is generated depends on the context. For types that are nested in 
modules (and hence have global visibility in Objective-C), the generated Objec-
tive-C identifiers are prefixed with their module prefix, as discussed in 
Section 18.3. Slice identifiers that do not have global visibility (such as operation 
names and structure members) do not use the module prefix and are preserved 
without change. For example, consider the following Slice definition:

["objc:prefix:EX"]
module Example {
    struct Point {
        double x;
        double y;
    };
};

This maps to the following Objective-C definition:

@interface EXPoint : NSObject <NSCopying>
{
    @private
        ICEDouble x;
        ICEDouble y;
}

@property(nonatomic, assign) ICEDouble x;
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@property(nonatomic, assign) ICEDouble y;

// More definitions here...
@end

If a Slice identifier is the same as an Objective-C keyword, the corresponding 
Objective-C identifier has an underscore suffix. For example, Slice while maps to 
Objective-C while_.

In some cases, the Objective-C mapping generates more than one identifier for 
a given Slice construct. For example, an interface Intf generates the identifiers 
EXIntf and EXIntfPrx. If a Slice identifier happens to be an Objective-C 
keyword, the underscore suffix applies only where necessary, so an interface while 
generates EXWhile and EXWhilePrx.

Note that Slice operation and member names can clash with the name of an 
inherited method, property, or instance variable. For example:

exception Failed {
    string reason; // Clashes with NSException
};

This is a legal Slice definition. However, the generated exception class derives 
from NSException, which defines a reason method. To avoid hiding the 
method in the base class, the generated exception class maps the Slice reason 
member to the Objective-C property reason_, just as it would for a keyword.

This escape mechanism applies to all generated classes that directly or indi-
rectly derive from NSObject or NSException.

18.6 Internal Identifiers

Any methods that contain two or more adjacent underscores (such as read__ 
and op____) are internal to the Objective-C mapping implementation and are not 
for use by application code.
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18.7 Mapping for Built-In Types

The Slice built-in types are mapped to Objective-C types as shown in Table 18.1.

Slice bool maps to Objective-C BOOL. The remaining integral and floating-point 
types map to Objective-C type definitions instead of native types. This allows the 
Ice run time to provide a definition as appropriate for each target architecture. (For 
example, ICELong might be defined as long on one architecture and as 
long long on another.)

Note that ICEByte is a typedef for unsigned char. This guarantees that 
byte values are always in the range , and it ensures that right-shifting an 
ICEByte does not cause sign-extension.

Whether a Slice string maps to NSString or NSMutableString depends 
on the context. NSMutableString is used in some cases for operation parame-
ters; otherwise, if a string is a data member of a Slice structure, class, or excep-
tion, it maps to NSString. (We will discuss these differences in more detail as 
we cover the mapping of the relevant Slice language features.)

Table 18.1. Mapping of Slice built-in types to Objective-C.

Slice Objective-C

bool BOOL

byte ICEByte

short ICEShort

int ICEInt

long ICELong

float ICEFloat

double ICEDouble

string NSString or NSMutableString
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18.8 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

18.8.1 Mapping for Enumerations

Enumerations map to the corresponding enumeration in Objective-C. For 
example:

["objc:prefix:EX"]
module Example {
    enum Fruit { Apple, Pear, Orange };
};

The generated Objective-C definition is:

typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;

18.8.2 Mapping for Structures

The mapping for structures maps Slice structures to Objective-C classes. For each 
Slice data member, the Objective-C class has a corresponding property. For 
example, here is our Employee structure from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Slice-to-Objective-C compiler generates the following definition for this 
structure:

@interface EXEmployee : NSObject <NSCopying>
{
    @private
        ICELong number;
        NSString *firstName;
        NSString *lastName;
}
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@property(nonatomic, assign) ICELong number;
@property(nonatomic, retain) NSString *firstName;
@property(nonatomic, retain) NSString *lastName;

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;
+(id) employee;
// This class also overrides copyWithZone,
// hash, isequal, and dealloc.
@end

Mapping for Data Members

For each data member in the Slice definition, the Objective-C class contains a 
corresponding private instance variable of the same name, as well as a property 
definition that allows you to set and get the value of the corresponding instance 
variable. For example, given an instance of EXEmployee, you can write the 
following:

ICELong number;
EXemployee *e = ...;
[e setNumber:99];
number = [e number];

// Or, more concisely with dot notation:

e.number = 99;
number = e.number;

Properties that represent data members always use the nonatomic property 
attribute. This avoids the overhead of locking each data member during access. 
The second property attribute is assign for integral and floating-point types and 
retain for all other types (such as strings, structures, and so on.)

Creating and Initializing Structures

Structures provide the usual (inherited) init method:

EXEmployee *e = [[EXEmployee alloc] init];
// ...
[e release];

As usual, init initializes the instance variables of the structure with zero-filled 
memory.
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In addition, a structure provides a second init method that accepts one 
parameter for each data member of the structure:

-(id) init:(ICELong)number firstName:(NSString *)firstName
                           lastName:(NSString *)lastName;

Note that the first parameter is always unlabeled; the second and subsequent 
parameters have a label that is the same as the name of the corresponding Slice 
data member. The additional init method allows you to instantiate a structure 
and initialize its data members in a single statement:

EXEmployee *e = [[EXEmployee alloc] init:99 firstName:@"Brad"
                                            lastName:@"Cox"];
// ...
[e release];

init applies the memory management policy of the corresponding properties, 
that is, it calls retain on the firstName and lastName arguments.

Each structure also provides two convenience constructors that mirror the 
init methods: a parameter-less convenience constructor and one that has a 
parameter for each Slice data member:

+(id) employee;
+(id) employee:(ICELong)number firstName:(NSString *)firstName
                               lastName:(NSString *)lastName;

The convenience constructors have the same name as the mapped Slice structure 
(without the module prefix). As usual, they allocate an instance, perform the same 
initialization actions as the corresponding init methods, and call autore-
lease on the return value:

EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad"
                                        lastName:@"Cox"];

// No need to call [e release] here.

Copying Structures

Structures implement the NSCopying protocol. Structures are copied by 
assigning instance variables of value type and calling retain on each instance 
variable of non-value type. In other words, the copy is shallow:
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EXEmployee *e = [EXEmployee employee:99 firstName:@"Brad"
                                        lastName:@"Cox"];
EXEmployee *e2 = [e copy];
NSAssert(e.number == e2.number);
NSAssert([e.firstName == e2.firstName]); // Same instance
// ...
[e2 release];

Note that, if you assign an NSMutableString to a structure member and use 
the structure as a dictionary key, you must not modify the string inside the struc-
ture without copying it because doing so will corrupt the dictionary.

Deallocating Structures

Each structure implements a dealloc method that calls release on each 
instance variable with a retain property attribute. This means that structures 
take care of the memory management of their contents: releasing a structure auto-
matically releases all its instance variables.

Structure Comparison and Hashing

Structures implement isEqual, so you can compare them for equality. Two 
structures are equal if all their instance variables are equal. For value types, 
equality is determined by the == operator; for non-value types other than classes, 
equality is determined by the corresponding instance variable’s isEqual 
method. Classes (see Section 18.15) are compared by comparing their identity: 
two class members are equal if they both point at the same instance.

The hash method returns a hash value is that is computed from the hash value 
of all of the structure’s instance variables.

18.8.3 Mapping for Sequences
The Objective-C mapping uses different mappings for sequence of value types 
(such as sequence<byte>) and non-value types (such as sequence<string>).

Mapping for Sequences of Value Types

The following Slice types are value types:

• Integral types (bool, byte, short, int, long)

• Floating point types (float, double)

• Enumerated types

Sequences of these types map to a type definition. For example:
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enum Fruit { Apple, Pear, Orange };

sequence<byte> ByteSeq;
sequence<int> IntSeq;
sequence<Fruit> FruitSeq;

The three Slice sequences result in the following Objective-C definitions:

typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;

typedef NSData EXByteSeq;
typedef NSMutableData EXMutableByteSeq;

typedef NSData EXIntSeq;
typedef NSMutableData EXMutableIntSeq;

typedef NSData EXFruitSeq;
typedef NSMutableData EXMutableFruitSeq;

As you can see, each sequence definition creates a pair of type definitions, an 
immutable version named <module-prefix><Slice-name>, and a mutable 
version named <module-prefix>Mutable<Slice-name>. This constitutes the 
entire public API for sequence of value types, that is, sequences of value types 
simply map to NSData or NSMutableData. The NS(Mutable)Data 
sequences contain an array of the corresponding element type in their internal byte 
array.1

For example, here is how you could initialize a byte sequence of 1024 
elements with values that are the modulo 128 of the element index in reverse 
order:

int limit = 1024;
EXMutableByteSeq *bs = [NSMutableData dataWithLength:limit];
ICEByte *p = (ICEByte *)[bs bytes];
while (--limit > 0) {
    *p++ = limit % 0x80;
}

1. We chose to map sequences of value types to NSData instead of NSArray because of the 
large overhead of placing each sequence element into an NSNumber container instance.
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Naturally, you do not need to initialize the sequence using a loop. For example, if 
the data is available in a buffer, you could use the dataWithBytes:length or 
dataWithBytesNoCopy:length methods of NSData instead.

Here is one way to retrieve the bytes of the sequence:

const ICEByte* p = (const ICEByte *)[bs bytes];
const ICEByte* limitp = p + [bs length];
while (p < limitp) {
    printf("%d\n", *p++);
}

For sequences of types other than byte or bool, you must keep in mind that the 
length of the NSData array is not the same as the number of elements. The 
following example initializes an integer sequence with the first few primes and 
prints out the contents of the sequence:

const int primes[] = { 1, 2, 3, 5, 7, 9, 11, 13, 17, 19, 23 };
EXMutableIntSeq *is = [NSMutableData dataWithBytes:primes
                                     length:sizeof(primes)];

const ICEInt *p = (const ICEInt *)[is bytes];
int limit = [is length] / sizeof(*p);
int i;
for(i = 0; i < limit; ++i) {
    printf("%d\n", p[i]);
}

The code to manipulate a sequence of enumerators is very similar. For portability, 
you should not assume a particular size for enumerators. That is, instead of relying 
on all enumerators having the size of, for example, an int, it is better to use 
sizeof(EXFruit) to ensure that you are not overstepping the bounds of the 
sequence.

Mapping of Sequences of Non-Value Types

Sequences of non-value types, such as sequences of string, structures, classes, 
and so on, map to mutable and immutable type definitions of NSArray. For 
example:

sequence<string> Page;
sequence<Page> Book;

This maps to:
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typedef NSArray EXPage;
typedef NSMutableArray EXMutablePage;

typedef NSArray EXBook;
typedef NSMutableArray EXMutableBook;

You use such sequences as you would use any other NSArray in your code. For 
example:

EXMutablePage *page1 = [NSArray arrayWithObjects:
                                @"First line of page one",
                                @"Second line of page one",
                                nil];

EXMutablePage *page2 = [NSArray arrayWithObjects:
                                @"First line of page two",
                                @"Second line of page two",
                                nil];

EXMutableBook *book = [NSMutableArray array];
[book addObject:page1];
[book addObject:page2];
[book addObject:[NSArray array]]; // Empty page

This creates a book with three pages; the first two pages contain two lines each, 
and the third page is empty. You can print the contents of the book as follows:

int pageNum = 0;
for (EXPage *page in book) {
    ++pageNum;
    int lineNum = 0;
    if ([page count] == 0) {
        printf("page %d: <empty>\n", pageNum);
    } else {
        for (NSString *line in page) {
            ++lineNum;
            printf("page %d, line %d: %s\n",
                        pageNum, lineNum, [line UTF8String]);
        }
    }
}

This prints:
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page 1, line 1: First line of page one
page 1, line 2: Second line of page one
page 2, line 1: First line of page two
page 2, line 2: Second line of page two
page 3: <empty>

If you have a sequence of proxies or a sequence of classes, to transmit a null proxy 
or class inside a sequence, you must insert an NSNull value into the NSArray. 
In addition, the mapping also allows you to use NSNull as the element value of 
an NSArray for elements of type string, structure, sequence, or dictionary. For 
example, instead of inserting an empty NSArray into the book sequence in the 
preceding example, we could also have inserted NSNull:

EXMutableBook *book = [NSMutableArray array];
[book addObject:page1];
[book addObject:page2];
[book addObject:[NSNull null]]; // Empty page

18.8.4 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

The following code is generated for this definition:

typedef NSDictionary EXEmployeeMap;
typedef NSMutableDictionary EXMutableEmployeeMap;

Similar to sequences, Slice dictionaries map to type definitions for NSDic-
tionary and NSMutableDictionary, with the names 
<module-prefix><Slice-name> and 
<module-prefix>Mutable<Slice-name>.

As a result, you can use the dictionary like any other NSDictionary, for 
example:

EXMutableEmployeeMap *em = [EXMutableEmployeeMap dictionary];
EXEmployee *e = [EXEmployee employee];
e.number = 42;
e.firstName = @"Stan";
e.lastName = @"Lippman";
[em setObject:e forKey:[NSNumber numberWithLong:e.number]];

e = [EXEmployee employee];
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e.number = 77;
e.firstName = @"Herb";
e.lastName = @"Sutter";
[em setObject:e forKey:[NSNumber numberWithLong:e.number]];

To put a value type into a dictionary (either as the key or the value), you must use 
NSNumber as the object to hold the value. If you have a dictionary that uses a 
Slice enumeration as the key or the value, you must insert the enumerator as an 
NSNumber that holds an int.

To insert a null proxy or null class instance into a dictionary as a value, you 
must insert NSNull.

As a convenience feature, the Objective-C mapping also allows you to insert 
NSNull as the value of a dictionary if the value type of the dictionary is a string, 
structure, sequence, or dictionary. If you send such a dictionary to a receiver, the 
Ice run time marshals an empty string, default-initialized structure, empty 
sequence, or empty dictionary as the corresponding value to the receiver, respec-
tively.

18.9 Mapping for Constants

Slice constant definitions map to corresponding Objective-C constant definitions. 
Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

Here are the generated definitions for these constants:

static const BOOL EXAppendByDefault = YES;
static const ICEByte EXLowerNibble = 15;
static NSString * const EXAdvice = @"Don't Panic!";
static const ICEShort EXTheAnswer = 42;
static const ICEDouble EXPI = 3.1416;
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typedef enum {
    EXApple, EXPear, EXOrange
} EXFruit;
static const EXFruit EXFavoriteFruit = EXPear;

All constants are initialized in the generated header file, so they are compile-time 
constants and can be used in contexts where a compile-time constant expression is 
required, such as to dimension an array or as the case label of a switch state-
ment.

18.10 Mapping for Exceptions

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

18.10.1 Inheritance Hierarchy

These exception definitions map as follows:

@interface EXGenericError : ICEUserException
{
@private
    NSString *reason_;
}

@property(nonatomic, retain) NSString *reason_;

// ...
@end

@interface EXBadTimeVal : EXGenericError
// ...
@end

@interface EXBadZoneName : EXGenericError
// ...
@end
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Each Slice exception is mapped to an Objective-C class. For each exception 
member, the corresponding class contains a private instance variable and a prop-
erty. (Obviously, because BadTimeVal and BadZoneName do not have members, 
the generated classes for these exceptions also do not have members.)

The inheritance structure of the Slice exceptions is preserved for the generated 
classes, so EXBadTimeVal and EXBadZoneName inherit from EXGe-
nericError.

In turn, EXGenericError derives from ICEUserException:

@interface ICEException : NSException
-(NSString* *)ice_name;
@end

@interface ICEUserException : ICEException
// ...
@end

@interface ICELocalException : ICEException
// ...
@end

Note that ICEUserException itself derives from ICEException, which 
derives from NSException. Similarly, run-time exceptions derive from a 
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common base class ICELocalException that derives from ICEException, 
so we have the inheritance structure shown in Figure 18.1:

Figure 18.1. Inheritance structure for exceptions.

ICEException provides a single method, ice_name, that returns the Slice 
type ID of the exception with the leading :: omitted. For example, the return 
value of ice_name for our Slice GenericError is Example::Gener-
icError.

18.10.2 Mapping for Data Members
As we mentioned on page 577, each data member of a Slice exception generates a 
corresponding Objective-C property. Here is an example that extends our Gener-
icError with yet another exception:

exception GenericError {
    string reason;
};

exception FileError extends GenericError {
    string name;
    int errorCode;
};

The generated properties for these exceptions are as follows:

ICELocalException

ICEException

Specific Run-Time Exceptions... Specific User Exceptions...

NSException

ICEUserException
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@interface EXGenericError : ICEUserException
{
@private
    NSString *reason_;
}

@property(nonatomic, retain) NSString *reason_;

// ...
@end

@interface EXFileError : EXGenericError
{
@private
    NSString *name_;
    ICEInt errorCode;
}

@property(nonatomic, retain) NSString *name_;
@property(nonatomic, assign) ICEInt errorCode;

// ...
@end

This is exactly the same mapping as for structure members (see page 567), with 
one difference: the name and reason members map to name_ and reason_ 
properties, whereas—as for structures—errorCode maps to errorCode. The 
trailing underscore for reason_ and name_ prevents a name collision with the 
name and reason methods that are defined by NSException: if you call the 
name method, you receive the name that is stored by NSException; if you call 
the name_ method, you receive the value of the name_ instance variable of 
EXFileError:

@try {
    // Do something that can throw ExFileError...
}
@catch(EXFileError *ex)
{
    // Print the value of the Slice reason, name,
    // and errorCode members.
    printf("reason: %s, name: %s, errorCode: %d\n",
            [ex.reason_ UTF8String],
            [ex.name_ UTF8String],
            ex.errorCode);
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    // Print the NSException name.
    printf("NSException name: %s\n", [[ex name] UTF8String]);
}

The same escape mechanism applies if you define exception data members named 
callStackReturnAddresses, raise, or userInfo.

18.10.3 Mapping for User Exceptions

Creating and Initializing User Exceptions

Initialization of exceptions follows the same pattern as for structures (see 
page 568): each exception (apart from the inherited no-argument init method) 
provides an init method that accepts one argument for each data member of the 
exception, and two convenience constructors. For example, the generated methods 
for our EXGenericError exception look as follows:

@interface EXGenericError : ICEUserException
// ...

-(id) init:(NSString *)reason;
+(id) genericError;
+(id) genericError:(NSString *)reason;
@endif

If a user exception has no data members (and its base exceptions do not have data 
members either), only the inherited init method and the no-argument conve-
nience constructor are generated.

If an exception has a base exception with data members, its init method and 
convenience constructor accept one argument for each Slice data member, in base-
to-derived order. For example, here are the methods for the FileError exception 
we defined on page 578):

@interface EXFileError : EXGenericError
// ...

-(id) init:(NSString *)reason name_:(NSString *)name
                              errorCode:(ICEInt)errorCode;
+(id) fileError;
+(id) fileError:(NSString *)reason name_:(NSString *)name
                                   errorCode:(ICEInt)errorCode;
@end
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Note that init and the second convenience constructor accept three arguments; 
the first initializes the EXGenericError base, and the remaining two initialize 
the instance variables of EXFileError.

18.10.4 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from ICELo-
calException which, in turn, derives from ICEException. (See Figure 4.4 
for an inheritance diagram.)

By catching exceptions at the appropriate point in the hierarchy, you can 
handle exceptions according to the category of error they indicate:

• NSException

This is the root of the complete inheritance tree. Catching NSException 
catches all exceptions, whether they relate to Ice or the Cocoa framework.

• ICEException

Catching ICEException catches both user and run-time exceptions.

• ICEUserException

This is the root exception for all user exceptions. Catching ICEUserExcep-
tion catches all user exceptions (but not run-time exceptions).

• ICELocalException

This is the root exception for all run-time exceptions. Catching ICELo-
calException catches all run-time exceptions (but not user exceptions).

• ICETimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• ICEConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

For example, an ICEConnectTimeoutException can be handled as 
ICEConnectTimeoutException, ICETimeoutException, ICELo-
calException, ICEException, or NSException.

You will probably have little need to catch run-time exceptions as their most-
derived type and instead catch them as ICELocalException; the fine-grained 
error handling offered by the remainder of the hierarchy is of interest mainly in 
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the implementation of the Ice run time. Exceptions to this rule are 
ICEFacetNotExistException (see Chapter 33) and ICEObjectNotEx-
istException (see Chapter 34), which you may want to catch explicitly.

Creating and Initializing Run-Time Exceptions

ICELocalException provides two properties that return the file name and 
line number at which an exception was raised:

@interface ICELocalException : ICEException
{
// ...

@property(nonatomic, readonly) NSString* file;
@property(nonatomic, readonly) int line;

-(id)init:(const char*)file line:(int)line;
+(id)localException:(const char*)file line:(int)line;
@end

The init method and the convenience constructor accept the file name and line 
number as arguments.

Concrete run-time exceptions that derived from ICEException provide a 
corresponding init method and convenience constructor. For example, here is 
the Slice definition of ObjectNotExistException:

local exception RequestFailedException {
    Identity id;
    string facet;
    string operation;
};

local exception ObjectNotExistException
    extends RequestFailedException {};

The Objective-C mapping for ObjectNotExistException is:

@interface ICEObjectNotExistException : ICERequestFailedException
// ...
-(id) init:(const char*)file__p line:(int)line__p;
-(id) init:(const char*)file__p
           line:(int)line__p
           id_:(ICEIdentity *)id_
           facet:(NSString *)facet
           operation:(NSString *)operation;
+(id) objectNotExistException:(const char*)file__p



18.11 Mapping for Interfaces 583

                              line:(int)line__p;
+(id) objectNotExistException:(const char*)file__p
                              line:(int)line__p
                              id_:(ICEIdentity *)id_
                              facet:(NSString *)facet
                              operation:(NSString *)operation;
@end

In other words, as for user exceptions, run-time exceptions provide init methods 
and convenience constructors that accept arguments in base-to-derived order. This 
means that all run-time exceptions require a file name and line number when they 
are instantiated. For example, you can throw an ICEObjectNotExistEx-
ception as follows:

@throw [ICEObjectNotExistException
           objectNotExistException:__FILE__ line:__LINE__];

If you throw this exception in the context of an executing operation on the server 
side, the id_, facet, and operation instance variables are automatically 
initialized by the Ice run time.

When you instantiate a run-time exception, the base NSException is initial-
ized such that its name method returns the same string as ice_name; the 
reason and userInfo methods return nil.

18.10.5 Copying and Deallocation

User exceptions and run-time exceptions implement the NSCopying protocol, so 
you can copy them. The semantics are the same as for structures (see page 569).

Similarly, like structures, exceptions implement a dealloc method that 
takes care of deallocating the instance variables when an exception is released.

18.10.6 Comparison and Hashing

Exceptions do not override isEqual or hash, so these methods have the 
behavior inherited from NSObject.

18.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a member function on a local class instance that represents the 
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remote object. This makes the mapping easy and intuitive to use because, for all 
intents and purposes (apart from error semantics), making a remote procedure call 
is no different from making a local procedure call.

18.11.1 Proxy Classes and Proxy Protocols

On the client side, interfaces map to a protocol with member functions that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

["objc:prefix:EX"]
module Example {
    interface Simple {
        void op();
    }
};

The Slice compiler generates the following definitions for use by the client:

@interface EXSimplePrx : ICEObjectPrx
// Mapping-internal methods here...
@end

@protocol EXSimplePrx <ICEObjectPrx>
-(void) op;
-(void) op:(ICEContext *)context;
@end;

As you can see, the compiler generates a proxy protocol EXSimplePrx and a 
proxy class EXSimplePrx. In general, the generated name for both protocol and 
class is <module-prefix><interface-name>Prx.

In the client’s address space, an instance of EXSimplePrx is the local 
ambassador for a remote instance of the Simple interface in a server and is known 
as a proxy class instance. All the details about the server-side object, such as its 
address, what protocol to use, and its object identity are encapsulated in that 
instance.

Note that EXSimplePrx derives from ICEObjectPrx, and that EXSim-
plePrx adopts the ICEObjectPrx protocol. This reflects the fact that all Slice 
interfaces implicitly derive from Ice::Object. For each operation in the inter-
face, the proxy protocol has two methods whose name is derived from the opera-
tion. For the preceding example, we find that the operation op is mapped to two 
methods,  op and op:.
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The second method has a trailing parameter of type ICEContext. This 
parameter is for use by the Ice run time to store information about how to deliver a 
request; normally, you do not need to supply a value here and can pretend that the 
trailing parameter does not exist. (We examine the ICEContext parameter in detail 
in Chapter 32. The parameter is also used by IceStorm—see Chapter 44.)

18.11.2 Instantiation and Casting

Client-side application code never manipulates proxy class instances directly. In 
fact, you are not allowed to instantiate a proxy class directly. Instead, proxy 
instances are always instantiated on behalf of the client by the Ice run time, so 
client code never has any need to instantiate a proxy directly.

Proxies are immutable: once the run time has instantiated a proxy, that proxy 
continues to denote the same remote object and cannot be changed. This means 
that, if you want to keep a copy of a proxy, it is sufficient to call retain on the 
proxy. (You can also call copy on a proxy because ICEObjectPrx implements 
NSCopying. However, calling copy has the same effect as calling retain.)

Proxies are always passed and returned as type 
id<<module-prefix><interface-name>Prx>. For example, for the 
preceding Simple interface, the proxy type is id<EXSimplePrx>.

The ICEObjectPrx base class provides two class methods that allow you 
cast a proxy from one type to another.

• +(id) checkedCast:(id<ICEObjectPrx>)proxy;

A checkedCast tests whether the object denoted by a proxy implements 
the specified interface. If so, the cast returns a proxy to the specified interface; 
otherwise, if the object denoted by the proxy does not implement the specified 
interface, the cast returns nil. Checked casts are typically used to safely 
down-cast a proxy to a more derived interface. For example, assuming we 
have Slice interfaces Base and Derived, you can write the following:

id<EXBasePrx> base = ...;  // Initialize base proxy
id<EXDerivedPrx> derived = [EXDerivedPrx checkedCast:base];
if(derived != nil)
{
    // base implements run-time type Derived
    // use derived...
} else {
    // Base has some other, unrelated type
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}

The expression [EXDerivedPrx checkedCast:base] tests whether 
base points at an object of type Derived (or an object with a type that is 
derived from Derived). If so, the cast succeeds and derived is set to point at 
the same object as base. Otherwise, the cast fails and derived is set to 
nil. (Proxies that “point nowhere” are represented by nil.)

A checkedCast typically results in a remote message to the server.2 The 
message effectively asks the server “is the object denoted by this proxy of type 
Derived?” The reply from the server is communicated to the application code 
in form of a successful (non-nil) or unsuccessful (nil) result. Sending a 
remote message is necessary because, as a rule, there is no way for the client 
to find out what the actual run-time type of a proxy is without confirmation 
from the server. (For example, the server may replace the implementation of 
the object for an existing proxy with a more derived one.) This means that you 
have to be prepared for a checkedCast to fail. For example, if the server is 
not running, you will receive an ICEConnectionRefusedException; 
if the server is running, but the object denoted by the proxy no longer exists, 
you will receive an ICEObjectNotExistException.

• +(id) uncheckedCast:(id<ICEObjectPrx>)proxy;

In some cases, it is known that an object supports a more derived interface 
than the static type of its proxy. For such cases, you can use an unchecked 
down-cast:

id<EXBasePrx> base;
base = ...;  // Initialize base to point at a Derived
id<EXDerivedPrx> derived = [EXDerivedPrx uncheckedCast:base];
// Use derived...

An uncheckedCast provides a down-cast without consulting the server as 
to the actual run-time type of the object. You should use an unchecked-
Cast only if you are certain that the proxy indeed supports the more derived 
type: an uncheckedCast, as the name implies, is not checked in any way; 
it does not contact the object in the server and, if the proxy does not support 
the specified interface, the cast does not return null. If you use the proxy 

2. In some cases, the Ice run time can optimize the cast and avoid sending a message. However, the 
optimization applies only in narrowly-defined circumstances, so you cannot rely on a 
checkedCast not sending a message.
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resulting from an incorrect uncheckedCast to invoke an operation, the 
behavior is undefined. Most likely, you will receive an ICEOperationNo-
tExistException, but, depending on the circumstances, the Ice run time 
may also report an exception indicating that unmarshaling has failed, or even 
silently return garbage results.

Despite its dangers, uncheckedCast is still useful because it avoids the 
cost of sending a message to the server. And, particularly during initialization 
(see page 641), it is common to receive a proxy of type id<ICEOb-
jectPrx>, but with a known run-time type. In such cases, an unchecked-
Cast saves the overhead of sending a remote message.

Note that an uncheckedCast is not the same as an ordinary cast. The 
following is incorrect and has undefined behavior:

id<EXDerivedPrx> derived = (id<EXDerivedPrx>)base; // Wrong!

Both checkedCast and uncheckedCast call autorelease on the proxy 
they return so, if you want to prevent the proxy from being deallocated once the 
enclosing autorelease pool is drained, you must call retain on the returned 
proxy.

18.11.3 Using Proxy Methods
The ICEObjectPrx provides a variety of methods for customizing a proxy (see 
Section 32.11). Since proxies are immutable, each of these “factory methods” 
returns a copy of the original proxy that contains the desired modification. For 
example, you can obtain a proxy configured with a ten-second timeout as shown 
below:

id<ICEObjectPrx> proxy = [communicator stringToProxy:...];
proxy = [proxy ice_timeout:10000];

A factory method returns a new (autoreleased) proxy object if the requested modi-
fication differs from the current proxy, otherwise it returns the original proxy. The 
returned proxy is always of the same type as the source proxy.

18.11.4 Object Identity and Proxy Comparison
Apart from the methods discussed in Section 18.11.2, proxy handles also support 
comparison with isEqual. Note that isEqual uses all of the information in a 
proxy for the comparison. This means that not only the object identity must match 
for a comparison to succeed, but other details inside the proxy, such as the 
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protocol and endpoint information, must be the same as well. In other words, 
comparison with isEqual tests for proxy identity, not object identity. A common 
mistake is to write code along the following lines:

id<ICEObjectPrx> p1 = ...;      // Get a proxy...
id<ICEObjectPrx> p2 = ...;      // Get another proxy...

if (![p1 isEqual:p2]) {
    // p1 and p2 denote different objects       // WRONG!
} else {
    // p1 and p2 denote the same object         // Correct
}

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen if, for example, p1 and p2 embed the same object identity, but use a 
different protocol to contact the target object. Similarly, the protocols might be the 
same, but could denote different endpoints (because a single Ice object can be 
contacted via several different transport endpoints). In other words, if two proxies 
compare equal with isEqual, we know that the two proxies denote the same 
object (because they are identical in all respects); however, if two proxies compare 
unequal with isEqual, we know absolutely nothing: the proxies may or may not 
denote the same object.

To compare the object identities of two proxies, you can use additional 
methods provided by proxies:

@protocol ICEObjectPrx <NSObject, NSCopying>
// ...
-(NSComparisonResult) compareIdentity:(id<ICEObjectPrx>)p;
-(NSComparisonResult) compareIdentityAndFacet:(id<ICEObjectPrx>)p;
@end

The compareIdentity method compares the object identities embedded in 
two proxies while ignoring other information, such as facet and transport informa-
tion. To include the facet name (see Chapter 33) in the comparison, use compa-
reIdentityAndFacet instead.

compareIdentity and compareIdentityAndFacet allow you to 
correctly compare proxies for object identity. The example below demonstrates 
how to use compareIdentity:

id<ICEObjectPrx> p1 = ...;      // Get a proxy...
id<ICEObjectPrx> p2 = ...;      // Get another proxy...

if ([p1 compareIdentity:p2] != NSOrderedSame) {
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    // p1 and p2 denote different objects       // Correct
} else {
    // p1 and p2 denote the same object         // Correct
}

18.12 Mapping for Operations

As we saw in Section 18.11, for each operation on an interface, the proxy protocol 
contains two corresponding methods with the same name as the operation. To 
invoke an operation, you call it via the proxy handle. For example, here is part of 
the definitions for our file system from Section 5.4:

["objc:prefix:FS"]
module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
    // ...
}; 

The proxy protocol for the Node interface looks as follows:

@protocol FSNodePrx <ICEObjectPrx>
-(NSMutableString *) name;
-(NSMutableString *) name:(ICEContext *)context;
@end;

The name method returns a value of type NSMutableString. Given a proxy 
to an object of type Node, the client can invoke the operation as follows:

id<EXNodePrx> node = ...;       // Initialize proxy
NSString *name = [node name];   // Get name via RPC

The name method sends the operation invocation to the server, waits until the 
operation is complete, and then unmarshals the return value and returns it to the 
caller.

Because the name method autoreleases the return value, it is safe to ignore the 
return value. For example, the following code contains no memory leak:

id<EXNodePrx> node = ...;       // Initialize proxy
[node name];                    // Useless, but no leak

If you ignore the return value, no memory leak occurs because the next time the 
enclosing autorelease pool is drained, the memory will be reclaimed.
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18.12.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the corre-
sponding proxy protocol methods are concerned, idempotent has no effect. For 
example, consider the following interface:

interface Example {
    string op1();
    idempotent  string op2();
    idempotent  void op3(string s);
};

The proxy protocol for this interface looks like this:3

@protocol EXOpsPrx <ICEObjectPrx>
-(NSMutableString *) op1;
-(NSMutableString *) op1:(ICEContext *)context;
-(NSMutableString *) op2;
-(NSMutableString *) op2:(ICEContext *)context;
-(void) op3:(NSString *)s;
-(void) op3:(NSString *)s context:(ICEContext *)context;
@end;

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the mapping to be unaffected by the idempotent keyword.

18.12.2 Passing Parameters

In-Parameters

The parameter passing rules for the Objective-C mapping are very simple: value 
type parameters are passed by value and non-value type parameters are passed by 
pointer. Semantically, the two ways of passing parameters are identical: the Ice 
run time guarantees not to change the value of an in-parameter.

Here is an interface with operations that pass parameters of various types from 
client to server:

3. For brevity, we will not show the methods with the additional trailing context parameter for 
the remainder of this chapter. Of course, the compiler generates the additional methods regard-
less. See Section 32.12 for more information on contexts.
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struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

@interface EXNumberAndString : NSObject <NSCopying>
// ...
@property(nonatomic, assign) ICEInt x;
@property(nonatomic, retain) NSString *str;
// ...
@end

typedef NSArray EXStringSeq;
typedef NSMutableArray EXMutableStringSeq;

typedef NSDictionary EXStringTable;
typedef NSMutableDictionary EXMutableStringTable;

@protocol EXClientToServerPrx <ICEObjectPrx>
-(void) op1:(ICEInt)i f:(ICEFloat)f b:(BOOL)b s:(NSString *)s;
-(void) op2:(EXNumberAndString *)ns ss:(EXStringSeq *)ss
            st:(NSDictionary *)st;
-(void) op3:(id<EXClientToServerPrx>)proxy;
@end;

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

id<EXClientToServerPrx> p = ...;           // Get proxy...

[p op1:42 f:3.14 b:YES s:@"Hello world!"]; // Pass literals

ICEInt i = 42;
ICEFloat f = 3.14;
BOOL b = YES;
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NSString *s = @"Hello world!";

[p op1:i f:f b:b s:s];                     // Pass simple vars

EXNumberAndString *ns = [EXNumberAndString numberAndString:42
                                           str:@"The Answer"];
EXMutableStringSeq *ss = [ExMutableStringSeq array];
[ss addObject:@"Hello world!"];
EXStringTable *st = [EXMutableStringTable dictionary];
[ss setObject:ss forKey:[NSNumber numberWithInt:0]];

[p op2:ns ss:ss st:st];                    // Pass complex vars

[p op3:p];                                 // Pass proxy

You can pass either literals or variables to the various operations. The Ice run time 
simply marshals the value of the parameters to the server and leaves parameters 
otherwise untouched, so there are no memory-management issues to consider.

Note that the invocation of op3 is somewhat unusual: the caller passes the 
proxy it uses to invoke the operation to the operation as a parameter. While 
unusual, this is legal (and no memory management issues arise from doing this.)

Passing nil and NSNull

The Slice language supports the concept of null (“points nowhere”) for only two 
of its types: proxies and classes. For either type, nil represents a null proxy or 
class. For other Slice types, such as strings, the concept of a null string simply 
does not apply. (There is no such thing as a null string, only the empty string.) 
However, strings, structures, sequences, and dictionaries are all passed by pointer, 
which raises the question of how the Objective-C mapping deals with nil values.

As a convenience feature, the Objective-C mapping permits passing of nil as 
a parameter for the following types:

• Proxies (nil sends a null proxy.)

• Classes (nil sends a null class instance.)

• Strings (nil sends an empty string.)

• Structures (nil sends a default-initialized structure.)

• Sequences (nil sends an empty sequence.)

• Dictionaries (nil sends an empty dictionary.)

It is impossible to add nil to an NSArray or NSDictionary, so the mapping 
follows the usual convention that an NSArray element or NSDictionary 
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value that is conceptually nil is represented by NSNull. For example, to send a 
sequence of proxies, some of which are null proxies, you must insert NSNull 
values into the sequence.

As a convenience feature, if you have a sequence with elements of type string, 
structure, sequence, or dictionary, you can use NSNull as the element value. For 
elements that are NSNull, the Ice run time marshals an empty string, default-
initialized structure, empty sequence, or empty dictionary to the receiver.

Similarly, for dictionaries with value type string, structure, sequence, or 
dictionary, you can use NSNull as the value to send the corresponding empty 
value (or default-initialized value, in the case of structures).

Out-Parameters

The Objective-C mapping passes out-parameters by pointer (for value types) and 
by pointer-to-pointer (for non-value types). Here is the Slice definition from 
page 590 once more, modified to pass all parameters in the out direction:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    void op1(out int i, out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ClientToServer* proxy);
};

The Slice compiler generates the following code for this definition:

@protocol EXServerToClientPrx <ICEObjectPrx>
-(void) op1:(ICEInt *)i f:(ICEFloat *)f b:(BOOL *)b
            s:(NSMutableString **)s;
-(void) op2:(EXNumberAndString **)ns ss:(EXMutableStringSeq **)ss
            st:(EXMutableStringTable **)st;
-(void) op3:(id<EXClientToServerPrx> *)proxy;
@end
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Note that, for types that come in immutable and mutable variants (strings, 
sequences, and dictionaries), the corresponding out-parameter uses the mutable 
variant.

Given a proxy to a ServerToClient interface, the client code can pass param-
eters as in the following example:

id<EXServerToClientPrx> p = ...; // Get proxy...

ICEInt i;
ICEFloat f;
BOOL b;
NSMutableString *s;

[p op1:&i f:&f b:&b s:&s];
// i, f, b, and s contain updated values now

EXNumberAndString *ns;
EXStringSeq *ss;
EXStringTable *st;

[p op2:&ns ss:&ss st:&st];
// ns, ss, and st contain updated values now

[p op3:&p];
// p has changed now!

Again, there are no surprises in this code: the caller simply passes pointers to 
pointer variables to a method; once the operation completes, the values of those 
variables will have been set by the server.

Memory Management for Out-Parameters

When the Ice run time returns an out-parameter to the caller, it does not make any 
assumptions about the previous value of that parameter (if any). In other words, if 
you pass an initialized string as an out-parameter, the value you pass is simply 
discarded and the corresponding variable is assigned a new instance. As an 
example, consider the following operation:

void getString(out string s);

You could call this as follows:

NSMutableString *s = @"Hello";
[p getString:&s];
// s now points at the returned string.
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All out-parameters are autoreleased by the Ice run time before they are returned. 
This is convenient because it does just the right thing with respect to memory 
management. For example, the following code does not leak memory:

NSMutableString *s = @"Hello";
[p getString:&s];
[p getString:&s]; // No leak here.

However, because the pointer value of out-parameters is simply assigned by the 
proxy method, you must be careful not to pass a variable as an out-parameter if 
that variable was not released or autoreleased:

NSMutableString *s = [[NSMutableString alloc] initWithString:
                                                    @"Hello"];
[p getString:&s]; // Bad news!

This code leaks the initial string because the proxy method assigns the passed 
pointer without calling release on it first. (In practice, this is rarely a problem 
because there is no need to initialize out-parameters and, if an out-parameter was 
initialized by being passed as an out-parameter to an operation earlier, its value 
will have been autoreleased by the proxy method already.)

It is worth having another look at the final call of the code example on 
page 594:

[p op3:&p];

Here, p is the proxy that is used to dispatch the call. That same variable p is also 
passed as an out-parameter to the call, meaning that the server will set its value. In 
general, passing the same parameter as both an input and output parameter is safe 
(with the caveat we just discussed).

Receiving Return Values

The Objective-C mapping returns return values in much the same way as out-
parameters: value types are returned by value, and non-value types are returned by 
pointer. As an example, consider the following operations:

struct NumberAndString {
    int x;
    string str;
};

interface Ops {
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    int getInt();
    string getString();
    NumberAndString getNumberAndString();
};

The proxy protocol looks as follows:

@protocol EXOpsPrx <ICEObjectPrx>
-(ICEInt) getInt;
-(NSMutableString *) getString;
-(EXNumberAndString *) getNumberAndString;
@end

Note that, for types with mutable and immutable variants (strings, sequences, and 
dictionaries), the formal return type is the mutable variant. As for out-parameters, 
anything returned by pointer is autoreleased by the Ice run time. This means that 
the following code works fine and does not contain memory management errors:

EXNumberAndString *ns = [NSNumberAndString numberAndString];
ns.x = [p getInt];
ns.str = [p getString]; // Autoreleased by getString,
                        // retained by ns.str.

[p getNumberAndString]; // No leak here.

The return value of getString is autoreleased by the proxy method but, during 
the assignment to the property str, the generated code calls retain, so the 
structure keeps the returned string alive in memory, as it should. Similarly, 
ignoring the return value from an invocation is safe because the returned value is 
autoreleased and will be reclaimed when the enclosing autorelease pool is 
drained.

Chained Invocations

Consider the following simple interface containing two operations, one to set a 
value and one to get it:

interface Name {
    string getName();
    void setName(string name);
};

Suppose we have two proxies to interfaces of type Name, p1 and p2, and chain 
invocations as follows:

[p2 setName:[p1 getName]]; // No leak here.
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This works exactly as intended: the value returned by p1 is transferred to p2. 
There are no memory-management or exception safety issues with this code.

nil Out-Parameters and Return Values

If an out-parameter or return value is a proxy or class, and the operation returns a 
null proxy or class, the proxy method returns nil. If a proxy or class is returned 
as part of a sequence or dictionary, the corresponding entry is NSNull.

For strings, structures, sequences, and dictionaries, the Ice run-time never 
returns nil or NSNull (even if the server passed nil or NSNull as the value). 
Instead, the unmarshaling code always instantiates an empty string, empty 
sequence, or empty dictionary, and it always initializes structure members during 
unmarshaling, so structures that are returned from an operation invocation never 
contain a nil instance variable (except for proxy and class instance variables).

18.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 18.10.4 on 
page 581) and, if the operation has an exception specification, may also throw 
user exceptions (see Section 18.10 on page 576). Suppose we have the following 
simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Objective-C exceptions, so you can simply enclose 
one or more operation invocations in a try–catch block:

id<EXChildPrx> child = ...;    // Get proxy...
@try {
    [child askToCleanUp];      // Give it a try...
} @catch (EXTantrum *t) {
    printf("The child says: %s\n", t.reason_);
}
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Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will typi-
cally be dealt with by exception handlers higher in the hierarchy. For example:

void run()
{
    id<EXChildPrx> child = ...;       // Get proxy...
    @try {
        [child askToCleanUp];         // Give it a try...
    } @catch (EXTantrum *t) {
        printf("The child says: %s\n", t.reason);
        [child scold];                // Recover from error...
    }
    [child praise];                   // Give positive feedback...
}

int
main(int argc, char* argv[])
{
    int status = 1;
    @try {
        // ...
        run();
        // ...
        status = 0;
    } @catch (ICEException *e) {
        printf("Unexpected run-time error: %s\n", [e ice_name]);
    }
    // ...
    return status;
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

Exceptions and Out-Parameters

If an operation throws an exception, the Ice run time makes no guarantee for the 
value of out-parameters. Individual out-parameters may have the old value, the 
new value, or a value that is indeterminate, such that parts of the out-parameter 
have been assigned and others have not. However, no matter what their state, the 
values will be “safe” for memory-management purposes, that is, any out-parame-
ters that were successfully unmarshaled are autoreleased.
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Exceptions and Return Values

For return values, the Objective-C mapping provides the guarantee that a variable 
receiving the return value of an operation will not be overwritten if an exception is 
thrown.

18.14 Mapping for Local Interfaces

The Ice run time defines APIs using Slice (see Section 4.7). These APIs are 
provided as part of the Ice run time library and cannot be invoked remotely. 
(Doing so would not make any sense.) Therefore, the Slice interfaces for the Ice 
run time are defined as local interfaces (see Section 4.15). The Objective-C 
mapping for local interfaces differs from the default mapping in two ways:

• Local interfaces do not adopt an <interface-name>Prx protocol. (Doing 
so would be misleading because proxies imply that the target object can be 
remote.) Instead, the protocol for local interfaces has the same name as the 
interface. For example, the Ice::Communicator interfaces is defined as:

["objc:prefix:ICE"]
module Ice {
    local interface Communicator {
        // ...
    }
};

Because Communicator is a local interface, objects of type ICECommuni-
cator are passed as id<ICECommunicator> (not 
ICECommunicator * or id<ICEComunicatorPrx>).

• Types that come in mutable and immutable variants (strings, sequences, and 
dictionaries) are always passed as the immutable variant. For example, the 
getName operation on the ObjectAdapter interface is defined as:

["objc:prefix:ICE"]
module Ice {
    local interface ObjectAdapter {
        string getName();
    };
};

Because ObjectAdapter is a local interface, the getName operation maps to:



600 Client-Side Slice-to-Objective-C Mapping

-(NSString *) getName;

Note that the returned string is of type NSString instead of NSMut-
ableString (as would be the case for an operation on a non-local inter-
face).

For local interfaces, parameters are passed as the immutable version because 
their values are not meant to be modified by application code. In addition, 
passing the immutable version avoids an unnecessary data copy.

18.15 Mapping for Classes

Slice classes are mapped similar to structures and exceptions. The generated class 
contains an instance variable and a property for each Slice data member. Consider 
the following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler generates the following code for this definition:

@interface EXTimeOfDay : ICEObject
{
    ICEShort hour;
    ICEShort minute;
    ICEShort second;
}

@property(nonatomic, assign) ICEShort hour;
@property(nonatomic, assign) ICEShort minute;
@property(nonatomic, assign) ICEShort second;

-(id) init:(ICEShort)hour minute:(ICEShort)minute
           second:(ICEShort)second;
+(id) timeOfDay;
+(id) timeOfDay:(ICEShort)hour minute:(ICEShort)minute
                second:(ICEShort)second;
@end

There are a number of things to note about the generated code:
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1. The generated class EXTimeOfDay derives from ICEObject, which is the 
parent of all classes. Note that ICEObject is not the same as ICEOb-
jectPrx. In other words, you cannot pass a class where a proxy is expected 
and vice versa.

2. The generated class contains a property for each Slice data member.

3. The generated class provides an init method that accepts one argument for 
each data member, and it provides the same two convenience constructors as 
structures and exceptions.

18.15.1 Derivation from ICEObject
All classes ultimately derive from a common base class, ICEObject. Note that 
this is not the same as implementing the ICEObjectPrx protocol (which is 
implemented by proxies). As a result, you cannot pass a class where a proxy is 
expected (and vice versa) because the base types for classes and proxies are not 
compatible.

ICEObject defines a number of methods:

@protocol ICEObject <NSObject>
-(BOOL) ice_isA:(NSString*)typeId current:(ICECurrent*)current;
-(void) ice_ping:(ICECurrent*)current;
-(NSString*) ice_id:(ICECurrent*)current;
-(NSArray*) ice_ids:(ICECurrent*)current;
@end

@interface ICEObject NSObject <ICEObject, NSCopying>
-(BOOL) ice_isA:(NSString*)typeId;
-(void) ice_ping;
-(NSString*) ice_id;
-(NSArray*) ice_ids;
+(NSString*) ice_staticId;
-(void) ice_preMarshal;
-(void) ice_postUnmarshal;
-(BOOL) ice_dispatch:(id<ICERequest>)request;
-(id) initWithDelegate:(id)delegate;
+(id) objectWithDelegate:(id)delegate;
@end

The methods of ICEObject behave as follows:4

• ice_isA

This function returns YES if the object supports the given type ID, and NO 
otherwise.
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• ice_ping

ice_ping provides a basic reachability test for the class. If it completes 
without raising an exception, the class exists and is reachable.5

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id via a pointer to a base instance, the returned type ID is the actual 
(possibly more derived) type ID of the instance.

• ice_staticId

This function returns the static type ID of a class.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

• ice_dispatch

This function dispatches an incoming request to a servant. It is used in the 
implementation of dispatch interceptors (see Section 32.23).

• initWithDelegate
objectWithDelegate

These constructors enable the implementation of servants with a delegate (see 
page 634).

4. The methods are split between the ICEObject protocol and class because classes can be 
servants.

5. ice_ping is normally only invoked on the proxy for a class that might be remote because a 
class instance that is local (in the caller’s address space) can always be reached.
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18.15.2 Data Members of Classes

By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding property.

18.15.3 Class Constructors

Classes provide the usual init method and a parameter-less convenience 
constructor that perform default initialization of the class’s instance variables. In 
addition, if a class has data members, it provides an init method and a conve-
nience constructor that accept one argument for each data member. This allows 
you to allocate and initialize a class instance in a single statement (instead of first 
having to allocate and default-initialize the instance and then assigning to its prop-
erties).

For derived classes, the init method and the convenience constructor have 
one parameter for each of the base class’s data members, plus one parameter for 
each of the derived class’s data members, in base-to-derived order. For example:

class Base {
    int i;
};

class Derived extends Base {
    string s;
};

This generates:

@interface EXBase : ICEObject
// ...

@property(nonatomic, assign) ICEInt i;

-(id) init:(ICEInt)i;
+(id) base;
+(id) base:(ICEInt)i;
@end

@interface EXDerived : EXBase
// ...

@property(nonatomic, retain) NSString *s;
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-(id) init:(ICEInt)i s:(NSString *)s;
+(id) derived;
+(id) derived:(ICEInt)i s:(NSString *)s;
@end

18.15.4 Derived Classes

Note that, in the preceding example, the derivation of the Slice definitions is 
preserved for the generated classes: EXBase derives from ICEObject, and 
EXDerived derives from EXBase. This allows you to treat and pass classes 
polymorphically: you can always pass an EXDerived instance where an 
EXBase instance is expected.

18.15.5 Passing Classes as Parameters

Classes are passed by pointer, like any other Objective-C object. For example, 
here is an operation that accepts a Base as an in-parameter and returns a Derived:

Derived getDerived(Base d);

The corresponding proxy method looks as follows:

-(EXDerived *) getDerived:(EXBase *)d;

To pass a null instance, you simply pass nil.

18.15.6 Operations of Classes

If you look back at the code that is generated for the EXTimeOfDay class (see 
page 600), you will notice that there is no indication at all that the class has a 
format operation. As opposed to proxies, classes do not implement any protocol 
that would define which operations are available. This means that you can 
partially implement the operations of a class. For example, you might have a Slice 
class with five operations that is returned from a server to a client. If the client 
uses only one of the five operations, the client-side code needs to implement only 
that one operation and can leave the remaining four operations without implemen-
tation. (If the class were to implement a mandatory protocol, the client-side code 
would have to implement all operations in order to avoid a compiler warning.)

Of course, you must implement those operations that you actually intend to 
call. The mapping of operations for classes follows the server-side mapping for 
operations on interfaces: parameter types and labels are exactly the same. (See 
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Section 20.5 for details.) In a nutshell, the server-side mapping is the same as the 
client-side mapping except that, for types that have mutable and immutable vari-
ants, they map to the immutable variant where the client-side mapping uses the 
mutable variant, and vice versa.

For example, here is how we could implement the format operation of our 
TimeOfDay class:

@interface TimeOfDayI : EXTimeOfDay
@end

@implementation TimeOfDayI
-(NSString *) format
{
    return [NSString stringWithFormat:@"%.2d:%.2d:%.2d",
                         self.hour, self.minute, self.second];
}
@end

By convention, the implementation of classes with operations has the same name 
as the Slice class with an I-suffix. Doing this is not mandatory—you can call your 
implementation class anything you like. However, if you do not want to use the 
I-suffix naming, we recommend that you adopt another naming convention and 
follow it consistently.

Note that TimeOfDayI derives from EXTimeOfDay. This is because, as we 
will see in a moment, the Ice run time will instantiate a TimeOfDayI instance 
whenever it receives a TimeOfDay instance over the wire and expects that instance 
to provide the properties of EXTimeOfDay.

18.15.7 Class Factories
Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDayI class. However, unless we tell it, the Ice 
run time cannot magically know that we have created a TimeOfDayI class that 
implements a format method. To allow the Ice run time to instantiate the correct 
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object, we must provide a factory that knows that the Slice TimeOfDay class is 
implemented by our TimeOfDayI class. The Ice::Communicator interface 
provides us with the necessary operations:

["objc:prefix:ICE"]
module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };
};

The object factory’s create operation is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy operation is called by the 
Ice run time when its communicator is destroyed. A possible implementation of 
our object factory is:

@interface ObjectFactory<ICEObjectFactory>
@end

@implementation ObjectFactory
-(ICEObject*) create:(NSString *)type
{
    NSAssert([type isEqualToString:@"::Example::TimeOfDay"]);
    return [[TimeOfDayI alloc] init];
}
@end

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::Example::TimeOfDay". 
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Our implementation of create checks the type ID: if it is 
"::Example::TimeOfDay", it instantiates and returns a TimeOfDayI 
object. For other type IDs, it asserts because it does not know how to instantiate 
other types of objects.

Note that your factory must not autorelease the returned instance. The Ice run 
time takes care of the necessary memory management activities on your behalf.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

id<ICECommunicator> ice = ...;
ObjectFactory *factory =
    [[[ObjectFactory alloc] init] autorelease];
[ic addObjectFactory:factory sliceId:@"::Example::TimeOfDay"];

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::Example::TimeOfDay", it calls the create method of the registered 
ObjectFactory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementa-
tion is doing, may cause undefined behavior when the Ice run time tries to next 
use the factory.

The run time guarantees that destroy will be the last call made on the 
factory, that is, create will not be called concurrently with destroy, and 
create will not be called once destroy has been called. However, the Ice run 
time may make concurrent calls to create.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not (but can) create and register an object factory to transmit instances of 
such a class. Only if a class has operations do you have to define and register an 
object factory.

Using a Category to Implement Operations

An alternative to registering a class factory is to use an Objective-C category to 
implement operations. For example, we could have implemented our format 
method using a category instead:



608 Client-Side Slice-to-Objective-C Mapping

@interface EXTimeOfDay (TimeOfDayI)
@end

@implementation EXTimeOfDay (TimeOfDayI)
-(NSString *) format
{
    return [NSString stringWithFormat:@"%.2d:%.2d:%.2d",
                         self.hour, self.minute, self.second];
}
@end

In this case, there is no need to derive from the generated EXTimeOfDay class 
because we provide the format implementation as a category. There is also no 
need to register a class factory: the Ice run time instantiates an EXTimeOfDay 
instance when a TimeOfDay instance arrives over the wire, and the format 
method is found at run time when it is actually called.

This is a viable alternative approach to implement class operations. However, 
keep in mind that, if the operation implementation requires use of instance vari-
ables that are not defined as part of the Slice definitions of a class, you cannot use 
this approach because Objective-C categories do not permit you to add instance 
variables to a class.

18.15.8 Copying of Classes

Classes implement NSCopying. The behavior is the same as for structures: 
instance variables of value type are copied by assignment, instance variables of 
pointer type are copied by calling retain, that is, the copy is shallow. To 
illustrate this, consider the following class definition:

class Node {
    int i;
    string s;
    Node next;
};

We can initialize two instances of type EXNode as follows:

NSString lastString = [NSString stringWithString:@"last"];
EXNode *last = [EXNode node:99 s:lastString next:nil];

NSString firstString = [NSString stringWithString:@"first"];
EXNode *first = [EXNode node:1 s:firstString next:last];
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This creates the situation shown in Figure 18.2.

Figure 18.2. Two instances of type EXNode.

Now we create a copy of the first node by calling copy:

EXNode *copy = [[first copy] autorelease];

This creates the situation shown in Figure 18.3.

Figure 18.3. EXNode instances after calling copy on first.
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As you can see, the first node is copied, but the last node (pointed at by the next 
instance variable of the first node) is not copied; instead, first and copy now 
both have their next instance variable point at the same last node, and both point 
at the same string.

Cyclic References

One thing to be aware about are cyclic references among classes. As an example, 
we can easily create a cycle by executing the following statements:

EXNode *first = [EXNode node];
ExNode *last = [EXNode node];
first.next = last;
last.next = first;

This makes the next instance variable of the two classes point at each other, 
creating the cycle shown in Figure 18.4.

Figure 18.4. Two nodes with cyclic references.
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Because it is difficult to break cycles manually (and, on the server side, for 
return values and out-parameters, it is impossible to break them), we recommend 
that you avoid cyclic references among classes.6

18.16 Interfaces by Value

Slice permits you to pass an interface by value:

interface ClassBase {
    void someOp();
    // ...
};

interface Processor {
    ClassBase process(ClassBase b);
};

class SomeClass implements ClassBase {
    // ...
};

Note that process accepts and returns a value of type ClassBase. This is not the 
same as passing a ClassBase*, which is a proxy to an object of type ClassBase 
that is possibly remote. Instead, what is passed here is an interface, and the inter-
face is passed by value.

The immediate question is “what does this mean?” After all, interfaces are 
abstract and, therefore, it is impossible to pass an interface by value. The answer is 
that, while an interface cannot be passed, what can be passed is a class that imple-
ments the interface. That class is type compatible with the formal parameter type 
and, therefore, can be passed by value. In the preceding example, SomeClass 
implements ClassBase and, hence, can be passed to and returned from the 
process operation.

The Objective-C mapping maps interface-by-value parameters to ICEOb-
ject*, regardless of the type of the interface. For example, the proxy protocol 
for the process operation is:

-(ICEObject *) process:(ICEObject *)b;

6. A future version of the Objective-C run time may provide a garbage collector similar to the one 
used by Ice for C++.
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This means that you can pass a class of any type to the operation, even if it is not 
type-compatible with the formal parameter type, because all classes derive from 
ICEObject. However, an invocation of process is still type-safe at run time: 
the Ice run time verifies that the class instance that is passed implements the spec-
ified interface; if not, the invocation throws an ICEMarshalException.

Passing interfaces by value as ICEObject* is a consequence of the decision 
to not generate a formal protocol for classes. (If such a protocol would exist, the 
formal parameter type could be id<ProtocolName>. However, as we 
mentioned on page 604, a protocol would require the implementation of a class to 
implement all of its operations, which can be inconvenient. Because it is rare to 
pass interfaces by value (more often, the formal parameter type will be a base 
class instead of a base interface), the minor loss of static type safety is an accept-
able trade-off.

18.17 Asynchronous Method Invocation (AMI)

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and poll or wait for completion of the invocation, or receive 
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether 
a client sent a request synchronously or asynchronously.

To use AMI with Objective-C, you must annotate your Slice definitions with 
an ["objc:ami"] metadata directive. This directive instructs slice2objc to 
generate AMI support in addition to synchronous API (which is always gener-
ated).

The metadata directive applies interfaces or operations, for example:

["objc:ami"] interface I {
  bool isValid();
  float computeRate();
};
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interface J {
  void startProcess();
  ["objc:ami"] int endProcess();
};

In this example, all proxy methods of interface I are generated with support for 
synchronous and asynchronous invocations. In interface J, the startProcess 
operation uses asynchronous dispatch, and the endProcess operation supports 
asynchronous invocation and dispatch.

Specifying metadata at the operation level, rather than at the interface or class 
level, not only minimizes the amount of generated code, but more importantly, it 
minimizes complexity. Although the asynchronous model is more flexible, it is 
also more complicated to use. It is therefore in your best interest to limit the use of 
the asynchronous model to those operations for which it provides a particular 
advantage, while using the simpler synchronous model for the rest.

Proxy Methods

Besides the synchronous proxy methods, slice2objc generates an additional 
proxy method with the name <operation>_async. For example, consider the 
following definition:

["ami"] interface Intf {
    string op(int i, string s, out double d, out bool b);
};

The corresponding asynchronous proxy method is:7

-(BOOL) op_async:(id)target_
                 response:(SEL)response_
                 exception:(SEL)exception_
                 i:(ICEInt)i
                 s:(NSString *)s;

The return value and the parameters work as follows:

• An asynchronous invocation returns YES if it was written to the local trans-
port and NO if it was queued for later delivery.

• The first parameter (target) of an asynchronous operation is the callback 
object that is notified once the invocation completes.

7. Each asynchronous operation actually results in four methods. We will return to these once we 
have covered the basics.
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• The second parameter (response) is the selector of a method of the 
target callback object. This method is called by the Ice run time once the 
operation invocation completes successfully. In other words, this selector is 
used if the operation did not raise an exception.

• The third parameter (exception) is the selector of a method of the target 
callback object. This method is called by the Ice run time once the operation 
invocation completes unsuccessfully. In other words, this selector is used if 
the operation did raise an exception.

• The remaining parameters are the in-parameters for the operation, in the order 
in which they are defined in Slice. (Out-parameters are not visible on the 
invoking end of the API.)

Given a proxy to an object of type Intf, you can invoke op assynchronously as 
follows:

id<EXIntfPrx> proxy = ...; // Get proxy...

@try {
    [proxy op_async:cb response:@selector(opResponse:d:b:)
                    exception:@selector(opException:)
                    i:99 s:@"Hello"]) {
} @catch (ICECommunicatorDestroyedException *ex)
        // Communicator no longer exists.
}

Note that the in-parameters passed to the operation are 99 and "Hello". (We 
will return to the callback parameters shortly.)

In your code, you are unlikely to catch ICECommunicatorDestroyed-
Exception for every asynchronous invocation. Instead, it usually is easier to 
catch this exception higher up in the call hierarchy and deal with it there. (After 
all, this indication most likely indicates that you have initiated program termina-
tion.) We have included the catch handler here for illustration purposes only.

Once the Ice run time has successfully initiated an asynchronous invocation, 
control returns to the caller. The actual invocation is processed in the background 
(if it could not be written to the network immediately). Eventually, the operation 
will complete, either successfully or with an exception.

If the operation raised an exception, the Ice run time delivers the exception to 
the selector that you passed to the invocation. The exception callback method 
accepts a single argument of type ICEException that informs it of the cause of 
the failure. The exception callback must have void return type.
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If the operation completed successfully, the Ice run time calls the response 
callback method whose selector you passed to the invocation (opRe-
sponse:d:b: for the preceding example). The response callback must have 
void return type. The rules for how the parameter list of the response callback 
is formed are as follows:

• If an operation has void return type and does not use out-parameters, the 
response callback has no arguments.

• If an operation has non-void return type, the first parameter of the 
response callback is the return value of the operation.

• If an operation has out-parameters, each out-parameters becomes an argument 
for the response callback, in the same order as the order of out-parameters 
in the corresponding Slice definition. The arguments for out-parameters 
follow the argument for the return value (if any).

For our op_async invocation, here is how we could write our callback object to 
process the results:

@interface Callback
// ...
@end

@implementation Callback
-(void) opResponse:(NSString *)ret d:(ICEDouble) b:(BOOL)b
{
    // Process results...
}

-(void) opException:(ICEException *)ex
{
    // Handle exception...
}
@end

Of course, you are free to add constructors and other methods to your callback 
object. For example, it is common for the callback object to store a reference to an 
object that can further process the results (such as display them to the user). Typi-
cally, the constructor stores that reference in an instance variable.

On page 613, we mentioned that each Slice operation generates four _async 
methods. Here is one of these for our example operation op:
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-(BOOL) op_async:(id)target_
                 response:(SEL)response_
                 exception:(SEL)exception_
                 i:(ICEInt)i
                 s:(NSString *)s
                 context:(ICEContext *)context;

This is exactly the same as the version we have already seen, except for the 
trailing context parameter. This parameter allows you to pass a context with 
asynchronous operations. (See Section 32.12 for details on contexts.)

The remaining two variants also come in “without context” and “with context” 
versions, but also have a sent parameter:

-(BOOL) op_async:(id)target_
                 response:(SEL)response_
                 exception:(SEL)exception_
                 sent:(SEL)sent_
                 i:(ICEInt)i
                 s:(NSString *)s;
-(BOOL) op_async:(id)target_
                 response:(SEL)response_
                 exception:(SEL)exception_
                 sent:(SEL)sent_
                 i:(ICEInt)i
                 s:(NSString *)s
                 context:(ICEContext *)context;

When you invoke an operation asynchronously, the Ice run time attempts to write 
the invocation to the local network buffers immediately. However, if doing so 
would block, the invocation is instead queued for later processing in the back-
ground. In other words, once control returns to you after making an asynchronous 
invocation, you do not know whether the invocation was written to the local trans-
port or whether it will be sent some time later.

The purpose of the sent parameter (which always follows the exception 
parameter and precedes the in-parameters) is to notify you if an asynchronous 
invocation could not be written immediately. If the invocation was queued because 
it could not be written to the local transport, the Ice run time calls the sent call-
back. The sent callback has void return type and accepts no parameters:

@implementation Callback
// ...

-(void) sent
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{
    // Invocation was queued for later delivery.
}
@end

The reason for providing this callback is that, without it, a client could flood the 
Ice run time with asynchronous requests and run out of memory. For example, the 
client might asynchronously invoke operations in a loop. If the network is tempo-
rarily congested, or the client loses connectivity, all the client’s invocations will 
end up being queued in the Ice run time (at least until they time out, if the client 
has configured a timeout). Of course, there is only a limited amount of buffer 
space available and, unless the client realizes that all its invocations are piling up 
in memory, it will die an untimely death.

The sent callback allows you to implement flow-control for asynchronous 
invocations. If an asynchronous invocation returns NO, you know that the invoca-
tion has not been written to the local transport yet. In that case, you can increment 
a counter to keep track of the number of queued invocations. In the sent call-
back, you can decrement that counter again. This mechanism allows you to limit 
the number of queued invocations and avoid running out of memory.

18.17.1 Concurrency Issues

Support for asynchronous invocations in Ice is enabled by the client thread pool 
(see Section 32.10), whose threads are primarily responsible for processing reply 
messages. It is important to understand the concurrency issues associated with 
asynchronous invocations:

• A callback object must not be used for multiple simultaneous invocations. An 
application that needs to aggregate information from multiple replies can 
create a separate object to which the callback objects delegate.

• Calls to the callback object are always made by threads from an Ice thread 
pool, therefore synchronization may be necessary if the application might 
interact with the callback object at the same time as the reply arrives. Further-
more, since the Ice run time never invokes callback methods from the client’s 
calling thread, the client can safely make AMI invocations while holding a 
lock without risk of a deadlock.

• The number of threads in the client thread pool determines the maximum 
number of simultaneous callbacks possible for asynchronous invocations. The 
default size of the client thread pool is one, meaning invocations on callback 
objects are serialized. If the size of the thread pool is increased, the application 
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may require synchronization, and replies can be dispatched out of order. The 
client thread pool can also be configured to serialize messages received over a 
connection so that AMI replies from a connection are dispatched in the order 
they are received (see Section 32.10.4).

• AMI invocations do not use collocation optimization (see Section 32.20). As a 
result, AMI invocations are always sent “over the wire” and thus are 
dispatched by the server thread pool.

18.17.2 Flushing Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides an asynchronous version of this method for applica-
tions that wish to flush batch requests without the risk of blocking.

The proxy method ice_flushBatchRequests_async initiates an 
asynchronous flush. Its only argument is a callback object; this object must define 
an ice_exception method for receiving a notification if an error occurs 
before the message is sent.

If the application is interested in flow control (see page 616), the return value 
of ice_flushBatchRequests_async is a boolean indicating whether the 
message was sent synchronously. Furthermore, the callback object can define an 
ice_sent method that is invoked when an asynchronous flush completes.

18.17.3 Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to 
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time raises CollocationOptimizationException if the 
servant happens to be collocated; the request is sent normally if the servant is not 
collocated. Section 32.21 provides more information about this optimization and 
describes how to disable it when necessary.
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18.18 slice2objc Command-Line Options

The Slice-to-Objective-C compiler, slice2objc, offers the following 
command-line options in addition to the standard options described in 
Section 4.20:

• --include-dir DIR

Modifies #import directives in source files to prepend the path name of 
each header file with the directory DIR.

• --output-dir DIR

Places the generated source files into the specified output directory DIR.

• --depend

Prints makefile dependency information to standard output. No code is gener-
ated when this option is specified. The output generally needs to be filtered 
before it can be included in a makefile; the Ice build system uses the script 
config/makedepend.py for this purpose.

• --depend-xml

Prints dependency information to standard output in XML format. No code is 
generated when this option is specified. This option is intended for use with 
Apple’s Xcode development environment.
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Chapter 19
Developing a File System Client in 
Objective-C

19.1 Chapter Overview

In this chapter, we present the source code for an Objective-C client that accesses 
the file system we developed in Chapter 5 (see Chapter 21 for the corresponding 
server).

19.2 The Objective-C Client

We now have seen enough of the client-side Objective-C mapping to develop a 
complete client to access our remote file system. For reference, here is the Slice 
definition once more:

["objc:prefix:FS"]
module Filesystem {
    exception GenericError {
        string reason;
    };

    interface Node {
        idempotent string name();
    };

    sequence<string> Lines;
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    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };

    sequence<Node*> NodeSeq;

    interface Directory extends Node {
        idempotent NodeSeq list();
    };
};

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

#import <Ice/Ice.h>
#import <Filesystem.h>

#import <Foundation/NSAutoreleasePool.h>
#import <stdio.h>

static void
listRecursive(id<FSDirectoryPrx> dir, int depth)
{
    // ...
}

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    int status = 1;
    id<ICECommunicator> communicator;
    @try
    {
        communicator = [ICEUtil createCommunicator:&argc
                                                   argv:argv];

        // Create a proxy for the root directory
        //
        id<FSDirectoryPrx> rootDir = [FSDirectoryPrx checkedCast:
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                [communicator stringToProxy:
                    @"RootDir:default -p 10000"]];
        if (!rootDir)
            [NSException raise:@"invalid proxy" format:@"nil"];

        // Recursively list the contents of the root directory
        //
        printf("Contents of root directory:\n");
        listRecursive(rootDir, 0);

        status = 0;
    } @catch (NSException *ex) {
        NSLog(@"%@\n", [ex name]);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@\n", [ex name]);
    }

    [pool release];
    return status;
}

1. The code imports a few header files:

1.Ice/Ice.h

This file is always included in both client and server source files. It provides 
definitions that are necessary for accessing the Ice run time.

2.Filesystem.h

This is the header that is generated by the Slice compiler from the Slice defi-
nitions in Filesystem.ice.

3.NSAutoreleasePool.h

The client uses an autorelease pool to reclaim memory before it exits.

4.stdio.h

The implementation of listRecursive prints to stdout.

2. The structure of the code in main follows what we saw in Chapter 3. After 
initializing the run time, the client creates a proxy to the root directory of the 
file system. For this example, we assume that the server runs on the local host 
and listens using the default protocol (TCP/IP) at port 10000. The object iden-
tity of the root directory is known to be RootDir.
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3. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive:

// Print the specified number of tabs.

static void
printIndent(int depth)
{
    while (depth-- > 0)
        putchar('\t');
}

// Recursively print the contents of directory "dir" in tree
// fashion.  For files, show the contents of each file.
// The "depth" parameter is the current nesting level
// (for indentation).

static void
listRecursive(id<FSDirectoryPrx> dir, int depth)
{
    ++depth;
    FSNodeSeq *contents = [dir list];

    for (id<FSNodePrx> node in contents) {
        id<FSDirectoryPrx> dir =
            [FSDirectoryPrx checkedCast:node];
        id<FSFilePrx> file = [FSFilePrx uncheckedCast:node];
        printIndent(depth);
        printf("%s%s\n", [[node name] UTF8String],
                         (dir ? " (directory):" : " (file):"));
        if (dir) {
            listRecursive(dir, depth);
        } else {
            FSLines *text = [file read];
            for (NSString *line in text) {
                printIndent(depth);
                printf("\t%s\n", [line UTF8String]);
            }
        }
    }
}

The function is passed a proxy to a directory to list, and an indent level. (The 
indent level increments with each recursive call and allows the code to print the 
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name of each node at an indent level that corresponds to the depth of the tree at 
that node.) listRecursive calls the list operation on the directory and iter-
ates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the 
id<FSDirectoryPrx> returned by the checkedCast; if the 
checkedCast fails, we know that the Node is-a File and, therefore, an 
uncheckedCast is sufficient to get an id<FSFilePrx>.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of two files and a directory as 
follows:

Figure 19.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):

RootDir

Coleridge README

Kubla_Khan

= Directory

= File



626 Developing a File System Client in Objective-C

                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

19.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Objective-C code 
hardly differs from the code you would write for an ordinary Objective-C 
program. This is one of the biggest advantages of using Ice: accessing a remote 
object is as easy as accessing an ordinary, local Objective-C object. This allows 
you to put your effort where you should, namely, into developing your application 
logic instead of having to struggle with arcane networking APIs. As we will see in 
Chapter 20, this is true for the server side as well, meaning that you can develop 
distributed applications easily and efficiently.
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Chapter 20
Server-Side Slice-to-Objective-C 
Mapping

20.1 Chapter Overview

In this chapter, we present the server-side Slice-to-Objective-C mapping (see 
Chapter 18 for the client-side mapping). Section 20.3 discusses how to initialize 
and finalize the server-side run time, sections 20.4 to 20.6 show how to implement 
interfaces and operations, and Section 20.7 discusses how to register objects with 
the server-side Ice run time.

20.2 Introduction

The mapping for Slice data types to Objective-C is identical on the client side and 
server side, except for operation parameters, which map slightly differently for 
types that have mutable and immutable variants (strings, sequence, and diction-
aries). This means that the mappings in Chapter 18 also apply to the server side. 
However, for the server side, there are a few additional things you need to know, 
specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions
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• how to create servants and register them with the Ice run time.

We discuss these topics in the remainder of this chapter.

20.3 The Server-Side main Function

The main entry point to the Ice run time is represented by the local interface 
ICECommunicator. As for the client side, you must initialize the Ice run time by 
calling createCommunicator (a class method of the ICEUtil class) before 
you can do anything else in your server. createCommunicator returns an 
instance of type id<ICECommunicator>:

int
main(int argc, char* argv[])
{
    // ...
    id<ICECommunicator> communicator =
        [ICEUtil createCommunicator:&argc argv:argv];
    // ...
}

createCommunicator accepts a pointer to argc as well as argv. The class 
method scans the argument vector for any command-line options that are relevant 
to the Ice run time; any such options are removed from the argument vector so, 
when createCommunicator returns, the only options and arguments 
remaining are those that concern your application. If anything goes wrong during 
initialization, createCommunicator throws an exception.

Before leaving your main function, you must call Communicator::destroy. 
The destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy waits for any operation implementations that are still executing in the 
server to complete. In addition, destroy ensures that any outstanding threads 
are joined with and reclaims a number of operating system resources, such as file 
descriptors and memory. Never allow your main function to terminate without 
calling destroy first; doing so has undefined behavior.

The general shape of our server-side main function is therefore as follows:

#import <Ice/Ice.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
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    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];

        // Server code here...

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

Note that the code places the call to createCommunicator into a try block 
and takes care to return the correct exit status to the operating system. Also note 
that the code creates and releases an autorelease pool. This ensures that memory 
will be released before the program terminates.

The catch handler for NSException ensures that the communicator is 
destroyed regardless of whether the program terminates normally or due to an 
exception.

You must not release the communicator that is returned by createCommu-
nicator. As for any operation that returns a pointer, the Ice run time calls 
autorelease on the returned instance, so you do not have to release it your-
self.1

1. This is also the reason why createCommunicator is not called initialize (as it is for 
other language mappings)—initialize would suggest that the return value must be released 
because the method name begins with init.
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Alternative Ways to Create a Communicator

createCommunicator is provided in several versions that accept different 
arguments. Here is the complete list:

• (id<ICECommunicator>) createCommunicator:
    (int*)argc argv:(char*[])argv
    initData:(ICEInitializationData*)initData;

This is the designated initializer—the remaining versions of createCommu-
nicator are implemented in terms of this initializer.

As for the version we saw in the preceding section, this version accepts a 
pointer to argc as well as argv and removes Ice-related command-line 
options from the argument vector.

The initData argument allows you to pass additional initialization infor-
mation to the Ice run time (see below).

• +(id<ICECommunicator>) createCommunicator;

This is equivalent to calling

[ICEUtil createCommunicator:nil argv:nil initData:nil];

• +(id<ICECommunicator>) createCommunicator:
    (int*)argc argv:(char*[])argv;

This is equivalent to calling

[ICEUtil createCommunicator:&argc argv:argv initData:nil];

• +(id<ICECommunicator>) createCommunicator:
    (ICEInitializationData*)initData

This is equivalent to calling

[ICEUtil createCommunicator:nil argv:nil initData:initData];

The initData argument is of type ICEInitializationData. Even 
though it has no Slice definition, this class behaves as if it were a Slice structure 
with the following definition:

#include <Properties.ice>
#include <Logger.ice>

["objc:prefix:ICE"]
module Ice {
    dictionary<string, string> PrefixDict;

    local struct InitializationData {
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        Ice::Properties properties;
        Ice::Logger logger;
    };
};

The properties member allows you to explicitly set property values for the 
communicator to be created. This is useful, for example, if you want to ensure that 
a particular property setting is always used by the communicator. (See Chapter 30 
for more information.)

The logger member sets the logger that the Ice run time uses to log messages. 
If you do not set a logger (leaving the logger member as nil), the run time 
installs a default logger that calls NSLog to log messages. (See Section 32.19 for 
more information on loggers.)

20.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.

20.4.1 Skeleton Classes

On the client side, interfaces map to proxy protocols and classes (see 
Section 18.11). On the server side, interfaces map to skeleton protocols and 
classes. A skeleton is a class that has a method for each operation on the corre-
sponding interface. For example, consider the Slice definition for the Node inter-
face we defined in Chapter 5 once more:

["objc:prefix:FS"]
module Filesystem {
    interface Node {
        idempotent string name();
    };
// ...
};

The Slice compiler generates the following definition for this interface:
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@protocol FSNode <ICEObject>
-(NSString *) name:(ICECurrent *)current;
@end

@interface FSNode : ICEObject
// ...
@end

As you can see, the server-side API consists of a protocol and a class, known as 
the skeleton protocol and skeleton class. The methods of the skeleton class are 
internal to the mapping, so they do not concern us here. The skeleton protocol 
defines one method for each Slice operation. As for the client-side mapping, the 
method name is the same as the name of the corresponding Slice operation. If the 
Slice operation has parameters or a return value, these are reflected in the gener-
ated method, just as they are for the client-side mapping. In addition, each method 
has an additional trailing parameter of type ICECurrent. This parameter 
provides additional information about an invocation to your server-side code (see 
Section 32.6).

As for the client-side mapping, the generated code reflects the fact that all 
Slice interfaces and classes ultimately derive from Ice::Object. As you can see, 
the generated protocol incorporates the ICEObject protocol, and the generated 
class derives from the ICEObject class.

20.4.2 Servant Classes

The Objective-C mapping supports two different ways to implement servants. You 
can implement a servant by deriving from the skeleton class and implementing the 
methods for the Slice operations in your derived class. Alternatively, you can use a 
delegate servant, which need not derive from the skeleton class.

Derived Servants

To provide an implementation for an Ice object, you can create a servant class that 
derives from the corresponding skeleton class. For example, to create a servant for 
the Node interface, you could write:

@interface NodeI : FSNode <FSNode>
{
    @private
        NSString *myName;
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}

+(id) nodei:(NSString *)name;
@end

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can chose any name you prefer 
for your servant classes.)

Note that NodeI derives from FSNode, that is, it derives from its skeleton 
class. In addition, it adopts the FSNode protocol. Adopting the protocol is not 
strictly necessary; however, if you do write your servants this way, the compiler 
emits a warning if you forget to implement one or more Slice operations for the 
corresponding interface, so we suggest that you make it a habit to always have 
your servant class adopt its skeleton protocol.

As far as Ice is concerned, the NodeI class must implement the single name 
method that is defined by its skeleton protocol. That way, the Ice run time gets a 
servant that can respond to the operation that is defined by its Slice interface. You 
can add other methods and instance variables as you see fit to support your imple-
mentation. For example, in the preceding definition, we added a myName instance 
variable and property, a convenience constructor, and dealloc. Not surprisingly, 
the convenience constructor initializes the myName instance variable, the name 
method returns the value of that variable, and dealloc releases it:

@implementation NodeI

+(id) nodei:(NSString *)name
{
    NodeI *instance = [[[NodeI alloc] init] autorelease];
    instance.myName = [[name copy] retain];
    return instance;
}

-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(void) dealloc
{
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    [myName release];
    [super dealloc];
}
@end

Delegate Servants

An alternate way to implement a servant is to use a delegate. ICEObject 
provides two constructors to do this:

@interface ICEObject NSObject <ICEObject, NSCopying>
// ...
-(id) initWithDelegate:(id)delegate;
+(id) objectWithDelegate:(id)delegate;
@end

The delegate parameter specifies an object to which the servant will delegate 
operation invocations. That object need not derive from the skeleton class; the 
only requirement on the delegate is that it must have an implementation of the 
methods corresponding to the Slice operations that are called by clients. As for 
derived servants, we suggest that the delegate adopt the skeleton protocol, so the 
compiler will emit a warning if you forget to implement one or more Slice opera-
tions in the delegate.

The implementation of the Slice operations in a delegate servant is exactly the 
same as for a derived servant.

Delegate servants are useful if you need to derive your servant implementation 
from a base class in order to access some functionality. In that case, you cannot 
also derive the servant from the generated skeleton class. A delegate servant gets 
around Objective-C’s single inheritance limitation and saves you having to write a 
servant class that forwards each operation invocation to the delegate.

Another use case are different interfaces that share their implementation. As 
an example, consider the following Slice definitions:

interface Intf1 {
    void op1();
};

interface Intf2 {
    void op2();
};

If op1 and op2 are substantially similar in their implementation and share common 
state, it can be convenient to implement the servants for Intf1 and Intf2 using a 
common delegate class:
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@interface Intf1AndIntf2 : NSObject<EXIntf1, EXIntf2>
    +(id) intf1AndIntf2;
@end

@implementation Intf1AndIntf2
    +(id) intf1AndIntf2 { /*...*/ }
    -(void) op1:(ICECurrent*)current { /*...*/ }
    -(void) op2:(ICECurrent*)current { /*...*/ }
@end

See page 638 for an example of how to instantiate delegate servants.
Delegate servants do not permit you to override operations that are inherited 

from ICEObject (such as ice_ping). Therefore, if you want to override 
ice_ping, for example, to implement a default servant (see page 968), you must 
use a derived servant.

20.5 Parameter Passing

For each parameter of a Slice operation, the Objective-C mapping generates a 
corresponding parameter for the method in the skeleton. In addition, every method 
has an additional, trailing parameter of type ICECurrent. For example, the 
name operation of the Node interface has no parameters, but the name method of 
the Node skeleton protocol has a single parameter of type ICECurrent. We 
explain the purpose of this parameter in Section 32.6 and will ignore it for now.

Parameter passing on the server side follows the rules for the client side (with 
one exception):

• In-parameters and the return value are passed by value or by pointer, 
depending on the parameter type.

• Out-parameters are passed by pointer-to-pointer.

The exception to the client-side rules concerns types that come in mutable and 
immutable variants (strings, sequences, and dictionaries). For these, the server-
side mapping passes the mutable variant where the client-side passes the immu-
table variant, and vice versa.

To illustrate the rules, consider the following interface that passes string 
parameters in all possible directions:

interface Intf {
    string op(string sin, out string sout);
};
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The generated skeleton protocol for this interface looks as follows:

@protocol EXIntf <ICEObject>
-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current;
@end

As you can see, the in-parameter sin is of type NSMutableString, and out 
parameter and return value are passed as NSString (the opposite of the client-
side mapping). This means that in-parameters are passed to the servant as their 
mutable variant, and it is safe for you to modify such in-parameters. This is useful, 
for example, if a client passes a sequence to the operation, and the operation 
returns the sequence with a few minor changes. In that case, there is no need for 
the operation implementation to copy the sequence. Instead, you can simply 
modify the passed sequence as necessary and return the modified sequence to the 
client.

Here is an example implementation of the operation:

-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current
{
    printf("%s\n", [sin UTF8String]); // In-params are initialized
    *sout = [sin appendString:@"appended"]; // Assign out-param
    return @"Done";                         // Return a string
}

Memory Management for Operations

To avoid leaking memory, you must be aware of how the Ice run time manages 
memory for operation implementations:

• In-parameters are passed to the servant already autoreleased.

• Out-parameters and return values must be returned by the servant as autore-
leased values.

This follows the usual Objective-C convention: the allocator of a value is respon-
sible for releasing it. This is what the Ice run time does for in-parameters, and 
what you are expected to do for out-parameters and return values. These rules also 
mean that it is OK to return an in-parameter as an out-parameter or return value. 
For example:
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-(NSString *) op:(NSMutableString *)sin
                 sout:(NSString **)sout
                 current:(ICECurrent *)current
{
    *sout = sin; // Works fine.
    return sin;  // Works fine.
}

The Ice run time creates and releases a separate autorelease pool for each invoca-
tion. This means that the memory for parameters is reclaimed as soon as the run 
time has marshaled the operation results back to the client.

20.6 Raising Exceptions

To throw an exception from an operation implementation, you simply allocate the 
exception, initialize it, and throw it. For example:

-(void) write:(NSMutableArray *)text current:(ICECurrent *)current
{
    // Try to write the file contents here...
    // Assume we are out of space...
    if (error)
        @throw [FSGenericError genericError:@"file too large"];
}

As for out-parameters and return values, you must take care to throw an autore-
leased exception.

If you throw an “impossible” user exception (a user exception that is not listed 
in the exception specification of the operation), the client receives an Unknow-
nUserException.

If you throw a run-time exception, such as MemoryLimitException, the client 
receives an UnknownLocalException.2 For that reason, you should never throw 
system exceptions from operation implementations. If you do, all the client will 
see is an UnknownLocalException, which does not tell the client anything useful.

2. There are three system exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Section 4.10.4 and 
Chapter 33.
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If you throw an arbitrary Objective-C exception that does not derive from 
ICEException, the client receives an UnknownException.

20.7 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 20.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must follow these steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

20.7.1 Instantiating a Servant

Instantiating a servant means to allocate an instance on the heap:

NodeI *servant = [NodeI nodei:@"Fred"];

This code creates a new NodeI instance. For this example, we used the conve-
nience constructor we saw on page 633. Of course, you are not obliged to define 
such a constructor but, if you do not, you must explicitly call release or 
autorelease on the servant.

For the delegate servants we saw on page 634, instantiation would look as 
follows:

Intf1AndIntf2 *delegate = [Intf1AndIntf2 intf1AndIntf2];
ICEObject *servant = [ICEObject objectWithDelegate:delegate];

20.7.2 Creating an Identity

Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:
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["objc:prefix:ICE"]
module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 32.7 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

ICEIdentity ident = [ICEIdentity identity:"Fred" category:nil];

20.7.3 Activating a Servant

Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the adapter vari-
able, we can write:

[adapter add:servant identity:ident];

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See Chapter 34 for further discussion.
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3. If a servant with that identity is active, the object adapter retrieves the servant 
pointer from the servant map and dispatches the incoming request into the 
correct method on the servant.

Assuming that the object adapter is in the active state (see Section 32.4.5), client 
requests are dispatched to the servant as soon as you call add.

Putting the preceding points together, we can write a simple method that 
instantiates and activates one of our NodeI servants. For this example, we use a 
simple method on our servant called activate that activates a servant in an 
object adapter with the passed identity:

-(void) activate:(id<ICEObjectAdapter>)a
                 name:(NSString *)name
{
    ICEIdentity ident = [ICEIdentity identity:name category:nil];
    [a add:self identity:ident];
}

20.7.4 UUIDs as Identities

The Ice object model assumes that object identities are globally unique. One way 
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14] 
as identities. The ICEUtil class contains a helper function to create such identi-
ties:

@interface ICEUtil : NSObject
+(id) generateUUID;
// ...
@end

When executed, this method returns a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to genera-
teUUID creates a string that differs from all previous ones. You can use a UUID 
such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step:

-(id<ICEObjectPrx>) addWithUUID:(ICEObject*)servant

Note that the operation returns the proxy for the servant just activated.
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20.7.5 Creating Proxies

Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in page 68. However, creation of proxies by the client in this manner 
is usually only done to allow the client access to initial objects for bootstrapping. 
Once the client has an initial proxy, it typically obtains further proxies by invoking 
operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object, as we saw earlier. This means we 
can write:

NodeI *servant = [NodeI nodei:name];
id<FSNodePrx> proxy = [FSNodePrx uncheckedCast:
                        [adapter addWithUUID:servant]];

// Pass proxy to client...

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type id<ICEObjectPrx>.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:

["objc:prefix:ICE"]
module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};
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Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

ICEIdentity *ident = [ICEIdentity identity];
ident.name = [ICEUtil generateUUID];
id<ICEObjectPrx> o = [adapter createProxy:ident];

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy 
to a client and the client invokes an operation on the proxy, the client will receive 
an ObjectNotExistException. (We examine these life cycle issues in more detail 
in Chapter 34.)

20.8 Summary

This chapter presented the server-side Objective-C mapping. Because the 
mapping for Slice data types is almost identical for clients and servers, the server-
side mapping only adds a few additional mechanisms to the client side: a small 
API to initialize and finalize the run time, plus a few rules for how to derive 
servant classes from skeletons and how to register servants with the server-side 
run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 32), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any Objective-C 
mapping rules beyond those we described here.
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Chapter 21
Developing a File System Server in 
Objective-C

21.1 Chapter Overview

In this chapter, we present the source code for an Objective-C server that imple-
ments the file system we developed in Chapter 5 (see Chapter 19 for the corre-
sponding client). The code we present here is fully functional, apart from the 
required interlocking for threads. (We examine threading issues in detail in 
Chapter 31.)

21.2 Implementing a File System Server

We have now seen enough of the server-side Objective-C mapping to implement a 
server for the file system we developed in Chapter 5. (You may find it useful to 
review the Slice definition for our file system in Section 5.4 before studying the 
source code.)

Our server is composed of three source files:

• Server.m

This file contains the server main program.

• FileI.m

This file contains the implementation for the File servants.



644 Developing a File System Server in Objective-C

• DirectoryI.m

This file contains the implementation for the Directory servants.

21.2.1 The Server main Program
Our server main program, in the file Server.m, uses the structure we saw in 
Section 20.3:

#import <Ice/Ice.h>
#import <FileI.h>
#import <DirectoryI.h>

#import <Foundation/NSAutoreleasePool.h>

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter =
            [communicator createObjectAdapterWithEndpoints:
                                @"SimpleFilesystem"
                                endpoints:@"default -p 10000"];

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root =
            [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir



21.2 Implementing a File System Server 645

        //
        DirectoryI *coleridge =
            [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

        // All objects are created, allow client requests now
        //
        [adapter activate];

        // Wait until we are done
        //
        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

There is quite a bit of code here, so let us examine each section in detail:
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#import <Ice/Ice.h>
#import <FileI.h>
#import <DirectoryI.h>

#import <Foundation/NSAutoreleasePool.h>

The code includes the header Ice/Ice.h, which contains the definitions for the 
Ice run time, and the files FileI.h and DirectoryI.h, which contain the 
definitions of our servant implementations. Because we use an autorelease pool, 
we need to include Foundation/NSAutoreleasePool.h as well.

The next part of the source code is mostly boiler plate that we saw previously: 
we create an object adapter, and, towards the end, activate the object adapter and 
call waitForShutdown, which blocks the calling thread until you call shut-
down or destroy on the communicator. (Ice does not make any demands on the 
main thread, so waitForShutdown simply blocks the calling thread; if you 
want to use the main thread for other purposes, you are free to do so.)

int
main(int argc, char* argv[])
{
    NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
    
    int status = 1;
    id<ICECommunicator> communicator = nil;
    @try {
        communicator =
            [ICEUtil createCommunicator:&argc argv:argv];

        id<ICEObjectAdapter> adapter =
            [communicator createObjectAdapterWithEndpoints:
                                @"SimpleFilesystem"
                                endpoints:@"default -p 10000"];

        // ...

        // All objects are created, allow client requests now
        //
        [adapter activate];

        // Wait until we are done
        //
        [communicator waitForShutdown];

        status = 0;
    } @catch (NSException* ex) {
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        NSLog(@"%@", ex);
    }

    @try {
        [communicator destroy];
    } @catch (NSException* ex) {
        NSLog(@"%@", ex);
    }

    [pool release];
    return status;
}

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 21.1.

Figure 21.1. A small file system.

As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters: the name of the directory or file to be created and 
the servant for the parent directory. (For the root directory, which has no parent, 
we pass a nil parent.) Thus, the statement

DirectoryI *root = [DirectoryI directoryi:@"/" parent:nil];

creates the root directory, with the name "/" and no parent directory.
Here is the code that establishes the structure in Figure 21.1:

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root =
            [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
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        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir
        //
        DirectoryI *coleridge =
            [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

We first create the root directory and a file README within the root directory. 
(Note that we pass the servant for the root directory as the parent pointer when we 
create the new node of type FileI.)

After creating each servant, the code calls activate on the servant. (We will 
see the definition of this member function shortly.) The activate member 
function adds the servant to the ASM.

The next step is to fill the file with text:

        // Create the root directory (with name "/" and no parent)
        //
        DirectoryI *root =
            [DirectoryI directoryi:@"/" parent:nil];
        [root activate:adapter];

        // Create a file called "README" in the root directory
        //
        FileI *file = [FileI filei:@"README" parent:root];
        NSMutableArray *text = [NSMutableArray arrayWithObject:
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            @"This file system contains a collection of poetry."];
        [file write:text current:nil];
        [file activate:adapter];

        // Create a directory called "Coleridge" in the root dir
        //
        DirectoryI *coleridge =
            [DirectoryI directoryi:@"Coleridge" parent:root];
        [coleridge activate:adapter];

        // Create a file called "Kubla_Khan"
        // in the Coleridge directory
        //
        file = [FileI filei:@"Kubla_Khan" parent:coleridge];
        text = [NSMutableArray arrayWithObjects:
                            @"In Xanadu did Kubla Khan",
                            @"A stately pleasure-dome decree:",
                            @"Where Alph, the sacred river, ran",
                            @"Through caverns measureless to man",
                            @"Down to a sunless sea.",
                            nil];
        [file write:text current:nil];
        [file activate:adapter];

Recall from Section 18.8.3 that Slice string sequences map to NSArray or 
NSMutableArray, depending on the parameter direction. Here, we instantiate 
that array and add a line of text to it.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

        [file write:text current:nil];

This code is interesting: the server code invokes an operation on one of its own 
servants. Because the call happens via the pointer to the servant (of type FileI) 
and not via a proxy (of type id<FilePrx>), the Ice run time does not know that 
this call is even taking place—such a direct call into a servant is not mediated by 
the Ice run time in any way and is dispatched as an ordinary Objective-C function 
call. The operation implementation in the servant expects a current object. In this 
case, we pass nil (which is fine because the operation implementation does not use 
it anyway).

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 21.1.



650 Developing a File System Server in Objective-C

21.2.2 The Servant Class Definitions

We must provide servants for the concrete interfaces in our Slice specification, 
that is, we must provide servants for the File and Directory interfaces in the 
Objective-C classes FileI and DirectoryI. This means that our servant 
classes look as follows:

#import <Filesystem.h>

@interface FileI : FSFile <FSFile>
// ...
@end

@interface DirectoryI : FSDirectory <FSDirectory>
// ...
@end

Each servant class derives from its skeleton class and adopts its skeleton protocol.
We now can think about how to implement our servants. One thing that is 

common to all nodes is that they have a name and a parent directory. As we saw 
earlier, we pass these details to a convenience constructor, which also takes care of 
calling autorelease on the new servant.

In addition, we will use UUIDs as the object identities for files and directories. 
This relieves us of the need to otherwise come up with a unique identity for each 
servant (such as path names, which would only complicate our implementation). 
Because the list operation returns proxies to nodes, and because each proxy 
carries the identity of the servant it denotes, this means that our servants must 
store their own identity, so we can create proxies to them when clients ask for 
them.

For File servants, we also need to store the contents of the file, leading to the 
following definition for the FileI class:

#import <Filesystem.h>

@class DirectoryI;

@interface FileI : FSFile <FSFile>
{
    @private
        NSString *myName;
        DirectoryI *parent;
        ICEIdentity *ident;
        NSArray *lines;
}
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@property(nonatomic, retain) NSString *myName;
@property(nonatomic, retain) DirectoryI *parent;
@property(nonatomic, retain) ICEIdentity *ident;
@property(nonatomic, retain) NSArray *lines;

+(id) filei:(NSString *)name parent:(DirectoryI *)parent;
-(void) write:(NSMutableArray *)text
              current:(ICECurrent *)current;
-(void) activate:(id<ICEObjectAdapter>)a;
@end

The instance variables store the name, parent node, identity, and the contents of 
the file. The filei convenience constructor instantiates the servant, remembers 
the name and parent directory, assigns a new identity, and calls autorelease.

Note that the only Slice operation we have defined here is the write method. 
This is necessary because, as we saw previously, the code in Server.m calls this 
method to initialize the files it creates.

For directories, the requirements are similar. They also need to store a name, 
parent directory, and object identity. Directories are also responsible for keeping 
track of the child nodes. We can store these nodes in an array of proxies. This 
leads to the following definition:

#import <Filesystem.h>

@interface DirectoryI : FSDirectory <FSDirectory>
{
    @private
        NSString *myName;
        DirectoryI *parent;
        ICEIdentity *ident;
        NSMutableArray *contents;
}
@property(nonatomic, retain) NSString *myName;
@property(nonatomic, retain) DirectoryI *parent;
@property(nonatomic, retain) ICEIdentity *ident;
@property(nonatomic, retain) NSMutableArray *contents;
        
+(id) directoryi:(NSString *)name parent:(DirectoryI *)parent;
-(void) addChild:(id<FSNodePrx>)child;
-(void) activate:(id<ICEObjectAdapter>)a;
@end

Because the code in Server.m does not call any Slice operations on directory 
servants, we have not declared any of the corresponding methods. (We will see the 
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purpose of the addChild method shortly.) As for files, the convenience 
constructor creates the servant, remembers the name and parent, and assigns an 
object identity, as well as calling autorelease.

21.2.3 The Servant Implementation

Let us now turn to how to implement each of the methods for our servants.

Implementing FileI

The implementation of the name, read, and write operations for files is trivial, 
returning or updating the corresponding instance variable:

-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(NSArray *) read:(ICECurrent *)current
{
    return lines;
}

-(void) write:(NSMutableArray *)text current:(ICECurrent *)current
{
    self.lines = text;
}

Note that this constitutes the complete implementation of the Slice operations for 
files.

Here is the convenience constructor:

+(id) filei:(NSString *)name parent:(DirectoryI *)parent
{
    FileI *instance = [[[FileI alloc] init] autorelease];
    if(instance == nil)
    {
        return nil;
    }
    instance.myName = name;
    instance.parent = parent;
    instance.ident = [ICEIdentity
        identity:[ICEUtil generateUUID] category:nil];
    return instance;
}
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After allocating and autoreleasing the instance, the constructor initializes the 
instance variables. The only interesting part of this code is how we create the iden-
tity for the servant. generateUUID is a class method of the ICEUtil class that 
returns a UUID. We assign this UUID to the name member of the identity. (The 
category is unused—see Section 32.5 for more information.)

We saw earlier that the server calls activate after it creates each servant. 
Here is the implementation of this method:

-(void) activate:(id<ICEObjectAdapter>)a
{
    id<FSNodePrx> thisNode =
        [FSNodePrx uncheckedCast:[a add:self identity:ident]];
    [parent addChild:thisNode];
}

This is how our code informs the Ice run time of the existence of a new servant. 
The call to add on the object adapter adds the servant and object identity to the 
adapter’s servant map. In other words, this step creates the link between the object 
identity (which is embedded in proxies), and the actual Objective-C class instance 
that provides the behavior for the Slice operations.

add returns a proxy to the servant, of type id<ICEObjectPrx>. Because 
the contents instance variable of directory servants stores proxies of type 
id<FSNodePrx> (and addChild expects a proxy of that type), we down-cast 
the returned proxy to id<FSNodePrx>. In this case, because we know that the 
servant we just added to the adapter is indeed a servant that implements the opera-
tions on the Slice Node interface, we can use an uncheckedCast.

The call to addChild connects the new file to its parent directory.
Finally, we need a dealloc function so we do not leak the memory for the 

servant’s instance variables:

-(void) dealloc
{
    [myName release];
    [parent release];
    [ident release];
    [lines release];
    [super dealloc];
}

Implementing DirectoryI

The implementation of the Slice operations for directories is just as simple as for 
files:
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-(NSString *) name:(ICECurrent *)current
{
    return myName;
}

-(NSArray *) list:(ICECurrent *)current
{
    return contents;
}

Because the contents instance variable stores the proxies for child nodes of the 
directory, the list operation simply returns that variable.

The convenience constructor looks much like the one for file servants:

+(id) directoryi:(NSString *)name parent:(DirectoryI *)parent
{
    DirectoryI *instance =
        [[[DirectoryI alloc] init] autorelease];
    if(instance == nil)
    {
        return nil;
    }
    instance.myName = name;
    instance.parent = parent;
    instance.ident = [ICEIdentity
        identity:(parent ? [ICEUtil generateUUID] : @"RootDir")
        category:nil];
    instance.contents = [[NSMutableArray alloc] init];
    return instance;
}

The only noteworthy differences are that, for the root directory (which has no 
parent), the code uses "RootDir" as the identity. (As we saw on page 623, the 
client knows that this is the identity of the root directory and uses it to create its 
proxy.)

The addChild method connects our nodes into a hierarchy by updating the 
contents instance variable. That way, each directory knows which nodes are 
contained in it:

-(void) addChild:(id<FSNodePrx>)child
{
     [contents addObject:child];
}

Finally, the activate and dealloc methods are very much like the corre-
sponding methods for files:
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-(void) activate:(id<ICEObjectAdapter>)a
{
    id<FSNodePrx> thisNode
        = [FSNodePrx uncheckedCast:[a add:self identity:ident]];
    [parent addChild:thisNode];
}

-(void) dealloc
{
    [myName release];
    [parent release];
    [ident release];
    [contents release];
    [super dealloc];
}

21.3 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same for a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.

Note that the server code we presented here is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the lines instance variable while another thread updates it. Obviously, 
if that happens, we may write or return garbage or, worse, crash the server. 
However, it is trivial to make the read and write operations thread-safe with a 
few lines of code. We discuss how to write thread-safe servant implementations in 
Chapter 31.
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Chapter 22
Client-Side Slice-to-Python Mapping

22.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Python mapping (see 
Chapter 24 for the server-side mapping). One part of the client-side Python 
mapping concerns itself with rules for representing each Slice data type as a corre-
sponding Python type; we cover these rules in Section 22.3 to Section 22.10. 
Another part of the mapping deals with how clients can invoke operations, pass 
and receive parameters, and handle exceptions. These topics are covered in 
Section 22.11 to Section 22.13. Slice classes have the characteristics of both data 
types and interfaces and are covered in Section 22.14. Section 22.15 discusses 
asynchronous invocations. Code generation issues are discussed in Section 22.16, 
while Section 22.17 addresses the use of Slice checksums.

22.2 Introduction

The client-side Slice-to-Python mapping defines how Slice data types are trans-
lated to Python types, and how clients invoke operations, pass parameters, and 
handle errors. Much of the Python mapping is intuitive. For example, Slice 
sequences map to Python lists, so there is essentially nothing new you have to 
learn in order to use Slice sequences in Python.
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The Python API to the Ice run time is fully thread-safe. Obviously, you must 
still synchronize access to data from different threads. For example, if you have 
two threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 22.11 to 
Section 22.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Python mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the Python mapping rules. In particular, looking through the generated code in 
order to discern how to use the Python mapping is likely to be inefficient, due to 
the amount of detail. Of course, occasionally, you may want to refer to the gener-
ated code to confirm a detail of the mapping, but we recommend that you other-
wise use the material presented here to see how to write your client-side code.

22.3 Mapping for Identifiers

Slice identifiers map to an identical Python identifier. For example, the Slice iden-
tifier Clock becomes the Python identifier Clock. There is one exception to this 
rule: if a Slice identifier is the same as a Python keyword or is an identifier 
reserved by the Ice run time (such as checkedCast), the corresponding Python 
identifier is prefixed with an underscore. For example, the Slice identifier while is 
mapped as _while.1

The mapping does not modify a Slice identifier that matches the name of a 
Python built-in function because it can always be accessed by its fully-qualified 
name. For example, the built-in function hash can also be accessed as 
__builtin__.hash.

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as 
possible.
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22.4 Mapping for Modules

Slice modules map to Python modules with the same name as the Slice module. 
The mapping preserves the nesting of the Slice definitions. See Section 22.16.2 
for information about the mapping’s use of Python packages.

22.5 The Ice Module

All of the APIs for the Ice run time are nested in the Ice module, to avoid clashes 
with definitions for other libraries or applications. Some of the contents of the 
Ice module are generated from Slice definitions; other parts of the Ice module 
provide special-purpose definitions that do not have a corresponding Slice defini-
tion. We will incrementally cover the contents of the Ice module throughout the 
remainder of the book.

A Python application can load the Ice run time using the import statement:

import Ice

If the statement executes without error, the Ice run time is loaded and available for 
use. You can determine the version of the Ice run time you have just loaded by 
calling the stringVersion function:

icever = Ice.stringVersion()

22.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to Python types as shown in Table 22.1.

Table 22.1. Mapping of Slice built-in types to Python.

Slice Python

bool bool

byte int

short int
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Although Python supports arbitrary precision in its integer types, the Ice run time 
validates integer values to ensure they have valid ranges for their declared Slice 
types.

22.6.1 String Mapping

String values returned as the result of a Slice operation (including return values, 
out parameters, and data members) are always represented as instances of 
Python’s 8-bit string type. These string values contain UTF-8 encoded strings 
unless the program has installed a string converter, in which case string values use 
the converter’s native encoding instead. See Section 32.24 for more information 
on string converters.

Legal string input values for a remote Slice operation are shown below:

• None

Ice marshals an empty string whenever None is encountered.

• 8-bit string objects

Ice assumes that all 8-bit string objects contain valid UTF-8 encoded strings 
unless the program has installed a string converter, in which case Ice assumes 
that 8-bit string objects use the native encoding expected by the converter.

• Unicode objects

Ice converts a Unicode object into UTF-8 and marshals it directly. If a string 
converter is installed, it is not invoked for Unicode objects.

int int

long long

float double

double double

string string

Table 22.1. Mapping of Slice built-in types to Python.

Slice Python
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22.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

22.7.1 Mapping for Enumerations

Python does not have an enumerated type, so the Slice enumerations are emulated 
using a Python class: the name of the Slice enumeration becomes the name of the 
Python class; for each enumerator, the class contains an attribute with the same 
name as the enumerator. For example:

enum Fruit { Apple, Pear, Orange };

The generated Python class looks as follows:

class Fruit(object):
    def __init__(self, val):
        assert(val >= 0 and val < 3)
        self.value = val

    # ...

Fruit.Apple = Fruit(0)
Fruit.Pear = Fruit(1)
Fruit.Orange = Fruit(2)

Each instance of the class has a value attribute providing the integer value of the 
enumerator. Note that the generated class also defines a number of Python special 
methods, such as __str__ and __cmp__, which we have not shown.

Given the above definitions, we can use enumerated values as follows:

f1 = Fruit.Apple
f2 = Fruit.Orange

if f1 == Fruit.Apple:                # Compare with constant
    # ...

if f1 == f2:                         # Compare two enums
    # ...

if f2.value == Fruit.Apple.value:    # Use integer values
    # ...
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elif f2.value == Fruit.Pear.value:
    # ...
elif f2.value == Fruit.Orange.value:
    # ...

As you can see, the generated class enables natural use of enumerated values. The 
Fruit class attributes are preinitialized enumerators that you can use for initial-
ization and comparison. You may also instantiate an enumerator explicitly by 
passing its integer value to the constructor, but you must make sure that the passed 
value is within the range of the enumeration; failure to do so will result in an 
assertion failure:

favoriteFruit = Fruit(4) # Assertion failure!

22.7.2 Mapping for Structures

Slice structures map to Python classes with the same name. For each Slice data 
member, the Python class contains a corresponding attribute. For example, here is 
our Employee structure from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Python mapping generates the following definition for this structure:

class Employee(object):
    def __init__(self, number=0, firstName='', lastName=''):
        self.number = number
        self.firstName = firstName
        self.lastName = lastName

    def __hash__(self):
        # ...

    def __eq__(self, other):
        # ...

    def __str__(self):
        # ...
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The constructor initializes each of the attributes to a default value appropriate for 
its type. You can also declare different default values for members of primitive 
and enumerated types, as discussed in Section 4.9.2.

The __hash__ method returns a hash value for the structure based on the 
value of all its data members.

The __eq__ method returns true if all members of two structures are (recur-
sively) equal.

The __str__ method returns a string representation of the structure.

22.7.3 Mapping for Sequences

Slice sequences map by default to Python lists; the only exception is a sequence of 
bytes, which maps by default to a string in order to lower memory utilization and 
improve throughput. This use of native types means that the Python mapping does 
not generate a separate named type for a Slice sequence. It also means that you 
can take advantage of all the inherent functionality offered by Python’s native 
types. For example:

sequence<Fruit> FruitPlatter;

We can use the FruitPlatter sequence as shown below:

platter = [ Fruit.Apple, Fruit.Pear ]
assert(len(platter) == 2)
platter.append(Fruit.Orange)

The Ice run time validates the elements of a tuple or list to ensure that they are 
compatible with the declared type; a ValueError exception is raised if an 
incompatible type is encountered.

Allowable Sequence Values

Although each sequence type has a default mapping, the Ice run time allows a 
sender to use other types as well. Specifically, a tuple is also accepted for a 
sequence type that maps to a list, and in the case of a byte sequence, the sender is 
allowed to supply a tuple or list of integers as an alternative to a string2.

2. Using a string for a byte sequence bypasses the validation step and avoids an extra copy, resulting 
in much greater throughput than a tuple or list. For larger byte sequences, the use of a string is 
strongly recommended.



666 Client-Side Slice-to-Python Mapping

Furthermore, the Ice run time accepts objects that implement Python’s buffer 
protocol as legal values for sequences of all primitive types except strings. For 
example, you can use the array module to create a buffer that is transferred 
much more efficiently than a tuple or list. Consider the two sequence values in the 
sample code below:

import array
...
seq1 = array.array("i", [1, 2, 3, 4, 5])
seq2 = [1, 2, 3, 4, 5]

The values have the same on-the-wire representation, but they differ greatly in 
marshaling overhead because the buffer can be traversed more quickly and 
requires no validation.

Note that the Ice run time has no way of knowing what type of elements a 
buffer contains, therefore it is the application’s responsibility to ensure that a 
buffer is compatible with the declared sequence type.

Customizing the Sequence Mapping

The previous section described the allowable types that an application may use 
when sending a sequence. That kind of flexibility is not possible when receiving a 
sequence, because in this case it is the Ice run time’s responsibility to create the 
container that holds the sequence.

As stated earlier, the default mapping for most sequence types is a list, and for 
byte sequences the default mapping is a string. Unless otherwise indicated, an 
application always receives sequences as the container type specified by the 
default mapping. If it would be more convenient to receive a sequence as a 
different type, you can customize the mapping by annotating your Slice defini-
tions with metadata. Table 22.2 describes the metadata directives supported by the 
Python mapping.

Table 22.2. Custom metadata directives for the sequence mapping.

Directive Description

python:seq:default Use the default mapping.

python:seq:list Map to a Python list.
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A metadata directive may be specified when defining a sequence, or when a 
sequence is used as a parameter, return value or data member. If specified at the 
point of definition, the directive affects all occurrences of that sequence type 
unless overridden by another directive at a point of use. The following Slice defi-
nitions illustrate these points:

sequence<int> IntList; // Uses list by default
["python:seq:tuple"] sequence<int> IntTuple; // Defaults to tuple

sequence<byte> ByteString; // Uses string by default
["python:seq:list"] sequence<byte> ByteList; // Defaults to list

struct S {
    IntList i1; // list
    IntTuple i2; // tuple
    ["python:seq:tuple"] IntList i3; // tuple
    ["python:seq:list"] IntTuple i4; // list
    ["python:seq:default"] IntTuple i5; // list

    ByteString b1; // string
    ByteList b2; // list
    ["python:seq:list"] ByteString b3; // list
    ["python:seq:tuple"] ByteString b4; // tuple
    ["python:seq:default"] ByteList b5; // string
};

interface I {
    IntList op1(ByteString s1, out ByteList s2);

    ["python:seq:tuple"]
    IntList op2(["python:seq:list"] ByteString s1,
                ["python:seq:tuple"] out ByteList s2);
};

The operation op2 and the data members of structure S demonstrate how to over-
ride the mapping for a sequence at the point of use.

python:seq:tuple Map to a Python tuple.

Table 22.2. Custom metadata directives for the sequence mapping.

Directive Description
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It is important to remember that these metadata directives only affect the 
receiver of the sequence. For example, the data members of structure S are popu-
lated with the specified sequence types only when the Ice run time unmarshals an 
instance of S. In the case of an operation, custom metadata affects the client when 
specified for the operation’s return type and output parameters, whereas metadata 
affects the server for input parameters.

22.7.4 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

As for sequences, the Python mapping does not create a separate named type for 
this definition. Instead, all dictionaries are simply instances of Python’s dictionary 
type. For example:

em = {}

e = Employee()
e.number = 31
e.firstName = "James"
e.lastName = "Gosling"

em[e.number] = e

The Ice run time validates the elements of a dictionary to ensure that they are 
compatible with the declared type; a ValueError exception is raised if an 
incompatible type is encountered.

22.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;



22.9 Mapping for Exceptions 669

The generated definitions for these constants are shown below:

AppendByDefault = True
LowerNibble = 15
Advice = "Don't Panic!"
TheAnswer = 42
PI = 3.1416
FavoriteFruit = Fruit.Pear

As you can see, each Slice constant is mapped to a Python attribute with the same 
name as the constant.

22.9 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 22.1

Figure 22.1. Inheritance structure for Ice exceptions.

The ancestor of all exceptions is exceptions.Exception, from which 
Ice.Exception is derived. Ice.LocalException and Ice.UserEx-
ception are derived from Ice.Exception and form the base for all run-time 
and user exceptions.

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:

Ice.LocalException Ice.UserException

Ice.Exception

Specific Run-Time Exceptions... Specific User Exceptions...

exceptions.Exception
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exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map as follows:

class GenericError(Ice.UserException):
    def __init__(self, reason=''):
        self.reason = reason

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

class BadTimeVal(GenericError):
    def __init__(self, reason=''):
        GenericError.__init__(self, reason)

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

class BadZoneName(GenericError):
    def __init__(self, reason=''):
        GenericError.__init__(self, reason)

    def ice_name(self):
        # ...

    def __str__(self):
        # ...

Each Slice exception is mapped to a Python class with the same name. The inheri-
tance structure of the Slice exceptions is preserved for the generated classes, so 
BadTimeVal and BadZoneName inherit from GenericError.

Each exception member corresponds to an attribute of the instance, which the 
constructor initializes to a default value appropriate for its type. You can also 
declare different default values for members of primitive and enumerated types, as 
discussed in Section 4.10.2. Although BadTimeVal and BadZoneName do not 
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declare data members, their constructors still accept a value for the inherited data 
member reason in order to pass it to the constructor of the base exception Gener-
icError.

Each exception also defines the ice_name method to return the name of the 
exception, and the special method __str__ to return a stringified representation 
of the exception and its members.

All user exceptions are derived from the base class Ice.UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice.UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice.LocalException, and you can catch all Ice excep-
tions with a handler for Ice.Exception.

22.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice.LocalException (which, in turn, derives from Ice.Exception).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 117. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice.LocalException

This is the root of the inheritance tree for run-time exceptions.

• Ice.UserException

This is the root of the inheritance tree for user exceptions.

• Ice.TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice.ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining run-time exceptions; the 
fine-grained error handling offered by the remainder of the hierarchy is of interest 
mainly in the implementation of the Ice run time. However, there is one exception 
you will probably be interested in specifically: Ice.ObjectNotExistEx-
ception. This exception is raised if a client invokes an operation on an Ice 
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object that no longer exists. In other words, the client holds a dangling reference 
to an object that probably existed some time in the past but has since been perma-
nently destroyed.

22.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a method on a local class instance that represents the remote 
object. This makes the mapping easy and intuitive to use because, for all intents 
and purposes (apart from error semantics), making a remote procedure call is no 
different from making a local procedure call.

22.11.1 Proxy Classes

On the client side, Slice interfaces map to Python classes with methods that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

interface Simple {
    void op();
};

The Python mapping generates the following definition for use by the client:

class SimplePrx(Ice.ObjectPrx):
    def op(self, _ctx=None):
        # ...

    # ...

In the client’s address space, an instance of SimplePrx is the local ambassador 
for a remote instance of the Simple interface in a server and is known as a proxy 
instance. All the details about the server-side object, such as its address, what 
protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice.ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a method of the same 
name. In the preceding example, we find that the operation op has been mapped to 
the method op. Note that op accepts an optional trailing parameter _ctx repre-
senting the operation context. This parameter is a Python dictionary for use by the 
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Ice run time to store information about how to deliver a request. You normally do 
not need to use it. (We examine the context parameter in detail in Chapter 32. The 
parameter is also used by IceStorm—see Chapter 44.)

Proxy instances are always created on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly.

A value of None denotes the null proxy. The null proxy is a dedicated value 
that indicates that a proxy points “nowhere” (denotes no object).

22.11.2 The Ice.ObjectPrx Class
All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice.ObjectPrx. ObjectPrx provides a number of methods:

class ObjectPrx(object):
    def equals(self, other):
    def ice_getIdentity(self):
    def ice_isA(self, id):
    def ice_id(self):
    def ice_ping(self):
    # ...

The methods behave as follows:

• equals

This operation compares two proxies for equality. Note that all aspects of 
proxies are compared by this operation, such as the communication endpoints 
for the proxy. This means that, in general, if two proxies compare unequal, 
that does not imply that they denote different objects. For example, if two 
proxies denote the same Ice object via different transport endpoints, equals 
returns false even though the proxies denote the same object.

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:
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proxy1 = ...
proxy2 = ...
id1 = proxy1.ice_getIdentity()
id2 = proxy2.ice_getIdentity()

if id1 == id2:
    # proxy1 and proxy2 denote the same object
else:
    # proxy1 and proxy2 denote different objects

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

proxy = ...
if proxy != None and proxy.ice_isA("::Printer"):
    # proxy denotes a Printer object
else:
    # proxy denotes some other type of object

Note that we are testing whether the proxy is None before attempting to 
invoke the ice_isA method. This avoids getting a run-time error if the proxy 
is None.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be "::Base", or it might be something more derived, such as 
"::Derived".

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExist-
Exception or ConnectTimeoutException.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call. (We discuss these methods in 
Chapter 32.)
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22.11.3 Casting Proxies

The Python mapping for a proxy also generates two static methods:

class SimplePrx(Ice.ObjectPrx):
    # ...

    def checkedCast(proxy, facet=''):
        # ...
    checkedCast = staticmethod(checkedCast)

    def uncheckedCast(proxy, facet=''):
        # ...
    uncheckedCast = staticmethod(uncheckedCast)

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a reference to a proxy of 
type SimplePrx; otherwise, if the passed proxy denotes an object of a different 
type (or if the passed proxy is None), the cast returns None.

The method names checkedCast and uncheckedCast are reserved for 
use in proxies. If a Slice interface defines an operation with either of those names, 
the mapping escapes the name in the generated proxy by prepending an under-
score. For example, an interface that defines an operation named checkedCast is 
mapped to a proxy with a method named _checkedCast.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

obj = ...       # Get a proxy from somewhere...

simple = SimplePrx.checkedCast(obj)
if simple != None:
    # Object supports the Simple interface...
else:
    # Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the implementation of a proxy in the server has definite knowledge of the type of 
an object. As a result, a checkedCast may throw a ConnectTimeoutEx-
ception or an ObjectNotExistException.

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
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run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

obj = ...                               # Get proxy...
process = ProcessPrx.uncheckedCast(obj) # No worries...
process.launch(40, 60)                  # Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

22.11.4 Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
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tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:

proxy = communicator.stringToProxy(...)
proxy = proxy.ice_timeout(10000)

A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a down-cast after using a factory 
method. The example below demonstrates these semantics:

base = communicator.stringToProxy(...)
hello = Demo.HelloPrx.checkedCast(base)
hello = hello.ice_timeout(10000) # Type is preserved
hello.sayHello()

The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return a base proxy that you must subsequently down-cast to 
an appropriate type.

22.11.5 Object Identity and Proxy Comparison

Proxy objects support comparison using the built-in relational operators as well as 
the cmp function. Note that proxy comparison uses all of the information in a 
proxy for the comparison. This means that not only the object identity must match 
for a comparison to succeed, but other details inside the proxy, such as the 
protocol and endpoint information, must be the same. In other words, comparison 
tests for proxy identity, not object identity. A common mistake is to write code 
along the following lines:

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if p1 != p2:
    # p1 and p2 denote different objects       # WRONG!
else:
    # p1 and p2 denote the same object         # Correct

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each uses a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
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be contacted via several different transport endpoints). In other words, if two 
proxies compare equal, we know that the two proxies denote the same object 
(because they are identical in all respects); however, if two proxies compare 
unequal, we know absolutely nothing: the proxies may or may not denote the 
same object.

To compare the object identities of two proxies, you can use a helper function 
in the Ice module:

def proxyIdentityCompare(lhs, rhs)
def proxyIdentityAndFacetCompare(lhs, rhs)

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if Ice.proxyIdentityCompare(p1, p2) != 0:
    # p1 and p2 denote different objects       # Correct
else:
    # p1 and p2 denote the same object         # Correct

The function returns 0 if the identities are equal, 1 if p1 is less than p2, and 1 if 
p1 is greater than p2. (The comparison uses name as the major sort key and 
category as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but 
compares both the identity and the facet name (see Chapter 33).

22.12 Mapping for Operations

As we saw in Section 22.11, for each operation on an interface, the proxy class 
contains a corresponding method with the same name. To invoke an operation, 
you call it via the proxy. For example, here is part of the definitions for our file 
system from Section 5.4:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};
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The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

node = ...          # Initialize proxy
name = node.name()  # Get name via RPC

22.12.1 Normal and idempotent Operations
You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy method is concerned, idempotent has no effect. For 
example, consider the following interface:

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy class for this is:

class ExamplePrx(Ice.ObjectPrx):
    def op1(self, _ctx=None):
        # ...

    def op2(self, _ctx=None):
        # ...

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the two methods to look the same.

22.12.2 Passing Parameters

In Parameters

All parameters are passed by reference in the Python mapping; it is guaranteed 
that the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;
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dictionary<long, StringSeq> StringTable;

interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

class ClientToServerPrx(Ice.ObjectPrx):
    def op1(self, i, f, b, s, _ctx=None):
        # ...

    def op2(self, ns, ss, st, _ctx=None):
        # ...

    def op3(self, proxy, _ctx=None):
        # ...

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

p = ...                                 # Get proxy...

p.op1(42, 3.14f, True, "Hello world!")  # Pass simple literals

i = 42
f = 3.14f
b = True
s = "Hello world!"
p.op1(i, f, b, s)                       # Pass simple variables

ns = NumberAndString()
ns.x = 42
ns.str = "The Answer"
ss = [ "Hello world!" ]
st = {}
st[0] = ns
p.op2(ns, ss, st)                       # Pass complex variables

p.op3(p)                                # Pass proxy

Out Parameters

As in Java, Python functions do not support reference arguments. That is, it is not 
possible to pass an uninitialized variable to a Python function in order to have its 
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value initialized by the function. The Java mapping (see Section 10.12.2) over-
comes this limitation with the use of “holder classes” that represent each out 
parameter. The Python mapping takes a different approach, one that is more 
natural for Python users.

The semantics of out parameters in the Python mapping depend on whether 
the operation returns one value or multiple values. An operation returns multiple 
values when it has declared multiple out parameters, or when it has declared a 
non-void return type and at least one out parameter.

If an operation returns multiple values, the client receives them in the form of 
a result tuple. A non-void return value, if any, is always the first element in the 
result tuple, followed by the out parameters in the order of declaration.

If an operation returns only one value, the client receives the value itself.

Here is the same Slice definition we saw on page 679 once more, but this time 
with all parameters being passed in the out direction:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Python mapping generates the following code for this definition:

class ServerToClientPrx(Ice.ObjectPrx):
    def op1(self, _ctx=None):
        # ...

    def op2(self, _ctx=None):
        # ...

    def op3(self, _ctx=None):
        # ...
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Given a proxy to a ServerToClient interface, the client code can receive the 
results as in the following example:

p = ...              # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()

The operations have no in parameters, therefore no arguments are passed to the 
proxy methods. Since op1 and op2 return multiple values, their result tuples are 
unpacked into separate values, whereas the return value of op3 requires no 
unpacking.

Parameter Type Mismatches

Although the Python compiler cannot check the types of arguments passed to a 
function, the Ice run time does perform validation on the arguments to a proxy 
invocation and reports any type mismatches as a ValueError exception.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
sequences, dictionaries, and strings all can be None, but the corresponding Slice 
types do not have the concept of a null value. To make life with these types easier, 
whenever you pass None as a parameter or return value of type sequence, 
dictionary, or string, the Ice run time automatically sends an empty sequence, 
dictionary, or string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested 
data types, members that are sequences, dictionaries, or strings automatically 
arrive as an empty value at the receiving end. This saves you having to explicitly 
initialize, for example, every string element in a large sequence before sending the 
sequence in order to avoid a run-time error. Note that using null parameters in this 
way does not create null semantics for Slice sequences, dictionaries, or strings. As 
far as the object model is concerned, these do not exist (only empty sequences, 
dictionaries, and strings do). For example, it makes no difference to the receiver 
whether you send a string as None or as an empty string: either way, the receiver 
sees an empty string.
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22.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 22.10) 
and, if the operation has an exception specification, may also throw user excep-
tions (see Section 22.9). Suppose we have the following simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Python exceptions, so you can simply enclose one 
or more operation invocations in a try–except block:

child = ...        # Get child proxy...

try:
    child.askToCleanUp()
except Tantrum, t:
    print "The child says:", t.reason

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will 
usually be handled by exception handlers higher in the hierarchy. For example:

import traceback, Ice

def run():
    child = ...        # Get child proxy...
    try:
        child.askToCleanUp()
    except Tantrum, t:
        print "The child says:", t.reason
        child.scold()  # Recover from error...
    child.praise()     # Give positive feedback...

try:
    # ...
    run()
    # ...
except Ice.Exception:
    traceback.print_exc()
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This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

22.14 Mapping for Classes

Slice classes are mapped to Python classes with the same name. The generated 
class contains an attribute for each Slice data member (just as for structures and 
exceptions). Consider the following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Python mapping generates the following code for this definition:

class TimeOfDay(Ice.Object):
    def __init__(self, hour=0, minute=0, second=0):
        # ...
        self.hour = hour
        self.minute = minute
        self.second = second

    def ice_staticId():
        return '::M::TimeOfDay'
    ice_staticId = staticmethod(ice_staticId)

    # ...

    #
    # Operation signatures.
    #
    # def format(self, current=None):

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice.Object. This means 
that all classes implicitly inherit from Ice.Object, which is the ultimate 
ancestor of all classes. Note that Ice.Object is not the same as 
Ice.ObjectPrx. In other words, you cannot pass a class where a proxy is 
expected and vice versa.
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2. The constructor defines an attribute for each Slice data member.

3. The class defines the static method ice_staticId.

4. A comment summarizes the method signatures for each Slice operation.

We will discuss these items in the subsections below.

22.14.1 Inheritance from Ice.Object
Like interfaces, classes implicitly inherit from a common base class, 
Ice.Object. However, as shown in Figure 22.2, classes inherit from 
Ice.Object instead of Ice.ObjectPrx (which is at the base of the inheri-
tance hierarchy for proxies). As a result, you cannot pass a class where a proxy is 
expected (and vice versa) because the base types for classes and proxies are not 
compatible.

Figure 22.2. Inheritance from Ice.ObjectPrx and Ice.Object.

Ice.Object contains a number of member functions:

class Object(object):
    def ice_isA(self, id, current=None):
        # ...

    def ice_ping(self, current=None):
        # ...

    def ice_ids(self, current=None):
        # ...

    def ice_id(self, current=None):
        # ...

    def ice_staticId():
        # ...
    ice_staticId = staticmethod(ice_staticId)

Ice.ObjectPrx

Proxies... Classes...

Ice.Object
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    def ice_preMarshal(self):
        # ...

    def ice_postUnmarshal(self):
        # ...

The member functions of Ice.Object behave as follows:

• ice_isA

This method returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This method returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This method returns the actual run-time type ID of the object. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_staticId

This method is generated in each class and returns the static type ID of the 
class.

• ice_preMarshal

The Ice run time invokes this method prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.

• ice_postUnmarshal

The Ice run time invokes this method after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

Note that neither Ice.Object nor the generated class override __hash__ and 
__eq__, so the default implementations apply.
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22.14.2 Data Members of Classes

By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding attribute.

Although Python provides no standard mechanism for restricting access to an 
object’s attributes, by convention an attribute whose name begins with an under-
score signals the author’s intent that the attribute should only be accessed by the 
class itself or by one of its subclasses. You can employ this convention in your 
Slice classes using the protected metadata directive. The presence of this direc-
tive causes the Slice compiler to prepend an underscore to the mapped name of the 
data member. For example, the TimeOfDay class shown below has the protected 
metadata directive applied to each of its data members:

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

class TimeOfDay(Ice.Object):
    def __init__(self, hour=0, minute=0, second=0):
        # ...
        self._hour = hour
        self._minute = minute
        self._second = second

    # ...

    #
    # Operation signatures.
    #
    # def format(self, current=None):

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:
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["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

22.14.3 Class Constructors

Classes have a constructor that assigns to each data member a default value appro-
priate for its type. You can also declare different default values for data members 
of primitive and enumerated types, as discussed in Section 4.11.1.

For derived classes, the constructor has one parameter for each of the base 
class’s data members, plus one parameter for each of the derived class’s data 
members, in base-to-derived order.

22.14.4 Operations of Classes

Operations of classes are mapped to methods in the generated class. This means 
that, if a class contains operations (such as the format operation of our TimeOfDay 
class), you must provide an implementation of the operation in a class that is 
derived from the generated class. For example:

class TimeOfDayI(TimeOfDay):
    def __init__(self, hour=0, minute=0, second=0):
        TimeOfDay.__init__(self, hour, minute, second)

    def format(self, current=None):
        return "%02d:%02d:%02d" %\
            (self.hour, self.minute, self.second)

A Slice class such as TimeOfDay that declares or inherits an operation is inherently 
abstract. Python does not support the notion of abstract classes or abstract 
methods, therefore the mapping merely summarizes the required method signa-
tures in a comment for your convenience. Furthermore, the mapping generates 
code in the constructor of an abstract class to prevent it from being instantiated 
directly; any attempt to do so raises a RuntimeError exception.

You may notice that the mapping for an operation adds an optional trailing 
parameter named current. For now, you can ignore this parameter and pretend 
it does not exist. (We look at it in more detail in Section 32.6.)
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22.14.5 Class Factories

Having created a class such as this, we have an implementation and we can instan-
tiate the TimeOfDayI class, but we cannot receive it as the return value or as an 
out-parameter from an operation invocation. To see why, consider the following 
simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:

class ObjectFactory(Ice.ObjectFactory):
    def create(self, type):
        if type == M.TimeOfDay.ice_staticId():
            return TimeOfDayI()
        assert(False)
        return None
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    def destroy(self):
        # Nothing to do
        pass

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it matches, the method instanti-
ates and returns a TimeOfDayI object. For other type IDs, the method asserts 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

ic = ...   # Get Communicator...
ic.addObjectFactory(ObjectFactory(),
                    M.TimeOfDay.ice_staticId())

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
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be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

22.15 Asynchronous Method Invocation (AMI)

NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation. 
This section describes this API. You can find documentation for the previous API 
in Appendix K. Note that the old API is deprecated and will be removed in a 
future release.

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and poll or wait for completion of the invocation, or receive 
a callback when the invocation completes.

AMI is transparent to the server: there is no way for the server to tell whether 
a client sent a request synchronously or asynchronously.

22.15.1 Basic Asynchronous API

Consider the following simple Slice definition:

module Demo { 
    interface Employees {
        string getName(int number);
    };
};
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Proxy Methods

Besides the synchronous proxy methods, the Python mapping generates the 
following asynchronous proxy methods:

def begin_getName(self, number, _response=None, _ex=None,
                  _sent=None, _ctx=None)
def end_getName(self, result)

As you can see, the single getName operation results in begin_getName and 
end_getName methods. The begin_ method optionally accepts a per-invoca-
tion context (see Section 32.12) and callbacks (see Section 22.15.4).

• The begin_getName method sends (or queues) an invocation of getName. 
This method does not block the calling thread.

• The end_getName method collects the result of the asynchronous invoca-
tion. If, at the time the calling thread calls end_getName, the result is not 
yet available, the calling thread blocks until the invocation completes. Other-
wise, if the invocation completed some time before the call to 
end_getName, the method returns immediately with the result.

A client could call these methods as follows:

e = EmployeePrx.checkedCast(...)
r = e.begin_getName(99)

# Continue to do other things here...

name = e.end_getName(r)

Because begin_getName does not block, the calling thread can do other things 
while the operation is in progress.

Note that begin_getName returns a value of type AsyncResult. This 
value contains the state that the Ice run time requires to keep track of the asyn-
chronous invocation. You must pass the AsyncResult that is returned by the 
begin_ method to the corresponding end_ method.

The begin_ method has one parameter for each in-parameter of the corre-
sponding Slice operation. The end_ method accepts the AsyncResult object 
as its only argument and returns the out-parameters using the same semantics as 
for regular synchronous invocations (see page 680). For example, consider the 
following operation:

double op(int inp1, string inp2, out bool outp1, out long outp2);

The begin_op and end_op methods have the following signature:
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def begin_op(self, inp1, inp2, ...)
def end_op(self, result)

The call to end_op returns the following tuple:

doubleValue, outp1, outp2 = p.end_op(result)

Exception Handling

If an invocation raises an exception, the exception is thrown by the end_ method, 
even if the actual error condition for the exception was encountered during the 
begin_ method (“on the way out”). The advantage of this behavior is that all 
exception handling is located with the code that calls the end_ method (instead of 
being present twice, once where the begin_ method is called, and again where 
the end_ method is called).

There is one exception to the above rule: if you destroy the communicator and 
then make an asynchronous invocation, the begin_ method throws Communi-
catorDestroyedException. This is necessary because, once the run time is 
finalized, it can no longer throw an exception from the end_ method.

The only other exception that is thrown by the begin_ and end_ methods is 
RuntimeError. This exception indicates that you have used the API incor-
rectly. For example, the begin_ method throws this exception if you call an 
operation that has a return value or out-parameters on a oneway proxy. Similarly, 
the end_ method throws this exception if you use a different proxy to call the 
end_ method than the proxy you used to call the begin_ method, or if the 
AsyncResult you pass to the end_ method was obtained by calling the 
begin_ method for a different operation.

22.15.2 The AsyncResult Class

The AsyncResult that is returned by the begin_ method encapsulates the 
state of the asynchronous invocation:

class AsyncResult:
    def getCommunicator()
    def getConnection()
    def getProxy()
    def getOperation()

    def isCompleted()
    def waitForCompleted()
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    def isSent()
    def waitForSent()

    def sentSynchronously()

The methods have the following semantics:

• getCommunicator()

This method returns the communicator that sent the invocation.

• getConnection()

This method returns the connection that was used for the invocation.

• getProxy()

This method returns the proxy that was used to call the begin_ method.

• getOperation()

This method returns the name of the operation.

• isCompleted()

This method returns true if, at the time it is called, the result of an invocation 
is available, indicating that a call to the end_ method will not block the caller. 
Otherwise, if the result is not yet available, the method returns false.

• waitForCompleted()

This method blocks the caller until the result of an invocation becomes avail-
able.

• isSent()

When you call the begin_ method, the Ice run time attempts to write the 
corresponding request to the client-side transport. If the transport cannot 
accept the request, the Ice run time queues the request for later transmission. 
isSent returns true if, at the time it is called, the request has been written to 
the local transport (whether it was initially queued or not). Otherwise, if the 
request is still queued, isSent returns false.

• waitForSent()

This method blocks the calling thread until a request has been written to the 
client-side transport.

• sentSynchronously()

This method returns true if a request was written to the client-side transport 
without first being queued. If the request was initially queued, sentSyn-
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chronously returns false (independent of whether the request is still in the 
queue or has since been written to the client-side transport).

22.15.3 Polling for Completion
The AsyncResult methods allow you to poll for call completion. Polling is 
useful in a variety of cases. As an example, consider the following simple inter-
face to transfer files from client to server:

interface FileTransfer
{
    void send(int offset, ByteSeq bytes);
};

The client repeatedly calls send to send a chunk of the file, indicating at which 
offset in the file the chunk belongs. A naïve way to transmit a file would be along 
the following lines:

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0
while not file.eof():
    bytes = file.read(chunkSize)  # Read a chunk
    ft.send(offset, bytes)        # Send the chunk
    offset += len(bytes.length)

This works, but not very well: because the client makes synchronous calls, it 
writes each chunk on the wire and then waits for the server to receive the data, 
process it, and return a reply before writing the next chunk. This means that both 
client and server spend much of their time doing nothing—the client does nothing 
while the server processes the data, and the server does nothing while it waits for 
the client to send the next chunk.

Using asynchronous calls, we can improve on this considerably:

file = open(...)
ft = FileTransferPrx.checkedCast(...)
chunkSize = ...
offset = 0

results = []
numRequests = 5

while not file.eof():
    bytes = file.read(chunkSize) # Read a chunk
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    # Send up to numRequests + 1 chunks asynchronously.
    r = ft.begin_send(offset, bytes)
    offset += len(bytes)

    # Wait until this request has been passed to the transport.
    r.waitForSent()
    results.append(r)

    # Once there are more than numRequests, wait for the least
    # recent one to complete.
    while len(results) > numRequests:
        r = results[0]
        del results[0]
        r.waitForCompleted()

# Wait for any remaining requests to complete.
while len(results) > 0:
    r = results[0]
    del results[0]
    r.waitForCompleted()

With this code, the client sends up to numRequests + 1 chunks before it waits 
for the least recent one of these requests to complete. In other words, the client 
sends the next request without waiting for the preceding request to complete, up to 
the limit set by numRequests. In effect, this allows the client to “keep the pipe 
to the server full of data”: the client keeps sending data, so both client and server 
continuously do work.

Obviously, the correct chunk size and value of numRequests depend on the 
bandwidth of the network as well as the amount of time taken by the server to 
process each request. However, with a little testing, you can quickly zoom in on 
the point where making the requests larger or queuing more requests no longer 
improves performance. With this technique, you can realize the full bandwidth of 
the link to within a percent or two of the theoretical bandwidth limit of a native 
socket connection.

22.15.4 Completion Callbacks

The begin_ method accepts three optional callback arguments that allow you to 
be notified asynchronously when a request completes. Here is the signature of the 
begin_getName method from Section 22.15.1 once more:
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def begin_getName(self, number, _response=None, _ex=None,
                  _sent=None, _ctx=None)

The value you pass for the response callback (_response), the exception call-
back (_ex), or the sent callback (_sent) argument must be a callable object 
such as a function or method. The response callback is invoked when the request 
completes successfully, and the exception callback is invoked when the operation 
raises an exception. (We discuss the sent callback in Section 22.15.7.)

For example, consider the following callbacks for an invocation of the 
getName operation:

def getNameCB(name):
    print "Name is: " + name

def failureCB(ex):
    print "Exception is: " + str(ex)

The response callback parameters depend on the operation signature. If the opera-
tion has a non-void return type, the first parameter of the response callback is the 
return value. The return value (if any) is followed by a parameter for each out-
parameter of the corresponding Slice operation, in the order of declaration.

The exception callback is invoked if the invocation fails because of an Ice run 
time exception, or if the operation raises a user exception.

To inform the Ice run time that you want to receive callbacks for the comple-
tion of the asynchronous call, you pass the callbacks to the begin_ method:

e = EmployeesPrx.checkedCast(...)

e.begin_getName(99, getNameCB, failureCB)

Although the signature of an asynchronous proxy method implies that all of the 
callbacks are optional and therefore can be supplied in any combination, Ice 
enforces the following semantics at run time:

• If you omit all callbacks, you must call the end_ method explicitly as 
described in Section 22.15.1.

• If you supply either a response callback or a sent callback (or both), you must 
also supply an exception callback.

• You may omit the response callback for an operation that returns no data (that 
is, an operation with a void return type and no out-parameters).
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22.15.5 Sharing State Between the begin_ and end_ Method

It is common for the end_ method to require access to some state that is estab-
lished by the code that calls the begin_ method. As an example, consider an 
application that asynchronously starts a number of operations and, as each opera-
tion completes, needs to update different user interface elements with the results. 
In this case, the begin_ method knows which user interface element should 
receive the update, and the end_ method needs access to that element.

Assuming that we have a Widget class that designates a particular user inter-
face element, you could pass different widgets by storing the widget to be used as 
a member of a callback class:

class MyCallback(object):
    def __init__(self, w):
        self._w = w

    def getNameCB(self, name):
        self._w.writeString(name)

    def failureCB(self, ex):
        print "Exception is: " + str(ex)

For this example, we assume that widgets have a writeString method that 
updates the relevant UI element.

When you call the begin_ method, you pass the appropriate callback 
instance to inform the end_ method how to update the display:

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

# Invoke the getName operation with different widget callbacks.
cb1 = MyCallback(widget1)
e.begin_getName(99, cb1.getNameCB, cb1.failureCB)
cb2 = MyCallback(widget2)
e.begin_getName(24, cb2.getNameCB, cb2.failureCB)

The callback class provides a simple and effective way for you to pass state 
between the point where an operation is invoked and the point where its results are 
processed. Moreover, if you have a number of operations that share common state, 
you can pass the same callback instance to multiple invocations. (If you do this, 
your callback methods may need to use synchronization.)

For those situations in which a stateless callback is preferred, you can use a 
lambda function to pass state to a callback. Consider the following example:
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def getNameCB(name, w):
    w.writeString(name)

def failureCB(ex):
    print "Exception is: " + str(ex)

e = EmployeesPrx.checkedCast(...)
widget1 = ...
widget2 = ...

# Use lambda functions to pass state.
e.begin_getName(99, lambda name: getNameCB(name, widget1),
                failureCB)
e.begin_getName(24, lambda name: getNameCB(name, widget2),
                failureCB)

This strategy eliminates the need to encapsulate shared state in a callback class. 
Since lambda functions can refer to variables in the enclosing scope, they provide 
a convenient way to pass state directly to your callback.

22.15.6 Oneway Invocations

You can invoke operations via oneway proxies asynchronously, provided the oper-
ation has void return type, does not have any out-parameters, and does not raise 
user exceptions. If you call the begin_ method on a oneway proxy for an opera-
tion that returns values or raises a user exception, the begin_ method throws a 
RuntimeError.

The callback signatures look exactly as for a twoway invocation, but the 
response method is never called and may be omitted.

22.15.7 Flow Control

Asynchronous method invocations never block the thread that calls the begin_ 
method: the Ice run time checks to see whether it can write the request to the local 
transport. If it can, it does so immediately in the caller’s thread. (In that case, 
AsyncResult.sentSynchronously returns true.) Alternatively, if the 
local transport does not have sufficient buffer space to accept the request, the Ice 
run time queues the request internally for later transmission in the background. (In 
that case, AsyncResult.sentSynchronously returns false.)
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This creates a potential problem: if a client sends many asynchronous requests 
at the time the server is too busy to keep up with them, the requests pile up in the 
client-side run time until, eventually, the client runs out of memory.

The API provides a way for you to implement flow control by counting the 
number of requests that are queued so, if that number exceeds some threshold, the 
client stops invoking more operations until some of the queued operations have 
drained out of the local transport.

You can supply a sent callback to be notified when the request was success-
fully sent:

def response(name):
    # ...

def exception(ex):
    # ...

def sent(sentSynchronously):
    # ...

You inform the Ice run time that you want to be informed when a call has been 
passed to the local transport as usual:

e.begin_getName(99, response, exception, sent)

If the Ice run time can immediately pass the request to the local transport, it does 
so and invokes the sent callback from the thread that calls the begin_ method. 
On the other hand, if the run time has to queue the request, it calls the sent call-
back from a different thread once it has written the request to the local transport. 
The boolean sentSynchronously parameter indicates whether the request 
was sent synchronously or was queued.

The sent callback allows you to limit the number of queued requests by 
counting the number of requests that are queued and decrementing the count when 
the Ice run time passes a request to the local transport.

22.15.8 Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides asynchronous versions of this method so you can 
flush batch requests asynchronously.



22.16 Code Generation 701

begin_ice_flushBatchRequests and 
end_ice_flushBatchRequests are proxy methods that flush any batch 
requests queued by that proxy.

In addition, similar methods are available on the communicator and the 
Connection object that is returned by AsyncResult.getConnection. 
These methods flush batch requests sent via the same communicator and via the 
same connection, respectively.

22.15.9 Concurrency

The Ice run time always invokes your callback methods from a separate thread, 
with one exception: it calls the sent callback from the thread calling the 
begin_ method if the request could be sent synchronously. In the sent call-
back, you know which thread is calling the callback by looking at the sentSyn-
chronously parameter.

22.16 Code Generation

The Python mapping supports two forms of code generation: dynamic and static.

22.16.1 Dynamic Code Generation

Using dynamic code generation, Slice files are “loaded” at run time and dynami-
cally translated into Python code, which is immediately compiled and available 
for use by the application. This is accomplished using the Ice.loadSlice 
function, as shown in the following example:

Ice.loadSlice("Color.ice")
import M

print "My favorite color is", M.Color.blue

For this example, we assume that Color.ice contains the following definitions:

module M {
    enum Color { red, green, blue };
};

The code imports module M after the Slice file is loaded because module M is not 
defined until the Slice definitions have been translated into Python.
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Ice.loadSlice Options

The Ice.loadSlice function behaves like a Slice compiler in that it accepts 
command-line arguments for specifying preprocessor options and controlling 
code generation. The arguments must include at least one Slice file.

The function has the following Python definition:

def Ice.loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, cmd, 
which must be a string. The optional second argument can be used to pass addi-
tional command-line arguments as a list; this is useful when the caller already has 
the arguments in list form. The function always returns None.

For example, the following calls to Ice.loadSlice are functionally equiv-
alent:

Ice.loadSlice("-I/opt/IcePy/slice Color.ice")
Ice.loadSlice("-I/opt/IcePy/slice", ["Color.ice"])
Ice.loadSlice("", ["-I/opt/IcePy/slice", "Color.ice"])

In addition to the standard compiler options described in Section 4.20, 
Ice.loadSlice also supports the following command-line options:

• --all

Generate code for all Slice definitions, including those from included files.

• --checksum

Generate checksums for Slice definitions. See Section 22.17 for more infor-
mation.

Locating Slice Files

If your Slice files depend on Ice types, you can avoid hard-coding the path name 
of your Ice installation directory by calling the Ice.getSliceDir function:

Ice.loadSlice("-I" + Ice.getSliceDir() + " Color.ice")

This function attempts to locate the slice subdirectory of your Ice installation 
using an algorithm that succeeds for the following scenarios:

• Installation of a binary Ice archive

• Installation of an Ice source distribution using make install

• Installation via a Windows installer

• RPM installation on Linux

• Execution inside a compiled Ice source distribution
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If the slice subdirectory can be found, getSliceDir returns its absolute path 
name, otherwise the function returns None.

Loading Multiple Files

You can specify as many Slice files as necessary in a single invocation of 
Ice.loadSlice, as shown below:

Ice.loadSlice("Syscall.ice Process.ice")

Alternatively, you can call Ice.loadSlice several times:

Ice.loadSlice("Syscall.ice")
Ice.loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of Ice.loadSlice 
generates Python code only for the named file. For example, suppose 
Syscall.ice includes Process.ice as follows:

// Syscall.ice
#include <Process.ice>
...

If you call Ice.loadSlice("-I. Syscall.ice"), Python code is not 
generated for the Slice definitions in Process.ice or for any definitions that 
may be included by Process.ice. If you also need code to be generated for 
included files, one solution is to load them individually in subsequent calls to 
Ice.loadSlice. However, it is much simpler, not to mention more efficient, to 
use the --all option instead:

Ice.loadSlice("--all -I. Syscall.ice")

When you specify --all, Ice.loadSlice generates Python code for all Slice 
definitions included directly or indirectly from the named Slice files.

There is no harm in loading a Slice file multiple times, aside from the addi-
tional overhead associated with code generation. For example, this situation could 
arise when you need to load multiple top-level Slice files that happen to include a 
common subset of nested files. Suppose that we need to load both 
Syscall.ice and Kernel.ice, both of which include Process.ice. The 
simplest way to load both files is with a single call to Ice.loadSlice:

Ice.loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for 
Process.ice, the generated code is structured so that the interpreter ignores 
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duplicate definitions. We could have avoided generating unnecessary code with 
the following sequence of steps:

Ice.loadSlice("--all -I. Syscall.ice")
Ice.loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely 
avoid this situation, and the overhead of code generation is usually not significant 
enough to justify such an effort.

22.16.2 Static Code Generation

You should be familiar with static code generation if you have used other Slice 
language mappings, such as C++ or Java. Using static code generation, the Slice 
compiler slice2py (see Section 22.16.4) generates Python code from your 
Slice definitions.

Compiler Output

For each Slice file X.ice, slice2py generates Python code into a file named 
X_ice.py3 in the output directory. The default output directory is the current 
working directory, but a different directory can be specified using the 
--output-dir option.

In addition to the generated file, slice2py creates a Python package for 
each Slice module it encounters. A Python package is nothing more than a subdi-
rectory that contains a file with a special name (__init__.py). This file is 
executed automatically by Python when a program first imports the package. It is 
created by slice2py and must not be edited manually. Inside the file is Python 
code to import the generated files that contain definitions in the Slice module of 
interest.

For example, the Slice files Process.ice and Syscall.ice both define 
types in the Slice module OS. First we present Process.ice:

module OS {
    interface Process {
        void kill();
    };
};

3. Using the file name X.py would create problems if X.ice defined a module named X, therefore 
the suffix _ice is appended to the name of the generated file.
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And here is Syscall.ice:

#include <Process.ice>
module OS {
    interface Syscall {
        Process getProcess(int pid);
    };
};

Next, we translate these files using the Slice compiler:

> slice2py -I. Process.ice Syscall.ice

If we list the contents of the output directory, we see the following entries:

OS/
Process_ice.py
Syscall_ice.py

The subdirectory OS is the Python package that slice2py created for the Slice 
module OS. Inside this directory is the special file __init__.py that contains 
the following statements:

import Process_ice
import Syscall_ice

Now when a Python program executes import OS, the two files 
Process_ice.py and Syscall_ice.py are implicitly imported.

Subsequent invocations of slice2py for Slice files that also contain defini-
tions in the OS module result in additional import statements being added to 
OS/__init__.py. Be aware, however, that import statements may persist in 
__init__.py files after a Slice file is renamed or becomes obsolete. This situa-
tion may manifest itself as a run-time error if the interpreter can no longer locate 
the generated file while attempting to import the package. It may also cause more 
subtle problems, if an obsolete generated file is still present and being loaded 
unintentionally. In general, it is advisable to remove the package directory and 
regenerate it whenever the set of Slice files changes.

A Python program may also import a generated file explicitly, using a state-
ment such as import Process_ice. Typically, however, it is more conve-
nient to import the Python module once, rather than importing potentially several 
individual files that comprise the module, especially when you consider that the 
program must still import the module explicitly in order to make its definitions 
available. For example, it is much simpler to state

import OS
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rather than the following alternative:

import Process_ice
import Syscall_ice
import OS

In situations where a Python package is unnecessary or undesirable, the 
--no-package option can be specified to prevent the creation of a package. In 
this case, the application must import the generated file(s) explicitly, as shown 
above.

Include Files

It is important to understand how slice2py handles include files. In the absence 
of the --all option, the compiler does not generate Python code for Slice defini-
tions in included files. Rather, the compiler translates Slice #include state-
ments into Python import statements in the following manner:

1. Determine the full pathname of the include file.

2. Create the shortest possible relative pathname for the include file by iterating 
over each of the include directories (specified using the -I option) and 
removing the leading directory from the include file if possible.

For example, if the full pathname of an include file is 
/opt/App/slice/OS/Process.ice, and we specified the options 
-I/opt/App and -I/opt/App/slice, then the shortest relative path-
name is OS/Process.ice after removing /opt/App/slice.

3. Replace any slashes with underscores, remove the .ice extension, and 
append _ice. Continuing our example from the previous step, the translated 
import statement becomes

import OS_Process_ice

There is a potential problem here that must be addressed. The generated import 
statement shown above expects to find the file OS_Process_ice.py some-
where in Python’s search path. However, slice2py uses a different default 
name, Process_ice.py, when it compiles Process.ice. To resolve this 
issue, we must use the --prefix option when compiling Process.ice:

> slice2py --prefix OS_ Process.ice

The --prefix option causes the compiler to prepend the specified prefix to the 
name of each generated file. When executed, the above command creates the 
desired file name: OS_Process_ice.py.
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It should be apparent by now that generating Python code for a complex Ice 
application requires a bit of planning. In particular, it is imperative that you be 
consistent in your use of #include statements, include directories, and 
--prefix options to ensure that the correct file names are used at all times.

Of course, these precautionary steps are only necessary when you are 
compiling Slice files individually. An alternative is to use the --all option and 
generate Python code for all of your Slice definitions into one Python source file. 
If you do not have a suitable Slice file that includes all necessary Slice definitions, 
you could write a “master” Slice file specifically for this purpose.

22.16.3 Static Versus Dynamic Code Generation

There are several issues to consider when evaluating your requirements for code 
generation.

Application Considerations

The requirements of your application generally dictate whether you should use 
dynamic or static code generation. Dynamic code generation is convenient for a 
number of reasons:

• it avoids the intermediate compilation step required by static code generation

• it makes the application more compact because the application requires only 
the Slice files, not the assortment of files and directories produced by static 
code generation

• it reduces complexity, which is especially helpful during testing, or when 
writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

• when an application uses a large number of Slice definitions and the startup 
delay must be minimized

• when it is not feasible to deploy Slice files with the application

• when a number of applications share the same Slice files

• when Python code is required in order to utilize third-party Python tools.

Mixing Static and Dynamic Generation

Using a combination of static and dynamic translation in an application can 
produce unexpected results. For example, consider a situation where a dynami-
cally-translated Slice file includes another Slice file that was statically translated:
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// Slice
#include <Glacier2/Session.ice>

module App {
    interface SessionFactory {
        Glacier2::Session* createSession();
    };
};

The Slice file Session.ice is statically translated, as are all of the Slice files 
included with the Ice run time.

Assuming the above definitions are saved in App.ice, let’s execute a simple 
Python script:

# Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")

import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier): # Error
    def checkPermissions(self, userId, password):
        return (True, "")

The code looks reasonable, but running it produces the following error:

'module' object has no attribute 'PermissionsVerifier'

Normally, importing the Glacier2 module as we have done here would load all of 
the Python code generated for the Glacier2 Slice files. However, since App.ice 
has already included a subset of the Glacier2 definitions, the Python interpreter 
ignores any subsequent requests to import the entire module, and therefore the 
PermissionsVerifier type is not present.

One way to address this problem is to import the statically-translated modules 
first, prior to loading Slice files dynamically:

# Python
import Ice, Glacier2 # Import Glacier2 before App.ice is loaded
Ice.loadSlice("-I/opt/Ice/slice App.ice")

class MyVerifier(Glacier2.PermissionsVerifier): # OK
    def checkPermissions(self, userId, password):
        return (True, "")

The disadvantage of this approach in a non-trivial application is that it breaks 
encapsulation, forcing one Python module to know what other modules are doing. 
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For example, suppose we place our PermissionsVerifier implementation 
in a module named verifier.py:

# Python
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
    def checkPermissions(self, userId, password):
        return (True, "")

Now that the use of Glacier2 definitions is encapsulated in verifier.py, we 
would like to remove references to Glacier2 from the main script:

# Python
import Ice
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # Error
v = verifier.MyVerifier()

Unfortunately, executing this script produces the same error as before. To fix it, 
we have to break the verifier module’s encapsulation and import the 
Glacier2 module in the main script because we know that the verifier 
module requires it:

# Python
import Ice, Glacier2
Ice.loadSlice("-I/opt/Ice/slice App.ice")
...
import verifier # OK
v = verifier.MyVerifier()

Although breaking encapsulation in this way might offend our sense of good 
design, it is a relatively minor issue.

Another solution is to import the necessary submodules explicitly. We can 
safely remove the Glacier2 reference from our main script after rewriting veri-
fier.py as shown below:

# Python
import Glacier2_PermissionsVerifier_ice
import Glacier2
class MyVerifier(Glacier2.PermissionsVerifier):
    def checkPermissions(self, userId, password):
        return (True, "")

Using the rules defined in Section 22.16.2, we can derive the name of the module 
containing the code generated for PermissionsVerifier.ice and import it 
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directly. We need a second import statement to make the Glacier2 definitions 
accessible in this module.

22.16.4 slice2py Command-Line Options
The Slice-to-Python compiler, slice2py, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --all

Generate code for all Slice definitions, including those from included files.

• --checksum

Generate checksums for Slice definitions.

• --prefix PREFIX

Use PREFIX as the prefix for generated file names. See Section 22.16.2 for 
more information.

22.16.5 Packages
By default, the scope of a Slice definition determines the module of its mapped 
Python construct (see Section 22.4 for more information on the module mapping). 
There are times, however, when applications require greater control over the pack-
aging of generated Python code. For example, consider the following Slice defini-
tions:

module sys {
    interface Process {
        // ...
    };
};

Other language mappings can use these Slice definitions as shown, but they 
present a problem for the Python mapping: the top-level Slice module sys 
conflicts with Python’s predefined module sys. A Python application executing 
the statement import sys would import whichever module the interpreter 
happens to locate first in its search path.

A workaround for this problem is to modify the Slice definitions so that the 
top-level module no longer conflicts with a predefined Python module, but that 
may not be feasible in certain situations. For example, the application may already 
be deployed using other language mappings, in which case the impact of modi-
fying the Slice definitions could represent an unacceptable expense.
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The Python mapping could have addressed this issue by considering the 
names of predefined modules to be reserved, in which case the Slice module sys 
would be mapped to the Python module _sys. However, the likelihood of a name 
conflict is relatively low to justify such a solution, therefore the mapping supports 
a different approach: global metadata (see Section 4.17) can be used to enclose 
generated code in a Python package. Our modified Slice definitions demonstrate 
this feature:

[["python:package:zeroc"]]
module sys {
    interface Process {
        // ...
    };
};

The global metadata directive python:package:zeroc causes the mapping 
to generate all of the code resulting from definitions in this Slice file into the 
Python package zeroc. The net effect is the same as if we had enclosed our Slice 
definitions in the module zeroc: the Slice module sys is mapped to the Python 
module zeroc.sys. However, by using metadata we have not affected the 
semantics of the Slice definitions, nor have we affected other language mappings.

22.17 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2py, the --checksum option causes the 
compiler to generate code that adds checksums to the dictionary Ice.slice-
Checksums. The checksums are installed automatically when the Python code is 
first imported; no action is required by the application.

In order to verify a server’s checksums, a client could simply compare the 
dictionaries using the comparison operator. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:

serverChecksums = ...
for i in Ice.sliceChecksums:
    if not serverChecksums.has_key(i):
        # No match found for type id!
    elif Ice.sliceChecksums[i] != serverChecksums[i]:
        # Checksum mismatch!



712 Client-Side Slice-to-Python Mapping

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 23
Developing a File System Client in 
Python

23.1 Chapter Overview

In this chapter, we present the source code for a Python client that accesses the file 
system we developed in Chapter 5 (see Chapter 25 for the corresponding server).

23.2 The Python Client

We now have seen enough of the client-side Python mapping to develop a 
complete client to access our remote file system. For reference, here is the Slice 
definition once more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
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        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

import sys, traceback, Ice, Filesystem

# Recursively print the contents of directory "dir"
# in tree fashion. For files, show the contents of
# each file. The "depth" parameter is the current
# nesting level (for indentation).

def listRecursive(dir, depth):
    indent = ''
    depth = depth + 1
    for i in range(depth):
        indent = indent + '\t'

    contents = dir.list()

    for node in contents:
        subdir = Filesystem.DirectoryPrx.checkedCast(node)
        file = Filesystem.FilePrx.uncheckedCast(node)
        print indent + node.name(),
        if subdir:
            print "(directory):"
            listRecursive(subdir, depth)
        else:
            print "(file):"
            text = file.read()
            for line in text:
                print indent + "\t" + line
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status = 0
ic = None
try:
    # Create a communicator
    #
    ic = Ice.initialize(sys.argv)

    # Create a proxy for the root directory
    #
    obj = ic.stringToProxy("RootDir:default -p 10000")

    # Down-cast the proxy to a Directory proxy
    #
    rootDir = Filesystem.DirectoryPrx.checkedCast(obj)

    # Recursively list the contents of the root directory
    #
    print "Contents of root directory:"
    listRecursive(rootDir, 0)
except:
    traceback.print_exc()
    status = 1

if ic:
    # Clean up
    #
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

The program first defines the listRecursive function, which is a helper func-
tion to print the contents of the file system, and the main program follows. Let us 
look at the main program first:

1. The structure of the code follows what we saw in Chapter 34. After initializing 
the run time, the client creates a proxy to the root directory of the file system. 
For this example, we assume that the server runs on the local host and listens 
using the default protocol (TCP/IP) at port 10000. The object identity of the 
root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.
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Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.

Assume that we have a small file system consisting of a two files and a a directory 
as follows:

Figure 23.1. A small file system.

The output produced by the client for this file system is:

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client (and server) are not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

23.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Python code hardly 
differs from the code you would write for an ordinary Python program. This is one 
of the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local Python object. This allows you to put your effort 
where you should, namely, into developing your application logic instead of 
having to struggle with arcane networking APIs. As we will see in Chapter 25, 
this is true for the server side as well, meaning that you can develop distributed 
applications easily and efficiently.
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Chapter 24
Server-Side Slice-to-Python 
Mapping

24.1 Chapter Overview

In this chapter, we present the server-side Slice-to-Python mapping (see 
Chapter 22 for the client-side mapping). Section 24.3 discusses how to initialize 
and finalize the server-side run time, sections 24.4 to 24.6 show how to implement 
interfaces and operations, and Section 24.7 discusses how to register objects with 
the server-side Ice run time. Finally, Section 24.8 shows how to implement opera-
tions asynchronously.

24.2 Introduction

The mapping for Slice data types to Python is identical on the client side and 
server side. This means that everything in Chapter 22 also applies to the server 
side. However, for the server side, there are a few additional things you need to 
know, specifically:

• how to initialize and finalize the server-side run time

• how to implement servants

• how to pass parameters and throw exceptions

• how to create servants and register them with the Ice run time.
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We discuss these topics in the remainder of this chapter.

24.3 The Server-Side Main Program

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. As for the client side, you must initialize the Ice run time by 
calling Ice.initialize before you can do anything else in your server. 
Ice.initialize returns a reference to an instance of an Ice.Communicator:

import sys, traceback, Ice

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    # ...
except:
    traceback.print_exc()
    status = 1

# ...

Ice.initialize accepts the argument list that is passed to the program by the 
operating system. The function scans the argument list for any command-line 
options that are relevant to the Ice run time; any such options are removed from 
the argument list so, when Ice.initialize returns, the only options and 
arguments remaining are those that concern your application. If anything goes 
wrong during initialization, initialize throws an exception.

You can pass a second argument of type InitializationData to 
Ice.initialize. InitializationData is defined as follows:

class InitializationData(object):
    def __init__(self):
        self.properties = None
        self.logger = None
        self.threadHook = None

You can pass in an instance of this class to set properties for the communicator 
(see Chapter 30), establish a logger (see Section 32.19), and to establish a thread 
notification hook (see page 1016).

Before leaving your program, you must call Communicator::destroy. The 
destroy operation is responsible for finalizing the Ice run time. In particular, 
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destroy waits for any operation implementations that are still executing in the 
server to complete. In addition, destroy ensures that any outstanding threads are 
joined with and reclaims a number of operating system resources, such as file 
descriptors and memory. Never allow your program to terminate without calling 
destroy first; doing so has undefined behavior.

The general shape of our server-side program is therefore as follows:

import sys, traceback, Ice

status = 0
ic = None
try:
    ic = Ice.initialize(sys.argv)
    # ...
except:
    traceback.print_exc()
    status = 1

if ic:
    try:
        ic.destroy()
    except:
        traceback.print_exc()
        status = 1

sys.exit(status)

Note that the code places the call to Ice.initialize into a try block and 
takes care to return the correct exit status to the operating system. Also note that 
an attempt to destroy the communicator is made only if the initialization 
succeeded.

24.3.1 The Ice.Application Class

The preceding program structure is so common that Ice offers a class, 
Ice.Application, that encapsulates all the correct initialization and finaliza-
tion activities. The synopsis of the class is as follows (with some detail omitted for 
now):

class Application(object):

    def __init__(self, signalPolicy=0):

    def main(self, args, configFile=None, initData=None):
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    def run(self, args):

    def appName():
        # ...
    appName = staticmethod(appName)

    def communicator():
        # ...
    communicator = staticmethod(communicator)

The intent of this class is that you specialize Ice.Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in your main program goes into run instead. Using 
Ice.Application, our program looks as follows:

import sys, Ice

class Server(Ice.Application):
    def run(self, args):
        # Server code here...
        return 0

app = Server()
status = app.main(sys.argv)
sys.exit(status)

You also can call main with an optional file name or an Initialization-
Data structure (see Section 32.3 and Section 30.9). If you pass a configuration 
file name to main, the settings in this file are overridden by settings in a file iden-
tified by the ICE_CONFIG environment variable (if defined). Property settings 
supplied on the command line take precedence over all other settings.

The Application.main function does the following:

1. It installs an exception handler. If your code fails to handle an exception, 
Application.main prints the exception information before returning 
with a non-zero return value.

2. It initializes (by calling Ice.initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your server by calling the static communicator accessor.

3. It scans the argument list for options that are relevant to the Ice run time and 
removes any such options. The argument list that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.
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4. It provides the name of your application via the static appName member 
function. The return value from this call is the first element of the argument 
vector passed to Application.main, so you can get at this name from 
anywhere in your code by calling Ice.Application.appName (which is 
usually required for error messages).

5. It installs a signal handler that properly shuts down the communicator.

6. It installs a per-process logger (see Section 32.19.5) if the application has not 
already configured one. The per-process logger uses the value of the 
Ice.ProgramName property (see Section 30.8) as a prefix for its messages 
and sends its output to the standard error channel. An application can specify 
an alternate logger as described in Section 32.19.

Using Ice.Application ensures that your program properly finalizes the Ice 
run time, whether your server terminates normally or in response to an exception 
or signal. We recommend that all your programs use this class; doing so makes 
your life easier. In addition Ice.Application also provides features for 
signal handling and configuration that you do not have to implement yourself 
when you use this class.

Using Ice.Application on the Client Side

You can use Ice.Application for your clients as well: simply implement a 
class that derives from Ice.Application and place the client code into its 
run method. The advantage of this approach is the same as for the server side: 
Ice.Application ensures that the communicator is destroyed correctly even 
in the presence of exceptions or signals.

Catching Signals

The simple server we developed in Chapter 3 had no way to shut down cleanly: 
we simply interrupted the server from the command line to force it to exit. Termi-
nating a server in this fashion is unacceptable for many real-life server applica-
tions: typically, the server has to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice.Application encapsulates 
Python’s signal handling capabilities, allowing you to cleanly shut down on 
receipt of a signal:
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class Application(object):
    # ...
    def destroyOnInterrupt():
        # ...
    destroyOnInterrupt = classmethod(destroyOnInterrupt)

    def shutdownOnInterrupt():
        # ...
    shutdownOnInterrupt = classmethod(shutdownOnInterrupt)

    def ignoreInterrupt():
        # ...
    ignoreInterrupt = classmethod(ignoreInterrupt)

    def callbackOnInterrupt():
        # ...
    callbackOnInterrupt = classmethod(callbackOnInterrupt)

    def holdInterrupt():
        # ...
    holdInterrupt = classmethod(holdInterrupt)

    def releaseInterrupt():
        # ...
    releaseInterrupt = classmethod(releaseInterrupt)

    def interrupted():
        # ...
    interrupted = classmethod(interrupted)

    def interruptCallback(self, sig):
        # Default implementation does nothing.
        pass

The methods behave as follows:

• destroyOnInterrupt

This method installs a signal handler that destroys the communicator if it is 
interrupted. This is the default behavior.

• shutdownOnInterrupt

This method installs a signal handler that shuts down the communicator if it is 
interrupted.

• ignoreInterrupt

This method causes signals to be ignored.
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• callbackOnInterrupt

This function configures Ice.Application to invoke interrupt-
Callback when a signal occurs, thereby giving the subclass responsibility 
for handling the signal.

• holdInterrupt

This method temporarily blocks signal delivery.

• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns True if a signal caused the communicator to shut down, 
False otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

• interruptCallback

A subclass overrides this function to respond to signals. The function may be 
called concurrently with any other thread and must not raise exceptions.

By default, Ice.Application behaves as if destroyOnInterrupt was 
invoked, therefore our server program requires no change to ensure that the 
program terminates cleanly on receipt of a signal. (You can disable the signal-
handling functionality of Ice.Application by passing 1 to the constructor. 
In that case, signals retain their default behavior, that is, terminate the process.) 
However, we add a diagnostic to report the occurrence of a signal, so our program 
now looks like:

import sys, Ice

class MyApplication(Ice.Application):
    def run(self, args):

        # Server code here...

        if self.interrupted():
            print self.appName() + ": terminating"

        return 0
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app = MyApplication()
status = app.main(sys.argv)
sys.exit(status)

Note that, if your server is interrupted by a signal, the Ice run time waits for all cur-
rently executing operations to finish. This means that an operation that updates per-
sistent state cannot be interrupted in the middle of what it was doing and cause 
partial update problems.

Ice.Application and Properties

Apart from the functionality shown in this section, Ice.Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or port number for a server. The 
main method of Ice.Application accepts an optional second parameter 
allowing you to specify the name of a configuration file that will be processed 
during initialization. We discuss Ice properties in more detail in Chapter 30.

Limitations of Ice.Application

Ice.Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice.Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

24.4 Mapping for Interfaces

The server-side mapping for interfaces provides an up-call API for the Ice run 
time: by implementing methods in a servant class, you provide the hook that gets 
the thread of control from the Ice server-side run time into your application code.

24.4.1 Skeleton Classes

On the client side, interfaces map to proxy classes (see Section 5.12). On the 
server side, interfaces map to skeleton classes. A skeleton is an abstract base class 
from which you derive your servant class and define a method for each operation 
on the corresponding interface. For example, consider the Slice definition for the 
Node interface we defined in Chapter 5 once more:
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module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The Python mapping generates the following definition for this interface:

class Node(Ice.Object):
    def __init__(self):
        # ...

    #
    # Operation signatures.
    #
    # def name(self, current=None):

The important points to note here are:

• As for the client side, Slice modules are mapped to Python modules with the 
same name, so the skeleton class definitions are part of the Filesystem 
module.

• The name of the skeleton class is the same as the name of the Slice interface 
(Node).

• The skeleton class contains a comment summarizing the method signature of 
each operation in the Slice interface.

• The skeleton class is an abstract base class because its constructor prevents 
direct instantiation of the class.

• The skeleton class inherits from Ice.Object (which forms the root of the 
Ice object hierarchy).

24.4.2 Servant Classes

In order to provide an implementation for an Ice object, you must create a servant 
class that inherits from the corresponding skeleton class. For example, to create a 
servant for the Node interface, you could write:

import Filesystem

class NodeI(Filesystem.Node):
    def __init__(self, name):
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        self._name = name

    def name(self, current=None):
        return self._name

By convention, servant classes have the name of their interface with an I-suffix, 
so the servant class for the Node interface is called NodeI. (This is a convention 
only: as far as the Ice run time is concerned, you can choose any name you prefer 
for your servant classes.) Note that NodeI extends Filesystem.Node, that is, 
it derives from its skeleton class. 

As far as Ice is concerned, the NodeI class must implement only a single 
method: the name method that is defined in the Node interface. This makes the 
servant class a concrete class that can be instantiated. You can add other member 
functions and data members as you see fit to support your implementation. For 
example, in the preceding definition, we added a _name member and a 
constructor. (Obviously, the constructor initializes the _name member and the 
name function returns its value.)

Normal and idempotent Operations

Whether an operation is an ordinary operation or an idempotent operation has no 
influence on the way the operation is mapped. To illustrate this, consider the 
following interface:

interface Example {
               void normalOp();
    idempotent void idempotentOp();
};

The mapping for this interface is shown below:

class Example(Ice.Object):
    # ...

    #
    # Operation signatures.
    #
    # def normalOp(self, current=None):
    # def idempotentOp(self, current=None):

Note that the signatures of the methods are unaffected by the idempotent quali-
fier.
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24.5 Parameter Passing

For each in parameter of a Slice operation, the Python mapping generates a corre-
sponding parameter for the corresponding method. In addition, every operation 
has an additional, trailing parameter of type Ice.Current. For example, the 
name operation of the Node interface has no parameters, but the name method in a 
Python servant has a current parameter. We explain the purpose of this param-
eter in Section 32.6 and will ignore it for now.

An operation returning multiple values1 returns them in a tuple consisting of a 
non-void return value, if any, followed by the out parameters in the order of 
declaration. An operation returning only one value simply returns the value itself.

To illustrate these rules, consider the following interface that passes string 
parameters in all possible directions:

interface Example {
    string op1(string sin);
    void op2(string sin, out string sout);
    string op3(string sin, out string sout);
};

The generated skeleton class for this interface looks as follows:

class Example(Ice.Object):
    def __init__(self):
        # ...

    #
    # Operation signatures.
    #
    # def op1(self, sin, current=None):
    # def op2(self, sin, current=None):
    # def op3(self, sin, current=None):

The signatures of the Python methods are identical because they all accept a single 
in parameter, but their implementations differ in the way they return values. For 
example, we could implement the operations as follows:

1. An operation returns multiple values when it declares multiple out parameters, or when it 
declares a non-void return type and at least one out parameter.
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class ExampleI(Example):
    def op1(self, sin, current=None):
        print sin             # In params are initialized
        return "Done"         # Return value

    def op2(self, sin, current=None):
        print sin             # In params are initialized
        return "Hello World!" # Out parameter

    def op3(self, sin, current=None):
        print sin             # In params are initialized
        return ("Done", "Hello World!")

Notice that op1 and op2 return their string values directly, whereas op3 returns a 
tuple consisting of the return value followed by the out parameter.

This code is in no way different from what you would normally write if you 
were to pass strings to and from a function; the fact that remote procedure calls are 
involved does not impact on your code in any way. The same is true for parame-
ters of other types, such as proxies, classes, or dictionaries: the parameter passing 
conventions follow normal Python rules and do not require special-purpose API 
calls.

24.6 Raising Exceptions

To throw an exception from an operation implementation, you simply instantiate 
the exception, initialize it, and throw it. For example:

class FileI(Filesystem.File):
    # ...

    def write(self, text, current=None):
        # Try to write the file contents here...
        # Assume we are out of space...
        if error:
            e = Filesystem.GenericError()
            e.reason = "file too large"
            raise e

The mapping for exceptions (see Section 22.9) generates a constructor that 
accepts values for data members, so we can simplify this example by changing our 
raise statement to the following:
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class FileI(Filesystem.File):
    # ...

    def write(self, text, current=None):
        # Try to write the file contents here...
        # Assume we are out of space...
        if error:
            raise Filesystem.GenericError("file too large")

If you throw an arbitrary Python run-time exception, the Ice run time catches the 
exception and then returns an UnknownException to the client. Similarly, if you 
throw an “impossible” user exception (a user exception that is not listed in the 
exception specification of the operation), the client receives an UnknownUserEx-
ception.

If you throw an Ice run-time exception, such MemoryLimitException, the 
client receives an UnknownLocalException.2 For that reason, you should never 
throw system exceptions from operation implementations. If you do, all the client 
will see is an UnknownLocalException, which does not tell the client anything 
useful.

24.7 Object Incarnation

Having created a servant class such as the rudimentary NodeI class in 
Section 24.4.2, you can instantiate the class to create a concrete servant that can 
receive invocations from a client. However, merely instantiating a servant class is 
insufficient to incarnate an object. Specifically, to provide an implementation of 
an Ice object, you must take the following steps:

1. Instantiate a servant class.

2. Create an identity for the Ice object incarnated by the servant.

3. Inform the Ice run time of the existence of the servant.

4. Pass a proxy for the object to a client so the client can reach it.

2. There are three run-time exceptions that are not changed to UnknownLocalException when 
returned to the client: ObjectNotExistException, OperationNotExistException, and 
FacetNotExistException. We discuss these exceptions in more detail in Chapter 33.
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24.7.1 Instantiating a Servant

Instantiating a servant means to allocate an instance:

servant = NodeI("Fred")

This statement creates a new NodeI instance and assigns its reference to the vari-
able servant.

24.7.2 Creating an Identity

Each Ice object requires an identity. That identity must be unique for all servants 
using the same object adapter.3 An Ice object identity is a structure with the 
following Slice definition:

module Ice {
    struct Identity {
        string name;
        string category;
    };
    // ...
};

The full identity of an object is the combination of both the name and category 
fields of the Identity structure. For now, we will leave the category field as the 
empty string and simply use the name field. (See Section 32.6 for a discussion of 
the category field.)

To create an identity, we simply assign a key that identifies the servant to the 
name field of the Identity structure:

id = Ice.Identity()
id.name = "Fred" # Not unique, but good enough for now

Note that the mapping for structures (see Section 22.7.2) allows us to write the 
following equivalent code:

id = Ice.Identity("Fred") # Not unique, but good enough for now

3. The Ice object model assumes that all objects (regardless of their adapter) have a globally unique 
identity. See Chapter 34 for further discussion.
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24.7.3 Activating a Servant
Merely creating a servant instance does nothing: the Ice run time becomes aware 
of the existence of a servant only once you explicitly tell the object adapter about 
the servant. To activate a servant, you invoke the add operation on the object 
adapter. Assuming that we have access to the object adapter in the adapter vari-
able, we can write:

adapter.add(servant, id)

Note the two arguments to add: the servant and the object identity. Calling add 
on the object adapter adds the servant and the servant’s identity to the adapter’s 
servant map and links the proxy for an Ice object to the correct servant instance in 
the server’s memory as follows:

1. The proxy for an Ice object, apart from addressing information, contains the 
identity of the Ice object. When a client invokes an operation, the object iden-
tity is sent with the request to the server.

2. The object adapter receives the request, retrieves the identity, and uses the 
identity as an index into the servant map.

3. If a servant with that identity is active, the object adapter retrieves the servant 
from the servant map and dispatches the incoming request into the correct 
member function on the servant.

Assuming that the object adapter is in the active state (see Section 32.4), client 
requests are dispatched to the servant as soon as you call add.

24.7.4 UUIDs as Identities
The Ice object model assumes that object identities are globally unique. One way 
of ensuring that uniqueness is to use UUIDs (Universally Unique Identifiers) [14] 
as identities. The Ice.generateUUID function creates such identities:

import Ice
print Ice.generateUUID()

When executed, this program prints a unique string such as 
5029a22c-e333-4f87-86b1-cd5e0fcce509. Each call to genera-
teUUID creates a string that differs from all previous ones.4 You can use a UUID 

4. Well, almost: eventually, the UUID algorithm wraps around and produces strings that repeat 
themselves, but this will not happen until approximately the year 3400.
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such as this to create object identities. For convenience, the object adapter has an 
operation addWithUUID that generates a UUID and adds a servant to the servant 
map in a single step. Using this operation, we can create an identity and register a 
servant with that identity in a single step as follows:

adapter.addWithUUID(NodeI("Fred"))

24.7.5 Creating Proxies

Once we have activated a servant for an Ice object, the server can process 
incoming client requests for that object. However, clients can only access the 
object once they hold a proxy for the object. If a client knows the server’s address 
details and the object identity, it can create a proxy from a string, as we saw in our 
first example in Chapter 3. However, creation of proxies by the client in this 
manner is usually only done to allow the client access to initial objects for boot-
strapping. Once the client has an initial proxy, it typically obtains further proxies 
by invoking operations.

The object adapter contains all the details that make up the information in a 
proxy: the addressing and protocol information, and the object identity. The Ice 
run time offers a number of ways to create proxies. Once created, you can pass a 
proxy to the client as the return value or as an out-parameter of an operation invo-
cation.

Proxies and Servant Activation

The add and addWithUUID servant activation operations on the object adapter 
return a proxy for the corresponding Ice object. This means we can write:

proxy = adapter.addWithUUID(NodeI("Fred"))
nodeProxy = Filesystem.NodePrx.uncheckedCast(proxy)

# Pass nodeProxy to client...

Here, addWithUUID both activates the servant and returns a proxy for the Ice 
object incarnated by that servant in a single step.

Note that we need to use an uncheckedCast here because addWithUUID 
returns a proxy of type Ice.ObjectPrx.

Direct Proxy Creation

The object adapter offers an operation to create a proxy for a given identity:
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module Ice {
    local interface ObjectAdapter {
        Object* createProxy(Identity id);
        // ...
    };
};

Note that createProxy creates a proxy for a given identity whether a servant is 
activated with that identity or not. In other words, proxies have a life cycle that is 
quite independent from the life cycle of servants:

id = Ice.Identity()
id.name = Ice.generateUUID()
proxy = adapter.createProxy(id)

This creates a proxy for an Ice object with the identity returned by genera-
teUUID. Obviously, no servant yet exists for that object so, if we return the proxy 
to a client and the client invokes an operation on the proxy, the client will receive 
an ObjectNotExistException. (We examine these life cycle issues in more detail 
in Chapter 34.)

24.8 Asynchronous Method Dispatch (AMD)

The number of simultaneous synchronous requests a server is capable of 
supporting is determined by the number of threads in the server’s thread pool (see 
Section 32.10). If all of the threads are busy dispatching long-running operations, 
then no threads are available to process new requests and therefore clients may 
experience an unacceptable lack of responsiveness.

Asynchronous Method Dispatch (AMD), the server-side equivalent of AMI, 
addresses this scalability issue. Using AMD, a server can receive a request but 
then suspend its processing in order to release the dispatch thread as soon as 
possible. When processing resumes and the results are available, the server sends 
a response explicitly using a callback object provided by the Ice run time.

AMD is transparent to the client, that is, there is no way for a client to distin-
guish a request that, in the server, is processed synchronously from a request that 
is processed asynchronously.

In practical terms, an AMD operation typically queues the request data (i.e., 
the callback object and operation arguments) for later processing by an applica-
tion thread (or thread pool). In this way, the server minimizes the use of dispatch 
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threads and becomes capable of efficiently supporting thousands of simultaneous 
clients.

An alternate use case for AMD is an operation that requires further processing 
after completing the client’s request. In order to minimize the client’s delay, the 
operation returns the results while still in the dispatch thread, and then continues 
using the dispatch thread for additional work.

24.8.1 Enabling AMD with Metadata

To enable asynchronous dispatch, you must add an ["amd"] metadata directive to 
your Slice definitions. The directive applies at the interface and the operation 
level. If you specify ["amd"] at the interface level, all operations in that interface 
use asynchronous dispatch; if you specify ["amd"] for an individual operation, 
only that operation uses asynchronous dispatch. In either case, the metadata direc-
tive replaces synchronous dispatch, that is, a particular operation implementation 
must use synchronous or asynchronous dispatch and cannot use both.

Consider the following Slice definitions:

["amd"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"] void startProcess();
  int endProcess();
};

In this example, both operations of interface I use asynchronous dispatch, 
whereas, for interface J, startProcess uses asynchronous dispatch and endPro-
cess uses synchronous dispatch.

Specifying metadata at the operation level (rather than at the interface or class 
level) minimizes the amount of generated code and, more importantly, minimizes 
complexity: although the asynchronous model is more flexible, it is also more 
complicated to use. It is therefore in your best interest to limit the use of the asyn-
chronous model to those operations that need it, while using the simpler synchro-
nous model for the rest.
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24.8.2 AMD Mapping

For each AMD operation, the Python mapping emits a dispatch method with the 
same name as the operation and the suffix _async. This method returns None. 
The first parameter is a reference to a callback object, as described below. The 
remaining parameters comprise the in parameters of the operation, in the order of 
declaration.

The callback object defines two methods:

• def ice_response(self, <params>)

The ice_response method allows the server to report the successful 
completion of the operation. If the operation has a non-void return type, the 
first parameter to ice_response is the return value. Parameters corre-
sponding to the operation’s out parameters follow the return value, in the 
order of declaration.

• def ice_exception(self, ex)

The ice_exception method allows the server to report an exception.

Neither ice_response nor ice_exception throw any exceptions to the 
caller.

Suppose we have defined the following operation:

interface I {
  ["amd"] int foo(short s, out long l);
};

The callback interface generated for operation foo is shown below:

class ...
    #
    # Operation signatures.
    #
    # def ice_response(self, _result, l)
    # def ice_exception(self, ex)

The dispatch method for asynchronous invocation of operation foo is generated as 
follows:

def foo_async(self, __cb, s)

24.8.3 Exceptions
There are two processing contexts in which the logical implementation of an 
AMD operation may need to report an exception: the dispatch thread (the thread 



738 Server-Side Slice-to-Python Mapping

that receives the invocation), and the response thread (the thread that sends the 
response).5 Although we recommend that the callback object be used to report all 
exceptions to the client, it is legal for the implementation to raise an exception 
instead, but only from the dispatch thread.

As you would expect, an exception raised from a response thread cannot be 
caught by the Ice run time; the application’s run time environment determines how 
such an exception is handled. Therefore, a response thread must ensure that it 
traps all exceptions and sends the appropriate response using the callback object. 
Otherwise, if a response thread is terminated by an uncaught exception, the 
request may never be completed and the client might wait indefinitely for a 
response.

Whether raised in a dispatch thread or reported via the callback object, user 
exceptions are validated as described in Section 4.10.2, and local exceptions may 
undergo the translation described in Section 4.10.4.

24.8.4 Example

To demonstrate the use of AMD in Ice, let us define the Slice interface for a 
simple computational engine:

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["amd"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way.

Our servant class derives from Demo.Model and supplies a definition for the 
interpolate_async method that creates a Job to hold the callback object 

5. These are not necessarily two different threads: it is legal to send the response from the dispatch 
thread.
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and arguments, and adds the Job to a queue. The method uses a lock to guard 
access to the queue:

class ModelI(Demo.Model):
    def __init__(self):
        self._mutex = threading.Lock()
        self._jobs = []

    def interpolate_async(self, cb, data, factor, current=None):
        self._mutex.acquire()
        try:
            self._jobs.append(Job(cb, data, factor))
        finally:
            self._mutex.release()

After queuing the information, the operation returns control to the Ice run time, 
making the dispatch thread available to process another request. An application 
thread removes the next Job from the queue and invokes execute, which uses 
interpolateGrid (not shown) to perform the computational work:

class Job(object):
    def __init__(self, cb, grid, factor):
        self._cb = cb
        self._grid = grid
        self._factor = factor

    def execute(self):
        if not self.interpolateGrid():
            self._cb.ice_exception(Demo.RangeError())
            return
        self._cb.ice_response(self._grid)

    def interpolateGrid(self):
        # ...

If interpolateGrid returns False, then ice_exception is invoked to 
indicate that a range error has occurred. The return statement following the call 
to ice_exception is necessary because ice_exception does not throw an 
exception; it only marshals the exception argument and sends it to the client.

If interpolation was successful, ice_response is called to send the modi-
fied grid back to the client.
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24.9 Summary

This chapter presented the server-side Python mapping. Because the mapping for 
Slice data types is identical for clients and servers, the server-side mapping only 
adds a few additional mechanism to the client side: a small API to initialize and 
finalize the run time, plus a few rules for how to derive servant classes from skele-
tons and how to register servants with the server-side run time.

Even though the examples in this chapter are very simple, they accurately 
reflect the basics of writing an Ice server. Of course, for more sophisticated 
servers (which we discuss in Chapter 32), you will be using additional APIs, for 
example, to improve performance or scalability. However, these APIs are all 
described in Slice, so, to use these APIs, you need not learn any Python mapping 
rules beyond those we described here.
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Chapter 25
Developing a File System Server in 
Python

25.1 Chapter Overview

In this chapter, we present the source code for a fully-functional Python server 
that implements the file system we developed in Chapter 5 (see Chapter 23 for the 
corresponding client).

25.2 Implementing a File System Server

We have now seen enough of the server-side Python mapping to implement a 
server for the file system we developed in Chapter 5. (You may find it useful to 
review the Slice definition for our file system in Section 5.4 before studying the 
source code.)

Our server is implemented in a single source file, Server.py, containing 
our server’s main program as well as the definitions of our Directory and File 
servant subclasses.

25.2.1 The Server Main Program

Our server main program uses the Ice.Application class we discussed in 
Section 24.3.1. The run method installs a signal handler, creates an object 
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adapter, instantiates a few servants for the directories and files in the file system, 
and then activates the adapter. This leads to a main program as follows:

import sys, threading, Ice, Filesystem

# DirectoryI servant class ...
# FileI servant class ...

class Server(Ice.Application):
    def run(self, args):
        # Terminate cleanly on receipt of a signal
        #
        self.shutdownOnInterrupt()

        # Create an object adapter (stored in the _adapter
        # static members)
        #
        adapter = self.communicator().\
                    createObjectAdapterWithEndpoints(
                        "SimpleFilesystem", "default -p 10000")
        DirectoryI._adapter = adapter
        FileI._adapter = adapter

        # Create the root directory (with name "/" and no parent)
        #
        root = DirectoryI("/", None)

        # Create a file called "README" in the root directory
        #
        file = FileI("README", root)
        text = [ "This file system contains a collection of " +
                 "poetry." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # Create a directory called "Coleridge"
        # in the root directory
        #
        coleridge = DirectoryI("Coleridge", root)

        # Create a file called "Kubla_Khan"
        # in the Coleridge directory
        #
        file = FileI("Kubla_Khan", coleridge)
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        text = [ "In Xanadu did Kubla Khan",
                 "A stately pleasure-dome decree:",
                 "Where Alph, the sacred river, ran",
                 "Through caverns measureless to man",
                 "Down to a sunless sea." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # All objects are created, allow client requests now
        #
        adapter.activate()

        # Wait until we are done
        #
        self.communicator().waitForShutdown()

        if self.interrupted():
            print self.appName() + ": terminating"

        return 0

app = Server()
sys.exit(app.main(sys.argv))

The code defines the Server class, which derives from Ice.Application 
and contains the main application logic in its run method. Much of this code is 
boiler plate that we saw previously: we create an object adapter, and, towards the 
end, activate the object adapter and call waitForShutdown.

The interesting part of the code follows the adapter creation: here, the server 
instantiates a few nodes for our file system to create the structure shown in 
Figure 25.1.

Figure 25.1. A small file system.

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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As we will see shortly, the servants for our directories and files are of type 
DirectoryI and FileI, respectively. The constructor for either type of 
servant accepts two parameters, the name of the directory or file to be created and 
a reference to the servant for the parent directory. (For the root directory, which 
has no parent, we pass None.) Thus, the statement

        root = DirectoryI("/", None)

creates the root directory, with the name "/" and no parent directory.

Here is the code that establishes the structure in Figure 25.1:

        # Create the root directory (with name "/" and no parent)
        #
        root = DirectoryI("/", None)

        # Create a file called "README" in the root directory
        #
        file = FileI("README", root)
        text = [ "This file system contains a collection of " +
                 "poetry." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

        # Create a directory called "Coleridge"
        # in the root directory
        #
        coleridge = DirectoryI("Coleridge", root)

        # Create a file called "Kubla_Khan"
        # in the Coleridge directory
        #
        file = FileI("Kubla_Khan", coleridge)
        text = [ "In Xanadu did Kubla Khan",
                 "A stately pleasure-dome decree:",
                 "Where Alph, the sacred river, ran",
                 "Through caverns measureless to man",
                 "Down to a sunless sea." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason
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We first create the root directory and a file README within the root directory. 
(Note that we pass a reference to the root directory as the parent when we create 
the new node of type FileI.)

The next step is to fill the file with text:

        text = [ "This file system contains a collection of " +
                 "poetry." ]
        try:
            file.write(text)
        except Filesystem.GenericError, e:
            print e.reason

Recall from Section 14.7.3 that Slice sequences map to Python lists. The Slice 
type Lines is simply a list of strings; we add a line of text to our README file by 
initializing the text list to contain one element.

Finally, we call the Slice write operation on our FileI servant by simply 
writing:

            file.write(text)

This statement is interesting: the server code invokes an operation on one of its 
own servants. Because the call happens via a reference to the servant (of type 
FileI) and not via a proxy (of type FilePrx), the Ice run time does not know 
that this call is even taking place—such a direct call into a servant is not mediated 
by the Ice run time in any way and is dispatched as an ordinary Python method 
call.

In similar fashion, the remainder of the code creates a subdirectory called 
Coleridge and, within that directory, a file called Kubla_Khan to complete 
the structure in Figure 25.1.

25.2.2 The FileI Servant Class

Our FileI servant class has the following basic structure:

class FileI(Filesystem.File):
    # Constructor and operations here...

    _adapter = None

The class has a number of data members:

• _adapter

This class member stores a reference to the single object adapter we use in our 
server.
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• _name

This instance member stores the name of the file incarnated by the servant.

• _parent

This instance member stores the reference to the servant for the file’s parent 
directory.

• _lines

This instance member holds the contents of the file.

The _name, _parent, and _lines data members are initialized by the 
constructor:

    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._lines = []

        assert(self._parent != None)

        # Create an identity
        #
        myID = Ice.Identity()
        myID.name = Ice.generateUUID()

        # Add the identity to the object adapter
        #
        self._adapter.add(self, myID)

        # Create a proxy for the new node and
        # add it as a child to the parent
        #
        thisNode = Filesystem.NodePrx.uncheckedCast(
                        self._adapter.createProxy(myID))
        self._parent.addChild(thisNode)

After initializing the instance members, the code verifies that the reference to the 
parent is not None because every file must have a parent directory. The 
constructor then generates an identity for the file by calling Ice.genera-
teUUID and adds itself to the servant map by calling ObjectAdapter.add. 
Finally, the constructor creates a proxy for this file and calls the addChild 
method on its parent directory. addChild is a helper function that a child direc-
tory or file calls to add itself to the list of descendant nodes of its parent directory. 
We will see the implementation of this function on page 748.
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The remaining methods of the FileI class implement the Slice operations 
we defined in the Node and File Slice interfaces:

    # Slice Node::name() operation

    def name(self, current=None):
        return self._name

    # Slice File::read() operation

    def read(self, current=None):
        return self._lines

    # Slice File::write() operation

    def write(self, text, current=None):
        self._lines = text

The name method is inherited from the generated Node class. It simply returns 
the value of the _name instance member.

The read and write methods are inherited from the generated File class 
and simply return and set the _lines instance member.

25.2.3 The DirectoryI Servant Class
The DirectoryI class has the following basic structure:

class DirectoryI(Filesystem.Directory):
    # Constructor and operations here...

    _adapter = None

As for the FileI class, we have data members to store the object adapter, the 
name, and the parent directory. (For the root directory, the _parent member 
holds None.) In addition, we have a _contents data member that stores the list 
of child directories. These data members are initialized by the constructor:

    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._contents = []

        # Create an identity. The
        # parent has the fixed identity "RootDir"
        #
        myID = Ice.Identity()
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        if(self._parent):
            myID.name = Ice.generateUUID()
        else:
            myID.name = "RootDir"

        # Add the identity to the object adapter
        #
        self._adapter.add(self, myID)

        # Create a proxy for the new node and
        # add it as a child to the parent
        #
        thisNode = Filesystem.NodePrx.uncheckedCast(
                        self._adapter.createProxy(myID))
        if self._parent:
            self._parent.addChild(thisNode)

The constructor creates an identity for the new directory by calling Ice.gener-
ateUUID. (For the root directory, we use the fixed identity "RootDir".) The 
servant adds itself to the servant map by calling ObjectAdapter.add and 
then creates a proxy to itself and passes it to the addChild helper function.

addChild simply adds the passed reference to the _contents list:

    def addChild(self, child):
        self._contents.append(child)

The remainder of the operations, name and list, are trivial:

    def name(self, current=None):
        return self._name

    def list(self, current=None):
        return self._contents

25.3 Thread Safety

The server code we developed in Section 25.2 is not quite correct as it stands: if 
two clients access the same file in parallel, each via a different thread, one thread 
may read the _lines data member while another thread updates it. Obviously, if 
that happens, we may write or return garbage or, worse, crash the server. However, 
we can make the read and write operations thread-safe with a few trivial 
changes to the FileI class:
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    def __init__(self, name, parent):
        self._name = name
        self._parent = parent
        self._lines = []
        self._mutex = threading.Lock()

        # ...

    def name(self, current=None):
        return self._name

    def read(self, current=None):
        self._mutex.acquire()
        lines = self._lines[:] # Copy the list
        self._mutex.release()
        return lines

    def write(self, text, current=None):
        self._mutex.acquire()
        self._lines = text
        self._mutex.release()

We modified the constructor to add the instance member _mutex, and then 
enclosed our read and write implementations in a critical section. (The name 
method does not require a critical section because the file’s name is immutable.)

No changes for thread safety are necessary in the DirectoryI class because 
the Directory interface, in its current form, defines no operations that modify the 
object.

25.4 Summary

This chapter showed how to implement a complete server for the file system we 
defined in Chapter 5. Note that the server is remarkably free of code that relates to 
distribution: most of the server code is simply application logic that would be 
present just the same as a non-distributed version. Again, this is one of the major 
advantages of Ice: distribution concerns are kept away from application code so 
that you can concentrate on developing application logic instead of networking 
infrastructure.
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Chapter 26
Client-Side Slice-to-Ruby Mapping

26.1 Chapter Overview

In this chapter, we present the client-side Slice-to-Ruby mapping. One part of the 
client-side Ruby mapping concerns itself with rules for representing each Slice 
data type as a corresponding Ruby type; we cover these rules in Section 26.3 to 
Section 26.10. Another part of the mapping deals with how clients can invoke 
operations, pass and receive parameters, and handle exceptions. These topics are 
covered in Section 26.11 to Section 26.13. Slice classes have the characteristics of 
both data types and interfaces and are covered in Section 26.14. Code generation 
issues are discussed in Section 26.15, while Section 26.17 addresses the use of 
Slice checksums.

26.2 Introduction

The client-side Slice-to-Ruby mapping defines how Slice data types are translated 
to Ruby types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the Ruby mapping is intuitive. For example, Slice sequences map 
to Ruby arrays, so there is essentially nothing new you have to learn in order to 
use Slice sequences in Ruby.



754 Client-Side Slice-to-Ruby Mapping

The Ruby API to the Ice run time is fully thread-safe. Obviously, you must 
still synchronize access to data from different threads. For example, if you have 
two threads sharing a sequence, you cannot safely have one thread insert into the 
sequence while another thread is iterating over the sequence. However, you only 
need to concern yourself with concurrent access to your own data—the Ice run 
time itself is fully thread safe, and none of the Ice API calls require you to acquire 
or release a lock before you safely can make the call.

Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 26.11 to 
Section 26.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the Ruby mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the Ruby mapping rules. In particular, looking through the generated code in 
order to discern how to use the Ruby mapping is likely to be inefficient, due to the 
amount of detail. Of course, occasionally, you may want to refer to the generated 
code to confirm a detail of the mapping, but we recommend that you otherwise 
use the material presented here to see how to write your client-side code.

26.3 Mapping for Identifiers

Slice identifiers map to an identical Ruby identifier. For example, the Slice identi-
fier Clock becomes the Ruby identifier Clock. There are two exceptions to this 
rule:

1. If a Slice identifier maps to the name of a Ruby class, module, or constant, and 
the Slice identifier does not begin with an upper case letter, the mapping 
replaces the leading character with its upper case equivalent.1 For example, 
the Slice identifier bankAccount is mapped as BankAccount.

2. If a Slice identifier is the same as a Ruby keyword, the corresponding Ruby 
identifier is prefixed with an underscore. For example, the Slice identifier 
while is mapped as _while.2

1. Ruby requires the names of classes, modules, and constants to begin with an upper case letter.

2. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as 
possible.
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26.4 Mapping for Modules

Slice modules map to Ruby modules with the same name as the Slice module. The 
mapping preserves the nesting of the Slice definitions.

26.5 The Ice Module

All of the APIs for the Ice run time are nested in the Ice module, to avoid clashes 
with definitions for other libraries or applications. Some of the contents of the 
Ice module are generated from Slice definitions; other parts of the Ice module 
provide special-purpose definitions that do not have a corresponding Slice defini-
tion. We will incrementally cover the contents of the Ice module throughout the 
remainder of the book.

A Ruby application can load the Ice run time using the require statement:

require 'Ice'

If the statement executes without error, the Ice run time is loaded and available for 
use. You can determine the version of the Ice run time you have just loaded by 
calling the stringVersion function:

icever = Ice::stringVersion()

26.6 Mapping for Simple Built-In Types

The Slice built-in types are mapped to Ruby types as shown in Table 26.1.

Table 26.1. Mapping of Slice built-in types to Ruby.

Slice Ruby

bool true or false

byte Fixnum

short Fixnum

int Fixnum or Bignum
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Although Ruby supports arbitrary precision in its integer types, the Ice run time 
validates integer values to ensure they have valid ranges for their declared Slice 
types.

26.6.1 String Mapping
String values returned as the result of a Slice operation (including return values, 
out parameters, and data members) contain UTF-8 encoded strings unless the 
program has installed a string converter, in which case string values use the 
converter’s native encoding instead. See Section 32.24 for more information on 
string converters.

As string input values for a remote Slice operation, Ice accepts nil in addi-
tion to String objects; each occurrence of nil is marshaled as an empty string. 
Ice assumes that all String objects contain valid UTF-8 encoded strings unless 
the program has installed a string converter, in which case Ice assumes that 
String objects use the native encoding expected by the converter.

26.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

long Fixnum or Bignum

float Float

double Float

string String

Table 26.1. Mapping of Slice built-in types to Ruby.

Slice Ruby
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26.7.1 Mapping for Enumerations
Ruby does not have an enumerated type, so the Slice enumerations are emulated 
using a Ruby class: the name of the Slice enumeration becomes the name of the 
Ruby class; for each enumerator, the class contains a constant with the same name 
as the enumerator (see Section 26.3 for more information on identifiers). For 
example:

enum Fruit { Apple, Pear, Orange };

The generated Ruby class looks as follows:

class Fruit
    include Comparable

    Apple = # ...
    Pear = # ...
    Orange = # ...

    def Fruit.from_int(val)

    def to_i

    def to_s

    def <=>(other)

    def hash

    # ...
end

The compiler generates a class constant for each enumerator that holds a corre-
sponding instance of Fruit. The from_int class method returns an instance 
given its integer value, while to_i returns the integer value of an enumerator and 
to_s returns its Slice identifier. The comparison operators are available as a 
result of including Comparable, which means a program can compare enumer-
ators according to their integer values.

Given the above definitions, we can use enumerated values as follows:

f1 = Fruit::Apple
f2 = Fruit::Orange

if f1 == Fruit::Apple   # Compare for equality
    # ...
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if f1 < f2              # Compare two enums
    # ...

case f2
when Fruit::Orange
    puts "found Orange"
else
    puts "found #{f2.to_s}"
end

As you can see, the generated class enables natural use of enumerated values.

26.7.2 Mapping for Structures

Slice structures map to Ruby classes with the same name. For each Slice data 
member, the Ruby class contains a corresponding instance variable as well as 
accessors to read and write its value. For example, here is our Employee structure 
from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The Ruby mapping generates the following definition for this structure:

class Employee
    def initialize(number=0, firstName='', lastName='')
        @number = number
        @firstName = firstName
        @lastName = lastName
    end

    def hash
        # ...
    end

    def ==
        # ...
    end

    def inspect
        # ...
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    end

    attr_accessor :number, :firstName, :lastName
end

The constructor initializes each of the instance variables to a default value appro-
priate for its type. You can also declare different default values for members of 
primitive and enumerated types, as discussed in Section 4.9.2.

The compiler generates a definition for the hash method, which allows 
instances to be used as keys in a hash collection. The hash method returns a hash 
value for the structure based on the value of its data members.

The == method returns true if all members of two structures are (recursively) 
equal.

The inspect method returns a string representation of the structure.

26.7.3 Mapping for Sequences

Slice sequences map to Ruby arrays; the only exception is a sequence of bytes, 
which maps to a string (see below). The use of a Ruby array means that the 
mapping does not generate a separate named type for a Slice sequence. It also 
means that you can take advantage of all the array functionality provided by Ruby. 
For example:

sequence<Fruit> FruitPlatter;

We can use the FruitPlatter sequence as shown below:

platter = [ Fruit::Apple, Fruit::Pear ]
platter.push(Fruit::Orange)

The Ice run time validates the elements of a sequence to ensure that they are 
compatible with the declared type; a TypeError exception is raised if an incom-
patible type is encountered.

Mapping for Byte Sequences

A Ruby string can contain arbitrary 8-bit binary data, therefore it is a more effi-
cient representation of a byte sequence than a Ruby array in both memory utiliza-
tion and throughput performance.

When receiving a byte sequence (as the result of an operation, as an out 
parameter, or as a member of a data structure), the value is always represented as a 
string. When sending a byte sequence as an operation parameter or data member, 
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the Ice run time accepts both a string and an array of integers as legal values. For 
example, consider the following Slice definitions:

// Slice
sequence<byte> Data;

interface I {
    void sendData(Data d);
    Data getData();
};

The interpreter session below uses these Slice definitions to demonstrate the 
mapping for a sequence of bytes:

> proxy = ...
> proxy.sendData("\0\1\2\3")   # Send as a string
> proxy.sendData([0, 1, 2, 3]) # Send as an array
> d = proxy.getData()
> d.class
=> String
> d
=> "\000\001\002\003"

The two invocations of sendData are equivalent; however, the second invocation 
incurs additional overhead as the Ice run time validates the type and range of each 
array element.

26.7.4 Mapping for Dictionaries

Here is the definition of our EmployeeMap from Section 4.9.4 once more:

dictionary<long, Employee> EmployeeMap;

As for sequences, the Ruby mapping does not create a separate named type for 
this definition. Instead, all dictionaries are simply instances of Ruby’s hash collec-
tion type. For example:

em = {}

e = Employee.new
e.number = 31
e.firstName = "James"
e.lastName = "Gosling"

em[e.number] = e
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The Ice run time validates the elements of a dictionary to ensure that they are 
compatible with the declared type; a TypeError exception is raised if an incom-
patible type is encountered.

26.8 Mapping for Constants

Here are the constant definitions we saw in Section 4.9.5 on page 103 once more:

const bool      AppendByDefault = true;
const byte      LowerNibble = 0x0f;
const string    Advice = "Don't Panic!";
const short     TheAnswer = 42;
const double    PI = 3.1416;

enum Fruit { Apple, Pear, Orange };
const Fruit     FavoriteFruit = Pear;

The generated definitions for these constants are shown below:

AppendByDefault = true
LowerNibble = 15
Advice = "Don't Panic!"
TheAnswer = 42
PI = 3.1416
FavoriteFruit = Fruit::Pear

As you can see, each Slice constant is mapped to a Ruby constant with the same 
name.
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26.9 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 26.1

Figure 26.1. Inheritance structure for Ice exceptions.

The ancestor of all exceptions is StandardError, from which Ice::Excep-
tion is derived. Ice::LocalException and Ice::UserException are 
derived from Ice::Exception and form the base for all run-time and user 
exceptions.

Here is a fragment of the Slice definition for our world time server from 
Section 4.10.5 on page 120 once more:

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map to the abbreviated Ruby class definitions shown 
below:

class GenericError < Ice::UserException
    def initialize(reason='')

    def to_s


Ice::LocalException Ice::UserException

Ice::Exception

Specific Run-Time Exceptions... Specific User Exceptions...

StandardError
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    def inspect

    attr_accessor :reason
end

class BadTimeVal < GenericError
    def initialize(reason='')

    def to_s

    def inspect
end

class BadZoneName < GenericError
    def initialize(reason='')

    def to_s

    def inspect
end

Each Slice exception is mapped to a Ruby class with the same name. The inheri-
tance structure of the Slice exceptions is preserved for the generated classes, so 
BadTimeVal and BadZoneName inherit from GenericError.

Each exception member corresponds to an instance variable of the instance, 
which the constructor initializes to a default value appropriate for its type. You can 
also declare different default values for members of primitive and enumerated 
types, as discussed in Section 4.10.2. Accessors are provided to read and write the 
data members.

Although BadTimeVal and BadZoneName do not declare data members, their 
constructors still accept a value for the inherited data member reason in order to 
pass it to the constructor of the base exception GenericError.

Each exception also defines the standard methods to_s and inspect to 
return the name of the exception and a stringified representation of the exception 
and its members, respectively.

All user exceptions are derived from the base class Ice::UserExcep-
tion. This allows you to catch all user exceptions generically by installing a 
handler for Ice::UserException. Similarly, you can catch all Ice run-time 
exceptions with a handler for Ice::LocalException, and you can catch all 
Ice exceptions with a handler for Ice::Exception.
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26.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice::LocalException (which, in turn, derives from Ice::Exception).

An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 117. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice::LocalException

This is the root of the inheritance tree for run-time exceptions.

• Ice::UserException

This is the root of the inheritance tree for user exceptions.

• Ice::TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice::ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining run-time exceptions; the 
fine-grained error handling offered by the remainder of the hierarchy is of interest 
mainly in the implementation of the Ice run time. However, there is one exception 
you will probably be interested in specifically: Ice::ObjectNotExistEx-
ception. This exception is raised if a client invokes an operation on an Ice 
object that no longer exists. In other words, the client holds a dangling reference 
to an object that probably existed some time in the past but has since been perma-
nently destroyed.

26.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a method on a local class instance that represents the remote 
object. This makes the mapping easy and intuitive to use because, for all intents 
and purposes (apart from error semantics), making a remote procedure call is no 
different from making a local procedure call.
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26.11.1 Proxy Classes

On the client side, Slice interfaces map to Ruby classes with methods that corre-
spond to the operations on those interfaces. Consider the following simple inter-
face:

interface Simple {
    void op();
};

The Ruby mapping generates the following definition for use by the client:

class SimplePrx < Ice::ObjectPrx
    def op(_ctx=nil)
        # ...

    # ...
end

In the client’s address space, an instance of SimplePrx is the local ambassador 
for a remote instance of the Simple interface in a server and is known as a proxy 
instance. All the details about the server-side object, such as its address, what 
protocol to use, and its object identity are encapsulated in that instance.

Note that SimplePrx inherits from Ice::ObjectPrx. This reflects the 
fact that all Ice interfaces implicitly inherit from Ice::Object.

For each operation in the interface, the proxy class has a method of the same 
name. In the preceding example, we find that the operation op has been mapped to 
the method op. Note that op accepts an optional trailing parameter _ctx repre-
senting the operation context. This parameter is a Ruby hash value for use by the 
Ice run time to store information about how to deliver a request. You normally do 
not need to use it. (We examine the context parameter in detail in Chapter 32. The 
parameter is also used by IceStorm—see Chapter 44.)

Proxy instances are always created on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly.

A value of nil denotes the null proxy. The null proxy is a dedicated value that 
indicates that a proxy points “nowhere” (denotes no object).

26.11.2 The Ice::ObjectPrx Class

All Ice objects have Object as the ultimate ancestor type, so all proxies inherit 
from Ice::ObjectPrx. ObjectPrx provides a number of methods:
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class ObjectPrx
    def eql?(proxy)
    def ice_getIdentity
    def ice_isA(id)
    def ice_id
    def ice_ping
    # ...
end

The methods behave as follows:

• eql?

The implementation of this standard method compares two proxies for 
equality. Note that all aspects of proxies are compared by this operation, such 
as the communication endpoints for the proxy. This means that, in general, if 
two proxies compare unequal, that does not imply that they denote different 
objects. For example, if two proxies denote the same Ice object via different 
transport endpoints, eql? returns false even though the proxies denote the 
same object.

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

proxy1 = ...
proxy2 = ...
id1 = proxy1.ice_getIdentity
id2 = proxy2.ice_getIdentity

if id1 == id2
    # proxy1 and proxy2 denote the same object
else
    # proxy1 and proxy2 denote different objects
end
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• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

proxy = ...
if proxy && proxy.ice_isA("::Printer")
    # proxy denotes a Printer object
else
    # proxy denotes some other type of object
end

Note that we are testing whether the proxy is nil before attempting to invoke 
the ice_isA method. This avoids getting a run-time error if the proxy is 
nil.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the static type of the proxy. For example, if we have a proxy of type 
BasePrx, with a static type ID of ::Base, the return value of ice_id might 
be "::Base", or it might be something more derived, such as 
"::Derived".

• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExist-
Exception or ConnectTimeoutException.

Note that there are other methods in ObjectPrx, not shown here. These 
methods provide different ways to dispatch a call. (We discuss these methods in 
Chapter 32.)

26.11.3 Casting Proxies

The Ruby mapping for a proxy also generates two class methods:
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class SimplePrx < Ice::ObjectPrx
    # ...

    def SimplePrx.checkedCast(proxy, facet='', ctx={})

    def SimplePrx.uncheckedCast(proxy, facet='')
end

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a reference to a proxy of 
type SimplePrx; otherwise, if the passed proxy denotes an object of a different 
type (or if the passed proxy is nil), the cast returns nil.

The method names checkedCast and uncheckedCast are reserved for 
use in proxies. If a Slice interface defines an operation with either of those names, 
the mapping escapes the name in the generated proxy by prepending an under-
score. For example, an interface that defines an operation named checkedCast is 
mapped to a proxy with a method named _checkedCast.

Given a proxy of any type, you can use a checkedCast to determine 
whether the corresponding object supports a given type, for example:

obj = ...       # Get a proxy from somewhere...

simple = SimplePrx::checkedCast(obj)
if simple
    # Object supports the Simple interface...
else
    # Object is not of type Simple...
end

Note that a checkedCast contacts the server. This is necessary because only 
the server implementation has definite knowledge of the type of an object. As a 
result, a checkedCast may throw a ConnectTimeoutException or an 
ObjectNotExistException.

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
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different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:

interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

obj = ...                                # Get proxy...
process = ProcessPrx::uncheckedCast(obj) # No worries...
process.launch(40, 60)                   # Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

26.11.4 Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:

proxy = communicator.stringToProxy(...)
proxy = proxy.ice_timeout(10000)
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A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a down-cast after using a factory 
method. The example below demonstrates these semantics:

base = communicator.stringToProxy(...)
hello = Demo::HelloPrx::checkedCast(base)
hello = hello.ice_timeout(10000) # Type is not discarded
hello.sayHello()

The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return a base proxy that you must subsequently down-cast to 
an appropriate type.

26.11.5 Object Identity and Proxy Comparison

Proxy objects support comparison using the comparison operators ==, !=, and 
<=>, as well as the eql? method. Note that proxy comparison uses all of the 
information in a proxy for the comparison. This means that not only the object 
identity must match for a comparison to succeed, but other details inside the 
proxy, such as the protocol and endpoint information, must be the same. In other 
words, comparison tests for proxy identity, not object identity. A common mistake 
is to write code along the following lines:

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if p1 != p2
    # p1 and p2 denote different objects       # WRONG!
else
    # p1 and p2 denote the same object         # Correct
end

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each uses a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal, we know that the two proxies denote the same object 
(because they are identical in all respects); however, if two proxies compare 
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unequal, we know absolutely nothing: the proxies may or may not denote the 
same object.

To compare the object identities of two proxies, you can use a helper function 
in the Ice module:

def proxyIdentityCompare(lhs, rhs)
def proxyIdentityAndFacetCompare(lhs, rhs)

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

p1 = ...        # Get a proxy...
p2 = ...        # Get another proxy...

if Ice.proxyIdentityCompare(p1, p2) != 0
    # p1 and p2 denote different objects       # Correct
else
    # p1 and p2 denote the same object         # Correct
end

The function returns 0 if the identities are equal, 1 if p1 is less than p2, and 1 if 
p1 is greater than p2. (The comparison uses name as the major sort key and 
category as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but 
compares both the identity and the facet name (see Chapter 33).

26.12 Mapping for Operations

As we saw in Section 26.11, for each operation on an interface, the proxy class 
contains a corresponding method with the same name. To invoke an operation, 
you call it via the proxy. For example, here is part of the definitions for our file 
system from Section 5.4:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:
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node = ...          # Initialize proxy
name = node.name()  # Get name via RPC

26.12.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy method is concerned, idempotent has no effect. For 
example, consider the following interface:

interface Example {
                string op1();
    idempotent  string op2();
};

The proxy class for this is:

class ExamplePrx < Ice::ObjectPrx
    def op1(_ctx=nil)

    def op2(_ctx=nil)
end

Because idempotent affects an aspect of call dispatch, not interface, it makes 
sense for the two methods to look the same.

26.12.2 Passing Parameters

In Parameters

All parameters are passed by reference in the Ruby mapping; it is guaranteed that 
the value of a parameter will not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ClientToServer {
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    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

The Slice compiler generates the following proxy for this definition:

class ClientToServerPrx < Ice::ObjectPrx
    def op1(i, f, b, s, _ctx=nil)

    def op2(ns, ss, st, _ctx=nil)

    def op3(proxy, _ctx=nil)
end

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

p = ...                                 # Get proxy...

p.op1(42, 3.14, true, "Hello world!")   # Pass simple literals

i = 42
f = 3.14
b = true
s = "Hello world!"
p.op1(i, f, b, s)                       # Pass simple variables

ns = NumberAndString.new()
ns.x = 42
ns.str = "The Answer"
ss = [ "Hello world!" ]
st = {}
st[0] = ns
p.op2(ns, ss, st)                       # Pass complex variables

p.op3(p)                                # Pass proxy

Out Parameters

As in Java, Ruby functions do not support reference arguments. That is, it is not 
possible to pass an uninitialized variable to a Ruby function in order to have its 
value initialized by the function. The Java mapping (see Section 10.12.2) over-
comes this limitation with the use of “holder classes” that represent each out 
parameter. The Ruby mapping takes a different approach, one that is more natural 
for Ruby users.
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The semantics of out parameters in the Ruby mapping depend on whether the 
operation returns one value or multiple values. An operation returns multiple 
values when it has declared multiple out parameters, or when it has declared a 
non-void return type and at least one out parameter.

If an operation returns multiple values, the client receives them in the form of 
a result array. A non-void return value, if any, is always the first element in the 
result array, followed by the out parameters in the order of declaration.

If an operation returns only one value, the client receives the value itself.
Here is the same Slice definition we saw on page 772 once more, but this time 

with all parameters being passed in the out direction:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The Ruby mapping generates the following code for this definition:

class ClientToServerPrx < Ice::ObjectPrx
    def op1(_ctx=nil)

    def op2(_ctx=nil)

    def op3(_ctx=nil)
end

Given a proxy to a ServerToClient interface, the client code can receive the 
results as in the following example:

p = ...              # Get proxy...
i, f, b, s = p.op1()
ns, ss, st = p.op2()
stcp = p.op3()
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The operations have no in parameters, therefore no arguments are passed to the 
proxy methods. Since op1 and op2 return multiple values, their result arrays are 
unpacked into separate values, whereas the return value of op3 requires no 
unpacking.

Parameter Type Mismatches

Although the Ruby compiler cannot check the types of arguments passed to a 
method, the Ice run time does perform validation on the arguments to a proxy 
invocation and reports any type mismatches as a TypeError exception.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
sequences, dictionaries, and strings all can be nil, but the corresponding Slice 
types do not have the of a null value. To make life with these types easier, when-
ever you pass nil as a parameter or return value of type sequence, dictionary, or 
string, the Ice run time automatically sends an empty sequence, dictionary, or 
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested 
data types, members that are sequences, dictionaries, or strings automatically 
arrive as an empty value at the receiving end. This saves you having to explicitly 
initialize, for example, every string element in a large sequence before sending the 
sequence in order to avoid a run-time error. Note that using null parameters in this 
way does not create null semantics for Slice sequences, dictionaries, or strings. As 
far as the object model is concerned, these do not exist (only empty sequences, 
dictionaries, and strings do). For example, it makes no difference to the receiver 
whether you send a string as nil or as an empty string: either way, the receiver 
sees an empty string.

26.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 26.10) 
and, if the operation has an exception specification, may also throw user excep-
tions (see Section 26.9). Suppose we have the following simple interface:
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exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as Ruby exceptions, so you can simply enclose one or 
more operation invocations in a begin–rescue block:

child = ...        # Get child proxy...

begin
    child.askToCleanUp()
rescue Tantrum => t
    puts "The child says: #{t.reason}"
end

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will 
usually be handled by exception handlers higher in the hierarchy. For example:

def run()
    child = ...        # Get child proxy...
    begin
        child.askToCleanUp()
    rescue Tantrum => t
        puts "The child says: #{t.reason}"
        child.scold()  # Recover from error...
    end
    child.praise()     # Give positive feedback...
end

begin
    # ...
    run()
    # ...
rescue Ice::Exception => ex
    print ex.backtrace.join("\n")
end

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)
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26.14 Mapping for Classes

Slice classes are mapped to Ruby classes with the same name. For each Slice data 
member, the generated class contains an instance variable and accessors to read 
and write it, just as for structures and exceptions. Consider the following class 
definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Ruby mapping generates the following code for this definition:

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    def inspect
        # ...
    end

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    def TimeOfDay.ice_staticId()
        '::M::TimeOfDay'
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    end

    # ...
end

There are a number of things to note about the generated code:

1. The generated class TimeOfDay includes the mixin module 
TimeOfDay_mixin, which in turn includes Ice::Object_mixin. This 
reflects the semantics of Slice classes in that all classes implicitly inherit from 
Object, which is the ultimate ancestor of all classes. Note that Object is not 
the same as Ice::ObjectPrx. In other words, you cannot pass a class 
where a proxy is expected and vice versa.

2. The constructor defines an instance variable for each Slice data member.

3. The class defines the class method ice_staticId.

4. A comment summarizes the method signatures for each Slice operation.

We will discuss these items in the subsections below.

26.14.1 Inheritance from Object

In other language mappings, the inheritance relationship between Object and a 
user-defined Slice class is stated explicitly, in that the generated class derives from 
a language-specific representation of Object. Although its class type allows 
single inheritance, Ruby’s loosely-typed nature places less emphasis on class hier-
archies and relies more on duck typing.3

The Slice mapping for a class follows this convention by placing most of the 
necessary machinery in a mixin module that the generated class includes into its 
definition. The Ice run time requires an instance of a Slice class to include the 
mixin module and define values for the declared data members, but does not 
require that the object be an instance of the generated class.

3. In Ruby, an object’s type is typically less important than the methods it supports. “If it looks like 
a duck, and acts like a duck, then it is a duck.”
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As shown in Figure 26.2, classes have no relationship to Ice::ObjectPrx 
(which is at the base of the inheritance hierarchy for proxies), therefore you 
cannot pass a class where a proxy is expected (and vice versa).

Figure 26.2. Inheritance from Ice::ObjectPrx and Object.

An instance of a Slice class C supports a number of methods:

def ice_isA(id, current=nil)

def ice_ping(current=nil)

def ice_ids(current=nil)

def ice_id(current=nil)

def C.ice_staticId()

def ice_preMarshal()

def ice_postUnmarshal()

The methods behave as follows:

• ice_isA

This method returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This method returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

Ice::ObjectPrx

Proxies... Classes...

Object
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• ice_id

This method returns the actual run-time type ID of the object. If you call 
ice_id through a reference to a base instance, the returned type id is the 
actual (possibly more derived) type ID of the instance.

• ice_staticId

This method returns the static type ID of the class.

• ice_preMarshal

If the object supports this method, the Ice run time invokes it just prior to 
marshaling the object’s state, providing the opportunity for the object to vali-
date its declared data members.

• ice_postUnmarshal

If the object supports this method, the Ice run time invokes it after unmar-
shaling the object’s state. An object typically defines this method when it 
needs to perform additional initialization using the values of its declared data 
members.

The mixin module Ice::Object_mixin supplies default definitions of 
ice_isA and ice_ping. For each Slice class, the generated mixin module 
defines ice_ids and ice_id, and the generated class defines the 
ice_staticId method.

Note that neither Ice::Object nor the generated class override hash and 
==, so the default implementations apply.

26.14.2 Data Members of Classes

By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding instance variable and accessor methods.

If you wish to restrict access to a data member, you can modify its visibility 
using the protected metadata directive. The presence of this directive causes the 
Slice compiler to generate the data member with protected visibility. As a result, 
the member can be accessed only by the class itself or by one of its subclasses. For 
example, the TimeOfDay class shown below has the protected metadata directive 
applied to each of its data members:
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class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

module TimeOfDay_mixin
    include ::Ice::Object_mixin

    # ...

    #
    # Operation signatures.
    #
    # def format()

    attr_accessor :hours, :minutes, :seconds
    protected :hours, :hours=
    protected :minutes, :minutes=
    protected :seconds, :seconds=
end
class TimeOfDay
    include TimeOfDay_mixin

    def initialize(hour=0, minute=0, second=0)
        @hour = hour
        @minute = minute
        @second = second
    end

    # ...
end

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};
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26.14.3 Class Constructors

Classes have a constructor that assigns to each data member a default value appro-
priate for its type. You can also declare different default values for data members 
of primitive and enumerated types, as discussed in Section 4.11.1.

For derived classes, the constructor has one parameter for each of the base 
class’s data members, plus one parameter for each of the derived class’s data 
members, in base-to-derived order.

26.14.4 Operations of Classes

Operations of classes are mapped to methods in the generated class. This means 
that, if a class contains operations (such as the format operation of our TimeOfDay 
class), objects representing instances of TimeOfDay must define equivalent 
methods. For example:

class TimeOfDayI < TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

In this case our implementation class TimeOfDayI derives from the generated 
class TimeOfDay. An alternative is to include the generated mixin module, 
which makes it possible for the class to derive from a different base class if neces-
sary:

class TimeOfDayI < SomeOtherClass
    include TimeOfDay_mixin

    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As described in Section 26.14.1, an implementation of a Slice class must include 
the mixin module but is not required to derive from the generated class.

Ruby allows an existing class to be reopened in order to augment or replace its 
functionality. This feature provides another way for us to implement a Slice class: 
reopen the generated class and define the necessary methods:
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class TimeOfDay
    def format(current=nil)
        sprintf("%02d:%02d:%02d", @hour, @minute, @second)
    end
end

As an added benefit, this strategy eliminates the need to define a class factory. The 
next section describes this subject in more detail.

A Slice class such as TimeOfDay that declares or inherits an operation is inher-
ently abstract. Ruby does not support the notion of abstract classes or abstract 
methods, therefore the mapping merely summarizes the required method signa-
tures in a comment for your convenience.

You may notice that the mapping for an operation adds an optional trailing 
parameter named current. For now, you can ignore this parameter and pretend 
it does not exist. (We look at it in more detail in Section 32.6.)

26.14.5 Receiving Objects

We have discussed the ways you can implement a Slice class, but we also need to 
examine the semantics of receiving an object as the return value or as an out-
parameter from an operation invocation. Consider the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. Unless we tell it otherwise, the Ice 
run time in Ruby does exactly that: it instantiates the generated class 
TimeOfDay. Although TimeOfDay is logically an abstract class because its 
Slice equivalent defined an operation, Ruby has no notion of abstract classes and 
therefore it is legal to create an instance of this class. Furthermore, there are situa-
tions in which this is exactly the behavior you want:

• when you have reopened the generated class to define its operations, or

• when your program uses only the data members of an object and does not 
invoke any of its operations.

On the other hand, if you have defined a Ruby class that implements the Slice 
class, you need the Ice run time to return an instance of your class and not an 
instance of the generated class. The Ice run time cannot magically know about 
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your implementation class, therefore you must inform the Ice run time by 
installing a class factory.

26.14.6 Class Factories

The Ice run time invokes a class factory when it needs to instantiate an object of a 
particular type. If no factory is found, the Ice run time instantiates the generated 
class as described in Section 26.14.5. To install a factory, we use operations 
provided by the Ice::Communicator interface:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
create an object that supports the Ice::ObjectFactory interface:

class ObjectFactory
    def create(type)
        fail unless type == M::TimeOfDay::ice_staticId()
        TimeOfDayI.new
    end

    def destroy
        # Nothing to do
    end
end

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::M::TimeOfDay". Our 
implementation of create checks the type ID: if it matches, the method instanti-
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ates and returns a TimeOfDayI object. For other type IDs, the method fails 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

ic = ...   # Get Communicator...
ic.addObjectFactory(ObjectFactory.new,
                    M::TimeOfDay::ice_staticId())

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::M::TimeOfDay", it calls the create method of the registered ObjectFac-
tory instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called. However, calls to create can be made 
concurrently.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class.
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26.15 Code Generation

The Ruby mapping supports two forms of code generation: dynamic and static.

26.15.1 Dynamic Code Generation
Using dynamic code generation, Slice files are “loaded” at run time and dynami-
cally translated into Ruby code, which is immediately compiled and available for 
use by the application. This is accomplished using the Ice::loadSlice 
method, as shown in the following example:

Ice::loadSlice("Color.ice")
puts "My favorite color is #{M::Color.blue.to_s}"

For this example, we assume that Color.ice contains the following definitions:

module M {
    enum Color { red, green, blue };
};

Ice::loadSlice Options

The Ice::loadSlice method behaves like a Slice compiler in that it accepts 
command-line arguments for specifying preprocessor options and controlling 
code generation. The arguments must include at least one Slice file.

The function has the following Ruby definition:

def loadSlice(cmd, args=[])

The command-line arguments can be specified entirely in the first argument, cmd, 
which must be a string. The optional second argument can be used to pass addi-
tional command-line arguments as a list; this is useful when the caller already has 
the arguments in list form. The function always returns nil.

For example, the following calls to Ice::loadSlice are functionally 
equivalent:

Ice::loadSlice("-I/opt/IceRuby/slice Color.ice")
Ice::loadSlice("-I/opt/IceRuby/slice", ["Color.ice"])
Ice::loadSlice("", ["-I/opt/IceRuby/slice", "Color.ice"])

In addition to the standard compiler options described in Section 4.20, 
Ice::loadSlice also supports the following command-line options:

• --all

Generate code for all Slice definitions, including those from included files.
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• --checksum

Generate checksums for Slice definitions. See Section 26.17 for more infor-
mation.

Locating Slice Files

If your Slice files depend on Ice types, you can avoid hard-coding the path name 
of your Ice installation directory by calling the Ice::getSliceDir function:

Ice::loadSlice("-I" + Ice::getSliceDir() + " Color.ice")

This function attempts to locate the slice subdirectory of your Ice installation 
using an algorithm that succeeds for the following scenarios:

• Installation of a binary Ice archive

• Installation of an Ice source distribution using make install

• Installation via a Windows installer

• RPM installation on Linux

• Execution inside a compiled Ice source distribution

If the slice subdirectory can be found, getSliceDir returns its absolute path 
name, otherwise the function returns nil.

Loading Multiple Files

You can specify as many Slice files as necessary in a single invocation of 
Ice::loadSlice, as shown below:

Ice::loadSlice("Syscall.ice Process.ice")

Alternatively, you can call Ice::loadSlice several times:

Ice::loadSlice("Syscall.ice")
Ice::loadSlice("Process.ice")

If a Slice file includes another file, the default behavior of Ice::loadSlice 
generates Ruby code only for the named file. For example, suppose 
Syscall.ice includes Process.ice as follows:

// Syscall.ice
#include <Process.ice>
...

If you call Ice::loadSlice("-I. Syscall.ice"), Ruby code is not 
generated for the Slice definitions in Process.ice or for any definitions that 
may be included by Process.ice. If you also need code to be generated for 
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included files, one solution is to load them individually in subsequent calls to 
Ice::loadSlice. However, it is much simpler, not to mention more efficient, 
to use the --all option instead:

Ice::loadSlice("--all -I. Syscall.ice")

When you specify --all, Ice::loadSlice generates Ruby code for all Slice 
definitions included directly or indirectly from the named Slice files.

There is no harm in loading a Slice file multiple times, aside from the addi-
tional overhead associated with code generation. For example, this situation could 
arise when you need to load multiple top-level Slice files that happen to include a 
common subset of nested files. Suppose that we need to load both 
Syscall.ice and Kernel.ice, both of which include Process.ice. The 
simplest way to load both files is with a single call to Ice::loadSlice:

Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")

Although this invocation causes the Ice extension to generate code twice for 
Process.ice, the generated code is structured so that the interpreter ignores 
duplicate definitions. We could have avoided generating unnecessary code with 
the following sequence of steps:

Ice::loadSlice("--all -I. Syscall.ice")
Ice::loadSlice("-I. Kernel.ice")

In more complex cases, however, it can be difficult or impossible to completely 
avoid this situation, and the overhead of code generation is usually not significant 
enough to justify such an effort.

Limitations

The Ice::loadSlice method must be called outside of any module scope. For 
example, the following code is incorrect:

# WRONG
module M
    Ice::loadSlice("--all -I. Syscall.ice Kernel.ice")
    ...
end

26.15.2 Static Code Generation

You should be familiar with static code generation if you have used other Slice 
language mappings, such as C++ or Java. Using static code generation, the Slice 
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compiler slice2rb (see Section 26.15.4) generates Ruby code from your Slice 
definitions.

Compiler Output

For each Slice file X.ice, slice2rb generates Ruby code into a file named 
X.rb in the output directory. The default output directory is the current working 
directory, but a different directory can be specified using the --output-dir 
option.

Include Files

It is important to understand how slice2rb handles include files. In the absence 
of the --all option, the compiler does not generate Ruby code for Slice defini-
tions in included files. Rather, the compiler translates Slice #include state-
ments into Ruby require statements in the following manner:

1. Determine the full pathname of the included file.

2. Create the shortest possible relative pathname for the included file by iterating 
over each of the include directories (specified using the -I option) and 
removing the leading directory from the included file if possible.

For example, if the full pathname of an included file is 
/opt/App/slice/OS/Process.ice, and we specified the options 
-I/opt/App and -I/opt/App/slice, then the shortest relative path-
name is OS/Process.ice after removing /opt/App/slice.

3. Replace the .ice extension with .rb. Continuing our example from the 
previous step, the translated require statement becomes

require "OS/Process.rb"

As a result, you can use -I options to tailor the require statements generated 
by the compiler in order to avoid absolute pathnames and match the organizational 
structure of your application’s source files.

26.15.3 Static Versus Dynamic Code Generation

There are several issues to consider when evaluating your requirements for code 
generation.



790 Client-Side Slice-to-Ruby Mapping

Application Considerations

The requirements of your application generally dictate whether you should use 
dynamic or static code generation. Dynamic code generation is convenient for a 
number of reasons:

• It avoids the intermediate compilation step required by static code generation.

• It makes the application more compact because the application requires only 
the Slice files, not the additional files produced by static code generation.

• It reduces complexity, which is especially helpful during testing, or when 
writing short or transient programs.

Static code generation, on the other hand, is appropriate in many situations:

• when an application uses a large number of Slice definitions and the startup 
delay must be minimized

• when it is not feasible to deploy Slice files with the application

• when a number of applications share the same Slice files

• when Ruby code is required in order to utilize third-party Ruby tools.

Mixing Static and Dynamic Generation

You can safely use a combination of static and dynamic translation in an applica-
tion. For it to work properly, you must correctly manage the include paths for 
Slice translation and the Ruby interpreter so that the statically-generated code can 
be imported properly by require.

For example, suppose you want to dynamically load the following Slice defi-
nitions:

#include <Glacier2/Session.ice>

module MyApp {
    interface MySession extends Glacier2::Session {
        // ...
    };
};

Whether the included file Glacier2/Session.ice is loaded dynamically or 
statically is determined by the presence of the --all option:
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sliceDir = "-I#{ENV['ICE_HOME']}/slice"

# Load Glacier2/Session.ice dynamically:
Ice::loadSlice(sliceDir + " --all MySession.ice")

# Load Glacier2/Session.ice statically:
Ice::loadSlice(sliceDir + " MySession.ice")

In this example, the first invocation of loadSlice uses the --all option so 
that code is generated dynamically for all included files. The second invocation 
omits --all, therefore the Ruby interpreter executes the equivalent of the 
following statement:

require "Glacier2/Session.rb"

As a result, before we can call loadSlice we must first ensure that the inter-
preter can locate the statically-generated file Glacier2/Session.rb. We can 
do this in a number of ways, including

• adding the parent directory (e.g., /opt/IceRuby/ruby) to the RUBYLIB 
environment variable

• specifying the -I option when starting the interpreter

• modifying the search path at run time, as shown below:

$:.unshift("/opt/IceRuby/ruby")

26.15.4 slice2rb Command-Line Options

The Slice-to-Ruby compiler, slice2rb, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --all

Generate code for all Slice definitions, including those from included files.

• --checksum

Generate checksums for Slice definitions.

26.16 The main Program

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. You must initialize the Ice run time by calling 
Ice::initialize before you can do anything else in your program. 
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Ice::initialize returns a reference to an instance of an Ice:::Communi-
cator:

require 'Ice'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    # ...
rescue => ex
    puts ex
    status = 1
end

# ...

Ice::initialize accepts the argument list that is passed to the program by 
the operating system. The function scans the argument list for any command-line 
options that are relevant to the Ice run time; any such options are removed from 
the argument list so, when Ice::initialize returns, the only options and 
arguments remaining are those that concern your application. If anything goes 
wrong during initialization, initialize throws an exception.

Before leaving your program, you must call Communicator::destroy. The 
destroy operation is responsible for finalizing the Ice run time. In particular, 
destroy ensures that any outstanding threads are joined with and reclaims a 
number of operating system resources, such as file descriptors and memory. Never 
allow your program to terminate without calling destroy first; doing so has unde-
fined behavior.

The general shape of our program is therefore as follows:

require 'Ice'

status = 0
ic = nil
begin
    ic = Ice::initialize(ARGV)
    # ...
rescue => ex
    puts ex
    status = 1
end

if ic
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    begin
        ic.destroy()
    rescue => ex
        puts ex
        status = 1
    end
end

exit(status)

Note that the code places the call to Ice::initialize into a begin block 
and takes care to return the correct exit status to the operating system. Also note 
that an attempt to destroy the communicator is made only if the initialization 
succeeded.

26.16.1 The Ice::Application Class
The preceding program structure is so common that Ice offers a class, 
Ice::Application, that encapsulates all the correct initialization and final-
ization activities. The synopsis of the class is as follows (with some detail omitted 
for now):

module Ice
    class Application
        def main(args, configFile=nil, initData=nil)

        def run(args)

        def Application.appName()

        def Application.communicator()
    end
end

The intent of this class is that you specialize Ice::Application and imple-
ment the abstract run method in your derived class. Whatever code you would 
normally place in your main program goes into run instead. Using 
Ice::Application, our program looks as follows:

require 'Ice'

class Client < Ice::Application
    def run(args)
        # Client code here...
        return 0
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    end
end

app = Client.new()
status = app.main(ARGV)
exit(status)

If you prefer, you can also reopen Ice::Application and define run 
directly:

require 'Ice'

class Ice::Application
    def run(args)
        # Client code here...
        return 0
    end
end

app = Ice::Application.new()
status = app.main(ARGV)
exit(status)

You also can call main with an optional file name or an Initialization-
Data structure (see Section 32.3 and Section 30.9). If you pass a configuration 
file name to main, the settings in this file are overridden by settings in a file iden-
tified by the ICE_CONFIG environment variable (if defined). Property settings 
supplied on the command line take precedence over all other settings.

The Application.main function does the following:

1. It installs an exception handler. If your code fails to handle an exception, 
Application.main prints the exception information before returning 
with a non-zero return value.

2. It initializes (by calling Ice::initialize) and finalizes (by calling 
Communicator.destroy) a communicator. You can get access to the 
communicator for your program by calling the static communicator 
accessor.

3. It scans the argument list for options that are relevant to the Ice run time and 
removes any such options. The argument list that is passed to your run 
method therefore is free of Ice-related options and only contains options and 
arguments that are specific to your application.

4. It provides the name of your application via the static appName member 
function. The return value from this call is the first element of the argument 
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vector passed to Application.main, so you can get at this name from 
anywhere in your code by calling Ice::Application::appName 
(which is usually required for error messages).

5. It installs a signal handler that properly shuts down the communicator.

Using Ice::Application ensures that your program properly finalizes the 
Ice run time, whether your program terminates normally or in response to an 
exception or signal. We recommend that all your programs use this class; doing so 
makes your life easier. In addition Ice::Application also provides features 
for signal handling and configuration that you do not have to implement yourself 
when you use this class.

Catching Signals

A program typically needs to perform some cleanup work before terminating, 
such as flushing database buffers or closing network connections. This is particu-
larly important on receipt of a signal or keyboard interrupt to prevent possible 
corruption of database files or other persistent data.

To make it easier to deal with signals, Ice::Application encapsulates 
Ruby’s signal handling capabilities, allowing you to cleanly shut down on receipt 
of a signal:

class Application
    def Application.destroyOnInterrupt()

    def Application.ignoreInterrupt()

    def Application.callbackOnInterrupt()

    def Application.holdInterrupt()

    def Application.releaseInterrupt()

    def Application.interrupted()

    def interruptCallback(sig):
        # Default implementation does nothing.
    end
    # ...
end

The methods behave as follows:
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• destroyOnInterrupt

This method installs a signal handler that destroys the communicator if it is 
interrupted. This is the default behavior.

• ignoreInterrupt

This method causes signals to be ignored.

• callbackOnInterrupt

This function configures Ice::Application to invoke interrupt-
Callback when a signal occurs, thereby giving the subclass responsibility 
for handling the signal.

• holdInterrupt

This method temporarily blocks signal delivery.

• releaseInterrupt

This method restores signal delivery to the previous disposition. Any signal 
that arrives after holdInterrupt was called is delivered when you call 
releaseInterrupt.

• interrupted

This method returns True if a signal caused the communicator to shut down, 
False otherwise. This allows us to distinguish intentional shutdown from a 
forced shutdown that was caused by a signal. This is useful, for example, for 
logging purposes.

• interruptCallback

A subclass implements this function to respond to signals. The function may 
be called concurrently with any other thread and must not raise exceptions.

By default, Ice::Application behaves as if destroyOnInterrupt was 
invoked, therefore our program requires no change to ensure that the program 
terminates cleanly on receipt of a signal. (You can disable the signal-handling 
functionality of Ice::Application by passing the constant NoSignal-
Handling to the constructor. In that case, signals retain their default behavior, 
that is, terminate the process.) However, we add a diagnostic to report the occur-
rence of a signal, so our program now looks like:

require 'Ice'

class MyApplication < Ice::Application
    def run(args)
        # Client code here...
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        if Ice::Application::interrupted()
            print Ice::Application::appName() + ": terminating"
        end

        return 0
    end
end

app = MyApplication.new()
status = app.main(ARGV)
exit(status)

Ice::Application and Properties

Apart from the functionality shown in this section, Ice::Application also 
takes care of initializing the Ice run time with property values. Properties allow 
you to configure the run time in various ways. For example, you can use proper-
ties to control things such as the thread pool size or the trace level for diagnostic 
output. The main method of Ice::Application accepts an optional second 
parameter allowing you to specify the name of a configuration file that will be 
processed during initialization. We discuss Ice properties in more detail in 
Chapter 30.

Limitations of Ice::Application

Ice::Application is a singleton class that creates a single communicator. If 
you are using multiple communicators, you cannot use Ice::Application. 
Instead, you must structure your code as we saw in Chapter 3 (taking care to 
always destroy the communicator).

26.17 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2rb, the --checksum option causes the 
compiler to generate code that adds checksums to the hash collection 
Ice::SliceChecksums. The checksums are installed automatically when the 
Ruby code is first parsed; no action is required by the application.

In order to verify a server’s checksums, a client could simply compare the two 
hash objects using a comparison operator. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:
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serverChecksums = ...
for i in Ice::SliceChecksums.keys
    if not serverChecksums.has_key?(i)
        # No match found for type id!
    elif Ice::SliceChecksums[i] != serverChecksums[i]
        # Checksum mismatch!
    end
end

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 27
Developing a File System Client in 
Ruby

27.1 Chapter Overview

In this chapter, we present the source code for a Ruby client that accesses the file 
system we developed in Chapter 5.

27.2 The Ruby Client

We now have seen enough of the client-side Ruby mapping to develop a complete 
client to access our remote file system. For reference, here is the Slice definition 
once more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
 
    interface File extends Node { 
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        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

require 'Filesystem.rb'

# Recursively print the contents of directory "dir"
# in tree fashion. For files, show the contents of
# each file. The "depth" parameter is the current
# nesting level (for indentation).

def listRecursive(dir, depth)
    indent = ''
    depth = depth + 1
    for i in (0...depth)
        indent += "\t"
    end

    contents = dir.list()

    for node in contents
        subdir = Filesystem::DirectoryPrx::checkedCast(node)
        file = Filesystem::FilePrx::uncheckedCast(node)
        print indent + node.name() + " "
        if subdir
            puts "(directory):"
            listRecursive(subdir, depth)
        else
            puts "(file):"
            text = file.read()
            for line in text
                puts indent + "\t" + line
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            end
        end
    end
end

status = 0
ic = nil
begin
    # Create a communicator
    #
    ic = Ice::initialize(ARGV)

    # Create a proxy for the root directory
    #
    obj = ic.stringToProxy("RootDir:default -p 10000")

    # Down-cast the proxy to a Directory proxy
    #
    rootDir = Filesystem::DirectoryPrx::checkedCast(obj)

    # Recursively list the contents of the root directory
    #
    puts "Contents of root directory:"
    listRecursive(rootDir, 0)
rescue => ex
    puts ex
    print ex.backtrace.join("\n")
    status = 1
end

if ic
    # Clean up
    #
    begin
        ic.destroy()
    rescue => ex
        puts ex
        print ex.backtrace.join("\n")
        status = 1
    end
end

exit(status)
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The program first defines the listRecursive function, which is a helper func-
tion to print the contents of the file system, and the main program follows. Let us 
look at the main program first:

1. The structure of the code follows what we saw in Chapter 3. After initializing 
the run time, the client creates a proxy to the root directory of the file system. 
For this example, we assume that the server runs on the local host and listens 
using the default protocol (TCP/IP) at port 10000. The object identity of the 
root directory is known to be RootDir.

2. The client down-casts the proxy to DirectoryPrx and passes that proxy to 
listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code does a checkedCast to narrow the Node proxy to a Directory 
proxy, as well as an uncheckedCast to narrow the Node proxy to a File 
proxy. Exactly one of those casts will succeed, so there is no need to call 
checkedCast twice: if the Node is-a Directory, the code uses the Direc-
toryPrx returned by the checkedCast; if the checkedCast fails, we 
know that the Node is-a File and, therefore, an uncheckedCast is sufficient 
to get a FilePrx.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use an uncheckedCast instead of a checkedCast because 
an uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of a two files and a a directory 
as follows:

Figure 27.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client is not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

27.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the Ruby code hardly 
differs from the code you would write for an ordinary Ruby program. This is one 
of the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local Ruby object. This allows you to put your effort where 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs.
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Chapter 28
Client-Side Slice-to-PHP Mapping

28.1 Chapter Overview

In this chapter, we present the client-side Slice-to-PHP mapping. One part of the 
client-side PHP mapping concerns itself with rules for representing each Slice 
data type as a corresponding PHP type; we cover these rules in Section 28.3 to 
Section 28.10. Another part of the mapping deals with how clients can invoke 
operations, pass and receive parameters, and handle exceptions. These topics are 
covered in Section 28.11 to Section 28.13. Slice classes have the characteristics of 
both data types and interfaces and are covered in Section 28.14. Code generation 
issues are discussed in Section 28.15 and PHP-specific features in Section 28.16. 
Finally, Section 28.17 addresses the use of Slice checksums.

28.2 Introduction

The client-side Slice-to-PHP mapping defines how Slice data types are translated 
to PHP types, and how clients invoke operations, pass parameters, and handle 
errors. Much of the PHP mapping is intuitive. For example, Slice sequences map 
to PHP arrays, so there is essentially nothing new you have to learn in order to use 
Slice sequences in PHP.
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Much of what appears in this chapter is reference material. We suggest that 
you skim the material on the initial reading and refer back to specific sections as 
needed. However, we recommend that you read at least Section 28.11 to 
Section 28.13 in detail because these sections cover how to call operations from a 
client, pass parameters, and handle exceptions.

A word of advice before you start: in order to use the PHP mapping, you 
should need no more than the Slice definition of your application and knowledge 
of the PHP mapping rules. In particular, looking through the generated code in 
order to discern how to use the PHP mapping is likely to be inefficient, due to the 
amount of detail. Of course, occasionally, you may want to refer to the generated 
code to confirm a detail of the mapping, but we recommend that you otherwise 
use the material presented here to see how to write your client-side code.

28.3 Mapping for Identifiers

Slice identifiers map to an identical PHP identifier. For example, the Slice identi-
fier Clock becomes the PHP identifier Clock. There is one exception to this rule: 
if a Slice identifier is the same as a PHP keyword or is an identifier reserved by the 
Ice run time (such as checkedCast), the corresponding PHP identifier is prefixed 
with an underscore. For example, the Slice identifier while is mapped as 
_while.1

A single Slice identifier often results in several PHP identifiers. For example, 
for a Slice interface named Foo, the generated PHP code uses the identifiers Foo 
and FooPrx (among others). If the interface has the name while, the generated 
identifiers are _while and whilePrx (not _whilePrx), that is, the under-
score prefix is applied only to those generated identifiers that actually require it.

28.4 Mapping for Modules

By default, identifiers defined within a Slice module are mapped to a flattened 
symbol that uses underscores as module separators. Consider the following Slice 
definition:

1. As suggested in Section 4.5.3 on page 92, you should try to avoid such identifiers as much as 
possible.
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module M {
    module N {
        enum Color { red, green, blue };
    };
};

The Slice identifier Color maps to M_N_Color by default because PHP releases 
prior to version 5.3 lacked language support for namespaces. If you prefer to use 
namespaces instead, you can enable an alternate mapping in which Slice modules 
map to PHP namespaces with the same name as the Slice module. This mapping 
preserves the nesting of the Slice definitions. Using the namespace mapping, the 
Slice identifier Color maps to \M\N\Color.

Be aware that using underscores in your Slice definitions can lead to name 
collisions in the flattened mapping. Consider the following example:

module M {
    module N {
        enum Color { red, green, blue };
    };
};

module M_N {
    interface Color { };
};

Although these definitions are syntactically correct, they both map to the flattened 
PHP symbol M_N_Color.

28.5 The Ice Module

All of the APIs for the Ice run time are nested in the Ice module, to avoid clashes 
with definitions for other libraries or applications. Some of the contents of the 
Ice module are generated from Slice definitions; other parts of the Ice module 
provide special-purpose definitions that do not have a corresponding Slice defini-
tion. We will incrementally cover the contents of the Ice module throughout the 
remainder of the book.

A PHP application can load the Ice run time using the require statement:

require 'Ice.php';
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If the statement executes without error, the Ice run time is loaded and available for 
use. You can determine the version of the Ice run time you have just loaded by 
calling the stringVersion function:

$icever = Ice_stringVersion();

Using the namespace mapping, you can refer to a global Ice function such as 
stringVersion either by its flattened name (as shown above) or by its 
namespace equivalent:

$icever = \Ice\stringVersion();

28.6 Mapping for Simple Built-In Types

PHP has a limited set of primitive types: boolean, integer, double, and 
string. The Slice built-in types are mapped to PHP types as shown in 
Table 28.1.

PHP’s integer type may not accommodate the range of values supported by 
Slice’s long type, therefore long values that are outside this range are mapped as 

Table 28.1. Mapping of Slice built-in types to PHP.

Slice Ruby

bool true or false

byte integer

short integer

int integer

long integer

float double

double double

string string
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strings. Scripts must be prepared to receive an integer or string from any operation 
that returns a long value.

28.6.1 String Mapping

String values returned as the result of a Slice operation (including return values, 
out parameters, and data members) contain UTF-8 encoded strings unless the 
program has installed a string converter, in which case string values use the 
converter’s native encoding instead. See Section 32.24 for more information on 
string converters.

As string input values for a remote Slice operation, Ice accepts null in addi-
tion to string objects; each occurrence of null is marshaled as an empty 
string. Ice assumes that all string objects contain valid UTF-8 encoded strings 
unless the program has installed a string converter, in which case Ice assumes that 
string objects use the native encoding expected by the converter.

28.7 Mapping for User-Defined Types

Slice supports user-defined types: enumerations, structures, sequences, and 
dictionaries.

28.7.1 Mapping for Enumerations

PHP does not have an enumerated type, so Slice enumerations are mapped to 
constants in a PHP class: the name of the Slice enumeration becomes the name of 
the PHP class; for each enumerator, the class contains a constant with the same 
name as the enumerator (see Section 28.3 for more information on identifiers). 
For example:

enum Fruit { Apple, Pear, Orange };

The generated PHP class looks as follows:

class Fruit
{
    const Apple = 0;
    const Pear = 1;
    const Orange = 2;
}
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Since enumerated values are mapped to integers, application code is not required 
to use the generated constants. When an enumerated value enters the Ice run time, 
Ice validates that the given integer is within the expected range for the enumera-
tion. However, to minimize the potential for defects in your code, we recommend 
using the generated constants instead of literal integers.

28.7.2 Mapping for Structures

A Slice structure maps to a PHP class containing a public variable for each 
member of the structure. The class also provides a constructor whose arguments 
correspond to the data members. This allows you to instantiate and initialize the 
class in a single statement (instead of having to first instantiate the class and then 
assign to its members). Each argument provides a default value appropriate for the 
member’s type. You can also declare different default values for members of prim-
itive and enumerated types, as discussed in Section 4.9.2. For example, here is our 
Employee structure from Section 4.9.4 once more:

struct Employee {
    long number;
    string firstName;
    string lastName;
};

The PHP mapping generates the following definition for this structure:

class Employee
{
    public function __construct($number=0, $firstName='',
                                $lastName='');

    public function __toString();

    public $number;
    public $firstName;
    public $lastName;
}

The mapping includes a definition for the __toString magic method, which 
returns a string representation of the structure.
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28.7.3 Mapping for Sequences

Slice sequences are mapped to native PHP indexed arrays. The first element of the 
Slice sequence is contained at index 0 (zero) of the PHP array, followed by the 
remaining elements in ascending index order.

Consider this example:

sequence<Fruit> FruitPlatter;

You can create an instance of FruitPlatter as shown below:

// Make a small platter with one Apple and one Orange
//
$platter = array(Fruit::Apple, Fruit::Orange);

The Ice run time validates the elements of an array to ensure that they are compat-
ible with the declared type and raises InvalidArgumentException if an 
incompatible type is encountered.

28.7.4 Mapping for Dictionaries

Slice dictionaries map to native PHP associative arrays. The PHP mapping does 
not currently support all Slice dictionary types, however, because native PHP 
associative arrays support only integer and string key types. A Slice dictionary 
whose key type is an enumeration or one of the primitive types boolean, byte, 
short, int, or long is mapped as an associative array with an integer key.2 A 
Slice dictionary with a string key type is mapped as associative array with a string 
key. All other key types cause a warning to be generated.

Here is the definition of our EmployeeMap from Section 4.9.4:

dictionary<long, Employee> EmployeeMap;

You can create an instance of this dictionary as shown below:

$e1 = new Employee;
$e1->number = 42;
$e1->firstName = "Stan";
$e1->lastName = "Lipmann";

$e2 = new Employee;

2. Boolean values are treated as integers, with false equivalent to 0 (zero) and true equivalent to 1 
(one).
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$e2->number = 77;
$e2->firstName = "Herb";
$e2->lastName = "Sutter";

$em = array($e1->number => $e1, $e2->number => $e2);

The Ice run time validates the elements of a dictionary to ensure that they are 
compatible with the declared type; InvalidArgumentException exception 
is raised if an incompatible type is encountered.

28.8 Mapping for Constants

Slice constants are mapped to PHP constants. Consider the following definitions:

module M {
    const bool      AppendByDefault = true;
    const byte      LowerNibble = 0x0f;
    const string    Advice = "Don't Panic!";
    const short     TheAnswer = 42;
    const double    PI = 3.1416;

    enum Fruit { Apple, Pear, Orange };
    const Fruit     FavoriteFruit = Pear;
};

The mapping for these constants is shown below:

define('M_AppendByDefault', true);
define('M_LowerNibble', 15);
define('M_Advice', "Don't Panic!");
define('M_TheAnswer', 42);
define('M_PI', 3.1416);
define('M_FavoriteFruit', M_Fruit::Pear);

An application refers to a constant using its flattened name:

$ans = M_TheAnswer;

Using the namespace mapping, Slice constants are mapped to PHP constants in 
the enclosing namespace:

$ans = \M\TheAnswer;
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28.9 Mapping for Exceptions

The mapping for exceptions is based on the inheritance hierarchy shown in 
Figure 28.1

Figure 28.1. Inheritance structure for Ice exceptions.

The ancestor of all exceptions is Exception, from which Ice_Exception is 
derived. Ice_LocalException and Ice_UserException are derived 
from Ice_Exception and form the base for all run-time and user exceptions.

Consider the following Slice definitions:

exception GenericError {
    string reason;
};
exception BadTimeVal extends GenericError {};
exception BadZoneName extends GenericError {};

These exception definitions map to the abbreviated PHP class definitions shown 
below:

class GenericError extends Ice_UserException
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();

    public $reason;

Ice_LocalException Ice_UserException

Ice_Exception

Specific Run-Time Exceptions... Specific User Exceptions...

Exception
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}

class BadTimeVal extends GenericError
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();
}

class BadZoneName extends GenericError
{
    public function __construct($reason='');
    public function ice_name();
    public function __toString();
}

Each Slice exception is mapped to a PHP class with the same name. The inheri-
tance structure of the Slice exceptions is preserved for the generated classes, so 
BadTimeVal and BadZoneName inherit from GenericError.

Each exception member corresponds to an instance variable of the instance, 
which the constructor initializes to a default value appropriate for its type. You can 
also declare different default values for members of primitive and enumerated 
types, as discussed in Section 4.10.2.

Although BadTimeVal and BadZoneName do not declare data members, their 
constructors still accept a value for the inherited data member reason in order to 
pass it to the constructor of the base exception GenericError.

Each exception also defines the ice_name method to return the exception’s 
type name, as well as the __toString magic method to return a stringified 
representation of the exception and its members.

All user exceptions are derived from the base class Ice_UserException. 
This allows you to catch all user exceptions generically by installing a handler for 
Ice_UserException. Similarly, you can catch all Ice run-time exceptions 
with a handler for Ice_LocalException, and you can catch all Ice excep-
tions with a handler for Ice_Exception.

28.10 Mapping for Run-Time Exceptions

The Ice run time throws run-time exceptions for a number of pre-defined error 
conditions. All run-time exceptions directly or indirectly derive from 
Ice_LocalException (which, in turn, derives from Ice_Exception).
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An inheritance diagram for user and run-time exceptions appears in Figure 4.4 
on page 117. By catching exceptions at the appropriate point in the hierarchy, you 
can handle exceptions according to the category of error they indicate:

• Ice_LocalException

This is the root of the inheritance tree for run-time exceptions.

• Ice_UserException

This is the root of the inheritance tree for user exceptions.

• Ice_TimeoutException

This is the base exception for both operation-invocation and connection-estab-
lishment timeouts.

• Ice_ConnectTimeoutException

This exception is raised when the initial attempt to establish a connection to a 
server times out.

You will probably have little need to catch the remaining run-time exceptions; the 
fine-grained error handling offered by the remainder of the hierarchy is of interest 
mainly in the implementation of the Ice run time. However, there is one exception 
you will probably be interested in specifically: 
Ice_ObjectNotExistException. This exception is raised if a client 
invokes an operation on an Ice object that no longer exists. In other words, the 
client holds a dangling reference to an object that probably existed some time in 
the past but has since been permanently destroyed.

28.11 Mapping for Interfaces

The mapping of Slice interfaces revolves around the idea that, to invoke a remote 
operation, you call a method on a local class instance that represents the remote 
object. This makes the mapping easy and intuitive to use because, for all intents 
and purposes (apart from error semantics), making a remote procedure call is no 
different from making a local procedure call.

28.11.1 Proxy Objects

Slice interfaces are implemented by instances of the Ice_ObjectPrx class. In 
the client’s address space, an instance of ObjectPrx is the local ambassador for 
a remote instance of an interface in a server and is known as a proxy instance. All 
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the details about the server-side object, such as its address, what protocol to use, 
and its object identity are encapsulated in that instance.

The PHP mapping for proxies differs from that of other Ice language 
mappings in that the ObjectPrx class is used to implement all Slice interfaces. 
The primary motivation for this design is minimizing the amount of code that is 
generated for each interface. As a result, a proxy object returned by the communi-
cator operations stringToProxy and propertyToProxy is untyped, meaning it is 
not associated with a user-defined Slice interface. Once you narrow the proxy to a 
particular interface, you can use that proxy to invoke your Slice operations.

Proxy instances are always created on behalf of the client by the Ice run time, 
so client code never has any need to instantiate a proxy directly.

A value of null denotes the null proxy. The null proxy is a dedicated value 
that indicates that a proxy points “nowhere” (denotes no object).

For each operation in the interface, the proxy object supports a method of the 
same name. Each operation accepts an optional trailing parameter representing the 
operation context. This parameter is an associative string array for use by the Ice 
run time to store information about how to deliver a request. You normally do not 
need to use it. (We examine the context parameter in detail in Chapter 32. The 
parameter is also used by IceStorm—see Chapter 44.)

28.11.2 The Ice_ObjectPrx Class

In the PHP language mapping, all proxies are instances of Ice_ObjectPrx. 
This class provides a number of methods:

class Ice_ObjectPrx
{
    function ice_getIdentity();
    function ice_isA($id);
    function ice_id();
    function ice_ping();
    # ...
}

The methods behave as follows:

• ice_getIdentity

This method returns the identity of the object denoted by the proxy. The iden-
tity of an Ice object has the following Slice type:
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module Ice {
    struct Identity {
        string name;
        string category;
    };
};

To see whether two proxies denote the same object, first obtain the identity for 
each object and then compare the identities:

$proxy1 = ...
$proxy2 = ...
$id1 = $proxy1->ice_getIdentity();
$id2 = $proxy2->ice_getIdentity();

if($id1 == $id2)
    // proxy1 and proxy2 denote the same object
else
    // proxy1 and proxy2 denote different objects

• ice_isA

This method determines whether the object denoted by the proxy supports a 
specific interface. The argument to ice_isA is a type ID (see Section 4.13). 
For example, to see whether a proxy of type ObjectPrx denotes a Printer 
object, we can write:

$proxy = ...
if($proxy != null && $proxy->ice_isA("::Printer"))
    // proxy denotes a Printer object
else
    // proxy denotes some other type of object

Note that we are testing whether the proxy is null before attempting to 
invoke the ice_isA method. This avoids getting a run-time error if the proxy 
is null.

• ice_id

This method returns the type ID of the object denoted by the proxy. Note that 
the type returned is the type of the actual object, which may be more derived 
than the narrowed type of the proxy. For example, if we have a proxy that has 
been narrowed to the type ID ::Base, the return value of ice_id might be 
"::Base", or it might be something more derived, such as "::Derived".
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• ice_ping

This method provides a basic reachability test for the object. If the object can 
physically be contacted (that is, the object exists and its server is running and 
reachable), the call completes normally; otherwise, it throws an exception that 
indicates why the object could not be reached, such as ObjectNotExist-
Exception or ConnectTimeoutException.

The ObjectPrx class also defines an operator for comparing two proxies for 
equality. Note that all aspects of proxies are compared by this operation, such as 
the communication endpoints for the proxy. This means that, in general, if two 
proxies compare unequal, that does not imply that they denote different objects. 
For example, if two proxies denote the same Ice object via different transport 
endpoints, == returns false even though the proxies denote the same object.

There are other methods in ObjectPrx, not shown here. These methods 
provide different ways to dispatch a call. (We discuss these methods in 
Chapter 32.)

28.11.3 Casting Proxies

The PHP mapping for a proxy generates a class with two static methods. For 
example, the following class is generated for the Slice interface named Simple:

class SimplePrxHelper
{
    public static function
    checkedCast($proxy, $facetOrCtx=null, $ctx=null);

    public static function
    uncheckedCast($proxy, $facet=null);
}

Both the checkedCast and uncheckedCast methods implement a down-
cast: if the passed proxy is a proxy for an object of type Simple, or a proxy for an 
object with a type derived from Simple, the cast returns a proxy narrowed to that 
type; otherwise, if the passed proxy denotes an object of a different type (or if the 
passed proxy is null), the cast returns null.

The method names checkedCast and uncheckedCast are reserved for 
use in proxies. If a Slice interface defines an operation with either of those names, 
the mapping escapes the name in the generated proxy by prepending an under-
score. For example, an interface that defines an operation named checkedCast is 
mapped to a proxy with a method named _checkedCast.
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The arguments are described below:

• $proxy

The proxy to be narrowed.

• $facetOrCtx

This optional argument can be either a string representing a desired facet (see 
Chapter 33), or an associative string array representing a context (see 
Section 32.12).

• $ctx

If $facetOrCtx contains a facet name, use this argument to supply an asso-
ciative string array representing a context (see Section 32.12).

• $facet

Specifies the name of the desired facet (see Chapter 33).

Given a proxy of any type, you can use a checkedCast to determine whether 
the corresponding object supports a given type, for example:

$obj = ...      // Get a proxy from somewhere...

$simple = SimplePrx::checkedCast($obj);
if($simple != null)
    // Object supports the Simple interface...
else
    // Object is not of type Simple...

Note that a checkedCast contacts the server. This is necessary because only 
the server implementation has definite knowledge of the type of an object. As a 
result, a checkedCast may throw a ConnectTimeoutException or an 
ObjectNotExistException.

In contrast, an uncheckedCast does not contact the server and uncondi-
tionally returns a proxy of the requested type. However, if you do use an 
uncheckedCast, you must be certain that the proxy really does support the 
type you are casting to; otherwise, if you get it wrong, you will most likely get a 
run-time exception when you invoke an operation on the proxy. The most likely 
error for such a type mismatch is OperationNotExistException. 
However, other exceptions, such as a marshaling exception are possible as well. 
And, if the object happens to have an operation with the correct name, but 
different parameter types, no exception may be reported at all and you simply end 
up sending the invocation to an object of the wrong type; that object may do rather 
non-sensical things. To illustrate this, consider the following two interfaces:
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interface Process {
    void launch(int stackSize, int dataSize);
};

// ...

interface Rocket {
    void launch(float xCoord, float yCoord);
};

Suppose you expect to receive a proxy for a Process object and use an 
uncheckedCast to down-cast the proxy:

$obj = ...                                  // Get proxy...
$process = ProcessPrx::uncheckedCast($obj); // No worries...
$process->launch(40, 60);                   // Oops...

If the proxy you received actually denotes a Rocket object, the error will go unde-
tected by the Ice run time: because int and float have the same size and because 
the Ice protocol does not tag data with its type on the wire, the implementation of 
Rocket::launch will simply misinterpret the passed integers as floating-point 
numbers.

In fairness, this example is somewhat contrived. For such a mistake to go 
unnoticed at run time, both objects must have an operation with the same name 
and, in addition, the run-time arguments passed to the operation must have a total 
marshaled size that matches the number of bytes that are expected by the unmar-
shaling code on the server side. In practice, this is extremely rare and an incorrect 
uncheckedCast typically results in a run-time exception.

Backward Compatibility

Prior releases of the PHP language mapping provided two proxy methods for 
narrowing a proxy:

class Ice_ObjectPrx
{
    function ice_checkedCast($type, $facetOrCtx=null, $ctx=null);
    function ice_uncheckedCast($type, $facet=null);
    # ...
}

For example, a proxy can be narrowed as follows:

$proxy = $proxy->ice_checkedCast("::Demo::Hello");
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The disadvantage of this API is that embedded type ID strings in an application 
are a potential source of defects because the strings are not validated until run 
time. Although these methods are still supported for the sake of backward compat-
ibility, we recommend using the static methods that are generated for each inter-
face. Not only are these static methods consistent with the APIs of other Ice 
language mappings, they also avoid the need to hard-code type ID strings in your 
application.

28.11.4 Using Proxy Methods

The base proxy class ObjectPrx supports a variety of methods for customizing 
a proxy (see Section 32.11). Since proxies are immutable, each of these “factory 
methods” returns a copy of the original proxy that contains the desired modifica-
tion. For example, you can obtain a proxy configured with a ten second timeout as 
shown below:

$proxy = $communicator->stringToProxy(...);
$proxy = $proxy->ice_timeout(10000);

A factory method returns a new proxy object if the requested modification differs 
from the current proxy, otherwise it returns the current proxy. With few excep-
tions, factory methods return a proxy of the same type as the current proxy, there-
fore it is generally not necessary to repeat a down-cast after using a factory 
method. The example below demonstrates these semantics:

$base = $communicator->stringToProxy(...);
$hello = Demo_HelloPrxHelper::checkedCast($base);
$hello = $hello->ice_timeout(10000); // Type is not discarded
$hello->sayHello();

The only exceptions are the factory methods ice_facet and ice_identity. 
Calls to either of these methods may produce a proxy for an object of an unrelated 
type, therefore they return an untyped proxy that you must subsequently down-
cast to an appropriate type.

28.11.5 Object Identity and Proxy Comparison

Proxy objects support comparison using the comparison operators == and !=. 
Note that proxy comparison uses all of the information in a proxy for the compar-
ison. This means that not only the object identity must match for a comparison to 
succeed, but other details inside the proxy, such as the protocol and endpoint 
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information, must be the same. In other words, comparison tests for proxy identity, 
not object identity. A common mistake is to write code along the following lines:

$p1 = ...        // Get a proxy...
$p2 = ...        // Get another proxy...

if($p1 != $p2)
    // p1 and p2 denote different objects       // WRONG!
else
    // p1 and p2 denote the same object         // Correct

Even though p1 and p2 differ, they may denote the same Ice object. This can 
happen because, for example, both p1 and p2 embed the same object identity, but 
each uses a different protocol to contact the target object. Similarly, the protocols 
may be the same, but denote different endpoints (because a single Ice object can 
be contacted via several different transport endpoints). In other words, if two 
proxies compare equal, we know that the two proxies denote the same object 
(because they are identical in all respects); however, if two proxies compare 
unequal, we know absolutely nothing: the proxies may or may not denote the 
same object.

To compare the object identities of two proxies, you can use a helper function 
in the Ice module:

function Ice_proxyIdentityCompare($lhs, $rhs);
function Ice_proxyIdentityAndFacetCompare($lhs, $rhs);

proxyIdentityCompare allows you to correctly compare proxies for iden-
tity:

$p1 = ...        // Get a proxy...
$p2 = ...        // Get another proxy...

if(Ice_proxyIdentityCompare($p1, $p2) != 0)
    // p1 and p2 denote different objects       // Correct
else
    // p1 and p2 denote the same object         // Correct

The function returns 0 if the identities are equal, 1 if p1 is less than p2, and 1 if 
p1 is greater than p2. (The comparison uses name as the major sort key and 
category as the minor sort key.)

The proxyIdentityAndFacetCompare function behaves similarly, but 
compares both the identity and the facet name (see Chapter 33).
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28.12 Mapping for Operations

As we learned in Section 28.11, for each operation on an interface, a proxy object 
narrowed to that type supports a corresponding method with the same name. To 
invoke an operation, you call it via the proxy. For example, here is part of the defi-
nitions for our file system from Section 5.4:

module Filesystem {
    interface Node {
        idempotent string name();
    };
    // ...
};

The name operation returns a value of type string. Given a proxy to an object of 
type Node, the client can invoke the operation as follows:

$node = ...             // Initialize proxy
$name = $node->name();  // Get name via RPC

28.12.1 Normal and idempotent Operations

You can add an idempotent qualifier to a Slice operation. As far as the signature 
for the corresponding proxy method is concerned, idempotent has no effect.

28.12.2 Passing Parameters

In Parameters

The PHP mapping for in parameters guarantees that the value of a parameter will 
not be changed by the invocation.

Here is an interface with operations that pass parameters of various types from 
client to server:

struct NumberAndString {
    int x;
    string str;
};

sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;
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interface ClientToServer {
    void op1(int i, float f, bool b, string s);
    void op2(NumberAndString ns, StringSeq ss, StringTable st);
    void op3(ClientToServer* proxy);
};

A proxy object narrowed to the ClientToServer interface supports the following 
methods:

function op1($i, $f, $b, $s, $_ctx=null);
function op2($ns, $ss, $st, $_ctx=null);
function op3($proxy, $_ctx=null);

Given a proxy to a ClientToServer interface, the client code can pass parameters 
as in the following example:

$p = ...                                 // Get proxy...

$p->op1(42, 3.14, true, "Hello world!"); // Pass simple literals

$i = 42;
$f = 3.14;
$b = true;
$s = "Hello world!";
$p->op1($i, $f, $b, $s);                 // Pass simple variables

$ns = new NumberAndString;
$ns->x = 42;
$ns->str = "The Answer";
$ss = array("Hello world!");
$st = array();
$st[0] = $ns;
$p->op2($ns, $ss, $st);                  // Pass complex variables

$p->op3($p);                             // Pass proxy

Out Parameters

Out parameters are passed by reference. Here is the same Slice definition we saw 
on page 825 once more, but this time with all parameters being passed in the out 
direction:

struct NumberAndString {
    int x;
    string str;
};
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sequence<string> StringSeq;

dictionary<long, StringSeq> StringTable;

interface ServerToClient {
    int op1(out float f, out bool b, out string s);
    void op2(out NumberAndString ns,
             out StringSeq ss,
             out StringTable st);
    void op3(out ServerToClient* proxy);
};

The PHP mapping looks the same as it did for the in-parameters version:

function op1($i, $f, $b, $s, $_ctx=null);
function op2($ns, $ss, $st, $_ctx=null);
function op3($proxy, $_ctx=null);

Given a proxy to a ServerToClient interface, the client code can receive the 
results as in the following example:

$p = ...                 // Get proxy...
$p->op1($i, $f, $b, $s);
$p->op2($ns, $ss, $st);
$p->op3($stcp);

Note that it is not necessary to use the reference operator (&) before each argu-
ment because the Ice run time forces each out parameter to have reference seman-
tics.

Parameter Type Mismatches

The Ice run time performs validation on the arguments to a proxy invocation and 
reports any type mismatches as InvalidArgumentException.

Null Parameters

Some Slice types naturally have “empty” or “not there” semantics. Specifically, 
sequences, dictionaries, and strings all can be null, but the corresponding Slice 
types do not have the of a null value. To make life with these types easier, when-
ever you pass null as a parameter or return value of type sequence, dictionary, or 
string, the Ice run time automatically sends an empty sequence, dictionary, or 
string to the receiver.

This behavior is useful as a convenience feature: especially for deeply-nested 
data types, members that are sequences, dictionaries, or strings automatically 
arrive as an empty value at the receiving end. This saves you having to explicitly 
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initialize, for example, every string element in a large sequence before sending the 
sequence in order to avoid a run-time error. Note that using null parameters in this 
way does not create null semantics for Slice sequences, dictionaries, or strings. As 
far as the object model is concerned, these do not exist (only empty sequences, 
dictionaries, and strings do). For example, it makes no difference to the receiver 
whether you send a string as null or as an empty string: either way, the receiver 
sees an empty string.

28.13 Exception Handling

Any operation invocation may throw a run-time exception (see Section 28.10) 
and, if the operation has an exception specification, may also throw user excep-
tions (see Section 28.9). Suppose we have the following simple interface:

exception Tantrum {
    string reason;
};

interface Child {
    void askToCleanUp() throws Tantrum;
};

Slice exceptions are thrown as PHP exceptions, so you can simply enclose one or 
more operation invocations in a try-catch block:

$child = ...        // Get child proxy...

try
{
    $child->askToCleanUp();
}
catch(Tantrum $t)
{
    echo "The child says: " . $t->reason . "\n";
}

Typically, you will catch only a few exceptions of specific interest around an oper-
ation invocation; other exceptions, such as unexpected run-time errors, will 
usually be handled by exception handlers higher in the hierarchy. For example:
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function run()
{
    $child = ...          // Get child proxy...
    try
    {
        $child->askToCleanUp();
    }
    catch(Tantrum $t)
    {
        echo "The child says: " . $t->reason . "\n";
        $child->scold();  // Recover from error...
    }
    $child->praise();     // Give positive feedback...
}

try
{
    // ...
    run();
    // ...
}
catch(Ice_Exception $ex)
{
    echo $ex->__toString() . "\n";
}

This code handles a specific exception of local interest at the point of call and 
deals with other exceptions generically. (This is also the strategy we used for our 
first simple application in Chapter 3.)

28.14 Mapping for Classes

Slice classes are mapped to PHP classes with the same name. For each Slice data 
member, the generated class contains a member variable, just as for structures and 
exceptions. Consider the following class definition:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};



830 Client-Side Slice-to-PHP Mapping

The PHP mapping generates the following code for this definition:

abstract class TimeOfDay extends Ice_ObjectImpl
{
    public function __construct($hour=0, $minute=0, $second=0)
    {
        $this->hour = $hour;
        $this->minute = $minute;
        $this->second = $second;
    }

    abstract public function format();

    public static function ice_staticId()
    {
        return '::TimeOfDay';
    }

    public function __toString()
    {
        // ...
    }

    public $hour;
    public $minute;
    public $second;
}

There are a number of things to note about the generated code:

1. The generated class TimeOfDay inherits from Ice_ObjectImpl. This 
reflects the semantics of Slice classes in that all classes implicitly inherit from 
Object, which is the ultimate ancestor of all classes. Note that Object is not 
the same as Ice_ObjectPrx. In other words, you cannot pass a class where 
a proxy is expected and vice versa.

2. The constructor initializes an instance variable for each Slice data member.

3. The class includes an abstract function declaration corresponding to the Slice 
operation format.

4. The class defines the class method ice_staticId.

We will discuss these items in the subsections below.
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28.14.1 Inheritance from Object

Like interfaces, classes implicitly inherit from a common base class, 
Ice_Object. However, classes inherit from Ice_Object instead of 
Ice_ObjectPrx, therefore you cannot pass a class where a proxy is expected 
(and vice versa) because the base types for classes and proxies are not compatible.

Ice_Object contains a number of member functions:

interface Ice_Object
{
    public function ice_isA($id);

    public function ice_ping();

    public function ice_ids();

    public function ice_id();

    public function ice_preMarshal();

    public function ice_postUnmarshal();
}

The member functions of Ice_Object behave as follows:

• ice_isA

This function returns true if the object supports the given type ID, and 
false otherwise.

• ice_ping

As for interfaces, ice_ping provides a basic reachability test for the class.

• ice_ids

This function returns a string sequence representing all of the type IDs 
supported by this object, including ::Ice::Object.

• ice_id

This function returns the actual run-time type ID for a class. If you call 
ice_id through a reference to a base instance, the returned type ID is the 
actual (possibly more derived) type ID of the instance.

• ice_preMarshal

The Ice run time invokes this function prior to marshaling the object’s state, 
providing the opportunity for a subclass to validate its declared data members.
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• ice_postUnmarshal

The Ice run time invokes this function after unmarshaling an object’s state. A 
subclass typically overrides this function when it needs to perform additional 
initialization using the values of its declared data members.

All Slice classes derive from Ice_Object via the Ice_ObjectImpl abstract 
base class, which provides default implementations of the Ice_Object 
methods.

28.14.2 Data Members of Classes
By default, data members of classes are mapped exactly as for structures and 
exceptions: for each data member in the Slice definition, the generated class 
contains a corresponding member variable.

If you wish to restrict access to a data member, you can modify its visibility 
using the protected metadata directive. The presence of this directive causes the 
Slice compiler to generate the data member with protected visibility. As a result, 
the member can be accessed only by the class itself or by one of its subclasses. For 
example, the TimeOfDay class shown below has the protected metadata directive 
applied to each of its data members:

class TimeOfDay {
    ["protected"] short hour;   // 0 - 23
    ["protected"] short minute; // 0 - 59
    ["protected"] short second; // 0 - 59
    string format();    // Return time as hh:mm:ss
};

The Slice compiler produces the following generated code for this definition:

abstract class TimeOfDay extends Ice_ObjectImpl
{
    public function __construct($hour=0, $minute=0, $second=0)
    {
        $this->hour = $hour;
        $this->minute = $minute;
        $this->second = $second;
    }

    abstract public function format();

    public static function ice_staticId()
    {
        return '::TimeOfDay';
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    }

    public function __toString()
    {
        // ...
    }

    protected $hour;
    protected $minute;
    protected $second;
}

For a class in which all of the data members are protected, the metadata directive 
can be applied to the class itself rather than to each member individually. For 
example, we can rewrite the TimeOfDay class as follows:

["protected"] class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
    string format();    // Return time as hh:mm:ss
};

28.14.3 Class Constructors

Classes have a constructor that assigns to each data member a default value appro-
priate for its type. You can also declare different default values for data members 
of primitive and enumerated types, as discussed in Section 4.11.1.

For derived classes, the constructor has one parameter for each of the base 
class’s data members, plus one parameter for each of the derived class’s data 
members, in base-to-derived order.

28.14.4 Operations of Classes

Operations of classes are mapped to abstract member functions in the generated 
class. This means that, if a class contains operations (such as the format operation 
of our TimeOfDay class), you must provide an implementation of the operation in 
a class that is derived from the generated class. For example:
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class TimeOfDayI extends TimeOfDay
{
    public function format()
    {
        return strftime("%X");
    }
}

Class Factories

Having created a class such as TimeOfDayI, we have an implementation and we 
can instantiate the TimeOfDayI class, but we cannot receive it as the return 
value or as an out-parameter from an operation invocation. To see why, consider 
the following simple interface:

interface Time {
    TimeOfDay get();
};

When a client invokes the get operation, the Ice run time must instantiate and 
return an instance of the TimeOfDay class. However, TimeOfDay is an abstract 
class that cannot be instantiated. Unless we tell it, the Ice run time cannot magi-
cally know that we have created a TimeOfDayI class that implements the 
abstract format operation of the TimeOfDay abstract class. In other words, we 
must provide the Ice run time with a factory that knows that the TimeOfDay 
abstract class has a TimeOfDayI concrete implementation. The Ice::Communi-
cator interface provides us with the necessary operations:

module Ice {
    local interface ObjectFactory {
        Object create(string type);
        void destroy();
    };

    local interface Communicator {
        void addObjectFactory(ObjectFactory factory, string id);
        ObjectFactory findObjectFactory(string id);
        // ...
    };
};

To supply the Ice run time with a factory for our TimeOfDayI class, we must 
implement the ObjectFactory interface:
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class ObjectFactory implements Ice_ObjectFactory {
    public function create($type) {
        if ($type == TimeOfDay::ice_staticId())) {
            return new TimeOfDayI;
        }
        assert(false);
        return null;
    }

    public function destroy() {
        // Nothing to do
    }
}

The object factory’s create method is called by the Ice run time when it needs 
to instantiate a TimeOfDay class. The factory’s destroy method is called by 
the Ice run time when its communicator is destroyed.

The create method is passed the type ID (see Section 4.13) of the class to 
instantiate. For our TimeOfDay class, the type ID is "::TimeOfDay". Our imple-
mentation of create checks the type ID: if it matches, the method instantiates 
and returns a TimeOfDayI object. For other type IDs, the method asserts 
because it does not know how to instantiate other types of objects.

Note that we used the ice_staticId method to obtain the type ID rather 
than embedding a literal string. Using a literal type ID string in your code is 
discouraged because it can lead to errors that are only detected at run time. For 
example, if a Slice class or one of its enclosing modules is renamed and the literal 
string is not changed accordingly, a receiver will fail to unmarshal the object and 
the Ice run time will raise NoObjectFactoryException. By using 
ice_staticId instead, we avoid any risk of a misspelled or obsolete type ID, 
and we can discover at compile time if a Slice class or module has been renamed.

Given a factory implementation, such as our ObjectFactory, we must 
inform the Ice run time of the existence of the factory:

$communicator = ...;
$communicator->addObjectFactory(
    new ObjectFactory, TimeOfDay::ice_staticId());

Now, whenever the Ice run time needs to instantiate a class with the type ID 
"::TimeOfDay", it calls the create method of the registered ObjectFactory 
instance.

The destroy operation of the object factory is invoked by the Ice run time 
when the communicator is destroyed. This gives you a chance to clean up any 
resources that may be used by your factory. Do not call destroy on the factory 
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while it is registered with the communicator—if you do, the Ice run time has no 
idea that this has happened and, depending on what your destroy implementation 
is doing, may cause undefined behavior when the Ice run time tries to next use the 
factory.

The run time guarantees that destroy will be the last call made on the factory, 
that is, create will not be called concurrently with destroy, and create will not 
be called once destroy has been called.

Note that you cannot register a factory for the same type ID twice: if you call 
addObjectFactory with a type ID for which a factory is registered, the Ice run 
time throws an AlreadyRegisteredException.

Finally, keep in mind that if a class has only data members, but no operations, 
you need not create and register an object factory to transmit instances of such a 
class. Only if a class has operations do you have to define and register an object 
factory.

28.14.5 Class Constructors

The generated class contains a constructor that accepts one argument for each 
member of the class, with suitable default arguments if you do not wish to supply 
a value. This allows you to create and initialize a class in a single statement, for 
example:

$tod = new TimeOfDayI(14, 45, 00); // 14:45pm

For derived classes, the constructor requires one argument of all of the members 
of the class, including members of the base class(es). For example, consider the 
the definition from Section 4.11.2 once more:

class TimeOfDay {
    short hour;         // 0 - 23
    short minute;       // 0 - 59
    short second;       // 0 - 59
};

class DateTime extends TimeOfDay {
    short day;          // 1 - 31
    short month;        // 1 - 12
    short year;         // 1753 onwards
};

The constructors for the generated classes are as follows:
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class TimeOfDay extends Ice_ObjectImpl
{
    public function __construct($hour=0, $minute=0, $second=0)
    {
        $this->hour = $hour;
        $this->minute = $minute;
        $this->second = $second;
    }

    // ...
}

class DateTime extends TimeOfDay
{
    public function __construct($hour=0, $minute=0, $second=0,
                                $day=0, $month=0, $year=0)
    {
        parent::__construct($hour, $minute, $second);
        $this->day = $day;
        $this->month = $month;
        $this->year = $year;
    }

    // ...
}

28.15 slice2php Command-Line Options

The Slice-to-PHP compiler, slice2php, offers the following command-line 
options in addition to the standard options described in Section 4.20:

• --all

Generate code for all Slice definitions, including those included by the main 
Slice file.

• -n, --namespace

Generate code using PHP namespaces. Note that namespaces are only 
supported in PHP 5.3 or later. Also note that the Ice extension for PHP must 
be built with namespace support enabled.

• --checksum

Generate checksums for Slice definitions.
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Compiler Output

For each Slice file X.ice, slice2php generates PHP code into a file named 
X.php in the output directory. The default output directory is the current working 
directory, but a different directory can be specified using the --output-dir 
option.

Include Files

It is important to understand how slice2php handles include files. In the 
absence of the --all option, the compiler does not generate PHP code for Slice 
definitions in included files. Rather, the compiler translates Slice #include 
statements into PHP require statements in the following manner:

1. Determine the full pathname of the included file.

2. Create the shortest possible relative pathname for the included file by iterating 
over each of the include directories (specified using the -I option) and 
removing the leading directory from the included file if possible.

For example, if the full pathname of an included file is 
/opt/App/slice/OS/Process.ice, and we specified the options 
-I/opt/App and -I/opt/App/slice, then the shortest relative path-
name is OS/Process.ice after removing /opt/App/slice.

3. Replace the .ice extension with .php. Continuing our example from the 
previous step, the translated require statement becomes

require "OS/Process.php";

As a result, you can use -I options to tailor the require statements generated 
by the compiler in order to avoid absolute path names and match the organiza-
tional structure of your application’s source files.

28.16 Application Notes

In PHP terminology, a request is the execution of a PHP script on behalf of a Web 
client. Each request essentially runs in its own instance of the PHP interpreter, 
isolated from any other requests that may be executing concurrently. Upon the 
completion of a request, the interpreter reclaims memory and other resources that 
were acquired during the request, including objects created by the Ice extension.
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28.16.1 Using Communicators

A communicator represents an instance of the Ice run time. A PHP script that 
needs to invoke an operation on a remote Ice object must initialize a communi-
cator, obtain and narrow a proxy, and make the invocation. For example, here is a 
minimal (but complete) Ice script:

<?php
require 'Ice.php';
require 'Hello.php';

$communicator = null;

try
{
    $data = new Ice_InitializationData;
    $data->properties = Ice_createProperties();
    $data->properties->load("props.cfg");
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}

if($communicator)
{
    try
    {
        $communicator->destroy();
    }
    catch(Ice_LocalException $ex)
    {
        // Ignore.
    }
}
?>

By default, the Ice extension automatically destroys any communicator that was 
created during a request. This means a script can usually omit the call to destroy 
unless there is an application-specific reason to destroy the communicator explic-
itly. Consequently, we can simplify our script to the following:
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<?php
require 'Ice.php';
require 'Hello.php';

try
{
    $data = new Ice_InitializationData;
    $data->properties = Ice_createProperties();
    $data->properties->load("props.cfg");
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}
?>

Now we allow the Ice extension to destroy our communicator automatically. (The 
extension traps and ignores any exception raised by destroy.)

Although the automatic destruction of communicators is convenient, it is 
important to consider the performance characteristics of this script. Specifically, 
each execution of the script involves the following activities:

1. Create a property set

2. Load and parse a property file

3. Initialize a communicator with the given configuration properties

4. Obtain a proxy for the remote Ice object

5. Establish a socket connection to the server

6. Send a request message and wait for the reply

7. Destroy the communicator, which closes the socket connection

Of primary concern are the activities that involve system calls, such as opening 
and reading files, creating and using sockets, and so on. The overhead incurred by 
these calls may not matter if the script is only executed infrequently, but for an 
application with high request rates it is necessary to minimize this overhead:

• Using pre-configured property sets eliminates the need to parse a property file 
in each request (see Section 28.16.2).

• Using timeouts prevents a script from blocking indefinitely in case Ice 
encounters delays while performing socket operations (see Section 28.16.3).
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• Using a registered communicator avoids the need to create and destroy a 
communicator in every request (see Section 28.16.4).

• Be aware of the number of “round trips” (request-reply pairs) your script 
makes. For example, the script above uses checkedCast to verify that the 
remote Ice object supports the desired Slice interface. However, calling 
checkedCast causes the Ice run time to send a request to the server and 
await its reply, therefore this script is actually making two remote invocations. 
It is unnecessary to perform a checked cast if it is safe for the client to assume 
that the Ice object supports the correct interface, in which case using an 
uncheckedCast instead avoids the extra round trip.

28.16.2 Configuration

A PHP application can manually construct a property set for configuring its 
communicator using the API described in Chapter 30. The Ice extension also 
provides a PHP-specific property set API that helps to minimize the overhead 
associated with initializing a communicator, allowing you to configure a default 
property set along with an unlimited number of named property sets (or profiles). 
You can populate a property set using a configuration file, command-line options, 
or both. Property sets are initialized using the normal Ice semantics: command-
line options override any settings from a configuration file.

The Ice extension creates these property sets during web server startup, which 
means any subsequent changes you might make to the configuration have no 
effect until the web server is restarted. Also keep in mind that specifying a relative 
path name for a configuration file usually means the path name is evaluated rela-
tive to the web server’s working directory.

Default Property Set

The INI directives ice.config and ice.options specify the configuration 
file and the command-line options for the default property set, respectively. These 
directives must appear in PHP’s configuration file, which is usually named 
php.ini:

; Snippet from php.ini on Linux
extension=IcePHP.so
ice.config=/opt/MyApp/default.cfg
ice.options="--Ice.Override.Timeout=2000"
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Profiles

Profiles are useful when several unrelated applications execute in the same web 
server, or when an application needs to choose among multiple configurations. To 
configure your profiles, add an ice.profiles directive to PHP’s configuration 
file. The value of this directive is a file containing profile definitions:

; Snippet from php.ini on Linux
ice.profiles=/opt/MyApp/profiles

The profile definition file uses INI syntax:

[Production]
config=/opt/MyApp/prod.cfg
options="..."

[Debug]
config=/opt/MyApp/debug.cfg
options="--Ice.Trace.Network=3 ..."

The name of each profile is enclosed in square brackets. The configuration file and 
command-line options for each profile are defined using the config and 
options entries, respectively.

Using Property Sets

The Ice_getProperties function allows a script to obtain a copy of a prop-
erty set. When called without an argument, or with an empty string, the function 
returns the default property set. Otherwise, the function expects the name of a 
configured profile and returns the property set associated with that profile. The 
return value is an instance of Ice_Properties, or null if no matching 
profile was found.

Note that the Ice extension always creates the default property set, which is 
empty if the ice.config and ice.options directives are not defined. Also 
note that changes a script might make to a property set returned by this function 
have no effect on other requests because the script is modifying a copy of the orig-
inal property set.

Now we can modify our script to use Ice_getProperties and avoid the 
need to load a configuration file in each request:

<?php
require 'Ice.php';
require 'Hello.php';

try
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{
    $data = new Ice_InitializationData;
    $data->properties = Ice_getProperties();
    $communicator = Ice_initialize($data);
    $proxy = $communicator->stringToProxy("...");
    $hello = Demo_HelloPrxHelper::checkedCast($proxy);
    $hello->sayHello();
}
catch(Ice_LocalException $ex)
{
    // Deal with exception...
}
?>

Security Considerations

Ice configuration properties may contain sensitive information such as the path 
name of the private key for an X.509 certificate. If multiple untrusted PHP appli-
cations run in the same web server, avoid the use of the default property set and 
choose sufficiently unique names for your named profiles. The Ice extension does 
not provide a means for enumerating the names of the configured profiles, there-
fore a malicious script would have to guess the name of a profile in order to 
examine its configuration properties.

To prevent a script from using the value of ice.profiles to open the 
profile definition file directly, enable the ice.hide_profiles directive to 
cause the Ice extension to replace the ice.profiles setting after it has 
processed the file. The ice.hide_profiles directive is enabled by default.

28.16.3 Timeouts

All twoway remote invocations made by a PHP script have synchronous seman-
tics: the script does not regain control until Ice receives a reply from the server. As 
a result, we recommend configuring a suitable timeout value for all of your 
proxies as a defensive measure against network delays. Refer to Section 32.13 for 
more information on timeouts.

28.16.4 Registered Communicators

You can register a communicator to prevent it from being destroyed at the comple-
tion of a script. For example, a session-based PHP application can create a 
communicator for each new session and register it for reuse in subsequent requests 
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of the same session. Reusing a communicator in this way avoids the overhead 
associated with creating and destroying a communicator in each request. Further-
more, it allows socket connections established by the Ice run time to remain open 
and available for use in another request.

Limitations

A communicator object is local to the process that created it, which in the case of 
PHP is usually a web server process. The usefulness of a registered communicator 
is therefore limited to situations in which an application can ensure that subse-
quent page requests are handled by the same web server process as the one that 
originally created the registered communicator. For example, registered communi-
cators would not be appropriate in a typical CGI configuration because the CGI 
process terminates at the end of each request. A simple (but often impractical) 
solution is to configure your web server to use a single persistent process. The 
topic of configuring a web server to take advantage of registered communicators 
is outside the scope of this book.

Using Registered Communicators

The API for registered communicators consists of three functions:

• Ice_register($communicator, $name, $expires=0)

Registers a communicator with the given name. On success, the function 
returns true. If another communicator is already registered with the same 
name, the function returns false. The expires argument specifies a timeout 
value in minutes; if expires is greater than zero, the Ice extension automat-
ically destroys the communicator if it has not been retrieved (via Ice_find) 
for the specified number of minutes. The default value (zero) means the 
communicator never expires, in which case the Ice extension only destroys the 
communicator when the current process terminates.

It is legal to register a communicator with more than one name. In that case, 
the most recent value of expires takes precedence.

• Ice_unregister($name)

Removes the registration for a communicator with the given name. Returns 
true if a match was found or false otherwise. Calling Ice_unregister 
does not cause the communicator to be destroyed; rather, the communicator is 
destroyed as soon as all pending requests that are currently using the commu-
nicator have completed. Destroying a registered communicator explicitly also 
removes its registration.



28.16 Application Notes 845

• Ice_find($name)

Retrieves the communicator associated with the given name. Returns null if 
no match is found.

An application typically uses registered communicators as follows:

<?php
require 'Ice.php';

$communicator = Ice_find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
    $communicator = Ice_initialize(...);
    Ice_register($communicator, 'MyCommunicator', $expires);
}

...
?>

Note that communicators consume resources such as threads, sockets, and 
memory, therefore an application should be designed to minimize the number of 
communicators it registers. Using a suitable expiration timeout prevents registered 
communicators from accumulating indefinitely.

A simple application that demonstrates the use of registered communicators 
can be found in the Glacier2/hello subdirectory of the PHP sample 
programs.

Security Considerations

There are risks associated with allowing untrusted applications to gain access to a 
registered communicator. For example, if a malicious script obtains a registered 
communicator that is configured with SSL credentials, the script could potentially 
make secure invocations as if it were the trusted script.

Registering a communicator with a sufficiently unique name reduces the 
chance that a malicious script could guess the communicator’s name. For applica-
tions that make use of PHP’s session facility, the session ID is a reasonable choice 
for a communicator name. The sample application in Glacier2/hello 
demonstrates this solution.

Object Factories

PHP reclaims all memory at the end of each request, which means any object 
factories that a script might have installed in a registered communicator are 



846 Client-Side Slice-to-PHP Mapping

destroyed when the request completes even if the communicator is not destroyed. 
As a result, a script must install its object factories in a registered communicator 
for every request, as shown in the example below:

<?php
require 'Ice.php';

$communicator = Ice_find('MyCommunicator');
$expires = ...;
if($communicator == null)
{
    $communicator = Ice_initialize(...);
    Ice_register($communicator, 'MyCommunicator', $expires);
}

$communicator->addObjectFactory(new MyFactory,
                                MyClass::ice_staticId());
...
?>

The Ice extension invokes the destroy method of each factory prior to the 
completion of a request.

28.17 Using Slice Checksums

As described in Section 4.21, the Slice compilers can optionally generate check-
sums of Slice definitions. For slice2php, the --checksum option causes the 
compiler to generate code that adds checksums to the global array 
Ice_sliceChecksums. The checksums are installed automatically when the 
PHP code is first parsed; no action is required by the application.

In order to verify a server’s checksums, a client could simply compare the two 
array objects using a comparison operator. However, this is not feasible if it is 
possible that the server might return a superset of the client’s checksums. A more 
general solution is to iterate over the local checksums as demonstrated below:

global $Ice_sliceChecksums;
$serverChecksums = ...
foreach($Ice_sliceChecksums as $key => $value)
{
    if(!isset($serverChecksums[$key]))
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        // No match found for type id!
    elseif($Ice_sliceChecksums[$key] != $serverChecksums[$key])
        // Checksum mismatch!
}

In this example, the client first verifies that the server’s dictionary contains an 
entry for each Slice type ID, and then it proceeds to compare the checksums.
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Chapter 29
Developing a File System Client in 
PHP

29.1 Chapter Overview

In this chapter, we present the source code for a PHP client that accesses the file 
system we developed in Chapter 5. This client can interact with a server written in 
any of the other language mappings.

29.2 The PHP Client

We now have seen enough of the PHP mapping to develop a complete client to 
access our remote file system. For reference, here is the Slice definition once 
more:

module Filesystem { 
    interface Node { 
        idempotent string name(); 
    }; 
 
    exception GenericError { 
        string reason; 
    }; 

    sequence<string> Lines; 
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    interface File extends Node { 
        idempotent Lines read(); 
        idempotent void write(Lines text) throws GenericError; 
    }; 
 
    sequence<Node*> NodeSeq; 
 
    interface Directory extends Node { 
        idempotent NodeSeq list(); 
    }; 
}; 

To exercise the file system, the client does a recursive listing of the file system, 
starting at the root directory. For each node in the file system, the client shows the 
name of the node and whether that node is a file or directory. If the node is a file, 
the client retrieves the contents of the file and prints them.

The body of the client code looks as follows:

<?php
require 'Ice.php';
require 'Filesystem.php';

// Recursively print the contents of directory "dir"
// in tree fashion. For files, show the contents of
// each file. The "depth" parameter is the current
// nesting level (for indentation).

function listRecursive($dir, $depth = 0)
{
    $indent = str_repeat("\t", ++$depth);

    $contents = $dir->_list(); // list is a reserved word in PHP

    foreach ($contents as $i) {
        $dir = Filesystem_DirectoryPrxHelper::checkedCast($i);
        $file = Filesystem_FilePrxHelper::uncheckedCast($i);
        echo $indent . $i->name() .
            ($dir ? " (directory):" : " (file):") . "\n";
        if ($dir) {
            listRecursive($dir, $depth);
        } else {
            $text = $file->read();
            foreach ($text as $j)
                echo $indent . "\t" . $j . "\n";
        }
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    }
}

$ic = null;
try
{
    // Create a communicator
    //
    $ic = Ice_initialize();

    // Create a proxy for the root directory
    //
    $obj = $ic->stringToProxy("RootDir:default -p 10000");

    // Down-cast the proxy to a Directory proxy
    //
    $rootDir = Filesystem_DirectoryPrxHelper::checkedCast($obj);

    // Recursively list the contents of the root directory
    //
    echo "Contents of root directory:\n";
    listRecursive($rootDir);
}
catch(Ice_LocalException $ex)
{
    print_r($ex);
}

if($ic)
{
    // Clean up
    //
    try
    {
        $ic->destroy();
    }
    catch(Exception $ex)
    {
        print_r($ex);
    }
}
?>
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The program first defines the listRecursive function, which is a helper func-
tion to print the contents of the file system, and the main program follows. Let us 
look at the main program first:

1. The client first creates a proxy to the root directory of the file system. For this 
example, we assume that the server runs on the local host and listens using the 
default protocol (TCP/IP) at port 10000. The object identity of the root direc-
tory is known to be RootDir.

2. The client down-casts the proxy to the Directory interface and passes that 
proxy to listRecursive, which prints the contents of the file system.

Most of the work happens in listRecursive. The function is passed a proxy 
to a directory to list, and an indent level. (The indent level increments with each 
recursive call and allows the code to print the name of each node at an indent level 
that corresponds to the depth of the tree at that node.) listRecursive calls the 
list operation on the directory and iterates over the returned sequence of nodes:

1. The code uses checkedCast to narrow the Node proxy to a Directory 
proxy, and uses uncheckedCast to narrow the Node proxy to a File proxy. 
Exactly one of those casts will succeed, so there is no need to call checked-
Cast twice: if the Node is-a Directory, the code uses the proxy returned by 
checkedCast; if checkedCast fails, we know that the Node is-a File 
and, therefore, uncheckedCast is sufficient to get a File proxy.

In general, if you know that a down-cast to a specific type will succeed, it is 
preferable to use uncheckedCast instead of checkedCast because 
uncheckedCast does not incur any network traffic.

2. The code prints the name of the file or directory and then, depending on which 
cast succeeded, prints "(directory)" or "(file)" following the name.

3. The code checks the type of the node:

• If it is a directory, the code recurses, incrementing the indent level.

• If it is a file, the code calls the read operation on the file to retrieve the file 
contents and then iterates over the returned sequence of lines, printing each 
line.
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Assume that we have a small file system consisting of a two files and a a directory 
as follows:

Figure 29.1. A small file system.

The output produced by the client for this file system is:

Contents of root directory:
        README (file):
                This file system contains a collection of poetry.
        Coleridge (directory):
                Kubla_Khan (file):
                        In Xanadu did Kubla Khan
                        A stately pleasure-dome decree:
                        Where Alph, the sacred river, ran
                        Through caverns measureless to man
                        Down to a sunless sea.

Note that, so far, our client is not very sophisticated:

• The protocol and address information are hard-wired into the code.

• The client makes more remote procedure calls than strictly necessary; with 
minor redesign of the Slice definitions, many of these calls can be avoided.

We will see how to address these shortcomings in Chapter 38 and Chapter 34.

29.3 Summary

This chapter presented a very simple client to access a server that implements the 
file system we developed in Chapter 5. As you can see, the PHP code hardly 
differs from the code you would write for an ordinary PHP program. This is one of 
the biggest advantages of using Ice: accessing a remote object is as easy as 
accessing an ordinary, local PHP object. This allows you to put your effort where 

RootDir

Coleridge README

Kubla_Khan

= Directory

= File
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you should, namely, into developing your application logic instead of having to 
struggle with arcane networking APIs.
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Chapter 30
Ice Properties and Configuration

30.1 Chapter Overview

Ice uses a configuration mechanism that allows you to control many aspects of the 
behavior of your Ice applications at run time, such as maximum message size, 
number of threads, or whether to produce network trace messages. The configura-
tion mechanism is not only useful to configure Ice, but you can also use it to 
provide configuration parameters to your own applications. The configuration 
mechanism is simple to use with a minimal API, yet flexible enough to cope with 
the needs of most applications.

Sections 30.2 to 30.8 describe the basics of the configuration mechanism and 
explain how to configure Ice via configuration files and command line options. 
Section 30.9 shows how you can create your own application-specific properties 
and how to access their values from within a program.

30.2 Properties

Ice and its various subsystems are configured by properties. A property is a name–
value pair, for example:

Ice.UDP.SndSize=65535
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In this example, the property name is Ice.UDP.SndSize, and the property 
value is 65535.

You can find a complete list of the properties used to configure Ice in 
Appendix D.

Note that Ice reads properties that control the Ice run time and its services (that 
is, properties that start with one of the reserved prefixes, such as Ice, 
Glacier2, etc.) only once on start-up, when you create a communicator. This 
means that you must set Ice-related properties to their correct values before you 
create a communicator. If you change the value of an Ice-related property after 
that point, it is likely that the new setting will simply be ignored.

30.2.1 Property Categories

By convention, Ice properties use the following naming scheme:

<application>.<category>[.<sub-category>]

Note that the sub-category is optional and not used by all Ice properties.

This two- or three-part naming scheme is by convention only—if you use 
properties to configure your own applications, you can use property names with 
any number of categories.

30.2.2 Reserved Prefixes

Ice reserves properties with the prefixes Ice, IceBox, IceGrid, IcePatch2, 
IceSSL, IceStorm, Freeze, and Glacier2. You cannot use a property 
beginning with one of these prefixes to configure your own application.

30.2.3 Property Syntax

A property name consists of any number of characters. For example, the following 
are valid property names:

foo
Foo
foo.bar
foo bar    White space is allowed
foo=bar    Special characters are allowed
.
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Note that there is no special significance to a period in a property name. (Periods 
are used to make property names more readable and are not treated specially by 
the property parser.)

Property names cannot contain leading or trailing white space. (If you create a 
property name with leading or trailing white space, that white space is silently 
stripped.)

30.2.4 Value Syntax

A property value consists of any number of characters. The following are exam-
ples of property values:

65535
yes
This is a = property value.
../../config

30.3 Configuration Files

Properties are usually set in a configuration file. A configuration file contains a 
number of name–value pairs, with each pair on a separate line. Empty lines and 
lines consisting entirely of white space characters are ignored. The # character 
introduces a comment that extends to the end of the current line.

Here is a simple configuration file:

# Example config file for Ice

Ice.MessageSizeMax = 2048    # Largest message size is 2MB
Ice.Trace.Network=3          # Highest level of tracing for network
Ice.Trace.Protocol=          # Disable protocol tracing

Leading and trailing white space is always ignored for property names (whether 
the white space is escaped or not), but white space within property values is 
preserved.

For property values, you can indicate leading and trailing whitespace by 
escaping the white space with a backslash. For example:
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# White space example

My.Prop = a property               # Value is "a property"
My.Prop =     a     property       # Value is "a     property"
My.Prop = \ \ a     property\ \    # Value is "  a     property  "
My.Prop = \ \ a  \ \  property\ \  # Value is "  a     property  "
My.Prop = a \\ property               # Value is "a \ property"

This example shows that leading and trailing white space for property values is 
ignored unless escaped with a backslash whereas, white space that is surrounded 
by non-white space characters is preserved exactly, whether it is escaped or not. 
As usual, you can insert a literal backslash into a property value by using a double 
backslash (\\).

If you set the same property more than once, the last setting prevails and over-
rides any previous setting. Note that assigning nothing to a property clears that 
property (that is, sets it to the empty string).

A property that contains the empty string (such as Ice.Trace.Protocol 
in the preceding example) is indistinguishable from a property that is not 
mentioned at all. This is because the API to retrieve the property value returns the 
empty string for non-existent properties (see page 871).

One of the simplest ways of loading a configuration file is to pass the 
command-line option --Ice.Config to an Ice program, for example:

$ ./server --Ice.Config=/opt/Ice/default_config

This causes the server to read its property settings from the configuration file in 
/opt/Ice/default_config. Section 30.5 discusses this option in more 
detail.

Property values can include characters from non-English alphabets. The Ice 
run time expects the configuration file to use UTF-8 encoding for such characters. 
(With C++, you can specify a string converter when you read the file. See 
page 872, Section 32.3, and Section 32.24.)

30.3.1 The ICE_CONFIG Environment Variable

Another way to load a configuration file is to set the ICE_CONFIG environment 
variable to the relative or absolute path name of the file, for example:

$ export ICE_CONFIG=/opt/Ice/default_config
$ ./server
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This causes the server to read its property settings from the configuration file in 
/opt/Ice/default_config.

Note that, for this to work, the server must call an overload of 
Ice::initialize (or the equivalent in other languages) that accepts an argu-
ment vector. Overloads of initialize that do not accept an argument vector 
ignore ICE_CONFIG.

NOTE: In Java, the value of ICE_CONFIG can refer to class loader resources as well as 
regular files.

30.3.2 Special Characters

The characters = and # have special meaning in a configuration file:

• = marks the end of the property name and the beginning of the property value

• # starts a comment that extends to the end of the line

These characters must be escaped when they appear in a property name. Consider 
the following examples:

foo\=bar=1        Name is “foo=bar”, value is “1”
foo\#bar   = 2    Name is “foo#bar”, value is “2”
foo bar  =3       Name is “foo bar”, value is “3”

In a property value, a # character must be escaped to prevent it from starting a 
comment, but an = character does not require an escape. Consider these examples:

A=1           Name is “A”, value is “1”
B= 2 3 4      Name is “B”, value is “2 3 4”
C=5=\#6 # 7   Name is “C”, value is “5=#6”

Note that, two successive backslashes in a property value become a single backs-
lash. To get two consecutive backslashes, you must escape each one with another 
backslash:

AServer=\\\\server\dir    Value is “\\server\dir”
BServer=\\server\\dir   Value is “\server\dir”

The preceding example also illustrates that, if a backslash is not followed by \, #, 
or =, the backslash and the character following it are both preserved.
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30.4 Setting Properties on the Command Line

In addition to setting properties in a configuration file, you can also set properties 
on the command line, for example:

$ ./server --Ice.UDP.SndSize=65535 --IceSSL.Trace.Security=2

Any command line option that begins with -- and is followed by one of the 
reserved prefixes (see page 858) is read and converted to a property setting when 
you create a communicator. Property settings on the command line override 
settings in a configuration file. If you set the same property more than once on the 
same command line, the last setting overrides any previous ones.

For convenience, any property not explicitly set to a value is set to the value 1. 
For example,

$ ./server --Ice.Trace.Protocol

is equivalent to

$ ./server --Ice.Trace.Protocol=1

Note that this feature only applies to properties that are set on the command line, 
but not to properties that are set from a configuration file.

You can also clear a property from the command line as follows:

$ ./server --Ice.Trace.Protocol=

As for properties set from a configuration file, assigning nothing to a property 
clears that property.

30.5 Using Configuration Files

The ability to configure an application’s properties externally provides a great deal 
of flexibility: you can use any combination of command-line options and configu-
ration files to achieve the desired settings, all without having to modify your appli-
cation. This section describes two ways of loading property settings from a file.

30.5.1 Prerequisites

The Ice run time automatically loads a configuration file during the creation of a 
property set, which is an instance of the Ice::Properties interface. Every 
communicator has its own property set from which it derives its configuration. If 
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an application does not supply a property set when it calls Ice::initialize 
(or the equivalent in other language mappings), the Ice run time internally creates 
a property set for the new communicator.

Note however that Ice loads a configuration file automatically only when the 
application creates a property set using an argument vector. This occurs when the 
application passes an argument vector to create a property set explicitly (as 
discussed in Section 30.9), or when the application passes an argument vector to 
Ice::initialize.

Both of the mechanisms described below can also retrieve property settings 
from additional sources. Refer to Section 30.6 for more information.

30.5.2 The ICE_CONFIG Environment Variable

Ice automatically loads the contents of the configuration file named in the 
ICE_CONFIG environment variable (assuming the prerequisites described in 
Section 30.5.1 are met). For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$ ./server

This causes the server to read its property settings from the configuration file in 
/usr/local/filesystem/config.

If you use the ICE_CONFIG environment variable together with command-
line options for other properties, the settings on the command line override the 
settings in the configuration file. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config
$ ./server --Ice.MessageSizeMax=4096

This sets the value of the Ice.MessageSizeMax property to 4096 regardless 
of any setting of this property in /usr/local/filesystem/config.

You can use multiple configuration files by specifying a list of configuration 
file names, separated by commas. For example:

$ export ICE_CONFIG=/usr/local/filesystem/config,./config
$ ./server

This causes property settings to be retrieved from /usr/local/file-
system/config, followed by any settings in the file config in the current 
directory; settings in ./config override settings /usr/local/file-
system/config.
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30.5.3 The Ice.Config Property

The Ice.Config property has special meaning to the Ice run time: it determines 
the path name of a configuration file from which to read property settings. For 
example:

$ ./server --Ice.Config=/usr/local/filesystem/config

This causes property settings to be read from the configuration file in 
/usr/local/filesystem/config.

The --Ice.Config command-line option overrides any setting of the 
ICE_CONFIG environment variable, that is, if the ICE_CONFIG environment 
variable is set and you also use the --Ice.Config command-line option, the 
configuration file specified by the ICE_CONFIG environment variable is ignored.

If you use the --Ice.Config command-line option together with settings 
for other properties, the settings on the command line override the settings in the 
configuration file. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config \
> --Ice.MessageSizeMax=4096

This sets the value of the Ice.MessageSizeMax property to 4096 regardless 
of any setting of this property in /usr/local/filesystem/config. The 
placement of the --Ice.Config option on the command line has no influence 
on this precedence. For example, the following command is equivalent to the 
preceding one:

$ ./server --Ice.MessageSizeMax=4096 \
> --Ice.Config=/usr/local/filesystem/config

Settings of the Ice.Config property inside a configuration file are ignored, that 
is, you can set Ice.Config only on the command line.

If you use the --Ice.Config option more than once, only the last setting of 
the option is used and the preceding ones are ignored. For example:

$ ./server --Ice.Config=file1 --Ice.Config=file2

This is equivalent to using:

$ ./server --Ice.Config=file2

You can use multiple configuration files by specifying a list of configuration file 
names, separated by commas. For example:

$ ./server --Ice.Config=/usr/local/filesystem/config,./config
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This causes property settings to be retrieved from /usr/local/file-
system/config, followed by any settings in the file config in the current 
directory; settings in ./config override settings /usr/local/file-
system/config.

30.6 Alternate Property Stores

In addition to regular files, Ice also supports storing property settings in the 
Windows registry and Java resources.

30.6.1 Windows Registry

You can use the Windows registry to store property settings. Property settings 
must be stored with a key underneath HKEY_LOCAL_MACHINE. To inform the 
Ice run time of this key, you must set the Ice.Config property to the key. For 
example:

$ client --Ice.Config=HKLM\MyCompany\MyApp

The Ice run time examines the value of Ice.Config; if that value begins with 
HKLM\, the remainder of the property is taken to be a key to a number of string 
values. For the preceding example, the Ice run time looks for the key 
HKEY_LOCAL_MACHINE\MyCompany\MyApp. The string values stored 
under this key are used to initialize the properties.

The name of each string value is the name of the property (such as 
Ice.Trace.Network). Note that the value must be a string (even if the prop-
erty setting is numeric). For example, to set Ice.Trace.Network to 3, you must 
store the string “3” as the value, not a binary or DWORD value.

String values in the registry can be regular strings (REG_SZ) or expandable 
strings (REG_EXPAND_SZ). Expandable strings allow you to include symbolic 
references to environment variables (such as %ICE_HOME%).

NOTE: Depending on whether you use 32-bit or 64-bit binaries, you must set the registry 
keys in the corresponding 32-bit or 64-bit registry. See http://support.micro-
soft.com/kb/305097 for more information.

http://support.microsoft.com/kb/305097
http://support.microsoft.com/kb/305097
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30.6.2 Java Resources

The Ice run time for Java supports the ability to load a configuration file as a class 
loader resource, which is especially useful for deploying an Ice application in a 
self-contained JAR file. For example, suppose we define ICE_CONFIG as shown 
below:

$ export ICE_CONFIG=app_config

During the creation of a property set (which often occurs implicitly when initial-
izing a new communicator), Ice asks the Java run time to search the application’s 
class path for a file named app_config. This file might reside in the same JAR 
file as the application’s class files, or in a different JAR file in the class path, or it 
might be a regular file located in one of the directories in the class path. If Java is 
unable to locate the configuration file in the class path, Ice attempts to open the 
file in the local file system.

The class path resource always takes precedence over a regular file. In other 
words, if a class path resource and a regular file are both present with the same 
path name, Ice always loads the class path resource in preference to the regular 
file.

The path name for a class path resource uses a relative Unix-like format such 
as subdir/myfile. Java searches for the resource relative to each JAR file or 
subdirectory in an application’s class path.

30.7 Command-Line Parsing and Initialization

When you initialize the Ice run time by calling Ice::initialize 
(C++/Ruby), Ice.Util.initialize (Java/C#), Ice.initialize 
(Python), or Ice_initialize (PHP), you can pass an argument vector to the 
initialization call.1

For C++, Ice::initialize accepts a C++ reference to argc:

namespace Ice {
    CommunicatorPtr initialize(int& argc, char* argv[]);
}

1. See also Section 32.3.
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Ice::initialize parses the argument vector and initializes its property 
settings accordingly. In addition, it removes any arguments from argv that are 
property settings. For example, assume we invoke a server as:

$ ./server --myoption --Ice.Config=config -x a \
--Ice.Trace.Network=3 -y opt file

Initially, argc has the value 9, and argv has ten elements: the first nine 
elements contain the program name and the arguments, and the final element, 
argv[argc], contains a null pointer (as required by the ISO C++ standard). 
When Ice::initialize returns, argc has the value 7 and argv contains 
the following elements:

./server
--myoption
-x
a
-y
opt
file
0             # Terminating null pointer

This means that you should initialize the Ice run time before you parse the 
command line for your application-specific arguments. That way, the Ice-related 
options are stripped from the argument vector for you so you do not need to 
explicitly skip them. If you use the Ice::Application helper class (see 
Section 8.3.1), the run member function is passed an argument vector with the 
Ice-related options already stripped. The same is true for the runWithSession 
member function called by Glacier2::Application helper class (see 
Section 42.5).

For Java, Ice.Util.initialize is overloaded. The signatures are:

package Ice;
public final class Util {

    public static Communicator
    initialize();

    public static Communicator
    initialize(String[] args);

    public static Communicator
    initialize(StringSeqHolder args);
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    public static Communicator
    initialize(InitializationData id);

    public static Communicator
    initialize(String[] args, InitializationData id);

    public static Communicator
    initialize(StringSeqHolder args, InitializationData id);
    

    // ...
}

The versions that accept an argument vector of type String[] do not strip Ice-
related options for you, so, if you use one of these methods, your code must ignore 
options that start with one of the reserved prefixes (--Ice, --IceBox, 
--IceGrid, --IcePatch2, --IceSSL, --IceStorm, --Freeze, and 
--Glacier2). The versions that accept a StringSeqHolder behave like the 
C++ version and strip the Ice-related options from the passed argument vector.

In C#, the argument vector is passed by reference to the initialize 
method, allowing it to strip the Ice-related options:

namespace Ice {

    public sealed class Util {

        public static Communicator
        initialize();

        public static Communicator
        initialize(ref string[] args);

        public static Communicator
        initialize(InitializationData id);

        public static Communicator
        initialize(ref string[] args, InitializationData id);

        // ...

    }
}
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The Python, Ruby, and PHP implementations of initialize have the same 
semantics as C++ and .NET; they expect the argument vector to be passed as a list 
from which all Ice-related options are removed.

If you use the Ice.Application helper class, the run method is passed 
the cleaned-up argument vector. The Ice.Application class is described in 
the server-side language mapping chapters.

30.8 The Ice.ProgramName property

For C++, Python, and Ruby, initialize sets the Ice.ProgramName prop-
erty to the name of the current program (argv[0]). In C#, initialize sets 
Ice.ProgramName to the value of System.AppDomain.CurrentDo-
main.FriendlyName.

Your application code can read this property and use it for activities such as 
logging diagnostic or trace messages. (See Section 30.9.1 for how to access the 
property value in your program.)

Even though Ice.ProgramName is initialized for you, you can still over-
ride its value from a configuration file or by setting the property on the command 
line.

For Java, the program name is not supplied as part of the argument vector—if 
you want to use the Ice.ProgramName property in your application, you must 
set it before initializing a communicator.

30.9 Using Properties Programmatically

The Ice property mechanism is useful not only to configure Ice, but you can also 
use it as the configuration mechanism for your own applications. You can use the 
same configuration file and command-line mechanism to set application-specific 
properties. For example, we could introduce a property to control the maximum 
file size for our file system application:

# Configuration file for file system application

Filesystem.MaxFileSize=1024    # Max file size in kB

The Ice run time stores the Filesystem.MaxFileSize property like any 
other property and makes it accessible via the Properties interface.
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To access property values from within your program, you need to acquire the 
communicator’s properties by calling getProperties:

module Ice {

    local interface Properties; // Forward declaration

    local interface Communicator {

        Properties getProperties();

        // ...
    };
};

The Properties interface provides methods to read and write property settings:

module Ice {
    local dictionary<string, string> PropertyDict;

    local interface Properties {

        string getProperty(string key);
        string getPropertyWithDefault(string key, string value);
        int getPropertyAsInt(string key);
        int getPropertyAsIntWithDefault(string key, int value);
        PropertyDict getPropertiesForPrefix(string prefix);

        void setProperty(string key, string value);

        StringSeq getCommandLineOptions();
        StringSeq parseCommandLineOptions(string prefix,
                                          StringSeq options);
        StringSeq parseIceCommandLineOptions(StringSeq options);

        void load(string file);

        Properties clone();
    };
};

30.9.1 Reading Properties

The operations to read property values behave as follows:
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• getProperty

This operation returns the value of the specified property. If the property is not 
set, the operation returns the empty string.

• getPropertyWithDefault

This operation returns the value of the specified property. If the property is not 
set, the operation returns the supplied default value.

• getPropertyAsInt

This operation returns the value of the specified property as an integer. If the 
property is not set or contains a string that does not parse as an integer, the 
operation returns zero.

• getPropertyAsIntWithDefault

This operation returns the value of the specified property as an integer. If the 
property is not set or contains a string that does not parse as an integer, the 
operation returns the supplied default value.

• getPropertiesForPrefix

This operation returns all properties that begin with the specified prefix as a 
dictionary of type PropertyDict. This operation is useful if you want to 
extract the properties for a specific subsystem. For example,

getPropertiesForPrefix("Filesystem")

returns all properties that start with the prefix Filesystem, such as File-
system.MaxFileSize. You can then use the usual dictionary lookup 
operations to extract the properties of interest from the returned dictionary.

With these lookup operations, using application-specific properties now becomes 
the simple matter of initializing a communicator as usual, getting access to the 
communicator’s properties, and examining the desired property value. For 
example (in C++):

// ...

Ice::CommunicatorPtr ic;

// ...

ic = Ice::initialize(argc, argv);

// Get the maximum file size.
//
Ice::PropertiesPtr props = ic->getProperties();
Ice::Int maxSize
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    = props->getPropertyAsIntWithDefault("Filesystem.MaxFileSize",
                                         1024);

// ...

Assuming that you have created a configuration file that sets the File-
system.MaxFileSize property (and set the ICE_CONFIG variable or the 
--Ice.Config option accordingly), your application will pick up the config-
ured value of the property. Refer to Section 30.5 for more information on loading 
a configuration file using ICE_CONFIG or --Ice.Config.

30.9.2 Setting Properties

The setProperty operation sets a property to the specified value. (You can clear a 
property by setting it to the empty string.) For properties that control the Ice run 
time and its services (that is, properties that start with one of the reserved prefixes, 
such as Ice, Glacier2, etc.), this operation is useful only if you call it before 
you call initialize. This is because property values are usually read by the 
Ice run time only once, when you call initialize, so the Ice run time does not 
pay attention to a property value that is changed after you have initialized a 
communicator. Of course, this begs the question of how you can set a property 
value and have it also recognized by a communicator.

To permit you to set properties before initializing a communicator, the Ice run 
time provides an overloaded helper function called createProperties that 
creates a property set. In C++, the function is in the Ice namespace:

namespace Ice {

PropertiesPtr createProperties(const StringConverterPtr& = 0);
PropertiesPtr createProperties(StringSeq&,
                               const PropertiesPtr& = 0,
                               const StringConverterPtr& = 0);
PropertiesPtr createProperties(int&, char*[],
                               const PropertiesPtr& = 0,
                               const StringConverterPtr& = 0);

}

The StringConverter parameter allows you to parse properties whose values 
contain non-ASCII characters and to correctly convert these characters into the 
native codeset. (See Section 32.24 for details.) The converter that is passed to 
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createProperties remains attached to the returned property set for the life 
time of the property set.

The function is overloaded to accept either an argc/argv pair, or a 
StringSeq (see Section 30.9.3 for details).

In Java, the functions are static methods of the Util class inside the Ice 
package:

package Ice;

public final class Util
{
    public static Properties
    createProperties();

    public static Properties
    createProperties(StringSeqHolder args);

    public static Properties
    createProperties(StringSeqHolder args, Properties defaults);

    public static Properties
    createProperties(String[] args);

    public static Properties
    createProperties(String[] args, Properties defaults);

    // ...
}

In C#, the Util class in the Ice namespace supplies equivalent methods:

namespace Ice {
    public sealed class Util {
        public static Properties createProperties();
        public static Properties
                createProperties(ref string[] args);
        public static Properties
                createProperties(ref string[] args,
                                 Properties defaults);
    }
}

The Python and Ruby methods reside in the Ice module:

def createProperties(args=[], defaults=None)

In PHP, use the Ice_createProperties method:
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function Ice_createProperties(args=array(), defaults=null)

As for initialize (see Section 32.3), createProperties strips Ice-
related command-line options from the passed argument vector. (For Java, only 
the versions that accept a StringSeqHolder do this.)

The functions behave as follows:

• The parameter-less version of createProperties simply creates an 
empty property set. It does not check ICE_CONFIG for a configuration file to 
parse.

• The other overloads of createProperties accept an argument vector and 
a default property set. The returned property set contains all the property 
settings that are passed as the default, plus any property settings in the argu-
ment vector. If the argument vector sets a property that is also set in the passed 
default property set, the setting in the argument vector overrides the default.

The overloads that accept an argument vector also look for the 
--Ice.Config option; if the argument vector specifies a configuration file, 
the configuration file is parsed. The order of precedence of property settings, 
from lowest to highest, is:

• Property settings passed in the default parameter

• Property settings set in the configuration file

• Property settings in the argument vector.

The overloads that accept an argument vector also look for the setting of the 
ICE_CONFIG environment variable and, if that variable specifies a configu-
ration file, parse that file. (However, an explicit --Ice.Config option in 
the argument vector or the defaults parameter overrides any setting of the 
ICE_CONFIG environment variable.)

createProperties is useful if you want to ensure that a property is set to a 
particular value, regardless of any setting of that property in a configuration file or 
in the argument vector. Here is a C++ example:

// Get the initialized property set.
//
Ice::PropertiesPtr props = Ice::createProperties(argc, argv);

// Make sure that network and protocol tracing are off.
//
props->setProperty("Ice.Trace.Network", "0");
props->setProperty("Ice.Trace.Protocol", "0");
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// Initialize a communicator with these properties.
//
Ice::InitializationData id;
id.properties = props;
Ice::CommunicatorPtr ic = Ice::initialize(id);

// ...

The equivalent Java code looks as follows:

Ice.StringSeqHolder argsH = new Ice.StringSeqHolder(args);
Ice.Properties properties = Ice.Util.createProperties(argsH);
properties.setProperty("Ice.Warn.Connections", "0");
properties.setProperty("Ice.Trace.Protocol", "0");
Ice.InitializationData id = new Ice.InitializationData();
id.properties = properties;
communicator = Ice.Util.initialize(id);

We first convert the argument array to an initialized StringSeqHolder. This is 
necessary so createProperties can strip Ice-specific settings. In that way, 
we first obtain an initialized property set, then override the settings for the two 
tracing properties, and then set the properties in the InitializationData 
structure.

The equivalent Python code is shown next:

props = Ice.createProperties(sys.argv)
props.setProperty("Ice.Trace.Network", "0")
props.setProperty("Ice.Trace.Protocol", "0")
id = Ice.InitializationData()
id.properties = props
ic = Ice.initialize(id)

This is the equivalent code in Ruby:

props = Ice::createProperties(ARGV)
props.setProperty("Ice.Trace.Network", "0")
props.setProperty("Ice.Trace.Protocol", "0")
id = Ice::InitializationData.new
id.properties = props
ic = Ice::initialize(id)

Finally, we present the code in PHP:
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$props = Ice_createProperties($args);
$props->setProperty("Ice.Trace.Network", "0");
$props->setProperty("Ice.Trace.Protocol", "0");
$id = new Ice_InitializationData();
$id->properties = $props;
$ic = Ice_initialize($id);

30.9.3 Parsing Properties

The Properties interface provides three operations to convert and parse properties:

• getCommandLineOptions

This operation converts an initialized set of properties into a sequence of 
equivalent command-line options. For example, if you have set the File-
system.MaxFileSize property to 1024 and call getCommandLineOp-
tions, the setting is returned as the string 
"Filesystem.MaxFileSize=1024". This operation is useful for diag-
nostic purposes, for example, to dump the setting of all properties to a logging 
facility (see Section 32.19), or if you want to fork a new process with the same 
property settings as the current process.

• parseCommandLineOptions

This operation examines the passed argument vector for command-line 
options that have the specified prefix. Any options that match the prefix are 
converted to property settings (that is, they initialize the corresponding prop-
erties). The operation returns an argument vector that contains all those 
options that were not converted (that is, those options that did not match the 
prefix).

Because parseCommandLineOptions expects a sequence of strings, but 
C++ programs are used to dealing with argc and argv, Ice provides two 
utility functions that convert an argc/argv vector into a sequence of strings 
and vice-versa:

namespace Ice {

    StringSeq argsToStringSeq(int argc, char* argv[]);

    void stringSeqToArgs(const StringSeq& args,
                         int& argc, char* argv[]);
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}

You need to use parseCommandLineOptions (and the utility functions) if you 
want to permit application-specific properties to be set from the command 
line. For example, to permit the --Filesystem.MaxFileSize option to 
be used on the command line, we need to initialize our program as follows:

int
main(int argc, char* argv[])
{
    // Create an empty property set.
    //
    Ice::PropertiesPtr props = Ice::createProperties();

    // Convert argc/argv to a string sequence.
    //
    Ice::StringSeq args = Ice::argsToStringSeq(argc, argv);

    // Strip out all options beginning with --Filesystem.
    //
    args = props->parseCommandLineOptions("Filesystem", args);

    // args now contains only those options that were not
    // stripped. Any options beginning with --Filesystem have
    // been converted to properties.

    // Convert remaining arguments back to argc/argv vector.
    //
    Ice::stringSeqToArgs(args, argc, argv);

    // Initialize communicator.
    //
    Ice::InitializationData id;
    id.properties = props;
    Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id);

    // At this point, argc/argv only contain options that
    // set neither an Ice property nor a Filesystem property,
    // so we can parse these options as usual.
    //
    // ...
}

Using this code, any options beginning with --Filesystem are converted 
to properties and are available via the property lookup operations as usual. 
The call to initialize then removes any Ice-specific command-line 
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options so, once the communicator is created, argc/argv only contains 
options and arguments that are not related to setting either a filesystem or an 
Ice property.

An easier way to achieve the same thing is to use the overload of 
Ice::initialize that accepts a string sequence, instead of an 
argc/argv pair:

int
main(int argc, char* argv[])
{
    // Create an empty property set.
    //
    Ice::PropertiesPtr props = Ice::createProperties();

    // Convert argc/argv to a string sequence.
    //
    Ice::StringSeq args = Ice::argsToStringSeq(argc, argv);

    // Strip out all options beginning with --Filesystem.
    //
    args = props->parseCommandLineOptions("Filesystem", args);

    // args now contains only those options that were not
    // stripped. Any options beginning with --Filesystem have
    // been converted to properties.

    // Initialize communicator.
    //
    Ice::InitializationData id;
    id.properties = props;
    Ice::CommunicatorPtr ic = Ice::initialize(args, id);

    // At this point, args only contains options that
    // set neither an Ice property nor a Filesystem property,
    // so we can parse these options as usual.
    //
    // ...
}

This version of the code avoids having to convert the string sequence back 
into an argc/argv pair before calling Ice::initialize.

• parseIceCommandLineOptions

This operation behaves like parseCommandLineOptions, but removes the 
reserved Ice-specific options from the argument vector (see Section 30.2.2). It 
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is used internally by the Ice run time to parse Ice-specific options in 
initialize.

30.9.4 Utility Operations
The Properties interface provides two utility operations:

• clone

This operation makes a copy of an existing property set. The copy contains 
exactly the same properties and values as the original.

• load

This operation accepts a path name to a configuration file and initializes the 
property set from that file. If the specified file cannot be read (for example, 
because it does not exist or the caller does not have read permission), the oper-
ation throws a FileException.

In Java, the given path name can refer to a class loader resource or a regular 
file (see Section 30.3).

These operations are useful if you need to work with multiple communicators that 
use different property sets.

30.10 Unused Properties

The property Ice.Warn.UnusedProperties, when set to a non-zero value, causes 
the Ice run time to emit a warning for properties that were set but not read when 
you destroy a communicator. Setting this property is useful to detect mis-spelled 
properties, such as Filesystem.MaxFilSize. By default, the warning is disabled.

30.11 Summary

The Ice property mechanism provides a simple way to configure Ice by setting 
properties in configuration files or on the command line. This also applies to your 
own applications: you can easily use the Properties interface to access applica-
tion-specific properties that you have created for your own needs. The API to 
access property values is small and simple, making it easy to retrieve property 
values at run time, yet is flexible enough to allow you to work with different prop-
erty sets and configuration files if the need arises.
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Chapter 31
Threads and Concurrency with C++

31.1 Chapter Overview

This chapter presents the C++ threading and signal handling abstractions that are 
provided by Ice. (For other language mappings, Ice uses the built-in threading and 
synchronization facilities.) We briefly describe how to use each of the available 
synchronization primitives (mutexes and monitors). We then cover how to create, 
control, and destroy threads. The threading discussion concludes with a brief 
example that shows how to create a thread-safe producer-consumer application 
that uses several threads. Finally, we introduce a portable abstraction for handling 
signals and signal-like events.

31.2 Introduction

Threading and concurrency control vary widely with different operating systems. 
To make threads programming easier and portable, Ice provides a simple thread 
abstraction layer that allows you to write portable source code regardless of the 
underlying platform. In this chapter, we take a closer look at the threading and 
concurrency control mechanisms in Ice for C++.

Note that we assume that you are familiar with light-weight threads and 
concurrency control. (See [8] for an excellent treatment of programming with 
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threads.) Also see Section 32.10, which provides a language-neutral introduction 
to the Ice threading model.

31.3 Library Overview

The Ice threading library provides the following thread-related abstractions:

• mutexes

• recursive mutexes

• monitors

• a thread abstraction that allows you to create, control, and destroy threads

The synchronization primitives permit you to implement concurrency control at 
different levels of granularity. In addition, the thread abstraction allows you to, for 
example, create a separate thread that can respond to GUI or other asynchronous 
events. All of the threading APIs are part of the IceUtil namespace.

31.4 Mutexes

The class IceUtil::Mutex (defined in IceUtil/Mutex.h) provides a 
simple non-recursive mutual exclusion mechanism:

namespace IceUtil {
    enum MutexProtocol { PrioInherit, PrioNone };

    class Mutex {
    public:
        Mutex();
        Mutex(MutexProtocol p);
        ~Mutex();

        void lock() const;
        bool tryLock() const;
        void unlock() const;

        typedef LockT<Mutex> Lock;
        typedef TryLockT<Mutex> TryLock;
    };
}

The member functions of this class work as follows:
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• Mutex()
Mutex(MutexProtocol p)

You can optionally specify a mutex protocol when you construct a mutex. The 
mutex protocol controls how the mutex behaves with respect to thread priori-
ties. Default-constructed mutexes use a system-wide default. See Section 31.9 
for more detail.

• lock

The lock function attempts to acquire the mutex. If the mutex is already 
locked, it suspends the calling thread until the mutex becomes available. The 
call returns once the calling thread has acquired the mutex.

• tryLock

The tryLock function attempts to acquire the mutex. If the mutex is avail-
able, the call returns with the mutex locked and returns true. Otherwise, if 
the mutex is locked by another thread, the call returns false.

• unlock

The unlock function unlocks the mutex.

Note that IceUtil::Mutex is a non-recursive mutex implementation. This 
means that you must adhere to the following rules:

• Do not call lock on the same mutex more than once from a thread. The 
mutex is not recursive so, if the owner of a mutex attempts to lock it a second 
time, the behavior is undefined.

• Do not call unlock on a mutex unless the calling thread holds the lock. 
Calling unlock on a mutex that is not currently held by any thread, or calling 
unlock on a mutex that is held by a different thread, results in undefined 
behavior.

31.4.1 Thread-Safe File Access for the Filesystem Application
Recall that the implementation of the read and write operations for our file 
system server in Section 9.2.3 is not thread safe:

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    return _lines;      // Not thread safe!
}

void
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Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
    _lines = text;      // Not thread safe!
}

The problem here is that, if we receive concurrent invocations of read and 
write, one thread will be assigning to the _lines vector while another thread 
is reading that same vector. The outcome of such concurrent data access is unde-
fined; to avoid the problem, we need to serialize access to the _lines member 
with a mutex. We can make the mutex a data member of the FileI class and lock 
and unlock it in the read and write operations:

#include <IceUtil/Mutex.h>
// ...

namespace Filesystem {
    // ...

    class FileI : virtual public File,
                  virtual public Filesystem::NodeI {
    public:
        // As before...
    private:
        Lines _lines;
        IceUtil::Mutex _fileMutex;
    };
    // ...
}

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    _fileMutex.lock();
    Lines l = _lines;
    _fileMutex.unlock();
    return l;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
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    _fileMutex.lock();
    _lines = text;
    _fileMutex.unlock();
}

The FileI class here is identical to the implementation in Section 9.2.2, except 
that we have added the _fileMutex data member. The read and write oper-
ations lock and unlock the mutex to ensure that only one thread can read or write 
the file at a time. Note that, by using a separate mutex for each FileI instance, it 
is still possible for multiple threads to concurrently read or write files, as long as 
they each access a different file. Only concurrent accesses to the same file are seri-
alized.

The implementation of read is somewhat awkward here: we must make a 
local copy of the file contents while we are holding the lock and return that copy. 
Doing so is necessary because we must unlock the mutex before we can return 
from the function. However, as we will see in the next section, the copy can be 
avoided by using a helper class that unlocks the mutex automatically when the 
function returns.

31.4.2 Guaranteed Unlocking of Mutexes

Using the raw lock and unlock operations on mutexes has an inherent 
problem: if you forget to unlock a mutex, your program will deadlock. Forgetting 
to unlock a mutex is easier than you might suspect, for example:

Filesystem::Lines
Filesystem::File::read(const Ice::Current&) const
{
    _fileMutex.lock();                  // Lock the mutex
    Lines l = readFileContents();       // Read from database
    _fileMutex.unlock();                // Unlock the mutex
    return l;
}

Assume that we are keeping the contents of the file on secondary storage, such as 
a database, and that the readFileContents function accesses the file. The 
code is almost identical to the previous example but now contains a latent bug: if 
readFileContents throws an exception, the read function terminates 
without ever unlocking the mutex. In other words, this implementation of read is 
not exception-safe.

The same problem can easily arise if you have a larger function with multiple 
return paths. For example:



886 Threads and Concurrency with C++

void
SomeClass::someFunction(/* params here... */)
{
    _mutex.lock();                      // Lock a mutex

    // Lots of complex code here...

    if (someCondition) {
        // More complex code here...
        return;                         // Oops!!!
    }

    // More code here...

    _mutex.unlock();                    // Unlock the mutex
}

In this example, the early return from the middle of the function leaves the mutex 
locked. Even though this example makes the problem quite obvious, in large and 
complex pieces of code, both exceptions and early returns can cause hard-to-track 
deadlock problems. To avoid this, the Mutex class contains two type definitions 
for helper classes, called Lock and TryLock:

namespace IceUtil {

    class Mutex {
        // ...

        typedef LockT<Mutex> Lock;
        typedef TryLockT<Mutex> TryLock;
    };
}

LockT and TryLockT are simple templates that primarily consist of a 
constructor and a destructor; the LockT constructor calls lock on its argument, 
the TryLockT constructor calls tryLock on its argument. The destructors call 
unlock if the mutex is lock when the template goes out of scope. By instanti-
ating a local variable of type Lock or TryLock, we can avoid the deadlock 
problem entirely:1

1. This is an example of the RAII (Resource Acquisition Is Initialization) idiom [20].
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void
SomeClass::someFunction(/* params here... */)
{
    IceUtil::Mutex::Lock lock(_mutex);  // Lock a mutex

    // Lots of complex code here...

    if (someCondition) {
        // More complex code here...
        return;                         // No problem
    }

    // More code here...

}   // Destructor of lock unlocks the mutex

On entry to someFunction, we instantiate a local variable lock, of type 
IceUtil::Mutex::Lock. The constructor of lock calls lock on the mutex 
so the remainder of the function is inside a critical region. Eventually, some-
Function returns, either via an ordinary return (in the middle of the function or 
at the end) or because an exception was thrown somewhere in the function body. 
Regardless of how the function terminates, the C++ run time unwinds the stack 
and calls the destructor of lock, which unlocks the mutex, so we cannot get 
trapped by the deadlock problem we had previously.

Both the Lock and TryLock templates have a few member functions:

• void acquire() const;

This function attempts to acquire the lock and blocks the calling thread until 
the lock becomes available. If the caller calls acquire on a mutex it has 
locked previously, the function throws ThreadLockedException.

• bool tryAcquire() const;

This function attempts to acquire the mutex. If the mutex can be acquired, it 
returns true with the mutex locked; if the mutex cannot be acquired, it returns 
false. If the caller calls tryAcquire on a mutex it has locked previously, the 
function throws ThreadLockedException.

• void release() const;

This function releases a previously locked mutex. If the caller calls release on 
a mutex it has unlocked previously, the function throws ThreadLocked-
Exception.
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• bool acquired() const;

This function returns true if the caller has locked the mutex previously and 
false, otherwise. If you use the TryLock template, you must call acquired 
after instantiating the template to test whether the lock actually was acquired.

These functions are useful if you want to use the Lock and TryLock templates 
for guaranteed unlocking, but need to temporarily release the lock:

{
    IceUtil::Mutex::TryLock m(someMutex);

    if (m.acquired())
    {

        // Got the lock, do processing here...

        if (release_condition) {
            m.release();
        }

        // Mutex is now unlocked, someone else can lock it.
        // ...

        m.acquire(); // Block until mutex becomes available.

        // ...

        if (release_condition) {
            m.release();
        }

        // Mutex is now unlocked, someone else can lock it.

        // ...

        // Spin on the mutex until it becomes available.
        while (!m.tryLock()) {
            // Do some other processing here...
        }

        // Mutex locked again at this point.
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        // ...
    }

} // Close scope, m is unlocked by its destructor.

You should make it a habit to always use the Lock and TryLock helpers instead 
of calling lock and unlock directly. Doing so results in code that is easier to 
understand and maintain.

Using the Lock helper, we can rewrite the implementation of our read and 
write operations as follows:

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current&) const
{
    IceUtil::Mutex::Lock lock(_fileMutex);
    return _lines;
}

void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current&)
{
    IceUtil::Mutex::Lock lock(_fileMutex);
    _lines = text;
}

Note that this also eliminates the need to make a copy of the _lines data 
member: the return value is initialized under protection of the mutex and cannot 
be modified by another thread once the destructor of lock unlocks the mutex.

31.5 Recursive Mutexes

As we saw on page 883, a non-recursive mutex cannot be locked more than once, 
even by the thread that holds the lock. This frequently becomes a problem if a 
program contains a number of functions, each of which must acquire a mutex, and 
you want to call one function as part of the implementation of another function:

IceUtil::Mutex _mutex;

void
f1()
{
    IceUtil::Mutex::Lock lock(_mutex);
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    // ...
}

void
f2()
{
    IceUtil::Mutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Deadlock!

    // More code here...
}

f1 and f2 each correctly lock the mutex before manipulating data but, as part of 
its implementation, f2 calls f1. At that point, the program deadlocks because f2 
already holds the lock that f1 is trying to acquire. For this simple example, the 
problem is obvious. However, in complex systems with many functions that 
acquire and release locks, it can get very difficult to track down this kind of situa-
tion: the locking conventions are not manifest anywhere but in the source code 
and each caller must know which locks to acquire (or not to acquire) before 
calling a function. The resulting complexity can quickly get out of hand.

Ice provides a recursive mutex class RecMutex (defined in 
IceUtil/RecMutex.h) that avoids this problem:

namespace IceUtil {

    class RecMutex {
    public:
        RecMutex();
        RecMutex(MutexProtocol p);
        ~RecMutex();

        void lock() const;
        bool tryLock() const;
        void unlock() const;

        typedef LockT<RecMutex> Lock;
        typedef TryLockT<RecMutex> TryLock;
    };
}

Note that the signatures of the operations are the same as for 
IceUtil::Mutex. However, RecMutex implements a recursive mutex:
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• RecMutex()
RecMutex(MutexProtocol p)

You can optionally specify a mutex protocol when you construct a mutex. The 
mutex protocol controls how the mutex behaves with respect to thread priori-
ties. Default-constructed mutexes use a system-wide default. See Section 31.9 
for more detail.

• lock

The lock function attempts to acquire the mutex. If the mutex is already 
locked by another thread, it suspends the calling thread until the mutex 
becomes available. If the mutex is available or is already locked by the calling 
thread, the call returns immediately with the mutex locked.

• tryLock

The tryLock function works like lock, but, instead of blocking the caller, 
it returns false if the mutex is locked by another thread. Otherwise, the 
return value is true.

• unlock

The unlock function unlocks the mutex.

As for non-recursive mutexes, you must adhere to a few simple rules for recur-
sive mutexes:

• Do not call unlock on a mutex unless the calling thread holds the lock.

• You must call unlock as many times as you called lock for the mutex to 
become available to another thread. (Internally, a recursive mutex is imple-
mented with a counter that is initialized to zero. Each call to lock increments 
the counter and each call to unlock decrements the counter; the mutex is 
made available to another thread when the counter returns to zero.)

Using recursive mutexes, the code fragment on page 889 works correctly:

#include <IceUtil/RecMutex.h>
// ...

IceUtil::RecMutex _mutex;       // Recursive mutex

void
f1()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // ...
}
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void
f2()
{
    IceUtil::RecMutex::Lock lock(_mutex);
    // Some code here...

    // Call f1 as a helper function
    f1();                               // Fine

    // More code here...
}

Note that the type of the mutex is now RecMutex instead of Mutex, and that we 
are using the Lock type definition provided by the RecMutex class, not the one 
provided by the Mutex class.

31.6 Monitors

Mutexes implement a simple mutual exclusion mechanism that allows only a 
single thread (or, in the case of read-write mutexes, a single writer thread or 
multiple reader threads) to be active in a critical region at a time. In particular, for 
another thread to enter the critical region, another thread must leave it. This means 
that, with mutexes, it is impossible to suspend a thread inside a critical region and 
have that thread wake up again at a later time, for example, when a condition 
becomes true.

To address this problem, Ice provides a monitor. Briefly, a monitor is a 
synchronization mechanism that protects a critical region: as for a mutex, only one 
thread may be active at a time inside the critical region. However, a monitor 
allows you to suspend a thread inside the critical region; doing so allows another 
thread to enter the critical region. The second thread can either leave the monitor 
(thereby unlocking the monitor), or it can suspend itself inside the monitor; either 
way, the original thread is woken up and continues execution inside the monitor. 
This extends to any number of threads, so several threads can be suspended inside 
a monitor.2

Monitors provide a more flexible mutual exclusion mechanism than mutexes 
because they allow a thread to check a condition and, if the condition is false, put 
itself to sleep; the thread is woken up by some other thread that has changed the 
condition.
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31.6.1 The Monitor Class
Ice provides monitors with the IceUtil::Monitor class (defined in 
IceUtil/Monitor.h):

namespace IceUtil {

    template <class T>
    class Monitor {
    public:
        void lock() const;
        void unlock() const;
        bool tryLock() const;

        void wait() const;
        bool timedWait(const Time&) const;
        void notify();
        void notifyAll();

        typedef LockT<Monitor<T> > Lock;
        typedef TryLockT<Monitor<T> > TryLock;
    };
}

Note that Monitor is a template class that requires either Mutex or RecMutex 
as its template parameter. (Instantiating a Monitor with a RecMutex makes the 
monitor recursive.)

The member functions behave as follows:

• lock

This function attempts to lock the monitor. If the monitor is currently locked 
by another thread, the calling thread is suspended until the monitor becomes 
available. The call returns with the monitor locked.

• tryLock

This function attempts to lock a monitor. If the monitor is available, the call 
returns true with the monitor locked. If the monitor is locked by another 
thread, the call returns false.

2. The monitors provided by Ice have Mesa semantics, so called because they were first imple-
mented by the Mesa programming language [12]. Mesa monitors are provided by a number of 
languages, including Java and Ada. With Mesa semantics, the signalling thread continues to run 
and another thread gets to run only once the signalling thread suspends itself or leaves the 
monitor.
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• unlock

This function unlocks a monitor. If other threads are waiting to enter the 
monitor (are blocked inside a call to lock), one of the threads is woken up 
and locks the monitor.

• wait

This function suspends the calling thread and, at the same time, releases the 
lock on the monitor. A thread suspended inside a call to wait can be woken 
up by another thread that calls notify or notifyAll. When the call 
returns, the suspended thread resumes execution with the monitor locked.

• timedWait

This function suspends the calling thread for up to the specified timeout. If 
another thread calls notify or notifyAll and wakes up the suspended 
thread before the timeout expires, the call returns true and the suspended 
thread resumes execution with the monitor locked. Otherwise, if the timeout 
expires, the function returns false. (See Appendix F.12 for a description of 
the Time class.)

• notify

This function wakes up a single thread that is currently suspended in a call to 
wait or timedWait. If no thread is suspended in a call to wait or 
timedWait at the time notify is called, the notification is lost (that is, 
calls to notify are not remembered if there is no thread to be woken up).

Note that notifying does not run another thread immediately. Another thread 
gets to run only once the notifying thread either calls wait or timedWait 
or unlocks the monitor (Mesa semantics).

• notifyAll

This function wakes up all threads that are currently suspended in a call to 
wait or timedWait. As for notify, calls to notifyAll are lost if no 
threads are suspended at the time.

As for notify, notifyAll causes other threads to run only once the noti-
fying thread has either called wait or timedWait or unlocked the monitor 
(Mesa semantics).

You must adhere to a few rules for monitors to work correctly:

• Do not call unlock unless you hold the lock. If you instantiate a monitor 
with a recursive mutex, you get recursive semantics, that is, you must call 
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unlock as many times as you have called lock (or tryLock) for the 
monitor to become available.

• Do not call wait or timedWait unless you hold the lock.

• Do not call notify or notifyAll unless you hold the lock.

• When returning from a wait call, you must re-test the condition before 
proceeding (see page 897).

31.6.2 Using Monitors

To illustrate how to use a monitor, consider a simple unbounded queue of items. A 
number of producer threads add items to the queue, and a number of consumer 
threads remove items from the queue. If the queue becomes empty, consumers 
must wait until a producer puts a new item on the queue. The queue itself is a crit-
ical region, that is, we cannot allow a producer to put an item on the queue while a 
consumer is removing an item. Here is a very simple implementation of a such a 
queue:

template<class T> class Queue {
public:
    void put(const T& item) {
        _q.push_back(item);
    }

    T get() {
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

As you can see, producers call the put method to enqueue an item, and 
consumers call the get method to dequeue an item. Obviously, this implementa-
tion of the queue is not thread-safe and there is nothing to stop a consumer from 
attempting to dequeue an item from an empty queue.

Here is a version of the queue that uses a monitor to suspend a consumer if the 
queue is empty:
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#include <IceUtil/Monitor.h>

template<class T> class Queue
    : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

Note that the Queue class now inherits from 
IceUtil::Monitor<IceUtil::Mutex>, that is, Queue is-a monitor.

Both the put and get methods lock the monitor when they are called. As for 
mutexes, instead of calling lock and unlock directly, we are using the Lock 
helper which automatically locks the monitor when it is instantiated and unlocks 
the monitor again when it is destroyed.

The put method first locks the monitor and then, now being in sole posses-
sion of the critical region, enqueues an item. Before returning (thereby unlocking 
the monitor), put calls notify. The call to notify will wake up any consumer 
thread that may be asleep in a wait call to inform the consumer that an item is 
available.

The get method also locks the monitor and then, before attempting to 
dequeue an item, tests whether the queue is empty. If so, the consumer calls 
wait. This suspends the consumer inside the wait call and unlocks the monitor, 
so a producer can enter the monitor to enqueue an item. Once that happens, the 
producer calls notify, which causes the consumer’s wait call to complete, 
with the monitor again locked for the consumer. The consumer now dequeues an 
item and returns (thereby unlocking the monitor).
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For this machinery to work correctly, the implementation of get does two 
things:

• get tests whether the queue is empty after acquiring the lock.

• get re-tests the condition in a loop around the call to wait; if the queue is 
still empty after wait returns, the wait call is re-entered.

You must always write your code to follow the same pattern:

• Never test a condition unless you hold the lock.

• Always re-test the condition in a loop around wait. If the test still shows the 
wrong outcome, call wait again.

Not adhering to these conditions will eventually result in a thread accessing shared 
data when it is not in its expected state, for the following reasons:

1. If you test a condition without holding the lock, there is nothing to prevent 
another thread from entering the monitor and changing its state before you can 
acquire the lock. This means that, by the time you get around to locking the 
monitor, the state of the monitor may no longer be in agreement with the result 
of the test.

2. Some thread implementations suffer from a problem known as spurious 
wake-up: occasionally, more than one thread may wake up in response to a call 
to notify, or a thread may wake up without any call to notify at all. As a 
result, each thread that returns from a call to wait must re-test the condition 
to ensure that the monitor is in its expected state: the fact that wait returns 
does not indicate that the condition has changed.

31.6.3 Efficient Notification

The previous implementation of our thread-safe queue on page 896 uncondition-
ally notifies a waiting reader whenever a writer deposits an item into the queue. If 
no reader is waiting, the notification is lost and does no harm. However, unless 
there is only a single reader and writer, many notifications will be sent unneces-
sarily, causing unwanted overhead.

Here is one way to fix the problem:

#include <IceUtil/Monitor.h>

template<class T> class Queue
    : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
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        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_q.size() == 1)
            notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
};

The only difference between this code and the implementation on page 896 is that 
a writer calls notify only if the queue length has just changed from empty to 
non-empty. That way, unnecessary notify calls are never made. However, this 
approach works only for a single reader thread. To see why, consider the following 
scenario:

1. Assume that the queue currently contains a number of items and that we have 
five reader threads.

2. The five reader threads continue to call get until the queue becomes empty 
and all five readers are waiting in get.

3. The scheduler schedules a writer thread. The writer finds the queue empty, 
deposits an item, and wakes up a single reader thread.

4. The awakened reader thread dequeues the single item on the queue.

5. The reader calls get a second time, finds the queue empty, and goes to sleep 
again.

The net effect of this is that there is a good chance that only one reader thread will 
ever be active; the other four reader threads end up being permanently asleep 
inside the get method.

One way around this problem is call notifyAll instead of notify once 
the queue length exceeds a certain amount, for example:
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#include <IceUtil/Monitor.h>

template<class T> class Queue
    : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_q.size() >= _wakeupThreshold)
            notifyAll();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0)
            wait();
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
    const int _wakeupThreshold = 100;
};

Here, we have added a private data member _wakeupThreshold; a writer 
wakes up all waiting readers once the queue length exceeds the threshold, in the 
expectation that all the readers will consume items more quickly than they are 
produced, thereby reducing the queue length below the threshold again.

This approach works, but has drawbacks as well:

• The appropriate value of _wakeupThreshold is difficult to determine and 
sensitive to things such as speed and number of processors and I/O bandwidth.

• If multiple readers are asleep, they are all made runnable by the thread sched-
uler once a writer calls notifyAll. On a multiprocessor machine, this may 
result in all readers running at once (one per CPU). However, as soon as the 
readers are made runnable, each of them attempts to reacquire the mutex that 
protects the monitor before returning from wait. Of course, only one of the 
readers actually succeeds and the remaining readers are suspended again, 
waiting for the mutex to become available. The net result is a large number of 
thread context switches as well as repeated and unnecessary locking of the 
system bus.
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A better option than calling notifyAll is to wake up waiting readers one at a 
time. To do this, we keep track of the number of waiting readers and call notify 
only if a reader needs to be woken up:

#include <IceUtil/Monitor.h>

template<class T> class Queue
    : public IceUtil::Monitor<IceUtil::Mutex> {
public:
    Queue() : _waitingReaders(0) {}

    void put(const T& item) {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        _q.push_back(item);
        if (_waitingReaders)
            notify();
    }

    T get() {
        IceUtil::Monitor<IceUtil::Mutex>::Lock lock(*this);
        while (_q.size() == 0) {
            try {
                ++_waitingReaders;
                wait();
                --_waitingReaders;
            } catch (...) {
                --_waitingReaders;
                throw;
            }
        }
        T item = _q.front();
        _q.pop_front();
        return item;
    }

private:
    list<T> _q;
    short _waitingReaders;
};

This implementation uses a member variable _waitingReaders to keep track 
of the number of readers that are suspended. The constructor initializes the vari-
able to zero and the implementation of get increments and decrements the vari-
able around the call to wait. Note that these statements are enclosed in a try–
catch block; this ensures that the count of waiting readers remains accurate even 
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if wait throws an exception. Finally, put calls notify only if there is a waiting 
reader.

The advantage of this implementation is that it minimizes contention on the 
monitor mutex: a writer wakes up only a single reader at a time, so we do not end 
up with multiple readers simultaneously trying to lock the mutex. Moreover, the 
monitor notify implementation signals a waiting thread only after it has 
unlocked the mutex. This means that, when a thread wakes up from its call to 
wait and tries to reacquire the mutex, the mutex is likely to be unlocked. This 
results in more efficient operation because acquiring an unlocked mutex is typi-
cally very efficient, whereas forcefully putting a thread to sleep on a locked mutex 
is expensive (because it forces a thread context switch).

31.7 Condition Variables

Condition variables are similar to monitors in that they allow a thread to enter a 
critical region, test a condition, and sleep inside the critical region while releasing 
its lock. Another thread then is free to enter the critical region, change the condi-
tion, and eventually signal the sleeping thread, which resumes at the point where it 
went to sleep and with the critical region once again locked.

Note that condition variables provide subset of the functionality of monitors, 
so a monitor can always be used instead of a condition variable. However, condi-
tion variables are smaller, which may be important if you are seriously constrained 
with respect to memory.

Condition variables are provided by the IceUtil::Cond class. Here is its 
interface:

class Cond : private noncopyable {
public:

    Cond();
    ~Cond();

    void signal();
    void broadcast();

    template<typename Lock>
        void wait(const Lock& lock) const;
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    template<typename Lock>
        bool timedWait(const Lock& lock,
                       const Time& timeout) const;
};

Using a condition variable is very similar to using a monitor. The main difference 
in the Cond interface is that the wait and timedWait member functions are 
template functions, instead of the entire class being a template. The member func-
tions behave as follows:

• wait

This function suspends the calling thread and, at the same time, releases the 
lock of the condition variable. A thread suspended inside a call to wait can 
be woken up by another thread that calls signal or broadcast. When 
wait completes, the suspended thread resumes execution with the lock held.

• timedWait

This function suspends the calling thread for up to the specified timeout. If 
another thread calls signal or broadcast and wakes up the suspended 
thread before the timeout expires, the call returns true and the suspended 
thread resumes execution with the lock held. Otherwise, if the timeout expires, 
the function returns false.

• signal

This function wakes up a single thread that is currently suspended in a call to 
wait or timedWait. If no thread is suspended in a call to wait or 
timedWait at the time signal is called, the signal is lost (that is, calls to 
signal are not remembered if there is no thread to be woken up).

Note that signalling does not necessarily run another thread immediately; the 
thread calling signal may continue to run. However, depending on the threads 
library, signal may also cause an immediate context switch to another thread.

• broadcast

This function wakes up all threads that are currently suspended in a call to 
wait or timedWait. As for signal, calls to broadcast are lost if no 
threads are suspended at the time.

You must adhere to a few rules for condition variables to work correctly:

• Do not call wait or timedWait unless you hold the lock.

• When returning from a wait call, you must re-test the condition before 
proceeding, just as for a monitor (see page 897).
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In contrast to monitors, which require you to call notify and notifyAll with 
the lock held, condition variables permit you call signal and broadcast 
without holding the lock. Here is a code example that changes a condition and 
signals on a condition variable:

Mutex m;
Cond c;

// ...

{
     Mutex::Lock sync(m);

     // Change some condition other threads may be sleeping on...

     c.signal();

     // ...
} // m is unlocked here

This code is correct and will work as intended, but it is potentially inefficient. 
Consider the code executed by the waiting thread:

{
    Mutex::Lock sync(m);

    while(!condition) {
        c.wait(sync);
    }

    // Condition is now true, do
    // some processing...

} // m is unlocked here

Again, this code is correct and will work as intended. However, consider what can 
happen once the first thread calls signal. It is possible that the call to signal will 
cause an immediate context switch to the waiting thread. But, even if the thread 
implementation does not cause such an immediate context switch, it is possible for 
the signalling thread to be suspended after it has called signal, but before it 
unlocks the mutex m. If this happens, the following sequence of events occurs:

1. The waiting thread is still suspended inside the implementation of wait and 
is now woken up by the call to signal.
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2. The now awake thread tries to acquire the mutex m but, because the signalling 
thread has not yet released the mutex, is suspended again waiting for the 
mutex to be unlocked.

3. The signal thread is scheduled again and leaves the scope enclosing sync, 
which unlocks the mutex, making the thread waiting for the mutex runnable.

4. The thread waiting for the mutex acquires the mutex and retests its condition.

While the preceding scenario is functionally correct, it is inefficient because it 
incurs two extra context switches between the signalling thread and the waiting 
thread. Because context switches are expensive, this can have quite a large impact 
on run-time performance, especially if the critical region is small and the condi-
tion changes frequently.

You can avoid the inefficiency by unlocking the mutex before calling signal:

Mutex m;
Cond c;

// ...

{
     Mutex::Lock sync(m);

     // Change some condition other threads may be sleeping on...

} // m is unlocked here

c.signal(); // Signal with the lock available

By arranging the code as shown, you avoid the additional context switches 
because, when the waiting thread is woken up by the call to signal, it succeeds 
in acquiring the mutex before returning from wait without being suspended and 
woken up again first.

As for monitors, you should exercise caution in using broadcast, particu-
larly if you have many threads waiting on a condition. Condition variables suffer 
from the same potential problem as monitors with respect to broadcast, 
namely, that all threads that are currently suspended inside wait can immediately 
attempt to acquire the mutex, but only one of them can succeed and all other 
threads are suspended again. If your application is sensitive to this condition, you 
may want to consider waking threads in a more controlled manner, along the lines 
shown on page 900
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31.8 Threads

As described in Section 32.10, the server-side Ice run time by default creates a 
thread pool for you and automatically dispatches each incoming request in its own 
thread. As a result, you usually only need to worry about synchronization among 
threads to protect critical regions when you implement a server. However, you 
may wish to create threads of your own. For example, you might need a dedicated 
thread that responds to input from a user interface. And, if you have complex and 
long-running operations that can exploit parallelism, you might wish to use 
multiple threads for the implementation of that operation.

Ice provides a simple thread abstraction that permits you to write portable 
source code regardless of the native threading platform. This shields you from the 
native underlying thread APIs and guarantees uniform semantics regardless of 
your deployment platform.

31.8.1 The Thread Class

The basic thread abstraction in Ice is provided by two classes, ThreadControl 
and Thread (defined in IceUtil/Thread.h):

namespace IceUtil {

    class Time;

    class ThreadControl {
    public:
#ifdef _WIN32
        typedef DWORD ID;
#else
        typedef pthread_t ID;
#endif

        ThreadControl();
#ifdef _WIN32
        ThreadControl(HANDLE, DWORD);
#else
        ThreadControl(explicit pthread_t);
#endif
        ID id() const;

        void join();
        void detach();
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        static void sleep(const Time&);
        static void yield();

        bool operator==(const ThreadControl&) const;
        bool operator!=(const ThreadControl&) const;

    };

    class Thread {
    public:
        virtual void run() = 0;

        ThreadControl start(size_t stBytes = 0);
        ThreadControl start(size_t stBytes, int priority);
        ThreadControl getThreadControl() const;
        bool isAlive() const;

        bool operator==(const Thread&) const;
        bool operator!=(const Thread&) const;
        bool operator<(const Thread&) const;
    };
    typedef Handle<Thread> ThreadPtr;
}

The Thread class is an abstract base class with a pure virtual run method. To 
create a thread, you must specialize the Thread class and implement the run 
method (which becomes the starting stack frame for the new thread). Note that 
you must not allow any exceptions to escape from run. The Ice run time installs 
an exception handler that calls ::std::terminate if run terminates with an 
exception.

The remaining member functions behave as follows:
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• start(size_t stBytes = 0)
start(size_t stBytes, int priority)

This member function starts a newly-created thread (that is, calls the run 
method).

The stBytes parameter specifies a stack size (in bytes) for the thread. The 
default value of zero creates the thread with a default stack size that is deter-
mined by the operating system.

You can specify a priority for the thread. (If you do not supply a priority, the 
thread is created with the system default priority.)

The priority value is system-dependent; on POSIX systems, the value must be 
a legal value for the SCHED_RR real-time scheduling policy. SCHED_RR 
requires root privileges. On Windows systems, the priority value is passed 
through to the Windows setThreadPriority function.

Section 31.9 provides information about how you can deal with priority inver-
sion.

The return value is a ThreadControl object for the new thread (see 
Section 31.8.4).

You can start a thread only once; calling start on an already-started thread 
raises ThreadStartedException.

If the calling thread passes an invalid priority or, on POSIX systems, does not 
have root priviliges, start raises ThreadSyscallException.

• getThreadControl

This member function returns a thread control object for the thread on which it 
is invoked (see Section 31.8.4). Calling this method before calling start 
raises a ThreadNotStartedException.

• id

This method returns the underlying thread ID (DWORD for Windows and 
pthread_t for POSIX threads). This method is provided mainly for debug-
ging purposes.3

3. pthread_t is, strictly-speaking, an opaque type, so you should not make any assumptions 
about what you can do with a thread ID.



908 Threads and Concurrency with C++

• isAlive

This method returns false before a thread’s start method has been called 
and after a thread’s run method has completed; otherwise, while the thread is 
still running, it returns true. isAlive is useful to implement a non-blocking 
join:

ThreadPtr p = new MyThread();
// ...
while(p->isAlive()) {
    // Do something else...
}
t.join(); // Will not block

• operator==
operator!=
operator<

These member functions compare the in-memory address of two threads. 
They are provided so you can use sorted STL containers with Thread 
objects.

Note that IceUtil also defines the type ThreadPtr. This is the usual refer-
ence-counted smart pointer (see Section 6.14.6) to guarantee automatic clean-up: 
the Thread destructor calls delete this once its reference count drops to zero.

31.8.2 Implementing Threads

To illustrate how to implement threads, consider the following code fragment:

#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            cout << q.get() << endl;
    }
};

class WriterThread : public IceUtil::Thread {
    virtual void run() {
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        for (int i = 0; i < 100; ++i)
            q.put(i);
    }
};

This code fragment defines two classes, ReaderThread and WriterThread, 
that inherit from IceUtil::Thread. Each class implements the pure virtual 
run method it inherits from its base class. For this simple example, a writer 
thread places the numbers from 1 to 100 into an instance of the thread-safe 
Queue class we defined in Section 31.6, and a reader thread retrieves 
100 numbers from the queue and prints them to stdout.

31.8.3 Creating Threads

To create a new thread, we simply instantiate the thread and call its start 
method:

IceUtil::ThreadPtr t = new ReaderThread;
t->start();
// ...

Note that we assign the return value from new to a smart pointer of type 
ThreadPtr. This ensures that we do not suffer a memory leak:4

1. When the thread is created, its reference count is set to zero.

2. Prior to calling run (which is called by the start method), start incre-
ments the reference count of the thread to 1.

3. For each ThreadPtr for the thread, the reference count of the thread is 
incremented by 1, and for each ThreadPtr that is destroyed, the reference 
count is decremented by 1.

4. When run completes, start decrements the reference count again and then 
checks its value: if the value is zero at this point, the Thread object deallo-
cates itself by calling delete this; if the value is non-zero at this point, 
there are other smart pointers that reference this Thread object and deletion 
happens when the last smart pointer goes out of scope.

Note that, for all this to work, you must allocate your Thread objects on the 
heap—stack-allocated Thread objects will result in deallocation errors:

4. ThreadPtr is another example of an RAII class [20].
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ReaderThread thread;
IceUtil::ThreadPtr t = &thread; // Bad news!!!

This is wrong because the destructor of t will eventually call delete, which has 
undefined behavior for a stack-allocated object.

Similarly, you must use a ThreadPtr for an allocated thread. Do not attempt 
to explicitly delete a a thread:

Thread* t = new ReaderThread();

// ...

delete t; // Disaster!

This will result in a double deallocation of the thread because the thread’s 
destructor will call delete this.

It is legal for a thread to call start on itself from within its own constructor. 
However, if so, the thread must not be (very) short lived:

class ActiveObject : public Thread() {
public:
    ActiveObject() {
        start();
    }

    void done() {
        getThreadControl().join();
    }

    virtual void run() {
        // *Very* short lived...
    }
};
typedef Handle<ActiveObject> ActiveObjectPtr;

// ...

ActiveObjectPtr ao = new ActiveObject;

With this code, it is possible for run to complete before the assignment to the 
smart pointer ao completes; in that case, start will call delete this; 
before it returns and ao ends up deleting an already-deleted object. However, note 
that this problem can arise only if run is indeed very short-lived and moreover, 
the scheduler allows the newly-created thread to run to completion before the 
assignment of the return value of operator new to ao takes place. This is 



31.8 Threads 911

highly unlikely to happen—if you are concerned about this scenario, do not call 
start from within a thread’s own constructor. That way, the smart pointer is 
assigned first, and the thread started second (as in the example on page 909), so 
the problem cannot arise.

31.8.4 The ThreadControl Class

The start method returns an object of type ThreadControl (see page 905). 
The member functions of ThreadControl behave as follows:

• ThreadControl

The default constructor returns a ThreadControl object that refers to the 
calling thread. This allows you to get a handle to the current (calling) thread 
even if you do not have saved a handle to that thread previously. For example:

IceUtil::ThreadControl self;    // Get handle to self
cout << self.id() << endl;      // Print thread ID

This example also explains why we have two classes, Thread and Thread-
Control: without a separate ThreadControl, it would not be possible to 
obtain a handle to an arbitrary thread. (Note that this code works even if the 
calling thread was not created by the Ice run time; for example, you can create 
a ThreadControl object for a thread that was created by the operating 
system.)

The (implicit) copy constructor and assignment operator create a Thread-
Control object that refers to the same underlying thread as the source 
ThreadControl object.

Note that the constructor is overloaded. For Windows, the signature is

ThreadControl(HANDLE, DWORD);

For Unix, the signature is

ThreadControl(pthread_t);

These constructors allow you to create a ThreadControl object for the 
specified thread.

• join

This method suspends the calling thread until the thread on which join is 
called has terminated. For example:

IceUtil::ThreadPtr t = new ReaderThread; // Create a thread
IceUtil::ThreadControl tc = t->start();  // Start it
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tc.join();                               // Wait for it

If the reader thread has finished by the time the creating thread calls join, the 
call to join returns immediately; otherwise, the creating thread is suspended 
until the reader thread terminates.

Note that the join method of a thread must be called from only one other 
thread, that is, only one thread can wait for another thread to terminate. 
Calling join on a thread from more than one other thread has undefined 
behavior.

Calling join on a thread that was previously joined with or calling join on 
a detached thread has undefined behavior.

You must join with each thread you create; failure to join with a thread has 
undefined behavior.

• detach

This method detaches a thread. Once a thread is detached, it cannot be joined 
with.

Calling detach on an already detached thread, or calling detach on a 
thread that was previously joined with has undefined behavior.

Note that, if you have detached a thread, you must ensure that the detached 
thread has terminated before your program leaves its main function. This 
means that, because detached threads cannot be joined with, they must have a 
life time that is shorter than that of the main thread.

• sleep

This method suspends the calling thread for the amount of time specified by 
the Time parameter (see Appendix F.12).

• yield

This method causes the calling thread to relinquish the CPU, allowing another 
thread to run.

• operator==
operator!=

These operators compare thread IDs. (Note that operator< is not provided 
because it cannot be implemented portably.) These operators yield meaningful 
results only for threads that have not been detached or joined with.

As for all the synchronization primitives, you must adhere to a few rules when 
using threads to avoid undefined behavior:

• Do not allow run to throw an exception.
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• Do not join with or detach a thread that you have not created yourself.

• For every thread you create, you must either join with that thread exactly once 
or detach it exactly once; failure to do so may cause resource leaks.

• Do not call join on a thread from more than one other thread.

• Do not leave main until all other threads you have created have terminated.

• Do not leave main until after you have destroyed all Ice::Communi-
cator objects you have created (or use the Ice::Application class—
see Section 8.3.1 on page 276)).

• A common mistake is to call yield from within a critical region. Doing so is 
usually pointless because the call to yield will look for another thread that 
can be run but, when that thread is run, it will most likely try to enter the crit-
ical region that is held by the yielding thread and go to sleep again. At best, 
this achieves nothing and, at worst, it causes many additional context switches 
for no gain.

If you call yield, do so only in circumstances where there is at least a fair 
chance that another thread will actually be able to run and do something 
useful.

31.8.5 A Small Example

Following is a small example that uses the Queue class we defined in 
Section 31.6. We create five writer and five reader threads. The writer threads each 
deposit 100 numbers into the queue, and the reader threads each retrieve 100 
numbers and print them to stdout:

#include <vector>
#include <IceUtil/Thread.h>
// ...

Queue q;

class ReaderThread : public IceUtil::Thread {
    virtual void run() {
        for (int i = 0; i < 100; ++i)
            cout << q.get() << endl;
    }
};

class WriterThread : public IceUtil::Thread {
    virtual void run() {
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        for (int i = 0; i < 100; ++i)
            q.put(i);
    }
};

int
main()
{
    vector<IceUtil::ThreadControl> threads;
    int i;

    // Create five reader threads and start them
    //
    for (i = 0; i < 5; ++i) {
        IceUtil::ThreadPtr t = new ReaderThread;
        threads.push_back(t->start());
    }

    // Create five writer threads and start them
    //
    for (i = 0; i < 5; ++i) {
        IceUtil::ThreadPtr t = new WriterThread;
        threads.push_back(t->start());
    }

    // Wait for all threads to finish
    //
    for (vector<IceUtil::ThreadControl>::iterator i
            = threads.begin(); i != threads.end(); ++i) {
        i->join();
    }
}

The code uses the threads variable, of type vector<IceUtil::Thread-
Control> to keep track of the created threads. The code creates five reader and 
five writer threads, storing the ThreadControl object for each thread in the 
threads vector. Once all the threads are created and running, the code joins 
with each thread before returning from main.

Note that you must not leave main without first joining with the threads you 
have created: many threading libraries crash if you return from main with other 
threads still running. (This is also the reason why you must not terminate a 
program without first calling Communicator::destroy (see page 274); the 
destroy implementation joins with all outstanding threads before it returns.)
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31.9 Priority Inversion

In real-time systems, if you have threads with different priorities, it is possible to 
encounter a priority inversion. A priority inversion occurs when a low-priority 
thread prevents a higher-priority thread from running. This situation arises when a 
low-priority thread acquires a mutex and is pre-empted by one or more medium-
priority threads that do not relinquish the CPU. If a high-priority thread then 
attempts to acquire the mutex locked by the low-priority thread, it will wait 
(potentially forever) for the medium-priority threads to complete.

One way to deal with this problem is to use a priority inheritance protocol. If 
thread holds a mutex and a high-priority thread attempts to acquire the mutex, the 
priority of the thread holding the mutex is temporarily raised to the level of the 
thread waiting for the mutex. This allows the low-priority thread to keep running 
until it releases the mutex; as soon as it does, its priority is reduced back to its 
previous level and the high-priority thread acquires the mutex.

Ice supports the priority inheritance protocol on many POSIX platforms. 
(Windows does not provide such a protocol.)

For POSIX platforms that support the priority inheritance protocol, mutexes 
by default do not use it. You can use the getDefaultMutexProtocol func-
tion to retrieve the current default for your platform:

namespace IceUtil {
    enum MutexProtocol { PrioInherit, PrioNone };

    MutexProtocol getDefaultMutexProtocol();

}

On Posix systems that do not support priority inheritance and on Windows, this 
function always returns PrioNone.

The return value of getDefaultMutexProtocol determines whether a 
default-constructed Mutex or RecMutex uses priority inheritance. By default, 
this function returns PrioNone. You can override this default by explicitly spec-
ifying a different protocol when you construct a Mutex or RecMutex (see 
Sections 31.4 and 31.5). On Windows, if you specify PrioInherit when you 
construct a mutex, the setting is ignored and the mutex is constructed as if you had 
specified PrioNone.

To change the value returned by getDefaultMutexProtocol, you can 
edit IceUtil/Config.h and modify the value of the preprocessor macro 
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ICE_DEFAULT_MUTEX_PROTOCOL (or set the macro’s value as a compiler 
option), and then rebuild the IceUtil library.

31.10 Portable Signal Handling

The IceUtil::CtrlCHandler class provides a portable mechanism to 
handle Ctrl+C and similar signals sent to a C++ process. On Windows, 
IceUtil::CtrlCHandler is a wrapper for SetConsoleCtrlHandler; 
on POSIX platforms, it handles SIGHUP, SIGTERM and SIGINT with a dedi-
cated thread that waits for these signals using sigwait. Signals are handled by a 
callback function implemented and registered by the user. The callback is a simple 
function that takes an int (the signal number) and returns void; it should not 
throw any exception:

namespace IceUtil {

    typedef void (*CtrlCHandlerCallback)(int);

    class CtrlCHandler {
    public:
        CtrlCHandler(CtrlCHandlerCallback = 0);
        ~CtrlCHandler();

        void setCallback(CtrlCHandlerCallback);
        CtrlCHandlerCallback getCallback() const;
    };
}

The member functions of CtrlCHandler behave as follows:

• constructor

Constructs an instance with a callback function. Only one instance of Ctrl-
CHandler can exist in a process at a given moment in time. On POSIX plat-
forms, the constructor masks SIGHUP, SIGTERM and SIGINT, then starts a 
thread that waits for these signals using sigwait. For signal masking to 
work properly, it is imperative that the CtrlCHandler instance be created 
before starting any thread, and in particular before initializing an Ice commu-
nicator.



31.11 Summary 917

• destructor

Destroys the instance, after which the default signal processing behavior is 
restored on Windows (TerminateProcess). On POSIX platforms, the 
“sigwait” thread is cancelled and joined, but the signal mask remains 
unchanged, so subsequent signals are ignored.

• setCallback

Sets a new callback function.

• getCallback

Gets the current callback function.

It is legal specify a value of zero (0) for the callback function, in which case 
signals are caught and ignored until a non-zero callback function is set.

A typical use for CtrlCHandler is to shutdown a communicator in an Ice 
server (see Section 8.3.1).

31.11 Summary

This chapter explained the threading abstractions provided by Ice: mutexes, moni-
tors, and threads. Using these APIs allows to make your code thread safe and to 
create threads of your own without having to use non-portable APIs that differ in 
syntax or semantics across different platforms: Ice not only provides a portable 
API but also guarantees that the semantics of the various functions are the same 
across different platforms. This makes it easier to create thread-safe applications 
and allows you to move your code between platforms with simple recompilation.
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Chapter 32
The Ice Run Time in Detail

32.1 Introduction

Now that we have seen the basics of implementing clients and servers, it is time to 
look at the Ice run time in more detail. This chapter presents the server-side APIs 
of the Ice run time for synchronous, oneway, and datagram invocations in detail.

Section 32.2 describes the functionality associated with Ice communicators, 
which are the main handle to the Ice run time. Sections 32.4 to 32.6 describe 
object adapters and the role they play for call dispatch, and show the relationship 
between proxies, Ice objects, servants, and object identities. Sections 32.7 and 
32.8 describe servant locators and default servants, which are major mechanisms 
in Ice for controlling the trade-off between performance and memory consump-
tion. Section 32.9 describes the most common implementation techniques that are 
used by servers. We suggest that you read this section in detail because knowledge 
of these techniques is crucial to building systems that perform and scale well. 
Section 32.12 describes implicit transmission of parameters from client to server 
and Section 32.13 discusses connection timeouts. Sections 32.14 to 32.16 
describe oneway, datagram, and batched invocations, and Sections 32.17 to 32.21 
deal with location services, administration, logging, statistics collection, and loca-
tion transparency. Finally, Sections 32.22 to 32.25 discuss automatic retries, 
dispatch interceptors, string conversion, and how to write an Ice plug-in.
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32.2 Communicators

The main entry point to the Ice run time is represented by the local interface 
Ice::Communicator. An instance of Ice::Communicator is associated with a 
number of run-time resources:

• Client-side thread pool

The client-side thread pool (see Section 32.10) is used to process replies to 
asynchronous method invocations (AMI), to avoid deadlocks in callbacks, and 
to process incoming requests on bidirectional connections (see Section 36.7).

• Server-side thread pool

Threads in this pool accept incoming connections and handle requests from 
clients. See Section 32.10 for more information.

• Configuration properties

Various aspects of the Ice run time can be configured via properties. Each 
communicator has its own set of such configuration properties (see 
Chapter 30).

• Object factories

In order to instantiate classes that are derived from a known base type, the 
communicator maintains a set of object factories that can instantiate the class 
on behalf of the Ice run time (see Section 6.14.5 and Section 10.14.4).

• Logger object

A logger object implements the Ice::Logger interface and determines how 
log messages that are produced by the Ice run time are handled (see 
Section 32.19).

• Statistics object

A statistics object implements the Ice::Stats interface and is informed about 
the amount of traffic (bytes sent and received) that is handled by a communi-
cator (see Section 32.20).

• Default router

A router implements the Ice::Router interface. Routers are used by Glacier2 
(see Chapter 42) to implement the firewall functionality of Ice.

• Default locator

A locator is an object that resolves an object identity to a proxy. Locator 
objects are used to build location services, such as IceGrid (see Chapter 38).
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• Plug-in manager

Plug-ins are objects that add features to a communicator. For example, IceSSL 
(see Chapter 41) is implemented as a plug-in. Each communicator has a 
plug-in manager that implements the Ice::PluginManager interface and 
provides access to the set of plug-ins for a communicator.

• Object adapters

Object adapters dispatch incoming requests and take care of passing each 
request to the correct servant.

Object adapters and objects that use different communicators are completely inde-
pendent from each other. Specifically:

• Each communicator uses its own thread pool. This means that if, for example, 
one communicator runs out of threads for incoming requests, only objects 
using that communicator are affected. Objects using other communicators 
have their own thread pool and are therefore unaffected.

• Collocated invocations across different communicators are not optimized, 
whereas collocated invocations using the same communicator bypass much of 
the overhead of call dispatch.

Typically, servers use only a single communicator but, occasionally, multiple 
communicators can be useful. For example, IceBox (see Chapter 43) uses a sepa-
rate communicator for each Ice service it loads to ensure that different services 
cannot interfere with each other. Multiple communicators are also useful to avoid 
thread starvation: if one service runs out of threads, this leaves the remaining 
services unaffected.

The interface of the communicator is defined in Slice. Part of this interface
looks as follows:

module Ice {
    local interface Communicator {
        string proxyToString(Object* obj);
        Object* stringToProxy(string str);
        PropertyDict proxyToProperty(Object* proxy,
                                     string property);
        Object* propertyToProxy(string property);
        Identity stringToIdentity(string str);
        string identityToString(Identity id);
        ObjectAdapter createObjectAdapter(string name);
        ObjectAdapter createObjectAdapterWithEndpoints(
                                            string name,
                                            string endpoints);
        ObjectAdapter createObjectAdapterWithRouter(
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                                            string name,
                                            Router* rtr);
        void shutdown();
        void waitForShutdown();
        bool isShutdown();
        void destroy();
        // ...
    };
    // ...
};

The communicator offers a number of operations:

• proxyToString
stringToProxy

These operations allow you to convert a proxy into its stringified representa-
tion and vice versa.

Instead of calling proxyToString on the communicator, you can also use the 
ice_toString operation on a proxy to stringify it (see Section 32.11.2). 
However, you can only stringify non-null proxies that way—to stringify a null 
proxy, you must use proxyToString. (The stringified representation of a null 
proxy is the empty string.)

• proxyToProperty
propertyToProxy

proxyToProperty returns the set of proxy properties for the supplied proxy. 
The property parameter specifies the base name for the properties in the 
returned set (see Section 32.11.1).

propertyToProxy retrieves the configuration property with the given name 
and converts its value into a proxy (see Section 32.11.1). A null proxy is 
returned if no property is found with the specified name.

• identityToString
stringToIdentity

These operations allow you to convert an identity to a string and vice versa 
(see Section 32.5).
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• createObjectAdapter
createObjectAdapterWithEndpoints
createObjectAdapterWithRouter

These operations create a new object adapter. Each object adapter is associ-
ated with zero or more transport endpoints.

Typically, an object adapter has a single transport endpoint. However, an 
object adapter can also offer multiple endpoints. If so, these endpoints each 
lead to the same set of objects and represent alternative means of accessing 
these objects. This is useful, for example, if a server is behind a firewall but 
must offer access to its objects to both internal and external clients; by binding 
the adapter to both the internal and external interfaces, the objects imple-
mented in the server can be accessed via either interface.

An object adapter also can have no endpoint at all. In that case, the adapter can 
only be reached via collocated invocations originating from the same commu-
nicator as is used by the adapter.

Whereas createObjectAdapter determines its endpoints from configuration 
information (see Section 32.4.6), createObjectAdapterWithEndpoints 
allows you to specify the transport endpoints for the new adapter. Typically, 
you should use createObjectAdapter in preference to createObjectAdapt-
erWithEndpoints. Doing so keeps transport-specific information, such as 
host names and port numbers, out of the source code and allows you to recon-
figure the application by changing a property (and so avoid recompilation 
when a transport endpoint needs to be changed).

createObjectAdapterWithRouter creates a routed object adapter that allows 
clients to receive callbacks from servers that are behind a router (see 
Chapter 42).

The newly-created adapter uses its name as a prefix for a collection of config-
uration properties that tailor the adapter’s behavior (see Section D.4). By 
default, the adapter prints a warning if other properties are defined having the 
same prefix, but you can disable this warning using the property 
Ice.Warn.UnknownProperties (see Section D.3).

• shutdown

This operation shuts down the server side of the Ice run time:

• Operation invocations that are in progress at the time shutdown is called are 
allowed to complete normally. shutdown does not wait for these operations 
to complete; when shutdown returns, you know that no new incoming 
requests will be dispatched, but operations that were already in progress at 



924 The Ice Run Time in Detail

the time you called shutdown may still be running. You can wait for still 
executing operations to complete by calling waitForShutdown.

• Operation invocations that arrive after the server has called shutdown either 
fail with a ConnectFailedException or are transparently redirected to a 
new instance of the server (see Chapter 38).

• Note that shutdown initiates deactivation of all object adapters associated 
with the communicator, so attempts to use an adapter once shutdown has 
completed raise an ObjectAdapterDeactivatedException.

• waitForShutdown

On the server side, this operation suspends the calling thread until the commu-
nicator has shut down (that is, until no more operations are executing in the 
server). This allows you to wait until the server is idle before you destroy the 
communicator.

On the client side, waitForShutdown simply waits until another thread has 
called shutdown or destroy.

• isShutdown

This operation returns true if shutdown has been invoked on the communi-
cator. A return value of true does not necessarily indicate that the shutdown 
process has completed, only that it has been initiated. An application that 
needs to know whether shutdown is complete can call waitForShutdown. If 
the blocking nature of waitForShutdown is undesirable, the application can 
invoke it from a separate thread.

• destroy

This operation destroys the communicator and all its associated resources, 
such as threads, communication endpoints, object adapters, and memory 
resources. Once you have destroyed the communicator (and therefore 
destroyed the run time for that communicator), you must not call any other Ice 
operation (other than to create another communicator).

It is imperative that you call destroy before you leave the main function of 
your program. Failure to do so results in undefined behavior.

Calling destroy before leaving main is necessary because destroy waits for 
all running threads to terminate before it returns. If you leave main without 
calling destroy, you will leave main with other threads still running; many 
threading packages do not allow you to do this and end up crashing your 
program.
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If you call destroy without calling shutdown, the call waits for all executing 
operation invocations to complete before it returns (that is, the implementation of 
destroy implicitly calls shutdown followed by waitForShutdown). shutdown 
(and, therefore, destroy) deactivates all object adapters that are associated with 
the communicator. Since destroy blocks until all operation invocations complete, 
a servant will deadlock if it invokes destroy on its own communicator while 
executing a dispatched operation.

On the client side, calling destroy while operations are still executing causes 
those operations to terminate with a CommunicatorDestroyedException.

32.3 Communicator Initialization

During the creation of a communicator, the Ice run time initializes a number of 
features that affect the communicator’s operation. Once set, these features remain 
in effect for the life time of the communicator, that is, you cannot change these 
features after you have created a communicator. Therefore, if you want to 
customize these features, you must do so when you create the communicator.

The following features can be customized at communicator creation time:

• the property set (see Chapter 30)

• the Logger interface (see Section 32.19)

• the Stats interface (see Section 32.20)

• the narrow and wide string converters (C++ only, see page 1105)

• the thread notification hook (see page 1015)

• the dispatcher (see Section 32.10.7)

• the class loader (Java only, see Section 32.26)

To establish these features, you initialize a structure or class of type Initial-
izationData with the relevant settings. For C++ the structure is defined as 
follows:

namespace Ice {
    struct InitializationData {
        PropertiesPtr properties;
        LoggerPtr logger;
        StatsPtr stats;
        StringConverterPtr stringConverter;
        WstringConverterPtr wstringConverter;
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        ThreadNotificationPtr threadHook;
        DispatcherPtr dispatcher;
    };
}

For languages other than C++, InitializationData is a class with all data 
members public. (The data members supported by this class vary with each 
language mapping.)

For C++, Ice::initialize is overloaded as follows:

namespace Ice {
    CommunicatorPtr initialize(int&, char*[],
                const InitializationData& = InitializationData(),
                Int = ICE_INT_VERSION);
    CommunicatorPtr initialize(StringSeq&,
                const InitializationData& = InitializationData(),
                Int = ICE_INT_VERSION);
    CommunicatorPtr initialize(
                const InitializationData& = InitializationData()
                Int = ICE_INT_VERSION);
}

The versions of initialize that accept an argument vector look for Ice-
specific command-line options and removes them from the argument vector, as 
described on page 274. The version without an argc/argv pair is useful if you 
want to prevent property settings for a program from being changed by command- 
line arguments (see Section 30.9).

To set a feature, you set the corresponding field in the Initialization-
Data structure and pass the structure to initialize. For example, to establish 
a custom logger of type MyLogger, you can use:

Ice::InitializationData id;
id.logger = new MyLoggerI;
Ice::CommunicatorPtr ic = Ice::initialize(argc, argv, id);

For Java, C#, and Objective-C, Ice.Util.initialize is overloaded simi-
larly1 (as is Ice.initialize for Python, Ice::initialize for Ruby, and 
Ice_initialize for PHP), so you can pass an InitializationData 
instance either with or without an argument vector. Note that you must supply an 
argument vector if you want initialize to look for a configuration file in the 
ICE_CONFIG environment variable. (See also Section 30.7.)

1. For Objective-C, the method name is createCommunicator (see Section 20.3).
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32.4 Object Adapters

A communicator contains one or more object adapters. An object adapter sits at 
the boundary between the Ice run time and the server application code and has a 
number of responsibilities:

• It maps Ice objects to servants for incoming requests and dispatches the 
requests to the application code in each servant (that is, an object adapter 
implements an up-call interface that connects the Ice run time and the applica-
tion code in the server).

• It assists in life cycle operations so Ice objects and servants can be created and 
existing destroyed without race conditions.

• It provides one or more transport endpoints. Clients access the Ice objects 
provided by the adapter via those endpoints. (It is also possible to create an 
object adapter without endpoints. In this case the adapter is used for bidirec-
tional callbacks—see Section 36.7.)

Each object adapter has one or more servants that incarnate Ice objects, as well as 
one or more transport endpoints. If an object adapter has more than one endpoint, 
all servants registered with that adapter respond to incoming requests on any of 
the endpoints. In other words, if an object adapter has multiple transport 
endpoints, those endpoints represent alternative communication paths to the same 
set of objects (for example, via different transports).

Each object adapter belongs to exactly one communicator (but a single 
communicator can have many object adapters). Each object adapter has a name 
that distinguishes it from all other object adapters in the same communicator.

Each object adapter can optionally have its own thread pool, enabled via the 
<adapter-name>.ThreadPool.Size property (see Section 32.10.3). If so, 
client invocations for that adapter are dispatched in a thread taken from the 
adapter’s thread pool instead of using a thread from the communicator’s server 
thread pool.

32.4.1 The Active Servant Map

Each object adapter maintains a data structure known as the active servant map. 
The active servant map (or ASM, for short) is a lookup table that maps object iden-
tities to servants: for C++, the lookup value is a smart pointer to the corresponding 
servant’s location in memory; for Java and C#, the lookup value is a reference to 
the servant. When a client sends an operation invocation to the server, the request 
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is targeted at a specific transport endpoint. Implicitly, the transport endpoint iden-
tifies the object adapter that is the target of the request (because no two object 
adapters can be bound to the same endpoint). The proxy via which the client sends 
its request contains the object identity for the corresponding object, and the client-
side run time sends this object identity over the wire with the invocation. In turn, 
the object adapter uses that object identity to look in its ASM for the correct 
servant to dispatch the call to, as shown in Figure 32.1.

Figure 32.1. Binding a request to the correct servant.

The process of associating a request via a proxy to the correct servant is known as 
binding. The scenario depicted in Figure 32.1 shows direct binding, in which the 
transport endpoint is embedded in the proxy. Ice also supports an indirect binding 
mode, in which the correct transport endpoints are provided by the IceGrid service 
(see Chapter 38 for details).

If a client request contains an object identity for which there is no entry in the 
adapter’s ASM, the adapter returns an ObjectNotExistException to the client 
(unless you use a servant locator—see Section 32.7).

32.4.2 Servants

As mentioned in Section 2.2.2, servants are the physical manifestation of an Ice 
object, that is, they are entities that are implemented in a concrete programming 
language and instantiated in the server’s address space. Servants provide the 
server-side behavior for operation invocations sent by clients.

The same servant can be registered with one or more object adapters.
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32.4.3 Object Adapter Interface
Object adapters are local interfaces:

module Ice {
    local interface ObjectAdapter {
        string getName();
        Communicator getCommunicator();

        // ...
    };
};

The operations behave as follows:

• The getName operation returns the name of the adapter as passed to one of the 
communicator operations createObjectAdapter, 
createObjectAdapterWithEndpoints, or createObjectAdapterWith-
Router.

• The getCommunicator operation returns the communicator that was used to 
create the adapter.

Note that there are other operations in the ObjectAdapter interface; we will 
explore these throughout the remainder of this chapter.

32.4.4 Servant Activation and Deactivation
The term servant activation refers to making the presence of a servant for a partic-
ular Ice object known to the Ice run time. Activating a servant adds an entry to the 
active servant map shown in Figure 32.1. Another way of looking at servant acti-
vation is to think of it as creating a link between the identity of an Ice object and 
the corresponding programming-language servant that handles requests for that 
Ice object. Once the Ice run time has knowledge of this link, it can dispatch 
incoming requests to the correct servant. Without this link, that is, without a corre-
sponding entry in the ASM, an incoming request for the identity results in an 
ObjectNotExistException. While a servant is activated, it is said to incarnate 
the corresponding Ice object.

The inverse operation is known as servant deactivation. Deactivating a servant 
removes an entry for a particular identity from the ASM. Thereafter, incoming 
requests for that identity are no longer dispatched to the servant and result in an 
ObjectNotExistException.

The object adapter offers a number of operations to manage servant activation 
and deactivation:
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module Ice {
    local interface ObjectAdapter {
        // ...

        Object* add(Object servant, Identity id);
        Object* addWithUUID(Object servant);
        Object  remove(Identity id);
        Object  find(Identity id);
        Object  findByProxy(Object* proxy);

        // ...
    };
};

The operations behave as follows:

• add

The add operation adds a servant with the given identity to the ASM. Requests 
are dispatched to that servant as soon as add is called. The return value is the 
proxy for the Ice object incarnated by that servant. The proxy embeds the 
identity passed to add.

You cannot call add with the same identity more than once: attempts to add an 
already existing identity to the ASM result in an AlreadyRegisteredExcep-
tion. (It does not make sense to add two servants with the same identity 
because that would make it ambiguous as to which servant should handle 
incoming requests for that identity.)

Note that it is possible to activate the same servant multiple times with 
different identities. In that case, the same single servant incarnates multiple 
Ice objects. We explore the ramifications of this in more detail in 
Section 32.9.2.

• addWithUUID

The addWithUUID operation behaves the same way as the add operation but 
does not require you to supply an identity for the servant. Instead, addWith-
UUID generates a UUID (see [14]) as the identity for the corresponding Ice 
object. You can retrieve the generated identity by calling the 
ice_getIdentity operation on the returned proxy. addWithUUID is useful to 
create identities for temporary objects, such as short-lived session objects. 
(You can also use addWithUUID for persistent objects that do not have a 
natural identity, as we have done for the file system application.)
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• remove

The remove operation breaks the association between an identity and its 
servant by removing the corresponding entry from the ASM; it returns a smart 
pointer to the removed servant.

Once the servant is deactivated, new incoming requests for the removed iden-
tity result in an ObjectNotExistException. Requests that are executing 
inside the servant at the time remove is called are allowed to complete 
normally. Once the last request for the servant is complete, the object adapter 
drops its reference (or smart pointer, for C++) to the servant. At that point, the 
servant becomes available for garbage collection (or is destroyed, for C++), 
provided that you do not hold references or smart pointers to the servant else-
where. The net effect is that a deactivated servant is destroyed once it becomes 
idle.

Deactivating an object adapter (see Section 32.4.5) implicitly calls remove on 
its active servants.

• find

The find operation performs a lookup in the ASM and returns the servant for 
the specified object identity. If no servant with that identity is registered, the 
operation returns null. Note that find does not consult any servant locators.

• findByProxy

The findByProxy operation performs a lookup in the ASM and returns the 
servant with the object identity and facet that are embedded in the proxy. If no 
such servant is registered, the operation returns null. Note that findByProxy 
does not consult any servant locators.

32.4.5 Adapter States

An object adapter has a number of processing states:

• holding

In this state, any incoming requests for the adapter are held, that is, not 
dispatched to servants.

For TCP/IP (and other stream-oriented protocols), the server-side run time 
stops reading from the corresponding transport endpoint while the adapter is 
in the holding state. In addition, it also does not accept incoming connection 
requests from clients. This means that if a client sends a request to an adapter 
that is in the holding state, the client eventually receives a TimeoutException 
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or ConnectTimeoutException (unless the adapter is placed into the active 
state before the timer expires).

For UDP, client requests that arrive at an adapter that is in the holding state are 
thrown away.

Immediately after creation of an adapter, the adapter is in the holding state. 
This means that requests are not dispatched until you place the adapter into the 
active state.

Note that bidirectional adapters (see Section 36.7) cannot be placed into the 
holding state. If you call hold on a bidirectional adapter, the call does nothing.

• active

In this state, the adapter accepts incoming requests and dispatches them to 
servants. A newly-created adapter is initially in the holding state. The adapter 
begins dispatching requests as soon as you place it into the active state.

You can transition between the active and the holding state as many times as 
you wish.

Note that bidirectional adapters (see Section 36.7) need not be activated. 
Further, calls to collocated servants (that is, to servants that are activated in the 
communicator that created the proxy) succeed even if the adapter is not acti-
vated, unless you have disabled collocation optimization (see Section 32.21).

• inactive

In this state, the adapter has conceptually been destroyed (or is in the process 
of being destroyed). Deactivating an adapter destroys all transport endpoints 
that are associated with the adapter. Requests that are executing at the time the 
adapter is placed into the inactive state are allowed to complete, but no new 
requests are accepted. (New requests are rejected with an exception). Any 
attempt to use a deactivated object adapter results in an ObjectAdapterDeac-
tivatedException.

The ObjectAdapter interface offers operations that allow you to change the 
adapter state, as well as to wait for a state change to be complete:

module Ice {
    local interface ObjectAdapter {
        // ...

        void activate();
        void hold();
        void waitForHold();
        void deactivate();
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        void waitForDeactivate();
        void isDeactivated();
        void destroy();

        // ...
    };
};

The operations behave as follows:

• activate

The activate operation places the adapter into the active state. Activating an 
adapter that is already active has no effect. The Ice run time starts dispatching 
requests to servants for the adapter as soon as activate is called.

• hold

The hold operation places the adapter into the holding state. Requests that 
arrive after calling hold are held as detailed on page 931. Requests that are in 
progress at the time hold is called are allowed to complete normally. Note that 
hold returns immediately without waiting for currently executing requests to 
complete.

• waitForHold

The waitForHold operation suspends the calling thread until the adapter has 
completed its transition to the holding state, that is, until all currently 
executing requests have finished. You can call waitForHold from multiple 
threads, and you can call waitForHold while the adapter is in the active state. 
If you call waitForHold on an adapter that is already in the holding state, 
waitForHold returns immediately.

• deactivate

The deactivate operation initiates deactivation of the adapter: requests that 
arrive after calling deactivate are rejected, but currently executing requests 
are allowed to complete. Once all requests have completed, the adapter enters 
the inactivate state. Note that deactivate returns immediately without 
waiting for the currently executing requests to complete. A deactivated 
adapter cannot be reactivated; you can create a new adapter with the same 
name, but only after calling destroy on the existing adapter. Any attempt to 
use a deactivated object adapter results in an ObjectAdapterDeactivatedEx-
ception.
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• waitForDeactivate

The waitForDeactivate operation suspends the calling thread until the 
adapter has completed its transition to the inactive state, that is, until all 
currently executing requests have completed. You can call waitForDeacti-
vate from multiple threads, and you can call waitForDeactivate while the 
adapter is in the active or holding state. Calling waitForDeactivate on an 
adapter that is in the inactive state does nothing and returns immediately.

• isDeactivated

The isDeactivated operation returns true if deactivate has been invoked 
on the adapter. A return value of true does not necessarily indicate that the 
adapter has fully transitioned to the inactive state, only that it has begun this 
transition. Applications that need to know when deactivation is completed can 
use waitForDeactivate.

• destroy

The destroy operation deactivates the adapter and releases all of its 
resources. Internally, destroy invokes deactivate followed by waitForDe-
activate, therefore the operation blocks until all currently executing requests 
have completed. Furthermore, any servants associated with the adapter are 
destroyed, all transport endpoints are closed, and the adapter’s name becomes 
available for reuse.

Destroying a communicator implicitly destroys all of its object adapters. 
Invoking destroy on an adapter is only necessary when you need to ensure 
that its resources are released prior to the destruction of its communicator.

Placing an adapter into the holding state is useful, for example, if you need to 
make state changes in the server that require the server (or a group of servants) to 
be idle. For example, you could place the implementation of your servants into a 
dynamic library and upgrade the implementation by loading a newer version of 
the library at run time without having to shut down the server.

Similarly, waiting for an adapter to complete its transition to the inactive state 
is useful if your server needs to perform some final clean-up work that cannot be 
carried out until all executing requests have completed.

Note that you can create an object adapter with the same name as a previous 
object adapter, but only once destroy on the previous adapter has completed.
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32.4.6 Endpoints

An object adapter maintains two sets of transport endpoints. One set identifies the 
network interfaces on which the adapter listens for new connections, and the other 
set is embedded in proxies created by the adapter and used by clients to communi-
cate with it. We will refer to these sets of endpoints as the physical endpoints and 
the published endpoints, respectively. In most cases these sets are identical, but 
there are situations when they must be configured independently.

Physical Endpoints

An object adapter’s physical endpoints identify the network interfaces on which it 
receives requests from clients. These endpoints are configured via the 
name.Endpoints property, or they can be specified explicitly when the 
adapter is created using the operation createObjectAdapterWithEndpoints (see 
Section 32.2). The endpoint syntax is described in detail in Appendix E; however, 
an endpoint generally consists of a transport protocol followed by an optional host 
name and port.

If a host name is specified, the object adapter listens only on the network inter-
face associated with that host name. If no host name is specified but the property 
Ice.Default.Host is defined, the object adapter uses the property’s value as 
the host name. Finally, if a host name is not specified, and the property 
Ice.Default.Host is undefined, the object adapter listens on all available 
network interfaces, including the loopback interface. You may also force the 
object adapter to listen on all interfaces by using one of the host names 0.0.0.0 
or *. The adapter does not expand the list of interfaces when it is initialized. 
Instead, if no host is specified, or you use -h * or - 0.0.0.0, the adapter 
binds to INADDR_ANY to listen for incoming requests.

If you want an adapter to accept requests on certain network interfaces, you 
must specify a separate endpoint for each interface. For example, the following 
property configures a single endpoint for the adapter named MyAdapter:

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999

This endpoint causes the adapter to accept requests on the network interface asso-
ciated with the IP address 10.0.1.1 at port 9999. Note however that this adapter 
configuration does not accept requests on the loopback interface (the one associ-
ated with address 127.0.0.1). If both addresses must be supported, then both 
must be specified explicitly, as shown below:

MyAdapter.Endpoints=\
    tcp -h 10.0.1.1 -p 9999:tcp -h 127.0.0.1 -p 9999
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If these are the only two network interfaces available on the host, then a simpler 
configuration omits the host name altogether, causing the object adapter to listen 
on both interfaces automatically:

MyAdapter.Endpoints=tcp -p 9999

If you want to make your configuration more explicit, you can use one of the 
special host names:

MyAdapter.Endpoints=tcp -h * -p 9999

Another advantage to this configuration is that it ensures the object adapter always 
listens on all interfaces, even if a definition for Ice.Default.Host is later 
added to your configuration. Without an explicit host name, the addition of 
Ice.Default.Host could potentially change the interfaces on which the 
adapter is listening. For diagnostic purposes, you can determine the set of local 
addresses that Ice substitutes for the wildcard address by setting the property 
Ice.Trace.Network=3 and reviewing the log output.

Careful consideration must also be given to the selection of a port for an 
endpoint. If no port is specified, the adapter uses a port that is selected (essentially 
at random) by the operating system, meaning the adapter will likely be using a 
different port each time the server is restarted. Whether that behavior is desirable 
depends on the application, but in many applications a client has a proxy 
containing the adapter’s endpoint and expects that proxy to remain valid indefi-
nitely. Therefore, an endpoint generally should contain a fixed port to ensure that 
the adapter is always listening at the same port.

However, there are certain situations where a fixed port is not required. For 
example, an adapter whose servants are transient does not need a fixed port, 
because the proxies for those objects are not expected to remain valid past the life-
time of the server process. Similarly, a server using indirect binding via IceGrid 
(see Chapter 38) does not need a fixed port because its port is never published.

Published Endpoints

An object adapter publishes its endpoints in the proxies it creates, but it is not 
always appropriate to publish the adapter’s physical endpoints in a proxy. For 
example, suppose a server is running on a host in a private network, protected 
from the public network by a firewall that can forward network traffic to the 
server. The adapter’s physical endpoints must use the private network’s address 
scheme, but a client in the public network would be unable to use those endpoints 
if they were published in a proxy. In this scenario, the adapter must publish 
endpoints in its proxies that direct the client to the firewall instead.
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The published endpoints are configured using the adapter property 
name.PublishedEndpoints. If this property is not defined, the adapter 
publishes its physical endpoints by default, with one exception: endpoints for the 
loopback address (127.0.0.1) are not published unless the loopback interface 
is the only interface, or 127.0.0.1 (or loopback) is explicitly listed as an 
endpoint with the -h option. Otherwise, to force the inclusion of loopback 
endpoints when they would normally be excluded, you must define 
name.PublishedEndpoints explicitly.

As an example, the properties below configure the adapter named 
MyAdapter with physical and published endpoints:

MyAdapter.Endpoints=tcp -h 10.0.1.1 -p 9999
MyAdapter.PublishedEndpoints=tcp -h corpfw -p 25000

This example assumes that clients connecting to host corpfw at port 25000 are 
forwarded to the adapter’s endpoint in the private network.

Another use case of published endpoints is for replicated servers. Suppose we 
have two instances of a stateless server running on separate hosts in order to 
distribute the load between them. We can supply the client with a bootstrap proxy 
containing the endpoints of both servers, and the Ice run time in the client will 
select one of the servers at random when a connection is established. However, 
should the client invoke an operation on a server that returns a proxy for another 
object, that proxy would normally contain only the endpoint of the server that 
created it. Invocations on the new proxy are always directed at the same server, 
reducing the opportunity for load balancing.

We can alleviate this situation by configuring the adapters to publish the 
endpoints of both servers. For example, here is a configuration for the server on 
host Sun1:

MyAdapter.Endpoints=tcp -h Sun1 -p 9999
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

Similarly, the configuration for host Sun2 retains the same published endpoints:

MyAdapter.Endpoints=tcp -h Sun2 -p 9999
MyAdapter.PublishedEndpoints=tcp -h Sun1 -p 9999:tcp -h Sun2 -p 9999

For troubleshooting purposes, you can examine the published endpoints for an 
object adapter by setting the property Ice.Trace.Network=3. Note however 
that this setting generates significant trace information about the Ice run time’s 
network activity, therefore you may not want to use this setting by default.
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Refreshing Endpoints

The list of interfaces of a host may change over time, for example, if a laptop 
moves in and out of range of a wireless network. The object adapter provides an 
operation to refresh its list of interfaces:

local interface ObjectAdapter {
    void refreshPublishedEndpoints();
    // ...
};

Calling refreshPublishedEndpoints causes the object adapter to update its 
internal list of available network interfaces and to use the most recent setting for 
the name.PublishedEndpoints property. This allows you to react to changing 
network interfaces while an object adapter is in use, but your application code 
must determine when it is necessary to call this operation.

Note that refreshPublishedEndpoints takes effect only for object adapters 
that specify published endpoints without a host or set the published endpoints to 
-h * or -h 0.0.0.0.

Timeouts

As a defense against hostile clients, we recommend that you specify a timeout for 
you physical object adapter endpoints. The timeout value you select affects tasks 
that the Ice run time normally does not expect to block for any significant amount 
of time, such as writing a reply message to a socket or waiting for SSL negotiation 
to complete. If you do not specify a timeout, the Ice run time waits indefinitely in 
these situations. As a result, malicious or misbehaving clients could consume 
excessive resources such as file descriptors.

Specifying a timeout in an object adapter endpoint is done exactly as in a 
proxy endpoint using the -t option:

MyAdapter.Endpoints=tcp -p 9999 -t 5000

In this example, we specify a timeout of five seconds.

Routers

If an object adapter is configured with a router, the adapter’s published endpoints 
are augmented to reflect the router. See Chapter 42 for more information on 
configuring an adapter with a router.
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Obtaining Endpoint Information

The object adapter provides two operations to retrieve the physical and published 
endpoints:

module Ice {
    local interface ObjectAdapter {
        // ...

        EndpointSeq getEndpoints();
        EndpointSeq getPublishedEndpoints();

        // ...
    };
};

The sequences that are returned contain the adapter’s physical and published 
endpoints, respectively. Section 36.5.2 provides details about the information 
provided by the sequence elements.

32.4.7 Creating Proxies

Although the servant activation operations described in Section 32.4.4 return 
proxies, the life cycle of proxies is completely independent from servants (see 
Chapter 34). The ObjectAdapter interface provides several operations for 
creating a proxy, regardless of whether a servant is currently activated for the 
object’s identity:

module Ice {
    local interface ObjectAdapter {
        // ...

        Object* createProxy(Identity id);
        Object* createDirectProxy(Identity id);
        Object* createIndirectProxy(Identity id);

        // ...
    };
};

These operations are described below:
• createProxy

The createProxy operation returns a new proxy for the object with the given 
identity. The adapter’s configuration determines whether the return value is a 



940 The Ice Run Time in Detail

direct proxy or an indirect proxy (see Section 2.2.2). If the adapter is config-
ured with an adapter id (see Section 32.17.5), the operation returns an indirect 
proxy that refers to the adapter id. If the adapter is also configured with a 
replica group id, the operation returns an indirect proxy that refers to the 
replica group id. Otherwise, if an adapter id is not defined, createProxy 
returns a direct proxy containing the adapter’s published endpoints (see 
Section 32.4.6).

• createDirectProxy

The createDirectProxy operation returns a direct proxy containing the 
adapter’s published endpoints (see Section 32.4.6).

• createIndirectProxy

The createIndirectProxy operation returns an indirect proxy. If the adapter 
is configured with an adapter id, the returned proxy refers to that adapter id. 
Otherwise, the proxy refers only to the object’s identity (see page 11).

In contrast to createProxy, createIndirectProxy does not use the replica 
group id. Therefore, the returned proxy always refers to a specific replica.

Configuring Proxies

After using one of the operations discussed above to create a proxy, you will 
receive a proxy that is configured by default for twoway invocations. If you 
require the proxy to have a different configuration, you can use the proxy factory 
methods described in Section 32.11.2. As an example, the code below demon-
strates how to configure the proxy for oneway invocations:

// C++
Ice::ObjectAdapterPtr adapter = ...;
Ice::Identity id = ...;
Ice::ObjectPrx proxy = adapter->createProxy(id)->ice_oneway();

You can also instruct the object adapter to use a different default proxy configura-
tion by setting the property name.ProxyOptions. For example, the following 
property causes the object adapter to return proxies that are configured for oneway 
invocations by default:

MyAdapter.ProxyOptions=-o

See Appendix D for more information on this property.
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32.4.8 Using Multiple Object Adapters

A typical server rarely needs to use more than one object adapter. If you are 
considering using multiple object adapters, we suggest that you check whether 
any of the items in the list below apply to your situation:

• You need fine-grained control over which objects are accessible. For example, 
you could have an object adapter with only secure endpoints to restrict access 
to some administrative objects, and another object adapter with non-secure 
endpoints for other objects. Because an object adapter is associated with one 
or more transport endpoints, you can firewall a particular port, so objects asso-
ciated with the corresponding endpoint cannot be reached unless the firewall 
rules are satisfied.

• You need control over the number of threads in the pools for different sets of 
objects in your application. For example, you may not need concurrency on 
the objects connected to a particular object adapter, and multiple object 
adapters, each with its own thread pool, can be useful to solve deadlocks. See 
Section 32.10.5 for more information on dealing with deadlocks.

• You want to be able to temporarily disable processing new requests for a set of 
objects. This can be accomplished by placing an object adapter in the holding 
state.

• You want to set up different request routing when using an Ice router with 
Glacier2.

If none of the preceding items apply, chances are that you do not need more than 
one object adapter.

32.5 Object Identity

Each Ice object has an object identity defined as follows:

module Ice {
    struct Identity {
        string name;
        string category;
    };
};

As you can see, an object identity consists of a pair of strings, a name and a cate-
gory. The complete object identity is the combination of name and category, that 
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is, for two identities to be equal, both name and category must be the same. The 
category member is usually the empty string, unless you are using servant loca-
tors (see Section 32.7).2

If name is an empty string, category must be the empty string as well. (An 
identity with an empty name and a non-empty category is illegal.) If a proxy 
contains an identity in which name is empty, Ice interprets that proxy as a null 
proxy. 

Object identities can be represented as strings; the category part appears first 
and is followed by the name; the two components are separated by a / character, 
for example:

Factory/File

In this example, Factory is the category, and File is the name. If the name or 
category member themselves contain a / character, the stringified representation 
escapes the / character with a \, for example:

Factories\/Factory/Node\/File

In this example, the category member is Factories/Factory and the name 
member is Node/File.

32.5.1 Syntax for Stringified Identities

You rarely need to write identities as strings because, typically, your code will be 
using identityToString and stringToIdentity (see Section 32.5.2), or simply 
deal with proxies instead of identities. However, on occasion, you will need to use 
stringified identities in configuration files. If the identities happen to contain 
meta-characters (such as a slash or backslash), or characters outside the printable 
ASCII range, these characters must be escaped in the stringified representation. 
Here are rules that the Ice run time applies when parsing a stringified identity:

1. The parser scans the stringified identity for an un-escaped slash character (/). 
If such a slash character can be found, the substrings to the left and right of the 
slash are parsed as the category and name members of the identity, respec-
tively; if no such slash character can be found, the entire string is parsed as the 
name member of the identity, and the category member is the empty string.

2. Glacier2 (see Chapter 42) also uses the category member for filtering.
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2. Each of the category (if present) and name substrings is parsed according to 
the following rules:

1.All characters in the string must be in the ASCII range 32 (space) to 126 (~); 
characters outside this range cause the parse to fail.

2.Any character that is not part of an escape sequence is treated as that char-
acter.

3.The parser recognizes the following escape sequences and replaces them 
with their equivalent character:

\\ (backslash)

\' (single quote)

\" (double quote)

\b (space)

\f (form feed)

\n (new line)

\r (carriage return)

\t (tab)

4.An escape sequence of the form \o, \oo, or \ooo (where o is a digit in the 
range 0 to 7) is replaced with the ASCII character with the corresponding 
octal value. Parsing for octal digits allows for at most three consecutive 
digits, so the string \0763 is interpreted as the character with octal 
value 76 (>) followed by the character 3. Parsing for octal digits terminates 
as soon as it encounters a character that is not in the range 0 to 7, so \7x is 
the character with octal value 7 (bell) followed by the character x. Octal 
escape sequences must be in the range 0 to 255 (octal 000 to 377); escape 
sequences outside this range cause a parsing error. For example, \539 is an 
illegal escape sequence.

5. If a character follows a backslash, but is not part of a recognized escape 
sequence, the backslash is ignored, so \x is the character x.

32.5.2 Helper Functions

To make conversion of identities to and from strings easier, the Communicator 
interface provides appropriate conversion functions:
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local interface Communicator {
    string identityToString(Identity id);
    Identity stringToIdentity(string id);
};

For C++, the operations on the communicator are the only way to convert between 
identities and strings. For other languages, the conversion functions are provided 
as operations on the communicator as well but, in addition, the language 
mappings provide static utility functions. (The utility functions have the advantage 
that you can call them without holding a reference to the communicator.)3

For Java, the utility functions are in the Ice.Util class and are defined as:

package Ice;

public final class Util {
    public static String   identityToString(Identity id);
    public static Identity stringToIdentity(String s);
}

For C#, the utility functions are in the Ice.Util class and are defined as:

namespace Ice
{
    public sealed class Util
    {
        public static string   identityToString(Identity id);
        public static Identity stringToIdentity(string s);
    }
}

These functions correctly encode and decode characters that might otherwise 
cause problems (such as control characters).

As mentioned on page 930, each entry in the ASM for an object adapter must 
be unique: you cannot add two servants with the same identity to the ASM.

3. For C++, the static utility functions are not provided due to the need to apply string conversions, 
and the string converters are registered on the communicator (see Section 32.24).
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32.6 The Ice::Current Object

Up to now, we have tacitly ignored the trailing parameter of type Ice::Current 
that is passed to each skeleton operation on the server side. The Current object is 
defined as follows:

module Ice {
    local dictionary<string, string> Context;

    enum OperationMode { Normal, \Nonmutating, \Idempotent };

    local struct Current {
        ObjectAdapter   adapter;
        Connection      con;
        Identity        id;
        string          facet;
        string          operation;
        OperationMode   mode;
        Context         ctx;
        int             requestId;
    };
};

Note that the Current object provides access to information about the currently 
executing request to the implementation of an operation in the server:

• adapter

The adapter member provides access to the object adapter via which the 
request is being dispatched. In turn, the adapter provides access to its commu-
nicator (via the getCommunicator operation).

• con

The con member provides information about the connection over which this 
request was received (see Section 36.5.1).

• id

The id member provides the object identity for the current request (see 
Section 32.5).

• facet

The facet member provides access to the facet for the request (see 
Chapter 33).
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• operation

The operation member contains the name of the operation that is being 
invoked. Note that the operation name may indicate one of the operations on 
Ice::Object, such as ice_ping or ice_isA. (ice_isA is invoked if a client 
performs a checkedCast.)

• mode

The mode member contains the invocation mode for the operation (Normal or 
Idempotent).

• ctx

The ctx member contains the current context for the invocation (see 
Section 32.12).

• requestId

The Ice protocol (see Chapter 37) uses request IDs to associate replies with 
their corresponding requests. The requestId member provides this ID. For 
oneway requests (which do not have replies), the request ID is 0. For collo-
cated requests (which do not use the Ice protocol), the request ID is -1.

If you implement your server such that it uses a separate servant for each Ice 
object, the contents of the Current object are not particularly interesting. (You 
would most likely access the Current object to read the adapter member, for 
example, to activate or deactivate a servant.) However, as we will see in 
Section 32.7, the Current object is essential for more sophisticated (and more 
scalable) servant implementations.

32.7 Servant Locators

Using an adapter’s ASM to map Ice objects to servants has a number of design 
implications:

• Each Ice object is represented by a different servant.4

• All servants for all Ice objects are permanently in memory.

Using a separate servant for each Ice object in this fashion is common to many 
server implementations: the technique is simple to implement and provides a 

4. It is possible to register a single servant with multiple identities. However, there is little point in 
doing so because a default servant (see Section 32.8) achieves the same thing.
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natural mapping from Ice objects to servants. Typically, on start-up, the server 
instantiates a separate servant for each Ice object, activates each servant, and then 
calls activate on the object adapter to start the flow of requests.

There is nothing wrong with the above design, provided that two criteria are 
met:

1. The server has sufficient memory available to keep a separate servant instanti-
ated for each Ice object at all times.

2. The time required to initialize all the servants on start-up is acceptable.

For many servers, neither criterion presents a problem: provided that the number 
of servants is small enough and that the servants can be initialized quickly, this is a 
perfectly acceptable design. However, the design does not scale well: the memory 
requirements of the server grow linearly with the number of Ice objects so, if the 
number of objects gets too large (or if each servant stores too much state), the 
server runs out of memory.

Ice offers two APIs that help you scale servers to larger numbers of objects: 
servant locators and default servants. A default servant is essentially a simplified 
version of a servant locator that satisfies the majority of use cases, whereas a 
servant locator provides more flexibility for those applications that require it. 
Refer to Section 32.8 for more information on default servants.

32.7.1 Overview

In a nutshell, a servant locator is a local object that you implement and attach to an 
object adapter. Once an adapter has a servant locator, it consults its ASM to locate 
a servant for an incoming request as usual. If a servant for the request can be 
found in the ASM, the request is dispatched to that servant. However, if the ASM 
does not have an entry for the object identity of the request, the object adapter 
calls back into the servant locator to ask it to provide a servant for the request. The 
servant locator either

• instantiates a servant and passes it to the Ice run time, in which case the 
request is dispatched to that newly instantiated servant, or

• the servant locator indicates failure to locate a servant to the Ice run time, in 
which case the client receives an ObjectNotExistException.

This simple mechanism allows us to scale servers to provide access to an unlim-
ited number of Ice objects: instead of instantiating a separate servant for each and 
every Ice object in existence, the server can instantiate servants for only a subset 
of Ice objects, namely those that are actually used by clients.
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Servant locators are most commonly used by servers that provide access to 
databases: typically, the number of entries in the database is far larger than what 
the server can hold in memory. Servant locators allow the server to only instantiate 
servants for those Ice objects that are actually used by clients.

Another common use for servant locators is in servers that are used for process 
control or network management: in that case, there is no database but, instead, 
there is a potentially very large number of devices or network elements that must 
be controlled via the server. Otherwise, this scenario is the same as for large data-
bases: the number of Ice objects exceeds the number of servants that the server 
can hold in memory and, therefore, requires an approach that allows the number 
of instantiated servants to be less than the number of Ice objects.

32.7.2 Servant Locator Interface

A servant locator has the following interface:

module Ice {
    local interface ServantLocator {
        ["UserException"]
        Object locate(    Current     curr,
                      out LocalObject cookie);

        ["UserException"]
        void finished(    Current     curr,
                          Object      servant,
                          LocalObject cookie);

        void deactivate(string category);
    };
};

Note that ServantLocator is a local interface. To create an actual implementation 
of a servant locator, you must define a class that is derived from Ice::Servant-
Locator and provide implementations of the locate, finished, and deactivate 
operations. The Ice run time invokes the operations on your derived class as 
follows:

• locate

Whenever a request arrives for which no entry exists in the ASM, the Ice run 
time calls locate. The implementation of locate (which you provide as part 
of the derived class) is supposed to return a servant that can process the 
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incoming request. Your implementation of locate can behave in three 
possible ways:

1. Instantiate and return a servant for the current request. In this case, the Ice 
run time dispatches the request to the newly instantiated servant.

2.Return null. In this case, the Ice run time raises an ObjectNotExistExcep-
tion in the client.

3.Throw a run-time exception. In this case, the Ice run time propagates the 
thrown exception back to the client. Keep in mind that all run-time excep-
tions, apart from ObjectNotExistException, OperationNotExistExcep-
tion, and FacetNotExistException, are presented as 
UnknownLocalException to the client.

You can also throw user exceptions from locate. If the user exception is in 
the corresponding operation’s exception specification, that user exception is 
returned to the client. User exceptions thrown by locate that are not listed 
in the exception specification of the corresponding operation are returned to 
the client as UnknownUserException. Non-Ice exceptions are returned to 
the client as UnknownException (see page 119).

The cookie out-parameter to locate allows you return a local object to the 
object adapter. The object adapter does not care about the contents of that 
object (and it is legal to return a null cookie). Instead, the Ice run time passes 
whatever cookie you return from locate back to you when it calls finished. 
This allows you to pass an arbitrary amount of state from locate to the corre-
sponding call to finished.

• finished

If a call to locate has returned a servant to the Ice run time, the Ice run time 
dispatches the incoming request to the servant. Once the request is complete 
(that is, the operation being invoked has completed), the Ice run time calls 
finished, passing the servant whose operation has completed, the Current 
object for the request, and the cookie that was initially created by locate. 
This means that every call to locate is balanced by a corresponding call to 
finished (provided that locate actually returned a servant).

If you throw an exception from finished, the Ice run time propagates the 
thrown exception back to the client. As for locate, you can throw user excep-
tions from finished. If a user exception is in the corresponding operation’s 
exception specification, that user exception is returned to the client. User 



950 The Ice Run Time in Detail

exceptions that are not in the corresponding operation’s exception specifica-
tion are returned to the client as UnknownUserException.

finished can also throw run-time exceptions. However, only ObjectNotEx-
istException, OperationNotExistException, and FacetNotExistExcep-
tion are propagated without change to the client; other run-time exceptions 
are returned to the client as UnknownLocalException.

Non-Ice exceptions thrown from finished are returned to the client as 
UnknownException (see page 119).

If both the operation implementation and finished throw a user exception, 
the exception thrown by finished overrides the exception thrown by the 
operation.

• deactivate

The deactivate operation allows a servant locator to clean up once it is no 
longer needed. (For example, the locator might close a database connection.) 
The Ice run time passes the category of the servant locator being deactivated 
to the deactivate operation.

The run time calls deactivate when the object adapter to which the servant 
locator is attached is destroyed. More precisely, deactivate is called when 
you call destroy on the object adapter, or when you call destroy on the 
communicator (which implicitly calls destroy on the object adapter).

Once the run time has called deactivate, it is guaranteed that no further calls 
to locate or finished can happen, that is, deactivate is called exactly once, 
after all operations dispatched via this servant locator have completed. 

This also explains why deactivate is not called as part of ObjectA-
dapter::deactivate: ObjectAdapter::deactivate initiates deactivation 
and returns immediately, so it cannot call ServantLocator::deactivate 
directly, because there might still be outstanding requests dispatched via this 
servant locator that have to complete first—in turn, this would mean that 
either ObjectAdapter::deactivate could block (which it must not do) or 
that a call to ServantLocator::deactivate could be followed by one or 
more calls to finished (which must not happen either).

It is important to realize that the Ice run time does not “remember” the servant that 
is returned by a particular call to locate. Instead, the Ice run time simply 
dispatches an incoming request to the servant returned by locate and, once the 
request is complete, calls finished. In particular, if two requests for the same 
servant arrive more or less simultaneously, the Ice run time calls locate and 
finished once for each request. In other words, locate establishes the associa-
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tion between an object identity and a servant; that association is valid only for a 
single request and is never used by the Ice run time to dispatch a different request.

32.7.3 Threading Guarantees for Servant Locators

The Ice run time guarantees that every operation invocation that involves a servant 
locator is bracketed by calls to locate and finished, that is, every call to locate 
is balanced by a corresponding call to finished (assuming that the call to locate 
actually returned a servant, of course).

In addition, the Ice run time guarantees that locate, the operation, and 
finished are called by the same thread. This guarantee is important because it 
allows you to use locate and finished to implement thread-specific pre- and 
post-processing around operation invocations. (For example, you can start a trans-
action in locate and commit or roll back that transaction in finished, or you can 
acquire a lock in locate and release the lock in finished.5)

Note that, if you are using asynchronous method dispatch, the thread that 
starts a call is not necessarily the thread that finishes it. In that case, finished is 
called by whatever thread executes the operation implementation, which may be a 
different thread than the one that called locate.

The Ice run time also guarantees that deactivate is called when you deacti-
vate the object adapter to which the servant locator is attached. The deactivate 
call is made only once all operations that involved the servant locator are finished, 
that is, deactivate is guaranteed not to run concurrently with locate or 
finished, and is guaranteed to be the last call made to a servant locator.

Beyond this, the Ice run time provides no threading guarantees for servant 
locators. In particular:

• It is possible for invocations of locate to proceed concurrently (for the same 
object identity or for different object identities).

• It is possible for invocations of finished to proceed concurrently (for the 
same object identity or for different object identities).

• It is possible for invocations of locate and finished to proceed concurrently 
(for the same object identity or for different object identities).

5. Both transactions and locks usually are thread-specific, that is, only the thread that started a trans-
action can commit it or roll it back, and only the thread that acquired a lock can release the lock.
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These semantics allow you to extract the maximum amount of parallelism from 
your application code (because the Ice run time does not serialize invocations 
when serialization may not be necessary). Of course, this means that you must 
protect access to shared data from locate and finished with mutual exclusion 
primitives as necessary.

32.7.4 Servant Locator Registration

An object adapter does not automatically know when you create a servant locator. 
Instead, you must explicitly register servant locators with the object adapter:

module Ice {
    local interface ObjectAdapter {
        // ...

        void addServantLocator(ServantLocator locator,
                               string         category);

        ServantLocator removeServantLocator(string category);

        ServantLocator findServantLocator(string category);

        // ...
    };
};

As you can see, the object adapter allows you to add, remove, and find servant 
locators. Note that, when you register a servant locator, you must provide an argu-
ment for the category parameter. The value of the category parameter controls 
which object identities the servant locator is responsible for: only object identities 
with a matching category member (see page 941) trigger a corresponding call to 
locate. An incoming request for which no explicit entry exists in the ASM and 
with a category for which no servant locator is registered returns an ObjectNo-
tExistException to the client.

addServantLocator has the following semantics:

• You can register exactly one servant locator for a specific category. Attempts 
to call addServantLocator for the same category more than once raise an 
AlreadyRegisteredException.

• You can register different servant locators for different categories, or you can 
register the same single servant locator multiple times (each time for a 
different category). In the former case, the category is implicit in the servant 
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locator instance that is called by the Ice run time; in the latter case, the imple-
mentation of locate can find out which category the incoming request is for 
by examining the object identity member of the Current object that is passed 
to locate.

• It is legal to register a servant locator for the empty category. Such a servant 
locator is known as a default servant locator: if a request comes in for which 
no entry exists in the ASM, and whose category does not match the category 
of any other registered servant locator, the Ice run time calls locate on the 
default servant locator.

removeServantLocator removes and returns the servant locator for a specific 
category (including the empty category) with the following semantics:

• If no servant locator is registered for the specified category, the operation 
raises NotRegisteredException.

• Once a servant locator is successfully removed for the specified category, 
the Ice run time guarantees that no new incoming requests for that category 
are dispatched to the servant locator.

• A call to removeServantLocator returns immediately without waiting for 
the completion of any pending requests on that servant locator; such 
requests still complete normally by calling finished on the servant locator. 

• Removing a servant locator does not cause Ice to invoke deactivate on 
that servant locator, as deactivate is only called when a registered servant 
locator’s object adapter is destroyed.

findServantLocator allows you to retrieve the servant locator for a specific cate-
gory (including the empty category). If no match is found, the operation returns 
null.

Call Dispatch Semantics

The preceding rules may seem complicated, so here is a summary of the actions 
taken by the Ice run time to locate a servant for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the 
request (because the request arrives at a specific transport endpoint and, therefore, 
identifies a particular object adapter). The incoming request carries an object iden-
tity that must be mapped to a servant. To locate a servant, the Ice run time goes 
through the following steps, in the order shown:

1. Look for the identity in the ASM. If the ASM contains an entry, dispatch the 
request to the corresponding servant.
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2. If the category of the incoming object identity is non-empty, look for a default 
servant (see Section 32.8) that is registered for that category. If such a default 
servant is registered, dispatch the request to that servant.

3. If the category of the incoming object identity is empty, or no default servant 
could be found for the category in step 2, look for a default servant that is 
registered for the empty category. If such a default servant is registered, 
dispatch the request to that servant.

4. If the category of the incoming object identity is non-empty and no servant 
could be found in the preceding steps, look for a servant locator that is regis-
tered for that category. If such a servant locator is registered, call locate on 
the servant locator and, if locate returns a servant, dispatch the request to that 
servant, followed by a call to finished; otherwise, if the call to locate 
returns null, raise ObjectNotExistException or FacetNotExistException 
in the client.

5. If the category of the incoming object identity is empty, or no servant locator 
could be found for the category in step 4, look for a default servant locator 
(that is, a servant locator that is registered for the empty category). If a default 
servant locator is registered, dispatch the request as for step 2.

6. Raise ObjectNotExistException or FacetNotExistException in the client. 
(ObjectNotExistException is raised if the ASM does not contain a servant 
with the given identity at all, FacetNotExistException is raised if the ASM 
contains a servant with a matching identity, but a non-matching facet.)

It is important to keep these call dispatch semantics in mind because they enable a 
number of powerful implementation techniques. Each technique allows you to 
streamline your server implementation and to precisely control the trade-off 
between performance, memory consumption, and scalability. To illustrate the 
possibilities, we outline a number of the most common implementation tech-
niques in the following section.

32.7.5 Implementing a Simple Servant Locator

To illustrate the concepts outlined in the previous sections, let us examine a (very 
simple) implementation of a servant locator. Consider that we want to create an 
electronic phone book for the entire world’s telephone system (which, clearly, 
involves a very large number of entries, certainly too many to hold the entire 
phone book in memory). The actual phone book entries are kept in a large data-
base. Also assume that we have a search operation that returns the details of a 
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phone book entry. The Slice definitions for this application might look something 
like the following:

struct Details {
    // Lots of details about the entry here...
};

interface PhoneEntry {
    idempotent Details getDetails();
    idempotent void updateDetails(Details d);
    // ...
};

struct SearchCriteria {
    // Fields to permit searching...
};

interface PhoneBook {
    idempotent PhoneEntry* search(SearchCriteria c);
    // ...
};

The details of the application do not really matter here; the important point to note 
is that each phone book entry is represented as an interface for which we need to 
create a servant eventually, but we cannot afford to keep servants for all entries 
permanently in memory.

Each entry in the phone database has a unique identifier. This identifier might 
be an internal database identifier, or a combination of field values, depending on 
exactly how the database is constructed. The important point is that we can use 
this database identifier to link the proxy for an Ice object to its persistent state: we 
simply use the database identifier as the object identity. This means that each 
proxy contains the primary access key that is required to locate the persistent state 
of each Ice object and, therefore, instantiate a servant for that Ice object.

What follows is an outline implementation in C++. The class definition of our 
servant locator looks as follows:

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current&  c,
                                  Ice::LocalObjectPtr& cookie);

    virtual void finished(const Ice::Current&        c,
                          const Ice::ObjectPtr&      servant,
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                          const Ice::LocalObjectPtr& cookie);

    virtual void deactivate(const std::string& category);
};

Note that MyServantLocator inherits from Ice::ServantLocator and 
implements the pure virtual functions that are generated by the slice2cpp 
compiler for the Ice::ServantLocator interface. Of course, as always, you can 
add additional member functions, such as a constructor and destructor, and you 
can add private data members as necessary to support your implementation.

In C++, you can implement the locate member function along the following 
lines:

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current&  c,
                         Ice::LocalObjectPtr& cookie)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;

    // Use the identity to retrieve the state from the database.
    //
    ServantDetails d;
    try {
        d = DB_lookup(name);
    } catch (const DB_error&)
        return 0;
    }

    // We have the state, instantiate a servant and return it.
    //
    return new PhoneEntryI(d);
}

For the time being, the implementations of finished and deactivate are 
empty and do nothing.

The DB_lookup call in the preceding example is assumed to access the data-
base. If the lookup fails (presumably, because no matching record could be 
found), DB_lookup throws a DB_error exception. The code catches that 
exception and returns zero instead; this raises ObjectNotExistException in the 
client to indicate that the client used a proxy to a no-longer existent Ice object.
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Note that locate instantiates the servant on the heap and returns it to the Ice 
run time. This raises the question of when the servant will be destroyed. The 
answer is that the Ice run time holds onto the servant for as long as necessary, that 
is, long enough to invoke the operation on the returned servant and to call 
finished once the operation has completed. Thereafter, the servant is no longer 
needed and the Ice run time destroys the smart pointer that was returned by 
locate. In turn, because no other smart pointers exist for the same servant, this 
causes the destructor of the PhoneEntryI instance to be called, and the servant 
to be destroyed.

The upshot of this design is that, for every incoming request, we instantiate a 
servant and allow the Ice run time to destroy the servant once the request is 
complete. Depending on your application, this may be exactly what is needed, or 
it may be prohibitively expensive—we will explore designs that avoid creation 
and destruction of a servant for every request shortly.

In Java, the implementation of our servant locator looks very similar:6

public class MyServantLocator implements Ice.ServantLocator {

    public Ice.Object locate(Ice.Current c,
                             Ice.LocalObjectHolder cookie)
    {
        // Get the object identity. (We use the name member
        // as the database key.
        String name = c.id.name;

        // Use the identity to retrieve the state
        // from the database.
        //
        ServantDetails d;
        try {
            d = DB.lookup(name);
        } catch (DB.error e) {
            return null;
        }

        // We have the state, instantiate a servant and return it.
        //
        return new PhoneEntryI(d);

6. The C# implementation is virtually identical to the Java implementation, so we do not show it 
here.
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    }

    public void finished(Ice.Current c,
                         Ice.Object servant,
                         java.lang.Object cookie)
    {
    }

    public void deactivate(String category)
    {
    }
}

All implementations of locate follow the pattern illustrated by the previous 
pseudo-code:

1. Use the id member of the passed Current object to obtain the object identity. 
Typically, only the name member of the identity is used to retrieve servant 
state. The category member is normally used to select a servant locator. (We 
will explore use of the category member shortly.)

2. Retrieve the state of the Ice object from secondary storage (or the network) 
using the object identity as a key.

• If the lookup succeeds, you have retrieved the state of the Ice object.

• If the lookup fails, return null. In that case, the Ice object for the client’s 
request truly does not exist, presumably, because that Ice object was deleted 
earlier, but the client still has a proxy to the now-deleted object.

3. Instantiate a servant and use the state retrieved from the database to initialize 
the servant. (In this example, we pass the retrieved state to the servant 
constructor.)

4. Return the servant.

Of course, before we can use our servant locator, we must inform the adapter of its 
existence prior to activating the adapter, for example (in Java or C#):

MyServantLocator sl = new MyServantLocator();
adapter.addServantLocator(sl, "");

Note that, in this example, we have installed the servant locator for the empty 
category. This means that locate on our servant locator will be called for invo-
cations to any of our Ice objects (because the empty category acts as the default). 
In effect, with this design, we are not using the category member of the object 
identity. This is fine, as long as all our servants all have the same, single interface. 
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However, if we need to support several different interfaces in the same server, this 
simple strategy is no longer sufficient.

32.7.6 Using the category Member of the Object Identity
The simple example in the preceding section always instantiates a servant of type 
PhoneEntryI. In other words, the servant locator implicitly is aware of the type 
of servant the incoming request is for. This is not a very realistic assumption for 
most servers because, usually, a server provides access to objects with several 
different interfaces. This poses a problem for our locate implementation: 
somehow, we need to decide inside locate what type of servant to instantiate. 
You have several options for solving this problem:

• Use a separate object adapter for each interface type and use a separate servant 
locator for each object adapter.

This technique works fine, but has the down-side that each object adapter 
requires a separate transport endpoint, which is wasteful.

• Mangle a type identifier into the name component of the object identity.

This technique uses part of the object identity to denote what type of object to 
instantiate. For example, in our file system application, we have directory and 
file objects. By convention, we could prepend a ‘d’ to the identity of every 
directory and prepend an ‘f’ to the identity of every file. The servant locator 
then can use the first letter of the identity to decide what type of servant to 
instantiate:

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current&  c,
                         Ice::LocalObjectPtr& cookie)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;
    std::string realId = c.id.name.substr(1);
    try {
        if (name[0] == 'd') {
            // The request is for a directory.
            //
            DirectoryDetails d = DB_lookup(realId);
            return new DirectoryI(d);
        } else {
            // The request is for a file.
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            //
            FileDetails d = DB_lookup(realId);
            return new FileI(d);
        }
    } catch (DatabaseNotFoundException&) {
        return 0;
    }
}

While this works, it is awkward: not only do we need to parse the name 
member to work out what type of object to instantiate, but we also need to 
modify the implementation of locate whenever we add a new type to our 
application.

• Use the category member of the object identity to denote the type of servant 
to instantiate.

This is the recommended approach: for every interface type, we assign a sepa-
rate identifier as the value of the category member of the object identity. (For 
example, we can use ‘d’ for directories and ‘f’ for files.) Instead of registering 
a single servant locator, we create two different servant locator implementa-
tions, one for directories and one for files, and then register each locator for 
the appropriate category:

class DirectoryLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current&  c,
                                  Ice::LocalObjectPtr& cookie)
    {
        // Code to locate and instantiate a directory here...
    }


    virtual void finished(const Ice::Current&        c,
                          const Ice::ObjectPtr&      servant,
                          const Ice::LocalObjectPtr& cookie)
    {
    }

    virtual void deactivate(const std::string& category)
    {
    }
};

class FileLocator : public virtual Ice::ServantLocator {



32.7 Servant Locators 961

public:

    virtual Ice::ObjectPtr locate(const Ice::Current&  c,
                                  Ice::LocalObjectPtr& cookie)
    {
        // Code to locate and instantiate a file here...
    }


    virtual void finished(const Ice::Current&        c,
                          const Ice::ObjectPtr&      servant,
                          const Ice::LocalObjectPtr& cookie)
    {
    }

    virtual void deactivate(const std::string& category)
    {
    }
};

// ...

// Register two locators, one for directories and
// one for files.
//
adapter->addServantLocator(new DirectoryLocator(), "d");
adapter->addServantLocator(new FileLocator(), "f");

Yet another option is to use the category member of the object identity, but to use 
a single default servant locator (that is, a locator for the empty category). With this 
approach, all invocations go to the single default servant locator, and you can 
switch on the category value inside the implementation of the locate operation 
to determine which type of servant to instantiate. However, this approach is harder 
to maintain than the previous one; the category member of the Ice object identity 
exists specifically to support servant locators, so you might as well use it as 
intended.

32.7.7 Using Cookies

Occasionally, it can be useful to be able to pass information between locate and 
finished. For example, the implementation of locate could choose among a 
number of alternative database backends, depending on load or availability and, to 
properly finalize state, the implementation of finish might need to know which 
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database was used by locate. To support such scenarios, you can create a cookie 
in your locate implementation; the Ice run time passes the value of the cookie to 
finished after the operation invocation has completed. The cookie must derive 
from Ice::LocalObject and can contain whatever state and member func-
tions are useful to your implementation:

class MyCookie : public virtual Ice::LocalObject {
public:
    // Whatever is useful here...
};

typedef IceUtil::Handle<MyCookie> MyCookiePtr;

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current&  c,
                                  Ice::LocalObjectPtr& cookie)
    {
        // Code as before...

        // Allocate and initialize a cookie.
        //
        cookie = new MyCookie(...);

        return new PhoneEntryI;
    }

    virtual void finished(const Ice::Current&        c,
                          const Ice::ObjectPtr&      servant,
                          const Ice::LocalObjectPtr& cookie)
    {
        // Down-cast cookie to actual type.
        //
        MyCookiePtr mc = MyCookiePtr::dynamicCast(cookie);

        // Use information in cookie to clean up...
        //
        // ...
    }

    virtual void deactivate(const std::string& category);
};
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32.8 Default Servants

As explained in Section 32.4.1, the Active Servant Map (ASM) is a simple lookup 
table that maintains a one-to-one mapping between object identities and servants. 
Although the ASM is easy to understand and offers efficient indexing, it does not 
scale well when the number of objects is very large. Scalability is a common 
problem with object-oriented middleware: servers frequently are used as front 
ends to large databases that are accessed remotely by clients. The server’s job is to 
present an object-oriented view to clients of a very large number of records in the 
database. Typically, the number of records is far too large to instantiate servants 
for even a fraction of the database records.

A common technique for solving this problem is to use default servants. A 
default servant is a servant that, for each request, takes on the persona of a 
different Ice object. In other words, the servant changes its behavior according to 
the object identity that is accessed by a request, on a per-request basis. In this way, 
it is possible to allow clients access to an unlimited number of Ice objects with 
only a single servant in memory. A default servant is essentially a specialized 
version of a servant locator (see Section 32.7) that satisfies the majority of use 
cases with a simpler API, whereas a servant locator provides more flexibility for 
those applications that require it.

Default servant implementations are attractive not only because of the 
memory savings they offer, but also because of the simplicity of implementation: 
in essence, a default servant is a facade [2] to the persistent state of an object in 
the database. This means that the programming required to implement a default 
servant is typically minimal: it simply consists of the code required to read and 
write the corresponding database records.

32.8.1 Overview

A default servant is a regular servant that you implement and register with an 
object adapter. For each incoming request, the object adapter first attempts to 
locate a servant in its Active Servant Map (ASM). If no servant is found, the 
object adapter dispatches the request to a default servant. With this design, a 
default servant is the object adapter’s servant of last resort if no match was found 
in the ASM.

Implementing a default servant requires a somewhat different mindset than the 
typical “one servant per Ice object” strategy used in less advanced applications. 
The most important quality of a default servant is its statelessness: it must be 
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prepared to dispatch multiple requests simultaneously for different objects. The 
price we have to pay for the unlimited scalability and reduced memory footprint is 
performance: default servants typically make a database access for every invoked 
operation, which is obviously slower than caching state in memory as part of a 
servant that has been added to the ASM. However, this does not mean that default 
servants carry an unacceptable performance penalty: databases often provide 
sophisticated caching, so even though the operation implementations read and 
write the database, as long as they access cached state, performance may be 
entirely acceptable.

32.8.2 Default Servant API

The default servant API consists of the following operations in the object adapter 
interface:

module Ice {
    local interface ObjectAdapter {
        void addDefaultServant(Object servant, string category);
        Object removeDefaultServant(string category);
        Object findDefaultServant(string category);

        // ...
    };
};

As you can see, the object adapter allows you to add, remove, and find default 
servants. Note that, when you register a default servant, you must provide an argu-
ment for the category parameter. The value of the category parameter controls 
which object identities the default servant is responsible for: only object identities 
with a matching category member trigger a dispatch to this default servant. An 
incoming request for which no explicit entry exists in the ASM and with a cate-
gory for which no default servant is registered returns an ObjectNotExistExcep-
tion to the client.

addDefaultServant has the following semantics:

• You can register exactly one default servant for a specific category. Attempts 
to call addDefaultServant for the same category more than once raise an 
AlreadyRegisteredException.

• You can register different default servants for different categories, or you can 
register the same single default servant multiple times (each time for a 
different category). In the former case, the category is implicit in the default 
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servant instance that is called by the Ice run time; in the latter case, the servant 
can find out which category the incoming request is for by examining the 
object identity member of the Current object that is passed to the dispatched 
operation.

• It is legal to register a default servant for the empty category. Such a servant is 
used if a request comes in for which no entry exists in the ASM, and whose 
category does not match the category of any other registered default servant.

removeDefaultServant removes the default servant for the specified category. 
Attempts to remove a non-existent default servant raise NotRegisteredExcep-
tion. The operation returns the removed default servant. Once a default servant is 
successfully removed for the specified category, the Ice run time guarantees that 
no new incoming requests for that category are dispatched to the servant.

The findDefaultServant operation allows you to retrieve the default servant 
for a specific category (including the empty category). If no default servant is 
registered for the specified category, findDefaultServant returns null.

32.8.3 Threading Guarantees for Default Servants
The threading semantics for a default servant are no different than for a servant 
registered in the ASM: operations may be dispatched on a default servant concur-
rently, for the same object identity or for different object identities. If you have 
configured the communicator with multiple dispatch threads, your default servant 
must protect access to shared data with appropriate locks.

32.8.4 Call Dispatch Semantics
This section summarizes the actions taken by the Ice run time to locate a servant 
for an incoming request.

Every incoming request implicitly identifies a specific object adapter for the 
request (because the request arrives at a specific transport endpoint and, therefore, 
identifies a particular object adapter). The incoming request carries an object iden-
tity that must be mapped to a servant. To locate a servant, the Ice run time goes 
through the following steps, in the order shown:

1. Look for the identity in the ASM. If the ASM contains an entry, dispatch the 
request to the corresponding servant.

2. If the category of the incoming object identity is non-empty, look for a default 
servant that is registered for that category. If such a default servant is regis-
tered, dispatch the request to that servant.
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3. If the category of the incoming object identity is empty, or no default servant 
could be found for the category in step 2, look for a default servant that is 
registered for the empty category. If such a default servant is registered, 
dispatch the request to that servant.

4. If the category of the incoming object identity is non-empty and no servant 
could be found in the preceding steps, look for a servant locator (see 
Section 32.7) that is registered for that category. If such a servant locator is 
registered, call locate on the servant locator and, if locate returns a servant, 
dispatch the request to that servant, followed by a call to finished; otherwise, 
if the call to locate returns null, raise ObjectNotExistException or 
FacetNotExistException in the client. (ObjectNotExistException is 
raised if the ASM does not contain a servant with the given identity at all, 
FacetNotExistException is raised if the ASM contains a servant with a 
matching identity, but a non-matching facet.)

5. If the category of the incoming object identity is empty, or no servant locator 
could be found for the category in step 4, look for a default servant locator 
(that is, a servant locator that is registered for the empty category). If a default 
servant locator is registered, dispatch the request as for step 2.

6. Raise ObjectNotExistException or FacetNotExistException in the client. 
(ObjectNotExistException is raised if the ASM does not contain a servant 
with the given identity at all, FacetNotExistException is raised if the ASM 
contains a servant with a matching identity, but a non-matching facet.)

It is important to keep these call dispatch semantics in mind because they enable a 
number of powerful implementation techniques. Each technique allows you to 
streamline your server implementation and to precisely control the trade-off 
between performance, memory consumption, and scalability. We discuss some 
guidelines for using default servants in the following section.

32.8.5 Guidelines

This section provides some guidelines to assist you in implementing default 
servants effectively.

Object identity is the Key

When an incoming request is dispatched to the default servant, the target object 
identity is provided in the Current argument. The name field of the identity typi-
cally supplies everything the default servant requires in order to satisfy the 
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request. For instance, it may serve as the key in a database query, or even hold an 
encoded structure in some proprietary format that your application uses to convey 
more than just a string.

Naturally, the client can also pass arguments to the operation that assist the 
default servant in retrieving whatever state it requires. However, this approach can 
easily introduce implementation artifacts into your Slice interfaces, and in most 
cases the client should not need to know that the server is implemented with a 
default servant. If at all possible, use only the object identity.

Minimize Contention

For better scalability, the default servant’s implementation should strive to elimi-
nate contention among the dispatch threads. As an example, when a database 
holds the default servant’s state, each of the servant’s operations usually begins 
with a query. Assuming that the database API is thread-safe, the servant needs to 
perform no explicit locking of its own. With a copy of the state in hand, the imple-
mentation can work with function-local data to satisfy the request.

Combine Strategies

The ASM still plays a useful role even in applications that are ideally suited for 
default servants. For example, there is no need to implement a singleton object as 
a default servant: if there can only be one instance of the object, implementing it 
as a default servant does nothing to improve your application’s scalability.

Applications often install a handful of servants in the ASM while servicing the 
majority of requests in a default servant. For example, a database application 
might install a singleton query object in the ASM while using a default servant to 
process all invocations on the database records.

Categories Denote Interfaces

In general, all of the objects serviced by a default servant must have the same 
interface. If you only need a default servant for one interface, you can register the 
default servant with an empty category string. However, to implement several 
interfaces, you will need a default servant implementation for each one. Further-
more, you must take steps to ensure that the object adapter dispatches an incoming 
request to the appropriate default servant. The category field of the object iden-
tity is intended to serve this purpose.

For example, a process control system might have interfaces named Sensor 
and Switch. To direct requests to the proper default servant, the application uses 
the symbol Sensor or Switch as the category of each object’s identity, and 
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registers corresponding default servants having those same categories with the 
object adapter.

Plan for the Future

If you suspect that you might eventually need to implement more than one inter-
face with default servants, we recommend using a non-empty category even if you 
start out having only one default servant. Adding another default servant later 
becomes much easier if the application is already designed to operate correctly 
with categories.

Throw exceptions

If a request arrives for an object that no longer exists, it is the default servant’s 
responsibility to raise ObjectNotExistException.

Handle ice_ping

One issue you need to be aware of with default servants is the need to override 
ice_ping: the default implementation of ice_ping that the servant inherits 
from its skeleton class always succeeds. For servants that are registered with the 
ASM, this is exactly what we want; however, for default servants, ice_ping 
must fail if a client uses a proxy to a no-longer existent Ice object. To avoid getting 
successful ice_ping invocations for non-existent Ice objects, you must override 
ice_ping in the default servant. The implementation must check whether the 
object identity for the request denotes a still-existing Ice object and, if not, raise 
ObjectNotExistException.

It is good practice to override ice_ping if you are using default servants. 
Because you cannot override operations on Ice::Object using a Java or C# tie 
servant (or an Objective-C delegate servant), you must implement default servants 
by deriving from the generated skeleton class if you choose to override 
ice_ping.

Consider Interceptors

Dispatch interceptors are an advanced Ice feature that you can read more about in 
Section 32.23. A dispatch interceptor is often installed as a default servant.

Use a Blobject Default Servant to Forward Messages

Message forwarding services, such as Glacier2 (see Chapter 42), can be imple-
mented simply and efficiently with a Blobject default servant (see 
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Section 35.3.2). Such a servant simply chooses a destination to forward a request 
to, without decoding any of the parameters.

32.9 Server Implementation Techniques

As we mentioned on page 947, instantiating a servant for each Ice object on server 
start-up is a viable design, provided that you can afford the amount of memory 
required by the servants, as well as the delay in start-up of the server. However, Ice 
supports more flexible mappings between Ice objects and servants; these alternate 
mappings allow you to precisely control the trade-off between memory consump-
tion, scalability, and performance. We outline a few of the more common imple-
mentation techniques in this section.

32.9.1 Incremental Initialization

If you use a servant locator, the servant returned by locate is used only for the 
current request, that is, the Ice run time does not add the servant to the active 
servant map. Of course, this means that if another request comes in for the same 
Ice object, locate must again retrieve the object state and instantiate a servant. A 
common implementation technique is to add each servant to the ASM as part of 
locate. This means that only the first request for each Ice object triggers a call to 
locate; thereafter, the servant for the corresponding Ice object can be found in the 
ASM and the Ice run time can immediately dispatch another incoming request for 
the same Ice object without having to call the servant locator.

An implementation of locate to do this would look something like the 
following:

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current&  c,
                         Ice::LocalObjectPtr& cookie)
{
    // Get the object identity. (We use the name member
    // as the database key.)
    //
    std::string name = c.id.name;

    // Use the identity to retrieve the state from the database.
    //
    ServantDetails d;
    try {
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        d = DB_lookup(name);
    } catch (const DB_error&)
        return 0;
    }

    // We have the state, instantiate a servant.
    //
    Ice::ObjectPtr servant = new PhoneEntryI(d);

    // Add the servant to the ASM.
    //
    c.adapter->add(servant, c.id);      // NOTE: Incorrect!

    return servant;
}

This is almost identical to the implementation on page 956—the only difference is 
that we also add the servant to the ASM by calling ObjectAdapter::add. Unfor-
tunately, this implementation is wrong because it suffers from a race condition. 
Consider the situation where we do not have a servant for a particular Ice object in 
the ASM, and two clients more or less simultaneously send a request for the same 
Ice object. It is entirely possible for the thread scheduler to schedule the two 
incoming requests such that the Ice run time completes the lookup in the ASM for 
both requests and, for each request, concludes that no servant is in memory. The 
net effect is that locate will be called twice for the same Ice object, and our 
servant locator will instantiate two servants instead of a single servant. Because 
the second call to ObjectAdapter::add will raise an AlreadyRegisteredExcep-
tion, only one of the two servants will be added to the ASM.

Of course, this is hardly the behavior we expect. To avoid the race condition, 
our implementation of locate must check whether a concurrent invocation has 
already instantiated a servant for the incoming request and, if so, return that 
servant instead of instantiating a new one. The Ice run time provides the ObjectA-
dapter::find operation to allow us to test whether an entry for a specific identity 
already exists in the ASM:

module Ice {
    local interface ObjectAdapter {
        // ...

        Object find(Identity id);
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        // ...
    };
};

find returns the servant if it exists in the ASM and null, otherwise. Using this 
lookup function, together with a mutex, allows us to correctly implement locate. 
The class definition of our servant locator now has a private mutex so we can 
establish a critical region inside locate:

class MyServantLocator : public virtual Ice::ServantLocator {
public:

    virtual Ice::ObjectPtr locate(const Ice::Current&  c,
                                  Ice::LocalObjectPtr&);

    // Declaration of finished() and deactivate() here...

private:
    IceUtil::Mutex _m;
};

The locate member function locks the mutex and tests whether a servant is 
already in the ASM: if so, it returns that servant; otherwise, it instantiates a new 
servant and adds it to the ASM as before:

Ice::ObjectPtr
MyServantLocator::locate(const Ice::Current&  c,
                         Ice::LocalObjectPtr&)
{
    IceUtil::Mutex::Lock lock(_m);

    // Check if we have instantiated a servant already.
    //
    Ice::ObjectPtr servant = c.adapter.find(c.id);

    if (!servant) {     // We don't have a servant already

        // Instantiate a servant.
        //
        ServantDetails d;
        try {
           d = DB_lookup(c.id.name);
        } catch (const DB_error&) {
           return 0;
        }
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        servant = new PhoneEntryI(d);

        // Add the servant to the ASM.
        //
        c.adapter->add(servant, c.id);
    }

    return servant;
}

The Java version of this locator is almost identical, but we use the synchro-
nized qualifier instead of a mutex to make locate a critical region:7

synchronized public Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{
    // Check if we have instantiated a servant already.
    //
    Ice.Object servant = c.adapter.find(c.id);

    if (servant == null) { // We don't have a servant already

        // Instantiate a servant
        //
        ServantDetails d;
        try {
            d = DB.lookup(c.id.name);
        } catch (DB.error&) {
            return null;
        }
        servant = new PhoneEntryI(d);

        // Add the servant to the ASM.
        //
        c.adapter.add(servant, c.id);
    }

    return servant;
}

Using a servant locator that adds the servant to the ASM has a number of advan-
tages:

7. In C#, you can place the body of locate into a lock(this) statement.
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• Servants are instantiated on demand, so the cost of initializing the servants is 
spread out over many invocations instead of being incurred all at once during 
server start-up.

• The memory requirements for the server are reduced because servants are 
instantiated only for those Ice objects that are actually accessed by clients. If 
clients only access a subset of the total number of Ice objects, the memory 
savings can be substantial.

In general, incremental initialization is beneficial if instantiating servants during 
start-up is too slow. The memory savings can be worthwhile as well but, as a rule, 
are realized only for comparatively short-lived servers: for long-running servers, 
chances are that, sooner or later, every Ice object will be accessed by some client 
or another; in that case, there are no memory savings because we end up with an 
instantiated servant for every Ice object regardless.

32.9.2 Default Servants

As explained in Section 32.8, default servants are a very effective tool for 
conserving memory when a server hosts a large number of Ice objects.

To create a default servant implementation, we need as many default servants 
as there are non-abstract interfaces in the system. For example, for our file system 
application, we require two default servants, one for directories and one for files. 
In addition, the object identities we create use the category member of the object 
identity to encode the type of interface of the corresponding Ice object. The value 
of the category field can be anything that identifies the interface, such as the ‘d’ 
and ‘f’ convention we used on page 960. Alternatively, you could use "Direc-
tory" and "File", or use the type ID of the corresponding interface, such as 
"::Filesystem::Directory" and "::Filesystem::File". The name member 
of the object identity must be set to whatever identifier we can use to retrieve the 
persistent state of each directory and file from secondary storage. (For our file 
system application, we used a UUID as a unique identifier.)

Registration of the default servants is as follows:

adapter->addDefaultServant(new DirectoryI, "d");
adapter->addDefaultServant(new FileI, "f");

All the action happens in the implementation of the operations, using the 
following steps for each operation:

1. Use the passed Current object to get the identity for the current request.
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2. Use the name member of the identity to locate the persistent state of the servant 
on secondary storage. If no record can be found for the identity, throw an 
ObjectNotExistException.

3. Implement the operation to operate on that retrieved state (returning the state 
or updating the state as appropriate for the operation).

In pseudo-code, this might look something like the following:

Filesystem::NodeSeq
Filesystem::DirectoryI::list(const Ice::Current& c) const
{
    // Use the identity of the directory to retrieve
    // its contents.
    DirectoryContents dc;
    try {
        dc = DB_getDirectory(c.id.name);
    } catch(const DB_error&) {
        throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }

    // Use the records retrieved from the database to
    // initialize return value.
    //
    FileSystem::NodeSeq ns;
    // ...

    return ns;
}

Note that the servant implementation is completely stateless: the only state it oper-
ates on is the identity of the Ice object for the current request (and that identity is 
passed as part of the Current parameter).

Overriding ice_ping

Section 32.8.5 recommends that a default servant implementation take steps to 
preserve the semantics of the ice_ping operation, which is used to test whether 
an Ice object exists. If a default servant fails to override ice_ping, clients may 
mistakenly believe that a non-existent Ice object still exists. The code below 
demonstrates how we can override the operation in our file system application:

void
Filesystem::DirectoryI::ice_ping(const Ice::Current& c) const
{
    try {
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       d = DB_lookup(c.id.name);
    } catch (const DB_error&) {
       throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }
}

It is good practice to override ice_ping if you are using default servants.

32.9.3 Hybrid Approaches and Caching

Depending on the nature of your application, you may be able to steer a middle 
path that provides better performance while keeping memory requirements low: if 
your application has a number of frequently-accessed objects that are perfor-
mance-critical, you can add servants for those objects to the ASM. If you store the 
state of these objects in data members inside the servants, you effectively have a 
cache of these objects.

The remaining, less-frequently accessed objects can be implemented with a 
default servant. For example, in our file system implementation, we could choose 
to instantiate directory servants permanently, but to have file objects implemented 
with a default servant. This provides efficient navigation through the directory tree 
and incurs slower performance only for the (presumably less frequent) file 
accesses.

This technique could be augmented with a cache of recently-accessed files, 
along similar lines to the buffer pool used by the Unix kernel [10]. The point is 
that you can combine use of the ASM with servant locators and default servants to 
precisely control the trade-offs among scalability, memory consumption, and 
performance to suit the needs of your application.

32.9.4 Servant Evictors

A variation on the previous theme and particularly interesting use of a servant 
locator is as an evictor [4]. An evictor is a servant locator that maintains a cache of 
servants:

• Whenever a request arrives (that is, locate is called by the Ice run time), the 
evictor checks to see whether it can find a servant for the request in its cache. 
If so, it returns the servant that is already instantiated in the cache; otherwise, 
it instantiates a servant and adds it to the cache.

• The cache is a queue that is maintained in least-recently used (LRU) order: the 
least-recently used servant is at the tail of the queue, and the most-recently 
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used servant is at the head of the queue. Whenever a servant is returned from 
or added to the cache, it is moved from its current queue position to the head 
of the queue, that is, the “newest” servant is always at the head, and the 
“oldest” servant is always at the tail.

• The queue has a configurable length that corresponds to how many servants 
will be held in the cache; if a request arrives for an Ice object that does not 
have a servant in memory and the cache is full, the evictor removes the least-
recently used servant at the tail of the queue from the cache in order to make 
room for the servant about to be instantiated at the head of the queue.

Figure 32.2 illustrates an evictor with a cache size of five after five invocations 
have been made, for object identities 1 to 5, in that order.

Figure 32.2. An evictor after five invocations for object identities 1 to 5.

At this point, the evictor has instantiated five servants, and has placed each servant 
onto the evictor queue. Because requests were sent by the client for object identi-
ties 1 to 5 (in that order), servant 5 ends up at the head of the queue (at the most-
recently used position), and servant 1 ends up at the tail of the queue (at the least-
recently used position).

Assume that the client now sends a request for servant 3. In this case, the 
servant is found on the evictor queue and moved to the head position. The 
resulting ordering is shown in Figure 32.3.

Figure 32.3. The evictor from Figure 32.2 after accessing servant 3.
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Assume that the next client request is for object identity 6. The evictor queue is 
fully populated, so the evictor creates a servant for object identity 6, places that 
servant at the head of the queue, and evicts the servant with identity 1 (the least-
recently used servant) at the tail of the queue, as shown in Figure 32.4.

Figure 32.4. The evictor from Figure 32.3 after evicting servant 1.

The evictor pattern combines the advantages of the ASM with the advantages of a 
default servant: provided that the cache size is sufficient to hold the working set of 
servants in memory, most requests are served by an already instantiated servant, 
without incurring the overhead of creating a servant and accessing the database to 
initialize servant state. By setting the cache size, you can control the trade-off 
between performance and memory consumption as appropriate for your applica-
tion.

The following sections show how to implement an evictor in both C++ and 
Java. (You can also find the source code for the evictor with the code examples for 
this book in the Ice distribution.)

Creating an Evictor Implementation in C++

The evictor we show here is designed as an abstract base class: in order to use it, 
you derive an object from the EvictorBase base class and implement two 
methods that are called by the evictor when it needs to add or evict a servant. This 
leads to a class definitions as follows:

class EvictorBase : public Ice::ServantLocator {
public:
    EvictorBase(int size = 1000);

    virtual Ice::ObjectPtr locate(const Ice::Current& c,
                                  Ice::LocalObjectPtr& cookie);
    virtual void finished(const Ice::Current& c,
                          const Ice::ObjectPtr&,
                          const Ice::LocalObjectPtr& cookie);
    virtual void deactivate(const std::string&);
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protected:
    virtual Ice::ObjectPtr add(const Ice::Current&,
                               Ice::LocalObjectPtr&) = 0;
    virtual void evict(const Ice::ObjectPtr&,
                       const Ice::LocalObjectPtr&) = 0;

private:
    // ...
};

typedef IceUtil::Handle<EvictorBase> EvictorBasePtr;

Note that the evictor has a constructor that sets the size of the queue, with a default 
argument to set the size to 1000.

The locate, finished, and deactivate functions are inherited from 
the ServantLocator base class; these functions implement the logic to main-
tain the queue in LRU order and to add and evict servants as needed.

The add and evict functions are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are pure virtual, so they must be implemented in a derived class. 
The job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:

1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue. Storing the queue position is not strictly neces-
sary—we store the position for efficiency reasons because it allows us to 
locate a servant’s position in the queue in constant time instead of having to 
search through the queue in order to maintain its LRU property.
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3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The need for the use count deserves some extra explanation: suppose a client 
invokes a long-running operation on an Ice object with identity I. In response, the 
evictor adds a servant for I to the evictor queue. While the original invocation is 
still executing, other clients invoke operations on various Ice objects, which leads 
to more servants for other object identities being added to the queue. As a result, 
the servant for identity I gradually migrates toward the tail of the queue. If enough 
client requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the original 
request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea that 
a servant for I is still around and would add a second servant for I. However, 
having two servants for the same Ice object in memory is likely to cause problems, 
especially if the servant’s operation implementations write to a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is busy, 
avoid evicting that servant. As a result, the queue size is not a hard upper limit: 
long-running operations can temporarily cause more servants than the limit to 
appear in the queue. However, as soon as excess servants become idle, they are 
evicted as usual.

The evictor queue does not store the identity of the servant. Instead, the entries 
on the queue are iterators into the evictor map. This is useful when the time comes 
to evict a servant: instead of having to search the map for the identity of the 
servant to be evicted, we can simply delete the map entry that is pointed at by the 
iterator at the tail of the queue. We can get away with storing an iterator into the 
evictor queue as part of the map, and storing an iterator into the evictor map as 
part of the queue because both std::list and std::map do not invalidate 
forward iterators when we add or delete entries8 (except for invalidating iterators 
that point at a deleted entry, of course).

8. Reverse iterators can be invalidated by modification of list entries: if a reverse iterator points at 
rend and the element at the head of the list is erased, the iterator pointing at rend is invali-
dated.
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Finally, our locate and finished implementations will need to exchange 
a cookie that contains a smart pointer to the entry in the evictor map. This is 
necessary so that finished can decrement the servant’s use count.

This leads to the following definitions in the private section of our evictor:

class EvictorBase : public Ice::ServantLocator {
    // ...

private:

    struct EvictorEntry;
    typedef IceUtil::Handle<EvictorEntry> EvictorEntryPtr;

    typedef std::map<Ice::Identity, EvictorEntryPtr> EvictorMap;
    typedef std::list<EvictorMap::iterator> EvictorQueue;

    struct EvictorEntry : public Ice::LocalObject
    {
        Ice::ObjectPtr servant;
        Ice::LocalObjectPtr userCookie;
        EvictorQueue::iterator queuePos;
        int useCount;
    };

    EvictorMap _map;
    EvictorQueue _queue;
    Ice::Int _size;

    IceUtil::Mutex _mutex;

    void evictServants();
};

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. In addition, we use a private 
_mutex data member so we can correctly serialize access to the evictor’s data 
structures.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

The EvictorEntry structure serves as the cookie that we pass from 
locate to finished; it stores the servant, the servant’s position in the evictor 
queue, the servant’s use count, and the cookie that we pass from add to evict.
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The implementation of the constructor is trivial. The only point of note is that 
we ignore negative sizes:9

EvictorBase::EvictorBase(Ice::Int size) : _size(size)
{
    if (_size < 0)
        _size = 1000;
}

Almost all the action of the evictor takes place in the implementation of locate:

Ice::ObjectPtr
EvictorBase::locate(const Ice::Current& c,
                    Ice::LocalObjectPtr& cookie)
{
    IceUtil::Mutex::Lock lock(_mutex);

    //
    // Check if we have a servant in the map already.
    //
    EvictorEntryPtr entry;
    EvictorMap::iterator i = _map.find(c.id);
    if (i != _map.end()) {
        //
        // Got an entry already, dequeue the entry from
        // its current position.
        //
        entry = i->second;
        _queue.erase(entry->queuePos);
    } else {
        //
        // We do not have an entry. Ask the derived class to
        // instantiate a servant and add a new entry to the map.
        //
        entry = new EvictorEntry;
        entry->servant = add(c, entry->userCookie); // Down-call
        if (!entry->servant) {
            return 0;
        }
        entry->useCount = 0;
        i = _map.insert(std::make_pair(c.id, entry)).first;
    }

9. We could have stored the size as a size_t instead. However, for consistency with the Java 
implementation, which cannot use unsigned integers, we use Ice::Int to store the size.
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    //
    // Increment the use count of the servant and enqueue
    // the entry at the front, so we get LRU order.
    //
    ++(entry->useCount);
    entry->queuePos = _queue.insert(_queue.begin(), i);

    cookie = entry;

    return entry->servant;
}

The first step in locate is to lock the _mutex data member. This protects the 
evictor’s data structures from concurrent access. The next step is to instantiate a 
smart pointer to an EvictorEntry. That smart pointer acts as the cookie that is 
returned from locate and will be passed by the Ice run time to the corre-
sponding call to finished. That same smart pointer is also the value type of our 
map entries, so we do not store two copies of the same information redundantly—
instead, smart pointers ensure that a single copy of each EvictorEntry struc-
ture is shared by both the cookie and the map.

The next step is to look in the evictor map to see whether we already have an 
entry for this object identity. If so, we remove the entry from its current queue 
position.

Otherwise, we do not have an entry for this object identity yet, so we have to 
create one. The code creates a new evictor entry, and then calls add to get a new 
servant. This is a down-call to the concrete class that will be derived from Evic-
torBase. The implementation of add must attempt to locate the object state for 
the Ice object with the identity passed inside the Current object and either return 
a servant as usual, or return null or throw an exception to indicate failure. If add 
returns null, we return zero to let the Ice run time know that no servant could be 
found for the current request. If add succeeds, we initialize the entry’s use count 
to zero and insert the entry into the evictor map.

The last few lines of locate add the entry for the current request to the head 
of the evictor queue to maintain its LRU property, increment the use count of the 
entry, set the cookie that is returned from locate to point at the EvictorEntry, 
and finally return the servant to the Ice run time.

The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:
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void
EvictorBase::finished(const Ice::Current&,
                      const Ice::ObjectPtr&,
                      const Ice::LocalObjectPtr& cookie)
{
    IceUtil::Mutex::Lock lock(_mutex);

    EvictorCookiePtr ec = EvictorCookiePtr::dynamicCast(cookie);

    // Decrement use count and check if
    // there is something to evict.
    //
    --(ec->entry->useCount);
    evictServants();
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

void
EvictorBase::evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    EvictorQueue::reverse_iterator p = _queue.rbegin();
    int excessEntries = static_cast<int>(_map.size() - _size);

    for (int i = 0; i < excessEntries; ++i) {
        EvictorMap::iterator mapPos = *p;
        if (mapPos->second->useCount == 0) {
            evict(mapPos->second->servant,
                  mapPos->second->userCookie);
            p = EvictorQueue::reverse_iterator(
                    _queue.erase(mapPos->second->queuePos));
            _map.erase(mapPos);
        } else
            ++p;
    }
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
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in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.

void
EvictorBase::deactivate(const std::string& category)
{
    IceUtil::Mutex::Lock lock(_mutex);

    _size = 0;
    evictServants();
}

Note that, with this implementation of evictServants, we only scan the tail 
section of the evictor queue for servants to evict. If we have long-running opera-
tions, this allows the number of servants in the queue to remain above the evictor 
size if the servants in the tail section have a non-zero use count. This means that, 
even immediately after calling evictServants, the queue length can still 
exceed the evictor size.

We can adopt a more aggressive strategy for eviction: instead of scanning only 
the excess entries in the queue, if, after looking in the tail section of the queue, we 
still have more servants in the queue than the queue size, we keep scanning for 
servants with a zero use count until the queue size drops below the limit. This 
alternative version of evictServants looks as follows:

void
EvictorBase::evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // try to evict servants until the length drops
    // below the limit.
    //
    EvictorQueue::reverse_iterator p = _queue.rbegin();
    int numEntries = static_cast<int>_map.size();

    for (int i = 0; i < numEntries && _map.size() > _size; ++i) {
        EvictorMap::iterator mapPos = *p;
        if (mapPos->second->useCount == 0) {
            evict(mapPos->second->servant,
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                  mapPos->second->userCookie);
            p = EvictorQueue::reverse_iterator(
                    _queue.erase(mapPos->second->queuePos));
            _map.erase(mapPos);
        } else
            ++p;
    }
}

The only difference in this version is that terminating condition for the for-loop 
has changed: instead of scanning only the excess entries for servants with a use 
count, this version keeps scanning until the evictor size drops below the limit.

Which version is more appropriate depends on your application: if locating 
and evicting servants is expensive, and memory is not at a premium, the first 
version (which only scans the tail section) is more appropriate; if you want to keep 
memory consumption to a minimum, the second version in more appropriate. 
Also keep in mind that the difference between the two versions is significant only 
if you have long-running operations and many concurrent invocations from 
clients; otherwise, there is no point in more aggressively scanning for servants to 
remove because they are going to become idle again very quickly and get evicted 
as soon as the next request arrives.

Creating an Evictor Implementation in Java

The evictor we show here is designed as an abstract base class: in order to use it, 
you derive an object from the Evictor.EvictorBase base class and imple-
ment two methods that are called by the evictor when it needs to add or evict a 
servant. This leads to a class definition as follows:

package Evictor;

public abstract class EvictorBase implements Ice.ServantLocator
{
    public
    EvictorBase()
    {
        _size = 1000;
    }

    public
    EvictorBase(int size)
    {
        _size = size < 0 ? 1000 : size;
    }



986 The Ice Run Time in Detail


    public abstract Ice.Object
    add(Ice.Current c, Ice.LocalObjectHolder cookie);

    public abstract void
    evict(Ice.Object servant, java.lang.Object cookie);

    synchronized public final Ice.Object
    locate(Ice.Current c, Ice.LocalObjectHolder cookie)
    {
        // ...
    }

    synchronized public final void
    finished(Ice.Current c, Ice.Object o, java.lang.Object cookie)
    {
        // ...
    }

    synchronized public final void
    deactivate(String category)
    {
        // ...
    }

    // ...

    private int _size;
}

Note that the evictor has constructors to set the size of the queue, with a default 
size of 1000.

The locate, finished, and deactivate methods are inherited from the 
ServantLocator base class; these methods implement the logic to maintain 
the queue in LRU order and to add and evict servants as needed. The methods are 
synchronized, so the evictor’s internal data structures are protected from concur-
rent access.

The add and evict methods are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are abstract, so they must be implemented in a derived class. The 
job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
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evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:

1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue.

3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The last two points deserve some extra explanation.

• The evictor queue must be maintained in least-recently used order, that is, 
every time an invocation arrives and we find an entry for the identity in the 
evictor map, we also must locate the servant’s identity on the evictor queue 
and move it to the front of the queue. However, scanning for that entry is inef-
ficient because it requires O(n) time. To get around this, we store an iterator in 
the evictor map that marks the corresponding entry’s position in the evictor 
queue. This allows us to dequeue the entry from its current position and 
enqueue it at the head of the queue in O(1) time.

Unfortunately, the various lists provided by java.util do not allow us to 
keep an iterator to a list position without invalidating that iterator as the list is 
updated. To deal with this, we use a special-purpose linked list implementa-
tion, Evictor.LinkedList, that does not have this limitation. 
LinkedList has an interface similar to java.util.LinkedList but 
does not invalidate iterators other than iterators that point at an element that is 
removed. For brevity, we do not show the implementation of this list here—
you can find the implementation in the code examples for this book in the Ice 
distribution.
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• We maintain a use count as part of the map in order to avoid incorrect eviction 
of servants. Suppose a client invokes a long-running operation on an Ice 
object with identity I. In response, the evictor adds a servant for I to the 
evictor queue. While the original invocation is still executing, other clients 
invoke operations on various Ice objects, which leads to more servants for 
other object identities being added to the queue. As a result, the servant for 
identity I gradually migrates toward the tail of the queue. If enough client 
requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the orig-
inal request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea 
that a servant for I is still around and would add a second servant for I. 
However, having two servants for the same Ice object in memory is likely to 
cause problems, especially if the servant’s operation implementations write to 
a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is 
busy, avoid evicting that servant. As a result, the queue size is not a hard upper 
limit: long-running operations can temporarily cause more servants than the 
limit to appear in the queue. However, as soon as excess servants become idle, 
they are evicted as usual.

Finally, our locate and finished implementations will need to exchange a 
cookie that contains a smart pointer to the entry in the evictor map. This is neces-
sary so that finished can decrement the servant’s use count.

This leads to the following definitions in the private section of our evictor:

package Evictor;

public abstract class EvictorBase implements Ice.ServantLocator
{
    // ...

    private class EvictorEntry
    {
        Ice.Object servant;
        java.lang.Object userCookie;
        java.util.Iterator<Ice.Identity> queuePos;
        int useCount;
    }
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    private void evictServants()
    {
        // ...
    }

    private java.util.Map<Ice.Identity, EvictorEntry> _map =
        new java.util.HashMap<Ice.Identity, EvictorEntry>();
    private Evictor.LinkedList<Ice.Identity> _queue =
        new Evictor.LinkedList<Ice.Identity>();
    private int _size;
}

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. The map key is the identity of 
the Ice object, and the lookup value is of type EvictorEntry. The queue 
simply stores identities, of type Ice::Identity.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

Almost all the action of the evictor takes place in the implementation of 
locate:

synchronized public final Ice.Object
locate(Ice.Current c, Ice.LocalObjectHolder cookie)
{
    //
    // Check if we have a servant in the map already.
    //
    EvictorEntry entry = _map.get(c.id);
    if (entry != null) {
        //
        // Got an entry already, dequeue the entry from
        // its current position.
        //
        entry.queuePos.remove();
    } else {
        //
        // We do not have entry. Ask the derived class to
        // instantiate a servant and add a new entry to the map.
        //
        entry = new EvictorEntry();
        Ice.LocalObjectHolder cookieHolder =
            new Ice.LocalObjectHolder();
        entry.servant = add(c, cookieHolder); // Down-call
        if (entry.servant == null) {
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            return null;
        }
        entry.userCookie = cookieHolder.value;
        entry.useCount = 0;
        _map.put(c.id, entry);
    }

    //
    // Increment the use count of the servant and enqueue
    // the entry at the front, so we get LRU order.
    //
    ++(entry.useCount);
    _queue.addFirst(c.id);
    entry.queuePos = _queue.iterator();
    entry.queuePos.next(); // Position iterator on the element.

    cookie.value = entry;
    return entry.servant;
}

The code uses an EvictorEntry as the cookie that is returned from locate 
and will be passed by the Ice run time to the corresponding call to finished.

We first look for an existing entry in the evictor map, using the object identity 
as the key. If we have an entry in the map already, we dequeue the corresponding 
identity from the evictor queue. (The queuePos member of EvictorEntry is 
an iterator that marks that entry’s position in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and 
call the add method. This is a down-call to the concrete class that will be derived 
from EvictorBase. The implementation of add must attempt to locate the 
object state for the Ice object with the identity passed inside the Current object 
and either return a servant as usual, or return null or throw an exception to indicate 
failure. If add returns null, we return null to let the Ice run time know that no 
servant could be found for the current request. If add succeeds, we initialize the 
entry’s use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry’s use count, add the entry at the 
head of the evictor queue, store the entry’s position in the queue, and assign the 
entry to the cookie that is returned from locate, before returning the servant to 
the Ice run time.

The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:



32.9 Server Implementation Techniques 991

synchronized public final void
finished(Ice.Current c, Ice.Object o, java.lang.Object cookie)
{
    EvictorEntry entry = (EvictorEntry)cookie;

    // Decrement use count and check if
    // there is something to evict.
    //
    --(entry.useCount);
    evictServants();
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    java.util.Iterator<Ice.Identity> p = _queue.riterator();
    int excessEntries = _map.size() - _size;
    for (int i = 0; i < excessEntries; ++i) {
        Ice.Identity id = p.next();
        EvictorEntry e = _map.get(id);
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            e.queuePos.remove();
            _map.remove(id);
        }
    }
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.
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synchronized public final void
deactivate(String category)
{
    _size = 0;
    evictServants();
}

Note that, with this implementation of evictServants, we only scan the tail 
section of the evictor queue for servants to evict. If we have long-running opera-
tions, this allows the number of servants in the queue to remain above the evictor 
size if the servants in the tail section have a non-zero use count. This means that, 
even immediately after calling evictServants, the queue length can still 
exceed the evictor size.

We can adopt a more aggressive strategy for eviction: instead of scanning only 
the excess entries in the queue, if, after looking in the tail section of the queue, we 
still have more servants in the queue than the queue size, we keep scanning for 
servants with a zero use count until the queue size drops below the limit. This 
alternative version of evictServants looks as follows:

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    java.util.Iterator<Ice.Identity> p = _queue.riterator();
    int numEntries = _map.size();
    for (int i = 0; i < excessEntries && _map.size() > _size;
         ++i) {
        Ice.Identity id = p.next();
        EvictorEntry e = _map.get(id);
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            e.queuePos.remove();
            _map.remove(id);
        }
    }
}

The only difference in this version is that terminating condition for the for-loop 
has changed: instead of scanning only the excess entries for servants with a use 
count, this version keeps scanning until the evictor size drops below the limit.
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Which version is more appropriate depends on your application: if locating 
and evicting servants is expensive, and memory is not at a premium, the first 
version (which only scans the tail section) is more appropriate; if you want to keep 
memory consumption to a minimum, the second version in more appropriate. 
Also keep in mind that the difference between the two versions is significant only 
if you have long-running operations and many concurrent invocations from 
clients; otherwise, there is no point in more aggressively scanning for servants to 
remove because they are going be become idle again very quickly and get evicted 
as soon as the next request arrives.

Creating an Evictor Implementation in C#

The System.Collections classes do not provide a container that does not 
invalidate iterators when we modify the contents of the container but, to efficiently 
implement an evictor, we need such a container. To deal with this, we use a 
special-purpose linked list implementation, Evictor.LinkedList, that does 
not invalidate iterators when we delete or add an element. For brevity, we only 
show the interface of LinkedList here—you can find the implementation in 
the code examples for this book in the Ice for .NET distribution.

namespace Evictor
{
    public class LinkedList<T> : ICollection<T>, ICollection,
                                 ICloneable
    {
        public LinkedList();

        public int Count { get; }

        public void Add(T value);
        public void AddFirst(T value);
        public void Clear();
        public bool Contains(T value);
        public bool Remove(T value);

        public IEnumerator GetEnumerator();

        public class Enumerator : IEnumerator<T>, IEnumerator,
                                  IDisposable
        {
            public void Reset();

            public T Current { get; }
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            public bool MoveNext();
            public bool MovePrev();
            public void Remove();
            public void Dispose();
        }

        public void CopyTo(T[] array, int index);
        public void CopyTo(Array array, int index);

        public object Clone();

        public bool IsReadOnly { get; }
        public bool IsSynchronized { get; }
        public object SyncRoot { get; }
    }
}

The Add method appends an element to the list, and the AddFirst method 
prepends an element to the list. GetEnumerator returns an enumerator for the 
list elements; immediately after calling GetEnumerator, the enumerator does 
not point at any element until you call either MoveNext or MovePrev, which 
position the enumerator at the first and last element, respectively. Current 
returns the element at the enumerator position, and Remove deletes the element at 
the current position and leaves the enumerator pointing at no element. Calling 
MoveNext or MovePrev after calling Remove positions the enumerator at the 
element following or preceding the deleted element, respectively. MoveNext and 
MovePrev return true if they have positioned the enumerator on an element; 
otherwise, they return false and leave the enumerator position on the last and first 
element, respectively.

Given this LinkedList, we can implement the evictor. The evictor we show 
here is designed as an abstract base class: in order to use it, you derive an object 
from the Evictor.EvictorBase base class and implement two methods that 
are called by the evictor when it needs to add or evict a servant. This leads to a 
class definitions as follows:

namespace Evictor
{
    public abstract class EvictorBase
        : Ice.ServantLocator
    {
        public EvictorBase()
        {
            _size = 1000;
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        }

        public EvictorBase(int size)
        {
            _size = size < 0 ? 1000 : size;
        }

        protected abstract Ice.Object add(Ice.Current c,
                                          out object cookie);

        protected abstract void evict(Ice.Object servant,
                                      object cookie);

        public Ice.Object locate(Ice.Current c,
                                 out object cookie)
        {
            lock(this)
            {
                // ...
            }
        }

        public void finished(Ice.Current c, Ice.Object o,
                             object cookie)
        {
            lock(this)
            {
                // ...
            }
        }

        public void deactivate(string category)
        {
            lock(this)
            {
                // ...
            }
        }

        private int _size;
    }
}

Note that the evictor has constructors to set the size of the queue, with a default 
size of 1000.
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The locate, finished, and deactivate methods are inherited from the 
ServantLocator base class; these methods implement the logic to maintain 
the queue in LRU order and to add and evict servants as needed. The methods use 
a lock(this) statement for their body, so the evictor’s internal data structures 
are protected from concurrent access.

The add and evict methods are called by the evictor when it needs to add a 
new servant to the queue and when it evicts a servant from the queue. Note that 
these functions are abstract, so they must be implemented in a derived class. The 
job of add is to instantiate and initialize a servant for use by the evictor. The 
evict function is called by the evictor when it evicts a servant. This allows 
evict to perform any cleanup. Note that add can return a cookie that the evictor 
passes to evict, so you can move context information from add to evict.

Next, we need to consider the data structures that are needed to support our 
evictor implementation. We require two main data structures:

1. A map that maps object identities to servants, so we can efficiently decide 
whether we have a servant for an incoming request in memory or not.

2. A list that implements the evictor queue. The list is kept in LRU order at all 
times.

The evictor map does not only store servants but also keeps track of some admin-
istrative information:

1.The map stores the cookie that is returned from add, so we can pass that 
same cookie to evict.

2.The map stores an iterator into the evictor queue that marks the position of 
the servant in the queue.

3.The map stores a use count that is incremented whenever an operation is 
dispatched into a servant, and decremented whenever an operation 
completes.

The last two points deserve some extra explanation.

• The evictor queue must be maintained in least-recently used order, that is, 
every time an invocation arrives and we find an entry for the identity in the 
evictor map, we also must locate the servant’s identity on the evictor queue 
and move it to the front of the queue. However, scanning for that entry is inef-
ficient because it requires O(n) time. To get around this, we store an iterator in 
the evictor map that marks the corresponding entry’s position in the evictor 
queue. This allows us to dequeue the entry from its current position and 
enqueue it at the head of the queue in O(1) time, using the 
Evictor.LinkedList implementation we saw on page 993.
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• We maintain a use count as part of the map in order to avoid incorrect eviction 
of servants. Suppose a client invokes a long-running operation on an Ice 
object with identity I. In response, the evictor adds a servant for I to the 
evictor queue. While the original invocation is still executing, other clients 
invoke operations on various Ice objects, which leads to more servants for 
other object identities being added to the queue. As a result, the servant for 
identity I gradually migrates toward the tail of the queue. If enough client 
requests for other Ice objects arrive while the operation on object I is still 
executing, the servant for I could be evicted while it is still executing the orig-
inal request.

By itself, this will not do any harm. However, if the servant is evicted and a 
client then invokes another request on object I, the evictor would have no idea 
that a servant for I is still around and would add a second servant for I. 
However, having two servants for the same Ice object in memory is likely to 
cause problems, especially if the servant’s operation implementations write to 
a database.

The use count allows us to avoid this problem: we keep track of how many 
requests are currently executing inside each servant and, while a servant is 
busy, avoid evicting that servant. As a result, the queue size is not a hard upper 
limit: long-running operations can temporarily cause more servants than the 
limit to appear in the queue. However, as soon as excess servants become idle, 
they are evicted as usual.

Finally, our locate and finished implementations will need to exchange a 
cookie that contains a smart pointer to the entry in the evictor map. This is neces-
sary so that finished can decrement the servant’s use count.

This leads to the following definitions in the private section of our evictor:

namespace Evictor
{
    using System.Collections.Generic;

    public abstract class EvictorBase
        : Ice.ServantLocator
    {
        // ...

        private class EvictorEntry
        {
            internal Ice.Object servant;
            internal object userCookie;
            internal LinkedList<Ice.Identity>.Enumerator queuePos;
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            internal int useCount;
        }

        private void evictServants()
        {
            // ...
        }

        private Dictionary<Ice.Identity, EvictorEntry> _map
            = new Dictionary<Ice.Identity, EvictorEntry>();
        private LinkedList<Ice.Identity> _queue =
            new LinkedList<Ice.Identity>();
        private int _size;
    }
}

Note that the evictor stores the evictor map, queue, and the queue size in the 
private data members _map, _queue, and _size. The map key is the identity of 
the Ice object, and the lookup value is of type EvictorEntry. The queue 
simply stores identities, of type Ice.Identity.

The evictServants member function takes care of evicting servants when 
the queue length exceeds its limit—we will discuss this function in more detail 
shortly.

Almost all the action of the evictor takes place in the implementation of 
locate:

public Ice.Object locate(Ice.Current c,
                         out object cookie)
{
    lock(this)
    {
        //
        // Check if we a servant in the map already.
        //
        EvictorEntry entry = _map[c.id];
        if (entry != null) {
            //
            // Got an entry already, dequeue the entry from
            // its current position.
            //
            entry.queuePos.Remove();
        } else {
            //
            // We do not have an entry. Ask the derived class to
            // instantiate a servant and add an entry to the map.
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            //
            entry = new EvictorEntry();
            entry.servant = add(c, out entry.userCookie);
            if (entry.servant == null) {
                cookie = null;
                return null;
            }
            entry.useCount = 0;
            _map[c.id] = entry;
        }

        //
        // Increment the use count of the servant and enqueue
        // the entry at the front, so we get LRU order.
        //
        ++(entry.useCount);
        _queue.AddFirst(c.id);
        entry.queuePos = (LinkedList<Ice.Identity>.Enumerator)
            _queue.GetEnumerator();
        entry.queuePos.MoveNext();

        cookie = entry;

        return entry.servant;
    }
}

The code uses an EvictorEntry as the cookie that is returned from locate 
and will be passed by the Ice run time to the corresponding call to finished.

We first look for an existing entry in the evictor map, using the object identity 
as the key. If we have an entry in the map already, we dequeue the corresponding 
identity from the evictor queue. (The queuePos member of EvictorEntry is 
an iterator that marks that entry’s position in the evictor queue.)

Otherwise, we do not have an entry in the map, so we create a new one and 
call the add method. This is a down-call to the concrete class that will be derived 
from EvictorBase. The implementation of add must attempt to locate the 
object state for the Ice object with the identity passed inside the Current object 
and either return a servant as usual, or return null or throw an exception to indicate 
failure. If add returns null, we return null to let the Ice run time know that no 
servant could be found for the current request. If add succeeds, we initialize the 
entry’s use count to zero and insert the entry into the evictor map.

The final few lines of code increment the entry’s use count, add the entry at the 
head of the evictor queue, store the entry’s position in the queue, and initialize the 
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cookie that is returned from locate, before returning the servant to the Ice run 
time.

The implementation of finished is comparatively simple. It decrements the 
use count of the entry and then calls evictServants to get rid of any servants 
that might need to be evicted:

public void finished(Ice.Current c, Ice.Object o,
                     object cookie)
{
    lock(this)
    {
        EvictorEntry entry = (EvictorEntry)cookie;

        //
        // Decrement use count and check if
        // there is something to evict.
        //
        --(entry.useCount);
        evictServants();
    }
}

In turn, evictServants examines the evictor queue: if the queue length 
exceeds the evictor’s size, the excess entries are scanned. Any entries with a zero 
use count are then evicted:

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    LinkedList<Ice.Identity>.Enumerator p =
        (LinkedList<Ice.Identity>.Enumerator)
        _queue.GetEnumerator();
    int excessEntries = _map.Count - _size;
    for (int i = 0; i < excessEntries; ++i) {
        p.MovePrev();
        Ice.Identity id = p.Current;
        EvictorEntry e = _map[id];
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            p.Remove();
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            _map.Remove(id);
        }
    }
}

The code scans the excess entries, starting at the tail of the evictor queue. If an 
entry has a zero use count, it is evicted: after calling the evict member function 
in the derived class, the code removes the evicted entry from both the map and the 
queue.

Finally, the implementation of deactivate sets the evictor size to zero and 
then calls evictServants. This results in eviction of all servants. The Ice run 
time guarantees to call deactivate only once no more requests are executing 
in an object adapter; as a result, it is guaranteed that all entries in the evictor will 
be idle and therefore will be evicted.

public void deactivate(string category)
{
    lock(this)
    {
        _size = 0;
        evictServants();
    }
}

Note that, with this implementation of evictServants, we only scan the tail 
section of the evictor queue for servants to evict. If we have long-running opera-
tions, this allows the number of servants in the queue to remain above the evictor 
size if the servants in the tail section have a non-zero use count. This means that, 
even immediately after calling evictServants, the queue length can still 
exceed the evictor size.

We can adopt a more aggressive strategy for eviction: instead of scanning only 
the excess entries in the queue, if, after looking in the tail section of the queue, we 
still have more servants in the queue than the queue size, we keep scanning for 
servants with a zero use count until the queue size drops below the limit. This 
alternative version of evictServants looks as follows:

private void evictServants()
{
    //
    // If the evictor queue has grown larger than the limit,
    // look at the excess elements to see whether any of them
    // can be evicted.
    //
    LinkedList<Ice.Identity>.Enumerator p =
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        (LinkedList<Ice.Identity>.Enumerator)
        _queue.GetEnumerator();
    int numEntries = _map.Count;
    for (int i = 0; i < numEntries && _map.Count > _size; ++i) {
        p.MovePrev();
        Ice.Identity id = p.Current;
        EvictorEntry e = _map[id];
        if (e.useCount == 0) {
            evict(e.servant, e.userCookie); // Down-call
            p.Remove();
            _map.Remove(id);
        }
    }
}

The only difference in this version is that terminating condition for the for-loop 
has changed: instead of scanning only the excess entries for servants with a use 
count, this version keeps scanning until the evictor size drops below the limit.

Which version is more appropriate depends on your application: if locating 
and evicting servants is expensive, and memory is not at a premium, the first 
version (which only scans the tail section) is more appropriate; if you want to keep 
memory consumption to a minimum, the second version in more appropriate. 
Also keep in mind that the difference between the two versions is significant only 
if you have long-running operations and many concurrent invocations from 
clients; otherwise, there is no point in more aggressively scanning for servants to 
remove because they are going be become idle again very quickly and get evicted 
as soon as the next request arrives.

Using Servant Evictors

Using a servant evictor is simply a matter of deriving a class from Evictor-
Base and implementing the add and evict methods. You can turn a servant 
locator into an evictor by simply taking the code that you wrote for locate and 
placing it into add—EvictorBase then takes care of maintaining the cache in 
least-recently used order and evicting servants as necessary. Unless you have 
clean-up requirements for your servants (such as closing network connections or 
database handles), the implementation of evict can be left empty.

One of the nice aspects of evictors is that you do not need to change anything 
in your servant implementation: the servants are ignorant of the fact that an evictor 
is in use. This makes it very easy to add an evictor to an already existing code base 
with little disturbance of the source code.
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Evictors can provide substantial performance improvements over default 
servants: especially if initialization of servants is expensive (for example, because 
servant state must be initialized by reading from a network), an evictor performs 
much better than a default servant, while keeping memory requirements low.

32.10 The Ice Threading Model

Ice is inherently a multi-threaded platform. There is no such thing as a single-
threaded server in Ice. As a result, you must concern yourself with concurrency 
issues: if a thread reads a data structure while another thread updates the same 
data structure, havoc will ensue unless you protect the data structure with appro-
priate locks. In order to build Ice applications that behave correctly, it is important 
that you understand the threading semantics of the Ice run time. This section 
discusses Ice’s thread pool concurrency model and provides guidelines for writing 
thread-safe Ice applications.

32.10.1 Introduction to Thread Pools

A thread pool is a collection of threads that the Ice run time draws upon to 
perform specific tasks. Each communicator creates two thread pools:

• The client thread pool services outgoing connections, which primarily 
involves handling the replies to outgoing requests and includes notifying AMI 
callback objects. If a connection is used in bidirectional mode (see 
Section 36.7), the client thread pool also dispatches incoming callback 
requests.

• The server thread pool services incoming connections. It dispatches incoming 
requests and, for bidirectional connections, processes replies to outgoing 
requests.

By default, these two thread pools are shared by all of the communicator’s object 
adapters. If necessary, you can configure individual object adapters to use a 
private thread pool instead.

If a thread pool is exhausted because all threads are currently dispatching a 
request, additional incoming requests are transparently delayed until a request 
completes and relinquishes its thread; that thread is then used to dispatch the next 
pending request. Ice minimizes thread context switches in a thread pool by using a 
leader-follower implementation (see  [17]).
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32.10.2 Configuring Thread Pools

Each thread pool has a unique name that serves as the prefix for its configuration 
properties:

• name.Size

This property specifies the initial size of the thread pool. If not defined, the 
default value is one.

• name.SizeMax

This property specifies the maximum size of the thread pool. If not defined, 
the default value is one. If the value of this property is less than that of 
name.Size, this property is adjusted to be equal to name.Size.

• name.SizeWarn

This property sets a high water mark; when the number of threads in a pool 
reaches this value, the Ice run time logs a warning message. If you see this 
warning message frequently, it could indicate that you need to increase the 
value of name.SizeMax. The default value is zero, which disables the 
warning.

• name.StackSize

This property specifies the number of bytes to use as the stack size of threads 
in the thread pool. The operating system’s default is used if this property is not 
defined or is set to zero.

• name.Serialize

Setting this property to a value greater than zero forces the thread pool to seri-
alize all messages received over a connection. It is unnecessary to enable seri-
alization for a thread pool whose maximum size is one because such a thread 
pool is already limited to processing one message at a time. For thread pools 
with more than one thread, serialization has a negative impact on latency and 
throughput. If not defined, the default value is zero.

We discuss this feature in more detail in Section 32.10.4.

• name.ThreadIdleTime

This property specifies the number of seconds that a thread in the thread pool 
must be idle before it terminates. The default value is 60 seconds if this prop-
erty is not defined. Setting it to zero disables the termination of idle threads.

For configuration purposes, the names of the client and server thread pools are 
Ice.ThreadPool.Client and Ice.ThreadPool.Server, respectively. 
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As an example, the following properties establish the initial and maximum sizes 
for these thread pools:

Ice.ThreadPool.Client.Size=1
Ice.ThreadPool.Client.SizeMax=10
Ice.ThreadPool.Server.Size=1
Ice.ThreadPool.Server.SizeMax=10

To monitor the thread pool activities of the Ice run time, you can enable the 
Ice.Trace.ThreadPool property. Setting this property to a non-zero value 
causes the Ice run time to log a message when it creates a thread pool, as well as 
each time the size of a thread pool increases or decreases.

Dynamic Thread Pools

A dynamic thread pool can grow and shrink when necessary in response to 
changes in an application’s work load. All thread pools have at least one thread, 
but a dynamic thread pool can grow as the demand for threads increases, up to the 
pool’s maximum size. Threads may also be terminated automatically when they 
have been idle for some time.

The dynamic nature of a thread pool is determined by the configuration prop-
erties name.Size, name.SizeMax, and name.ThreadIdleTime. A 
thread pool is not dynamic in its default configuration because name.Size and 
name.SizeMax are both set to one, meaning the pool can never grow to contain 
more than a single thread. To configure a dynamic thread pool, you must set at 
least one of name.Size or name.SizeMax to a value greater than one. We can 
use several configuration scenarios to explore the semantics of dynamic thread 
pools in greater detail:

• name.SizeMax=5

This thread pool initially contains a single thread because name.Size has a 
default value of one, and Ice can grow the pool up to the maximum of five 
threads. During periods of inactivity, idle threads terminate after 60 seconds 
(the default value for name.ThreadIdleTime) until the pool contains just 
one thread again.

• name.Size=3
name.SizeMax=5

This thread pool starts with three active threads but otherwise behaves the 
same as in the previous configuration. The pool can still shrink to a size of one 
as threads become idle.
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• name.Size=3
name.ThreadIdleTime=10

This thread pool starts with three active threads and shrinks quickly to one 
thread during periods of inactivity. As demand increases again, the thread pool 
can return to its maximum size of three threads (name.SizeMax defaults to 
the value of name.Size).

• name.SizeMax=5
name.ThreadIdleTime=0

This thread pool can grow from its initial size of one thread to contain up to 
five threads, but it will never shrink because name.ThreadIdleTime is 
set to zero.

• name.Size=5
name.ThreadIdleTime=0

This thread pool starts with five threads and can neither grow nor shrink.

To summarize, the value of name.ThreadIdleTime determines whether (and 
how quickly) a thread pool can shrink to a size of one. A thread pool that shrinks 
can also grow to its maximum size. Finally, setting name.SizeMax to a value 
larger than name.Size allows a thread pool to grow beyond its initial capacity.

32.10.3 Adapter Thread Pools

The default behavior of an object adapter is to share the thread pools of its 
communicator and, for many applications, this behavior is entirely sufficient. 
However, the ability to configure an object adapter with its own thread pool is 
useful in certain situations:

• When the concurrency requirements of an object adapter does not match those 
of its communicator.

In a server with multiple object adapters, the configuration of the communi-
cator’s client and server thread pools may be a good match for some object 
adapters, but others may have different requirements. For example, the 
servants hosted by one object adapter may not support concurrent access, in 
which case limiting that object adapter to a single-threaded pool eliminates the 
need for synchronization in those servants. On the other hand, another object 
adapter might need a multi-threaded pool for better performance.

• To ensure that a minimum number of threads is available for dispatching 
requests to an adapter’s servants. This is especially important for eliminating 
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the possibility of deadlocks when using nested invocations (see 
Section 32.10.5).

An object adapter’s thread pool supports all of the properties described in 
Section 32.10.2. For configuration purposes, the name of an adapter’s thread pool 
is adapter.ThreadPool, where adapter is the name of the adapter.

An adapter creates its own thread pool when at least one of the following prop-
erties has a value greater than zero:

• adapter.ThreadPool.Size

• adapter.ThreadPool.SizeMax

These properties have the same semantics as those described earlier except they 
both have a default value of zero, meaning that an adapter uses the communi-
cator’s thread pools by default.

As an example, the properties shown below configure a thread pool for the 
object adapter named PrinterAdapter:

PrinterAdapter.ThreadPool.Size=3
PrinterAdapter.ThreadPool.SizeMax=15
PrinterAdapter.ThreadPool.SizeWarn=14

32.10.4 Design Considerations
Improper configuration of a thread pool can have a serious impact on the perfor-
mance of your application. This section discusses some issues that you should 
consider when designing and configuring your applications.

Single-Threaded Pool

There are several implications of using a thread pool with a maximum size of one 
thread:

• Only one message can be dispatched at a time.

This can be convenient because it lets you avoid (or postpone) dealing with 
thread-safety issues in your application (see Section 32.10.6). However, it also 
eliminates the possibility of dispatching requests concurrently, which can be a 
bottleneck for applications running on multi-CPU systems or that perform 
blocking operations. Another option is to enable serialization in a multi-
threaded pool, as discussed on page 1008.

• Only one AMI reply can be processed at a time.

An application must increase the size of the client thread pool in order to 
process multiple AMI callbacks in parallel.
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• Nested twoway invocations are limited.

At most one level of nested twoway invocations is possible. (See 
Section 32.10.5.)

It is important to remember that a communicator’s client and server thread pools 
have a default maximum size of one thread, therefore these limitations also apply 
to any object adapter that shares the communicator’s thread pools.

Multi-Threaded Pool

Configuring a thread pool to support multiple threads implies that the application 
is prepared for the Ice run time to dispatch operation invocations or AMI callbacks 
concurrently. Although greater effort is required to design a thread-safe applica-
tion, you are rewarded with the ability to improve the application’s scalability and 
throughput.

Choosing an appropriate maximum size for a thread pool requires careful 
analysis of your application. For example, in compute-bound applications it is 
best to limit the number of threads to the number of physical processors in the host 
machine; adding any more threads only increases context switches and reduces 
performance. Increasing the size of the pool beyond the number of processors can 
improve responsiveness when threads can become blocked while waiting for the 
operating system to complete a task, such as a network or file operation. On the 
other hand, a thread pool configured with too many threads can have the opposite 
effect and negatively impact performance. Testing your application in a realistic 
environment is the recommended way of determining the optimum size for a 
thread pool.

If your application uses nested invocations, it is very important that you eval-
uate whether it is possible for thread starvation to cause a deadlock. Increasing the 
size of a thread pool can lessen the chance of a deadlock, but other design solu-
tions are usually preferred. Section 32.10.5 discusses nested invocations in more 
detail.

Serialization

When using a multi-threaded pool, the nondeterministic nature of thread sched-
uling means that requests from the same connection may not be dispatched in the 
order they were received. Some applications cannot tolerate this behavior, such as 
a transaction processing server that must guarantee that requests are executed in 
order. There are two ways of satisfying this requirement:

1. Use a single-threaded pool.
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2. Configure a multi-threaded pool to serialize requests using its Serialize 
property (see Section 32.10.2).

At first glance these two options may seem equivalent, but there is a significant 
difference: a single-threaded pool can only dispatch one request at a time and 
therefore serializes requests from all connections, whereas a multi-threaded pool 
configured for serialization can dispatch requests from different connections 
concurrently while serializing requests from the same connection.

You can obtain the same behavior from a multi-threaded pool without 
enabling serialization, but only if you design the clients so that they do not send 
requests from multiple threads, do not send requests over more than one connec-
tion, and only use synchronous twoway invocations. In general, however, it is 
better to avoid such tight coupling between the implementations of the client and 
server.

Enabling serialization can improve responsiveness and performance compared 
to a single-threaded pool, but there is an associated cost. The extra synchroniza-
tion that the pool must perform to serialize requests adds significant overhead and 
results in higher latency and reduced throughput.

As you can see, thread pool serialization is not a feature that you should 
enable without analyzing whether the benefits are worthwhile. For example, it 
might be an inappropriate choice for a server with long-running operations when 
the client needs the ability to have several operations in progress simultaneously. 
If serialization was enabled in this situation, the client would be forced to work 
around it by opening several connections to the server (see Section 36.3), which 
again tightly couples the client and server implementations. If the server must 
keep track of the order of client requests, a better solution would be to use serial-
ization in conjunction with asynchronous dispatch to queue the incoming requests 
for execution by other threads.

32.10.5 Nested Invocations

A nested invocation is one that is made within the context of another Ice opera-
tion. For instance, the implementation of an operation in a servant might need to 
make a nested invocation on some other object, or an AMI callback object might 
invoke an operation in the course of processing a reply to an asynchronous 
request. It is also possible for one of these invocations to result in a nested call-
back to the originating process. The maximum depth of such invocations is deter-
mined by the size of the thread pools used by the communicating parties.
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Deadlocks

Applications that use nested invocations must be carefully designed to avoid the 
potential for deadlock, which can easily occur when invocations take a circular 
path. For example, Figure 32.5 presents a deadlock scenario when using the 
default thread pool configuration.

Figure 32.5. Nested invocation deadlock.

In this diagram, the implementation of opA makes a nested twoway invocation of 
opB, but the implementation of opB causes a deadlock when it tries to make a 
nested callback. As mentioned in Section 32.10.1, the communicator’s thread 
pools have a maximum size of one thread unless explicitly configured otherwise. 
In Server A, the only thread in the server thread pool is busy waiting for its invo-
cation of opB to complete, and therefore no threads remain to handle the callback 
from Server B. The client is now blocked because Server A is blocked, and they 
remain blocked indefinitely unless timeouts are used.

There are several ways to avoid a deadlock in this scenario:

• Increase the maximum size of the server thread pool in Server A.

Configuring the server thread pool in Server A to support more than one 
thread allows the nested callback to proceed. This is the simplest solution, but 
it requires that you know in advance how deeply nested the invocations may 
occur, or that you set the maximum size to a sufficiently large value that 
exhausting the pool becomes unlikely. For example, setting the maximum size 
to two avoids a deadlock when a single client is involved, but a deadlock could 
easily occur again if multiple clients invoke opA simultaneously. Furthermore, 
setting the maximum size too large can cause its own set of problems (see 
Section 32.10.4).

Client Server A Server B

opA

opB

callback
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• Use a oneway invocation.

If Server A called opB using a oneway invocation, it would no longer need to 
wait for a response and therefore opA could complete, making a thread avail-
able to handle the callback from Server B. However, we have made a signifi-
cant change in the semantics of opA because now there is no guarantee that 
opB has completed before opA returns, and it is still possible for the oneway 
invocation of opB to block (see Section 32.14).

• Create another object adapter for the callbacks.

No deadlock occurs if the callback from Server B is directed to a different 
object adapter that is configured with its own thread pool (see 
Section 32.10.3).

• Implement opA using asynchronous dispatch and invocation.

By declaring opA as an AMD operation and invoking opB using AMI, 
Server A can avoid blocking the thread pool’s thread while it waits for opB to 
complete. This technique, known as asynchronous request chaining, is used 
extensively in Ice services such as IceGrid and Glacier2 to eliminate the possi-
bility of deadlocks.

As another example, consider a client that makes a nested invocation from an AMI 
callback object using the default thread pool configuration. The (one and only) 
thread in the client thread pool receives the reply to the asynchronous request and 
invokes its callback object. If the callback object in turn makes a nested twoway 
invocation, a deadlock occurs because no more threads are available in the client 
thread pool to process the reply to the nested invocation. The solutions are similar 
to some of those presented for Figure 32.5: increase the maximum size of the 
client thread pool, use a oneway invocation, or call the nested invocation using 
AMI.

Analyzing an Application

A number of factors must be considered when evaluating whether an application 
is properly designed and configured for nested invocations:

• The thread pool configurations in use by all communicating parties have a 
significant impact on an application’s ability to use nested invocations. While 
analyzing the path of circular invocations, you must pay careful attention to 
the threads involved to determine whether sufficient threads are available to 
avoid deadlock. This includes not just the threads that dispatch requests, but 
also the threads that make the requests and process the replies. Enabling the 
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Ice.Trace.ThreadPool can give you a better understanding of the 
thread pool behavior in your application.

• Bidirectional connections are another complication, since you must be aware 
of which threads are used on either end of the connection.

• Finally, the synchronization activities of the communicating parties must also 
be scrutinized. For example, a deadlock is much more likely when a lock is 
held while making an invocation.

As you can imagine, tracing the call flow of a distributed application to ensure 
there is no possibility of deadlock can quickly become a complex and tedious 
process. In general, it is best to avoid circular invocations if at all possible.

32.10.6 Thread Safety

The Ice run time itself is fully thread safe, meaning multiple application threads 
can safely call methods on objects such as communicators, object adapters, and 
proxies without synchronization problems. As a developer, you must also be 
concerned with thread safety because the Ice run time can dispatch multiple invo-
cations concurrently in a server. In fact, it is possible for multiple requests to 
proceed in parallel within the same servant and within the same operation on that 
servant. It follows that, if the operation implementation manipulates non-stack 
storage (such as member variables of the servant or global or static data), you 
must interlock access to this data to avoid data corruption.

The need for thread safety in an application depends on its configuration. 
Using the default thread pool configuration typically makes synchronization 
unnecessary because at most one operation can be dispatched at a time. Thread 
safety becomes an issue once you increase the maximum size of a thread pool.

Ice uses the native synchronization and threading primitives of each platform. 
For C++ users, Ice provides a collection of convenient and portable wrapper 
classes for use by Ice applications (see Chapter 31).

Marshaling Issues

The marshaling semantics of the Ice run time present a subtle thread safety issue 
that arises when an operation returns data by reference. In C++, the only relevant 
case is returning an instance of a Slice class, either directly or nested as a member 
of another type. In Java, .NET, and Python, Slice structures, sequences, and 
dictionaries are also affected.
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The potential for corruption occurs whenever a servant returns data by refer-
ence, yet continues to hold a reference to that data. For example, consider the 
following Java implementation:

public class GridI extends _GridDisp
{
    GridI()
    {
        _grid = // ...
    }

    public int[][]
    getGrid(Ice.Current curr)
    {
        return _grid;
    }

    public void
    setValue(int x, int y, int val, Ice.Current curr)
    {
        _grid[x][y] = val;
    }

    private int[][] _grid;
}

Suppose that a client invoked the getGrid operation. While the Ice run time 
marshals the returned array in preparation to send a reply message, it is possible 
for another thread to dispatch the setValue operation on the same servant. This 
race condition can result in several unexpected outcomes, including a failure 
during marshaling or inconsistent data in the reply to getGrid. Synchronizing the 
getGrid and setValue operations would not fix the race condition because the 
Ice run time performs its marshaling outside of this synchronization.

One solution is to implement accessor operations, such as getGrid, so that 
they return copies of any data that might change. There are several drawbacks to 
this approach:

• Excessive copying can have an adverse affect on performance.

• The operations must return deep copies in order to avoid similar problems 
with nested values.

• The code to create deep copies is tedious and error-prone to write.
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Another solution is to make copies of the affected data only when it is modified. 
In the revised code shown below, setValue replaces _grid with a copy that 
contains the new element, leaving the previous contents of _grid unchanged:

public class GridI extends _GridDisp
{
    ...

    public synchronized int[][]
    getGrid(Ice.Current curr)
    {
        return _grid;
    }

    public synchronized void
    setValue(int x, int y, int val, Ice.Current curr)
    {
        int[][] newGrid = // shallow copy...
        newGrid[x][y] = val;
        _grid = newGrid;
    }

    ...
}

This allows the Ice run time top safely marshal the return value of getGrid 
because the array is never modified again. For applications where data is read 
more often than it is written, this solution is more efficient than the previous one 
because accessor operations do not need to make copies. Furthermore, intelligent 
use of shallow copying can minimize the overhead in mutating operations.

Finally, a third approach changes accessor operations to use AMD in order to 
regain control over marshaling. After annotating the getGrid operation with amd 
metadata, we can revise the servant as follows:

public class GridI extends _GridDisp
{
    ...

    public synchronized void
    getGrid_async(AMD_Grid_getGrid cb, Ice.Current curr)
    {
        cb.ice_response(_grid);
    }

    public synchronized void
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    setValue(int x, int y, int val, Ice.Current curr)
    {
        _grid[x][y] = val;
    }

    ...
}

Normally, AMD is used in situations where the servant needs to delay its response 
to the client without blocking the calling thread. For getGrid, that is not the goal; 
instead, as a side-effect, AMD provides the desired marshaling behavior. Specifi-
cally, the Ice run time marshals the reply to an asynchronous request at the time 
the servant invokes ice_response on the AMD callback object. Because 
getGrid and setValue are synchronized, this guarantees that the data 
remains in a consistent state during marshaling.

Thread Creation and Destruction Hooks

On occasion, it is necessary to intercept the creation and destruction of threads 
created by the Ice run time, for example, to interoperate with libraries that require 
applications to make thread-specific initialization and finalization calls (such as 
COM’s CoInitializeEx and CoUninitialize). Ice provides callbacks to 
inform an application when each run-time thread is created and destroyed. For 
C++, the callback class looks as follows:10

class ThreadNotification : public IceUtil::Shared {
public:
    virtual void start() = 0;
    virtual void stop() = 0;
};
typedef IceUtil::Handle<ThreadNotification> ThreadNotificationPtr;

To receive notification of thread creation and destruction, you must derive a class 
from ThreadNotification and implement the start and stop member 
functions. These functions will be called by the Ice run by each thread as soon as 
it is created, and just before it exits. You must install your callback class in the Ice 
run time when you create a communicator by setting the threadHook member 
of the InitializationData structure (see Section 32.3).

For example, you could define a callback class and register it with the Ice run 
time as follows:

10.See below for other languages.
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class MyHook : public virtual Ice::ThreadNotification {
public:
    void start()
    {
        cout << "start: id = " << ThreadControl().id() << endl;
    }
    void stop()
    {
        cout << "stop: id = " << ThreadControl().id() << endl;
    }
};

int
main(int argc, char* argv[])
{
    // ...

    Ice::InitializationData id;
    id.threadHook = new MyHook;
    communicator = Ice::initialize(argc, argv, id);

    // ...
}

The implementation of your start and stop methods can make whatever 
thread-specific calls are required by your application.

For Java and C#, Ice.ThreadNotification is an interface:

public interface ThreadNotification {
    void start();
    void stop();
}

To receive the thread creation and destruction callbacks, you must derive a class 
from this interface that implements the start and stop methods, and register 
an instance of that class when you create the communicator. (The code to do this 
is analogous to the C++ version.)

For Python, the interface is:

class ThreadNotification(object):
    def __init__(self):
        pass

    # def start():
    # def stop():
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The Ice run time calls the start and stop methods of the class instance you 
provide to Ice.initialize (see Section 24.3) when it creates and destroys 
threads.

Installing Thread Hooks via a Plug-in

The thread hook facility described on page 1015 requires that you modify a 
program’s source code in order to receive callbacks when threads in the Ice run 
time are created and destroyed. It is also possible to install thread hooks using the 
Ice plug-in facility (see Section 32.25), which is useful for adding thread hooks to 
an existing program that you cannot (or prefer not to) modify.

Ice provides a base class named ThreadHookPlugin for C++, Java, and 
C# that supplies the necessary functionality. The C++ class definition is shown 
below:

namespace Ice {
class ThreadHookPlugin : public Ice::Plugin {
public:

    ThreadHookPlugin(const CommunicatorPtr& communicator,
                     const ThreadNotificationPtr&);

    virtual void initialize();

    virtual void destroy();
};
}

The equivalent definitions for Java and C# are quite similar and therefore not 
presented here.

The ThreadHookPlugin constructor installs the given ThreadNotifi-
cation object into the specified communicator. The initialize and 
destroy methods are empty, but you can subclass ThreadHookPlugin and 
override these methods if necessary.

In order to create a thread hook plug-in, you must do the following:

• Define and export a factory class (for Java and C#) or factory function (for 
C++) that returns an instance of ThreadHookPlugin (see 
Section 32.25.1).

• Implement the ThreadNotification object that you will pass to the 
ThreadHookPlugin constructor.

• Package your code into a format that is suitable for dynamic loading, such as a 
shared library or DLL for C++ or an assembly for C#.



1018 The Ice Run Time in Detail

To install your plug-in, use a configuration property like the one shown below:

Ice.Plugin.MyThreadHookPlugin=MyHooks:createPlugin ...

The first component of the property value represents the plug-in’s entry point. For 
C++, this value includes the abbreviated name of the shared library or DLL 
(MyHooks) and the name of a factory function (createPlugin).

If your property value is language-specific and the configuration file 
containing this property is shared by programs in multiple implementation 
languages, you can use an alternate syntax that is loaded only by the Ice run time 
for a certain language. For example, here is the C++-specific version:

Ice.Plugin.MyThreadHookPlugin.cpp=MyHooks:createPlugin ...

Refer to Appendix D for more information on the Ice.Plugin properties.

32.10.7 Dispatching Invocations to User Threads

By default, operation invocations and AMI callbacks are executed by a thread 
from a thread pool. This behavior is simple and convenient for applications 
because they need not concern themselves with thread creation and destruction. 
However, there are situations where it is necessary to respond to operation invoca-
tions or AMI callbacks in a particular thread. For example, in a server, you might 
need to update a database that does not permit concurrent access from different 
threads or, in a client, you might need to update a user interface with the results of 
an invocation. (Many UI frameworks require all UI updates to be made by a 
specific thread.)

In Ice for C++, Java, and .NET, you can control which thread receives opera-
tion invocations and AMI callbacks, so you can ensure that all updates are made 
by a thread you choose. The implementation techniques vary slightly for each 
language and are explained in the sections that follow.

C++ Dispatcher API

To install a dispatcher, you must instantiate a class that derives from 
Ice::Dispatcher and initialize a communicator with that instance in the 
InitializationData structure. All invocations that arrive for this communi-
cator are made via the specified dispatcher. For example:

class MyDispatcher : public Ice::Dispatcher /*, ... */
    // ...
};
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int
main(int argc, char* argv[])
{
    Ice::CommunicatorPtr communicator;

    try {
        Ice::InitializationData initData;
        initData.properties = Ice::createProperties(argc, argv);
        initData.dispatcher = new MyDispatcher();
        communicator = Ice::initialize(argc, argv, initData);
        
        // ...
    } catch (const Ice::Exception& ex) {
        // ...
    }

    // ...
}

The Ice::Dispatcher abstract base class has the following interface:

class Dispatcher : virtual public IceUtil::Shared
{
public:
    virtual void dispatch(const DispatcherCallPtr&,
                          const ConnectionPtr&) = 0;
};

typedef IceUtil::Handle<Dispatcher> DispatcherPtr;

The Ice run time invokes the dispatch method whenever an operation invoca-
tion arrives or an AMI invocation completes, passing an instance of Dispatch-
erCall and the connection via which the invocation arrived. The job of 
dispatch is to pass the incoming invocation to an operation implementation. 
(The connection parameter allows you to decide how to dispatch the operation 
based on the connection via which it was received.)

You can write dispatch such that it blocks and waits for completion of the 
invocation because dispatch is called by a thread in the server-side thread pool 
(for incoming operation invocations) or the client-side thread pool (for AMI call-
backs).

The DispatcherCall instance encapsulates all the details of the incoming 
call. It is another abstract base class with the following interface:
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class DispatcherCall : virtual public IceUtil::Shared
{
public:
    virtual ~DispatcherCall() { }

    virtual void run() = 0;
};

typedef IceUtil::Handle<DispatcherCall> DispatcherCallPtr;

Your implementation of dispatch is expected to call run on the Dispatch-
erCall instance (or, more commonly, to cause run to be called some time 
later). When you call run, the Ice run time processes the invocation in the thread 
that calls run.

A very simple way to implement dispatch would be as follows:

class MyDispatcher : public Ice::Dispatcher
public:
    virtual void dispatch(const Ice::DispatcherCallPtr& d,
                          const Ice::ConnectionPtr)
    {
        d->run(); // Does not throw, blocks until op completes.
    }
};

Whenever the Ice run time receives an incoming operation invocation or when an 
AMI invocation completes, it calls dispatch which, in turn, calls run on the 
DispatcherCall instance.

With this simple example, dispatch immediately calls run, and run does 
not return until the corresponding operation invocation is complete. As a result, 
this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback 
method that is called by the Ice run time. However, this simple mechanism is 
sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use asynchronous method invo-
cation (see Section 6.15). In response to a UI event (such as the user pressing a 
“Submit” button), the application initiates an operation invocation from the corre-
sponding UI callback by calling the operation’s begin_ method. This is guaran-
teed not to block the caller, so the UI remains responsive. Some time later, when 
the operation completes, the Ice run time invokes an AMI callback from one of the 
threads in its thread pool. That callback now has to update the UI, but that can 
only be done from the UI thread. By using a dispatcher, you can easily delegate 
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the update to the correct thread. For example, here is how you can arrange for 
AMI callbacks to be passed to the UI thread with MFC:

class MyDialog : public CDialog { ... };

class MyDispatcher : public Ice::Dispatcher {
public:
    MyDispatcher(MyDialog* dialog) : _dialog(dialog)
    {
    }

    virtual void 
    dispatch(const Ice::DispatcherCallPtr& call,
             const Ice::ConnectionPtr&)
    {
        _dialog->PostMessage(
            WM_AMI_CALLBACK, 0,
            reinterpret_cast<LPARAM>(
                new Ice::DispatcherCallPtr(call)));
    }

private:
    MyDialog* _dialog;
};

The MyDispatcher class simply stores the CDialog handle for the UI and 
calls PostMessage, passing the DispatcherCall instance. In turn, this 
causes the UI thread to receive an event and invoke the UI callback method that 
was registered to respond to WM_AMI_CALLBACK events.

In turn, the implementation of the callback method calls run:

LRESULT
MyDialog::OnAMICallback(WPARAM, LPARAM lParam)
{
    try {
        Ice::DispatcherCallPtr* call =
            reinterpret_cast<Ice::DispatcherCallPtr*>(lParam);
        (*call)->run();
        delete call;
    } catch (const Ice::Exception& ex) {
        // ...
    }
    return 0;
}
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The Ice run time calls dispatch once the asynchronous operation invocation is 
complete. In turn, this causes the OnAMICallback to trigger, which calls run. 
Because the operation has completed already, run does not block, so the UI 
remains responsive.

Please see the MFC demo in your Ice distribution for a fully-functional UI 
client that uses this technique.

Java Dispatcher API

To install a dispatcher, you must instantiate a class that implements 
Ice.Dispatcher and initialize a communicator with that instance in the 
InitializationData structure. All invocations that arrive for this communi-
cator are made via the specified dispatcher. For example:

public class MyDispatcher implements Ice.Dispatcher
{
    // ...
}

public class Server
{
    public static void
    main(String[] args)
    {
        Ice.Communicator communicator;

        try {
            Ice.InitializationData initData =
                    new Ice.InitializationData();
            initData.properties = Ice.Util.createProperties(args);
            initData.dispatcher = new MyDispatcher();
            communicator = Ice.Util.initialize(args, initData);

            // ...
        } catch (Ice.LocalException & ex) { {
            // ...
        }

        // ...
    }

    // ...
}

The Ice.Dispatcher interface looks as follows:
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public interface Dispatcher
{
    void dispatch(Runnable runnable, Ice.Connection con);
}

The Ice run time invokes the dispatch method whenever an operation invoca-
tion arrives, passing a Runnable and the connection via which the invocation 
arrived. The job of dispatch is to pass the incoming invocation to an operation 
implementation. (The con parameter allows you to decide how to dispatch the 
operation based on the connection via which it was received.)

You can write dispatch such that it blocks and waits for completion of the 
invocation because dispatch is called by a thread in the server-side thread pool 
(for incoming operation invocations) or the client-side thread pool (for AMI call-
backs).

Your implementation of dispatch is expected to call run on the 
Runnable instance (or, more commonly, to cause run to be called some time 
later). When you call run, the Ice run time processes the invocation in the thread 
that calls run.

A very simple way to implement dispatch would be as follows:

public class MyDispatcher implements Ice.Dispatcher
{
    public void
    dispatch(Runnable runnable, Ice.Connection connection)
    {
        // Does not throw, blocks until op completes.
        runnable.run();
    }
}

Whenever the Ice run time receives an incoming operation invocation or when an 
AMI invocation completes, it calls dispatch which, in turn, calls run on the 
Runnable instance.

With this simple example, dispatch immediately calls run, and run does 
not return until the corresponding operation invocation is complete. As a result, 
this implementation ties up a thread in the thread pool for the duration of the call.

So far, we really have not gained anything because all we have is a callback 
method that is called by the Ice run time. However, this simple mechanism is 
sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use asynchronous method invo-
cation (see Section 10.17). In response to a UI event (such as the user pressing a 
“Submit” button), the application initiates an operation invocation from the corre-
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sponding UI callback by calling the operation’s begin_ method. This is guaran-
teed not to block the caller, so the UI remains responsive. Some time later, when 
the operation completes, the Ice run time invokes an AMI response callback 
from one of the threads in its thread pool. That callback now has to update the UI, 
but that can only be done from the UI thread. By using a dispatcher, you can easily 
delegate the update to the correct thread. For example, here is how you can 
arrange for AMI callbacks to be passed to the UI thread with Swing:

public class Client extends JFrame
{
    public static void main(final String[] args)
    {
        SwingUtilities.invokeLater(new Runnable()
        {
            public void run()
            {
                try {
                    new Client(args);
                } catch (Ice.LocalException e) {
                    JOptionPane.showMessageDialog(
                        null, e.toString(),
                        "Initialization failed",
                        JOptionPane.ERROR_MESSAGE);
                }
            }
        });
    }

    Client(String[] args)
    {
        Ice.Communicator communicator;

        try {
            Ice.InitializationData initData =
                new Ice.InitializationData();
            initData.dispatcher = new Ice.Dispatcher()
            {
                public void
                dispatch(Runnable runnable,
                         Ice.Connection connection)
                {
                    SwingUtilities.invokeLater(runnable);
                }
            };
            communicator = Ice.Util.initialize(args, initData);
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        }
        catch(Throwable ex)
        {
            // ...
        }
        // ...
    }

    // ...
}

The dispatch method simply delays the call to run by calling 
invokeLater, passing it the Runnable that is provided by the Ice run time. 
This causes the Swing UI thread to eventually make the call to run. Because the 
Ice run time does not call dispatch until the asynchronous invocation is 
complete, that call to run does not block and the UI remains responsive.

Please see the swing demo in your Ice distribution for a fully-functional UI 
client that uses this technique.

C# Dispatcher API

To install a dispatcher, you must initialize a communicator with a delegate of type 
Ice.Dispatcher in the InitializationData structure. All invocations 
that arrive for this communicator are made via the specified dispatcher. For 
example:

public class Server
{
    public static void Main(string[] args)
    {
        Ice.Communicator communicator = null;
        
        try {
            Ice.InitializationData initData =
                    new Ice.InitializationData();
            initData.dispatcher = new MyDispatcher().dispatch;
            communicator =
                Ice.Util.initialize(ref args, initData);
            // ...
        } catch (System.Exception ex) {
            // ...
        }
        
        // ...
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    }

    // ...
}

The Ice.Dispatcher delegate is defined as follows:

public delegate void Dispatcher(System.Action call,
                                Connection con);

The Ice run time calls your delegate whenever an operation invocation arrives, 
passing a System.Action delegate and the connection via which the invoca-
tion arrived. The job of your delegate is to pass the incoming invocation to an 
operation implementation. (The con parameter allows you to decide how to 
dispatch the operation based on the connection via which it was received.)

In this example, the delegate calls a method dispatch on an instance of a 
MyDispatcher class. You can write dispatch such that it blocks and waits 
for completion of the invocation because dispatch is called by a thread in the 
server-side thread pool (for incoming operation invocations) or the client-side 
thread pool (for AMI callbacks).

Your implementation of dispatch is expected to invoke the call delegate 
(or, more commonly, to cause it to be invoked some time later). When you invoke 
the call delegate, the Ice run time processes the invocation in the thread that 
invokes the delegate.

A very simple way to implement dispatch would be as follows:

public class MyDispatcher
{
    public void
    dispatch(System.Action call, Ice.Connection con)
    {
        // Does not throw, blocks until op completes.
        call();
    }
};

Whenever the Ice run time receives an incoming operation invocation or when an 
AMI invocation completes, it calls dispatch which, in turn, invokes the call 
delegate.

With this simple example, dispatch immediately invokes the delegate, and 
that call does not return until the corresponding operation invocation is complete. 
As a result, this implementation ties up a thread in the thread pool for the duration 
of the call.
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So far, we really have not gained anything because all we have is a callback 
method that is called by the Ice run time. However, this simple mechanism is 
sufficient to ensure that we can update a UI from the correct thread.

A common technique to avoid blocking is to use asynchronous method invo-
cation (see Section 14.16). In response to a UI event (such as the user pressing a 
“Submit” button), the application initiates an operation invocation from the corre-
sponding UI callback by calling the operation’s begin_ method. This is guaran-
teed not to block the caller, so the UI remains responsive. Some time later, when 
the operation completes, the Ice run time invokes an AMI callback from one of the 
threads in its thread pool. That callback now has to update the UI, but that can 
only be done from the UI thread. By using a dispatcher, you can easily delegate 
the update to the correct thread. For example, here is how you can arrange for 
AMI callbacks to be passed to the UI thread with WPF:

public partial class MyWindow : Window
{
    private void Window_Loaded(object sender, EventArgs e)
    {
        Ice.Communicator communicator = null;

        try
        {
            Ice.InitializationData initData =
                    new Ice.InitializationData();
            initData.dispatcher =
                    delegate(System.Action action,
                             Ice.Connection connection)
            {
                Dispatcher.BeginInvoke(
                    DispatcherPriority.Normal, action);
            };
            communicator = Ice.Util.initialize(initData);
        }
        catch(Ice.LocalException ex)
        {
            // ...
        }
    }

    // ...
}

The delegate calls Dispatcher.BeginInvoke on the action delegate. 
This causes WPF to queue the actual asynchronous invocation of action for 
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later execution by the UI thread. Because the Ice run time does not invoke your 
delegate until an asynchronous operation invocation is complete, when the UI 
thread executes the corresponding call to the EndInvoke method, that call does 
not block and the UI remains responsive.

The net effect is that you can invoke an operation asynchronously from a UI 
callback method without the risk of blocking the UI thread. For example:

public partical class MyWindow : Window
{
    private void someOp_Click(object sender, RoutedEventArgs e)
    {
        MyIntfPrx p = ...;

        // Call remote operation asynchronously.
        // Response is processed in UI thread.
        p.begin_someOp().whenCompleted(this.opResponse,
                                       this.opException);
    }

    public void opResponse()
    {
        // Update UI...
    }

    public void opException(Ice.Exception ex)
    {
        // Update UI...
    }
}

Please see the wpf demo in your Ice distribution for a fully-functional UI client 
that uses this technique.

Implementation Notes

A call to Communicator::destroy will hang indefinitely if there are pending 
requests that have not yet been dispatched, therefore it is very important for a 
dispatcher implementation to ensure that all requests are dispatched.

32.11 Proxies

The introduction to proxies provided in Section 2.2.2 describes a proxy as a local 
artifact that makes a remote invocation as easy to use as a regular function call. In 
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fact, processing remote invocations is just one of a proxy’s many responsibilities. 
A proxy also encapsulates the information necessary to contact the object, 
including its identity (see Section 32.5) and addressing details such as endpoints 
(see Section 32.11.3). Proxy methods provide access to configuration and connec-
tion information, and act as factories for creating new proxies (see 
Section 32.11.2). Finally, a proxy initiates the establishment of a new connection 
when necessary (see Section 36.3).

32.11.1 Obtaining Proxies

An application can obtain a proxy in a number of ways.

Stringified Proxies

The communicator operation stringToProxy creates a proxy from its stringified 
representation, as shown in the following C++ example:

Ice::ObjectPrx p = communicator->stringToProxy("ident:tcp -p 5000");

See Appendix E for a description of stringified proxies and Section 32.2 for more 
information on the stringToProxy operation.

Proxy Properties

Rather than hard-coding a stringified proxy as the previous example demon-
strated, an application can gain more flexibility by externalizing the proxy in a 
configuration property. For example, we can define a property that contains our 
stringified proxy as follows:

MyApp.Proxy=ident:tcp -p 5000

We can use the communicator operation propertyToProxy to convert the prop-
erty’s value into a proxy, as shown below in Java:

Ice.ObjectPrx p = communicator.propertyToProxy("MyApp.Proxy");

As an added convenience, propertyToProxy allows you to define subordinate 
properties that configure the proxy’s local settings. The properties below demon-
strate this feature:

MyApp.Proxy=ident:tcp -p 5000
MyApp.Proxy.PreferSecure=1
MyApp.Proxy.EndpointSelection=Ordered
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These additional properties simplify the task of customizing a proxy without the 
need to change the application’s code. The properties shown above are equivalent 
to the following statements:

Ice.ObjectPrx p = communicator.stringToProxy("ident:tcp -p 5000");
p = p.ice_preferSecure(true);
p = p.ice_endpointSelection(Ice.EndpointSelectionType.Ordered);

The list of supported proxy properties is presented in Section D.9. Note that the 
communicator prints a warning by default if it does not recognize a subordinate 
property. You can disable this warning using the property 
Ice.Warn.UnknownProperties (see Section D.3).

Note that proxy properties can themselves have proxy properties. For 
example, the following sets the PreferSecure property on the default locator’s 
router:

Ice.Default.Locator.Router.PreferSecure=1

Factory Methods

As we discuss in Section 32.11.2, proxy factory methods allow you to modify 
aspects of an existing proxy. Since proxies are immutable, factory methods always 
return a new proxy if the desired modification differs from the proxy’s current 
configuration. Consider the following C# example:

Ice.ObjectPrx p = communicator.stringToProxy("...");
p = p.ice_oneway();

ice_oneway is considered a factory method because it returns a proxy config-
ured to use oneway invocations. If the original proxy uses a different invocation 
mode, the return value of ice_oneway is a new proxy object.

The checkedCast and uncheckedCast methods can also be considered 
factory methods because they return new proxies that are narrowed to a particular 
Slice interface. A call to checkedCast or uncheckedCast typically follows 
the use of other factory methods, as shown below:

Ice.ObjectPrx p = communicator.stringToProxy("...");
Ice.LocatorPrx loc =
    Ice.LocatorPrxHelper.checkedCast(p.ice_secure(true));

Invocations

An application can also obtain a proxy as the result of an Ice invocation. Consider 
the following Slice definitions:
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interface Account { ... };
interface Bank {
    Account* findAccount(string id);
};

Invoking the findAccount operation returns a proxy for an Account object. There 
is no need to use checkedCast or uncheckedCast on this proxy because it 
has already been narrowed to the Account interface. The C++ code below demon-
strates how to invoke findAccount:

BankPrx bank = ...
AccountPrx acct = bank->findAccount(id);

Of course, the application must have already obtained a proxy for the bank object 
using one of the techniques shown above. 

32.11.2 Proxy Methods

Although the core proxy functionality is supplied by a language-specific base 
class, we can describe the proxy methods in terms of Slice operations as shown 
below:

bool ice_isA(string id);
void ice_ping();
StringSeq ice_ids();
string ice_id();
int ice_getHash();
Communicator ice_getCommunicator();
string ice_toString();
Object* ice_identity(Identity id);
Identity ice_getIdentity();
Object* ice_adapterId(string id);
string ice_getAdapterId();
Object* ice_endpoints(EndpointSeq endpoints);
EndpointSeq ice_getEndpoints();
Object* ice_endpointSelection(EndpointSelectionType t);
EndpointSelectionType ice_getEndpointSelection();
Object* ice_context(Context ctx);
Context ice_getContext();
Object* ice_defaultContext();
Object* ice_facet(string facet);
string ice_getFacet();
Object* ice_twoway();
bool ice_isTwoway();
Object* ice_oneway();
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bool ice_isOneway();
Object* ice_batchOneway();
bool ice_isBatchOneway();
Object* ice_datagram();
bool ice_isDatagram();
Object* ice_batchDatagram();
bool ice_isBatchDatagram();
Object* ice_secure(bool b);
bool ice_isSecure();
Object* ice_preferSecure(bool b);
bool ice_isPreferSecure();
Object* ice_compress(bool b);
Object* ice_timeout(int timeout);
Object* ice_router(Router* rtr);
Router* ice_getRouter();
Object* ice_locator(Locator* loc);
Locator* ice_getLocator();
Object* ice_locatorCacheTimeout(int seconds);
int ice_getLocatorCacheTimeout();
Object* ice_collocationOptimized(bool b);
bool ice_isCollocationOptimized();
Object* ice_connectionId(string id);
string ice_getConnectionId();
Connection ice_getConnection();
Connection ice_getCachedConnection();
Object* ice_connectionCached(bool b);
bool ice_isConnectionCached();
void ice_flushBatchRequests();
bool ice_invoke(string operation, OperationMode mode,
                ByteSeq inParams, out ByteSeq outParams);

These methods can be categorized as follows:

• Remote inspection: methods that return information about the remote object. 
These methods make remote invocations and therefore accept an optional 
trailing argument of type Ice::Context (see Section 32.12).

• Local inspection: methods that return information about the proxy’s local 
configuration.

• Factory: methods that return new proxy instances configured with different 
features.

• Request processing: methods that flush batch requests and send “dynamic” Ice 
invocations.
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Proxies are immutable, so factory methods allow an application to obtain a new 
proxy with the desired configuration. Factory methods essentially clone the orig-
inal proxy and modify one or more features of the new proxy.

Many of the factory methods are not supported by fixed proxies. Attempting 
to invoke one of these methods causes the Ice run time to raise FixedProxyEx-
ception. See page 12 for a description of fixed proxies and Section 36.7 for addi-
tional details.

The core proxy methods are explained in greater detail in Table 32.1.

Table 32.1. The semantics of core proxy methods.

Method Description Remote

ice_isA Returns true if the remote 
object supports the type indi-
cated by the id argument, oth-
erwise false. This method 
can only be invoked on a two-
way proxy.

Yes

ice_ping Determines whether the remote 
object is reachable. Does not 
return a value.

Yes

ice_ids Returns the type ids of the types 
supported by the remote object. 
The return value is an array of 
strings. This method can only 
be invoked on a twoway proxy.

Yes

ice_id Returns the type id of the most-
derived type supported by the 
remote object. This method can 
only be invoked on a twoway 
proxy.

Yes

ice_getHash Returns a hash value for the 
proxy for C++. For other lan-
guage mappings, use the built-
in hash method.

No

ice_getCommunicator Returns the communicator that 
was used to create this proxy.

No

ice_toString Returns the string representa-
tion of the proxy.

No

ice_identity Returns a new proxy having the 
given identity.

No
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ice_getIdentity Returns the identity of the Ice 
object represented by the proxy.

No

ice_adapterId Returns a new proxy having the 
given adapter id.

No

ice_getAdapterId Returns the proxy’s adapter id, 
or an empty string if no adapter 
id is configured.

No

ice_endpoints Returns a new proxy having the 
given endpoints.

No

ice_getEndpoints Returns a sequence of End-
point objects representing the 
proxy’s endpoints. See 
Section 36.5.2 for more infor-
mation.

No

ice_endpointSelection Returns a new proxy having the 
given selection policy (random 
or ordered). See Section 36.3.1 
for more information.

No

ice_getEndpointSelection Returns the endpoint selection 
policy for the proxy.

No

ice_context Returns a new proxy having the 
given request context. See 
Section 32.12 for more infor-
mation on request contexts.

No

ice_getContext Returns the request context 
associated with the proxy. See 
Section 32.12 for more infor-
mation on request contexts.

No

ice_facet Returns a new proxy having the 
given facet name. See 
Chapter 33 for more informa-
tion on facets.

No

ice_getFacet Returns the name of the facet 
associated with the proxy, or an 
empty string if no facet has 
been set. See Chapter 33 for 
more information on facets.

No

ice_twoway Returns a new proxy for making 
twoway invocations.

No

Table 32.1. The semantics of core proxy methods.

Method Description Remote
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ice_isTwoway Returns true if the proxy uses 
twoway invocations, otherwise 
false.

No

ice_oneway Returns a new proxy for making 
oneway invocations (see 
Section 32.14).

No

ice_isOneway Returns true if the proxy uses 
oneway invocations, otherwise 
false.

No

ice_batchOneway Returns a new proxy for making 
batch oneway invocations (see 
Section 32.16).

No

ice_isBatchOneway Returns true if the proxy uses 
batch oneway invocations, oth-
erwise false.

No

ice_datagram Returns a new proxy for making 
datagram invocations (see 
Section 32.15).

No

ice_isDatagram Returns true if the proxy uses 
datagram invocations, other-
wise false.

No

ice_batchDatagram Returns a new proxy for making 
batch datagram invocations (see 
Section 32.16).

No

ice_isBatchDatagram Returns true if the proxy uses 
batch datagram invocations, 
otherwise false.

No

ice_secure Returns a new proxy whose 
endpoints may be filtered 
depending on the boolean argu-
ment. If true, only endpoints 
using secure transports are 
allowed, otherwise all end-
points are allowed.

No

ice_isSecure Returns true if the proxy uses 
only secure endpoints, other-
wise false.

No

Table 32.1. The semantics of core proxy methods.

Method Description Remote
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ice_preferSecure Returns a new proxy whose 
endpoints are filtered depending 
on the boolean argument. If 
true, endpoints using secure 
transports are given precedence 
over endpoints using non-
secure transports. If false, the 
default behavior gives prece-
dence to endpoints using non-
secure transports.

No

ice_isPreferSecure Returns true if the proxy pre-
fers secure endpoints, otherwise 
false.

No

ice_compress Returns a new proxy whose 
protocol compression capability 
is determined by the boolean 
argument. If true, the proxy 
uses protocol compression if it 
is supported by the endpoint. If 
false, protocol compression 
is never used.

No

ice_timeout Returns a new proxy with the 
given timeout value in millisec-
onds. A value of -1 disables 
timeouts. See Section 32.13 for 
more information on timeouts.

No

ice_router Returns a new proxy configured 
with the given router proxy. See 
Chapter 42 for more informa-
tion on routers.

No

ice_getRouter Returns the router that is con-
figured for the proxy (null if no 
router is configured).

No

ice_locator Returns a new proxy with the 
specified locator. See 
Chapter 38 for more informa-
tion on locators.

No

ice_getLocator Returns the locator that is con-
figured for the proxy (null if no 
locator is configured).

No

Table 32.1. The semantics of core proxy methods.

Method Description Remote
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ice_locatorCacheTimeout Returns a new proxy with the 
specified locator cache time-
out. When binding a proxy to an 
endpoint, the run time caches 
the proxy returned by the loca-
tor and uses the cached proxy 
while the cached proxy has 
been in the cache for less than 
the timeout. Proxies older than 
the timeout cause the run time 
to rebind via the locator. A 
value of 0 disables caching 
entirely, and a value of -1 
means that cached proxies 
never expire. The default value 
is -1.

No

ice_getLocatorCacheTimeout Returns the locator cache time-
out value in seconds.

No

ice_collocationOptimized Returns a new proxy configured 
for collocation optimization. If 
true, collocated optimiza-
tions are enabled. The default 
value is true.

No

ice_isCollocationOptimized Returns true if the proxy uses 
collocation optimization, other-
wise false.

No

ice_connectionId Returns a new proxy having the 
given connection identifier. See 
Section 36.3.3 for more infor-
mation.

No

ice_getConnectionId Returns the connection id, or an 
empty string if no connection id 
has been configured.

No

ice_getConnection Returns an object representing 
the connection used by the 
proxy. If the proxy is not cur-
rently associated with a connec-
tion, the Ice run time attempts 
to establish a connection first. 
See Section 36.5 for more 
information.

No

Table 32.1. The semantics of core proxy methods.

Method Description Remote
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32.11.3 Endpoints

Proxy endpoints are the client-side equivalent of object adapter endpoints (see 
Section 32.4.6). A proxy endpoint identifies the protocol information used to 
contact a remote object, as shown in the following example:

tcp -h www.zeroc.com -p 10000

This endpoint states that an object is reachable via TCP on the host 
www.zeroc.com and the port 10000.

A proxy must have, or be able to obtain, at least one endpoint in order to be 
useful. As defined in Section 2.2.2, a direct proxy contains one or more endpoints:

MyObject:tcp -h www.zeroc.com -p 10000:ssl -h www.zeroc.com -p 10001

ice_getCachedConnection Returns an object representing 
the connection used by the 
proxy, or null if the proxy is not 
currently associated with a con-
nection. See Section 36.5 for 
more information.

No

ice_connectionCached Enables or disables connection 
caching for the proxy. See 
Section 36.3.4 for more infor-
mation

No

ice_isConnectionCached Returns true if the proxy uses 
connection caching, otherwise 
false.

No

ice_flushBatchRequests
begin_ice_flushBatchRequests

Sends a batch of operation invo-
cations synchronously or asyn-
chronously (see Section 32.16).

Yes

ice_invoke
begin_ice_invoke

Allows dynamic invocation of 
an operation without the need 
for compiled Slice definitions. 
Requests can be sent synchro-
nously (see Section 35.3.1) or 
asynchronously (see 
Section 35.4).

Yes

Table 32.1. The semantics of core proxy methods.

Method Description Remote
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In this example the object with the identity MyObject is available at two sepa-
rate endpoints, one using TCP and the other using SSL.

If a direct proxy does not contain the -h option (that is, no host is specified), 
the Ice run time uses the value of the Ice.Default.Host property (see 
Appendix D). If Ice.Default.Host is not defined, the localhost interface is 
used.

An indirect proxy uses a locator (see Chapter 38) to retrieve the endpoints 
dynamically. One style of indirect proxy contains an adapter identifier:

MyObject @ MyAdapter

When this proxy requires the endpoints associated with MyAdapter, it requests 
them from the locator.

32.11.4 Endpoint Filtering

A proxy’s configuration determines how its endpoints are used. For example, a 
proxy configured for secure communication will only use endpoints having a 
secure protocol, such as SSL.

The factory functions described in Table 32.2 allow applications to manipulate 
endpoints indirectly. Calling one of these functions returns a new proxy whose 
endpoints are used in accordance with the proxy’s configuration.

Table 32.2. Proxy factory functions and their effects on endpoints.

Option Description

ice_secure Selects only endpoints using a secure protocol (e.g., 
SSL).

ice_datagram Selects only endpoints using a datagram protocol 
(e.g., UDP).

ice_batchDatagram Selects only endpoints using a datagram protocol 
(e.g., UDP).

ice_twoway Selects only endpoints capable of making twoway 
invocations (e.g., TCP, SSL). For example, this dis-
ables datagram endpoints.
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Upon return, the set of endpoints in the new proxy is unchanged from the old one. 
However, the new proxy’s configuration drives a filtering process that the Ice run 
time performs during connection establishment, as described in Section 36.3.1.

The factory functions do not raise an exception if they produce a proxy with 
no viable endpoints. For example, the C++ statement below creates such a proxy:

proxy = comm->stringToProxy("id:tcp -p 10000")->ice_datagram();

It is always possible that a proxy could become viable after additional factory 
functions are invoked, therefore the Ice run time does not raise an exception until 
connection establishment is attempted. At that point, the application can expect to 
receive NoEndpointException if the filtering process eliminates all endpoints.

An application can also create a proxy with a specific set of endpoints using 
the ice_endpoints factory function, whose only argument is a sequence of 
Ice::Endpoint objects. At present, an application is not able to create new 
instances of Ice::Endpoint, but rather can only incorporate instances obtained 
by calling ice_getEndpoints on a proxy. Note that ice_getEndpoints 
may return an empty sequence if the proxy has no endpoints, as is the case with an 
indirect proxy.

32.11.5 Defaults and Overrides

It is important to understand how proxies are influenced by Ice configuration 
properties and settings. The relevant properties can be classified into two catego-
ries: defaults and overrides.

ice_oneway Selects only endpoints capable of making reliable 
oneway invocations (e.g., TCP, SSL). For example, 
this disables datagram endpoints.

ice_batchOneway Selects only endpoints capable of making reliable 
oneway batch invocations (e.g., TCP, SSL). For exam-
ple, this disables datagram endpoints.

Table 32.2. Proxy factory functions and their effects on endpoints.

Option Description
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Default Properties

Default properties affect proxies created as the result of an Ice invocation, or by 
calls to stringToProxy or propertyToProxy. These properties do not influence 
proxies created by factory methods.

For example, suppose we define the following default property:

Ice.Default.PreferSecure=1

We can verify that the property has the desired affect using the following C++ 
code:

Ice::ObjectPrx p = communicator->stringToProxy(...);
assert(p->ice_isPreferSecure());

Furthermore, we can verify that the property does not affect proxies returned by 
factory methods:

Ice::ObjectPrx p2 = p->ice_preferSecure(false);
assert(!p2->ice_isPreferSecure());
Ice::ObjectPrx p3 = p2->ice_oneway();
assert(!p3->ice_isPreferSecure());

The default properties are described in Section D.8.

Override Properties

Defining an override property causes the Ice run time to ignore any equivalent 
proxy setting and use the override property value instead. For example, consider 
the following property definition:

Ice.Override.Secure=1

This property instructs the Ice run time to use only secure endpoints, producing 
the same semantics as calling ice_secure(true) on every proxy. However, 
the property does not alter the settings of an existing proxy, but rather directs the 
Ice run time to use secure endpoints regardless of the proxy’s security setting. We 
can verify that this is the case using the following C++ code:

Ice::ObjectPrx p = communicator->stringToProxy(...);
p = p->ice_secure(false);
assert(!p->ice_isSecure()); // The security setting is retained.

The override properties are described in Section D.8.
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32.12 The Ice::Context Parameter

Methods on a proxy are overloaded with a trailing parameter of type 
const Ice::Context & (C++), java.util.Map (Java), or 
Dictionary<string, string> (C#). The Slice definition of this param-
eter is as follows:

module Ice {
    local dictionary<string, string> Context;
};

As you can see, a context is a dictionary that maps strings to strings or, conceptu-
ally, a context is a collection of name–value pairs. The contents of this dictionary 
(if any) are implicitly marshaled with every request to the server, that is, if the 
client populates a context with a number of name–value pairs and uses that 
context for an invocation, the name–value pairs that are sent by the client are 
available to the server.

On the server side, the operation implementation can access the received 
Context via the ctx member of the Ice::Current parameter (see Section 32.6) 
and extract the name–value pairs that were sent by the client.

Context names beginning with an underscore () are reserved for use by Ice.

32.12.1 Passing a Context Explicitly

Contexts provide a means of sending an unlimited number of parameters from 
client to server without having to mention these parameters in the signature of an 
operation. For example, consider the following definition:

struct Address {
    // ...
};

interface Person {
    string setAddress(Address a);
    // ...
};

Assuming that the client has a proxy to a Person object, it could do something 
along the following lines:
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PersonPrx p = ...;
Address a = ...;

Ice::Context ctx;
ctx["write policy"] = "immediate";

p->setAddress(a, ctx);

In Java, the same code would looks as follows:

PersonPrx p = ...;
Address a = ...;

java.util.Map ctx = new java.util.HashMap();
ctx.put("write policy", "immediate");

p.setAddress(a, ctx);

In C#, the code is almost identical, except that the context dictionary is type safe:

using System.Collections.Generic;

PersonPrx p = ...;
Address a = ...;

Dictionary<string, string> ctx = new Dictionary<string, string>();
ctx["write policy"] = "immediate";

p.setAddress(a, ctx);

On the server side, we can extract the policy value set by the client to influence 
how the implementation of setAddress works. A C++ implementation might 
look like:

void
PersonI::setAddress(const Address& a, const Ice::Current& c)
{
    Ice::Context::const_iterator i = c.ctx.find("write policy");
    if (i != c.ctx.end() && i->second == "immediate") {

        // Update the address details and write through to the 
        // data base immediately...

    } else {
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        // Write policy was not set (or had a bad value), use
        // some other database write strategy.
    }
}

For this example, the server examines the value of the context with the key 
"write policy" and, if that value is "immediate", writes the update sent by the 
client straight away; if the write policy is not set or contains a value that is not 
recognized, the server presumably applies a more lenient write policy (such as 
caching the update in memory and writing it later). The Java version of the opera-
tion implementation is essentially identical, so we do not show it here.

32.12.2 Passing a Per-Proxy Context
Instead of passing a context explicitly with an invocation, you can also use a per-
proxy context. Per-proxy contexts allow you to set a context on a particular proxy 
once and, thereafter, whenever you use that proxy to invoke an operation, the 
previously-set context is sent with each invocation. The proxy base class provides 
a member function, ice_context, to do this:

namespace IceProxy {
    namespace Ice {
        class Object : /* ... */ {
        public:
            Ice::ObjectPrx
                ice_context(const Ice::Context&) const;
            // ...
        };
    }
}

For Java, the corresponding function is:

package Ice;

public interface ObjectPrx {
    ObjectPrx ice_context(java.util.Map newContext);
    // ...
}

For C#, the corresponding method is:

namespace Ice
{
    public interface ObjectPrx
    {
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        ObjectPrx ice_context(Dictionary<string, string>
                                  newContext);
        // ...
    }
}

ice_context creates a new proxy that stores the passed context. Note that the 
return type of ice_context is ObjectPrx. Therefore, before you can use the 
newly-created proxy, you must down-cast it to the correct type. For example, in 
C++:

Ice::Context ctx;
ctx["write policy"] = "immediate";

PersonPrx p1 = ...;
PersonPrx p2 = PersonPrx::uncheckedCast(p1->ice_context(ctx));

Address a = ...;

p1->setAddress(a);       // Sends no context

p2->setAddress(a);       // Sends ctx implicitly

Ice::Context ctx2;
ctx2["write policy"] = "delayed";

p2->setAddress(a, ctx2); // Sends ctx2

As the example illustrates, once we have created the p2 proxy, any invocation via 
p2 implicitly sends the previously-set context. The final line of the example illus-
trates that it is possible to explicitly send a context for an invocation even if the 
proxy has an implicit context—an explicit context always overrides any implicit 
context.

Note that, once you have set a per-proxy context, that context becomes immu-
table: if you change the context you have passed to ice_context later, that 
does not affect the per-proxy context of any proxies you previously created with 
that context because each proxy on which you set a per-proxy context makes a 
copy of the dictionary and stores that copy.
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32.12.3 Retrieving the Per-Proxy Context
You can retrieve the per-proxy context by calling ice_getContext on the 
proxy. If a proxy has no implicit context, the returned dictionary is empty. For 
C++, the signature is:

namespace IceProxy {
    namespace Ice {
        class Object : /* ... */ {
        public:
            Ice::Context ice_getContext() const;
            // ...
        };
    }
}

For Java, the signature is:

package Ice;

public interface ObjectPrx {
    java.util.Map ice_getContext();
    // ...
}

For C#, the signature is:

namespace Ice
{
    public interface ObjectPrx
    {
        Dictionary<string, string> ice_getContext();
    }
}

32.12.4 Implicit Contexts
In addition to the explicit and the implicit per-proxy contexts we described in the 
preceding sections, you can also establish an implicit context on a communicator. 
This implicit context is sent with all invocations made via proxies created by that 
communicator, provided that you do not supply an explicit context with the call.

Access to this implicit context is provided by the Communicator interface:

module Ice {
    local interface Communicator
    {
        ImplicitContext getImplicitContext();
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        // ...
    };
};

getImplicitContext returns the implicit context. If a communicator has no 
implicit context, the operation returns a null proxy.

You can manipulate the contents of the implicit context via the ImplicitCon-
text interface:

local interface ImplicitContext
{
    Context getContext();
    void    setContext(Context newContext);

    string get(string key);
    string put(string key, string value);
    string remove(string key);
    bool   containsKey(string key);
};

The getContext operation returns the currently-set context dictionary. The 
setContext operation replaces the currently-set context in its entirety.

The remaining operations allow you to manipulate specific entries:
• get

This operation returns the value associated with key. If key was not previously 
set, the operation returns the empty string.

• put

This operation adds the key–value pair specified by key and value. It returns 
the previous value associated with key; if no value was previously associated 
with key, it returns the empty string. It is legal to add the empty string as a 
value.

• remove

This operation removes the key–value pair specified by key. It returns the 
previously-set value (or the empty string if key was not previously set).

• containsKey

This operation returns true if key is currently set and false, otherwise. You can 
use this operation to distinguish between a key–value pair that was explicitly 
added with an empty string as a value, and a key–value pair that was never 
added at all.
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Scope of the Implicit Context

You establish the implicit context on a communicator by setting a property, 
Ice.ImplicitContext. This property controls whether a communicator has an 
implicit context and, if so, at what scope the context applies. The property can be 
set to the following values:

• None

With this setting (or if Ice.ImplicitContext is not set at all), the communi-
cator has no implicit context, and getImplicitContext returns a null proxy.

• Shared

The communicator has a single implicit context that is shared by all threads. 
Access to the context via its ImplicitContext interface is interlocked, so 
different threads can concurrently manipulate the context without risking data 
corruption or reading stale values.

• PerThread

The communicator maintains a separate implicit context for each thread. This 
allows you to propagate contexts that depend on the sending thread (for 
example, to send per-thread transaction IDs).

32.12.5 Interactions of Explicit, Per-Proxy, and Implicit Contexts
If you use explicit, per-proxy, and implicit contexts, it is important to be aware of 
their interactions:

• If you send an explicit context with an invocation, only that context is sent 
with the call, regardless of whether the proxy has a per-proxy context and 
whether the communicator has an implicit context.

• If you send an invocation via a proxy that has a per-proxy context, and the 
communicator also has an implicit context, the contents of the per-proxy and 
implicit context dictionaries are combined, so the combination of context 
entries of both contexts is transmitted to the server. If the per-proxy context 
and the implicit context contain the same key, but with different values, the 
per-proxy value takes precedence.

32.12.6 Context Use Cases
The purpose of Ice::Context is to permit services to be added to Ice that require 
some contextual information with every request. Contextual information can be 
used by services such as a transaction service (to provide the context of a currently 
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established transaction) or a security service (to provide an authorization token to 
the server). IceStorm (see Chapter 44) uses the context to provide an optional 
cost parameter to the service that influences how the service propagates messages 
to down-stream subscribers.

In general, services that require such contextual information can be imple-
mented much more elegantly using contexts because this hides explicit Slice 
parameters that would otherwise have to be supplied by the application 
programmer with every call.

In addition, contexts, because they are optional, permit a single Slice defini-
tion to apply to implementations that use the context, as well as to implementa-
tions that do not use it. In this way, to add transactional semantics to an existing 
service, you do not need to modify the Slice definitions to add an extra parameter 
to each operation. (Adding an extra parameter would not only be inconvenient for 
clients, but would also split the type system into two halves: without contexts, we 
would need different Slice definitions for transactional and non-transactional 
implementations of (conceptually) a single service.)

Finally, per-proxy contexts permit context information to be passed by 
through intermediate parts of your program without cooperation of those interme-
diate parts. For example, suppose you set a per-proxy context on a proxy and then 
pass that proxy to another function. When that function uses the proxy to invoke 
an operation, the per-proxy context will still be sent. In other words, per-proxy 
contexts allow you to transparently propagate information via intermediaries that 
are ignorant of the presence of any context.

Keep in mind though that this works only within a single process. If you strin-
gify a proxy or transmit it as a parameter over the wire, the per-proxy context is 
not preserved. (Ice does not write the per-proxy context into stringified proxies 
and does not marshal the per-proxy context when a proxy is marshaled.)

32.12.7 A Word of Warning

Contexts are a powerful mechanism for transparent propagation of context infor-
mation, if used correctly. In particular, you may be tempted to use contexts as a 
means of versioning an application as it evolves over time. For example, version 2 
of your application may accept two parameters on an operation that, in version 1, 
used to accept only a single parameter. Using contexts, you could supply the 
second parameter as a name–value pair to the server and avoid changing the Slice 
definition of the operation in order to maintain backward compatibility.
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We strongly urge you to resist any temptation to use contexts in this manner. 
The strategy is fraught with problems:

• Missing context

There is nothing that would compel a client to actually send a context when 
the server expects to receive a context: if a client forgets to send a context, the 
server, somehow, has to make do without it (or throw an exception).

• Missing or incorrect keys

Even if the client does send a context, there is no guarantee that it has set the 
correct key. (For example, a simple spelling error can cause the client to send 
a value with the wrong key.)

• Incorrect values

The value of a context is a string, but the application data that is to be sent 
might be a number, or it might be something more complex, such as a struc-
ture with several members. This forces you to encode the value into a string 
and decode the value again on the server side. Such parsing is tedious and 
error prone, and far less efficient than sending strongly-typed parameters. In 
addition, the server has to deal with string values that fail to decode correctly 
(for example, because of an encoding error made by the client).

None of the preceding problems can arise if you use proper Slice parameters: 
parameters cannot be accidentally omitted and they are strongly typed, making it 
much less likely for the client to accidentally send a meaningless value.

If you are concerned about how to evolve an application over time without 
breaking backward compatibility, Ice facets are better suited to this task (see 
Chapter 33). Contexts are meant to be used to transmit simple tokens (such as a 
transaction identifier) for services that cannot be reasonably implemented without 
them; you should restrict your use of contexts to that purpose and resist any temp-
tation to use contexts for any other purpose.

Finally, be aware that, if a request is routed via one or more Ice routers, 
contexts may be dropped by intermediate routers if they consider them illegal. 
This means that, in general, you cannot rely on an arbitrary context value that is 
created by an application to actually still be present when a request arrives at the 
server—only those context values that are known to routers and that are consid-
ered legitimate are passed on. It follows that you should not abuse contexts to pass 
things that really should be passed as parameters.
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32.13 Connection Timeouts

A synchronous remote invocation does not complete on the client side until the 
server has finished processing it. Occasionally, it is useful to be able to force an 
invocation to terminate after some time, even if it has not completed. Proxies 
provide the ice_timeout operation for this purpose:

namespace IceProxy {
    namespace Ice {
        class Object : /* ... */ {
        public:
            Ice::ObjectPrx ice_timeout(Ice::Int t) const;
            // ...
        };
    }
}

For Java (and, analogously, for C#), the corresponding method is:

package Ice;

public interface ObjectPrx {
    ObjectPrx ice_timeout(int t);
    // ...
}

The ice_timeout operation creates a proxy with a timeout from an existing 
proxy. For example:

Filesystem::FilePrx myFile = ...;
FileSystem::FilePrx timeoutFile
    = FileSystem::FilePrx::uncheckedCast(
        myFile->ice_timeout(5000));

try {
    Lines text = timeoutFile->read();   // Read with timeout
} catch(const Ice::TimeoutException&) {
    cerr << "invocation timed out" << endl;
}

Lines text = myFile->read();            // Read without timeout

The parameter to ice_timeout determines the timeout value in milliseconds. A 
value of  indicates no timeout. In the preceding example, the timeout is set to 
five seconds; if an invocation of read via the timeoutFile proxy does not 
complete within five seconds, the operation terminates with an Ice::Timeou-
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tException. On the other hand, invocations via the myFile proxy are unaf-
fected by the timeout, that is, ice_timeout sets the timeout on a per-proxy basis.

The timeout value set on a proxy affects all networking operations: reading 
and writing of data as well as opening and closing of connections. If any of these 
operations does not complete within the timeout, the client receives an exception. 
Note that, if the Ice run time encounters a recoverable error condition and trans-
parently retries an invocation, this means that the timeout applies separately to 
each attempt. Similarly, if a large amount of data is sent with an operation invoca-
tion in several write system calls, the timeout applies to each write, not to the 
invocation overall.

Timeouts that expire during reading or writing of data are indicated by a 
TimeoutException. For opening and closing of connections, the Ice run time 
reserves separate exceptions:

• ConnectTimeoutException

This exception indicates that a connection could not be established within the 
specified time.

• CloseTimeoutException

This exception indicates that a connection could not be closed within the spec-
ified time.

An application normally configures a proxy’s timeout using the ice_timeout 
method. However, a proxy that originated from a string may already have a 
timeout specified, as shown in the following example:

// C++
string s = "ident:tcp -h somehost -t 5000:ssl -h somehost -t 5000";

In this case, both the TCP and SSL endpoints define a timeout of five seconds. 
When the Ice run time establishes a connection using one of these endpoints, it 
uses the endpoint’s timeout unless one was specified explicitly via 
ice_timeout.

The Ice run time also supports two configuration properties that override the 
timeouts of every proxy regardless of the settings established via ice_timeout 
or defined in stringified proxies:

• Ice.Override.ConnectTimeout

This property defines a timeout that is only used for connection establishment. 
If not defined, its default value is  (no timeout). If a proxy has multiple 
endpoints, the timeout applies to each endpoint separately.
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• Ice.Override.Timeout

This property defines the timeout for invocations. If no value is defined for 
Ice.Override.ConnectTimeout, the value of Ice.Over-
ride.Timeout is also used as the timeout for connection establishment. If 
not defined, the default value is  (no timeout).

Note that timeouts are “soft” timeouts, in the sense that they are not precise, real-
time timeouts. (The precision is limited by the capabilities of the underlying oper-
ating system.) You should also be aware that timeouts are considered fatal error 
conditions by the Ice run time and result in connection closure on the client side. 
Furthermore, any other requests pending on the same connection also fail with an 
exception. Timeouts are meant to be used to prevent a client from blocking indefi-
nitely in case something has gone wrong with the server; they are not meant as a 
mechanism to routinely abort requests that take longer than intended.

32.14 Oneway Invocations

As mentioned in Chapter 2, the Ice run time supports oneway invocations. A 
oneway invocation is sent on the client side by writing the request to the client’s 
local transport buffers; the invocation completes and returns control to the applica-
tion code as soon as it has been accepted by the local transport. Of course, this 
means that a oneway invocation is unreliable: it may never be sent (for example, 
because of a network failure) or it may not be accepted in the server (for example, 
because the target object does not exist).

This is an issue in particular if you use active connection management (see 
Section 36.4): if a server closes a connection at the wrong moment, it is possible 
for the client to lose already-buffered oneway requests. We therefore recommend 
that you disable active connection management for the server side if clients use 
oneway (or batched oneway—see Section 32.16) requests. In addition, if clients 
use oneway requests and your application initiates server shutdown, it is the 
responsibility of your application to ensure either that it can cope with the poten-
tial loss of buffered oneway requests, or that it does not shut down the server at the 
wrong moment (while clients still have oneway requests that are buffered, but not 
yet sent).

If anything goes wrong with a oneway request, the client-side application code 
does not receive any notification of the failure; the only errors that are reported to 
the client are local errors that occur on the client side during call invocation (such 
as failure to establish a connection, for example).
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As a consequence of oneway invocation, if you call ice_ping on a oneway 
proxy, successful completion does not indicate that the target object exists and 
could successfully be contacted—you will receive an exception only if something 
goes wrong on the client side, but not if something goes wrong on the server side. 
Therefore, if you want to use ice_ping with a oneway proxy and be certain that 
the target object exists and can successfully be contacted, you must first convert 
the oneway proxy into a twoway proxy. For example, in C++:

SomeObjectPrx onewayPrx = ...; // Get a oneway proxy

try {
    onewayPrx->ice_twoway()->ice_ping();
} catch(const Ice::Exception&)
    cerr << "object not reachable" << endl;
}

Oneway invocations are received and processed on the server side like any other 
incoming request. If necessary, a server can distinguish a oneway invocation by 
examining the requestId member of Ice::Current: a non-zero value denotes a 
twoway request, whereas a value of zero indicates a oneway request.

Oneway invocations do not incur any return traffic from the server to the 
client: the server never sends a reply message in response to a oneway invocation 
(see Chapter 37). This means that oneway invocations can result in large effi-
ciency gains, especially for large numbers of small messages, because the client 
does not have to wait for the reply to each message to arrive before it can send the 
next message.

In order to be able to invoke an operation as oneway, two conditions must be 
met:

• The operation must have a void return type, must not have any out-parame-
ters, and must not have an exception specification.

This requirement reflects the fact that the server does not send a reply for a 
oneway invocation to the client: without such a reply, there is no way to return 
any values or exceptions to the client.

If you attempt to invoke an operation that returns values to the client as a 
oneway operation, the Ice run time throws a TwowayOnlyException.
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• The proxy on which the operation is invoked must support a stream-oriented 
transport (such as TCP or SSL).

Oneway invocations require a stream-oriented transport. (To get something 
like a oneway invocation for datagram transports, you need to use a datagram 
invocation—see Section 32.15.)

If you attempt to create a oneway proxy for an object that does not offer a 
stream-oriented transport, the Ice run time throws a NoEndpointException.

Despite their theoretical unreliablity, in practice, oneway invocations are reliable 
(but not infallible [19]): they are sent via a stream-oriented transport, so they 
cannot get lost except when the connection is shutting down (see Section 36.6.2) 
or fails entirely. In particular, the transport uses its usual flow control, so the client 
cannot overrun the server with messages. On the client-side, the Ice run time will 
block if the client’s transport buffers fill up, so the client-side application code 
cannot overrun its local transport.

Consequently, oneway invocations normally do not block the client-side appli-
cation code and return immediately, provided that the client does not consistently 
generate messages faster than the server can process them. If the rate at which the 
client invokes operations exceeds the rate at which the server can process them, 
the client-side application code will eventually block in an operation invocation 
until sufficient room is available in the client’s transport buffers to accept the invo-
cation. If your application requires that oneway requests never block the calling 
thread, you can use asynchronous oneway invocations instead.

Regardless of whether the client exceeds the rate at which the server can 
process incoming oneway invocations, the execution of oneway invocations in the 
server proceeds asynchronously: the client’s invocation completes before the 
message even arrives at the server.

One thing you need to keep in mind about oneway invocations is that they may 
appear to be reordered in the server: because oneway invocations are sent via a 
stream-oriented transport, they are guaranteed to be received in the order in which 
they were sent. However, the server’s thread pool may dispatch each invocation in 
its own thread; because threads are scheduled preemptively, this may cause an 
invocation sent later by the client to be dispatched and executed before an invoca-
tion that was sent earlier. If oneway requests must be dispatched in order, you can 
use one of the serialization techniques described in Section 32.10.4.

For these reasons, oneway invocations are usually best suited to simple 
updates that are otherwise stateless (that is, do not depend on the surrounding 
context or the state established by previous invocations). Refer to Section 32.10 
for more information on threading.
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Creating Oneway Proxies

Ice selects between twoway, oneway, and datagram (see Section 32.15) invoca-
tions via the proxy that is used to invoke the operation. By default, all proxies are 
created as twoway proxies. To invoke an operation as oneway, you must create a 
separate proxy for oneway dispatch from a twoway proxy.

For C++, all proxies are derived from a common 
IceProxy::Ice::Object class (seeSection 6.11.1). The proxy base class 
contains a method to create a oneway proxy, called ice_oneway:

namespace IceProxy {
    namespace Ice {
        class Object : /* ... */ {
        public:
            Ice::ObjectPrx ice_oneway() const;
            // ...
        };
    }
}

For Java and C#, proxies are derived from the Ice.ObjectPrx interface (see 
Section 10.11.2) and the definition of ice_oneway is:

package Ice;

public interface ObjectPrx {
    ObjectPrx ice_oneway();
    // ...
}

We can call ice_oneway to create a oneway proxy and then use the proxy to 
invoke an operation as follows. (We show the C++ version here—the Java and C# 
versions are analogous.)

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a oneway proxy.
//
Ice::ObjectPrx oneway;
try {
    oneway = o->ice_oneway();
} catch (const Ice::NoEndpointException&) {
    cerr << "No endpoint for oneway invocations" << endl;
}

// Down-cast to actual type.
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//
PersonPrx onewayPerson = PersonPrx::uncheckedCast(oneway);

// Invoke an operation as oneway.
//
try {
    onewayPerson->someOp();
} catch (const Ice::TwowayOnlyException&) {
    cerr << "someOp() is not oneway" << endl;
}

Note that we use an uncheckedCast to down-cast the proxy from 
ObjectPrx to PersonPrx: for a oneway proxy, we cannot use a checked-
Cast because a checkedCast requires a reply from the server but, of course, a 
oneway proxy does not permit that reply. If instead you want to use a safe down-
cast, you can first down-cast the twoway proxy to the actual object type and then 
obtain the oneway proxy:

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Safe down-cast to actual type.
//
PersonPrx person = PersonPrx::checkedCast(o);

if (person) {
    // Get a oneway proxy.
    //
    PersonPrx onewayPerson;
    try {
        onewayPerson
            = PersonPrx::uncheckedCast(person->ice_oneway());
    } catch (const Ice::NoEndpointException&) {
        cerr << "No endpoint for oneway invocations" << endl;
    }

    // Invoke an operation as oneway.
    //
    try {
        onewayPerson->someOp();
    } catch (const Ice::TwowayOnlyException&) {
        cerr << "someOp() is not oneway" << endl;
    }
}



1058 The Ice Run Time in Detail

Note that, while the second version of this code is somewhat safer (because it uses 
a safe down-cast), it is also slower (because the safe down-cast incurs the cost of 
an additional twoway message).

32.15 Datagram Invocations

Datagram invocations are the equivalent of oneway invocations for datagram 
transports. As for oneway invocations, datagram invocations can be sent only for 
operations that have a void return type and do not have out-parameters or an 
exception specification. (Attempts to use a datagram invocation with an operation 
that does not meet these criteria result in a TwowayOnlyException.) In addition, 
datagram invocations can only be used if the proxy’s endpoints include at least 
one UDP transport; otherwise, the Ice run time throws a NoEndpointException.

The semantics of datagram invocations are similar to oneway invocations: no 
return traffic flows from the server to the client and proceed asynchronously with 
respect to the client; a datagram invocation completes as soon as the client’s trans-
port has accepted the invocation into its buffers. However, datagram invocations 
differ in one respect from oneway invocations in that datagram invocations option-
ally support multicast semantics. Furthermore, datagram invocations have addi-
tional error semantics:

• Individual invocations may be lost or received out of order.

On the wire, datagram invocations are sent as true datagrams, that is, indi-
vidual datagrams may be lost, or arrive at the server out of order. As a result, 
not only may operations be dispatched out of order, an individual invocation 
out of a series of invocations may be lost. (This cannot happen for oneway 
invocations because, if a connection fails, all invocations are lost once the 
connection breaks down.)

• UDP packets may be duplicated by the transport.

Because of the nature of UDP routing, it is possible for datagrams to arrive in 
duplicate at the server. This means that, for datagram invocations, Ice does not 
guarantee at-most-once semantics (see page 14): if UDP datagrams are dupli-
cated, the same invocation may be dispatched more than once in the server.

• UDP packets are limited in size.

The maximum size of an IP datagram is 65,535 bytes. Of that, the IP header 
consumes 20 bytes, and the UDP header consumes 8 bytes, leaving 
65,507 bytes as the maximum payload. If the marshaled form of an invoca-
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tion, including the Ice request header (see Chapter 37) exceeds that size, the 
invocation is lost. (Exceeding the size limit for a UDP datagram is indicated to 
the application by a DatagramLimitException.)

Because of their unreliable nature, datagram invocations are best suited to simple 
update messages that are otherwise stateless. In addition, due to the high proba-
bility of loss of datagram invocations over wide area networks, you should restrict 
use of datagram invocations to local area networks, where they are less likely to be 
lost. (Of course, regardless of the probability of loss, you must design your appli-
cation such that it can tolerate lost or duplicated messages.)

Creating Datagram Proxies

To create a datagram proxy, you must call ice_datagram on the proxy, for 
example:

Ice::ObjectPrx o = communicator->stringToProxy(/* ... */);

// Get a datagram proxy.
//
Ice::ObjectPrx datagram;
try {
    datagram = o->ice_datagram();
} catch (const Ice::NoEndpointException&) {
    cerr << "No endpoint for datagram invocations" << endl;
}

// Down-cast to actual type.
//
PersonPrx datagramPerson = PersonPrx::uncheckedCast(datagram);

// Invoke an operation as a datagram.
//
try {
    datagramPerson->someOp();
} catch (const Ice::TwowayOnlyException&) {
    cerr << "someOp() is not oneway" << endl;
}

As for the oneway example in Section 32.14, you can choose to first do a safe 
down-cast to the actual type of interface and then obtain the datagram proxy, 
rather than relying on an unsafe down-cast, as shown here. However, doing so 
may be disadvantageous for two reasons:
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• Safe down-casts are sent via a stream-oriented transport. This means that 
using a safe down-cast will result in opening a connection for the sole purpose 
of verifying that the target object has the correct type. This is expensive if all 
the other traffic to the object is sent via datagrams.

• If the proxy does not offer a stream-oriented transport, the checkedCast 
fails with a NoEndpointException, so you can use this approach only for 
proxies that offer both a UDP endpoint and a TCP/IP and/or SSL endpoint.

32.16 Batched Invocations

Oneway and datagram invocations are normally sent as a separate message, that is, 
the Ice run time sends the oneway or datagram invocation to the server immedi-
ately, as soon as the client makes the call. If a client sends a number of oneway or 
datagram invocations in succession, the client-side run time traps into the OS 
kernel for each message, which is expensive. In addition, each message is sent 
with its own message header (see Chapter 37), that is, for n messages, the band-
width for n message headers is consumed. In situations where a client sends a 
number of oneway or datagram invocations, the additional overhead can be 
considerable.

To avoid the overhead of sending many small messages, you can send oneway 
and datagram invocations in a batch: instead of being sent as a separate message, a 
batch invocation is placed into a client-side buffer by the Ice run time. Successive 
batch invocations are added to the buffer and accumulated on the client side until 
they are flushed, either explicitly by the client or automatically by the Ice run 
time.

32.16.1 Proxy Methods

The relevant APIs are part of the proxy interface:

// C++
namespace IceProxy {
namespace Ice {

class Object : /* ... */ {
public:
    Ice::ObjectPrx ice_batchOneway() const;
    Ice::ObjectPrx ice_batchDatagram() const;
    void ice_flushBatchRequests();
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    // ...
};

}
}

The ice_batchOneway and ice_batchDatagram methods convert a 
proxy to a batch proxy. Once you obtain a batch proxy, messages sent via that 
proxy are buffered in the client-side run time instead of being sent immediately. 
Once the client has invoked one or more operations on batch proxies, it can call 
ice_flushBatchRequests to explicitly flush the batched invocations. This 
causes the batched messages to be sent “in bulk”, preceded by a single message 
header. On the server side, batched messages are dispatched by a single thread, in 
the order in which they were written into the batch. This means that messages 
from a single batch cannot appear to be reordered in the server. Moreover, either 
all messages in a batch are delivered or none of them. (This is true even for 
batched datagrams.)

Asynchronous versions of ice_flushBatchRequests are also available; 
see the relevant language mapping for more information.

32.16.2 Automatic Flushing

The default behavior of the Ice run time, as governed by the configuration prop-
erty Ice.BatchAutoFlush (see Appendix D), automatically flushes batched 
invocations as soon as a batched request causes the accumulated message to 
exceed the maximum allowable size. When this occurs, the Ice run time immedi-
ately flushes the existing batch of requests and begins a new batch with this latest 
request as its first element.

For batched oneway invocations, the maximum message size is established by 
the property Ice.MessageSizeMax, which defaults to 1MB. In the case of 
batched datagram invocations, the maximum message size is the smaller of the 
system’s maximum size for datagram packets and the value of Ice.Message-
SizeMax.

A client that sends batch requests cannot determine the size of the message 
that the Ice run time is accumulating for it; automatic flushing is enabled by 
default as a convenience for clients that unknowingly exceed the maximum 
message size. A client that requires more deterministic behavior should flush 
batched requests explicitly at regular intervals.
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32.16.3 Flushing Communicators and Connections

The Communicator and Connection interfaces support synchronous and asyn-
chronous versions of flushBatchRequests. As you might expect, the Connec-
tion::flushBatchRequests operation flushes all batch requests queued for a 
particular connection, and the Communicator::flushBatchRequests operation 
flushes the batch requests of every connection created by a communicator.

The synchronous versions of flushBatchRequests block the calling thread 
until the batch requests have been successfully written to the local transport. To 
avoid the risk of blocking, you must use the asynchronous versions instead 
(assuming they are supported by your chosen language mapping). Note also that 
the asynchronous version of Communicator::flushBatchRequests never raises 
an exception, even if an error occurs while flushing one of its connections.

32.16.4 Batched Datagrams

For batched datagram invocations, you need to keep in mind that, if the data for 
the invocations in a batch substantially exceeds the PDU size of the network, it 
becomes increasingly likely for an individual UDP packet to get lost due to frag-
mentation. In turn, loss of even a single packet causes the entire batch to be lost. 
For this reason, batched datagram invocations are most suitable for simple inter-
faces with a number of operations that each set an attribute of the target object (or 
interfaces with similar semantics). (Batched oneway invocations do not suffer 
from this risk because they are sent over stream-oriented transports, so individual 
packets cannot be lost.)

32.16.5 Compression

Batched invocations are more efficient if you also enable compression for the 
transport: many isolated and small messages are unlikely to compress well, 
whereas batched messages are likely to provide better compression because the 
compression algorithm has more data to work with.11

11.Regardless of whether you used batched messages or not, you should enable compression only on 
lower-speed links. For high-speed LAN connections, the CPU time spent doing the compression 
and decompression is typically longer than the time it takes to just transmit the uncompressed 
data.
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32.16.6 Active Connection Management
As for oneway invocations (see page 1053), you should disable server-side active 
connection management (ACM) when using batched invocations over TCP/IP or 
SSL. With server-side ACM enabled, it is possible for a server to close the 
connection at the wrong moment and not process a batch (with no indication being 
returned to the client that the batch was lost).

32.17 Location Services

In Section 2.2.2 we described briefly how the Ice run time uses an intermediary, 
known as a location service, to convert the symbolic information in an indirect 
proxy into an endpoint that it can use to communicate with a server. This section 
expands on that introduction to explain in more detail how the Ice run time inter-
acts with a location service. You can create your own location service or you can 
use IceGrid, which is an implementation of a location service and provides many 
other useful features as well (see Chapter 38). Describing how to implement a 
location service is outside the scope of this book.

32.17.1 Locators
A locator is an Ice object that is implemented by a location service. A locator 
object must support the Slice interface Ice::Locator, which defines operations 
that satisfy the location requirements of the Ice run time. Applications do not 
normally use these operations directly, but the locator object may support an 
implementation-specific interface derived from Ice::Locator that provides addi-
tional functionality. For example, IceGrid’s locator object implements the derived 
interface IceGrid::Query (see Section 38.6.5).
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32.17.2 Client Semantics
On the first use of an indirect proxy in an application, the Ice run time may issue a 
remote invocation on the locator object. This activity is transparent to the applica-
tion, as shown in Figure 32.6.

Figure 32.6. Locating an object.

1. The client invokes the operation initialOp on an indirect proxy.

2. The Ice run time checks an internal cache (called the locator cache) to deter-
mine whether a query has already been issued for the symbolic information in 
the proxy. If so, the cached endpoint is used and an invocation on the locator 
object is avoided. Otherwise, the Ice run time issues a locate request to the 
locator.

3. If the object is successfully located, the locator returns its current endpoints. 
The Ice run time in the client caches this information, establishes a connection 
to one of the endpoints according to the rules described in Section 36.3.1, and 
proceeds to send the invocation as usual.

4. If the object’s endpoints cannot be determined, the client receives an excep-
tion. NotRegisteredException is raised when an identity, object adapter 
identifier or replica group identifier is not known. A client may also receive 
NoEndpointException if the location service failed to determine the current 
endpoints.

As far as the Ice run time is concerned, the locator simply converts the informa-
tion in an indirect proxy into usable endpoints. Whether the locator’s implementa-
tion is more sophisticated than a simple lookup table is irrelevant to the Ice run 
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time. However, the act of performing this conversion may have additional seman-
tics that the application must be prepared to accept.

For example, when using IceGrid as your location service, the target server 
may be launched automatically if it is not currently running, and the locate request 
does not complete until that server is started and ready to receive requests. As a 
result, the initial request on an indirect proxy may incur additional overhead as all 
of this activity occurs.

Replication

An indirect proxy may substitute a replica group identifier (see page 13) in place 
of the object adapter identifier. In fact, the Ice run time does not distinguish 
between these two cases and considers a replica group identifier as equivalent to 
an object adapter identifier for the purposes of resolving the proxy. The location 
service implementation must be able to distinguish between replica groups and 
object adapters using only this identifier.

The location service may return multiple endpoints in response to a locate 
request for an adapter or replica group identifier. These endpoints might all corre-
spond to a single object adapter that is available at several addresses, or to 
multiple object adapters each listening at a single address, or some combination 
thereof. The Ice run time attaches no semantics to the collection of endpoints, but 
the application can make assumptions based on its knowledge of the location 
service’s behavior.

When a location service returns more than one endpoint, the Ice run time 
behaves exactly as if the proxy had contained several endpoints (see 
Section 36.3.1). As always, the goal of the Ice run time is to establish a connection 
to one of the endpoints and deliver the client’s request. By default, all requests 
made via the proxy that initiated the connection are sent to the same server until 
that connection is closed.

After the connection is closed, such as by active connection management (see 
Section 36.4), subsequent use of the proxy causes the Ice run time to obtain 
another connection. Whether that connection uses a different endpoint than 
previous connections depends on a number of factors, but it is possible for the 
client to connect to a different server than for previous requests.

Locator Cache

After successfully resolving an indirect proxy, the location service must return at 
least one endpoint. How the service derives the list of endpoints that corresponds 
to the proxy is entirely implementation dependent. For example, IceGrid’s loca-
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tion service can be configured to respond in a variety of ways; one possibility uses 
a simple round-robin scheme, while another considers the system load of the 
target hosts when selecting endpoints.

A locate request has the potential to significantly increase the latency of the 
application’s invocation with a proxy, and this is especially true if the locate 
request triggers additional implicit actions such as starting a new server process. 
Fortunately, this overhead is normally incurred only during the application’s 
initial invocation on the proxy, but this impact is influenced by the Ice run time’s 
caching behavior.

To minimize the number of locate requests, the Ice run time caches the results 
of previous requests. By default, the results are cached indefinitely, so that once 
the Ice run time has obtained the endpoints associated with an indirect proxy, it 
never issues another locate request for that proxy. Furthermore, the default 
behavior of a proxy is to cache its connection, that is, once a proxy has obtained a 
connection, it continues to use that connection indefinitely.

Taken together, these two caching characteristics represent the Ice run time’s 
best efforts to optimize an application’s use of a location service: after a proxy is 
associated with a connection, all future invocations on that proxy are sent on the 
same connection without any need for cache lookups, locate requests, or new 
connections.

If a proxy’s connection is closed, the next invocation on the proxy prompts the 
Ice run time to consult its locator cache to obtain the endpoints from the prior 
locate request. Next, the Ice run time searches for an existing connection to any of 
those endpoints and uses that if possible, otherwise it attempts to establish a new 
connection to each of the endpoints until one succeeds. Only if that process fails 
does the Ice run time clear the entry from its cache and issue a new locate request 
with the expectation that a usable endpoint is returned.

The Ice run time’s default behavior is optimized for applications that require 
minimal interaction with the location service, but some applications can benefit 
from more frequent locate requests. Normally this is desirable when imple-
menting a load-balancing strategy, as we discuss in more detail below. In order to 
increase the frequency of locate requests, an application must configure a timeout 
for the locator cache and manipulate the connections of its proxies.

Locator Cache Timeout

An application can define a timeout to control the lifetime of entries in the locator 
cache. This timeout can be specified globally using the Ice.Default.Loca-
torCacheTimeout property (see Section D.8) and for individual proxies using 
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the proxy method ice_locatorCacheTimeout (see Section 32.11.2). The 
Ice run time’s default behavior is equivalent to a timeout value of -1, meaning the 
cache entries never expire. Using a timeout value greater than zero causes the 
cache entries to expire after the specified number of seconds. Finally, a timeout 
value of zero disables the locator cache altogether.

The previous section explained the circumstances in which the Ice run time 
consults the locator cache. Briefly, this occurs only when the application has 
invoked an operation on a proxy and the proxy is not currently associated with a 
connection. If the timeout is set to zero, the Ice run time issues a new locate 
request immediately. Otherwise, for a non-zero timeout, the Ice run time examines 
the locator cache to determine whether the endpoints from the previous locate 
request have expired. If so, the Ice run time discards them and issues a new locate 
request.

Given this behavior, if your goal is to force a proxy invocation to issue locate 
requests more frequently, you can do so only when the proxy has no connection. 
You can accomplish that in several ways:

• create a new proxy, which is inherently not connected by default

• explicitly close the proxy’s existing connection (see Chapter 36)

• disabling the proxy’s connection caching behavior

Of these choices, the last is the most common.

Proxy Connection Caching

By default a proxy remembers its connection and uses it for all invocations until 
that connection is closed. You can prevent a proxy from caching its connection by 
calling the ice_connectionCached proxy method with an argument of false 
(see Section 32.11.2). Once connection caching is disabled, each invocation on a 
proxy causes the Ice run time to execute its connection establishment process.

Note that each invocation on such a proxy does not necessarily cause the Ice 
run time to establish a new connection. It only means that the Ice run time does 
not assume that it can reuse the connection of the proxy’s previous invocation. 
Whether the Ice run time actually needs to establish a new connection for the next 
invocation depends on several factors, as explained in Section 36.3.

As with any feature, you should only use it when the benefits outweigh the 
risks. With respect to a proxy’s connection caching behavior, there is certainly a 
small amount of computational overhead associated with executing the connection 
establishment process for each invocation, as well as the risk of significant over-
head each time a new connection is actually created.
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Simple Load Balancing

Several forms of load balancing are available to Ice applications. The simplest 
form uses only the endpoints contained in a direct proxy and does not require a 
location service. In this configuration, the application can configure the proxy to 
use the desired endpoint selection type (see Section 36.3.1) and connection 
caching behavior to achieve the desired results.

For example, suppose that a proxy contains several endpoints. In its default 
configuration, it uses the Random endpoint selection type and caches its connec-
tion. Upon the first invocation, the Ice run time selects one of the proxy’s 
endpoints at random and uses that connection for all subsequent invocations until 
the connection is closed. For some applications, this form of load balancing may 
be sufficient.

Suppose now that we use the Ordered endpoint selection type instead. In this 
case, the Ice run time always attempts to establish connections using the endpoints 
in the order they appear in the proxy. Normally an application uses this configura-
tion when there is a preferred order to the servers. Again, once connected, the 
application uses whichever connection was chosen indefinitely.

By disabling the proxy’s connection caching behavior, the semantics undergo 
a significant change. Using the Random endpoint selection type, the Ice run time 
selects one of the endpoints at random and establishes a connection to it if one is 
not already established, and this process is repeated prior to each subsequent invo-
cation. This is called per-request load balancing because each request can be 
directed to a different server. Using the Ordered endpoint selection type is not as 
common in this scenario; its main purpose would be to fall back on a secondary 
server if the primary server is not available, but it causes the Ice run time to 
attempt to contact the primary server during each request.

Load Balancing with a Location Service

A disadvantage of relying solely on the simple form of load balancing described 
in the previous section is that the client cannot make any intelligent decisions 
based on the status of the servers. If you want to distribute your requests in a more 
sophisticated way, you must either modify your clients to query the servers 
directly, or use a location service that can transparently direct a client to an appro-
priate server. For example, the IceGrid location service can monitor the system 
load on each server host and use that information when responding to locate 
requests.

The location service may return only one endpoint, which presumably repre-
sents the best server (at that moment) for the client to use. With only one endpoint 
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available, changing the proxy’s endpoint selection type makes no difference. 
However, by disabling connection caching and modifying the locator cache 
timeout, the application can force the Ice run time to periodically retrieve an 
updated endpoint from the location service. For example, an application can set a 
locator cache timeout of thirty seconds and communicate with the selected server 
for that period. After the timeout has expired, the next invocation prompts the Ice 
run time to issue a new locate request, at which point the client might be directed 
to a different server.

If the location service returns multiple endpoints, the application must be 
designed with knowledge of how to interpret them. For instance, the location 
service may attach semantics to the order of the endpoints (such as least-loaded to 
most-loaded) and intend that the application use the endpoints in the order 
provided. Alternatively, the client may be free to select any of the endpoints. As a 
result, the application and the location service must cooperate to achieve the 
desired results.

You can combine the simple form of load balancing described in the previous 
section with an intelligent location service to gain even more flexibility. For 
example, suppose an application expects to receive multiple endpoints from the 
location service and has configured its proxy to disable connection caching and 
set a locator cache timeout. For each invocation, Ice run time selects one of the 
endpoints provided by the location service. When the timeout expires, the Ice run 
time issues a new locate request and obtains a fresh set of endpoints from which to 
choose.

32.17.3 Configuring a Client

An Ice client application must supply a proxy for the locator object, which it can 
do in several ways:

• by explicitly configuring an indirect proxy using the ice_locator proxy 
method (see Section 32.11.2)

• by calling setDefaultLocator on a communicator, after which all proxies 
use the given locator by default

• by defining the Ice.Default.Locator configuration property, which 
causes all proxies to use the given locator by default

The Ice run time’s efforts to resolve an indirect proxy can be traced by setting the 
following configuration properties:
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Ice.Trace.Network=2
Ice.Trace.Protocol=1
Ice.Trace.Locator=2

See Appendix D for more information on these properties.

32.17.4 Server Semantics

A location service must know the endpoints of any object adapter whose identifier 
can be used in an indirect proxy. For example, suppose a client uses the following 
proxy:

Object1@PublicAdapter

The Ice run time in the client sends the identifier PublicAdapter to the 
locator, as described in Section 32.17.2, and expects to receive the associated 
endpoints. The only way the location service can know these endpoints is if it is 
given them. When you consider that an object adapter’s endpoints may not specify 
fixed ports, and therefore the endpoint addresses may change each time the object 
adapter is activated, it is clear that the best source of endpoint information is the 
object adapter itself. As a result, an object adapter that is properly configured (see 
Section 32.17.5) contacts the locator during activation to supply its identifier and 
current endpoints. More specifically, the object adapter registers itself with an 
object implementing the Ice::LocatorRegistry interface, whose proxy the 
object adapter obtains from the locator.

Registration Requirements

A location service may require that all object adapters be pre-registered via some 
implementation-specific mechanism. (IceGrid behaves this way by default.) This 
implies that activation can fail if the object adapter supplies an identifier that is 
unknown to the location service. In such a situation, the object adapter’s activate 
operation raises NotRegisteredException.

In a similar manner, an object adapter that participates in a replica group (see 
page 13) includes the group’s identifier in the locator request that is sent during 
activation. If the location service requires replica group members to be configured 
in advance, activate raises NotRegisteredException if the object adapter’s 
identifier is not one of the group’s registered participants (see Section 38.9.2).
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32.17.5 Configuring a Server
An object adapter must be able to obtain a locator proxy in order to register itself 
with a location service. Each object adapter can be configured with its own locator 
proxy by defining its Locator property, as shown in the example below for the 
object adapter named SampleAdapter:

SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Alternatively, a server may call setLocator on the object adapter prior to activa-
tion. If the object adapter is not explicitly configured with a locator proxy, it uses 
the default locator as provided by its communicator (see Section 32.17.3).

Two other configuration properties influence an object adapter’s interactions 
with a location service during activation:

• AdapterId

Configuring a non-empty identifier for the AdapterId property causes the 
object adapter to register itself with the location service. A locator proxy must 
also be configured.

• ReplicaGroupId

Configuring a non-empty identifier for the ReplicaGroupId property indi-
cates that the object adapter is a member of a replica group (see page 13). For 
this property to have an effect, AdapterId must also be configured with a 
non-empty value.

We can use these properties as shown below:

SampleAdapter.AdapterId=SampleAdapterId
SampleAdapter.ReplicaGroupId=SampleGroupId
SampleAdapter.Locator=IceGrid/Locator:tcp -h locatorhost -p 10000

Refer to Section 32.17.4 for information on the pre-registration requirements a 
location service may enforce.

32.17.6 Process Registration
An activation service, such as an IceGrid node (see Chapter 38), needs a reliable 
way to gracefully deactivate a server. One approach is to use a platform-specific 
mechanism, such as POSIX signals. This works well on POSIX platforms when 
the server is prepared to intercept signals and react appropriately (see 
Section 31.10). On Windows platforms, it works less reliably for C++ servers, and 
not at all for Java servers. For these reasons, Ice provides an alternative that is both 
portable and reliable:
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module Ice {
interface Process {
    ["ami"] void shutdown();
    void writeMessage(string message, int fd);
};
};

The Slice interface Ice::Process allows an activation service to request a 
graceful shutdown of the server. When shutdown is invoked, the object imple-
menting this interface is expected to initiate the termination of its server process. 
The activation service may expect the server to terminate within a certain period 
of time, after which it may terminate the server abruptly.

One of the benefits of the Ice administrative facility (see Section 32.18) is that 
it creates an implementation of Ice::Process and makes it available via an 
administrative object adapter. Furthermore, IceGrid automatically enables this 
facility on the servers that it activates.

32.18 Administrative Facility

Ice applications often require remote administration, such as when an IceGrid 
node needs to gracefully deactivate a running server. The Ice run time provides an 
extensible, centralized facility for exporting administrative functionality. This 
facility consists of an object adapter named Ice.Admin, an Ice object activated 
on this adapter, and configuration properties that enable the facility and specify its 
features.

32.18.1 The admin Object

The Ice.Admin adapter hosts a single object whose identity name is admin. 
Although this identity name cannot be changed, you can define the identity cate-
gory using the configuration property Ice.Admin.InstanceName (see 
Appendix D). If you enable the Ice.Admin adapter without defining this prop-
erty, the category uses a UUID by default and therefore the object’s identity 
changes with each instance of the process.

In this book, we refer to the administrative object as the admin object.
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Facets

As explained in Chapter 33, an Ice object is actually a collection of sub-objects 
known as facets whose types are not necessarily related. Although facets are typi-
cally used for extending and versioning types, they also allow a group of inter-
faces with a common purpose to be consolidated into a single Ice object with an 
established interface for navigation. These qualities make facets an excellent 
match for the requirements of the administrative facility.

Each facet of the admin object represents a distinct administrative capability. 
The object does not have a default facet (that is, a facet with an empty name). 
However, the Ice run time implements two built-in facets that it adds to the 
admin object:

• Process, described in Section 32.18.4

• Properties, described in Section 32.18.5

An application can control which facets are installed with a configuration property 
(see Section 32.18.6). An application can also install its own facets if necessary 
(see Section 32.18.7). Administrative facets are not required to inherit from a 
common Slice interface.

32.18.2 Enabling the Object Adapter
The administrative facility is disabled by default. To enable it, you must specify 
endpoints for the administrative object adapter using the property 
Ice.Admin.Endpoints. In addition, you must do one of the following:

• Define the Ice.Admin.InstanceName property.

• Define the Ice.Admin.ServerId and Ice.Default.Locator prop-
erties. If you do not supply a value for Ice.Admin.InstanceName, Ice 
uses a UUID by default.

The Ice.Admin.ServerId and Ice.Default.Locator properties are 
typically used in conjunction with an activation service such as IceGrid, as 
discussed in Section 38.22.

The endpoints for the Ice.Admin adapter must be chosen with caution. 
Section 32.18.8 addresses the security considerations of using the administrative 
facility.

It may be necessary to postpone the creation of the administrative object 
adapter until all facets are installed or other initialization activities have taken 
place. In this situation, you can define the following configuration property:

Ice.Admin.DelayCreation=1
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When this property is set to a non-zero value, the administrative facility is 
disabled until the application invokes the getAdmin operation on the communi-
cator (see Section 32.18.3).

32.18.3 Using the admin Object

A program can obtain a proxy for its admin object by calling the getAdmin oper-
ation on a communicator:

module Ice {
local interface Communicator {
    // ...
    Object* getAdmin();
};
};

This operation returns a null proxy if the administrative facility is disabled. The 
proxy returned by getAdmin cannot be used for invoking operations because it 
refers to the default facet and, as we mentioned previously, the admin object does 
not support a default facet. A program must first obtain a new version of the proxy 
that is configured with the name of a particular administrative facet before 
invoking operations on it. Although it cannot be used for invocations, the original 
proxy is still useful because it contains the endpoints of the Ice.Admin object 
adapter and therefore the program may elect to export that proxy to a remote 
client.

Remote Administration

To administer a program remotely, somehow you must obtain a proxy for the 
program’s admin object. There are several ways for the administrative client to 
accomplish this:

• Construct the proxy itself, assuming that it knows the admin object’s iden-
tity, facets, and endpoints. The format of the stringified proxy is as follows:

instance-name/admin -f admin-facet:admin-endpoints

The identity category, represented here by instance-name, is the value of 
the Ice.Admin.InstanceName property or a UUID if that property is 
not defined. (Clearly, the use of a UUID makes the proxy much more difficult 
for a client to construct on its own.) The name of the administrative facet is 
supplied as the value of the -f option, and the endpoints of the Ice.Admin 
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adapter appear last in the proxy. See Appendix E for more information on 
stringified proxies.

• Invoke an application-specific interface for retrieving the admin object’s 
proxy.

• Use the getServerAdmin operation on the IceGrid::Admin interface, if the 
remote program was activated by IceGrid (see Section 38.22.3).

Having obtained the proxy, the administrative client must select a facet before 
invoking any operations. For example, the code below shows how to obtain the 
configuration properties of the remote program:

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin =
    Ice::PropertiesAdminPrx::checkedCast(adminObj,
                                         "Properties");
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

Here we used an overloaded version of checkedCast to supply the facet name 
of interest (Properties). We could have selected the facet using the proxy 
method ice_facet instead, as shown below:

// C++
Ice::ObjectPrx adminObj = ...;
Ice::PropertiesAdminPrx propAdmin =
    Ice::PropertiesAdminPrx::checkedCast(
        adminObj->ice_facet("Properties"));
Ice::PropertyDict props = propAdmin->getPropertiesForPrefix("");

This code is functionally equivalent to the first example.
A remote client must also know (or be able to determine) which facets are 

available in the target server. Typically this information is statically configured in 
the client, since the client must also know the interface types of any facets that it 
uses. If an invocation on a facet raises FacetNotExistException, the client may 
have used an incorrect facet name, or the server may have disabled the facet in 
question.

32.18.4 The Process Facet
An activation service, such as an IceGrid node (see Chapter 38), needs a reliable 
way to gracefully deactivate a server. One approach is to use a platform-specific 
mechanism, such as POSIX signals. This works well on POSIX platforms when 
the server is prepared to intercept signals and react appropriately (see 
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Section 31.10). On Windows platforms, it works less reliably for C++ servers, and 
not at all for Java servers. For these reasons, the Process facet provides an alter-
native that is both portable and reliable.

Section 32.18.8 discusses the security risks associated with enabling the 
Process facet.

Interface

The Slice interface Ice::Process allows an activation service to request a 
graceful shutdown of the program:

module Ice {
interface Process {
    ["ami"] void shutdown();
    void writeMessage(string message, int fd);
};
};

When shutdown is invoked, the object implementing this interface is expected to 
initiate the termination of its process. The activation service may expect the 
program to terminate within a certain period of time, after which it may terminate 
the program abruptly.

The writeMessage operation allows remote clients to print a message to the 
program’s standard output (fd == 1) or standard error (fd == 2) channels.

Application Requirements

The default implementation of the Process facet requires cooperation from an 
application in order to successfully terminate a process. Specifically, the facet 
invokes shutdown on its communicator and assumes that the application uses this 
event as a signal to commence its termination procedure. For example, an applica-
tion typically uses a thread (often the main thread) to call the communicator oper-
ation waitForShutdown, which blocks the calling thread until the communicator 
is shut down or destroyed. After waitForShutdown returns, the calling thread can 
initiate a graceful shutdown of its process.

Refer to Section 32.2 for more information on the communicator operations 
shutdown and waitForShutdown.

Replacing the Process Facet

You can replace the default Process facet if your application requires a different 
scheme for gracefully shutting itself down. To define your own facet, create a 
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servant that implements the Ice::Process interface. As an example, the servant 
definition shown below duplicates the functionality of the default Process facet:

class ProcessI : public Ice::Process {
public:
    ProcessI(const Ice::CommunicatorPtr& communicator) :
        _communicator(communicator)
    {}

    void shutdown(const Ice::Current&)
    {
        _communicator->shutdown();
    }

    void writeMessage(const string& msg, Ice::Int fd,
                      const Ice::Current&)
    {
        if(fd == 1) cout << msg << endl;
        else if(fd == 2) cerr << msg << endl;
    }

private:
    const Ice::CommunicatorPtr _communicator;
};

As you can see, the default implementation of shutdown simply shuts down the 
communicator, which initiates an orderly termination of the Ice run time’s server-
side components and prevents object adapters from dispatching any new requests. 
You can add your own application-specific behavior to the shutdown method to 
ensure that your program terminates in a timely manner.

NOTE: As explained in Section 32.2, a servant must not invoke destroy on its communi-
cator while executing a dispatched operation.

To avoid the risk of a race condition, the recommended strategy for replacing the 
Process facet is to delay creation of the administrative facets so that your appli-
cation has a chance to replace the facet:

Ice.Admin.DelayCreation=1

With this property defined, the application can safely remove the default 
Process facet and install its own:
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// C++
Ice::CommunicatorPtr communicator = ...
communicator->removeAdminFacet("Process");
Ice::ProcessPtr myProcessFacet = new MyProcessFacet(...);
communicator->addAdminFacet(myProcessFacet, "Process");

The final step is to activate the administrative facility by calling getAdmin on the 
communicator:

communicator->getAdmin();

Integration with an Activation Service

If the Ice.Admin.ServerId and Ice.Default.Locator properties are 
defined, the Ice run time performs the following steps after creating the 
Ice.Admin adapter:

• Obtains proxies for the Process facet and the default locator

• Invokes getRegistry on the proxy to obtain a proxy for the locator registry

• Invokes setServerProcessProxy on the locator registry and supplies the 
value of Ice.Admin.ServerId along with a proxy for the Process 
facet

The identifier specified by Ice.Admin.ServerId must uniquely identify the 
process within the locator registry.

In the case of IceGrid, the node defines the Ice.Admin.ServerId and 
Ice.Default.Locator properties for each deployed server. The node also 
supplies a value for Ice.Admin.Endpoints if the property is not defined by 
the server. See Chapter 38 for more information.

32.18.5 The Properties Facet

An administrator may find it useful to be able to view the configuration properties 
of a remote Ice application. For example, the IceGrid administrative tools allow 
you to query the properties of active servers. The Properties facet supplies 
this functionality.

Interface

The Ice::PropertiesAdmin interface provides access to the communicator’s 
configuration properties:
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module Ice {
interface PropertiesAdmin {
    ["ami"] string getProperty(string key);
    ["ami"] PropertyDict getPropertiesForPrefix(string prefix);
};
};

The getProperty operation retrieves the value of a single property, and the 
getPropertiesForPrefix operation returns a dictionary of properties whose 
keys match the given prefix. These operations have the same semantics as those in 
the Ice::Properties interface described in Section 30.9.1.

32.18.6 Filtering Facets

The Ice run time enables all of its built-in administrative facets by default, and an 
application may install its own facets. You can control which facets the Ice run 
time enables using the Ice.Admin.Facets property. For example, the 
following property definition enables the Properties facet and leaves the 
Process facet (and any application-defined facets) disabled:

Ice.Admin.Facets=Properties

To specify more than one facet, separate them with a comma or white space. A 
facet whose name contains white space must be enclosed in single or double 
quotes.

32.18.7 Custom Facets

An application can add and remove administrative facets using the Communicator 
operations shown below:

module Ice {
local interface Communicator {
    // ...
    void addAdminFacet(Object servant, string facet);
    Object removeAdminFacet(string facet);
};
};

The addAdminFacet operation installs a new facet with the given name, or raises 
AlreadyRegisteredException if a facet already exists with the same name. The 
removeAdminFacet operation removes (and returns) the facet with the given 
name, or raises NotRegisteredException if no matching facet is found.
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The mechanism for filtering administrative facets described in Section 32.18.6 
also applies to application-defined facets. If you call addAdminFacet while a filter 
is in effect, and the name of your custom facet does not match the filter, the Ice 
run time will not expose your facet but instead keeps a reference to it so that a 
subsequent call to removeAdminFacet is possible.

32.18.8 Security Considerations

Exposing administrative functionality naturally makes a program vulnerable, 
therefore it is important that proper precautions are taken.

Issues

With respect to the default functionality, the Properties facet could expose 
sensitive configuration information, and the Process facet supports a shutdown 
operation that opens the door for a denial-of-service attack.

Developers should carefully consider the security implications of any addi-
tional administrative facets that an application installs.

Remedies

There are several approaches you can take to mitigate the possibility of abuse:

• Disable the administrative facility

The administrative facility is disabled by default, and remains disabled as long 
as the prerequisites listed in Section 32.18.2 are not met. Note that IceGrid 
enables the facility in servers that it activates for the following reasons:

• The Process facet allows the IceGrid node to gracefully terminate the 
process.

• The Properties facet enables IceGrid administrative clients to obtain 
configuration information about activated servers.

You could disable a facet using filtering, but doing so may disrupt IceGrid’s 
normal operation.

• Select a proper endpoint

A reasonably secure value for the Ice.Admin.Endpoints property is one 
that uses the local host interface (-h 127.0.0.1), which restricts access to 
clients that run on the same host. Incidentally, this is the default value that 
IceGrid defines for its servers, although you can override that if you like. Note 
that using a local host endpoint does not preclude remote administration for 
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IceGrid servers because IceGrid transparently routes requests on admin 
objects to the appropriate server via its node (see Section 38.22.3).

If your application must support administration from non-local hosts, we 
recommend the use of SSL and certificate-based access control (see 
Chapter 41).

• Filter the facets

After choosing a suitable endpoint, you can minimize risks by filtering the 
facets to enable only the functionality that is required. For example, if you are 
not using IceGrid’s server activation feature and do not require the ability to 
remotely terminate a program, you should disable the Process facet using 
the mechanism described in Section 32.18.6.

• Consider the object’s identity

The default identity of the admin object has a UUID for its category, which 
makes it difficult for a hostile client to guess. Depending on your require-
ments, the use of a UUID may be an advantage or a disadvantage. For 
example, in a trusted environment, the use of a UUID may create additional 
work, such as the need to add an interface that an administrative client can use 
to obtain the identity or proxy of a remote admin object. An obscure identity 
might be more of a hindrance in this situation, and therefore specifying a static 
category via the Ice.Admin.InstanceName property is a reasonable 
alternative. In general, however, we recommend using the default behavior.

32.19 The Ice::Logger Interface

Depending on the setting of various properties (see Chapter 30), the Ice run time 
produces trace, warning, or error messages. These messages are written via the 
Ice::Logger interface:

module Ice {
    local interface Logger {
        void print(string message);
        void trace(string category, string message);
        void warning(string message);
        void error(string message);
        Logger cloneWithPrefix(string prefix);
    };
};
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The cloneWithPrefix operation returns a new logger that logs to the same desti-
nation but with a different prefix. (The prefix is used to, for example, provide the 
name of the process writing the log messages.)

32.19.1 The Default Logger
A default logger is instantiated when you create a communicator. The default 
logger logs to the standard error output. The trace operation accepts a category 
parameter in addition to the error message; this allows you to separate trace output 
from different subsystems by sending the output through a filter.

You can obtain the logger that is attached to a communicator:

module Ice {
    local interface Communicator {
        Logger getLogger();
    };
};

32.19.2 Custom Loggers
You have several options if you wish to install a logger other than the default one:

• Select one of the other built-in loggers (see Section 32.19.3), which allow you 
to log to a file, to the syslog on Unix, and to the Windows event log

• Supply your own logger implementation in an InitializationData 
parameter (see Section 32.3) when you create a communicator

• Load a logger implementation dynamically via the Ice plug-in facility (see 
Section 32.19.4)

Changing the Logger object that is attached to a communicator allows you to inte-
grate Ice messages into your own message handling system. For example, for a 
complex application, you might have an existing logging framework. To integrate 
Ice messages into that framework, you can create your own Logger implementa-
tion that logs messages to the existing framework.

When you destroy a communicator, its logger is not destroyed. This means 
that you can safely use a logger even beyond the lifetime of its communicator.

32.19.3 Built-In Loggers
A file-based logger, enabled via the Ice.LogFile property, is available for all 
supported languages and platforms. Ice also provides Unix- and Windows-specific 
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logger implementations. Finally, for .NET, the default Ice logger uses a TraceL-
istener and so can be customized at run time via configuration.

Refer to Appendix D for more information on the properties mentioned in this 
section.

Unix

You can activate a logger that logs via the Unix syslog implementation by 
setting the Ice.UseSyslog property. This logger is available for C++, Java, 
and C# applications.

Windows

On Windows, subclasses of Ice::Service use the Windows application event 
log by default (see Section 8.3.2). The event log implementation is available for 
C++ applications.

.NET

The default logger in Ice for .NET writes its messages using the System.Diag-
nostics.Trace facility. By default, the Ice run time registers a Console-
TraceListener that writes to stderr. You can disable the logging of 
messages via this trace listener by setting the property Ice.ConsoleListener to 
zero.

You can change the trace listener for your application via the application’s 
configuration file. For example:

<configuration>
  <system.diagnostics>
    <trace autoflush="true" indentsize="4">
      <listeners>
        <add name="Console"
             type="System.Diagnostics.EventLogTraceListener"
             initializeData="true"/>
      </listeners>
    </trace>
  </system.diagnostics>
</configuration>

This configures a trace listener that logs to the Windows event log.
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32.19.4 Logger Plug-Ins

Installing a custom logger using the Ice plug-in facility has several advantages. 
Because the logger plug-in is specified by a configuration property and loaded 
dynamically by the Ice run time, an application requires no code changes in order 
to utilize a custom logger implementation. Furthermore, a logger plug-in takes 
precedence over the per-process logger (see Section 32.19.5) and the logger 
supplied in the InitializationData argument during communicator initial-
ization, meaning you can use a logger plug-in to override the logger that an appli-
cation installs by default.

Installing a C++ Logger Plug-In

To install a logger plug-in in C++, you must first define a subclass of 
Ice::Logger:

class MyLoggerI : public Ice::Logger {
public:

    virtual void print(const std::string& message);
    virtual void trace(const std::string& category,
                       const std::string& message);
    virtual void warning(const std::string& message);
    virtual void error(const std::string& message);
    virtual LoggerPtr void cloneWithPrefix(const string& prefix);

    // ...
};

Next, supply a factory function that installs your custom logger by returning an 
instance of Ice::LoggerPlugin:

extern "C"
{

ICE_DECLSPEC_EXPORT Ice::Plugin*
createLogger(const Ice::CommunicatorPtr& communicator,
             const std::string& name,
             const Ice::StringSeq& args)
{
    Ice::LoggerPtr logger = new MyLoggerI;
    return new Ice::LoggerPlugin(communicator, logger);
}

}



32.19 The Ice::Logger Interface 1085

The factory function can have any name you wish; we used createLogger in 
this example. See Section 32.25.1 for more information on plug-in factory func-
tions.

The definition of LoggerPlugin is shown below:

namespace Ice {
class LoggerPlugin {
public:
    LoggerPlugin(const CommunicatorPtr&, const LoggerPtr&);

    virtual void initialize();
    virtual void destroy();
};
}

The constructor installs your logger into the given communicator. The 
initialize and destroy methods are empty, but you can subclass 
LoggerPlugin and override these methods if necessary.

Finally, define a configuration property that loads your plug-in into an applica-
tion:

Ice.Plugin.MyLogger=mylogger:createLogger

The plug-in’s name in this example is MyLogger; again, you can use any name 
you wish. The value of the property represents the plug-in’s entry point, in which 
mylogger is the abbreviated form of its shared library or DLL, and create-
Logger is the name of the factory function.

If the configuration file containing this property is shared by programs in 
multiple implementation languages, you can use an alternate syntax that is loaded 
only by the Ice for C++ run time:

Ice.Plugin.MyLogger.cpp=mylogger:createLogger

Refer to Appendix D for more information on the Ice.Plugin properties.

Installing a Java Logger Plug-In

To install a logger plug-in in Java, you must first define a subclass of 
Ice.Logger:

public class MyLoggerI implements Ice.Logger {

    public void print(String message) { ... }
    public void trace(String category, String message) { ... }
    public void warning(String message) { ... }
    public void error(String message) { ... }
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    public Logger cloneWithPrefix(String prefix) { ... }

    // ...
}

Next, define a factory class that installs your custom logger by returning an 
instance of Ice.LoggerPlugin:

public class MyLoggerPluginFactoryI implements Ice.PluginFactory {
    public Ice.Plugin create(Ice.Communicator communicator,
                             String name, String[] args)
    {
        Ice.Logger logger = new MyLoggerI();
        return new Ice.LoggerPlugin(communicator, logger);
    }
}

The factory class can have any name you wish; in this example, we used MyLog-
gerPluginFactoryI. See Section 32.25.1 for more information on plug-in 
factories.

The definition of LoggerPlugin is shown below:

package Ice;

public class LoggerPlugin implements Plugin {
    public LoggerPlugin(Communicator communicator, Logger logger)
    {
        // ...
    }

    public void initialize() { }

    public void destroy() { }
}

The constructor installs your logger into the given communicator. The 
initialize and destroy methods are empty, but you can subclass 
LoggerPlugin and override these methods if necessary.

Finally, define a configuration property that loads your plug-in into an applica-
tion:

Ice.Plugin.MyLogger=MyLoggerPluginFactoryI

The plug-in’s name in this example is MyLogger; again, you can use any name 
you wish. The value of the property is the name of the factory class.
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If the configuration file containing this property is shared by programs in 
multiple implementation languages, you can use an alternate syntax that is loaded 
only by the Ice for Java run time:

Ice.Plugin.MyLogger.java=MyLoggerPluginFactoryI

Refer to Appendix D for more information on the Ice.Plugin properties.

Installing a .NET Logger Plug-In

To install a logger plug-in in .NET, you must first define a subclass of 
Ice.Logger:

// C#
public class MyLoggerI : Ice.Logger {

    public void print(string message) { ... }
    public void trace(string category, string message) { ... }
    public void warning(string message) { ... }
    public void error(string message) { ... }
    public Logger cloneWithPrefix(string prefix) { ... }

    // ...
}

Next, define a factory class that installs your custom logger by returning an 
instance of Ice.LoggerPlugin:

// C#
public class MyLoggerPluginFactoryI : Ice.PluginFactory {
    public Ice.Plugin create(Ice.Communicator communicator,
                             string name, string[] args)
    {
        Ice.Logger logger = new MyLoggerI();
        return new Ice.LoggerPlugin(communicator, logger);
    }
}

The factory class can have any name you wish; in this example, we used MyLog-
gerPluginFactoryI. See Section 32.25.1 for more information on plug-in 
factories. Typically the logger implementation and the factory are compiled into a 
single assembly.

The definition of LoggerPlugin is shown below:
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// C#
namespace Ice {
public partial class LoggerPlugin : Plugin {
    public LoggerPlugin(Communicator communicator, Logger logger)
    {
        // ...
    }

    public void initialize() { }

    public void destroy() { }
}
}

The constructor installs your logger into the given communicator. The 
initialize and destroy methods are empty, but you can subclass 
LoggerPlugin and override these methods if necessary.

Finally, define a configuration property that loads your plug-in into an applica-
tion:

Ice.Plugin.MyLogger=mylogger.dll:MyLoggerPluginFactoryI

The plug-in’s name in this example is MyLogger; again, you can use any name 
you wish. The value of the property is the entry point for the factory, consisting of 
an assembly name followed by the name of the factory class.

If the configuration file containing this property is shared by programs in 
multiple implementation languages, you can use an alternate syntax that is loaded 
only by the Ice for .NET run time:

Ice.Plugin.MyLogger.clr=mylogger.dll:MyLoggerPluginFactoryI

Refer to Appendix D for more information on the Ice.Plugin properties.

32.19.5 The Per-Process Logger

Ice allows you to install a per-process custom logger. This logger is used by all 
communicators that do not have their own specific logger established at the time a 
communicator is created.

You can set a per-process logger in C++ by calling Ice::setProcess-
Logger, and you can retrieve the per-process logger by calling Ice::getPro-
cessLogger:

LoggerPtr getProcessLogger();
void setProcessLogger(const LoggerPtr&);



32.19 The Ice::Logger Interface 1089

If you call getProcessLogger without having called setProcessLogger 
first, the Ice run time installs a default per-process logger. Note that if you call 
setProcessLogger, only communicators created after that point will use this 
per-process logger; communicators created earlier use the logger that was in effect 
at the time they were created. (This also means that you can call setProcess-
Logger multiple times; communicators created after that point will use whatever 
logger was established by the last call to setProcessLogger.)

getProcessLogger and setProcessLogger are language-specific 
APIs that are not defined in Slice. Therefore, for Java and C#, these methods 
appear in the Ice.Util class.

For applications that use the Application or Service convenience 
classes and do not explicitly configure a logger, these classes set a default per-
process logger that uses the Ice.ProgramName property as a prefix for log 
messages. The Application class is described in the server-side language 
mapping chapters; more information on the Service class can be found in 
Section 8.3.2.

32.19.6 C++ Utility Classes

The Ice run time supplies a collection of utility classes that make use of the logger 
facility simpler and more convenient. Each of the logger’s four operations has a 
corresponding helper class:

namespace Ice {
class Print {
public:
    Print(const LoggerPtr&);
    void flush();
    ...
};

class Trace {
public:
    Trace(const LoggerPtr&, const std::string&);
    void flush();
    ...
};

class Warning {
public:
    Warning(const LoggerPtr&);
    void flush();
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    ...
};

class Error {
public:
    Error(const LoggerPtr&);
    void flush();
    ...
};
}

The only notable difference among these classes is the extra argument to the 
Trace constructor; this argument represents the trace category.

To use one of the helper classes in your application, you simply instantiate it 
and compose your message:

if (errorCondition) {
    Error err(communicator->getLogger());
    err << "encountered error condition: " << errorCondition;
}

The Ice run time defines the necessary stream insertion operators so that you can 
treat an instance of a helper class as if it were a standard C++ output stream. When 
the helper object is destroyed, its destructor logs the message you have composed. 
If you want to log more than one message using the same helper object, invoke the 
flush method on the object to log what you have composed so far and reset the 
object for a new message.

The helper classes also supply insertion operators to simplify the task of 
logging an exception. The operators accept instances of std::exception 
(from which all Ice exceptions derive) and log the string returned by the what 
method. If you are using GCC, you can also enable the configuration property 
Ice.PrintStackTraces (see Appendix D), which causes the helper classes 
to log the stack trace of the exception in addition to the value of what.

32.20 The Ice::Stats Interface

The Ice run time reports bytes sent and received over the wire on every operation 
invocation via the Ice::Stats interface:
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module Ice {
    local interface Stats {
        void bytesSent(string protocol, int num);
        void bytesReceived(string protocol, int num);
    };

    local interface Communicator {
        Stats getStats();
        // ...
    };
};

The Ice run time calls bytesReceived as it reads from the network and bytes-
Sent as it writes to the network. A very simple implementation of the Stats inter-
face could look like the following:

class MyStats : public virtual Ice::Stats {
public:
    virtual void bytesSent(const string& prot, Ice::Int num)
    {
        cerr << prot << ": sent " << num << "bytes" << endl;
    }

    virtual void bytesReceived(const string& prot, Ice::Int)
    {
        cerr << prot << ": received " << num << "bytes" << endl;
    }
};

To register your implementation, you must pass it in an Initialization-
Data parameter when you call initialize to create the communicator (see 
Section 32.3):

Ice::InitializationData id;
id.stats = new MyStats;
Ice::CommunicatorPtr ic = Ice::initialize(id);

You can install a Stats object on either the client or the server side (or both). Here 
is some example output produced by installing a MyStats object in a simple 
server:
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tcp: received 14 bytes
tcp: received 32 bytes
tcp: sent 26 bytes
tcp: received 14 bytes
tcp: received 33 bytes
tcp: sent 25 bytes
...

In practice, your Stats implementation will probably be a bit more sophisticated: 
for example, the object can accumulate statistics in member variables and make 
the accumulated statistics available via member functions, instead of simply 
printing everything to the standard error output.

32.21 Location Transparency

One of the useful features of the Ice run time is that it is location transparent: the 
client does not need to know where the implementation of an Ice object resides; an 
invocation on an object automatically is directed to the correct target, whether the 
object is implemented in the local address space, in another address space on the 
same machine, or in another address space on a remote machine. Location trans-
parency is important because it allows us to change the location of an object 
implementation without breaking client programs and, by using IceGrid (see 
Chapter 38), addressing information such as domain names and port numbers can 
be externalized so they do not appear in stringified proxies.

For invocations that cross address space boundaries (or more accurately, cross 
communicator boundaries), the Ice run time dispatches requests via the appro-
priate transport. However, for invocations that are via proxies for which the 
proxies and the servants that process the invocation share the same communicator 
(so-called collocated invocations), the Ice run time, by default, does not send the 
invocation via the transport specified in the proxy. Instead, collocated invocations 
are short-cut inside the Ice run time and dispatched directly.12

The reason for this is efficiency: if collocated invocations were sent via 
TCP/IP, for example, invocations would still be sent via the operating system 
kernel (using the back plane instead of a network) and would incur the full cost of 
creating TCP/IP connections, marshaling requests into packets, trapping in and 

12.Note that if the proxy and the servant do not use the same communicator, the invocation is not 
collocated, even though caller and callee are in the same address space.
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out of the kernel, and so on. By optimizing collocated requests, much of this over-
head can be avoided, so collocated invocations are almost as fast as a local func-
tion call.

For efficiency reasons, collocated invocations are not completely location 
transparent, that is, a collocated call has semantics that differ in some ways from 
calls that cross address-space boundaries. Specifically, collocated invocations 
differ from ordinary invocations in the following respects:

• Collocated invocations are dispatched in the calling thread instead of being 
dispatched using the server’s concurrency model.

• The object adapter holding state is ignored: collocated invocations proceed 
normally even if the target object’s adapter is in the holding state.

• For collocated invocations, classes and exceptions are never sliced. Instead, 
the receiver always receives a class or exception as the derived type that was 
sent by the sender.

• If a collocated invocation throws an exception that is not in an operation’s 
exception specification, the original exception is raised in the client instead of 
UnknownUserException. (This applies to the C++ mapping only.)

• Class factories are ignored for collocated invocations.

• Timeouts on invocations are ignored.

• If an operation implementation uses an in parameter that is passed by refer-
ence as a temporary variable, the change affects the value of the in parameter 
in the caller (instead of modifying a temporary copy of the parameter on the 
callee side only).

In practice, these differences rarely matter. The most likely cause of surprises with 
collocated invocations is dispatch in the calling thread, that is, a collocated invoca-
tion behaves like a local, synchronous procedure call. This can cause problems if, 
for example, the calling thread acquires a lock that an operation implementation 
tries to acquire as well: unless you use recursive mutexes (see Chapter 31), this 
will cause deadlock.

The Ice run time uses the following semantics to determine whether a proxy is 
eligible for the collocated optimization:

• For an indirect proxy, collocation optimization is used if the proxy’s adapter 
id matches the adapter id or replica group id of an object adapter in the same 
communicator.

• For a well-known proxy, the Ice run time queries each object adapter to deter-
mine if the servant is local.
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• For a direct proxy, the Ice run time performs an endpoint search using the 
proxy’s endpoints.

When an endpoint search is required, the Ice run time compares each of the 
proxy’s endpoints against the endpoints of the communicator’s object adapters. 
Only the transport, address and port are considered; other attributes of an 
endpoint, such as timeout settings, are not considered during this search. If a 
match is found, the invocation is dispatched using collocation optimization. 
Normally this search is executed only once, during the proxy’s first invocation, 
although the proxy’s connection caching setting influences this behavior (see 
Section 36.3.4).

Collocation optimization is enabled by default, but you can disable it for all 
proxies by setting the property Ice.Default.CollocationOptimized=0 
(see page 1861). You can also disable the optimization for an individual proxy 
using the factory method ice_collocationOptimized(false). Finally, 
for proxies created using propertyToProxy (see Section 32.11.1), the property 
name.CollocationOptimized configures the default setting for the proxy.

32.22 Automatic Retries

Ice may automatically retry a proxy invocation after a failure. This is a powerful 
feature that, when used in the proper situations, can significantly improve the 
robustness of your application without any additional programming effort. The 
retry facility is governed by one overriding principle: always respect at-most-once 
semantics. As explained on page 14, at-most-once semantics dictate that the Ice 
run time in the client must never retry a failed proxy invocation unless Ice guaran-
tees that the server has not already received the request, or unless the application 
declares that it is safe for Ice to violate at-most-once semantics for the request.

To understand the importance of obeying at-most-once semantics, consider the 
following Slice definition:

interface Account {
    long withdraw(long amount);
};

The withdraw operation removes funds from an account. If an invocation of 
withdraw fails, automatically retrying the request introduces the risk of a dupli-
cate withdrawal unless Ice is absolutely sure that the server has not already 
executed the request.
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The remainder of this section examines automatic retries in more detail.

32.22.1 Request Failure

Ice considers a request to have failed if any of the following conditions are true:

• A connection could not be established

• A connection was lost before the reply was received

• A timeout expired

• An exception occurred while sending the request or receiving the reply

• An error occurred in the server while dispatching the request that causes the 
server to return an UnknownException or RequestFailedException

NOTE: Ice considers an invocation that results in a user exception to be successful and 
therefore excludes it from consideration for automatic retries.

Ice must determine the answers to several questions to decide whether to retry a 
failed request:

1. What kind of error caused the request to fail?

Ice does not bother retrying a request if it knows the same error is going to 
occur again. For example, Ice never retries an invocation that raises a Marsha-
lException, which indicates that there was a problem while encoding or 
decoding a message. Retrying such an invocation is unlikely to change the 
outcome.

Ice also never retries exceptions that derive from RequestFailedException 
because they indicate a permanent failure. One such subclass is OperationNo-
tExistException, whose occurrence signals a serious problem in the applica-
tion. For instance, it might mean that the client and server are using 
incompatible Slice definitions, or that the client is trying to invoke operations 
on the wrong object. The exception to this rule is ObjectNotExistException, 
which Ice does consider to be worthy of retry if the proxy in question is indi-
rect (see page 11) because it gives an application the ability to transparently 
migrate an Ice object.

In addition to user exceptions and subclasses of RequestFailedException, a 
server can also return an instance of UnknownException, UnknownLocalEx-
ception, or UnknownUserException to indicate that it encountered an unex-
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pected exception while dispatching the request. These exceptions are eligible 
for retry.

2. When did the error occur?

If the error is still a candidate for retry, Ice needs to know whether the server 
has received the request. Naturally, the Ice run time in the client cannot 
possibly know that information until the server confirms it by sending a reply. 
However, to be conservative Ice assumes that the server has received the 
request as soon as Ice has written the entire protocol message to the client’s 
local transport buffers. If the error occurred before Ice managed to write the 
complete message, retrying the request would not violate at-most-once seman-
tics.

The Ice run time in the server also has the ability to notify the client that a 
request was not dispatched and therefore that it is safe for the Ice run time in 
the client to retry the request without violating at-most-once semantics. For 
example, this situation can occur when the server is shutting down while there 
are pending requests that have yet to be executed. Sending this notification 
allows a client to transparently fail over to another server.

3. Does the application require strict adherence to at-most-once semantics for 
this request?

An application can grant permission for Ice to violate at-most-once semantics 
for certain Slice operations by marking them as idempotent, causing Ice to 
retry a request that otherwise would be ineligible because the server has 
already received it. Section 32.22.2 discusses idempotent operations in more 
detail.

If Ice determines that an invocation cannot be retried, it raises the exception that 
caused the request failure to the application. On the other hand, if Ice does retry 
the invocation and the subsequent retries also fail, Ice raises the last exception to 
the application. For example, if the first attempt fails with ConnectionRefused-
Exception and the retry fails with ConnectTimeoutException, the invocation 
raises ConnectTimeoutException to the application.

32.22.2 Idempotent Operations

Annotating a Slice operation with the idempotent keyword notifies Ice that it can 
safely violate at-most-once semantics:
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interface Account {
    long withdraw(long amount);
    idempotent long getBalance();
};

Although withdraw clearly requires the stricter treatment, there is no harm in 
automatically retrying the getBalance operation even if the server executes the 
same request more than once.

In general, “read-only” operations are good candidates for the idempotent 
keyword whereas many mutating operations are not. However, the risk of dupli-
cate requests is acceptable even for some kinds of mutating operations:

interface Account {
    long withdraw(long amount);
    idempotent long getBalance();
    idempotent void changeAddress(string newAddress);
};

Here we have marked changeAddress as idempotent because executing the 
request twice has the same effect as executing it only once.

The benefit of the idempotent keyword and the associated relaxation of retry 
semantics is that an invocation that otherwise might have raised an exception has 
at least one more chance to succeed. Furthermore, the application does not need to 
initiate the retry, and in fact the retry activities are completely transparent: if a 
subsequent retry succeeds, the application receives its results as if nothing went 
wrong. The invocation only raises an exception once Ice has reached its config-
ured retry limits.

32.22.3 Configuring Retries

Retry Intervals

The Ice.RetryIntervals property configures the retry behavior for a 
communicator and affects invocations on every proxy created by that communi-
cator. (Retry behavior cannot be configured on a per-proxy basis.) The value of 
this property consists of a series of integers separated by whitespace. The number 
of integers determines how many retry attempts Ice makes, and the value of each 
entry represents a delay in milliseconds. If this property is not defined, the default 
behavior is to retry once immediately after the first failure, which is equivalent to 
the following property definition:

Ice.RetryIntervals=0
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You may want a more elaborate configuration for your application, such as a 
gradual increase in the delay between retries:

Ice.RetryIntervals=0 100 500 1000

With this setting, Ice retries immediately as in the default case. If the first retry 
attempt also fails, Ice waits 100 milliseconds before trying again, then 500 milli-
seconds, and finally tries one more time after waiting one second.

In some situations you may need to disable retries completely. For example, 
an application might implement its own retry logic and therefore require imme-
diate notification when a failure occurs. Clients that establish a session with a 
Glacier2 router also need to disable retries (see Section 42.3.4). To prevent auto-
matic retries, use a value of -1:

Ice.RetryIntervals=-1

Retry Logging

To monitor Ice’s retry activities, configure your program with the property 
Ice.Trace.Retry set to a non-zero value:

Ice.Trace.Retry=1

When retry tracing is enabled, Ice logs a message each time it attempts a retry; the 
log message includes a description of the exception that prompted the retry. Ice 
also logs a message when it reaches the retry limit.

You can configure Ice to log even more information about retries by setting the 
property to 2:

Ice.Trace.Retry=2

This setting prompts Ice to include additional details about connections and 
endpoints.

32.22.4 Timeouts
If a proxy invocation fails due to a timeout, the application must be prepared for 
Ice to raise a TimeoutException (see Section 32.13). However, a developer that is 
testing timeouts in an application may be initially confused to discover that it is 
taking twice as long as expected for Ice to raise the TimeoutException. Auto-
matic retries are usually the reason for this situation.

For example, suppose that a proxy is configured with a one-second timeout 
and automatic retries are enabled with the default setting. If an invocation on that 
proxy fails due to a timeout and Ice determines that the invocation is eligible for 
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retry (using the criteria in Section 32.22.1), Ice immediately tries the invocation 
again and waits for another timeout period to expire before finally raising Timeou-
tException. From the application’s perspective, the invocation fails after approx-
imately two seconds.

Consequently, you can compute an approximate worst-case timeout value as 
follows:

T = t * (N + 1) + D

where t is the timeout value, N is the number of retry intervals, and D is the sum 
of the retry intervals (the total delay between retries). For example, consider our 
example from Section 32.22.3 again:

Ice.RetryIntervals=0 100 500 1000

Using this configuration with a one-second timeout, our approximate worst-case 
timeout is 1 * 5 + 1.6 = 6.6 seconds.

32.22.5 Connections
The behavior of automatic retries is intimately tied to the presence (and absence) 
of connections. This section describes the errors that cause Ice to close connec-
tions, and provides more details about how connections influence retries.

Connection Errors

Ice automatically closes a connection in response to certain fatal error conditions. 
Of these, the one that is the most likely to affect Ice applications is a timeout (see 
Section 32.22.4). Other errors that prompt Ice to close a connection include the 
following:

• a socket error occurs while performing I/O on the connection

• receiving an improperly formatted message

• dispatching an operation to a Java servant raises OutOfMemoryError or 
AssertionError

When Ice closes a connection in response to one of these errors, all other 
outstanding requests on the same connection also fail and may be retried if 
eligible.

Connection Status

One factor that influences retry behavior is the status of the connection on which 
the failed request was attempted. If the failure caused Ice to close the connection 
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(as discussed in the previous section), or if the request failed because Ice could not 
establish a connection, Ice must try to obtain another connection before it can 
retry the request. Section 36.3 describes the semantics of connection establish-
ment.

It is also important to understand that Ice may not retry the invocation on the 
original endpoint even if the connection that was used for the initial request 
remains open. The retry behavior in this case depends on several criteria:

• whether the proxy caches its connection (see Section 36.3.4)

• whether the proxy contains multiple endpoints

• whether other connections exist to any of the proxy’s endpoints

• the proxy’s configured endpoint selection type (see Section 36.3.1)

Generally speaking, you must configure your application carefully if you need 
fine-grained control over Ice’s retry behavior.

32.23 Dispatch Interceptors

A dispatch interceptor is a server-side mechanism that allows you to intercept 
incoming client requests before they are given to a servant. The interceptor can 
examine the incoming request; in particular, it can see whether the request 
dispatch is collocation-optimized and examine the Current information for the 
request (which provides access to the operation name, object identity, and so on).

A dispatch interceptor can dispatch a request to a servant and check whether 
the dispatch was successful; if not, the interceptor can choose to retry the dispatch. 
This functionality is useful to automatically retry requests that have failed due to a 
recoverable error condition, such as a database deadlock exception. (Freeze uses 
dispatch interceptors for this purpose in its evictor implementation—see 
Section 39.3.)

32.23.1 Dispatch Interceptor API

Dispatch interceptors are not defined in Slice, but are provided as an API that is 
specific to each programming language. The remainder of this section presents the 
interceptor API for C++; for Java and .NET, the API is analogous, so we do not 
show it here.

In C++, a dispatch interceptor has the following interface:
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namespace Ice {
    class DispatchInterceptor : public virtual Object {
    public:
        virtual DispatchStatus dispatch(Request&) = 0;
    };

    typedef IceInternal::Handle<DispatchInterceptor>
        DispatchInterceptorPtr;
}

Note that a DispatchInterceptor is-a Object, that is, you use a dispatch 
interceptor as a servant.

To create a dispatch interceptor, you must derive a class from DispatchIn-
terceptor and provide an implementation of the pure virtual dispatch func-
tion. The job of dispatch is to pass the request to the servant and to return a 
dispatch status, defined as follows:

namespace Ice {
    enum DispatchStatus {
        DispatchOK, DispatchUserException, DispatchAsync
    };
}

The enumerators indicate how the request was dispatched:

• DispatchOK

The request was dispatched synchronously and completed without an excep-
tion.

• DispatchUserException

The request was dispatched synchronously and raised a user exception.

• DispatchAsync

The request was dispatched successfully as an asynchronous request; the 
result of the request is not available to the interceptor because the result is 
delivered to the AMD callback when the request completes.

The Ice run time provides basic information about the request to the dispatch 
function in form of a Request object:
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namespace Ice {
    class Request {
    public:
        virtual bool isCollocated();
        virtual const Current& getCurrent();
    };
}

• isCollocated returns true if the dispatch is directly into the target servant 
as a collocation-optimized dispatch (see Section 32.21). If the dispatch is not 
collocation-optimized, the function returns false.

• getCurrent provides access to the Current object for the request (see 
Section 32.6), which provides access to information about the request, such as 
the object identity of the target object, the object adapter used to dispatch the 
request, and the operation name.

Note that Request, for performance reasons, is not thread-safe. This means that 
you must not concurrently dispatch from different threads using the same 
Request object. (Concurrent dispatch for different requests does not cause any 
problems.)

To use a dispatch interceptor, you instantiate your derived class and register it 
as a servant with the Ice run time in the usual way, by adding the interceptor to the 
ASM, or returning the interceptor as a servant from a call to locate on a servant 
locator.

Objective-C Mapping

The Objective-C mapping in Ice Touch does not support AMD, therefore the 
return type of the dispatch method is simplified to a boolean:

@protocol ICEDispatchInterceptor <ICEObject>
-(BOOL) dispatch:(id<ICERequest>)request;
@end

A return value of YES is equivalent to DispatchOK and indicates that the 
request completed without an exception. A return value of NO is equivalent to 
DispatchUserException.

Similarly, the ICERequest protocol omits the isCollocated method 
because collocation optimization is not supported.
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32.23.2 Using a Dispatch Interceptor

Your implementation of the dispatch function must dispatch the request to the 
actual servant. Here is a very simple example implementation of an interceptor 
that dispatches the request to the servant passed to the interceptor’s constructor:

class InterceptorI : public Ice::DispatchInterceptor {
public:
    InterceptorI(const Ice::ObjectPtr& servant)
        : _servant(servant) {}

    virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
        return _servant->ice_dispatch(request);
    }

    Ice::ObjectPtr _servant;
};

Note that our implementation of dispatch calls ice_dispatch on the target 
servant to dispatch the request. ice_dispatch does the work of actually 
(synchronously) invoking the operation.

Also note that dispatch returns whatever is returned by ice_dispatch. 
For synchronous dispatch, you should always implement your interceptor in this 
way and not change this return value.

We can use this interceptor to intercept requests to a servant of any type as 
follows:

ExampleIPtr servant = new ExampleI;
Ice::DispatchInterceptorPtr interceptor =
    new InterceptorI(servant);
adapter->add(interceptor,
             communicator->stringToIdentity("ExampleServant"));

Note that, because dispatch interceptor is-a servant, this means that the servant to 
which the interceptor dispatches need not be the actual servant. Instead, it could 
be another dispatch interceptor that ends up dispatching to the real servant. In 
other words, you can chain dispatch interceptors; each interceptor’s dispatch 
function is called until, eventually, the last interceptor in the chain dispatches to 
the actual servant.

A more interesting use of a dispatch interceptor is to retry a call if it fails due 
to a recoverable error condition. Here is an example that retries a request if it 
raises a local exception defined in Slice as follows:

local exception DeadlockException { /* ... */ };
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Note that this is a local exception. Local exceptions that are thrown by the 
servant propagate to dispatch and can be caught there. A database might throw 
such an exception if the database detects a locking conflict during an update. We 
can retry the request in response to this exception using the following dispatch 
implementation:

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
    while (true) {
        try {
            return _servant->ice_dispatch(request);
        } catch (const DeadlockException&) {
            // Happens occasionally
        }
    }
}

Of course, a more robust implementation might limit the number of retries and 
possibly add a delay before retrying.
You can also retry an asynchronous dispatch. In this case, each asynchronous 
dispatch attempt creates a new AMD callback object.

• If the response for the retried request has been sent already, the interceptor 
receives a ResponseSentException. your interceptor must either not 
handle (or rethrow this exception) or return DispatchAsync.

• If the response for the request has not been sent yet, the Ice run time ignores 
any call to ice_response or ice_exception on the old AMD callback.

If an operation throws a user exception (as opposed to a local exception), the user 
exception cannot be caught by dispatch as an exception but, instead, is 
reported by the return value of ice_dispatch: a return value of 
DispatchUserException indicates that the operation raised a user excep-
tion. You can retry a request in response to a user exception as follows:

virtual Ice::DispatchStatus dispatch(Ice::Request& request) {
    Ice::DispatchStatus d;
    do {
        d = _servant->ice_dispatch(request);
    } while (d == Ice::DispatchUserException);
    return d;
}

This is fine as far as it goes, but not particularly useful because the preceding code 
retries if any kind of user exception is thrown. However, typically, we want to 
retry a request only if a specific user exception is thrown. The problem here is that 
the dispatch function does not have direct access to the actual exception that 
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was thrown—all it knows is that some user exception was thrown, but not which 
one.

To retry a request for a specific user exception, you need to implement your 
servants such that they leave some “footprint” behind if they throw the exception 
of interest. This allows your request interceptor to test whether the user exception 
should trigger a retry. There are various techniques you can use to achieve this. 
For example, you can use thread-specific storage to test a retry flag that is set by 
the servant if it throws the exception or, if you use transactions, you can attach the 
retry flag to the transaction context. However, doing so is more complex; the 
intended use case is to permit retry of requests in response to local exceptions, so 
we suggest you retry requests only for local exceptions.

The most common use case for a dispatch interceptor is as a default servant. 
Rather than having an explicit interceptor for individual servants, you can return a 
dispatch interceptor as the servant from a call to locate on a servant locator (see 
32.9.2). You can then choose the “real” servant to which to dispatch the request 
inside dispatch, prior to calling ice_dispatch. This allows you to intercept 
and selectively retry requests based on their outcome, which cannot be done using 
a servant locator.

32.24 C++ Strings and Character Encoding

On the wire, Ice transmits all strings as Unicode strings in UTF-8 encoding (see 
Chapter 37). For languages other than C++, Ice uses strings in their language-
native Unicode representation and converts automatically to and from UTF-8 for 
transmission, so applications can transparently use characters from non-English 
alphabets. 

However, for C++, how strings are represented inside a process depends on 
which mapping is chosen for a particular string, the default mapping to 
std::string, or the alternative mapping to std::wstring (see 
Section 6.6.1) as well as the platform.13 This section explains how strings are 
encoded by the Ice for C++ run time, and how you can achieve automatic conver-
sion of strings in their native representation to and from UTF-8.14

By default, the Ice run time encodes strings as follows:

13.The explanations that follow are relevant only for C++. See Sections 32.24.8 and 32.24.9 for 
string conversion for other languages.
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• Narrow strings (that is, strings mapped to std::string) are presented to 
the application in UTF-8 encoding and, similarly, the application is expected 
to provide narrow strings in UTF-8 encoding to the Ice run time for transmis-
sion.

With this default behavior, the application code is responsible for converting 
between the native codeset for 8-bit characters and UTF-8. For example, if the 
native codeset is ISO Latin-1, the application is responsible for converting 
between UTF-8 and narrow (8-bit) characters in ISO Latin-1 encoding.

Also note that the default behavior does not require the application to do 
anything if it only uses characters in the ASCII range. (This is because a string 
containing only characters in the (7-bit) ASCII range is also a valid UTF-8 
string.)

• Wide strings (that is, strings mapped to std::wstring) are automatically 
encoded as Unicode by the Ice run time as appropriate for the platform. For 
example, for Windows, the Ice run time converts between UTF-8 and UTF-16 
in little-endian representation whereas, for Linux, the Ice run time converts 
between UTF-8 and UTF-32 in the endian-ness appropriate for the host CPU.

With this default behavior, wide strings are transparently converted between 
their on-the-wire representation and their native C++ representation as appro-
priate, so application code need not do anything special. (The exception is if 
an application uses a non-Unicode encoding, such as Shift-JIS, as its native 
wstring codeset.)

32.24.1 Installing String Converters

The default behavior of the run time can be changed by providing application-
specific string converters. If you install such converters, all Slice strings will be 
passed to the appropriate converter when they are marshaled and unmarshaled. 
Therefore, the string converters allow you to convert all strings transparently into 
their native representation without having to insert explicit conversion calls when-
ever a string crosses a Slice interface boundary.

You can install string converters on a per-communicator basis when you create 
a communicator by setting the stringConverter and wstringConverter 
members of the InitializationData structure (see Section 32.3). Any 

14.See the demo directory in the Ice for C++ distribution for an example of how to use string 
converters.
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strings that use the default (std::string) mapping are passed through the 
specified stringConverter, and any strings that use the wide 
(std::wstring) mapping are passed through the specified wstringCon-
verter.

The string converters are defined as follows:

namespace Ice {

class UTF8Buffer {
public:
    virtual Byte* getMoreBytes(size_t howMany,
                               Byte* firstUnused) = 0;
    virtual ~UTF8Buffer() {}
};

template<typename charT>
class BasicStringConverter : public IceUtil::Shared {
public:
    virtual Byte*
        toUTF8(const charT* sourceStart, const charT* sourceEnd,
               UTF8Buffer&) const = 0;

    virtual void fromUTF8(const Byte* sourceStart,
                          const Byte* sourceEnd,
                          std::basic_string<charT>& target) const;
};

typedef BasicStringConverter<char> StringConverter;
typedef IceUtil::Handle<StringConverter> StringConverterPtr;

typedef BasicStringConverter<wchar_t> WstringConverter;
typedef IceUtil::Handle<WstringConverter> WstringConverterPtr;

}

As you can see, both narrow and wide string converters are simply templates with 
either a narrow or a wide character (char or wchar_t) as the template param-
eter.

32.24.2 Converting to UTF-8

If you have a string converter installed, the Ice run time calls the toUTF8 func-
tion whenever it needs to convert a native string into UTF-8 representation for 
transmission. The sourceStart and sourceEnd pointers point at the first 
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byte and one-beyond-the-last byte of the source string, respectively. The imple-
mentation of toUTF8 must return a pointer to the first unused byte following the 
converted string.

Your implementation of toUTF8 must allocate the returned string by calling 
the getMoreBytes member function of the UTF8Buffer class that is passed 
as the third argument. (getMoreBytes throws a MemoryLimitException 
if it cannot allocate enough memory.) The firstUnused parameter must point 
at the first unused byte of the allocated memory region. You can make several 
calls to getMoreBytes to incrementally allocate memory for the converted 
string. If you do, getMoreBytes may relocate the buffer in memory. (If it does, 
it copies the part of the string that was converted so far into the new memory 
region.) The function returns a pointer to the first unused byte of the (possibly 
relocated) memory.

Conversion with toUTF8 can fail because getMoreBytes can cause the 
message size to exceed Ice.MessageSizeMax. In this case, you should let the 
MemoryLimitException thrown by getMoreBytes propagate to the 
caller.

Conversion can also fail because the encoding of the source string is internally 
incorrect. In that case, you should throw a StringConversionFailed 
exception from toUTF8.

After it has marshaled the returned string into an internal marshaling buffer, 
the Ice run time deallocates the string.

32.24.3 Converting from UTF-8

During unmarshaling, the Ice run time calls the fromUTF8 member function on 
the corresponding string converter. The function converts a UTF-8 string into its 
native form as a std::string. (The string into which the function must place 
the converted characters is passed to fromUTF8 as the target parameter.)

32.24.4 String Parameters in Local Calls

In C++, and indirectly in Python, Ruby, and PHP, all Ice local APIs are narrow-
string based, meaning you could not for example recompile Properties.ice 
to get property names and values as wide strings.

Installing a narrow-string converter could cause trouble for these local calls if 
UTF-8 conversion occurs in the underlying implementation. For example, the 
stringToIdentity operation creates an intermediary UTF-8 string. If this string 
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contains characters that are not in your native codeset (as determined by the 
narrow-string converter), the stringToIdentity call will fail.

Likewise, when Ice reads properties from a configuration file, it converts the 
input (UTF-8 characters) into native strings. This conversion can also fail if the 
native encoding cannot convert some characters.

Most strings in local calls are never problematic because Ice does not perform

any conversion, for example:

• adapter names in createObjectAdapter

• property names and values in Properties

• ObjectAdapter::createProxy, where the identity conversion occurs only 
when the proxy is marshaled

Finally, consider the Slice type Ice::Context, which is mapped in C++ as a 
map<string, string>. The mapping for Context cannot be changed to 
map<wstring, wstring>, therefore you cannot send or receive any context 
entry that is not in your narrow-string native encoding when a narrow-string 
converter is installed.

32.24.5 Built-In String Converters

Ice provides three string converters to cover common conversion requirements:

• UnicodeWstringConverter

This is a string converter that converts between Unicode wide strings and 
UTF-8 strings. Unless you install a different string converter, this is the 
default converter that is used for wide strings.

• IconvStringConverter (Linux and Unix only)

This is a string converter that converts strings using the Linux and Unix 
iconv conversion facility (see Section 32.24.7). It can be used to convert 
either wide or narrow strings.

• WindowsStringConverter (Windows only)

This string converter converts between multi-byte and UTF-8 strings and uses 
MultiByteToWideChar and WideCharToMultiByte for its imple-
mentation.

These string converters are defined in the Ice namespace.
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32.24.6 Convenience Functions

The Ice namespace provides four convenience functions that make it easy to 
convert strings to and from UTF-8:

std::string
nativeToUTF8(const Ice::StringConverterPtr&, const std::string&);

std::string
nativeToUTF8(const Ice::CommunicatorPtr&, const std::string&);

std::string
UTF8ToNative(const Ice::StringConverterPtr&, const std::string&);

std::string
UTF8ToNative(const Ice::CommunicatorPtr&, const std::string&);

The overloads allow you to either use the string converter that is configured on a 
communicator or to explicitly pass a specific string converter that performs the 
conversion.

32.24.7 The iconv String Converter

For Linux and Unix platforms, Ice provides an IconvStringConverter 
template class that uses the iconv conversion facility to convert between the 
native encoding and UTF-8. The only member function of interest is the 
constructor:

template<typename charT>
class IconvStringConverter
    : public Ice::BasicStringConverter<charT>
{
public:
    IconvStringConverter(const char* = nl_langinfo(CODESET));

    // ...
};

To use this string converter, you specify whether the conversion you want is for 
narrow or wide characters via the template argument, and you specify the corre-
sponding native encoding with the constructor argument. For example, to create a 
converter that converts between ISO Latin-1 and UTF-8, you can instantiate the 
converter as follows:
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InitializationData id;
id.stringConverter = new IconvStringConverter<char>("ISO-8859-1");

Similarly, to convert between the internal wide character encoding and UTF-8, 
you can instantiate a converter as follows:

InititializationData id;
id.stringConverter = new IconvStringConverter<wchar_t>("WCHAR_T");

The string you pass to the constructor must be one of the values returned by 
iconv -l, which lists all the available character encodings for your machine.

Using the IconvStringConverter template makes it easy to install code 
converters for any available encoding without having to explicitly write (or call) 
conversion routines whose implementation is typically non-trivial.

32.24.8 The Ice String Converter Plug-In

The Ice run time includes a plug-in that supports conversion between UTF-8 and 
native encodings on Unix and Windows platforms. You can use this plug-in to 
install converters for narrow and wide strings into the communicator of an existing 
program. This feature is primarily intended for use in scripting language exten-
sions such as Ice for Python; if you need to use string converters in your C++ 
application, we recommend using the technique described in Section 32.24.1 
instead.

Note that an application must be designed to operate correctly in the presence 
of a string converter. A string converter assumes that it converts strings in the 
native encoding into the UTF-8 encoding, and vice versa. An application that 
performs its own conversions on strings that cross a Slice interface boundary can 
cause encoding errors when those strings are processed by a converter.

Installing the Plug-In

You can install the plug-in using a configuration property like the one shown 
below:

Ice.Plugin.Converter=Ice:createStringConverter
    iconv=encoding[,encoding] windows=code-page

You can use any name you wish for the plug-in; in this example, we used 
Converter. The first component of the property value represents the plug-in’s 
entry point, which includes the abbreviated name of the shared library or DLL 
(Ice) and the name of a factory function (createStringConverter).

The plug-in accepts the following arguments:
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• iconv=encoding[,encoding]

This argument is optional on Unix platforms and ignored on Windows plat-
forms. If specified, it defines the iconv names of the narrow string encoding 
and the optional wide-string encoding. If this argument is not specified, the 
plug-in installs a narrow string converter that uses the default locale-depen-
dent encoding.

• windows=code-page

This argument is required on Windows platforms and ignored on Unix plat-
forms. The code-page value represents a code page number, such as 1252.

The plug-in’s argument semantics are designed so that the same configuration 
property can be used on both Windows and Unix platforms, as shown in the 
following example:

Ice.Plugin.Converter=Ice:createStringConverter iconv=ISO8859-1
 windows=1252

If the configuration file containing this property is shared by programs in multiple 
implementation languages, you can use an alternate syntax that is loaded only by 
the Ice for C++ run time:

Ice.Plugin.Converter.cpp=Ice:createStringConverter iconv=ISO8859-1
 windows=1252

Refer to Appendix D for more information on the Ice.Plugin properties.

32.24.9 Dynamically Installing Custom String Converters

If the string converter plug-in described in Section 32.24.8 does not satisfy your 
requirements, you can implement your own solution with help from the String-
ConverterPlugin class:

namespace Ice {
class StringConverterPlugin : public Ice::Plugin {
public:

    StringConverterPlugin(const CommunicatorPtr& communicator, 
                          const StringConverterPtr&,
                          const WstringConverterPtr& = 0);

    virtual void initialize();
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    virtual void destroy();
};
}

The converters are installed by the StringConverterPlugin constructor 
(you can supply an argument of 0 for either converter if you do not wish to install 
it). The initialize and destroy methods are empty, but you can subclass 
StringConverterPlugin and override these methods if necessary.

In order to create a string converter plug-in, you must do the following:

• Define and export a “factory function” that returns an instance of String-
ConverterPlugin (see Section 32.25.1).

• Implement the converter(s) that you will pass to the StringConverter-
Plugin constructor, or use the ones included with Ice (see Appendix F).

• Package your code into a shared library or DLL.

To install your plug-in, use a configuration property like the one shown below:

Ice.Plugin.MyConverterPlugin=myconverter:createConverter ...

The first component of the property value represents the plug-in’s entry point, 
which includes the abbreviated name of the shared library or DLL (mycon-
verter) and the name of a factory function (createConverter).

If the configuration file containing this property is shared by programs in 
multiple implementation languages, you can use an alternate syntax that is loaded 
only by the Ice for C++ run time:

Ice.Plugin.MyConverterPlugin.cpp=myconverter:createConverter ...

Refer to Appendix D for more information on the Ice.Plugin properties.

32.25 Developing a Plug-In

Ice supports a plug-in facility that allows you to add new features and install appli-
cation-specific customizations. Plug-ins are defined using configuration properties 
and loaded dynamically by the Ice run time, making it possible to install a plug-in 
into an existing program without modification.

Ice uses the plug-in facility to implement some of its own features. Most well-
known is IceSSL, a plug-in that adds a secure transport for Ice communication 
(see Chapter 41). Other examples include the logger plug-in (see Section 32.19.4) 
and the string converter plug-in (see Section 32.24.8).
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This section describes the plug-in facility in more detail and demonstrates how 
to implement an Ice plug-in.

32.25.1 Plug-In API

The plug-in facility defines a local Slice interface that all plug-ins must imple-
ment:

module Ice {
local interface Plugin {
    void initialize();
    void destroy();
};
};

The lifecycle of an Ice plug-in is structured to accommodate dependencies 
between plug-ins, such as when a logger plug-in needs to use IceSSL for its 
logging activities. Consequently, a plug-in object’s lifecycle consists of four 
phases:

• Construction

The Ice run time uses a language-specific factory API for instantiating 
plug-ins. During construction, a plug-in can acquire resources but must not 
spawn new threads or perform activities that depend on other plug-ins.

• Initialization

After all plug-ins have been constructed, the Ice run time invokes initialize 
on each plug-in. The order in which plug-ins are initialized may be specified 
using a configuration property (see Section 32.25.3), otherwise the order is 
undefined. If a plug-in has a dependency on another plug-in, you must 
configure the Ice run time so that initialization occurs in the proper order. In 
this phase it is safe for a plug-in to spawn new threads; it is also safe for a 
plug-in to interact with other plug-ins and use their services, as long as those 
plug-ins have already been initialized.

If initialize raises an exception, the Ice run time invokes destroy on all 
plug-ins that were successfully initialized (in the reverse order of initializa-
tion) and raises the original exception to the application.

• Active

The active phase spans the time between initialization and destruction. 
Plug-ins must be designed to operate safely in the context of multiple threads.
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• Destruction

The Ice run time invokes destroy on each plug-in in the reverse order of 
initialization.

This lifecycle is repeated for each new communicator that an application creates 
and destroys.

C++ Factory

In C++, the plug-in factory is an exported function with C linkage having the 
following signature:

extern "C"
{
ICE_DECLSPEC_EXPORT Ice::Plugin*
functionName(const Ice::CommunicatorPtr& communicator,
             const std::string& name,
             const Ice::StringSeq& args);
}

You can define the function with any name you wish. We recommend that you use 
the ICE_DECLSPEC_EXPORT macro to ensure that the function is exported 
correctly on all platforms. Since the function uses C linkage, it must return the 
plug-in object as a regular C++ pointer and not as an Ice smart pointer. Further-
more, the function must not raise C++ exceptions; if an error occurs, the function 
must return zero.

The arguments to the function consist of the communicator that is in the 
process of being initialized, the name assigned to the plug-in, and any arguments 
that were specified in the plug-in’s configuration.

Java Factory

In Java, a plug-in factory must implement the Ice.PluginFactory interface:

package Ice;

public interface PluginFactory {
    Plugin create(Communicator communicator,
                  String name,
                  String[] args);
}

The arguments to the create method consist of the communicator that is in the 
process of being initialized, the name assigned to the plug-in, and any arguments 
that were specified in the plug-in’s configuration.
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The create method can return null to indicate that a general error 
occurred, or it can raise PluginInitializationException to provide 
more detailed information. If any other exception is raised, the Ice run time wraps 
it inside an instance of PluginInitializationException.

.NET Factory

In .NET, a plug-in factory must implement the Ice.PluginFactory inter-
face:

namespace Ice {
    public interface PluginFactory
    {
        Plugin create(Communicator communicator,
                      string name,
                      string[] args);
    }
}

The arguments to the create method consist of the communicator that is in the 
process of being initialized, the name assigned to the plug-in, and any arguments 
that were specified in the plug-in’s configuration.

The create method can return null to indicate that a general error 
occurred, or it can raise PluginInitializationException to provide 
more detailed information. If any other exception is raised, the Ice run time wraps 
it inside an instance of PluginInitializationException.

32.25.2 Plug-In Configuration

Plug-ins are installed using a configuration property of the following form:

Ice.Plugin.Name=entry_point [arg ...]

In most cases you can assign an arbitrary name to a plug-in. In the case of IceSSL, 
however, the plug-in requires that its name be IceSSL.

The value of entry_point is a language-specific representation of the 
plug-in’s factory. In C++, it consists of the name of the shared library or DLL 
containing the factory function, along with the name of the factory function. In 
Java, the entry point is the name of the factory class, while in .NET the entry point 
also includes the assembly.

The language-specific nature of plug-in properties can present a problem 
when applications that are written in multiple implementation languages attempt 
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to share a configuration file. Ice supports an alternate syntax for plug-in properties 
that alleviates this issue:

Ice.Plugin.Name.cpp=...    # C++ plug-in
Ice.Plugin.Name.java=...   # Java plug-in
Ice.Plugin.Name.clr=...    # .NET (Common Language Runtime) plug-in

Plug-in properties having a suffix of .cpp, .java, or .clr are loaded only by 
the appropriate Ice run time and ignored by others.

Refer to Appendix D for more information on these properties.

32.25.3 Advanced Topics

This section discusses additional aspects of the Ice plug-in facility that may be of 
use to applications with special requirements.

Plug-In Dependencies

If a plug-in has a dependency on another plug-in, you must ensure that Ice initial-
izes the plug-ins in the proper order. Suppose that a custom logger implementation 
depends on IceSSL; for example, the logger may need to transmit log messages 
securely to another server. We start with the following C++ configuration:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyLogger=MyLogger:createMyLogger

The problem with this configuration is that it does not specify the order in which 
the plug-ins should be loaded and initialized. If the Ice run time happens to 
initialize MyLogger first, the plug-in’s initialize method will fail if it 
attempts to use the services of the uninitialized IceSSL plug-in.

To remedy the situation, we need to add one more property:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.MyLogger=MyLogger:createMyLogger
Ice.PluginLoadOrder=IceSSL, MyLogger

Using the Ice.PluginLoadOrder property we can guarantee that the 
plug-ins are loaded in the correct order. Appendix D describes this property in 
more detail.

The Plug-In Manager

PluginManager is the name of an internal Ice object that is responsible for 
managing all aspects of Ice plug-ins. This object supports a Slice interface of the 
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same name, and an application can obtain a reference to this object using the 
following communicator operation:

module Ice {
local interface Communicator {
    PluginManager getPluginManager();
    // ...
};
};

The PluginManager interface offers three operations:

module Ice {
local interface PluginManager {
    void initializePlugins();
    Plugin getPlugin(string name);
    void addPlugin(string name, Plugin pi);
};
};

The initializePlugins operation is used in special cases when an application 
needs to manually initialize one or more plug-ins, as discussed in the next section.

The getPlugin operation returns a reference to a specific plug-in. The name 
argument must match an installed plug-in, otherwise the operation raises NotReg-
isteredException. This operation is useful when a plug-in exports an interface 
that an application can use to query or customize its attributes or behavior.

Finally, addPlugin provides a way for an application to install a plug-in 
directly, without the use of a configuration property.

Delayed Initialization

It is sometimes necessary for an application to manually configure a plug-in prior 
to its initialization. For example, SSL keys are often protected by a passphrase, but 
a developer may be understandably reluctant to specify that passphrase in a 
configuration file because it would be exposed in clear text. The developer would 
likely prefer to configure the IceSSL plug-in with a password callback instead; 
however, this must be done before the plug-in is initialized and attempts to load 
the SSL key. The solution is to configure the Ice run time so that it postpones the 
initialization of its plug-ins:

Ice.InitPlugins=0

When this property is set to zero, initializing plug-ins becomes the application’s 
responsibility. The example below demonstrates how to perform this initialization:



32.26 Custom Class Loaders 1119

// C++
Ice::CommunicatorPtr ic = ...
Ice::PluginManagerPtr pm = ic->getPluginManager();
IceSSL::PluginPtr ssl = pm->getPlugin("IceSSL");
ssl->setPasswordPrompt(...);
pm->initializePlugins();

After obtaining the IceSSL plug-in and establishing the password callback, the 
application invokes initializePlugins on the plug-in manager object to 
commence plug-in initialization.

32.26 Custom Class Loaders

Certain features of the Ice for Java run-time necessitate dynamic class loading. 
Applications with special requirements can supply a custom class loader for Ice to 
use in the following situations:

• Unmarshaling user exceptions and instances of concrete Slice classes

• Loading Ice plug-ins

• Loading IceSSL certificate verifiers and password callbacks

If an application does not supply a class loader (or if the application-supplied class 
loader fails to locate a class), the Ice run time attempts to load the class as follows:

• using the system class loader

• using the current thread’s class loader

• using the default class loader (that is, by calling Class.forName)

Note that an application must install object factories for any abstract Slice classes 
it might receive, regardless of whether the application also installs a custom class 
loader. Refer to Section 10.14.4 for more information on factories.

To install a custom class loader, set the classLoader member of 
Ice.InitializationData prior to creating a communicator:

Ice.InitializationData initData = new Ice.InitializationData();
initData.classLoader = new MyClassLoader();
Ice.Communicator communicator =
    Ice.Util.initialize(args, initData);

Section 32.3 discusses communicator initialization in greater detail.
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32.27 Summary

In this chapter, we explored the server-side run time in detail. Communicators are 
the main handle to the Ice run time. They provide access to a number of run time 
resources and allow you to control the life cycle of a server. Object adapters 
provide a mapping between abstract Ice objects and concrete servants. Various 
implementation techniques are at your disposal to control the trade-off between 
performance and scalability; in particular, servant locators are a central mecha-
nism that permits you to choose an implementation technique that matches the 
requirements of your application.

Ice provides both oneway and datagram invocations. These provide perfor-
mance gains in situations where an application needs to provide numerous state-
less updates. Batching such invocations permits you to increase performance even 
further.

The Ice logging mechanism is user extensible, so you can integrate Ice 
messages into arbitrary logging frameworks, and the Ice::Stats interface 
permits you to collect statistics for network bandwidth consumption.

Finally, even though Ice is location transparent, in the interest of efficiency, 
collocated invocations do not behave in all respects like remote invocations. You 
need to be aware of these differences, especially for applications that are sensitive 
to thread context.
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Chapter 33
Facets and Versioning

33.1 Introduction

Facets provide a general-purpose mechanism for non-intrusively extending the 
type system of an application. This is particularly useful for versioning an applica-
tion. Section 33.2 introduces the facet concept and presents the relevant APIs. 
Section 33.3 presents a few traditional approaches to versioning and their prob-
lems. Sections 33.4 to 33.6 show how to use facets to implement versioning, and 
Section 33.7 discusses design choices when adding versioning to a system.

33.2 Concept and APIs

Up to this point, we have presented an Ice object as a single conceptual entity, that 
is, as an object with a single most-derived interface and a single identity, with the 
object being implemented by a single servant. However, an Ice object is more 
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correctly viewed as a collection of one or more sub-objects known as facets, as 
shown in Figure 33.1.

Figure 33.1. An Ice object with five facets sharing a single object identity.

Figure 33.1 shows a single Ice object with five facets. Each facet has a name, 
known as the facet name. Within a single Ice object, all facets must have unique 
names. Facet names are arbitrary strings that are assigned by the server that imple-
ments an Ice object. A facet with an empty facet name is legal and known as the 
default facet. Unless you arrange otherwise, an Ice object has a single default 
facet; by default, operations that involve Ice objects and servants operate on the 
default facet.

Note that all the facets of an Ice object share the same single identity, but have 
different facet names. Recall the definition of Ice::Current we saw in 
Section 32.6 once more:

module Ice {
    local dictionary<string, string> Context;

    enum OperationMode { Normal, \Nonmutating, \Idempotent };

    local struct Current {
        ObjectAdapter   adapter;
        Identity        id;
        string          facet;
        string          operation;
        OperationMode   mode;

"" (Default Facet)

"Facet 2"

"That Facet"

"This Facet"

"Facet 1"

Ice Object

Facets

Facets
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        Context         ctx;
        int             requestId;
    };
};

By definition, if two facets have the same id field, they are part of the same Ice 
object. Also by definition, if two facets have the same id field, their facet fields 
have different values.

Even though Ice objects usually consist of just the default facet, it is entirely 
legal for an Ice object to consist of facets that all have non-empty names (that is, it 
is legal for an Ice object not to have a default facet).

Each facet has a single most-derived interface. There is no need for the inter-
face types of the facets of an Ice object to be unique. It is legal for two facets of an 
Ice object to implement the same most-derived interface.

Each facet is implemented by a servant. All the usual implementation tech-
niques for servants are available to implement facets—for example, you can 
implement a facet using a servant locator. Typically, each facet of an Ice object has 
a separate servant, although, if two facets of an Ice object have the same type, they 
can also be implemented by a single servant (for example, using a default servant, 
as described in Section 32.9.2).

33.2.1 Server-Side Facet Operations
On the server side, the object adapter offers a number of operations to support 
facets:

namespace Ice {
  dictionary<string, Object> FacetMap;

  local interface ObjectAdapter {
     Object*  addFacet(Object servant, Identity id, string facet);
     Object*  addFacetWithUUID(Object servant, string facet);
     Object   removeFacet(Identity id, string facet);
     Object   findFacet(Identity id, string facet);

     FacetMap findAllFacets(Identity id);
     FacetMap removeAllFacets(Identity id);
     // ...
  };
};

These operations have the same semantics as the corresponding “normal” opera-
tions (add, addWithUUID, remove, and find), but also accept a facet name. The 
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corresponding “normal” operations are simply convenience operations that supply 
an empty facet name. For example, remove(id) is equivalent to 
removeFacet(id, ""), that is, remove(id) operates on the default facet.

findAllFacets returns a dictionary of <facet-name, servant> pairs that 
contains all the facets for the given identity.

removeAllFacets removes all facets for a given identity from the active 
servant map, that is, it removes the corresponding Ice object entirely. The opera-
tion returns a dictionary of <facet–name, servant> pairs that contains all the 
removed facets.

These operations are sufficient for the server to create Ice objects with any 
number of facets. For example, assume that we have the following Slice defini-
tions:

module Filesystem {
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

module FilesystemExtensions {
    // ...

    class DateTime extends TimeOfDay {
        // ...
    };

    struct Times {
        DateTime createdDate;
        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface Stat {
        idempotent Times getTimes();
    };
};

Here, we have a File interface that provides operations to read and write a file, 
and a Stat interface that provides access to the file creation, access, and modifica-
tion time. (Note that the Stat interface is defined in a different module and could 
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also be defined in a different source file.) If the server wants to create an Ice object 
that contains a File instance as the default facet and a Stat instance that provides 
access to the time details of the file, it could use:

// Create a File instance.
//
Filesystem::FilePtr file = new FileI;

// Create a Stat instance.
//
FilesystemExctensions::DateTimePtr dt
    = new FilesystemExtensions::DateTime;
FilesystemExtensions::Times times;
times.createdDate = dt;
times.accessedDate = dt;
times.modifiedDate = dt;
FilesystemExtensions::StatPtr stat = new StatI(times);

// Register the File instance as the default facet.
//
Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file);

// Register the Stat instance as a facet with name "Stat".
//
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

The first few lines simply create and initialize a FileI and StatI instance. 
(The details of this do not matter here.) All the action is in the last two statements:

Filesystem::FilePrx filePrx = myAdapter->addWithUUID(file);
myAdapter->addFacet(stat, filePrx->ice_getIdentity(), "Stat");

This registers the FileI instance with the object adapter as usual. (In this case, 
we let the Ice run time generate a UUID as the object identity.) Because we are 
calling addWithUUID (as opposed to addFacetWithUUID), the instance 
becomes the default facet.

The second line adds a facet to the instance with the facet name Stat. Note 
that we call ice_getIdentity on the File proxy to pass an object identity to 
addFacet. This guarantees that the two facets share the same object identity.

Note that, in general, it is a good idea to use ice_getIdentity to obtain the 
identity of an existing facet when adding a new facet. That way, it is guaranteed 
that the facets share the same identity. (If you accidentally pass a different identity 
to addFacet, you will not add a facet to an existing Ice object, but instead register 
a new Ice object; using ice_getIdentity makes this mistake impossible.)
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33.2.2 Client-Side Facet Operations

On the client side, which facet a request is addressed to is implicit in the proxy 
that is used to send the request. For an application that does not use facets, the 
facet name is always empty so, by default, requests are sent to the default facet.

The client can use a checkedCast to obtain a proxy for a particular facet. 
For example, assume that the client obtains a proxy to a File instance as shown in 
Section 33.2.1. The client can cast between the File facet and the Stat facet (and 
back) as follows:

// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Get the Stat facet.
//
FilesystemExtensions::StatPrx stat
    = FilesystemExtensions::StatPrx::checkedCast(file, "Stat");

// Go back from the Stat facet to the File facet.
//
Filesystem::FilePrx file2
    = Filesystem::FilePrx::checkedCast(stat, "");

assert(file2 == file); // The two proxies are identical.

This example illustrates that, given any facet of an Ice object, the client can navi-
gate to any other facet by using a checkedCast with the facet name.

If an Ice object does not provide the specified facet, checkedCast returns 
null:

FilesystemExtensions::StatPrx stat
    = FilesystemExtensions::StatPrx::checkedCast(file, "Stat");

if (!stat) {
    // No Stat facet on this object, handle error...
} else {
    FilesystemExtensions::Times times = stat->getTimes();

    // Use times struct...
}

Note that checkedCast also returns a null proxy if a facet exists, but the cast is 
to the wrong type. For example:
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// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Cast to the wrong type.
//
SomeTypePrx prx = SomeTypePrx::checkedCast(file, "Stat");

assert(!prx); // checkedCast returns a null proxy.

If you want to distinguish between non-existence of a facet and the facet being of 
the incorrect type, you can first obtain the facet as type Object and then down-
cast to the correct type:

// Get a File proxy.
//
Filesystem::FilePrx file = ...;

// Get the facet as type Object.
//
Ice::ObjectPrx obj = Ice::ObjectPrx::checkedCast(file, "Stat");
if (!obj) {
    // No facet with name "Stat" on this Ice object.
} else {
    FilesystemExtensions::StatPrx stat =
        FilesystemExtensions::StatPrx::checkedCast(file);
    if (!stat) {
        // There is a facet with name "Stat", but it is not
        // of type FilesystemExtensions::Stat.
    } else {
        // Use stat...
    }
}

This last example also illustrates that

StatPrx::checkedCast(prx, "")

is not the same as

StatPrx::checkedCast(prx)

The first version explicitly requests a cast to the default facet. This means that the 
Ice run time first looks for a facet with the empty name and then attempts to down-
cast that facet (if it exists) to the type Stat.

The second version requests a down-cast that preserves whatever facet is 
currently effective in the proxy. For example, if the prx proxy currently holds the 
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facet name “Joe”, then (if prx points at an object of type Stat) the run time 
returns a proxy of type StatPrx that also stores the facet name “Joe”.

It follows that, to navigate between facets, you must always use the two-argu-
ment version of checkedCast, whereas, to down-cast to another type while 
preserving the facet name, you must always use the single-argument version of 
checkedCast.

You can always check what the current facet of a proxy is by calling 
ice_getFacet:

Ice::ObjectPrx obj = ...;

cout << obj->ice_getFacet() << endl; // Print facet name

This prints the facet name. (For the default facet, ice_getFacet returns the empty 
string.)

33.2.3 Exception Semantics

As we pointed out on page 118, ObjectNotExistException and FacetNotEx-
istException have the following semantics:

• ObjectNotExistException

This exception is raised only if no facets exist at all for a given object identity.
• FacetNotExistException

This exception is raised only if at least one facet exists for a given object iden-
tity, but not the specific facet that is the target of an operation invocation.

If you are using servant locators (see Section 32.7) or default servants 
(Section 32.9.2), you must take care to preserve these semantics. In particular, if 
you return null from a servant locator’s locate operation, this appears to the client 
as an ObjectNotExistException. If the object identity for a request is known 
(that is, there is at least one facet with that identity), but no facet with the specified 
name exists, you must explicitly throw a FacetNotExistException from acti-
vate instead of simply returning null.

33.3 The Versioning Problem

Once you have developed and deployed a distributed application, and once the 
application has been in use for some time, it is likely that you will want to make 
some changes to the application. For example, you may want to add new function-
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ality to a later version of the application, or you may want to change some existing 
aspect of the application. Of course, ideally, such changes are accomplished 
without breaking already deployed software, that is, the changes should be back-
ward compatible. Evolving an application in this way is generally known as 
versioning.

Versioning is an aspect that previous middleware technologies have addressed 
only poorly (if at all). One of the purposes of facets is to allow you to cleanly 
create new versions of an application without compromising compatibility with 
older, already deployed versions.

33.3.1 Versioning by Addition

Suppose that we have deployed our file system application and want to add extra 
functionality to a new version. Specifically, let us assume that the original version 
(version 1) only provides the basic functionality to use files, but does not provide 
extra information, such as the modification date or the file size. The question is 
then, how can we upgrade the existing application with this new functionality? 
Here is a small excerpt of the original (version 1) Slice definitions once more:

// Version 1

module Filesystem {
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

Your first attempt at upgrading the application might look as follows:

// Version 2

module Filesystem {
    // ...

    class DateTime extends TimeOfDay {  // New in version 2
        // ...
    };

    struct Times {                      // New in version 2
        DateTime createdDate;
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        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;

        idempotent Times getTimes();    // New in version 2
    };
};

Note that the version 2 definition does not change anything that was present in 
version 1; instead, it only adds two new types and adds an operation to the File 
interface. Version 1 clients can continue to work with both version 1 and version 2 
File objects because version 1 clients do not know about the getTimes operation 
and therefore will not call it; version 2 clients, on the other hand, can take advan-
tage of the new functionality. The reason this works is that the Ice protocol 
invokes an operation by sending the operation name as a string on the wire (rather 
than using an ordinal number or hash value to identify the operation). Ice guaran-
tees that any future version of the protocol will retain this behavior, so it is safe to 
add a new operation to an existing interface without recompiling all clients.

However, this approach contains a pitfall: the tacit assumption built into this 
approach is that no version 2 client will ever use a version 1 object. If the assump-
tion is violated (that is, a version 2 client uses a version 1 object), the version 2 
client will receive an OperationNotExistException when it invokes the new 
getTimes operation because that operation is supported only by version 2 objects.

Whether you can make this assumption depends on your application. In some 
cases, it may be possible to ensure that version 2 clients will never access a 
version 1 object, for example, by simultaneously upgrading all server’s from 
version 1 to version 2, or by taking advantage of application-specific constraints 
that ensure that version 2 clients only contact version 2 objects. However, for 
some applications, doing this is impractical.

Note that you could write version 2 clients to catch and react to an Opera-
tionNotExistException when they invoke the getTimes operation: if the opera-
tion succeeds, the client is dealing with a version 2 object, and if the operation 
raises OperationNotExistsException, the client is dealing with a version 1 
object. However, doing this can be rather intrusive to the code, loses static type 
safety, and is rather inelegant. (There is no other way to tell a version 1 object 
from a version 2 object because both versions have the same type ID.)
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In general, versioning addition makes sense when you need to add an opera-
tion or two to an interface, and you can be sure that version 2 clients do not access 
version 1 objects. Otherwise, other approaches are needed.

33.3.2 Versioning by Derivation

Given the limitations of the preceding approach, you may decide to upgrade the 
application as follows instead:

module Filesystem {     // Version 1
    // ...

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };
};

module FilesystemV2 {   // New in version 2
    // ...

    class DateTime extends TimeOfDay {
        // ...
    };

    struct Times {
        DateTime createdDate;
        DateTime accessedDate;
        DateTime modifiedDate;
    };

    interface File extends Filesystem::File {
        idempotent Times getTimes();
    };
};

The idea is to present the new functionality in an interface that is derived from the 
version 1 interface. The version 1 types are unchanged and the new functionality 
is presented via new types that are backward compatible: a version 2 File object 
can be passed where a version 1 File object is expected because 
FilesystemV2::File is derived from Filesystem::File. Even better, if a 
version 2 component of the system receives a proxy of formal type File-
system::File, it can determine at run time whether the actual run-time type is 
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FilesystemV2::File by attempting a down-cast: if the down-cast succeeds, it is 
dealing with a version 2 object; if the down-cast fails, it is dealing with a version 1 
object. This is essentially the same as versioning by addition, but it is cleaner as 
far as the type system is concerned because the two different versions can be 
distinguished via their type IDs.

At this point, you may think that versioning by derivation solves the problem 
elegantly. Unfortunately, the truth turns out to be a little harsher:

• As the system evolves further, and new versions are added, each new version 
adds a level of derivation to the inheritance tree. After a few versions, particu-
larly if your application also uses inheritance for its own purposes, the 
resulting inheritance graph very quickly turns into a complex mess. (This 
becomes most obvious if the application uses multiple inheritance—after a 
few versioning steps, the resulting inheritance hierarchy is usually so complex 
that it exceeds the ability of humans to comprehend it.)

• Real-life versioning requirements are not as simple as adding a new operation 
to an object. Frequently, versioning requires changes such as adding a field to 
a structure, adding a parameter to an operation, changing the type of a field or 
a parameter, renaming an operation, or adding a new exception to an opera-
tion. However, versioning by derivation (and versioning by addition) can 
handle none of these changes.

• Quite often, functionality that is present in an earlier version needs to be 
removed for a later version (for example, because the older functionality has 
been supplanted by a different mechanism or turned out to be inappropriate). 
However, there is no way to remove functionality through versioning by deri-
vation. The best you can do is to re-implement a base operation in the derived 
implementation of an interface and throw an exception. However, the depre-
cated operation may not have an exception specification, or if it does, the 
exception specification may not include a suitable exception. And, of course, 
doing this perverts the type system: after all, if an interface has an operation 
that throws an exception whenever the operation is invoked, why does the 
operation exist in the first place?

There are other, more subtle reasons why versioning by derivation is unsuitable in 
real-life situations. Suffice it to say here that experience has shown the idea to be 
unworkable: projects that have tried to use this technique for anything but the 
most trivial versioning requirements have inevitably failed.
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33.3.3 Explicit Versioning

Yet another twist on the versioning theme is to explicitly version everything, for 
example:

module Filesystem {
    // ...

    interface FileV1 extends NodeV1 {
        idempotent LinesV1 read();
        idempotent void write(LinesV1 text) throws GenericErrorV1;
    };

    class DateTimeV2 extends TimeOfDayV2 {
        // ...
    };

    struct TimesV2 {
        DateTimeV2 createdDate;
        DateTimeV2 accessedDate;
        DateTimeV2 modifiedDate;
    };

    interface FileV2 extends NodeV2 {
        idempotent LinesV2 read();
        idempotent void write(LinesV2 text) throws GenericErrorV2;
        idempotent TimesV2 getTimes();
    };
};

In essence, this approach creates as many separate definitions of each data type, 
interface, and operation as there are versions. It is easy to see that this approach 
does not work very well:

• Because, at the time version 1 is produced, it is unknown what might need to 
change for version 2 and later versions, everything has to be tagged with a 
version number. This very quickly leads to an incomprehensible type system.

• Because every version uses its own set of separate types, there is no type 
compatibility. For example, a version 2 type cannot be passed where a 
version 1 type is expected without explicit copying.

• Client code must be written to explicitly deal with each separate version. This 
pollutes the source code at all points where a remote call is made or a Slice 
data type is passed; the resulting code quickly becomes incomprehensible.
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Other approaches, such as placing the definitions for each version into a separate 
module (that is, versioning the enclosing module instead of each individual type) 
do little to mitigate these problems; the type incompatibility issues and the need to 
explicitly deal with versioning remain.

33.4 Versioning with Facets

A negative aspect of all the approaches in Section 33.3 is that they change the type 
system in intrusive ways. In turn, this forces unacceptable programming contor-
tions on clients. Facets allow you to solve the versioning problem more elegantly 
because they do not change an existing type system but extend it instead. We 
already saw this approach in operation on page 1124, where we added date infor-
mation about a file to our file system application without disturbing any of the 
existing definitions.

In the most general sense, facets provide a mechanism for implementing 
multiple interfaces for a single object. The key point is that, to add a new interface 
to an object, none of the existing definitions have to be touched, so no compati-
bility issues can arise. More importantly, the decision as to which facet to use is 
made at run time instead of at compile time. In effect, facets implement a form of 
late binding and, therefore, are coupled to the type system more loosely than any 
of the previous approaches.

Used judiciously, facets can handle versioning requirements more elegantly 
than other mechanisms. Apart from the straight extension of an interface as shown 
in Section 33.2.1, facets can also be used for more complex changes. For example, 
if you need to change the parameters of an operation or modify the fields of a 
structure, you can create a new facet with operations that operate on the changed 
data types. Quite often, the implementation of a version 2 facet in the server can 
even re-use much of the version 1 functionality, by delegating some version 2 
operations to a version 1 implementation.

33.5 Facet Selection

Given that we have decided to extend an application with facets, we have to deal 
with the question of how clients select the correct facet. The answer typically 
involves an explicit selection of a facet sometime during client start-up. For 
example, in our file system application, clients always begin their interactions 
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with the file system by creating a proxy to the root directory. Let us assume that 
our versioning requirements have led to version 1 and version 2 definitions of 
directories as follows:

module Filesystem { // Original version
    // ...

    interface Directory extends Node {
        idempotent NodeSeq list();
        // ...
    };
};

module FilesystemV2 {
    // ...

    enum NodeType { Directory, File };

    class NodeDetails {
        NodeType type;
        string name;
        DateTime createdTime;
        DateTime accessedTime;
        DateTime modifiedTime;
        // ...
    };

    interface Directory extends Filesystem::Node {
       idempotent NodeDetailsSeq list();
       // ...
    };
};

In this case, the semantics of the list operation have changed in version 2. A 
version 1 client uses the following code to obtain a proxy to the root directory:

// Create a proxy for the root directory
//
Ice::ObjectPrx base
    = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
    throw "Could not create proxy";

// Down-cast the proxy to a Directory proxy
//



1136 Facets and Versioning

Filesystem::DirectoryPrx rootDir
    = Filesystem::DirectoryPrx::checkedCast(base);
if (!rootDir)
    throw "Invalid proxy";

For a version 2 client, the bootstrap code is almost identical—instead of down-
casting to Filesystem::Directory, the client selects the “V2” facet during the 
down-cast to the type FileSystemV2::Directory:

// Create a proxy for the root directory
//
Ice::ObjectPrx base
    = communicator()->stringToProxy("RootDir:default -p 10000");
if (!base)
    throw "Could not create proxy";

// Down-cast the proxy to a V2 Directory proxy
//
FilesystemV2::DirectoryPrx rootDir
    = FilesystemV2::DirectoryPrx::checkedCast(base, "V2");
if (!rootDir)
    throw "Invalid proxy";

Of course, we can also create a client that can deal with both version 1 and 
version 2 directories: if the down-cast to version 2 fails, the client is dealing with a 
version 1 server and can adjust its behavior accordingly.

33.6 Behavioral Versioning

On occasion, versioning requires changes in behavior that are not manifest in the 
interface of the system. For example, we may have an operation that performs 
some work, such as:

interface Foo {
    void doSomething();
};

The same operation on the same interface exists in both versions, but the behavior 
of doSomething in version 2 differs from that in version 1. The question is, how 
do we best deal with such behavioral changes?

Of course, one option is to simply create a version 2 facet and to carry that 
facet alongside the original version 1 facet. For example:
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module V2 {

    interface Foo {    // V2 facet
        void doSomething();
    };
};

This works fine, as far as it goes: a version 2 client asks for the “V2” facet and 
then calls doSomething to get the desired effect. Depending on your circum-
stances, this approach may be entirely reasonable. However, if there are such 
behavioral changes on several interfaces, the approach leads to a more complex 
type system because it duplicates each interface with such a change.

A better alternative can be to create two facets of the same type, but have the 
implementation of those facets differ. With this approach, both facets are of type 
::Foo::doSomething. However, the implementation of doSomething checks 
which facet was used to invoke the request and adjusts its behavior accordingly:

void
FooI::doSomething(const Ice::Current& c)
{
    if (c.facet == "V2") {
        // Provide version 2 behavior...
    } else {
        // Provide version 1 behavior...
    }
}

This approach avoids creating separate types for the different behaviors, but has 
the disadvantage that version 1 and version 2 objects are no longer distinguishable 
to the type system. This can matter if, for example, an operation accepts a Foo 
proxy as a parameter. Let us assume that we also have an interface FooProcessor 
as follows:

interface FooProcessor {
    void processFoo(Foo* w);
};

If FooProcessor also exists as a version 1 and version 2 facet, we must deal with 
the question of what should happen if a version 1 Foo proxy is passed to a 
version 2 processFoo operation because, at the type level, there is nothing to 
prevent this from happening.

You have two options to deal with this situation:
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• Define working semantics for mixed-version invocations. In this case, you 
must come up with sensible system behavior for all possible combinations of 
versions.

• If some of the mixed-version combinations are disallowed (such as passing a 
version 1 Foo proxy to a version 2 processFoo operation), you can detect the 
version mismatch in the server by looking at the Current::facet member 
and throwing an exception to indicate a version mismatch. Simultaneously, 
write your clients to ensure they only pass a permissible version to 
processFoo. Clients can ensure this by checking the facet name of a proxy 
before passing it to processFoo and, if there is a version mismatch, changing 
either the Foo proxy or the FooProcessor proxy to a matching facet:

FooPrx foo = ...;               // Get a Foo...
FooProcessorPrx fooP = ...;     // Get a FooProcessor...

string fooFacet = foo->ice_getFacet();
string fooPFacet = fooP->ice_getFacet();
if (fooFacet != fooPFacet) {
    if (fooPFacet == "V2") {
        error("Cannot pass a V1 Foo to a V2 FooProcessor");
    } else {
        // Upgrade FooProcessor from V1 to V2
        fooP = FooProcessorPrx::checkedCast(fooP, "V2");
        if (!fooP) {
            error("FooProcessor does not have a V2 facet");
        } else {
            fooP->processFoo(foo);
        }
    }
}

33.7 Design Considerations

Facets allow you to add versioning to a system, but they are merely a mechanism, 
not a solution. You still have to make a decision as to how to version something. 
For example, at some point, you may want to deprecate a previous version’s 
behavior; at that point, you must make a decision how to handle requests for the 
deprecated version. For behavioral changes, you have to decide whether to use 
separate interfaces or use facets with the same interface. And, of course, you must 
have compatibility rules to determine what should happen if, for example, a 
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version 1 object is passed to an operation that implements version 2 behavior. In 
other words, facets cannot do your thinking for you and are no panacea for the 
versioning problem.

The biggest advantage of facets is also the biggest drawback: facets delay the 
decision about the types that are used and their behavior until run time. While this 
provides a lot of flexibility, it is significantly less type safe than having explicit 
types that can be statically checked at compile time: if you have a problem relating 
to incorrect facet selection, the problem will be visible only at run time and, more-
over, will be visible only if you actually execute the code that contains the 
problem, and execute it with just the right data.

Another danger of facets is to abuse them. As an extreme example, here is an 
interface that provides an arbitrary collection of objects of arbitrary type:

interface Collection {};

Even though this interface is empty, it can provide access to an unlimited number 
of objects of arbitrary type in the form of facets. While this example is extreme, it 
illustrates the design tension that is created by facets: you must decide, for a given 
versioning problem, how and at what point of the type hierarchy to split off a facet 
that deals with the changed functionality. The temptation may be to “simply add 
another facet” and be done with it. However, if you do that, your objects are in 
danger of being nothing more than loose conglomerates of facets without rhyme 
or reason, and with little visibility of their relationships in the type system.

In object modeling terms, the relationship among facets is weaker than an is-a 
relationship (because facets are often not type compatible among each other). On 
the other hand, the relationship among facets is stronger than a has-a relationship 
(because all facets of an Ice object share the same object identity).

It is probably best to treat the relationship of a facet to its Ice object with the 
same respect as an inheritance relationship: if you were omniscient and could 
have designed your system for all current and future versions simultaneously, 
many of the operations that end up on separate facets would probably have been in 
the same interface instead. In other words, adding a facet to an Ice object most 
often implies that the facet has an is-partly-a relationship with its Ice object. In 
particular, if you think about the life cycle of an Ice object and find that, when an 
Ice object is deleted, all its facets must be deleted, this is a strong indication of a 
correct design. On the other hand, if you find that, at various times during an Ice 
object’s life cycle, it has a varying number of facets of varying types, that is a 
good indication that you are using facets incorrectly.

Ultimately, the decision comes down to deciding whether the trade-off of 
static type safety versus dynamic type safety is worth the convenience and back-
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ward compatibility. The answer depends strongly on the design of your system 
and individual requirements, so we can only give broad advice here. Finally, there 
will be a point where no amount of facet trickery will get past the point when “yet 
one more version will be the straw that breaks the camel’s back.” At that point, it 
is time to stop supporting older versions and to redesign the system.

33.8 Summary

Facets provide a way to extend a type system by loosely coupling new type 
instances to existing ones. This shifts the type selection process from compile to 
run time and implements a form of late binding. Due to their loose coupling 
among each other, facets are better suited to solve the versioning problem than 
other approaches. However, facets are not a panacea that would solve the 
versioning problem for free, and careful design is still necessary to come up with 
versioned systems that remain understandable and maintain consistent semantics.
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Chapter 34
Object Life Cycle

34.1 Chapter Overview

This chapter discusses object life cycle, in particular with respect to concurrency. 
The majority of examples in this chapter use C++. However, the issues discussed 
here apply equally to all programming languages. Moreover, object life cycle is a 
surprisingly complex topic, so we suggest that you read this chapter in detail, 
regardless of your choice of programming language.

Sections 34.2 through 34.4 discuss the fundamentals of object life cycle, in 
particular, what it means for an object to exist and not exist and how life cycle 
relates to proxies, servants, and Ice objects. Section 34.5 covers object creation 
and Section 34.6 discusses object destruction, with particular emphasis on concur-
rency issues. Section 34.7 discusses alternative approaches to object destruction 
and Section 34.8 discusses a number of architectural issues with respect to object 
identity. Section 34.9 presents an implementation of the file system application 
with life cycle support in C++ and Java and, finally, Section 34.10 shows how to 
deal with objects that are abandoned by clients.
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34.2 Introduction

Object life cycle generally refers to how an object-oriented application (whether 
distributed or not) creates and destroys objects. For distributed applications, life 
cycle management presents particular challenges. For example, destruction of 
objects often can be surprisingly complex, especially in threaded applications. 
Before we go into the details of object creation and destruction, we need to have a 
closer look what we mean by the terms “life cycle” and “object” in this context.

Object life cycle refers to the act of creation and destruction of objects. For 
example, with our file system application, we may start out with an empty file 
system that only contains a root directory. Over time, clients (by as yet unspecified 
means) add new directories and files to the file system. For example, a client 
might create a new directory called MyPoems underneath the root directory. Some 
time later, the same or a different client might decide to remove this directory 
again, returning the file system to its previous empty state. This pattern of creation 
and destruction is known as object life cycle.

The life cycle of distributed objects raises a number of interesting and chal-
lenging questions. For example, what should happen if a client destroys a file 
while another client is reading or writing that file? And how do we prevent two 
files with the same name from existing in the same directory? Another interesting 
scenario is illustrated by the following sequence of events:

1. Client A creates a file called DraftPoem in the root directory and uses it for a 
while.

2. Some time later, client B destroys the DraftPoem file so it no longer exists.

3. Some time later still, client C creates a new DraftPoem file in the root direc-
tory, with different contents.

4. Finally, client A attempts to access the DraftPoem file it created earlier.

What should happen when, in the final step, client A tries to use the DraftPoem 
file? Should the client’s attempt succeed and simply operate on the new contents 
of the file that were placed there by client C? Or should client A’s attempt fail 
because, after all, the new DraftPoem file is, in a sense, a completely different file 
from the original one, even though it has the same name?

The answers to such questions cannot be made in general. Instead, meaningful 
answers depend on the semantics that each individual application attaches to 
object life cycle. In this chapter, we will explore the various possible interpreta-
tions and how to implement them correctly, particularly for threaded applications.
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34.3 Object Existence and Non-Existence

Before we talk about how to create and destroy objects, we need to look at a more 
basic concept, namely that of object existence. What does it mean for an object to 
“exist” and, more fundamentally, what do we mean by the term “object”?

As mentioned in Section 2.2.2, an Ice object is a conceptual entity, or abstrac-
tion that does not really exist. On the client side, the concrete representation of an 
Ice object is a proxy and, on the server side, the concrete representation of an Ice 
object is a servant. Proxies and servants are the concrete programming-language 
artifacts that represent Ice objects.

Because Ice objects are abstract, conceptual entities, they are invisible to the 
Ice run time and to the application code—only proxies and servants are real and 
visible. It follows that, to determine whether an Ice object exists, any determina-
tion must rely on proxies and servants, because they are the only tangible entities 
in the system.

34.3.1 Object Non-Existence
Here is the definitive statement of what it means for an Ice object to not exist:

An Ice object does not exist if an invocation on the object raises an ObjectNo-
tExistException.

This may seem self-evident but, on closer examination, is a little more subtle than 
you might expect. In particular, Ice object existence has meaning only within the 
context of a particular invocation. If that invocation raises ObjectNotExistEx-
ception, the object is known to not exist. Note that this says nothing about 
whether concurrent or future requests to that object will also raise ObjectNotEx-
istException—they may or may not, depending on the semantics that are imple-
mented by the application.

Also note that, because all the Ice run time knows about are servants, an 
ObjectNotExistException really indicates that a servant for the request could 
not be found at the time the request was made. This means that, ultimately, it is the 
application that attaches the meaning “the Ice object does not exist” to this excep-
tion.

In theory, the application can attach any meaning it likes to ObjectNotExist-
Exception and a server can throw this exception for whatever reason it sees fit; in 
practice, however, we recommend that you do not do this because it breaks with 
existing convention and is potentially confusing. You should reserve this excep-
tion for its intended meaning and not abuse it for other purposes.
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34.3.2 Object Existence

The preceding definition does not say anything about object existence if some-
thing other than ObjectNotExistException is returned in response to a particular 
request. So, here is the definitive statement of what it means for an Ice object to 
exist:

An Ice object exists if a twoway invocation on the object either succeeds, 
raises a user exception, or raises FacetNotExistException or Operation-
NotExistException.

It is self-evident that an Ice object exists if a twoway invocation on it succeeds: 
obviously, the object received the invocation, processed it, and returned a result. 
However, note the qualification: this is true only for twoway invocations; for 
oneway and datagram invocations (see Sections 32.14 and 32.15), nothing can be 
inferred about the existence of the corresponding Ice object by invoking an opera-
tion on it: because there is no reply from the server, the client-side Ice run time has 
no idea whether the request was dispatched successfully in the server or not. This 
includes user exceptions, ObjectNotExistException, FacetNotExistExcep-
tion, and OperationNotExistException—these exceptions are never raised by 
oneway and datagram invocations, regardless of the actual state of the target 
object.

If a twoway invocation raises a user exception, the Ice object obviously exists: 
the Ice run time never raises user exceptions so, for an invocation to raise a user 
exception, the invocation was dispatched successfully in the server, and the opera-
tion implementation in the servant raised the exception.

If a twoway invocation raises FacetNotExistException, we do know that the 
corresponding Ice object indeed exists: the Ice run time raises FacetNotExistEx-
ception only if it can find the identity of the target object in the Active Servant 
Map (ASM), but cannot find the facet (see Chapter 33) that was specified by the 
client.1

1. Note that, if you use servant locators (see Section 32.7), for these semantics to hold, your servant 
locator must correctly raise FacetNotExistException (instead of returning null or raising 
ObjectNotExistException) if an Ice object exists, but the particular facet does not exist.
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As a corollary to the preceding two definitions, we can state:

A facet does not exist if a twoway invocation on the object raises ObjectNo-
tExistException or FacetNotExistException.

A facet exists if a twoway invocation on the object either succeeds, or raises 
OperationNotExistException.

These definitions simply capture the fact that a facet is a “sub-object” of an Ice 
object: if an invocation raises ObjectNotExistException, we know that the facet 
does not exist either because, for a facet to exist, its Ice object must exist.

If an operation raises OperationNotExistException, we know that both the 
target Ice object and the target facet exist. However, the operation that the client 
attempted to invoke does not. (This is possible only if you use dynamic invocation 
(see Chapter 35) or if you have mis-matched Slice definitions for client and 
server.)

34.3.3 Indeterminate Object State
The preceding definitions clearly state under what circumstances we can conclude 
that an Ice object (or its facet) does or does not exist. However, the preceding defi-
nitions are incomplete because operation invocations can have outcomes other 
than success or failure with ObjectNotExistException, FacetNotExistExcep-
tion, or OperationNotExistException. For example, a client might receive a 
MarshalException, UnknownLocalException, UnknownException, or Timeout-
Exception. In that case, the client cannot draw any conclusions about whether the 
Ice object on which it invoked a twoway operation exists or not—the exceptions 
simply indicate that something went wrong while the invocation was processed. 
So, to complete our definitions, we can state:

If a twoway invocation raises a run-time exception other than ObjectNotEx-
istException, FacetNotExistException, or OperationNotExistExcep-
tion, nothing is known about the existence or non-existence of the Ice object 
that was the target of the invocation. Furthermore, it is impossible to deter-
mine the state of existence of an Ice object with a oneway or datagram invoca-
tion.

34.3.4 Authoritative Semantics
The preceding definitions capture the fact that, to make a determination of object 
existence or non-existence, the client-side Ice run time must be able to contact the 
server and, moreover, receive a reply from the server:
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• If the server can be contacted and returns a successful reply for an invocation, 
the Ice object exists.

• If the server can be contacted and returns an ObjectNotExistException (or 
FacetNotExistException), the Ice object (or facet) does not exist. If the 
server returns an OperationNotExistException, the Ice object (and its facet) 
exists, but does not provide the requested operation, which indicates a type 
mismatch due to client and server using out-of-sync Slice definitions or due to 
incorrect use of dynamic invocation.

• If the server cannot be contacted, does not return a reply (as for oneway and 
datagram invocations), or if anything at all goes wrong with the process of 
sending an invocation, processing it in the server, and returning the reply, 
nothing is known about the state of the Ice object, including its existence or 
non-existence.

Another way of looking at this is that a decision as to whether an object exists or 
not is never made by the Ice run time and, instead, is always made by the server-
side application code:

• If an invocation completes successfully, the server-side application code was 
involved because it processed the invocation.

• If an invocation returns ObjectNotExistException or FacetNotExistEx-
ception, the server-side application code was also involved:

• either the Ice run time could not find a servant for the invocation in the 
ASM, in which case the application code was involved by virtue of not 
having added a servant to the ASM in the first place, or

• the Ice run time consulted a servant locator that explicitly returned null or 
raised ObjectNotExistException or FacetNotExistException.

This means that ObjectNotExistException and FacetNotExistException are 
authoritative: when you receive these exceptions, you can always believe what 
they tell you—the Ice run time never raises these exceptions without consulting 
your code, either implicitly (via an ASM lookup) or explicitly (by calling a 
servant locator’s locate operation).

These semantics are motivated by the need to keep the Ice run time stateless 
with respect to object existence. For example, it would be nice to have stronger 
semantics, such as a promise that “once an Ice object has existed and been 
destroyed, all future requests to that Ice object also raise ObjectNotExistExcep-
tion”. However, to implement these semantics, the Ice run time would have to 
remember all object identities that were used in the past, and prevent their reuse 
for new Ice objects. Of course, this would be inherently non-scalable. In addition, 
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it would prevent applications from controlling object identity; allowing such 
control for applications is important however, for example, to link the identity of 
an Ice object to its persistent state in a database (see Chapter 39).

Note that, if the implementation of an operation calls another operation, 
dealing with ObjectNotExistException may require some care. For example, 
suppose that the client holds a proxy to an object of type Service and invokes an 
operation provideService on it:

ServicePrx service = ...;

try {
    service->provideService();
} catch (const ObjectNotExistException&) {
    // Service does not exist.
}

Here is the implementation of provideService in the server, which makes a 
call on a helper object to implement the operation:

void
ServiceI::provideService(const Ice::Current&)
{
    // ...
    proxyToHelper->someOp();
    // ...
}

If proxyToHelper happens to point at an object that was destroyed previously, 
the call to someOp will throw ObjectNotExistException. If the imple-
mentation of provideService does not intercept this exception, the exception 
will propagate all the way back to the client, who will conclude that the service 
has been destroyed when, in fact, the service still exists but the helper object used 
to implement provideService no longer exists.

Usually, this scenario is not a serious problem. Most often, the helper object 
cannot be destroyed while it is needed by provideService due to the way the 
application is structured. In that case, no special action is necessary because 
someOp will never throw ObjectNotExistException. On the other hand, 
if it is possible for the helper object to be destroyed, provideService can 
wrap a try-catch block for ObjectNotExistException around the call to 
someOp and throw an appropriate user exception from the exception handler 
(such as ResourceUnavailable or similar).
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34.4 Life Cycle of Proxies, Servants, and Ice Objects

It is important to be aware of the different roles of proxies, servants, and Ice 
objects in a system. Proxies are the client-side representation of Ice objects and 
servants are the server-side representation of Ice objects. Proxies, servants, and Ice 
objects have completely independent life cycles. Clients can create and destroy 
proxies with or without a corresponding servant or Ice object in existence, servers 
can create and destroy servants with or without a corresponding proxy or Ice 
object in existence and, most importantly, Ice objects can exist or not exist regard-
less of whether corresponding proxies or servants exist. Here are a few examples 
to illustrate this:

{
    Ice::ObjectPtr obj
        = communicator->stringToProxy("hello:tcp -p 10000");
    // Proxy exists now.

} // Proxy ceases to exist.

This code creates a proxy to an Ice object with the identity Hello. The server for 
this Ice object is expected to listen for invocations on the same host as the client, 
on port 10000, using the TCP/IP protocol. The proxy exists as soon as the call to 
stringToProxy completes and, thereafter, can by used by the client to make 
invocations on the corresponding Ice object.

However, note that this code says nothing at all about whether or not the corre-
sponding Ice object exists. In particular, there might not be any Ice object with the 
identity Hello. Or there might be such an object, but the server for it may be down 
or unreachable. It is only when the client makes an invocation on the proxy that 
we get to find out whether the object exists, does not exist, or cannot be reached.

Similarly, at the end of the scope enclosing the obj variable in the preceding 
code, the proxy goes out of scope and is destroyed. Again, this says nothing about 
the state of the corresponding Ice object or its servant. This shows that the life 
cycle of a proxy is completely independent of the life cycle of its Ice object and 
the servant for that Ice object: clients can create and destroy proxies whenever 
they feel like it, and doing so has no implications for Ice objects or servant 
creation or destruction.

Here is another code example, this time for the server side:
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{
    FileIPtr file = new FileI("DraftPoem", root);
    // Servant exists now.

} // Servant ceases to exist.

Here, the server instantiates a servant for a File object by creating a FileI 
instance. The servant comes into being as soon as the call to new completes and 
ceases to exist as soon as the scope enclosing the file variable closes. Note that, 
as for proxies, the life cycle of the servant is completely independent of the life 
cycle of proxies and Ice objects. Clearly, the server can create and destroy a 
servant regardless of whether there are any proxies in existence for the corre-
sponding Ice object.

Similarly, an Ice object can exist even if no servants exist for it. For example, 
our Ice objects might be persistent and stored in a database; in that case, if we 
switch off the server for our Ice objects, no servants exist for these Ice objects, 
even though the Ice objects continue to exist—the Ice objects are temporarily 
inaccessible, but exist regardless and, once their server is restarted, will become 
accessible again.

Conversely, a servant can exist without its corresponding Ice object. The mere 
creation of a servant does nothing, as far as the Ice run time is concerned. It is only 
once a servant is added to the ASM (or a servant locator returns the server from 
locate) that the servant incarnates its Ice object.

Finally, an Ice object can exist independently of proxies and servants. For 
example, returning to the database example, we might have an Ice server that acts 
as a front end to an online telephone book: each entry in the phone book corre-
sponds to a separate Ice object. When a client invokes an operation, the server 
uses the identity of the incoming request to determine which Ice object is the 
target of the request and then contacts the back-end database to, for example, 
return the street address of the entry. With such a design, entries can be added to 
and removed from the back-end database quite independently of what happens to 
proxies and servants—the server finds out whether an Ice object exists only when 
it accesses the back-end database.

The only time that the life cycle of an Ice object and a servant are linked is 
during an invocation on that Ice object: for an invocation to complete successfully, 
a servant must exist for the duration of the invocation. What happens to the 
servant thereafter is irrelevant to clients and, in general, is irrelevant to the corre-
sponding Ice object.

It is important to be clear about the independence of the life cycles of proxies, 
servants, and Ice objects because this independence has profound implications for 
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how you need to implement object life cycle. In particular, to destroy an Ice 
object, a client cannot simply destroy its proxy for an object because the server is 
completely unaware when a client does this.2

34.5 Object Creation

Now that we understand what it means for an Ice object to exist, we can look at 
what is involved in creating an Ice object. Fundamentally, there is only one way 
for an Ice object to come into being: the server must instantiate a servant for the 
object and add an entry for that servant to the ASM (or, alternatively, arrange for a 
servant locator to return a servant from its locate operation—see Section 32.7).3

One obvious way for a server to create a servant is to, well, simply instantiate 
it and add it to the ASM of its own accord. For example:

DirectoryIPtr root = new DirectoryI("/", 0);
adapter->addWithUUID(root); // Ice object exists now

The servant exists as soon as the call to new completes, and the Ice object exists 
as soon as the code adds the servant to the ASM: at that point, the Ice object 
becomes reachable to clients who hold a proxy to it.

This is the way we created Ice objects for our file system application in earlier 
chapters. However, doing so is not all that interesting because the only files and 
directories that exist are those that the server decides to create when it starts up. 
What we really want is a way for clients to create and destroy directories and files.

34.5.1 Object Factories

The canonical way to create an object is to use the factory pattern [2]. The factory 
pattern, in a nutshell, says that objects are created by invoking an operation 
(usually called create) on an object factory:4

2. Distributed object systems such as DCOM implement these semantics. However, this design is 
inherently non-scalable because of the cost of globally tracking proxy creation and destruction.

3. For the remainder of this chapter, we will ignore the distinction between using the ASM and a 
servant locator and simply assume that the code uses the ASM. This is because servant locators 
do not alter the discussion: if locate returns a servant, that is the same as a successful lookup in 
the ASM; if locate returns null or throws ObjectNotExistException, that is the same as an 
unsuccessful lookup in the ASM.
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interface PhoneEntry {
    idempotent string name();
    idempotent string getNumber();
    idempotent void setNumber(string phNum);
};

exception PhoneEntryExists {
    string name;
    string phNum;
};

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
};

The entries in the phone book consist of simple name–number pairs. The interface 
to each entry is called PhoneEntry and provides operations to read the name and 
to read and write the phone number. (For a real application, the objects would 
likely be more complex and encapsulate more state. However, these simple 
objects will do for the purposes of this discussion.)

To create a new entry, a client calls the create operation on a PhoneEntry-
Factory object. (The factory is a singleton object [2], that is, only one instance of 
that interface exists in the server.) It is the job of create to create a new 
PhoneEntry object, using the supplied name as the object identity.

An immediate consequence of using the name as the object identity is that 
create can raise a PhoneEntryExists exception: presumably, if a client attempts 
to create an entry with the same name as an already-existing entry, we need to let 
the client know about this. (Whether this is an appropriate design is something we 
examine more closely in Section 34.8.)

create returns a proxy to the newly-created object, so the client can use that 
proxy to invoke operations. However, this is by convention only. For example, 
create could be a void operation if the client has some other way to eventually 
get a proxy to the new object (such as creating the proxy from a string, or locating 
the proxy via a search operation). Alternatively, you could define “bulk” creation 
operations that allow clients to create several new objects with a single RPC. As 

4. Rather than continue with the file system example, we will simplify the discussion for the time 
being by using the phone book example mentioned earlier; we will return to the file system appli-
cation to explore more complex issues in Section 34.9.
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far as the Ice run time is concerned, there is nothing special about a factory opera-
tion: a factory operation is just like any other operation; it just so happens that a 
factory operation creates a new Ice object as a side effect of being called, that is, 
the implementation of the operation is what creates the object, not the Ice run 
time.

Also note that create accepts a name and a phNum parameter, so it can 
initialize the new object. This is not compulsory, but generally a good idea. An 
alternate factory operation could be:

interface PhoneEntryFactory {
    PhoneEntry* create(string name)
        throws PhoneEntryExists;
};

With this design, the assumption is that the client will call setNumber after it has 
created the object. However, in general, allowing objects that are not fully initial-
ized is a bad idea: it all too easily happens that a client either forgets to complete 
the initialization, or happens to crash or get disconnected before it can complete 
the initialization. Either way, we end up with a partially-initialized object in the 
system that can cause surprises later.5

Similarly, so-called generic factories are also something to be avoided:

dictionary<string, string> Params;

exception CannotCreateException {
    string reason;
};

interface GenericFactory {
    Object* create(Params p)
        throws CannotCreateException;
};

The intent here is that a GenericFactory can be used to create any kind of object; 
the Params dictionary allows an arbitrary number of parameters to be passed to 
the create operation in the form of name–value pairs, for example:

5. This is the approach taken by COM’s CoCreateObject, which suffers from just that 
problem.
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GenericFactoryPrx factory = ...;

Ice::ObjectPrx obj;
Params p;

// Make a car.
//
p["Make"] = "Ford";
p["Model"] = "Falcon";
obj = factory->create(p);
CarPrx car = CarPrx::checkedCast(obj);

// Make a horse.
//
p.clear();
p["Breed"] = "Clydesdale";
p["Sex"] = "Male";
obj = factory->create(p);
HorsePrx horse = HorsePrx::checkedCast(obj);

We strongly discourage you from creating factory interfaces such as this, unless 
you have a good overriding reason: generic factories undermine type safety and 
are much more error-prone than strongly-typed factories.

34.5.2 Implementing a Factory Operation

The implementation of an object factory is simplicity itself. Here is how we could 
implement the create operation for our PhoneEntryFactory:

PhoneEntryPrx
PhoneEntryFactory::create(const string& name,
                          const string& phNum,
                          const Current& c)
{
    try {
        CommunicatorPtr comm = c.adapter.getCommunicator();
        PhoneEntryPtr servant = new PhoneEntryI(name, phNum);
        return PhoneEntryPrx::uncheckedCast(
            c.adapter->add(servant,
                           comm->stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }
}
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The create function instantiates a new PhoneEntryI object (which is the 
servant for the new PhoneEntry object), adds the servant to the ASM, and returns 
the proxy for the new object. Adding the servant to the ASM is what creates the 
new Ice object, and client requests are dispatched to the new object as soon as that 
entry appears in the ASM (assuming the object adapter is active).

Note that, even though this code contains no explicit lock, it is thread-safe. 
The add operation on the object adapter is atomic: if two clients concurrently add 
a servant with the same identity, exactly one thread succeeds in adding the entry to 
the ASM; the other thread receives an AlreadyRegisteredException. Similarly, 
if two clients concurrently call create for different entries, the two calls execute 
concurrently in the server (if the server is multi-threaded); the implementation of 
add in the Ice run time uses appropriate locks to ensure that concurrent updates to 
the ASM cannot corrupt anything.

34.6 Object Destruction

Now that clients can create PhoneEntry objects, let us consider how to allow 
clients to destroy them again. One obvious design is to add a destroy operation to 
the factory—after all, seeing that a factory knows how to create objects, it stands 
to reason that it also knows how to destroy them again:

exception PhoneEntryNotExists {
    string name;
    string phNum;
};

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
    void destroy(PhoneEntry* pe)      // Bad idea!
        throws PhoneEntryNotExists;
};

While this works (and certainly can be implemented without problems), it is 
generally a bad idea. For one, an immediate problem we need to deal with is what 
should happen if a client passes a proxy to an already-destroyed object to 
destroy. We could raise an ObjectNotExistException to indicate this, but that 
is not a good idea because it makes it ambiguous as to which object does not exist: 
the factory, or the entry. (By convention, if a client receives an ObjectNotExist-
Exception for an invocation, what does not exist is the object the operation was 
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targeted at, not some other object that in turn might be contacted by the opera-
tion.) This forces us to add a separate PhoneEntryNotExists exception to deal 
with the error condition, which makes the interface a little more complex.

A second and more serious problem with this design is that, in order to destroy 
an entry, the client must not only know which entry to destroy, but must also know 
which factory created the entry. For our example, with only a single factory, this is 
not a serious concern. However, for more complex systems with dozens of facto-
ries (possibly in multiple server processes), it rapidly becomes a problem: for each 
object, the application code somehow has to keep track of which factory created 
what object; if any part of the code ever loses track of where an object originally 
came from, it can no longer destroy that object.

Of course, we could mitigate the problem by adding an operation to the 
PhoneEntry interface that returns a proxy to its factory. That way, clients could 
ask each object to provide the factory that created the object. However, that need-
lessly complicates the Slice definitions and really is just a band-aid on a funda-
mentally flawed design. A much better choice is to add the destroy operation to 
the PhoneEntry interface instead:

interface PhoneEntry {
    idempotent string name();
    idempotent string getNumber();
    idempotent void setNumber(string phNum);
    void destroy();
};

With this approach, there is no need for clients to somehow keep track of which 
factory created what object. Instead, given a proxy to a PhoneEntry object, a 
client simply invokes the destroy operation on the object and the PhoneEntry 
obligingly commits suicide. Note that we also no longer need a separate exception 
to indicate the “object does not exist” condition because we can raise ObjectNo-
tExistException instead—the exception exists precisely to indicate this condi-
tion and, because destroy is now an operation on the phone entry itself, there is 
no ambiguity about which object it is that does not exist.

34.6.1 Idempotency and Life Cycle Operations

You may be tempted to write the life cycle operations as follows:
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interface PhoneEntry {
    // ...
    idempotent void destroy(); // Wrong!

};

interface PhoneEntryFactory {
    idempotent PhoneEntry* create(string name, string phNum)
                               throws PhoneEntryExists;
};

The idea is that create and destroy can be idempotent operations because it is 
safe to let the Ice run time retry the operation in the event of a temporary network 
failure. However, this assumption is not true. To see why, consider the following 
scenario:

1. A client invokes destroy on a phone entry.

2. The Ice run time sends the request to the server on the wire.

3. The connection goes down just after the request was sent, but before the reply 
for the request arrives in the client. It so happens that the request was received 
by the server and acted upon, and the reply from the server back to the client is 
lost because the connection is still down.

4. The Ice run time tries to read the reply for the request and realizes that the 
connection has gone down. Because the operation is marked idempotent, the 
run time attempts to re-establish the connection and send the request a second 
time, which happens to work.

5. The server receives the request to destroy the entry but, because the entry is 
destroyed already, the server returns an ObjectNotExistException to the 
client, which the Ice run time passes to the application code.

6. The application receives an ObjectNotExistException and falsely concludes 
that it tried to destroy a non-existent object when, in fact, the object did exist 
and was destroyed as intended.

A similar scenario can be constructed for create: in that case, the application will 
receive a PhoneEntryExists exception when, in fact, the entry did not exist and 
was created successfully.

These scenarios illustrate that create and destroy are never idempotent: 
sending one create or destroy invocation for a particular object is not the same 
as sending two invocations: the outcome depends on whether the first invocation 
succeeded or not, so create and destroy are not idempotent.
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34.6.2 Implementing a destroy Operation

As far as the Ice run time is concerned, the act of destroying an Ice object is to 
remove the mapping between its proxy and its servant. In other words, an Ice 
object is destroyed when we remove its ASM entry. Once the ASM entry is gone, 
incoming operations for the object raise ObjectNotExistException, as they 
should.

So, here is the most simple version of destroy:

void
PhoneEntryI::destroy(const Current& c)
{
    try {
        c.adapter->remove(c.id);
    } catch (const Ice::NotRegisteredException&)
        throw Ice::ObjectNotExistException(__FILE__, __LINE__);
    }
}

The implementation removes the ASM entry for the servant, thereby destroying 
the Ice object. If the entry does not exist (presumably, because the object was 
destroyed previously), destroy throws an ObjectNotExistException, as you 
would expect.

Object Destruction and Concurrency

The ASM entry is removed as soon as destroy calls remove on the object 
adapter. Assuming that we implement create as we saw earlier, so no other part 
of the code retains a smart pointer to the servant6, this means that the ASM holds 
the only smart pointer to the servant, so the servant’s reference count is 1. Once 
the ASM entry is removed (and its smart pointer destroyed), the reference count of 
the servant drops to zero. In C++, this triggers a call to the destructor of the 
servant, and the heap-allocated servant is deleted just as it should be; in languages 
such as Java and C#, this makes the servant eligible for garbage collection, so it 
will be deleted eventually as well.

Things get more interesting if we consider concurrent scenarios. One such 
scenario involves concurrent calls to create and destroy. Suppose we have the 
following sequence of events:

1. Client A creates a phone entry.

6. Or reference to the servant, in languages such as Java and C#.
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2. Client A passes the proxy for the entry to client B.

3. Client A destroys the entry again.

4. Client A calls create for the same entry (passing the same name, which 
serves as the object identity) and, concurrently, client B calls destroy on the 
entry.

Clearly, something is strange about this scenario, because it involves two clients 
asking for conflicting things, with one client trying to create an object that existed 
previously, while another client tries to destroy the object that—unbeknownst to 
that client—was destroyed earlier.

Exactly what is seen by client A and client B depends on how the operations 
are dispatched in the server. In particular, the outcome depends on the order in 
which the calls on the object adapter to add (in create) and remove (in 
destroy) on the servant are executed:

• If the thread processing client A’s invocation executes add before the thread 
processing client B’s invocation, client A’s call to add succeeds. Internally, 
the calls to add and remove are serialized, and client B’s call to remove 
blocks until client A’s call to add has completed. The net effect is that both 
clients see their respective invocations complete successfully.

• If the thread processing client Bs invocation executes remove before the 
thread processing client A’s invocation executes add, client B’s thread 
receives a NotRegisteredException, which results in an ObjectNotExist-
Exception in client B. Client A’s thread then successfully calls add, creating 
the object and returning its proxy.

This example illustrates that, if life cycle operations interleave in this way, the 
outcome depends on thread scheduling. However, as far as the Ice run time is 
concerned, doing this is perfectly safe: concurrent access does not cause problems 
for memory management or the integrity of data structures.

The preceding scenario allows two clients to attempt to perform conflicting 
operations. This is possible because clients can control the object identity of each 
phone entry: if the object identity were hidden from clients and assigned by the 
server (the server could assign a UUID to each entry, for example), the above 
scenario would not be possible. We will return to a more detailed discussion of 
such object identity issues in Section 34.8.

Concurrent Execution of Life Cycle and Non-Life Cycle Operations7

Another scenario relates to concurrent execution of ordinary (non-life cycle) oper-
ations and destroy:
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• Client A holds a proxy to an existing object and passes that proxy to client B.

• Client B calls the setNumber operation on the object.

• Client A calls destroy on the object while Client B’s call to setNumber is still 
executing.

The immediate question is what this means with respect to memory management. 
In particular, client A’s thread calls remove on the object adapter while client B’s 
thread is still executing inside the object. If this call to remove were to delete the 
servant immediately, it would delete the servant while client B’s thread is still 
executing inside the servant, with potentially disastrous results.

The answer is that this cannot happen. Whenever the Ice run time dispatches 
an incoming invocation to a servant, it increments the servant’s reference count for 
the duration of the call, and decrements the reference count again once the call 
completes. Here is what happens to the servant’s reference count for the preceding 
scenario:

1. Initially, the servant is idle, so its reference count is at least 1 because the 
ASM entry stores a smart pointer to the servant. (The remainder of these steps 
assumes that the ASM stores the only smart pointer to the servant, so the refer-
ence count is exactly 1.)

2. Client B’s invocation of setNumber arrives and the Ice run time increments the 
reference count to 2 before dispatching the call.

3. While setNumber is still executing, client A’s invocation of destroy arrives 
and the Ice run time increments the reference count to 3 before dispatching the 
call.

4. Client A’s thread calls remove on the object adapter, which destroys the 
smart pointer in the ASM and so decrements the reference to 2.

5. Either setNumber or destroy may complete first. It does not matter 
which call completes—either way, the Ice run time decrements the reference 
count as the call completes, so after one of these calls completes, the reference 
count drops to 1.

6. Eventually, when the final call (setNumber or destroy) completes, the Ice 
run time decrements the reference count once again, which causes the count to 
drop to zero. In turn, this triggers the call to delete (which calls the 
servant’s destructor).

7. This section applies to C++ only.
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The net effect is that, while operations are executing inside a servant, the servant’s 
reference count is always greater than zero. As the invocations complete, the 
reference count drops until, eventually, it reaches zero. However, that can only 
happen once no operations are executing, that is, once the servant is idle. This 
means that the Ice run time guarantees that a servant’s destructor runs only once 
the final operation invocation has drained out of the servant, so it is impossible to 
“pull memory out from underneath an executing invocation”.8

34.6.3 Cleaning Up Servant State

Here is a very simple implementation of our PhoneEntryI servant. (Methods 
are inlined for convenience only. Also note that, for the time being, this code 
ignores concurrency issues, which we return to in Section 34.6.5.)

class PhoneEntryI : public PhoneEntry {
public:
    PhoneEntryI(const string& name, const string& phNum)
        : _name(name), _phNum(phNum)
    {
    }

    virtual string
    name(const Current&) {
        return _name;
    }

    virtual string
    getNumber(const Current&) {
        return _phNum;
    }

    virtual void
    setNumber(const string& phNum, const Current&) {
        _phNum = phNum;
    }

    virtual void
    destroy(const Current& c) {

8. For garbage-collected languages, such as C# and Java, the language run time provides the same 
semantics: while the servant can be reached via any reference in the application or the Ice run 
time, the servant will not be reclaimed by the garbage collector.
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        try {
           c.adapter->remove(c.id);
        } catch (const Ice::NotRegisteredException&)
           throw Ice::ObjectNotExistException(__FILE__, __LINE__);
        }
    }

private:
    const string _name;
    string _phNum;
};

With this servant, destroy does just the right thing: it calls delete on the 
servant once the servant is idle, which in turn calls the destructor, so the memory 
used by the _name and _phNum data members is reclaimed.

However, real servants are rarely this simple. In particular, destruction of an 
Ice object may involve non-trivial actions, such as flushing a file, committing a 
transaction, making a remote call on another object, or updating a hardware 
device. For example, instead of storing the details of a phone entry in member 
variables, the servant could be implemented to store the details in a file; in that 
case, destroying the Ice object would require closing the file. Seeing that the Ice 
run time calls the destructor of a servant only once the servant becomes idle, the 
destructor would appear to be an ideal place to perform such actions, for example:

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    ~PhoneEntryI()
    {
        _myStream.close(); // Bad idea
    }

private:
    fstream _myStream;
};

The problem with this code is that it can fail, for example, if the file system is full 
and buffered data cannot be written to the file. Such clean-up failure is a general 
issue for non-trivial servants: for example, a transaction can fail to commit, a 
remote call can fail if the network goes down, or a hardware device can be tempo-
rarily unresponsive.

If we encounter such a failure, we have a serious problem: we cannot inform 
the client of the error because, as far as the client is concerned, the destroy call 
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completed just fine. The client will therefore assume that the Ice object was 
correctly destroyed. However, the system is now in an inconsistent state: the Ice 
object was destroyed (because its ASM entry was removed), but the object’s state 
still exists (possibly with incorrect values), which can cause errors later.

Another reason for avoiding such state clean-up in C++ destructors is that 
destructors cannot throw exceptions: if they do, and do so in the process of being 
called during unwinding of the stack due to some other exception, the program 
goes directly to terminate and does not pass “Go”. (There are a few exotic 
cases in which it is possible to throw from a destructor and get away with it but, in 
general, is an excellent idea to maintain the no-throw guarantee for destructors.) 
So, if anything goes wrong during destruction, we are in a tight spot: we are 
forced to swallow any exception that might be encountered by the destructor, and 
the best we can do is log the error, but not report it to the client.

Finally, using destructors to clean up servant state does not port well to 
languages such as Java and C#. For these languages, similar considerations apply 
to error reporting from a finalizer and, with Java, finalizers may not run at all. 
Therefore, we recommend that you perform any clean-up actions in the body of 
destroy instead of delaying clean-up until the servant’s destructor runs.

Note that the foregoing does not mean that you cannot reclaim servant 
resources in destructors; after all, that is what destructors are for. But it does mean 
that you should not try to reclaim resources from a destructor if the attempt can 
fail (such as deleting records in an external system as opposed to, for example, 
deallocating memory or adjusting the value of variables in your program).

34.6.4 Life Cycle and Collection Operations

The factory we defined in Section 34.5.1 is what is known as a pure object factory 
because create is the only operation it provides. However, it is common for 
factories to do double duty and also act as collection managers that provide addi-
tional operations, such as list and find:

// ...

sequence<PhoneEntry*> PhoneEntries;

interface PhoneEntryFactory {
    PhoneEntry* create(string name, string phNum)
        throws PhoneEntryExists;
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    idempotent PhoneEntry find(string name);
    idempotent PhoneEntries list();
};

find returns a proxy for the phone entry with the given name, and a null proxy if 
no such entry exists. list returns a sequence that contains the proxies of all 
existing entries.

Here is a simple implementation of find:

PhoneEntryPrx
PhoneEntryFactory::find(const string& name, const Current& c)
{
    CommunicatorPtr comm = c.adapter->getCommunicator();

    PhoneEntryPrx pe;
    Identity id = comm->stringToIdentity(name);
    if (c.adapter->find(id)) {
        pe = PhoneEntryPrx::uncheckedCast(
                                c.adapter->createProxy(id));
    }
    return pe;
}

If an entry exists in the ASM for the given name, the code creates a proxy for the 
corresponding Ice object and returns it. This code works correctly even for 
threaded servers: because the look-up of the identity in the ASM is atomic, there 
is no problem with other threads concurrently modifying the ASM (for example, 
while servicing calls from other clients to create or destroy).

Cyclic Dependencies

Unfortunately, implementing list is not as simple because it needs to iterate over 
the collection of entries, but the object adapter does not provide any iterator for 
ASM entries.9 Therefore, we must maintain our own list of entries inside the 
factory:

9. The reason for this is that, during iteration, the ASM would have to be locked to protect it against 
concurrent access, but locking the ASM would prevent call dispatch during iteration and easily 
cause deadlocks.
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class PhoneEntryFactoryI : public PhoneEntryFactory
{
public:
    // ...

    void remove(const string&, const ObjectAdapterPtr&) {
        IceUtil::Mutex::Lock lock(_namesMutex);

        set<string>::iterator i = _names.find(name);
        if (i != _names.end())
            _names.erase(i);
    }

private:
    IceUtil::Mutex _namesMutex;
    set<string> _names;
};

The idea is to have a set of names of existing entries, and to update that set in 
create and destroy as appropriate. However, for threaded servers, that raises 
a concurrency issue: if we have clients that can concurrently call create, 
destroy, and list, we need to interlock these operations to avoid corrupting 
the _names set (because STL containers are not thread-safe). This is the purpose 
of the mutex _namesMutex in the factory: create, destroy, and list can 
each lock this mutex to ensure exclusive access to the _names set.

Another issue is that our implementation of destroy must update the set of 
entries that is maintained by the factory. This is the purpose of the remove 
member function: it removes the specified name from the _names set (of course, 
under protection of the _namesMutex lock). However, destroy is a method 
on the PhoneEntryI servant, whereas remove is a method on the factory, so 
the servant must know how to reach the factory. Because the factory is a singleton, 
we can fix this by adding a static _factory member to the PhoneEntryI 
class:

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
};
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The code in main then creates the factory and initializes the static member vari-
able, for example:

PersonI::_factory = new PersonFactoryI;

// Add factory to ASM and activate object
// adapter here...

This works, but it leaves a bad taste in our mouth because it sets up a cyclic depen-
dency between the phone entry servants and the factory: the factory knows about 
the servants, and each servant knows about the factory so it can call remove on 
the factory. In general, such cyclic dependencies are a bad idea: if nothing else, 
they make a design harder to understand.

We could remove the cyclic dependency by moving the _names set and its 
associated mutex into a separate class instance that is referenced from both 
PhoneEntryFactoryI and PhoneEntryI. That would get rid of the cyclic 
dependency as far as the C++ type system is concerned but, as we will see later, it 
would not really help because the factory and its servants turn out to be mutually 
dependent regardless (because of concurrency issues). So, for the moment, we’ll 
stay with this design and examine better alternatives after we have explored the 
concurrency issues in more detail.

With this design, we can implement list as follows:

PhoneEntries
PhoneEntryFactoryI::list(const Current& c)
{
    Mutex::Lock lock(_namesMutex);

    CommunicatorPtr comm = c.adapter->getCommunicator();

    PhoneEntries pe;
    set<string>::const_iterator i;
    for (i = _names.begin(); i != _names.end(); ++i) {
        ObjectPrx o = c.adapter->createProxy(
                            comm->stringToIdentity(name));
        pe.push_back(PhoneEntryPrx::uncheckedCast(o));
    }

    return pe;
}

Note that list acquires a lock on the mutex, to prevent concurrent modification 
of the _names set by create and destroy. In turn, our create implementa-
tion now also locks the mutex:
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PhoneEntryPrx
PhoneEntryFactory::create(const string& name,
                          const string& phNum,
                          const Current& c)
{
    Mutex::Lock lock(_namesMutex);

    PhoneEntryPrx pe;
    try {
        CommunicatorPtr comm = c.adapter->getCommunicator();
        PhoneEntryPtr servant = new PhoneEntryI(name, phNum);
        pe = PhoneEntryPrx::uncheckedCast(
            c.adapter->add(servant,
                           comm->stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }
    _names.insert(name);

    return pe;
}

With this implementation, we are safe if create and list run concurrently: 
only one of the two operations can acquire the lock at a time, so there is no danger 
of corrupting the _names set.

destroy is now trivial to implement: it simply removes the ASM entry and 
calls remove on the factory:

void
PhoneEntryI::destroy(const Current& c)
{
    // Note: not quite correct yet.
    c.adapter->remove(_name);
    _factory->remove(_name, c.adapter);
}

Note that this is not quite correct because we have not yet considered concurrency 
issues for destroy. We will consider this issue in the following section.

34.6.5 Life Cycle and Normal Operations

So far, we have mostly ignored the implementations of getNumber and 
setNumber. Obviously, getNumber and setNumber must be interlocked 
against concurrent access—without this interlock, concurrent requests from 
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clients could result in one thread writing to the _phNum member while another 
thread is reading it, with unpredictable results. (Conversely, the name operation 
need not have an interlock because the name of a phone entry is immutable.) To 
interlock getNumber and setNumber, we can add a mutex _m to PhoneEn-
tryI:

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
    Mutex  _m;
};

The getNumber and setNumber implementations then lock _m to protect 
_phNum from concurrent access:

string
PhoneEntryI::name(const Current&)
{
    return _name;
}

string
PhoneEntryI::getNumber(const Current&)
{
    // Incorrect implementation!

    Mutex::Lock lock(_m);

    return _phNum;
}

void
PhoneEntryI::setNumber(const string& phNum, const Current&)
{
    // Incorrect implementation!

    Mutex::Lock lock(_m);

    _phNum = phNum;
}
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This looks good but, as it turns out, destroy throws a spanner in the works: as 
shown, this code suffers from a rare, but real, race condition. Consider the situa-
tion where a client calls destroy at the same time as another client calls 
setNumber. In a server with a thread pool with more than one thread, the calls 
can be dispatched in separate threads and can therefore execute concurrently.

The following sequence of events can occur:

• The thread dispatching the setNumber call locates the servant, enters the 
operation implementation, and is suspended by the scheduler immediately on 
entry to the operation, before it can lock _m.

• The thread dispatching the destroy call locates the servant, enters 
destroy, successfully removes the servant from the ASM and the _names 
set, and returns.

• The thread that was suspended in setNumber is scheduled again, locks _m, 
and now operates on a conceptually already-destroyed Ice object.

Note that, even if we lock _m in destroy, the problem persists:

void
PhoneEntryI::destroy(const Current& c)
{
    // Note: still not correct.

    IceUtil::Mutex::Lock lock(_m);

    c.adapter->remove(_name);
    _factory->remove(_name, c.adapter);
}

Even though destroy now locks _m and so cannot run concurrently with 
getNumber and setNumber, the preceding scenario can still arise. The 
problem here is that a thread can enter the servant and be suspended before it gets 
a chance to acquire a lock. With the code as it stands, this is not a problem: 
setNumber will simply update the _phNum member variable in a servant that 
no longer has an ASM entry. In other words, the Ice object is already destroyed—
it just so happens that the servant for that Ice object is still hanging around 
because there is still an operation executing inside it. Any updates to the servant 
will succeed (even though they are useless because the servant’s destructor will 
run as soon as the last invocation leaves the servant.)

Note that this scenario is not unique to C++ and can arise even with Java 
synchronized operations: in that case, a thread can be suspended just after the Ice 
run time has identified the target servant, but before it actually calls the operation 
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on the target servant. While the thread is suspended, another thread can execute 
destroy.

While this race condition does not affect our implementation, it does affect 
more complex applications, particularly if the servant modifies external state, such 
as a file system or database. For example, setNumber could modify a file in the 
file system; in that case, destroy would delete that file and probably close a file 
descriptor or stream. If we were to allow setNumber to continue executing after 
destroy has already done its job, we would likely encounter problems: 
setNumber might not find the file where it expects it to be or try to use the 
closed file descriptor and return an error; or worse, setNumber might end up re-
creating the file in the process of updating the already-destroyed entry’s phone 
number. (What exactly happens depends on how we write the code for each oper-
ation.)

Of course, we can try to anticipate these scenarios and handle the error condi-
tions appropriately, but doing this for complex systems with complex servants 
rapidly gets out of hand: in each operation, we would have to ask ourselves what 
might happen if the servant is destroyed concurrently and, if so, take appropriate 
recovery action.

It is preferable to instead deal with interleaved invocations of destroy and 
other operations in a systematic fashion. We can do this by adding a 
_destroyed member to the PhoneEntryI servant. This member is initialized 
to false by the constructor and set to true by destroy. On entry to every opera-
tion (including destroy), we lock the mutex, test the _destroyed flag, and 
throw ObjectNotExistException if the flag is set:

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    static PhoneEntryFactoryIPtr _factory;

private:
    const string _name;
    string _phNum;
    bool   _destroyed;
    Mutex  _m;
};

PhoneEntryI::PhoneEntryI(const string& name, const string& phNum)
    : _name(name), _phNum(phNum), _destroyed(false)
{
}
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string
PhoneEntryI::name(const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _name;
}

string
PhoneEntryI::getNumber(const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _phNum;
}

void
PhoneEntryI::setNumber(const string& phNum, const Current&)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _phNum = phNum;
}

void
PhoneEntryI::destroy(const Current& c)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _destroyed = true;
    c.adapter->remove(_name);
    _factory->remove(_name, c.adapter); // Dubious!
}
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If you are concerned about the repeated code on entry to every operation, you can 
put that code into a member function or base class to make it reusable (although 
the benefits of doing so are probably too minor to make this worthwhile).

Using the _destroyed flag, if an operation is dispatched and suspended 
before it can lock the mutex and, meanwhile, destroy runs to completion in 
another thread, it becomes impossible for an operation to operate on the state of 
such a “zombie” servant: the test on entry to each operation ensures that any oper-
ation that runs after destroy immediately raises ObjectNotExistException.

Also note the “dubious” comment in destroy: the operation first locks _m 
and, while holding that lock, calls remove on the factory, which in turn locks its 
own _namesMutex. This is not wrong as such, but as we will see shortly, it can 
easily lead to deadlocks if we modify the application later.

34.7 Removing Cyclic Dependencies

In Section 34.6.4, we mentioned that factoring the _names set and its mutex into 
a separate class instance does not really solve the cyclic dependency problem, at 
least not in general. To see why, suppose that we want to extend our factory with a 
new getDetails operation:

// ...

struct Details {
    PhoneEntry* proxy;
    string name;
    string phNum;
};

sequence<Details> DetailsSeq;

interface PhoneEntryFactory {
    // ...

    DetailsSeq getDetails();
};

This type of operation is common in collection managers: instead of returning a 
simple list of proxies, getDetails returns a sequence of structures, each of which 
contains not only the object’s proxy, but also some of the state of the corre-
sponding object. The motivation for this is performance: with a plain list of 
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proxies, the client, once it has obtained the list, is likely to immediately follow up 
with one or more remote calls for each object in the list in order to retrieve their 
state (for example, to display the list of objects to the user). Making all these addi-
tional remote procedure calls is inefficient, and an operation such as getDetails 
gets the job done with a single RPC instead.

To implement getDetails in the factory, we need to iterate over the set of 
entries and invoke the getNumber operation on each object. (These calls are collo-
cated and therefore very efficient, so they do not suffer the performance problem 
that a client calling the same operations would suffer.) However, this is potentially 
dangerous because the following sequence of events is possible:

• Client A calls getDetails.

• The implementation of getDetails must lock _namesMutex to prevent 
concurrent modification of the _names set during iteration.

• Client B calls destroy on a phone entry.

• The implementation of destroy locks the entry’s mutex _m, sets the 
_destroyed flag, and then calls remove, which attempts to lock 
_namesMutex in the factory. However, _namesMutex is already locked 
by getDetails, so remove blocks until _m is unlocked again.

• getDetails, while iterating over its set of entries, happens to call 
getNumber on the entry that is currently being destroyed by client B. 
getNumber, in turn, tries to lock its mutex _m, which is already locked by 
destroy.

At this point, the server deadlocks: getDetails holds a lock on 
_namesMutex and waits for _m to become available, and destroy holds a 
lock on _m and waits for _namesMutex to become available, so neither thread 
can make progress.

To get rid of the deadlock, we have two options:

• Rearrange the locking such that deadlock becomes impossible.

• Abandon the idea of calling back from the servants into the factory and use 
reaping instead.

We will explore both options in the next two sections.
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34.7.1 Deadlock-Free Lock Acquisition

For our example, it is fairly easy to avoid the deadlock: instead of holding the lock 
for the duration of destroy, we set the _destroyed flag under protection of 
the lock and unlock _m again before calling remove on the factory:

void
PhoneEntryI::destroy(const Current& c)
{
    {
        Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        _destroyed = true;

    } // _m is unlocked here.

    _factory->remove(_name, c.adapter);
}

Now deadlock is impossible because no function holds more than one lock, and no 
function calls another function while it holds a lock. However, rearranging locks 
in this fashion can be quite difficult for complex applications. In particular, if an 
application uses callbacks that do complex things involving several objects, it can 
be next to impossible to prove that the code is free of deadlocks. The same is true 
for applications that use condition variables and suspend threads until a condition 
becomes true.

At the core of the problem is that concurrency can create circular locking 
dependencies: an operation on the factory (such as getDetails) can require the 
same locks as a concurrent call to destroy. This is one reason why threaded 
code is harder to write than sequential code—the interactions among operations 
require locks, but dependencies among these locks are not obvious. In effect, 
locks set up an entirely separate and largely invisible set of dependencies. For 
example, it was easy to spot the mutual dependency between the factory and the 
servants due to the presence of remove; in contrast, it was much harder to spot 
the lurking deadlock in destroy. Worse, deadlocks may not be found during 
testing and discovered only after deployment, when it is much more expensive to 
rectify the problem.
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34.7.2 Reaping

Instead of trying to arrange code such that it is deadlock-free in the presence of 
callbacks, it is often easier to change the code to avoid the callbacks entirely and 
to use an approach known as reaping:

• destroy marks the servant as destroyed and removes the ASM entry as 
usual, but it does not call back into the factory to update the _names set.

• Whenever a collection manager operation, such as list, getDetails, or 
find is called, the factory checks for destroyed servants and, if it finds any, 
removes them from the _names set.

Reaping can make for a much cleaner design because it avoids both the cyclic type 
dependency and the cyclic locking dependency.

A Simple Reaping Implementation

To implement reaping, we need to change our PhoneEntryI definition a little. 
It no longer has a static _factory smart pointer back to the factory (because it 
no longer calls remove). Instead, the servant now provides a member function 
_isZombie that the factory calls to check whether the servant was destroyed 
some time in the past:

class PhoneEntryI : public PhoneEntry {
public:
    // ...

    bool _isZombie() const;

private:
    const string _name;
    string _phNum;
    bool   _destroyed;
    Mutex  _m;
};

The implementation of _isZombie is trivial: it returns the _destroyed flag 
under protection of the lock:

bool
PhoneEntryI::_isZombie() const
{
    Mutex::Lock lock(_m);

    return _destroyed;
}
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The destroy operation no longer calls back into the factory to update the 
_names set; instead, it simply sets the _destroyed flag and removes the ASM 
entry:

void
PhoneEntryI::destroy(const Current& c)
{
    Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    _destroyed = true;
    c.adapter->remove(c.id);
}

The factory now, instead of storing just the names of existing servants, maintains a 
map that maps the name of each servant to its smart pointer:

class PhoneEntryFactoryI : public PhoneEntryFactory
{
public:
    // Constructor and Slice operations here...

private:
    typedef map<string, PhoneEntryIPtr> PMap;
    PMap _entries;
    Mutex _entriesMutex;
};

During create (and other operations, such as list, getDetails, and 
find), we scan for zombie servants and remove them from the _entries map:

PhoneEntryPrx
PhoneEntryFactory::create(const string& name,
                          const string& phNum,
                          const Current& c)
{
    Mutex::Lock lock(_entriesMutex);

    PhoneEntryPrx pe;
    PhoneEntryIPtr servant = new PhoneEntryI(name, phNum);

    // Try to create new object.
    //
    try {
        CommunicatorPtr comm = c.adapter->getCommunicator();
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        pe = PhoneEntryPrx::uncheckedCast(c.adapter->add(
                                servant,
                                comm->stringToIdentity(name)));
    } catch (const Ice::AlreadyRegisteredException&) {
        throw PhoneEntryExists(name, phNum);
    }

    // Scan for zombies.
    //
    PMap::iterator i = _entries.begin();
    while (i != _entries.end())
    {
        if (i->second->_isZombie())
            _entries.erase(i++);
        else
            ++i;
    }
    _entries[name] = servant;

    return pe;
}

The implementations of list, getDetails, and find scan for zombies as 
well. Because they need to iterate over the existing entries anyway, reaping incurs 
essentially no extra cost:

PhoneEntries
PhoneEntryFactoryI::list(const Current& c)
{
    Mutex::Lock lock(_entriesMutex);

    CommunicatorPtr comm = c.adapter->getCommunicator();

    PhoneEntries pe;
    PMap::iterator i = _entries.begin();
    for (i = _entries.begin(); i != _entries.end(); ++i) {
        if (i->second->_isZombie()) {
            _entries.erase(i++);
        } else {
            ObjectPrx o = c.adapter->createProxy(
                                comm->stringToIdentity(i->first));
            pe.push_back(PhoneEntryPrx::uncheckedCast(o));
            ++i;
        }
    }
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    return pe;
}

// Similar for getDetails and find...

This is a much cleaner design: there is no cyclic dependency between the factory 
and the servants, either implicit (in the type system) or explicit (as a locking 
dependency). Moreover, the implementation is easier to understand once you get 
used to the idea of reaping: there is no need to follow complex callbacks and to 
carefully analyze the order of lock acquisition. (Note that, depending on how state 
is maintained for servants, you may also need to reap during start-up and shut-
down.)

In general, we recommend that you use a reaping approach in preference to 
callbacks for all but the most trivial applications: it simply is a better approach 
that is easier to maintain and understand.

Alternative Reaping Implementations

You may be concerned that reaping increases the cost of create from O(log n) 
to O(n) because create now iterates over all existing entries and locks and 
unlocks a mutex in each servant (whereas, previously, it simply added each new 
servant to the _names set). Often, this is not an issue because life cycle opera-
tions are called infrequently compared to normal operations. However, you will 
notice the additional cost if you have a large number of servants (in the thousands 
or more) and life cycle operations are called frequently.

If you find that create is a bottleneck (by profiling, not by guessing!), you 
can change to a more efficient implementation by adding zombie servants to a 
separate zombie list. Reaping then iterates over the zombie list and removes each 
servant in the zombie list from the _entries map before clearing the zombie 
list. This reduces the cost of reaping to be proportional to the number of zombie 
servants instead of the total number of servants. In addition, it allows us to remove 
the _isZombie member function and to lock and unlock _entriesMutex 
only once instead of locking a mutex in each servant as part of _isZombie. We 
will see such an implementation in Section 34.9.

You may also be concerned about the number of zombie servants that can 
accumulate in the server if create is not called for some time. For most applica-
tions, this is not a problem: the servants occupy memory, but no other resources 
because destroy can clean up scarce resources, such as file descriptors or 
network connections before it turns the servant into a zombie. If you really need to 
prevent accumulation of zombie servants, you can reap from a background thread 
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that runs periodically, or you can count the number of zombies and trigger a 
reaping pass once that number exceeds some threshold.

34.8 Object Identity and Uniqueness

In Section 34.5.1, we mentioned that it may not be a good idea to allow clients to 
control the object identity of the Ice objects they create. Here is the scenario from 
Section 34.2 once more, re-cast in terms of our phone book application:

1. Client A creates a new phone entry for Fred.

2. Client A passes the proxy for the Fred entry as a parameter of a remote call to 
another part of the system, say, server B.

3. Server B remembers Fred’s proxy.

4. Client A decides that the entry for Fred is no longer needed and calls Fred’s 
destroy operation.

5. Some time later, client C creates a new phone entry for a different person 
whose name also happens to be Fred.

6. Server B decides to get Fred’s phone number by calling getNumber on the 
proxy it originally obtained from client A.

At this point, things are likely to go wrong: server B thinks that it has obtained the 
phone number of the original Fred, but that entry no longer exists and has since 
been replaced by a new entry for a different person (who presumably has a 
different phone number).

What has happened here is that Fred has been reincarnated because the same 
object identity was used for two different objects. In general, such reused object 
identities are a bad idea. For example, consider the following interfaces:

interface Process {
    void launch(); // Start process.
};

interface Missile {
    void launch(); // Kill lots of people.
};

Replaying the preceding scenario, if client A creates a Process object called 
“Thunderbird” and destroys that object again, and client C creates a Missile 
object called “Thunderbird”, when server B calls launch, it will launch a missile 
instead of a process.
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To be fair, in reality, this scenario is unlikely because it tacitly assumes that 
both objects are implemented by the same object adapter but, in a realistic 
scenario, the same server would be unlikely to implement both launching of 
processes and missiles. However, if you have objects that derive from common 
base interfaces, so objects of different types share the same operation names, this 
problem is real: operation invocations can easily end up in a destroyed and later 
recreated object.

Specifically, the preceding scenario illustrates that, when the Ice run time 
dispatches a request, exactly three items determine where the request ends up 
being processed:

• the endpoint at which the server listens for incoming requests

• the identity of the Ice object that is the target of the request

• the name of the operation that is to be invoked on the Ice object

If object identities are insufficiently unique, a request intended for one object can 
end up being sent to a completely different object, provided that the original 
object used the same identity, that both provide an operation with the same name, 
and that the parameters passed to one operation happen to decode correctly when 
interpreted as the parameters to the other operation. (This is rare, but not impos-
sible, depending on the type and number of parameters.)

The crucial question is, what do we mean by “insufficiently unique”? As far as 
the call dispatch is concerned, identities must be unique only per object adapter. 
This is because the ASM does not allow you to add two entries with the same 
object identity; by enforcing this, the ASM ensures that each object identity 
belongs to exactly one servant. (Note that the converse, namely, that servants in 
ASM entries must be unique, is not the case: the ASM allows you to map different 
object identities to the same servant, which is useful to, for example, implement 
stateless facade objects—see Section 32.9.2.) So, as far as the Ice run time is 
concerned, it is perfectly OK to reuse object identities for different Ice objects.

Note that the Ice run time cannot prevent reuse of object identities either. 
Doing so would require the run time to remember every object identity that has 
ever been used, which does not scale. Instead, the Ice run time makes the applica-
tion responsible for ensuring that object identities are “sufficiently unique”.

You can deal with the identity reuse problem in several ways. One option is to 
do nothing and simply ignore the problem. While this sounds facetious, it is a 
viable option for many applications because, due to their nature, identity reuse is 
simply impossible. For example, if you use a social security number as a person’s 
identity, the problem cannot arise because the social security number of a 
deceased person is not given to another person.
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Another option is to allow identity reuse and to write your application such 
that it can deal with such identities: if nothing bad happens when an identity is 
reused, there is no problem. (This is the case if you know that the life cycles of the 
proxies for two different objects with the same identity can never overlap.)

The third option is to ensure that object identities are guaranteed unique, for 
example, by establishing naming conventions that make reuse impossible, or by 
using a UUID as the object identity (see Section 32.4.4). This can be useful even 
for applications for which identity reuse does not pose a problem. For example, if 
you use IceGrid well-known proxies (see Section 38.6), globally-unique object 
identities allow you to move a server to a different machine without invalidating 
proxies to these objects that are held by clients.

In general, we recommend that if an Ice object naturally contains a unique 
item of state (such as a social security number), you should use that item as the 
object identity. On the other hand, if the natural object identity is insufficiently 
unique (as is the case with names of phone book entries), you should use a UUID 
as the identity. (This is particularly useful for anonymous transient objects, such 
as session objects, that may not have a natural identity.)

34.9 Object Life Cycle for the File System Application

Now that we have had a look at the issues around object life cycle, let us return to 
our file system application and add life cycle operations to it, so clients can create 
and destroy files and directories.

To destroy a file or directory, the obvious choice is to add a destroy operation 
to the Node interface:

module Filesystem {

    exception GenericError {
        string reason;
    };
    exception PermissionDenied extends GenericError {};
    exception NameInUse extends GenericError {};
    exception NoSuchName extends GenericError {};

    interface Node {
        idempotent string name();
        void destroy() throws PermissionDenied;
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    };

    // ...
};

Note that destroy can throw a PermissionDenied exception. This is necessary 
because we must prevent attempts to destroy the root directory.

The File interface is the same as the one we saw in Chapter 5:

module Filesystem {
    // ...

    sequence<string> Lines;

    interface File extends Node {
        idempotent Lines read();
        idempotent void write(Lines text) throws GenericError;
    };

    // ...
};

Note that, because File derives from Node, it inherits the destroy operation we 
defined for Node.

The Directory interface now looks somewhat different from the previous 
version:

• The list operation returns a sequence of structures instead of a list of proxies: 
for each entry in a directory, the NodeDesc structure provides the name, type, 
and proxy of the corresponding file or directory.

• Directories provide a find operation that returns the description of the nomi-
nated node. If the nominated node does not exist, the operation throws a 
NoSuchName exception.

• The createFile and createDirectory operations create a file and directory, 
respectively. If a file or directory already exists, the operations throw a NameI-
nUse exception.

Here are the corresponding definitions:

module Filesystem {
    // ...

    enum NodeType { DirType, FileType };

    struct NodeDesc {
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        string name;
        NodeType type;
        Node* proxy;
    };

    sequence<NodeDesc> NodeDescSeq;

    interface Directory extends Node {
        idempotent NodeDescSeq list();
        idempotent NodeDesc find(string name) throws NoSuchName;
        File* createFile(string name) throws NameInUse;
        Directory* createDirectory(string name) throws NameInUse;
    };
};

Note that this design is somewhat different from the factory design we saw in 
Section 34.5.1. In particular, we do not have a single object factory; instead, we 
have as many factories as there are directories, that is, each directory creates files 
and directories only in that directory.

The motivation for this design is twofold:

• Because all files and directories that can be created are immediate descendants 
of their parent directory, we avoid the complexities of parsing path names for 
a separator such as “/”. This keeps our example code to manageable size. (A 
real-world implementation of a distributed file system would, of course, be 
able to deal with path names.)

• Having more than one object factory presents interesting implementation 
issues that we will explore in the remainder of this chapter.

The following two sections describe the implementation of this design in C++ and 
Java. You can find the full code of the implementation (including languages other 
than C++ and Java) in the demo/book/lifecycle directory of your Ice 
distribution.

34.9.1 Implementing Object Life Cycle in C++
The implementation of our life cycle design has the following characteristics:

• It uses UUIDs as the object identities for nodes. This avoids the object reincar-
nation problems we discussed in Section 34.8.

• When destroy is called on a node, the node needs to destroy itself and inform 
its parent directory that it has been destroyed (because the parent directory is 
the node’s factory and also acts as a collection manager for child nodes).
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Note that, in contrast to the code in Chapter 9, the entire implementation resides in 
a FilesystemI namespace instead of being part of the Filesystem 
namespace. Doing this is not essential, but is a little cleaner because it keeps the 
implementation in a namespace that is separate from the Slice-generated 
namespace.

The NodeI Base Class

To begin with, let us look at the definition of the NodeI class:

namespace FilesystemI {

    class DirectoryI;
    typedef IceUtil::Handle<DirectoryI> DirectoryIPtr;

    class NodeI : public virtual Filesystem::Node {
    public:
        virtual std::string name(const Ice::Current&);
        Ice::Identity id() const;

    protected:
        NodeI(const std::string& name,
              const DirectoryIPtr& parent);

        const std::string _name;
        const DirectoryIPtr _parent;
        bool _destroyed;
        Ice::Identity _id;
        IceUtil::Mutex _m;
    };

    // ...
}

The purpose of the NodeI class is to provide the data and implementation that are 
common to both FileI and DirectoryI, which use implementation inheri-
tance from NodeI.

As in Chapter 9, NodeI provides the implementation of the name operation 
and stores the name of the node and its parent directory in the _name and 
_parent members. (The root directory’s _parent member is null.) These 
members are immutable and initialized by the constructor and, therefore, const.

The _destroyed member, protected by the mutex _m, prevents the race 
condition we discussed in Section 34.6.5. The constructor initializes 
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_destroyed to false and creates an identity for the node (stored in the _id 
member):

FilesystemI::NodeI::NodeI(const string& name,
                          const DirectoryIPtr& parent)
    : _name(name), _parent(parent), _destroyed(false)
{
    _id.name = parent ? IceUtil::generateUUID() : "RootDir";
}

The id member function returns a node’s identity, stored in the _id data member. 
The node must remember this identity because it is a UUID and is needed when 
we create a proxy to the node:

Identity
FilesystemI::NodeI::id() const
{
    return _id;
}

The data members of NodeI are protected instead of private to keep them acces-
sible to the derived FileI and DirectoryI classes. (Because the implementa-
tion of NodeI and its derived classes is quite tightly coupled, there is little point 
in making these members private and providing separate accessors and mutators 
for them.)

The implementation of the Slice name operation simply returns the name of 
the node, but also checks whether the node has been destroyed, as described in 
Section 34.6.5:

string
FilesystemI::NodeI::name(const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _name;
}

This completes the implementation of the NodeI base class.

The DirectoryI Class

Next, we need to look at the implementation of directories. The DirectoryI 
class derives from NodeI and the Slice-generated Directory skeleton class. 
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Of course, it must implement the pure virtual member functions for its Slice oper-
ations, which leads to the following (not yet complete) definition:

namespace FilesystemI {

    // ...

    class DirectoryI : virtual public NodeI,
                       virtual public Filesystem::Directory {
    public:
        virtual Filesystem::NodeDescSeq list(const Ice::Current&);
        virtual Filesystem::NodeDesc find(const std::string&,
                                          const Ice::Current&);
        Filesystem::FilePrx createFile(const std::string&,
                                       const Ice::Current&);
        Filesystem::DirectoryPrx
                        createDirectory(const std::string&,
                                        const Ice::Current&);
        virtual void destroy(const Ice::Current&);
        // ...

    private:
        // ...
    };
}

Each directory stores its contents in a map that maps the name of a directory to its 
servant:

namespace FilesystemI {

    // ...

    class DirectoryI : virtual public NodeI,
                       virtual public Filesystem::Directory {
    public:
        // ...

        DirectoryI(const ObjectAdapterPtr& a,
                   const std::string& name,
                   const DirectoryIPtr& parent = 0);

        void removeEntry(const std::string& name);

    private:
        typedef std::map<std::string, NodeIPtr> Contents;
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        Contents _contents;
        // ...
    };
}

Note that we use the inherited member _m to interlock operations.
The constructor simply initializes the NodeI base class:

FilesystemI::DirectoryI::DirectoryI(const string& name,
                                    const DirectoryIPtr& parent)
    : NodeI(name, parent)
{
}

The removeEntry member function is called by the child to remove itself from 
its parent’s _contents map:

void
FilesystemI::DirectoryI::removeEntry(const string& name)
{
    IceUtil::Mutex::Lock lock(_m);
    Contents::iterator i = _contents.find(name);
    if(i != _contents.end())
    {
        _contents.erase(i);
    }
}

Here is the destroy member function for directories:

void
FilesystemI::DirectoryI::destroy(const Current& c)
{
    if (!_parent)
        throw PermissionDenied("Cannot destroy root directory");

    {
        IceUtil::Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        if (!_contents.empty())
            throw PermissionDenied("Cannot destroy non-empty direc
tory");

        c.adapter->remove(id());
        _destroyed = true;
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    }

    _parent->removeEntry(_name);
}

The code first prevents destruction of the root directory and then checks whether 
this directory was destroyed previously. It then acquires the lock and checks that 
the directory is empty. Finally, destroy removes the ASM entry for the 
destroyed directory and removes itself from its parent’s _contents map. Note 
that, for the reason we explained in Section 34.7.1, we call removeEntry 
outside the synchronization.

The createDirectory implementation locks the mutex before checking 
whether the directory already contains a node with the given name (or an invalid 
empty name). If not, it creates a new servant, adds it to the ASM and the 
_contents map, and returns its proxy:

DirectoryPrx
FilesystemI::DirectoryI::createDirectory(const string& name,
                                         const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    if (name.empty() || _contents.find(name) != _contents.end())
        throw NameInUse(name);

    DirectoryIPtr d = new DirectoryI(name, this);
    ObjectPrx node = c.adapter->add(d, d->id());
    _contents[name] = d;
    return DirectoryPrx::uncheckedCast(node);
}

The createFile implementation is identical, except that it creates a file instead 
of a directory:

FilePrx
FilesystemI::DirectoryI::createFile(const string& name,
                                    const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);
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    if (name.empty() || _contents.find(name) != _contents.end())
        throw NameInUse(name);

    FileIPtr f = new FileI(name, this);
    ObjectPrx node = c.adapter->add(f, f->id());
    _contents[name] = f;
    return FilePrx::uncheckedCast(node);
}

Here is the implementation of list:

NodeDescSeq
FilesystemI::DirectoryI::list(const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    NodeDescSeq ret;
    for (Contents::const_iterator i = _contents.begin();
         i != _contents.end(); ++i)
    {
        NodeDesc d;
        d.name = i->first;
        d.type = FilePtr::dynamicCast(i->second)
            ? FileType : DirType;
        d.proxy = NodePrx::uncheckedCast(
            c.adapter->createProxy(i->second->id()));
        ret.push_back(d);
    }
    return ret;
}

After acquiring the lock, the code iterates over the directory’s contents and adds a 
NodeDesc structure for each entry to the returned vector.

The find operation proceeds along similar lines:

NodeDesc
FilesystemI::DirectoryI::find(const string& name,
                              const Current& c)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);
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    Contents::const_iterator pos = _contents.find(name);
    if (pos == _contents.end())
        throw NoSuchName(name);

    NodeIPtr p = pos->second;
    NodeDesc d;
    d.name = name;
    d.type = FilePtr::dynamicCast(p) ? FileType : DirType;
    d.proxy = NodePrx::uncheckedCast(
        c.adapter->createProxy(p->id()));
    return d;
}

The FileI Class

The constructor of FileI is trivial: it simply initializes the data members of its 
base class::

FilesystemI::FileI::FileI(const string& name,
                          const DirectoryIPtr& parent)
    : NodeI(name, parent)
{
}

The implementation of the three member functions of the FileI class is also 
trivial, so we present all three member functions here:

Lines
FilesystemI::FileI::read(const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
        throw ObjectNotExistException(__FILE__, __LINE__);

    return _lines;
}

// Slice File::write() operation.

void
FilesystemI::FileI::write(const Lines& text, const Current&)
{
    IceUtil::Mutex::Lock lock(_m);

    if (_destroyed)
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        throw ObjectNotExistException(__FILE__, __LINE__);

    _lines = text;
}

void
FilesystemI::FileI::destroy(const Current& c)
{
    {
        IceUtil::Mutex::Lock lock(_m);

        if (_destroyed)
            throw ObjectNotExistException(__FILE__, __LINE__);

        c.adapter->remove(id());
        _destroyed = true;
    }

    _parent->removeEntry(_name);
}

Concurrency Considerations

The preceding implementation is provably deadlock free. All member functions 
hold only one lock at a time, so they cannot deadlock with each other or them-
selves. While the locks are held, the functions do not call other member functions 
that acquire locks, so any potential deadlock can only arise by concurrent calls to 
another mutating function, either on the same node or on different nodes. For 
concurrent calls on the same node, deadlock is impossible because such calls are 
strictly serialized on the mutex _m; for concurrent calls to destroy on different 
nodes, each node locks its respective mutex _m, releases _m again, and then 
acquires and releases a lock on its parent (by calling removeEntry), also 
making deadlock impossible.

34.9.2 Implementing Object Life Cycle in Java

The implementation of our life cycle design has the following characteristics:

• It uses UUIDs as the object identities for nodes. This avoids the object reincar-
nation problems we discussed in Section 34.8.

• When destroy is called on a node, the node needs to destroy itself and inform 
its parent directory that it has been destroyed (because the parent directory is 
the node’s factory and also acts as a collection manager for child nodes).
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Note that, in contrast to the code in Chapter 13, the entire implementation resides 
in a FilesystemI package instead of being part of the Filesystem package. 
Doing this is not essential, but is a little cleaner because it keeps the implementa-
tion in a package that is separate from the Slice-generated package.

The NodeI Interface

Our DirectoryI and FileI servants derive from a common NodeI base 
interface. This interface is not essential, but useful because it allows us to treat 
servants of type DirectoryI and FileI polymorphically:

package FilesystemI;

public interface NodeI
{
    Ice.Identity id();
}

The only method is the id method, which returns the identity of the corre-
sponding node.

The DirectoryI Class

As in Chapter 13, the DirectoryI class derives from the generated base class 
_DirectoryDisp. In addition, the class implements the NodeI interface. 
DirectoryI must implement each of the Slice operations, leading to the 
following outline:

package FilesystemI;

import Ice.*;
import Filesystem.*;

public class DirectoryI extends _DirectoryDisp
                        implements NodeI
{
    public Identity
    id();

    public synchronized String
    name(Current c);

    public synchronized NodeDesc[]
    list(Current c);

    public synchronized NodeDesc
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    find(String name, Current c) throws NoSuchName;

    public synchronized FilePrx
    createFile(String name, Current c) throws NameInUse;

    public synchronized DirectoryPrx
    createDirectory(String name, Current c) throws NameInUse;

    public void
    destroy(Current c) throws PermissionDenied;

    // ...
}

To support the implementation, we also require a number of methods and data 
members:

package FilesystemI;

import Ice.*;
import Filesystem.*;

public class DirectoryI extends _DirectoryDisp
                        implements NodeI
{
    // ...

    public DirectoryI();
    public DirectoryI(String name, DirectoryI parent);

    public synchronized void
    removeEntry(String name);

    private String _name;       // Immutable
    private DirectoryI _parent; // Immutable
    private Identity _id;       // Immutable
    private boolean _destroyed;
    private java.util.Map<String, NodeI> _contents;
}

The _name and _parent members store the name of this node and a reference 
to the node’s parent directory. (The root directory’s _parent member is null.) 
Similarly, the _id member stores the identity of this directory. The _name, 
_parent, and _id members are immutable once they have been initialized by 
the constructor. The _destroyed member prevents the race condition we 
discussed in Section 34.6.5; to interlock access to _destroyed (as well as the 
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_contents member) we can use synchronized methods (as for the name 
method), or use a synchronized(this) block.

The _contents map records the contents of a directory: it stores the name 
of an entry, together with a reference to the child node.

Here are the two constructors for the class:

public DirectoryI()
{
    this("/", null);
}

public DirectoryI(String name, DirectoryI parent)
{
    _name = name;
    _parent = parent;
    _id = new Identity();
    _destroyed = false;
    _contents = new java.util.HashMap<String, NodeI>();

    _id.name = parent == null ? "RootDir" : Util.generateUUID();
}

The first constructor is a convenience function to create the root directory with the 
fixed identity “RootDir” and a null parent.

The real constructor initializes the _name, _parent, _id, _destroyed, 
and _contents members. Note that nodes other than the root directory use a 
UUID as the object identity.

The removeEntry method is called by the child to remove itself from its 
parent’s _contents map:

public synchronized void
removeEntry(String name)
{
    _contents.remove(name);
}

The implementation of the Slice name operation simply returns the name of the 
node, but also checks whether the node has been destroyed, as described in 
Section 34.6.5:
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public synchronized String
name(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();
    return _name;
}

Note that this method is synchronized, so the _destroyed member cannot be 
accessed concurrently.

Here is the destroy member function for directories:

public void
destroy(Current c) throws PermissionDenied
{
    if (_parent == null)
        throw new PermissionDenied("Cannot destroy root directory"
);

    synchronized(this) {
        if (_destroyed)
            throw new ObjectNotExistException();

        if (_contents.size() != 0)
            throw new PermissionDenied(
                "Cannot destroy non-empty directory");

        c.adapter.remove(id());
        _destroyed = true;
    }

    _parent.removeEntry(_name);
}

The code first prevents destruction of the root directory and then checks whether 
this directory was destroyed previously. It then acquires the lock and checks that 
the directory is empty. Finally, destroy removes the ASM entry for the 
destroyed directory and removes itself from its parent’s _contents map. Note 
that, for the reason we explained in Section 34.7.1, we call removeEntry 
outside the synchronization.

The createDirectory implementation acquires the lock before checking 
whether the directory already contains a node with the given name (or an invalid 
empty name). If not, it creates a new servant, adds it to the ASM and the 
_contents map, and returns its proxy:
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public synchronized DirectoryPrx
createDirectory(String name, Current c) throws NameInUse
{
    if (_destroyed)
        throw new ObjectNotExistException();

    if (name.length() == 0 || _contents.containsKey(name))
        throw new NameInUse(name);

    DirectoryI d = new DirectoryI(name, this);
    ObjectPrx node = c.adapter.add(d, d.id());
    _contents.put(name, d);
    return DirectoryPrxHelper.uncheckedCast(node);
}

The createFile implementation is identical, except that it creates a file instead 
of a directory:

public synchronized FilePrx
createFile(String name, Current c) throws NameInUse
{
    if (_destroyed)
        throw new ObjectNotExistException();

    if (name.length() == 0 || _contents.containsKey(name))
        throw new NameInUse(name);

    FileI f = new FileI(name, this);
    ObjectPrx node = c.adapter.add(f, f.id());
    _contents.put(name, f);
    return FilePrxHelper.uncheckedCast(node);
}

Here is the implementation of list:

public synchronized NodeDesc[]
list(Current c)
{
    if(_destroyed)
        throw new ObjectNotExistException();

    NodeDesc[] ret = new NodeDesc[_contents.size()];
    java.util.Iterator<java.util.Map.Entry<String, NodeI> > pos =
        _contents.entrySet().iterator();
    for(int i = 0; i < _contents.size(); ++i) {
        java.util.Map.Entry<String, NodeI> e = pos.next();
        NodeI p = e.getValue();
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        ret[i] = new NodeDesc();
        ret[i].name = e.getKey();
        ret[i].type = p instanceof FileI
            ? NodeType.FileType : NodeType.DirType;
        ret[i].proxy = NodePrxHelper.uncheckedCast(
            c.adapter.createProxy(p.id()));
    }
    return ret;
}

After acquiring the lock, the code iterates over the directory’s contents and adds a 
NodeDesc structure for each entry to the returned array.

The find operation proceeds along similar lines:

public synchronized NodeDesc
find(String name, Current c) throws NoSuchName
{
    if (_destroyed)
        throw new ObjectNotExistException();

    NodeI p = _contents.get(name);
    if (p == null)
        throw new NoSuchName(name);

    NodeDesc d = new NodeDesc();
    d.name = name;
    d.type = p instanceof FileI
        ? NodeType.FileType : NodeType.DirType;
    d.proxy = NodePrxHelper.uncheckedCast(
        c.adapter.createProxy(p.id()));
    return d;
}

The FileI Class

The FileI class is similar to the DirectoryI class. The data members store 
the name, parent, and identity of the file, as well as the _destroyed flag and the 
contents of the file (in the _lines member). The constructor initializes these 
members:

package FilesystemI;

import Ice.*;
import Filesystem.*;
import FilesystemI.*;
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public class FileI extends _FileDisp
                   implements NodeI
{
    // ...

    public FileI(String name, DirectoryI parent)
    {
        _name = name;
        _parent = parent;
        _destroyed = false;
        _id = new Identity();
        _id.name = Util.generateUUID();
    }

    private String _name;
    private DirectoryI _parent;
    private boolean _destroyed;
    private Identity _id;
    private String[] _lines;
}

The implementation of the remaining member functions of the FileI class is 
trivial, so we present all of them here:

public synchronized String
name(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();
    return _name;
}

public Identity
id()
{
    return _id;
}

public synchronized String[]
read(Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();

    return _lines;
}
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public synchronized void
write(String[] text, Current c)
{
    if (_destroyed)
        throw new ObjectNotExistException();

    _lines = (String[])text.clone();
}

public void
destroy(Current c)
{
    synchronized(this) {
        if (_destroyed)
            throw new ObjectNotExistException();

        c.adapter.remove(id());
        _destroyed = true;
    }

    _parent.removeEntry(_name);
}

Concurrency Considerations

The preceding implementation is provably deadlock free. All methods hold only 
one lock at a time, so they cannot deadlock with each other or themselves. While 
the locks are held, the methods do not call other methods that acquire locks, so 
any potential deadlock can only arise by concurrent calls to another mutating 
method, either on the same node or on different nodes. For concurrent calls on the 
same node, deadlock is impossible because such calls are strictly serialized on the 
instance; for concurrent calls to destroy on different nodes, each node locks 
itself, releases itself again, and then acquires and releases a lock on its parent (by 
calling removeEntry), also making deadlock impossible.

34.10 Avoiding Server-Side Garbage

The preceding sections covered the implementation of object life cycle, that is, 
how to correctly provide clients with the means to create and destroy objects. 
However, throughout the preceding discussion, we have tacitly assumed that 
clients actually call destroy once they no longer need an object. What if this is 
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actually not the case? For example, a client might intend to call destroy on an 
object it no longer needs but crash before it can actually make the call.

To see why this is a realistic (and serious) scenario, consider an on-line retail 
application. Typically, such an application provides a shopping cart to the client, 
into which the client can place items. Naturally, the cart and the items it contains 
will be modelled as server-side objects. The expectation is that, eventually, the 
client will either finalize or cancel the purchase, at which point the shopping cart 
and its contents can be destroyed. However, the client may never do that, for 
example, because it crashes or simply loses interest.

The preceding scenario applies to many different applications and shows up in 
various disguises. For example, the objects might be session objects that encapsu-
late security credentials of a client, or might be iterator objects that allow a client 
to iterate over a collection of values. The key point is that the interactions between 
client and server are stateful: the server creates state on behalf of a client, holds 
that state for the duration of several client–server interactions, and expects the 
client to inform the server when it can clean up that state. If the client never 
informs the server, whatever resources are associated with that client’s state are 
leaked; these resources are termed garbage.

The garbage might be memory, file descriptors, network connections, disk 
space, or any number of other things. Unless the server takes explicit action, even-
tually, the garbage will accumulate to the point where the server fails because it 
has run out of memory, file descriptors, network connections, or disk space.

In the context of Ice, the garbage are servants and their associated resources. 
In this section, we examine strategies that a server can use avoid drowning in that 
garbage.

34.10.1 Approaches to Garbage Collection

The server is presented with something of a dilemma by garbage objects. The 
difficulty is not in how to remove the garbage objects (after all, the server knows 
how to destroy each object), but how to identify whether a particular object is 
garbage or not. The server knows when a client uses an object (because the server 
receives an invocation for the object), but the server does not know when an object 
is no longer of interest to a client (because a dead client is indistinguishable from 
a slow one).

One approach to dealing with garbage is to avoid creating it in the first place: 
if all interactions between client and server are stateless, the garbage problem does 
not arise. Unfortunately, for many applications, implementing this approach is 
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infeasible. The reason is that, in order to turn interactions that are inherently 
stateful (such as updating a database) into stateless ones, designers are typically 
forced to keep all the state on the client side, transmit whatever state is required by 
the server with each remote procedure call, and return the updated state back to 
the client. In many situations, this simply does not work: for one, the amount of 
state that needs to be transmitted with each call is often prohibitively large; 
second, replicating all the state on the client side creates other problems, such as 
different clients concurrently making conflicting updates to the same data.

The remainder of this section ignores stateless designs. This is not to say that 
stateless designs are undesirable: where suitable, they can be very effective. 
However, because many applications simply cannot use them, we focus instead on 
other ways to deal with garbage.

Mechanisms that identify and reclaim garbage objects are known as garbage 
collectors. Garbage collectors are well-understood for non-distributed systems. 
(For example, many programming languages, such as Java and C#, have built-in 
garbage collectors.)

Non-distributed garbage collectors keep track of all objects that are created, 
and perform some form of connectivity analysis to determine which objects are 
still reachable; any objects that are unreachable (that is, objects to which the appli-
cation code no longer holds any reference) are garbage and are eventually 
reclaimed.

Unfortunately, for distributed systems, traditional approaches to garbage 
collection do not work because the cost of performing the connectivity analysis 
becomes prohibitively large. For example, DCOM provided a distributed garbage 
collector that turned out to be its Achilles’ heel: the collector did not scale to large 
numbers of objects, particularly across WANs, and several attempts at making it 
scale failed.

An alternative to distributed garbage collection is to use timeouts to avoid the 
cost of doing a full connectivity analysis: if an object has not been used for a 
certain amount of time, the server assumes that it is garbage and reclaims the 
object. The drawback of this idea is that it is possible for objects to be collected 
while they are still in use. For example, a customer may have placed a number of 
items in a shopping cart and gone out to lunch, only to find on return that the 
shopping cart has disappeared in the mean time.

Yet another alternative is to use the evictor pattern: the server puts a cap on the 
total number of objects it is willing to create on behalf of clients and, once the cap 
is reached, destroys the least-recently used object in order to make room for a new 
one. This puts an upper limit on the resources used by the server and eventually 
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gets rid of all unwanted objects. But the drawback is the same as with timeouts: 
just because an object has not been used for a while does not necessarily mean that 
it truly is garbage.

Neither timeouts nor evictors are true garbage collectors because they can 
collect objects that are not really garbage, but they do have the advantage that they 
reap objects even if the client is alive, but forgets to call destroy on some of these 
objects.

34.10.2 Garbage Collection For Ice Applications

Traditional garbage collection fails in the distributed case for a number of reasons:

• Garbage collectors require connectivity analysis, which is prohibitively 
expensive. Furthermore, for distributed object systems that permit proxies to 
be externalized as strings, such as Ice, connectivity analysis is impossible 
because proxies can exist and travel by means that are invisible to the run 
time. For example, proxies can exist as records in a database and can travel as 
strings inside e-mail messages.

• Garbage collectors consider all objects in existence but, for the vast majority 
of applications, only a small subset of all objects actually ever needs 
collecting. The work spent in examining objects that can never become 
garbage is wasted.

• Garbage collectors examine connectivity at the granularity of a single object. 
However, for many distributed applications, objects are used in groups and, if 
one object in a group is garbage, all objects in the group are garbage. It would 
be useful to take advantage of this knowledge, but a garbage collector cannot 
do this because that knowledge is specific to each application.

In the remainder of this section, we examine a simple mechanism that allows you 
to get rid of garbage objects cheaply and effectively. The approach has the 
following characteristics:

• Only those objects that potentially can become garbage are considered for 
collection.

• Granularity of collection is under control of the application: you can have 
objects collected as groups of arbitrary size, down to a single object.

• Objects are guaranteed not to be collected prematurely.

• Objects are guaranteed to be collected if the client crashes or suffers loss of 
connectivity.
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• The mechanism is simple to implement and has low run-time overhead.

It is equally important to be aware of the limitations of the approach:

• The approach collects objects if a client crashes, but offers no protection 
against clients that are still running, but have neglected to destroy objects that 
they no longer need. In other words, the server is protected against client-side 
hardware failure and catastrophic client crashes, but it is not protected against 
faulty programming logic of clients.

• The approach is not transparent at the interface level: it requires changes 
(albeit minor ones) to the interface definitions for an application.

• The approach requires the client to periodically call the server, thus 
consuming network resources even if the client is otherwise idle.

Despite the limitations, this approach to garbage collection is applicable to a wide 
variety of applications and meets the most pragmatic need: how to clean up in case 
something goes badly wrong (rather than how to clean up in case the client misbe-
haves).

An Extra Level of Indirection

Object factories are typically singleton objects that create objects on behalf of 
various clients. It is important for our garbage collector to know which client 
created what objects, so the collector can reap the objects created by a specific 
client if that client crashes. We can easily deal with this requirement by adding the 
proverbial level of indirection: instead of making a factory a singleton object, we 
provide a singleton object that creates factories. Clients first create a factory and 
then create all other objects they need using that factory:

interface Item { /* ...*/ };

interface Cart
{
    Item* create(/* ... */);
    idempotent string getName();
    void destroy();
    idempotent void refresh();
};

interface CartFactory // Singleton
{
    Cart* create(string name);
};
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Clients obtain a proxy to the CartFactory singleton and call create to create a 
Cart object. In turn, the Cart object provides a create operation to place new 
objects of type Item into the cart. Note that the shopping cart name allows a client 
to distinguish different carts—the name parameter is not used to identify clients or 
to provide a unique identifier for carts. The getName operation on the Cart object 
returns the name that was used by the client to create it.

Each Cart object remembers which items it created. Because each client uses 
its own shopping cart, the server knows which objects were created by what client. 
In normal operation, a client first creates a shopping cart, and then uses the cart to 
create the items in the cart. Once the client has finished its job, it calls destroy on 
the cart. The implementation of destroy destroys both the cart and its items to 
reclaim resources.

To deal with crashed clients, the server needs to know when a cart is no longer 
in use. This is the purpose of the refresh operation: clients are expected to peri-
odically call refresh on their cart objects. For example, the server might decide 
that, if a client’s cart has not been refreshed for more than ten minutes, the cart is 
no longer in use and reclaim it. As long as the client calls refresh at least once 
every ten minutes, the cart (and the items it contains) remain alive; if more than 
ten minutes elapse, the server simply calls destroy on the cart. Of course, there is 
no need to hard-wire the timeout value—you can make it part of the application’s 
configuration. However, to keep the implementation simple, it is useful to have the 
same timeout value for all carts, or to at least restrict the timeouts for different 
carts to a small number of fixed choices—this considerably simplifies the imple-
mentation in both client and server.

Server-Side Implementation

The implementation of the interfaces on the server side almost suggests itself:

• Whenever refresh is called on a cart, the cart records the time at which the 
call was made.

• The server runs a reaper thread that wakes up once every ten minutes. The 
reaper thread examines the timestamp of all carts and, if it finds a cart last 
time-stamped more than ten minutes ago, it calls destroy on that cart.

• Each cart remembers the items it contains and destroys them as part of its 
destroy implementation.

Here then is the reaper thread in outline. (Note that we have simplified the code to 
show the essentials. For example, we have omitted the code that is needed to make 
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the reaper thread terminate cleanly when the server shuts down. See the code in 
demo/Ice/session for more detail.)

class ReapThread : public IceUtil::Thread,
                   public IceUtil::Monitor<IceUtil::Mutex>
{
public:
    ReapThread();
    virtual void run();
    void add(const CartPrx&, const CartIPtr&);

private:
    const IceUtil::Time _timeout;
    struct CartProxyPair
    {
        CartProxyPair(const CartPrx& p, const CartIPtr& c) :
              proxy(p), cart(c) { }
        const CartPrx proxy;
        const CartIPtr cart;
    };
    std::list<CartProxyPair> _carts;
};

typedef IceUtil::Handle<ReapThread> ReapThreadPtr;

Note that the reaper thread maintains a list of pairs. Each pair stores the proxy of a 
cart and its servant pointer. We need both the proxy and the pointer because we 
need to invoke methods on both the Slice interface and the implementation inter-
face of the cart. Whenever a client creates a new cart, the server calls the add 
method on the reaper thread, passing it the new cart:

void ReapThread::add(const CartPrx& proxy,
                     const CartIPtr& cart)
{
    Lock sync(*this);
    _carts.push_back(CartProxyPair(proxy, cart));
}

The run method of the reaper thread is a loop that sleeps for ten minutes and calls 
destroy on any session that has not been refreshed within the preceding ten 
minutes:

void ReapThread::run()
{
    Lock sync(*this);
    while (true) {
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        timedWait(_timeout);
        list<CartProxyPair>::iterator p = _carts.begin();
        while (p != _carts.end()) {
            try {
                //
                // Cart destruction may take some time.
                // Therefore the current time is computed
                // for each iteration.
                //
                if ((IceUtil::Time::now() - p->cart->timestamp())
                       > _timeout) {
                    p->proxy->destroy();
                    p = _carts.erase(p);
                } else {
                    ++p;
                }
            } catch (const Ice::ObjectNotExistException&) {
                p = _carts.erase(p);
            }
        }
    }
}

Note that the reaper thread catches ObjectNotExistException from the 
call to destroy, and removes the cart from its list in that case. This is necessary 
because it is possible for a client to call destroy explicitly, so a cart may be 
destroyed already by the time the reaper thread examines it.

The CartFactory implementation is trivial:

class CartFactoryI : CartFactory
{
public:
    CartFactoryI(const ReapThreadPtr&);
    virtual CartPrx create(const std::string&,
                           const Ice::Current&);

private:
    ReapThreadPtr _reaper;
};

The constructor is passed the instantiated reaper thread and remembers that thread 
in the _reaper member.

The create method adds each new cart to the reaper thread’s list of carts:



1206 Object Life Cycle

CartPrx CartFactoryI::create(const string& name,
                             const Ice::Current& c)
{
    CartIPtr cart = new CartI(name);
    CartPrx proxy = CartPrx::uncheckedCast(
                        c.adapter->addWithUUID(cart));
                        _reaper->add(proxy, cart);
    return proxy;
}

Note that each cart internally has a unique ID that is unrelated to its name—the 
name exists purely as a convenience for the application.

The server’s main function starts the reaper thread and instantiates the cart 
factory:

ReapThreadPtr reaper = new ReapThread();
CartFactory factory = new CartFactoryI(reaper);
reaper->start();
adapter->add(factory,
             Ice::stringToIdentity(CartFactory));
adapter->activate();

This completes the implementation on the server side. Note that there is very little 
code here, and that much of this code is essentially the same for each application. 
For example, we could easily turn the ReapThread class into a template class to 
permit the same code to be used for something other than shopping carts.

Client-Side Implementation

On the client side, the application code does what it would do with an ordinary 
factory, except for the extra level of indirection: the client first creates a cart, and 
then uses the cart as its factory.

As long as the client-side calls refresh at least once every ten minutes, the 
cart remains alive and, with it, all items the client created in that cart. Once the 
client misses a refresh call, the reaper thread in the server cleans up the cart 
and its items.

To keep the cart alive, you could sprinkle your application code with calls to 
refresh in the hope that at least one of these calls is made at least every ten 
minutes. However, that is not only error-prone, but also fails if the client blocks 
for some time. A much better approach is to run a thread in the client that auto-
matically calls refresh. That way, the calls are guaranteed to happen even if the 
client’s main thread blocks for some time, and the application code does not get 
polluted with refresh calls. Again, we show a simplified version of the refresh 
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thread here that does not deal with issues such as clean shutdown and a few other 
irrelevant details:

class CartRefreshThread : public IceUtil::Thread,
                          public IceUtil::Monitor<IceUtil::Mutex>
{
public:
    CartRefreshThread(const IceUtil::Time& timeout,
                      const CartPrx& cart) :
        _cart(cart),
        _timeout(timeout) {}

    virtual void run() {
        Lock sync(*this);
        while(true) {
            timedWait(_timeout);
            try {
                _cart->refresh();
            } catch(const Ice::Exception& ex) {
                return;
            }
        }
    }

private:
    const CartPrx _cart;
    const IceUtil::Time _timeout;
};

typedef IceUtil::Handle<CartRefreshThread> CartRefreshThreadPtr;

The client’s main function instantiates the reaper thread after creating a cart. We 
assume that the client has a proxy to the cart factory in the factory variable:

CartPrx cart = factory->create(name);
CartRefreshThreadPtr refresh
    = new CartRefreshThread(IceUtil::Time::seconds(480), cart);
refresh->start();

Note that, to be on the safe side and also allow for some network delays, the client 
calls refresh every eight minutes; this is to ensure that at least one call to 
refresh arrives at the server within each ten-minute interval.
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34.11 Summary

It is important to be clear about the meaning of object existence which, as far as 
the Ice run time is concerned, is defined only within the context of a particular 
operation invocation. It is also important to be clear about the distinction between 
proxies, servants, and Ice objects, which have independent life cycles.

While object creation is usually simple, object destruction requires a great 
deal of attention, particularly for threaded servers: the interactions among life 
cycle operations and ordinary operations can be complex and require careful 
consideration with respect to locks.

Frequently, implementing object destruction with reaping instead of callbacks 
leads to simpler and more maintainable code and eliminates hidden dependencies 
that can cause deadlock.

Ultimately, the semantics of object existence are supplied by the application 
code. Depending on how an application is structured, object identities may need to 
be globally unique; alternatively, if the life times of proxies that use the same 
identity for different objects cannot overlap, object identities can be safely re-
used. It is important to be aware of the respective semantics in order to create 
correct applications.

If interactions between clients and server are stateful, the server must take care 
to reclaim state to protect itself against resource exhaustion if clients fail to 
destroy that state.
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Chapter 35
Dynamic Ice

35.1 Chapter Overview

In this chapter we present a collection of Ice interfaces for a dynamic invocation 
and dispatch model. Section 35.2 discusses the streaming interface for serializing 
Slice types, an essential tool when implementing dynamic invocation and 
dispatch. The synchronous language mappings for the dynamic model are 
described in Section 35.3, while Section 35.4 covers the asynchronous language 
mappings.

35.2 Streaming Interface

Ice provides a convenient interface for streaming Slice types to and from a 
sequence of bytes. You can use this interface in many situations, such as when 
serializing types for persistent storage, and when using Ice’s dynamic invocation 
and dispatch interfaces (see Section 35.3).

The streaming interface is not defined in Slice, but rather is a collection of 
native classes provided by each language mapping1. A default implementation of 

1. The streaming interface is currently supported in C++, Java, and .NET.
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the interface uses the Ice encoding as specified in Section 37.2, but other imple-
mentations are possible.

There are two primary abstract classes in the streaming interface: Input-
Stream and OutputStream. As you might guess, InputStream is used to 
extract Slice types from a sequence of bytes, while OutputStream is used to 
convert Slice types into a sequence of bytes. The classes provide the functions 
necessary to manipulate all of the core Slice types:

• Primitives (bool, int, string, etc.)

• Sequences of primitives

• Proxies

• Objects

The classes also provide functions that handle various details of the Ice encoding. 
Using these functions, you can manually insert and extract constructed types, such 
as dictionaries and structures, but doing so is tedious and error-prone. To make 
insertion and extraction of constructed types easier, the Slice compilers can 
optionally generate helper functions that manage the low-level details for you.

The remainder of this section describes the streaming interface for each 
supported language mapping. To properly use the streaming interface, you should 
be familiar with the Ice encoding (see Section 37.2). An example that demon-
strates the use of the streaming interface is located in demo/Ice/invoke in the 
Ice distribution.

35.2.1 C++ Stream Interface

We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

namespace Ice {
    InputStreamPtr createInputStream(
        const Ice::CommunicatorPtr& communicator,
        const std::vector<Ice::Byte>& data);
}

The InputStream class is shown below.
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namespace Ice {
    class InputStream : ... {
    public:
        virtual CommunicatorPtr communicator() const = 0;

        virtual void sliceObjects(bool slice) = 0;

        virtual void read(bool& v) = 0;
        virtual void read(Byte& v) = 0;
        virtual void read(Short& v) = 0;
        virtual void read(Int& v) = 0;
        virtual void read(Long& v) = 0;
        virtual void read(Float& v) = 0;
        virtual void read(Double& v) = 0;
        virtual void read(std::string& s,
                          bool convert = true) = 0;
        virtual void read(std::wstring& s) = 0;

        template<typename T> inline void read(T& v) {
            StreamReader< StreamTrait<T>::type>::read(this, v);
        }

        virtual void read(std::vector<std::string>& v,
                          bool convert) = 0;

        virtual void read(
                        std::pair<const bool*, const bool*>&,
                        IceUtil::ScopedArray<bool>&) = 0;

        virtual void read(
                        std::pair<const Byte*, const Byte*>&) = 0;

        virtual void read(std::pair<const Short*, const Short*>&,
                        IceUtil::ScopedArray<Short>&) = 0;

        virtual void read(
                        std::pair<const Int*, const Int*>&,
                        IceUtil::ScopedArray<Int>&) = 0;

        virtual void read(
                        std::pair<const Long*, const Long*>&,
                        IceUtil::ScopedArray<Long>&) = 0;

        virtual void read(
                        std::pair<const Float*, const Float*>&,
                        IceUtil::ScopedArray<Float>&) = 0;
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        virtual void read(
                        std::pair<const Double*, const Double*>&,
                        IceUtil::ScopedArray<Double>&) = 0;

        virtual Int readSize() = 0;
        virtual Int readAndCheckSeqSize(int minWireSize) = 0;

        virtual ObjectPrx readProxy() = 0;

        template<typename T> inline void
        read(IceInternal::ProxyHandle<T>& v) {
            // ...
        }

        virtual void readObject(
                        const ReadObjectCallbackPtr& cb) = 0;

        template<typename T> inline void
        read(IceInternal::Handle<T>& v) {
            // ...
        }

        virtual std::string readTypeId() = 0;

        virtual void throwException() = 0;

        virtual void startSlice() = 0;
        virtual void endSlice() = 0;
        virtual void skipSlice() = 0;

        virtual void startEncapsulation() = 0;
        virtual void endEncapsulation() = 0;
        virtual void skipEncapsulation() = 0;

        virtual void readPendingObjects() = 0;

        virtual void rewind() = 0;
    };
    typedef ... InputStreamPtr;
}

Extracting Built-In Types

Member functions are provided to extract any of the built-in types. For example, 
you can extract a double value followed by a string from a stream as follows:
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vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
double d;
in->read(d);
string s;
in->read(s);

Extracting Sequences of Built-In Type

For other types, the following template member function performs the extraction:

template<typename T> inline void
read(T& v) {
    StreamReader<StreamTrait<T>::type>::read(this, v);
}

For example, you can extract a sequence of integers as follows:

vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
// ...
IntSeq s; // Slice: sequence<int> IntSeq;
in->read(s);

The Ice run time provides an implementation of the StreamReader template 
whose read method reads a sequence of any of the built-in types. Note that, 
when reading a sequence, this reads both the sequence size that precedes the 
sequence elements as well as the sequence elements that follow the size.

If you are using a custom container for your sequence of built-in type, you 
must provide a specialization of the StreamTrait template in order to extract 
your sequence. For example, the following definition allows you to use the 
QVector container from the Qt library:

//
// StreamTrait specialization for QVector
//
template<typename T>
struct StreamTrait< QVector<T> >
{
    static const StreamTraitType type = StreamTraitTypeSequence;
    static const int minWireSize = 1;
};

Extracting Sequences of Built-In Type Using Zero-Copy

Note that InputStream provides a number of overloads that accept a pair of 
pointers. For example, you can extract a sequence of bytes as follows:



1214 Dynamic Ice

vector<Ice::Byte> data = ...;
in = Ice::createInputStream(communicator, data);
std::pair<const Ice::Byte*, const Ice::Byte*> p;
in->read(p);

The same extraction technique works for the other built-in integral and floating-
point types, such int and double.

If the extraction is for a byte sequence, the returned pointers always point at 
memory in the stream’s internal marshaling buffer.

For the other built-in types, the pointers refer to the internal marshaling buffer 
only if the Ice encoding is compatible with the machine and compiler representa-
tion of the type, otherwise the pointers refer to a temporary array allocated to hold 
the unmarshaled data. The overloads for zero-copy extraction accept an additional 
parameter of type IceUtil::ScopedArray (see Appendix F) that holds this 
temporary array when necessary.

Here is an example to illustrate how to extract a sequence of integers, regard-
less of whether the machine’s encoding of integers matches the on-the-wire repre-
sentation or not:

#include <IceUtil/ScopedArray.h>
...
in = Ice::createInputStream(communicator, data);
std::pair<const Ice::Int*, const Ice::Int*> p;
IceUtil::ScopedArray<Ice::Int> a;
in->read(p, a);

for(const Ice::Int* i = p.first; i != p.second; ++i) {
    cout << *i << endl;
}

If the on-the-wire encoding matches that of the machine, and therefore zero-copy 
is possible, the returned pair of pointers points into the run time’s internal 
marshaling buffer. Otherwise, the run time allocates an array, unmarshals the data 
into the array, and sets the pair of pointers to point into that array. Use of the 
ScopedArray helper template ensures that the array is deallocated once you let 
the ScopedArray go out of scope, so there is no need to call delete[]. 
(ScopedArray is conceptually the same as the Ptr smart pointer types for 
classes. See Appendix F for details.)

Extracting Structures

Without the --stream option to slice2cpp, you must extract structures 
member by member according to the rules in Chapter 37. Otherwise, with 
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--stream, slice2cpp generates code that allows you to extract the structure 
directly. For example, here is how you can extract a Slice structure called 
MyStruct from a stream:

in = Ice::createInputStream(communicator, data);
MyStruct myStruct;
in->read(myStruct);

Extracting Dictionaries

Without the --stream option to slice2cpp, you can extract any dictionary 
whose key and value types are built-in types; for any other dictionary, you must 
extract it as a size followed by its entries according to the rules in Chapter 37. If 
you are using a custom container for your dictionary of built-in types, you must 
provide a specialization of the StreamTrait template in order to extract your 
dictionary. For example, the following definition allows you to use the QMap 
container from the Qt library:

//
// StreamTrait specialization for QMap
//
template<typename K, typename V>
struct StreamTrait< QMap<K, V> >
{
    static const StreamTraitType type = StreamTraitTypeDictionary;
    static const int minWireSize = 1;
};

With the --stream option, slice2cpp generates code that allows you to 
extract any dictionary directly, for example:

in = Ice::createInputStream(communicator, data);
MyDict myDict; // Slice: dictionary<string, SomeType> MyDict;
in->read(myDict);

Extracting Sequences of User-Defined Type

Without the --stream option to slice2cpp, you must extract sequences of 
user-defined type as a size followed by the element type according to the rules in 
Chapter 37. Otherwise, with --stream, slice2cpp generates code that 
allows you to extract a sequence directly, for example:

in = Ice::createInputStream(communicator, data);
MyEnumS myEnumS; // Slice: sequence<MyEnum> myEnumS;
in->read(myEnumS);
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Other Member Functions

The remaining member functions of InputStream have the following seman-
tics:

• void sliceObjects(bool slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 37.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception NoObject-
FactoryException is raised. The default behavior is to allow slicing.

• void read(std::string& v, bool convert = true)
void read(std::vector<std::string>& v,
          bool convert = true)

The optional boolean argument determines whether the strings unmarshaled 
by these methods are processed by the string converter, if one is installed. The 
default behavior is to convert the strings. See Section 32.24 for more informa-
tion on string converters.

• Ice::Int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function extracts a size and returns it as an integer.

• Ice::Int readAndCheckSeqSize(int minWireSize)

Like readSize, this function reads a size and returns it, but also verifies that 
there is enough data remaining in the unmarshaling buffer to successfully 
unmarshal the elements of the sequence. The minWireSize parameter indi-
cates the smallest possible on-the-wire representation of a single sequence 
element (see Chapter 37). If the unmarshaling buffer contains insufficient data 
to unmarshal the sequence, the function throws UnmarshalOutOfBound-
sException.

• Ice::ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx.

• template<typename T> inline void
read(IceInternal::ProxyHandle<T>& v) 

This template function behaves like readProxy but avoids the need to 
down-cast the return value. You can pass a proxy of any type as the 
parameter v.
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• void readObject(const Ice::ReadObjectCallbackPtr &)

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 37.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

namespace Ice {
    class ReadObjectCallback : ... {
    public:
        virtual void invoke(const Ice::ObjectPtr&) = 0;
    };
    typedef ... ReadObjectCallbackPtr;
}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

If you are not interested in receiving a callback when the object is extracted, it 
is easier to use the read(IceInternal::Handle<T>&) template func-
tion instead (see below).

• template<typename T> inline void
read(IceInternal::Handle<T>& v) 

This template function behaves like readObject but avoids the need to 
supply a callback. You can pass a smart pointer of any type as the 
parameter v. Note that, if you want to intercept object extraction, you must 
use readObject instead.

• std::string readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function returns the type id at the stream’s current posi-
tion.

• void throwException() 

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.
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• void startSlice() 
void endSlice() 
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 37.2.11 for more information.

• void startEncapsulation() 
void endEncapsulation()
void skipEncapsulation()

Start, end, and skip an encapsulation, respectively. See Section 37.2.2 for 
more information.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

• void rewind() 

Resets the position of the stream to the beginning.

OutputStream

An OutputStream is created using the following function:

namespace Ice {
    OutputStreamPtr createOutputStream(
        const Ice::CommunicatorPtr& communicator);
}

The OutputStream class is shown below.

namespace Ice {
    class OutputStream : ... {
    public:
        virtual Ice::CommunicatorPtr communicator() const = 0;

        virtual void write(bool v) = 0;
        virtual void write(Byte v) = 0;
        virtual void write(Short v) = 0;
        virtual void write(Int v) = 0;
        virtual void write(Long v) = 0;
        virtual void write(Float v) = 0;
        virtual void write(Double v) = 0;
        virtual void write(const std::string& v,
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                           bool convert = true) = 0;
        virtual void write(const char* v,
                           bool convert = true) = 0;
        virtual void write(const std::wstring& v) = 0;

        virtual void write(const bool* begin,
                           const bool* end) = 0;
        virtual void write(const Byte* begin,
                           const Byte* end) = 0;
        virtual void write(const Short* begin,
                           const Short* end) = 0;
        virtual void write(const Int* begin,
                           const Int* end) = 0;
        virtual void write(const Long* begin,
                           const Long* end) = 0;
        virtual void write(const Float* begin,
                           const Float* end) = 0;
        virtual void write(const Double* begin,
                           const Double* end) = 0;    

        virtual void write(const std::vector<std::string>& v,
                           bool convert) = 0;

        template<typename T> inline void
        write(const T& v) {
            StreamWriter<StreamTrait<T>::type>::write(this, v);
        }

        virtual void writeSize(Ice::Int sz) = 0;

        virtual void writeProxy(const Ice::ObjectPrx& v) = 0;

        template<typename T> inline void
        write(const IceInternal::ProxyHandle<T>& v) {
            // ...
        }

        virtual void writeObject(const Ice::ObjectPtr& v) = 0;

        template<typename T> inline void
        write(const IceInternal::Handle<T>& v) {
            // ...
        }

        virtual void writeTypeId(const std::string& id) = 0;
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        virtual void writeException(
                        const Ice::UserException& e) = 0;

        virtual void startSlice() = 0;
        virtual void endSlice() = 0;

        virtual void startEncapsulation() = 0;
        virtual void endEncapsulation() = 0;

        virtual void writePendingObjects() = 0;

        virtual void finished(std::vector<Ice::Byte>& v) = 0;

        virtual void reset(bool) = 0;
    };
}

Inserting Built-In Types

Member functions are provided to insert any of the built-in types. For example, 
you can insert a double value followed by a string into a stream as follows:

out = Ice::createOutputStream(communicator);
Ice::Double d = 3.14;
out->write(d);
string s = "Hello";
out->write(s);

Inserting Sequences of Built-In Type

For other types, the following template member function performs the insertion:

template<typename T> inline void
write(const T& v) {
    StreamWriter<StreamTrait<T>::type>::write(this, v);
}

For example, you can insert a sequence of integers as follows:

out = Ice::createOutputStream(communicator);
IntSeq s = ...;
out->write(s);

The Ice run time provides an implementation of the StreamWriter template 
whose write method writes a sequence of any of the built-in types. Note that, 
when writing a sequence, this writes both the sequence size that precedes the 
sequence elements and the sequence elements that follow the size.
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If you are using a custom container for your sequence of built-in type, you 
must provide a specialization of the StreamTrait template in order to insert 
your sequence. For example, the following definition allows you to use the 
QVector container from the Qt library:

//
// StreamTrait specialization for QVector
//
template<typename T>
struct StreamTrait< QVector<T> >
{
    static const StreamTraitType type = StreamTraitTypeSequence;
    static const int minWireSize = 1;
};

Inserting Sequences of Built-In Type Using Zero-Copy

Note that OutputStream provides a number of overloads that accept a pair of 
pointers. For example, you can insert a sequence of bytes as follows:

out = Ice::createOutputStream(communicator);
vector<Ice::Byte> data = ...;
out->write(&v[0], &v[v.size()]);

The same insertion technique works for the other built-in integral and floating-
point types, such int and double. Insertion in this way can avoid an additional 
data copy during marshaling if the internal representation of the data in memory is 
the same as the on-the-wire representation. (Note that the two pointers must point 
at a contiguous block of memory.)

Inserting Structures

Without the --stream option to slice2cpp, you must insert structures 
member by member according to the rules in Chapter 37. Otherwise, with 
--stream, slice2cpp generates code that allows you to insert the structure 
directly. For example, here is how you can insert a Slice structure called MyStruct 
into a stream:

out = Ice::createOutputStream(communicator);
MyStruct myStruct;
// Initialize myStruct...
out->write(myStruct);
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Inserting Dictionaries

Without the --stream option to slice2cpp, you can insert any dictionary 
whose key and value types are built-in types; for any other dictionary, you must 
insert it as a size followed by its entries according to the rules in Chapter 37. If 
you are using a custom container for your dictionary of built-in types, you must 
provide a specialization of the StreamTrait template in order to insert your 
dictionary. For example, the following definition allows you to use the QMap 
container from the Qt library:

//
// StreamTrait specialization for QMap
//
template<typename K, typename V>
struct StreamTrait< QMap<K, V> >
{
    static const StreamTraitType type = StreamTraitTypeDictionary;
    static const int minWireSize = 1;
};

With the --stream option, slice2cpp generates code that allows you to 
insert any dictionary directly, for example:

out = Ice::createOutputStream(communicator);
MyDict myDict; // Slice: dictionary<int, SomeType> MyDict;
// Initialize myDict...
out->write(myDict);

Inserting Sequences of User-Defined Type

Without the --stream option to slice2cpp, you must insert sequences of 
user-defined type as a size followed by the element type according to the rules in 
Chapter 37. Otherwise, with --stream, slice2cpp generates code that 
allows you to insert a sequence directly, for example:

out = Ice::createOutputStream(communicator);
MyEnumS myEnumS; // Slice: sequence<MyEnum> myEnumS;
// Initialize myEnumS...
out->write(myEnumS);

Other Member Functions

The remaining member functions of OutputStream have the following seman-
tics:

• void write(const std::string& v,
           bool convert = true)
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void write(const char* v, bool convert = true)
void write(const std::vector<std::string>&,
           bool convert = true)

The optional boolean argument determines whether the strings marshaled by 
these methods are processed by the string converter, if one is installed. The 
default behavior is to convert the strings. See Section 32.24 for more informa-
tion on string converters.

• void writeSize(Ice::Int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function converts the given non-negative integer into the 
proper encoded representation.

• void writeProxy(const Ice::ObjectPtr & v) 

Inserts a proxy.

• template<typename T> inline void
write(const IceInternal::ProxyHandle<T>& v)

This template function behaves like writeProxy. You can pass a proxy of 
any type as the parameter v.

• void writeObject(const Ice::ObjectPtr & v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 37.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and the stream does not 
insert its state it until writePendingObjects is invoked on the stream.

• template<typename T> inline void
write(const IceInternal::Handle<T>& v)

This template function behaves like writeObject. You can pass a smart 
pointer of any type as the parameter v.

• void writeTypeId(const std::string & id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function adds the given type id to the table and encodes 
the type id. writeTypeId may only be invoked in the context of a call to 
writePendingObjects (see below).

• void writeException(const Ice::UserException & ex)

Inserts a user exception. You can also use the template member function 
write(const T&) to insert a user exception.
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• void startSlice() 
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 37.2.11).

• void startEncapsulation() 
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 37.2.2).

• void writePendingObjects()

Encodes the state of Ice objects whose insertion was delayed during 
writeObject. This member function must only be called once.

• void finished(std::vector< Ice::Byte > & data)

Indicates that marshaling is complete. The given byte sequence is filled with 
the encoded data. This member function must only be called once.

• void reset(bool clearBuffer) 

Resets the writing position of the stream to the beginning. If clearBuffer 
is true, the stream releases the memory it has allocated to hold the encoded 
data.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 28) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 37.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

namespace Ice {
    class ObjectReader : public Ice::Object {
    public:
        virtual void read(const InputStreamPtr&, bool) = 0;
        // ...
    };
    typedef ... ObjectReaderPtr;

    class ObjectWriter : public Ice::Object {
    public:
        virtual void write(const OutputStreamPtr&) const = 0;
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        // ...
    };
    typedef ... ObjectWriterPtr;
}

A foreign Ice object is inserted into a stream using the following technique:

1. A C++ “wrapper” class is derived from ObjectWriter. This class wraps 
the foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice::Object.) Eventu-
ally, the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 37.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A C++ “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 6.14.5).

3. A C++ callback class is derived from ReadObjectCallback. The imple-
mentation of invoke expects its argument to be either nil or an instance of 
the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 37.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.
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Intercepting User Exception Insertion

Similar to the discussion of Ice objects in the previous section, a Dynamic Ice 
application may represent user exceptions in a native format that is not directly 
compatible with the Ice API. If the application needs to raise such a user exception 
to the Ice run time, the exception must be wrapped in a subclass of Ice::User-
Exception. The Dynamic Ice API provides a class to simplify this process:

namespace Ice {
    class UserExceptionWriter : public UserException {
    public:
        UserExceptionWriter(const CommunicatorPtr&);

        virtual void write(const OutputStreamPtr&) const = 0;
        virtual bool usesClasses() const = 0;

        virtual std::string ice_name() const = 0;
        virtual Ice::Exception* ice_clone() const = 0;
        virtual void ice_throw() const = 0;

        // ...
    };
    typedef ... UserExceptionWriterPtr;
}

A subclass of UserExceptionWriter is responsible for supplying a commu-
nicator to the constructor, and for implementing the following methods:

• void write(const OutputStreamPtr&) const

This method is invoked when the Ice run time is ready to marshal the excep-
tion. The subclass must marshal the exception using the encoding rules speci-
fied in Section 37.2.10.

• bool usesClasses() const

Return true if the exception, or any base exception, contains a data member for 
an object by value.

• std::string ice_name() const

Return the Slice name of the exception.

• Ice::Exception* ice_clone() const

Return a copy of the exception.

• void ice_throw() const

Raise the exception by calling throw *this.
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35.2.2 Java Stream Interface

We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.

InputStream

An InputStream is created using the following function:

package Ice;

public class Util {
    public static InputStream
    createInputStream(Communicator communicator, byte[] data);
}

The InputStream interface is shown below.

package Ice;

public interface InputStream {
    Communicator communicator();

    void sliceObjects(boolean slice);

    boolean readBool();
    boolean[] readBoolSeq();

    byte readByte();
    byte[] readByteSeq();

    short readShort();
    short[] readShortSeq();

    int readInt();
    int[] readIntSeq();

    long readLong();
    long[] readLongSeq();

    float readFloat();
    float[] readFloatSeq();

    double readDouble();
    double[] readDoubleSeq();

    String readString();
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    String[] readStringSeq();

    int readSize();
    int readAndCheckSeqSize(int minSizeWireSize);

    ObjectPrx readProxy();

    void readObject(ReadObjectCallback cb);

    String readTypeId();

    void throwException() throws UserException;

    void startSlice();
    void endSlice();
    void skipSlice();

    void startEncapsulation();
    void endEncapsulation();
    void skipEncapsulation();

    void readPendingObjects();

    java.io.Serializable readSerializable();

    void rewind()_;

    void destroy();
}

Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void sliceObjects(boolean slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 37.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception NoObject-
FactoryException is raised. The default behavior is to allow slicing.

• int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function extracts a size and returns it as an integer.
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• int readAndCheckSeqSize(int minWireSize) 

Like readSize, this function reads a size and returns it, but also verifies that 
there is enough data remaining in the unmarshaling buffer to successfully 
unmarshal the elements of the sequence. The minWireSize parameter indi-
cates the smallest possible on-the-wire representation of a single sequence 
element (see Chapter 37). If the unmarshaling buffer contains insufficient data 
to unmarshal the sequence, the function throws UnmarshalOutOfBound-
sException.

• Ice.ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 1224).

• void readObject(ReadObjectCallback cb) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 37.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

package Ice;

public interface ReadObjectCallback {
    void invoke(Ice.Object obj);
}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 1234).

• String readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function returns the type id at the stream’s current posi-
tion.

• void throwException() throws UserException

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.
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• void startSlice() 
void endSlice() 
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 37.2.11 for more information.

• void startEncapsulation() 
void endEncapsulation()
void skipEncapsulation()

Start, end, and skip an encapsulation, respectively. See Section 37.2.2 for 
more information.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

• java.io.Serializable readSerializable()

Reads a serializable Java object from the stream (see Section 10.15).

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:

byte[] data = ...
Ice.InputStream in =
    Ice.Util.createInputStream(communicator, data);
try {
    boolean b = in.readBool();
    String[] seq = in.readStringSeq();
} finally {
    in.destroy();
}

OutputStream

An OutputStream is created using the following function:
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package Ice;

public class Util {
    public static OutputStream createOutputStream(
        Communicator communicator);
}

The OutputStream class is shown below.

package Ice;

public interface OutputStream {
    Communicator communicator();

    void writeBool(boolean v);
    void writeBoolSeq(boolean[] v);

    void writeByte(byte v);
    void writeByteSeq(byte[] v);

    void writeShort(short v);
    void writeShortSeq(short[] v);

    void writeInt(int v);
    void writeIntSeq(int[] v);

    void writeLong(long v);
    void writeLongSeq(long[] v);

    void writeFloat(float v);
    void writeFloatSeq(float[] v);

    void writeDouble(double v);
    void writeDoubleSeq(double[] v);

    void writeString(String v);
    void writeStringSeq(String[] v);

    void writeSize(int sz);

    void writeProxy(ObjectPrx v);

    void writeObject(Ice.Object v);

    void writeTypeId(String id);
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    void writeException(UserException ex);

    void startSlice();
    void endSlice();

    void startEncapsulation();
    void endEncapsulation();

    void writePendingObjects();

    byte[] finished();

    void reset(boolean clearBuffer);

    void writeSerializable(java.io.Serializable o);

    void destroy();
}

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void writeSize(int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function converts the given non-negative integer into the 
proper encoded representation.

• void writeProxy(Ice.ObjectPrx v) 

Inserts a proxy.

• void writeObject(Ice.Object v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 37.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.

• void writeTypeId(String id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function adds the given type id to the table and encodes 
the type id. writeTypeId may only be invoked in the context of a call to 
writePendingObjects (see below).
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• void writeException(UserException ex) 

Inserts a user exception.

• void startSlice() 
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 37.2.11).

• void startEncapsulation() 
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 37.2.2).

• void writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during 
writeObject. This member function must only be called once.

• byte[] finished() 

Indicates that marshaling is complete and returns the encoded byte sequence. 
This member function must only be called once.

• void reset(boolean clearBuffer) 

Resets the writing position of the stream to the beginning. The boolean argu-
ment clearBuffer determines whether the stream releases the internal 
buffer it allocated to hold the encoded data. If clearBuffer is true, the 
stream releases the buffer in order to make it eligible for garbage collection. If 
clearBuffer is false, the stream retains the buffer to avoid generating 
unnecessary garbage.

• void writeSerializable(java.io.Serializable v)

Writes a serializable Java object to the stream (see Section 10.15).

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

final String[] seq = { "Ice", "rocks!" };
Ice.OutputStream out = Ice.Util.createOutputStream(communicator);
try {
    out.writeBool(true);
    out.writeStringSeq(seq);
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    byte[] data = out.finished();
} finally {
    out.destroy();
}

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 10.18.1) 
optionally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:

module M {
    sequence<...> Seq;
    dictionary<...> Dict;
    struct S {
        ...
    };
    enum E { ... };
    class C {
        ...
    };
};

The Slice compiler generates the corresponding helper functions shown below:

package M;

public class SeqHelper {
    public static T[] read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, T[] v);
}

public class DictHelper {
    public static java.util.Map read(Ice.InputStream in);
    public static void write(Ice.OutputStream out,
                             java.util.Map v);
}

public class SHelper {
    public static S read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, S v);
}
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public class EHelper {
    public static E read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, E v);
}

public class CHelper {
    public static void read(Ice.InputStream in, CHolder h);
    public static void write(Ice.OutputStream out, C v);
}

public class CPrxHelper {
    public static CPrx read(Ice.InputStream in);
    public static void write(Ice.OutputStream out, CPrx v);
}

In addition, the Slice compiler generates the following member functions for 
struct and enum types:

public class S ... {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
};
public class E... {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
}

Be aware that a call to CHelper.read does not result in the immediate extrac-
tion of an Ice object. The value member of the given CHolder object is 
updated when readPendingObjects is invoked on the input stream.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 28) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 37.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:
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package Ice;

public abstract class ObjectReader extends ObjectImpl {
    public abstract void read(InputStream in, boolean rid);
    // ...
}

public abstract class ObjectWriter extends ObjectImpl {
    public abstract void write(OutputStream out);
    // ...
}

A foreign Ice object is inserted into a stream using the following technique:

1. A Java “wrapper” class is derived from ObjectWriter. This class wraps 
the foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice.Object.) Eventually, 
the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 37.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:

1. A Java “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 10.14.4).

3. A Java callback class implements the ReadObjectCallback interface. 
The implementation of invoke expects its argument to be either null or an 
instance of the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 37.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.
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6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

Intercepting User Exception Insertion

Similar to the discussion of Ice objects in the previous section, a Dynamic Ice 
application may represent user exceptions in a native format that is not directly 
compatible with the Ice API. If the application needs to raise such a user exception 
to the Ice run time, the exception must be wrapped in a subclass of Ice::User-
Exception. The Dynamic Ice API provides a class to simplify this process:

package Ice;

public abstract class UserExceptionWriter extends UserException {

    public UserExceptionWriter(Communicator communicator);

    public abstract void write(Ice.OutputStream os);
    public abstract boolean usesClasses();

    // ...
}

A subclass of UserExceptionWriter is responsible for supplying a commu-
nicator to the constructor, and for implementing the following methods:

• void write(OutputStream os)

This method is invoked when the Ice run time is ready to marshal the excep-
tion. The subclass must marshal the exception using the encoding rules speci-
fied in Section 37.2.10.

• boolean usesClasses()

Return true if the exception, or any base exception, contains a data member for 
an object by value.

35.2.3 C# Stream Interface

We discuss the stream classes first, followed by the helper functions, and finish 
with an advanced use case of the streaming interface.
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InputStream

An InputStream is created using the following function:

namespace Ice
{
    public sealed class Util
    {
        public static InputStream createInputStream(
                                    Communicator communicator,
                                    byte[] bytes);
    }
}

The InputStream interface is shown below.

namespace Ice
{
    public interface InputStream
    {
        Communicator communicator();

        void sliceObjects(bool slice);

        bool readBool();
        bool[] readBoolSeq();

        byte readByte();
        byte[] readByteSeq();

        short readShort();
        short[] readShortSeq();

        int readInt();
        int[] readIntSeq();

        long readLong();
        long[] readLongSeq();

        float readFloat();
        float[] readFloatSeq();

        double readDouble();
        double[] readDoubleSeq();

        string readString();
        string[] readStringSeq();
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        int readSize();
        int readAndCheckSeqSize(int minSize);

        ObjectPrx readProxy();

        void readObject(ReadObjectCallback cb);

        string readTypeId();

        void throwException();

        void startSlice();
        void endSlice();
        void skipSlice();

        void startEncapsulation();
        void endEncapsulation();
        void skipEncapsulation();
        int getEncapsulationSize();

        void readPendingObjects();

        object readSerializable();

        void rewind();

        void destroy();
    }
}

Member functions are provided for extracting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void sliceObjects(boolean slice) 

Determines the behavior of the stream when extracting Ice objects. An Ice 
object is “sliced” when a factory cannot be found for a Slice type id (see 
Section 37.2.11 for more information), resulting in the creation of an object of 
a less-derived type. Slicing is typically disabled when the application expects 
all object factories to be present, in which case the exception NoObject-
FactoryException is raised. The default behavior is to allow slicing.
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• int readSize() 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function extracts a size and returns it as an integer.

• int readAndCheckSeqSize(int minWireSize) 

Like readSize, this function reads a size and returns it, but also verifies that 
there is enough data remaining in the unmarshaling buffer to successfully 
unmarshal the elements of the sequence. The minWireSize parameter indi-
cates the smallest possible on-the-wire representation of a single sequence 
element (see Chapter 37). If the unmarshaling buffer contains insufficient data 
to unmarshal the sequence, the function throws UnmarshalOutOfBound-
sException.

• Ice.ObjectPrx readProxy() 

This function returns an instance of the base proxy type, ObjectPrx. The 
Slice compiler optionally generates helper functions to extract proxies of user-
defined types (see page 1245).

• void readObject(ReadObjectCallback cb) 

The Ice encoding for class instances requires extraction to occur in stages (see 
Section 37.2.11). The readObject function accepts a callback object of 
type ReadObjectCallback, whose definition is shown below:

namespace Ice
{
    public interface ReadObjectCallback
    {
        void invoke(Ice.Object obj);
    }
}

When the object instance is available, the callback object's invoke member 
function is called. The application must call readPendingObjects to 
ensure that all instances are properly extracted.

Note that applications rarely need to invoke this member function directly; the 
helper functions generated by the Slice compiler are easier to use (see 
page 1245).

• string readTypeId() 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function returns the type id at the stream’s current posi-
tion.



35.2 Streaming Interface 1241

• void throwException()

This function extracts a user exception from the stream and throws it. If the 
stored exception is of an unknown type, the function attempts to extract and 
throw a less-derived exception. If that also fails, an UnmarshalOutOf-
BoundsException is thrown.

• void startSlice() 
void endSlice() 
void skipSlice()

Start, end, and skip a slice of member data, respectively. These functions are 
used when manually extracting the slices of an Ice object or user exception. 
See Section 37.2.11 for more information.

• void startEncapsulation() 
void endEncapsulation()
void skipEncapsulation()

Start, end, and skip an encapsulation, respectively. See Section 37.2.2 for 
more information.

• int getEncapsulationSize()

Returns the size of the current encapsulation in bytes.

• void readPendingObjects() 

An application must call this function after all other data has been extracted, 
but only if Ice objects were encoded. This function extracts the state of Ice 
objects and invokes their corresponding callback objects (see readObject).

• object readSerializable()

Reads a serializable .NET object from the stream (see Section 14.14).

• void rewind() 

Resets the position of the stream to the beginning.

• void destroy() 

Applications must call this function in order to reclaim resources.

Here is a simple example that demonstrates how to extract a boolean and a 
sequence of strings from a stream:

byte[] data = ...
Ice.InputStream inStream =
    Ice.Util.createInputStream(communicator, data);
try {
    bool b = inStream.readBool();
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    string[] seq = inStream.readStringSeq();
} finally {
    inStream.destroy();
}

OutputStream

An OutputStream is created using the following function:

namespace Ice
{
    public sealed class Util
    {
        public static OutputStream createOutputStream(
                                    Communicator communicator);
    }
}

The OutputStream class is shown below.

namespace Ice
{
    public interface OutputStream
    {
        Communicator communicator();

        void writeBool(bool v);
        void writeBoolSeq(bool[] v);

        void writeByte(byte v);
        void writeByteSeq(byte[] v);

        void writeShort(short v);
        void writeShortSeq(short[] v);

        void writeInt(int v);
        void writeIntSeq(int[] v);

        void writeLong(long v);
        void writeLongSeq(long[] v);

        void writeFloat(float v);
        void writeFloatSeq(float[] v);

        void writeDouble(double v);
        void writeDoubleSeq(double[] v);
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        void writeString(string v);
        void writeStringSeq(string[] v);

        void writeSize(int sz);

        void writeProxy(ObjectPrx v);

        void writeObject(Ice.Object v);

        void writeTypeId(string id);

        void writeException(UserException ex);

        void startSlice();
        void endSlice();

        void startEncapsulation();
        void endEncapsulation();

        void writePendingObjects();

        byte[] finished();

        void reset(bool clearBuffer);

        void writeSerializable(object v);

        void destroy();
    }
}

Member functions are provided for inserting all of the primitive types, as well as 
sequences of primitive types; these are self-explanatory. The remaining member 
functions have the following semantics:

• void writeSize(int sz) 

The Ice encoding has a compact representation to indicate size (see 
Section 37.2.1). This function converts the given non-negative integer into the 
proper encoded representation.

• void writeObject(Ice.Object v) 

Inserts an Ice object. The Ice encoding for class instances (see 
Section 37.2.11) may cause the insertion of this object to be delayed, in which 
case the stream retains a reference to the given object and does not insert its 
state it until writePendingObjects is invoked on the stream.
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• void writeProxy(Ice.ObjectPrx v) 

Inserts a proxy.

• void writeTypeId(string id) 

A table of Slice type ids is used to save space when encoding Ice objects (see 
Section 37.2.11). This function adds the given type id to the table and encodes 
the type id. writeTypeId may only be invoked in the context of a call to 
writePendingObjects (see below).

• void writeException(UserException ex) 

Inserts a user exception.

• void startSlice() 
void endSlice() 

Starts and ends a slice of object or exception member data (see 
Section 37.2.11).

• void startEncapsulation() 
void endEncapsulation() 

Starts and ends an encapsulation, respectively (see Section 37.2.2).

• void writePendingObjects() 

Encodes the state of Ice objects whose insertion was delayed during 
writeObject. This member function must only be called once.

• byte[] finished() 

Indicates that marshaling is complete and returns the encoded byte sequence. 
This member function must only be called once.

• void reset(boolean clearBuffer) 

Resets the writing position of the stream to the beginning. The boolean argu-
ment clearBuffer determines whether the stream releases the internal 
buffer it allocated to hold the encoded data. If clearBuffer is true, the 
stream releases the buffer in order to make it eligible for garbage collection. If 
clearBuffer is false, the stream retains the buffer to avoid generating 
unnecessary garbage.

• void writeSerializable(object v)

Writes a serializable .NET object to the stream (see Section 14.14).

• void destroy() 

Applications must call this function in order to reclaim resources.
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Here is a simple example that demonstrates how to insert a boolean and a 
sequence of strings into a stream:

string[] seq = { "Ice", "rocks!" };
Ice.OutputStream outStream
    = Ice.Util.createOutputStream(communicator);
try {
    outStream.writeBool(true);
    outStream.writeStringSeq(seq);
    byte[] data = outStream.finished();
} finally {
    outStream.destroy();
}

Helper Functions

The stream classes provide all of the low-level functions necessary for encoding 
and decoding Ice types. However, it would be tedious and error-prone to manually 
encode complex Ice types such as classes, structs, and dictionaries using these 
low-level functions. For this reason, the Slice compiler (see Section 14.17) option-
ally generates helper functions for streaming complex Ice types.

We will use the following Slice definitions to demonstrate the language 
mapping:

module M {
    sequence<...> Seq;
    dictionary<...> Dict;
    struct S {
        ...
    };
    enum E { ... };
    class C {
        ...
    };
};

The Slice compiler generates the corresponding helper functions shown below:

namespace M
{
    public sealed class SeqHelper
    {
        public static int[] read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, int[] _v);
    }
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    public sealed class DictHelper
    {
        public static Dictionary<...> read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out,
                                 Dictionary<...> _v);
    }

    public sealed class SHelper
    {
        public static S read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, S _v);
    }

    public sealed class EHelper
    {
        public static M.E read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, M.E _v);
    }

    public sealed class CHelper
    {
        public CHelper(Ice.InputStream _in);
        public void read();
        public static void write(Ice.OutputStream _out, C _v);
        public M.C value
        {
            get;
        }
        // ...
    }

    public sealed class CPrxHelper : Ice.ObjectPrxHelperBase, CPrx
    {
        public static CPrx read(Ice.InputStream _in);
        public static void write(Ice.OutputStream _out, CPrx _v);
    }
}

In addition, the Slice compiler generates the following member functions for 
struct types:

public struct S {
    ...
    public void ice_read(Ice.InputStream in);
    public void ice_write(Ice.OutputStream out);
}
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Be aware that a call to CHelper.read does not result in the immediate extrac-
tion of an Ice object. The value property of the given CHelper object is 
updated when readPendingObjects is invoked on the input stream.

Intercepting Object Insertion and Extraction

In some situations it may be necessary to intercept the insertion and extraction of 
Ice objects. For example, the Ice extension for PHP (see Chapter 28) is imple-
mented using Ice for C++ but represents Ice objects as native PHP objects. The 
PHP extension accomplishes this by manually encoding and decoding Ice objects 
as directed by Section 37.2. However, the extension obviously cannot pass a 
native PHP object to the C++ stream function writeObject. To bridge this gap 
between object systems, Ice supplies the classes ObjectReader and Object-
Writer:

namespace Ice
{
    public abstract class ObjectReader : ObjectImpl
    {
        public abstract void read(InputStream inStream, bool rid);
        // ...
    }

    public abstract class ObjectWriter : ObjectImpl
    {
        public abstract void write(OutputStream outStream);
        // ...
    }
}

A foreign Ice object is inserted into a stream using the following technique:

1. A C# “wrapper” class is derived from ObjectWriter. This class wraps the 
foreign object and implements the write member function.

2. An instance of the wrapper class is passed to writeObject. (This is 
possible because ObjectWriter derives from Ice.Object.) Eventually, 
the write member function is invoked on the wrapper instance.

3. The implementation of write encodes the object’s state as directed by 
Section 37.2.11.

It is the application’s responsibility to ensure that there is a one-to-one mapping 
between foreign Ice objects and wrapper objects. This is necessary in order to 
ensure the proper encoding of object graphs.

Extracting the state of a foreign Ice object is more complicated than insertion:
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1. A C# “wrapper” class is derived from ObjectReader. An instance of this 
class represents a foreign Ice object.

2. An object factory is installed that returns instances of the wrapper class. Note 
that a single object factory can be used for all Slice types if it is registered with 
an empty Slice type id (see Section 10.14.4).

3. A C# callback class implements the ReadObjectCallback interface. The 
implementation of invoke expects its argument to be either null or an 
instance of the wrapper class as returned by the object factory.

4. An instance of the callback class is passed to readObject.

5. When the stream is ready to extract the state of an object, it invokes read on 
the wrapper class. The implementation of read decodes the object’s state as 
directed by Section 37.2.11. The boolean argument to read indicates whether 
the function should invoke readTypeId on the stream; it is possible that the 
type id of the current slice has already been read, in which case this argument 
is false.

6. The callback object passed to readObject is invoked, passing the instance 
of the wrapper object. All other callback objects representing the same 
instance in the stream (in case of object graphs) are invoked with the same 
wrapper object.

Intercepting User Exception Insertion

Similar to the discussion of Ice objects in the previous section, a Dynamic Ice 
application may represent user exceptions in a native format that is not directly 
compatible with the Ice API. If the application needs to raise such a user exception 
to the Ice run time, the exception must be wrapped in a subclass of Ice::User-
Exception. The Dynamic Ice API provides a class to simplify this process:

namespace Ice
{
    public abstract class UserExceptionWriter : UserException
    {
        public UserExceptionWriter(Communicator communicator);

        public abstract void write(OutputStream os);
        public abstract bool usesClasses();

        // ...
    }
}
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A subclass of UserExceptionWriter is responsible for supplying a commu-
nicator to the constructor, and for implementing the following methods:

• void write(OutputStream os)

This method is invoked when the Ice run time is ready to marshal the excep-
tion. The subclass must marshal the exception using the encoding rules speci-
fied in Section 37.2.10.

• bool usesClasses()

Return true if the exception, or any base exception, contains a data member for 
an object by value.

35.3 Dynamic Invocation and Dispatch

Ice applications generally use the static invocation model, in which the application 
invokes a Slice operation by calling a member function on a generated proxy 
class. In the server, the static dispatch model behaves similarly: the request is 
dispatched to the servant as a statically-typed call to a member function. Under-
neath this statically-typed facade, the Ice run times in the client and server are 
exchanging sequences of bytes representing the encoded request arguments and 
results. These interactions are illustrated in Figure 35.1.

Figure 35.1. Interactions in a static invocation.

Client ServantProxy Server

1. add(x, y)

2. request(bytes)

3. add(x, y)

4. reply(bytes)

5. add(x, y)
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1. The client initiates a call to the Slice operation add by calling the member 
function add on a proxy.

2. The generated proxy class marshals the arguments into a sequence of bytes 
and transmits them to the server.

3. In the server, the generated servant class unmarshals the arguments and calls 
add on the subclass.

4. The servant marshals the results and returns them to the client.

5. Finally, the client’s proxy unmarshals the results and returns them to the caller.

The application is blissfully unaware of this low-level machinery, and in the 
majority of cases that is a distinct advantage. In some situations, however, an 
application can leverage this machinery to accomplish tasks that are not possible 
in a statically-typed environment. Ice provides the dynamic invocation and 
dispatch models for these situations, allowing applications to send and receive 
requests as encoded sequences of bytes instead of statically-typed arguments.

The dynamic invocation and dispatch models offer several unique advantages 
to Ice services that forward requests from senders to receivers, such as Glacier2 
(Chapter 42) and IceStorm (Chapter 44). For these services, the request arguments 
are an opaque byte sequence that can be forwarded without the need to unmarshal 
and remarshal the arguments. Not only is this significantly more efficient than a 
statically-typed implementation, it also allows intermediaries such as Glacier2 and 
IceStorm to be ignorant of the Slice types in use by senders and receivers.

Another use case for the dynamic invocation and dispatch models is scripting 
language integration. The Ice extensions for Python, PHP, and Ruby invoke Slice 
operations using the dynamic invocation model; the request arguments are 
encoded using the streaming interfaces from Section 35.2.

It may be difficult to resist the temptation of using a feature like dynamic invo-
cation or dispatch, but we recommend that you carefully consider the risks and 
complexities of such a decision. For example, an application that uses the 
streaming interface to manually encode and decode request arguments has a high 
risk of failure if the argument signature of an operation changes. In contrast, this 
risk is greatly reduced in the static invocation and dispatch models because errors 
in a strongly-typed language are found early, during compilation. Therefore, we 
caution you against using this capability except where its advantages significantly 
outweigh the risks.
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35.3.1 Dynamic Invocation using ice_invoke

Dynamic invocation is performed using the proxy member function 
ice_invoke, defined in the proxy base class ObjectPrx. If we were to define 
the function in Slice, it would look like this:

sequence<byte> ByteSeq;

bool ice_invoke(
    string operation,
    Ice::OperationMode mode,
    ByteSeq inParams,
    out ByteSeq outParams
);

The first argument is the name of the Slice operation2. The second argument is an 
enumerator from the Slice type Ice::OperationMode; the possible values are 
Normal and Idempotent. The third argument, inParams, represents the encoded 
in parameters of the operation.

A return value of true indicates a successful invocation, in which case the 
marshaled form of the operation’s results (if any) is provided in outParams. A 
return value of false signals the occurrence of a user exception whose 
marshaled form is provided in outParams. The caller must also be prepared to 
catch local exceptions, which are thrown directly.

Note that the Ice run time currently does not support the use of collocation 
optimization in dynamic invocations. Attempting to call ice_invoke on a 
proxy that is configured to use collocation optimization raises CollocationOpti-
mizationException. See Section 32.21 for more information on this optimiza-
tion and instructions for disabling it.

35.3.2 Dynamic Dispatch using Blobject

A server enables dynamic dispatch by creating a subclass of Blobject (the 
name is derived from blob, meaning a blob of bytes). The Slice equivalent of 
Blobject is shown below:

2. This is the Slice name of the operation, not the name as it might be mapped to any particular 
language. For example, the string "while" is the name of the Slice operation while, and not 
"_cpp_while" (C++) or "_while" (Java).
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sequence<byte> ByteSeq;

interface Blobject {
    bool ice_invoke(ByteSeq inParams, out ByteSeq outParams);
};

The inParams argument supplies the encoded in parameters. The contents of the 
outParams argument depends on the outcome of the invocation: if the operation 
succeeded, ice_invoke must return true and place the encoded results in 
outParams; if a user exception occurred, ice_invoke must return false, in 
which case outParams contains the encoded exception. The operation may also 
raise local exceptions such as OperationNotExistException.

The language mappings add a trailing argument of type Ice::Current to 
ice_invoke, and this provides the implementation with the name of the operation 
being dispatched. See Section 32.6 for more information on Ice::Current.

Because Blobject derives from Object, an instance is a regular Ice object 
just like instances of the classes generated for user-defined Slice interfaces. The 
primary difference is that all operation invocations on a Blobject instance are 
dispatched through the ice_invoke member function.

If a Blobject subclass intends to decode the in parameters (and not simply 
forward the request to another object), then the implementation obviously must 
know the signatures of all operations it supports. How a Blobject subclass 
determines its type information is an implementation detail that is beyond the 
scope of this book.

Note that a Blobject servant is also useful if you want to create a message 
forwarding service, such as Glacier2 (see Chapter 42). In this case, there is no 
need to decode any parameters; instead, the implementation simply forwards each 
request unchanged to a new destination. You can register a Blobject servant as 
a default servant (see Section 32.8) to easily achieve this.

35.3.3 C++ Mapping

This section describes the C++ mapping for the ice_invoke proxy function 
and the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:
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bool ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector< Ice::Byte >& inParams,
    std::vector< Ice::Byte >& outParams
);

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice::Context (see Section 32.12).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice::ObjectPrx proxy = ...
try {
    std::vector<Ice::Byte> inParams, outParams;
    if (proxy->ice_invoke("op", Ice::Normal, inParams,
                          outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (const Ice::LocalException& ex) {
    // Handle exception
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};

Now let’s write a client that dynamically invokes the add operation:



1254 Dynamic Ice

Ice::ObjectPrx proxy = ...
try {
    std::vector< Ice::Byte > inParams, outParams;

    Ice::OutputStreamPtr out =
        Ice::createOutputStream(communicator);
    out->writeInt(100); // x
    out->writeInt(-1);  // y
    out->finished(inParams);

    if (proxy->ice_invoke("add", Ice::Idempotent, inParams,
                          outParams)) {
        // Handle success
        Ice::InputStreamPtr in =
            Ice::createInputStream(communicator, outParams);
        int result = in->readInt();
        assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (const Ice::LocalException& ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly3:

    if (proxy->ice_invoke("add", Ice::Idempotent, inParams,
                          outParams)) {
        // Handle success
        // ...
    } else {
        // Handle user exception
        Ice::InputStreamPtr in =
            Ice::createInputStream(communicator, outParams);
        try {
            in->throwException();
        } catch (const Calc::Overflow& ex) {

3. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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            cout << "overflow while adding " << ex.x
                 << " and " << ex.y << endl;
        } catch (const Ice::UserException& ex) {
            // Handle unexpected user exception
        }
    }

As a defensive measure, the code traps Ice::UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice::Blobject. We continue using the Compute interface from page 1253 to 
demonstrate a Blobject implementation:

class ComputeI : public Ice::Blobject {
public:
    virtual bool ice_invoke(
        const std::vector<Ice::Byte>& inParams,
        std::vector<Ice::Byte>& outParams,
        const Ice::Current& current);
};

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 32 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• string ice_id()

Returns the Slice type id of the servant’s most-derived type.

• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".

• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.
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• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice::Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

bool ComputeI::ice_invoke(
    const std::vector<Ice::Byte>& inParams,
    std::vector<Ice::Byte>& outParams,
    const Ice::Current& current)
{
    if (current.operation == "add") {
        Ice::CommunicatorPtr communicator =
            current.adapter->getCommunicator();
        Ice::InputStreamPtr in =
            Ice::createInputStream(communicator, inParams);
        int x = in->readInt();
        int y = in->readInt();
        Ice::OutputStreamPtr out =
            Ice::createOutputStream(communicator);
        if (checkOverflow(x, y)) {
            Calc::Overflow ex;
            ex.x = x;
            ex.y = y;
            out->writeException(ex);
            out->finished(outParams);
            return false;
        } else {
            out->writeInt(x + y);
            out->finished(outParams);
            return true;
        }
    } else {
        Ice::OperationNotExistException ex(__FILE__, __LINE__);
        ex.id = current.id;
        ex.facet = current.facet;
        ex.operation = current.operation;
        throw ex;
    }
}

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.
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Array Mapping

Ice for C++ supports an alternative mapping for sequence input parameters that 
avoids the overhead of extra copying. Since the ice_invoke functions treat the 
encoded input parameters as a value of type sequence<byte>, the dynamic invo-
cation and dispatch facility includes interfaces that use the array mapping for the 
input parameter blob.

Ice provides two overloaded versions of the proxy function ice_invoke 
that use the array mapping. The version that omits the trailing Ice::Context 
argument is shown below:

bool ice_invoke(
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair< const Ice::Byte*, const Ice::Byte* >& in,
    std::vector< Ice::Byte >& out
);

A Blobject servant uses the array mapping by deriving its implementation class 
from Ice::BlobjectArray and overriding its ice_invoke function:

class BlobjectArray {
public:
    virtual bool ice_invoke(
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in,
        std::vector<Ice::Byte>& out,
        const Ice::Current& current) = 0;
};

See Section 6.7.4 for more information on the array mapping.

35.3.4 Java Mapping
This section describes the Java mapping for the ice_invoke proxy function and 
the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:

boolean ice_invoke(
    String operation,
    Ice.OperationMode mode,
    byte[] inParams,
    Ice.ByteSeqHolder outParams
);
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Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice.Context (see Section 32.12).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice.ObjectPrx proxy = ...
try {
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder();
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null,
                         outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:

module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};

Now let’s write a client that dynamically invokes the add operation:

Ice.ObjectPrx proxy = ...
try {
    Ice.OutputStream out =
        Ice.Util.createOutputStream(communicator);
    out.writeInt(100); // x
    out.writeInt(-1);  // y
    byte[] inParams = out.finished();
    Ice.ByteSeqHolder outParams = new Ice.ByteSeqHolder();
    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent,
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                         inParams, outParams)) {
        // Handle success
        Ice.InputStream in =
            Ice.Util.createInputStream(communicator,
                                       outParams.value);
        int result = in.readInt();
        assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly4:

    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent,
                         inParams, outParams)) {
        // Handle success
        // ...
    } else {
        // Handle user exception
        Ice.InputStream in =
            Ice.Util.createInputStream(communicator,
                                       outParams.value);
        try {
            in.throwException();
        } catch (Calc.Overflow ex) {
            System.out.println("overflow while adding " + ex.x +
                               " and " + ex.y);
        } catch (Ice.UserException ex) {
            // Handle unexpected user exception
        }
    }

4. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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As a defensive measure, the code traps Ice.UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice.Blobject. We continue using the Compute interface from page 1258 to 
demonstrate a Blobject implementation:

public class ComputeI extends Ice.Blobject {
    public boolean ice_invoke(
        byte[] inParams,
        Ice.ByteSeqHolder outParams,
        Ice.Current current)
    {
        // ...
    }
}

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 32 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:

• string ice_id()

Returns the Slice type id of the servant’s most-derived type.

• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".

• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.

• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice.Current is reachable.

With that in mind, here is our simplified version of ice_invoke:
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    public boolean ice_invoke(
        byte[] inParams,
        Ice.ByteSeqHolder outParams,
        Ice.Current current)
    {
        if (current.operation.equals("add")) {
            Ice.Communicator communicator =
                current.adapter.getCommunicator();
            Ice.InputStream in =
                Ice.Util.createInputStream(communicator,
                                           inParams);
            int x = in.readInt();
            int y = in.readInt();
            Ice.OutputStream out =
                Ice.Util.createOutputStream(communicator);
            try {
                if (checkOverflow(x, y)) {
                    Calc.Overflow ex = new Calc.Overflow();
                    ex.x = x;
                    ex.y = y;
                    out.writeException(ex);
                    outParams.value = out.finished();
                    return false;
                } else {
                    out.writeInt(x + y);
                    outParams.value = out.finished();
                    return true;
                }
            } finally {
                out.destroy();
            }
        } else {
            Ice.OperationNotExistException ex =
                new Ice.OperationNotExistException();
            ex.id = current.id;
            ex.facet = current.facet;
            ex.operation = current.operation;
            throw ex;
        }
    }

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.
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35.3.5 C# Mapping

This section describes the C# mapping for the ice_invoke proxy function and 
the Blobject class.

ice_invoke

The mapping for ice_invoke is shown below:

namespace Ice
{
    public interface ObjectPrx
    {
        bool ice_invoke(string operation,
                        OperationMode mode,
                        byte[] inParams,
                        out byte[] outParams);
        // ...
    }
}

Another overloading of ice_invoke (not shown) adds a trailing argument of 
type Ice.Context (see Section 32.12).

As an example, the code below demonstrates how to invoke the operation op, 
which takes no in parameters:

Ice.ObjectPrx proxy = ...
try {
    byte[] outParams;
    if (proxy.ice_invoke("op", Ice.OperationMode.Normal, null,
                         outParams)) {
        // Handle success
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

Using Streams with ice_invoke

The streaming interface described in Section 35.2 provides the tools an applica-
tion needs to dynamically invoke operations with arguments of any Slice type. 
Consider the following Slice definition:
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module Calc {
    exception Overflow {
        int x;
        int y;
    };
    interface Compute {
        idempotent int add(int x, int y)
            throws Overflow;
    };
};

Now let’s write a client that dynamically invokes the add operation:

Ice.ObjectPrx proxy = ...
try {
    Ice.OutputStream outStream =
        Ice.Util.createOutputStream(communicator);
    outStream.writeInt(100); // x
    outStream.writeInt(-1);  // y
    byte[] inParams = outStream.finished();
    byte[] outParams;
    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent,
                         inParams, out outParams)) {
        // Handle success
        Ice.InputStream inStream =
            Ice.Util.createInputStream(communicator, outParams);
        int result = inStream.readInt();
        System.Diagnostics.Debug.Assert(result == 99);
    } else {
        // Handle user exception
    }
} catch (Ice.LocalException ex) {
    // Handle exception
}

We neglected to handle the case of a user exception in this example, so let’s imple-
ment that now. We assume that we have compiled our program with the Slice-
generated code, therefore we can call throwException on the input stream 
and catch Overflow directly5:

5. This is obviously a contrived example: if the Slice-generated code is available, why bother using 
dynamic dispatch? In the absence of Slice-generated code, the caller would need to manually 
unmarshal the user exception, which is outside the scope of this book.
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    if (proxy.ice_invoke("add", Ice.OperationMode.Idempotent,
                         inParams, out outParams)) {
        // Handle success
        ...
    } else {
        // Handle user exception
        Ice.InputStream inStream =
            Ice.Util.createInputStream(communicator, outParams);
        try {
            inStream.throwException();
        } catch (Calc.Overflow ex) {
            System.Console.WriteLine("overflow while adding " +
                                     ex.x + " and " + ex.y);
        } catch (Ice.UserException) {
            // Handle unexpected user exception
        }
    }

As a defensive measure, the code traps Ice.UserException. This could be 
raised if the Slice definition of add is modified to include another user exception 
but this segment of code did not get updated accordingly.

Subclassing Blobject

Implementing the dynamic dispatch model requires writing a subclass of 
Ice.Blobject. We continue using the Compute interface from page 1262 to 
demonstrate a Blobject implementation:

public class ComputeI : Ice.Blobject {
    public bool ice_invoke(
                    byte[] inParams,
                    out byte[] outParams,
                    Ice.Current current);
    {
        ...
    }
}

An instance of ComputeI is an Ice object because Blobject derives from 
Object, therefore an instance can be added to an object adapter like any other 
servant (see Chapter 32 for more information on object adapters).

For the purposes of this discussion, the implementation of ice_invoke 
handles only the add operation and raises OperationNotExistException 
for all other operations. In a real implementation, the servant must also be 
prepared to receive invocations of the following operations:
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• string ice_id()

Returns the Slice type id of the servant’s most-derived type.

• StringSeq ice_ids()

Returns a sequence of strings representing all of the Slice interfaces supported 
by the servant, including "::Ice::Object".

• bool ice_isA(string id)

Returns true if the servant supports the interface denoted by the given Slice 
type id, or false otherwise. This operation is invoked by the proxy function 
checkedCast.

• void ice_ping()

Verifies that the object denoted by the identity and facet contained in 
Ice.Current is reachable.

With that in mind, here is our simplified version of ice_invoke:

    public bool ice_invoke(
                    byte[] inParams,
                    out byte[] outParams,
                    Ice.Current current);
    {
        if (current.operation.Equals("add")) {
            Ice.Communicator communicator =
                current.adapter.getCommunicator();
            Ice.InputStream inStream =
                Ice.Util.createInputStream(communicator,
                                           inParams);
            int x = inStream.readInt();
            int y = inStream.readInt();
            Ice.OutputStream outStream =
                Ice.Util.createOutputStream(communicator);
            try {
                if (checkOverflow(x, y)) {
                    Calc.Overflow ex = new Calc.Overflow();
                    ex.x = x;
                    ex.y = y;
                    outStream.StreamwriteException(ex);
                    outParams = outStream.finished();
                    return false;
                } else {
                    outStream.writeInt(x + y);
                    outParams = outStream.finished();
                    return true;
                }
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            } finally {
                outStream.destroy();
            }
        } else {
            Ice.OperationNotExistException ex =
                new Ice.OperationNotExistException();
            ex.id = current.id;
            ex.facet = current.facet;
            ex.operation = current.operation;
            throw ex;
        }
    }

If an overflow is detected, the code “raises” the Calc::Overflow user exception 
by calling writeException on the output stream and returning false, other-
wise the return value is encoded and the function returns true.

35.4 Asynchronous Dynamic Invocation and Dispatch

Ice provides asynchronous support for the dynamic invocation and dispatch 
models described in Section 35.3. The mappings for the ice_invoke proxy 
function and the Blobject class adhere to the asynchronous mapping rules.

35.4.1 C++ Mapping

This section describes the asynchronous C++ mapping for the ice_invoke 
proxy function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:

bool ice_invoke_async(
    const Ice::AMI_Object_ice_invokePtr& cb,
    const std::string& operation,
    Ice::OperationMode mode,
    const std::vector<Ice::Byte>& inParams
);

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice::Context (see Section 32.12).
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The return value and the parameters operation, mode, and inParams 
have the same semantics as for ice_invoke (see Section 35.3.1). As with any 
other asynchronous invocation, the first argument to the proxy function is always 
a callback object. In this case, the callback object must derive from the class 
Ice::AMI_Object_ice_invoke, shown here:

namespace Ice {
    class AMI_Object_ice_invoke : ... {
    public:
        virtual void ice_response(
            bool result,
            const std::vector<Ice::Byte>& outParams) = 0;

        virtual void ice_exception(const Ice::Exception& ex) = 0;

        // ...
    };  
}  

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the first argument indicates a user exception was raised, and 
the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

namespace Ice {
    class BlobjectAsync : virtual public Ice::Object {
    public:
        virtual void ice_invoke_async(
            const AMD_Object_ice_invokePtr& cb,
            const std::vector<Ice::Byte>& inParams,
            const Ice::Current& current) = 0;
    };
}

To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.
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As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice::AMD_Object_ice_invoke, shown here:

namespace Ice {
    class AMD_Object_ice_invoke : ... {
    public:
        virtual void ice_response(
            bool result,
            const std::vector<Ice::Byte>& outParams) = 0;
        virtual void ice_response(
            bool result,
            const std::pair<const Ice::Byte*,
                            const Ice::Byte*>& outParams) = 0;
        virtual void ice_exception(const std::exception&) = 0;
        virtual void ice_exception() = 0;
    };
}

Upon a successful invocation, the servant must invoke one of the 
ice_response methods on the callback object, passing true as the first argu-
ment and encoding the operation results into outParams. To report a user 
exception, the servant invokes ice_response with false as the first argu-
ment and the encoded form of the exception in outParams. Note that the second 
overloading of ice_response uses the array mapping (see the next section 
below).

The various overloadings of ice_exception are discussed in Appendix K. 
Note however that in the dynamic dispatch model, the ice_exception func-
tion must not be used to report user exceptions; doing so results in the caller 
receiving UnknownUserException.

Array Mapping

The discussion of the synchronous interfaces on page 1257 presented the array 
mapping for the ice_invoke proxy functions and the BlobjectArray base 
class. The array mapping is also supported in the asynchronous interfaces for 
dynamic invocation and dispatch.

Ice provides two overloaded versions of the proxy function 
ice_invoke_async that use the array mapping. The version that omits the 
trailing Ice::Context argument is shown below:
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bool ice_invoke_async(
    const Ice::AMI_Array_Object_ice_invokePtr& cb,
    const std::string& operation,
    Ice::OperationMode mode,
    const std::pair<const Ice::Byte*, const Ice::Byte*>& in
);

The AMI callback class also supports the array mapping for the encoded out 
parameter blob, as you can see in its definition of ice_response:

class AMI_Array_Object_ice_invoke : ... {
public:
    virtual void ice_response(
        bool result,
        const std::pair<const Ice::Byte*, const Ice::Byte*>& out)
        = 0;

    virtual void ice_exception(const Ice::Exception& ex) = 0;

    // ...
};  

To implement an asynchronous Blobject servant that uses the array mapping, 
derive your implementation class from Ice::BlobjectArrayAsync and 
override the ice_invoke_async function:

class BlobjectArrayAsync : virtual public Ice::Object {
public:
    virtual void ice_invoke_async(
        const AMD_Object_ice_invokePtr& cb,
        const std::pair<const Ice::Byte*, const Ice::Byte*>& in,
        const Ice::Current& current) = 0;
};

As shown in the previous section, the AMD callback class provides an overloaded 
ice_response method that supports the array mapping for the encoded out 
parameter blob.

See Section 6.7.4 for more information on the array mapping.

35.4.2 Java Mapping

This section describes the asynchronous Java mapping for the ice_invoke 
proxy function and the Blobject class.
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ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:

public abstract boolean ice_invoke_async(
    Ice.AMI_Object_ice_invoke cb,
    String operation,
    Ice.OperationMode mode,
    byte[] inParams
);

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice.Context (see Section 32.12).

The return value and the parameters operation, mode, and inParams 
have the same semantics as for ice_invoke (see Section 35.3.1). As with any 
other asynchronous invocation, the first argument to the proxy function is always 
a callback object. In this case, the callback object must derive from the class 
Ice.AMI_Object_ice_invoke, shown here:

package Ice;

public abstract class AMI_Object_ice_invoke ... {
    public abstract void ice_response(boolean result,
                                      byte[] outParams);
    public abstract void ice_exception(LocalException ex);
}  

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the first argument indicates a user exception was raised, and 
the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

package Ice;

public abstract class BlobjectAsync extends Ice.ObjectImpl {
    public abstract void ice_invoke_async(
        Ice.AMD_Object_ice_invoke cb,
        byte[] inParams,
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        Ice.Current current
    );

    // ...
}

To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice.AMD_Object_ice_invoke, shown here:

package Ice;

public interface AMD_Object_ice_invoke {
    void ice_response(boolean result, byte[] outParams);
    void ice_exception(java.lang.Exception ex);
}

Upon a successful invocation, the servant must invoke ice_response on the 
callback object, passing true as the first argument and encoding the operation 
results into outParams. To report a user exception, the servant invokes 
ice_response with false as the first argument and the encoded form of the 
exception in outParams.

The ice_exception function is discussed in Appendix K. Note however 
that in the dynamic dispatch model, the ice_exception function must not be 
used to report user exceptions; doing so results in the caller receiving Unknow-
nUserException.

35.4.3 C# Mapping

This section describes the asynchronous C# mapping for the ice_invoke proxy 
function and the Blobject class.

ice_invoke_async

The asynchronous mapping for ice_invoke produces a function named 
ice_invoke_async, as shown below:

namespace Ice {
    public interface ObjectPrx {
        bool ice_invoke_async(AMI_Object_ice_invoke cb,
                              string operation,
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                              OperationMode mode,
                              byte[] inParams);
    }
}

Another overloading of ice_invoke_async (not shown) adds a trailing argu-
ment of type Ice.Context (see Section 32.12).

The return value and the parameters operation, mode, and inParams 
have the same semantics as for ice_invoke (see Section 35.3.1). As with any 
other asynchronous invocation, the first argument to the proxy function is always 
a callback object. In this case, the callback object must derive from the class 
Ice.AMI_Object_ice_invoke, shown here:

namespace Ice {

    public abstract class AMI_Object_ice_invoke : ...
    {
        public abstract void ice_response(
                                bool ok, byte[] outParams);
        public abstract override void ice_exception(
                                Ice.Exception ex);
    }

}

The ice_response function is invoked for a successful completion or when a 
user exception occurs. A value of true for the first argument signals success; 
results from the operation are encoded in the second argument outParams. A 
value of false for the first argument indicates a user exception was raised, and 
the encoded form of the exception is provided in outParams.

The ice_exception function is invoked only when the operation raises a 
local exception such as OperationNotExistException.

BlobjectAsync

BlobjectAsync is the name of the asynchronous counterpart to Blobject:

public abstract class BlobjectAsync
    : Ice.ObjectImpl
{
    public abstract void ice_invoke_async(
                        AMD_Object_ice_invoke cb,
                        byte[] inParams,
                        Current current);
}
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To implement asynchronous dynamic dispatch, a server must subclass Blob-
jectAsync and override ice_invoke_async.

As with any other asynchronous operation, the first argument to the servant’s 
member function is always a callback object. In this case, the callback object is of 
type Ice.AMD_Object_ice_invoke, shown here:

namespace Ice
{
    public interface AMD_Object_ice_invoke
    {
        void ice_response(bool ok, byte[] outParams);
        void ice_exception(System.Exception ex);
    }
}

Upon a successful invocation, the servant must invoke ice_response on the 
callback object, passing true as the first argument and encoding the operation 
results into outParams. To report a user exception, the servant invokes 
ice_response with false as the first argument and the encoded form of the 
exception in outParams.

The ice_exception function is discussed in Appendix K. Note however 
that in the dynamic dispatch model, the ice_exception function must not be 
used to report user exceptions; doing so results in the caller receiving Unknow-
nUserException.

35.5 Summary

The Ice streaming API allows you to serialize and deserialize Slice types using 
either the Ice encoding or an encoding of your choice (for example, XML). This is 
useful, for example, if you want to store Slice types in a data base.

The dynamic invocation and dispatch interfaces allow you to write generic 
clients and servers that need not have compile-time knowledge of the Slice types 
used by an application. This is useful for applications such as object browsers, 
protocol analyzers, or protocol bridges. In addition, the dynamic invocation and 
dispatch interfaces permit services such as IceStorm to be implemented without 
the need to unmarshal and remarshal every message, with considerable perfor-
mance improvements.

Keep in mind that applications that use dynamic invocation and dispatch are 
tedious to implement and harder to prove correct (because what normally would 
be a compile-time error appears only as a run-time error with dynamic invocation 
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and dispatch). Therefore, you should use the dynamic interfaces only if your 
application truly benefits from this trade-off.
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Chapter 36
Connection Management

36.1 Chapter Overview

In this chapter we describe the semantics of Ice connections. Section 36.3 defines 
the rules for connection establishment, including the consequences of connection 
failure and the effects of timeouts. Section 36.4 provides details about active 
connection management and when to use it. Section 36.5 demonstrates how Ice 
applications gain access to connections, while Section 36.6 describes how a 
connection is closed. Finally, Section 36.7 presents bidirectional connections and 
describes their use cases and configuration.

36.2 Introduction

The Ice run time establishes connections automatically and transparently as a side 
effect of using proxies. There are well-defined rules that determine when a new 
connection is established (see Section 36.3). If necessary, you can influence 
connection management activities (see Section 36.4).

Connection management becomes increasingly important as network environ-
ments grow more complex. In particular, if you need to make callbacks from a 
server to a client through a firewall, you must use a bidirectional connection. In 
most cases, you can use a Glacier2 router (see Chapter 42) to automatically take 
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advantage of bidirectional connections. However, the Ice run time also provides 
direct access to connections, allowing you to explicitly control establishment and 
closure of both unidirectional and bidirectional connections.

The discussion that follows assumes that you are familiar with proxies and 
endpoints (see Section 32.11 and Appendix E).

36.3 Connection Establishment

Connections are established as a side effect of using proxies. The first invocation 
on a proxy causes the Ice run time to search for an existing connection to one of 
the proxy’s endpoints (see Section 32.11.3); only if no suitable connection exists 
does the Ice run time establish a new connection to one of the proxy’s endpoints.

36.3.1 Endpoint Selection

A proxy performs a number of operations on its endpoints before it asks the Ice 
run time to supply a connection. These operations produce a list of zero or more 
endpoints that satisfy the proxy’s configuration. If the resulting list is empty, the 
application receives NoEndpointException to indicate that no suitable endpoints 
could be found. For example, this situation can arise when a twoway proxy 
contains only a UDP endpoint; the UDP endpoint is eliminated from consideration 
because it cannot be used for twoway invocations.

The proxy performs the following steps to derive its endpoint list:

1. Remove the endpoints of unknown transports. For instance, SSL endpoints are 
removed if the SSL plug-in is not installed.

2. Remove endpoints that are not suitable for the proxy’s invocation mode. For 
example, datagram endpoints are removed for twoway, oneway and batch 
oneway proxies. Similarly, non-datagram endpoints are removed for datagram 
and batch datagram proxies.

3. Perform DNS queries to convert host names into IP addresses, if necessary. 
For a multi-homed host name, the proxy adds a new endpoint for each address 
returned by the DNS query.

4. Sort the endpoints according to the configured selection type, which is estab-
lished using the ice_endpointSelection factory method. The default 
value is Random, meaning the endpoints are randomly shuffled. Alternatively, 
the value Ordered maintains the existing order of the endpoints.
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5. Satisfy the proxy’s security requirements:

1. If Ice.Override.Secure is defined, remove all non-secure endpoints.

2.Otherwise, if the proxy is configured to prefer secure endpoints (e.g., by 
calling the ice_preferSecure factory method), move all secure 
endpoints to the beginning of the list. Note that this setting still allows non-
secure endpoints to be included.

3.Otherwise, move all non-secure endpoints to the beginning of the list.

If connection caching is enabled (see Section 36.3.4) and the Ice run already has a 
compatible connection (see Section 36.3.3), it reuses the cached connection. 
Otherwise, the run time attempts to connect to each endpoint in the list until it 
succeeds or exhausts the list; the order in which endpoints are selected for connec-
tion attempts depends on the endpoint selection policy (see page 1862).

36.3.2 Error Handling
If a failure occurs during a connection attempt, the Ice run time tries to connect to 
all of the proxy’s remaining endpoints until either a connection is successfully 
established or all attempts have failed. At that point, the behavior of the Ice run 
time depends on the value of the Ice.RetryIntervals configuration prop-
erty (see Appendix D). The default value of this property is 0, which causes the 
Ice run time to try connecting to all of the endpoints one more time1. If no connec-
tion can be established on this second attempt, the Ice run time raises an exception 
that indicates the reason for the final failed attempt (typically ConnectFailedEx-
ception). Similarly, if a connection was lost during a request and could not be 
reestablished (assuming the request can be retried), the Ice run time raises an 
exception that indicates the reason for the final failed attempt.

See Section 32.22 for more information on automatic retries.

36.3.3 Connection Reuse
When establishing a connection for a proxy, the Ice run time reuses an existing 
connection under the following conditions:

• The remote endpoint matches one of the proxy’s endpoints.

• The connection was established by the communicator that created the proxy.

1. Define the property Ice.Trace.Retry=2 to monitor these attempts.
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• The connection matches the proxy’s configuration. Timeout values play an 
important role here, as an existing connection is only reused if its timeout 
value (i.e., the timeout used when the connection was established) matches the 
new proxy’s timeout (see Section 36.3.5). Similarly, a proxy configured with 
a connection id only reuses a connection if it was established by a proxy with 
the same connection id.

Multiple Endpoints

Applications must exercise caution when using proxies containing multiple 
endpoints, especially endpoints using different transports. For example, suppose a 
proxy has multiple endpoints, such as one each for TCP, SSL, and UDP. When 
establishing a connection for this proxy, the Ice run time will open a new connec-
tion only if it cannot reuse an existing connection to any of the endpoints (that is, 
if connection caching is enabled). Furthermore, the proxy in its default (that is, 
non-secure) configuration gives higher priority to non-secure endpoints. If you 
want to ensure that a particular transport is used by a proxy, you must configure 
the proxy appropriately, such as by calling the ice_secure or 
ice_datagram factory methods described in Section 32.11.2.

Compression

The Ice run time does not consider compression settings when searching for 
existing connections to reuse; proxies whose compression settings differ can share 
the same connection (assuming all other selection criteria are satisfied).

Application Control

The default behavior of the Ice run time, which reuses connections whenever 
possible, is appropriate for many applications because it conserves resources and 
typically has little or no impact on performance. However, when a server imple-
mentation attaches semantics to a connection, the client often must be designed to 
cooperate, despite the tighter coupling it causes. For example, a server might use a 
serialized thread pool (see Section 32.10) to preserve the order of requests 
received over each connection. If the client wants to execute several requests 
simultaneously, it must be able to force the Ice run time to establish new connec-
tions at will.

For those situations that require more control over connection reuse, the Ice 
run time allows you to form arbitrary groups of proxies that share a connection by 
configuring them with the same connection identifier. The factory function 
ice_connectionId (see Section 32.11.2) returns a new proxy configured 
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with the given connection id. Once configured, the Ice run time ensures that the 
proxy only reuses a connection that was established by a proxy with the same 
connection id (assuming all other criteria for connection reuse are also satisfied). 
A new connection is created if none with a matching id is found, which means 
each proxy could conceivably have its own connection if each were assigned a 
unique connection id.

As an example, consider the following code fragment:

// C++
Ice::ObjectPrx prx = comm->stringToProxy("ident:tcp -p 10000");
Ice::ObjectPrx g1 = prx->ice_connectionId("group1");
Ice::ObjectPrx g2 = prx->ice_connectionId("group2");
prx->ice_ping(); // Opens a new connection
g1->ice_ping(); // Opens a new connection
g2->ice_ping(); // Opens a new connection
MyInterfacePrx i1 = MyInterfacePrx::checkedCast(g1);
i1->ice_ping(); // Reuses g1’s connection
MyInterfacePrx i2 = MyInterfacePrx::checkedCast(
    prx->ice_connectionId("group2"));
i2->ice_ping(); // Reuses g2’s connection

A total of three connections are established by this example:

1. The proxy prx establishes a new connection. This proxy has the default 
connection id (an empty string).

2. The proxy g1 establishes a new connection because the only existing connec-
tion, the one established by prx, has a different connection id.

3. Similarly, the proxy g2 establishes a new connection because none of the 
existing connections have a matching connection id.

The proxy i1 inherits its connection id from g1, and therefore shares the connec-
tion for group1; i2 explicitly configured its connection id and shares the 
group2 connection with proxy g2.

36.3.4 Connection Caching
When we refer to a proxy’s connection, we actually mean the connection that the 
proxy is currently using. This connection can change over time, such that a proxy 
might use several connections during its lifetime. For example, an idle connection 
may be closed automatically and then transparently replaced by a new connection 
when activity resumes (see Section 36.4).

After establishing a connection in response to proxy activities, the Ice run time 
adds the connection to an internal pool for subsequent reuse by other proxies (see 
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Section 36.3.3). The Ice run time manages the lifetime of the connection; it is 
eventually closed as described in Section 36.6. The connection is not affected by 
the life cycle of the proxies that use it, except that the lack of activity may prompt 
the Ice run time to close the connection after a while.

Once a proxy has been associated with a connection, the proxy’s default 
behavior is to continue using that connection for all subsequent requests. In effect, 
the proxy caches the connection and attempts to use it for as long as possible in 
order to minimize the overhead of creating new connections. If the connection is 
later closed and the proxy is used again, the proxy repeats the connection-estab-
lishment procedure described in Section 36.3.1.

There are situations in which this default caching behavior is undesirable, such 
as when a client has a proxy with multiple endpoints and wishes to balance the 
load among the servers at those endpoints. The client can disable connection 
caching by passing an argument of false to the proxy factory method 
ice_connectionCached. The new proxy returned by this method repeats the 
connection-establishment procedure outlined in Section 36.3.1 before each 
request, thereby achieving request load balancing at the expense of potentially 
higher latency.

This type of load balancing is performed solely by the client using whatever 
endpoints are contained in the proxy. More sophisticated forms of load balancing 
are also possible, as described in Chapter 38.

36.3.5 Timeouts

A proxy’s default configuration has a timeout value of -1, meaning that network 
activity initiated by this proxy does not time out. The timeout value affects both 
connection establishment and remote invocations. If a different timeout value is 
specified and the connection cannot be established within the allotted time, a 
ConnectTimeoutException is raised.

You can set a timeout on a proxy using the ice_timeout factory method 
(see Section 32.11.2). To use the same timeout period for all proxies, you can 
define the Ice.Override.Timeout property; in this case, any timeout estab-
lished using the ice_timeout factory method is ignored. Finally, if you want to 
specify a separate timeout value that affects only connection establishment and 
takes precedence over a proxy’s configured timeout value, you can define the 
Ice.Override.ConnectTimeout property. (See Appendix D for more 
information on these properties, and Section 32.13 for more information on invo-
cation timeouts.)
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The timeout in effect when a connection is established is bound to that 
connection and affects all requests on that connection. If a request times out, all 
other outstanding requests on the same connection also time out, and the connec-
tion is closed forcefully (see Section 36.5.5). The Ice run time automatically 
retries these requests on a new connection, assuming that automatic retries are 
enabled and would not violate at-most-once semantics (see Section 32.22).

36.4 Active Connection Management

Active Connection Management (ACM) is enabled by default and helps to improve 
scalability and conserve application resources by closing idle connections.

36.4.1 Configuring ACM

ACM is configured separately for client (outgoing) and server (incoming) connec-
tions using the properties Ice.ACM.Client and Ice.ACM.Server, respec-
tively. The default value of Ice.ACM.Client is 60, meaning an outgoing 
connection is closed if it has not been used for sixty seconds. The default value of 
Ice.ACM.Server is zero, which disables ACM for incoming connections. Ice 
disables server ACM by default because it can cause incoming oneway requests to 
be silently discarded, as discussed in Section 32.14.

You can also selectively enable or disable ACM for individual object adapters 
by setting the property <adapter>.ACM.

The decision to close a connection is not based only on a lack of network 
activity. For example, a request may take longer to complete than the configured 
idle time. Therefore, ACM does not close a connection if there are outgoing or 
incoming requests pending on that connection, or if a batch request is being accu-
mulated for that connection.

When it is safe to close the connection, it is done gracefully as described in 
Section 36.6. The closure is usually transparent to the client and server applica-
tions because the connection is reestablished automatically when necessary. We 
say connection closure is “usually transparent” because it is possible that the Ice 
run time will be unable to reestablish a connection for a variety of reasons (see 
Section 36.4.2). In such a situation, the application receives a local exception for 
new requests (usually a ConnectFailedException).

It is important that you choose an idle time that does not result in excessive 
connection closure and reestablishment. The default value of sixty seconds is a 
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reasonable default, but your requirements may determine a more appropriate 
value.

The run time periodically scans through all open connections to close those 
that have exceeded their idle time. By default, the scanning interval is 10% of the 
smallest configured ACM timeout, with a minimum of 5 seconds and a maximum 
of 5 minutes. You can choose a different scanning interval by setting the property 
Ice.MonitorConnections to the desired interval in seconds. Once a 
connection exceeds its idle time, it is closed by the next scan. This means that, if 
you set a scanning interval of 120 seconds, and have an ACM timeout of 60 
seconds, idle connections will be closed once they have been idle for between one 
and three minutes. For servers with many (thousands) of incoming connections, 
you should set the scanning interval to the longest amount of time you can afford 
connections to remain open past their idle limit; this reduces the overhead of the 
scans and makes it more likely that each scan will actually find and close idle 
connections.

36.4.2 Disabling ACM

Since server ACM is disabled by default, you only need to set 
Ice.ACM.Client to 0 to disable ACM for all connections. In this configura-
tion a connection is not closed until its communicator is destroyed or it is closed 
explicitly by the application (see Section 36.5.5). It is important to note that 
disabling ACM in a process does not prevent a remote peer from closing a connec-
tion; all peers must be properly configured in order to truly disable ACM.

There are certain situations in which it is necessary to disable ACM. For 
example, oneway requests can be silently discarded when a connection is closed 
(see Section 32.14). As another example, ACM must be disabled when using bidi-
rectional connections. A bidirectional connection is enabled by using a router 
such as Glacier2 (see Chapter 42) or by configuring a connection explicitly (see 
Section 36.7). If you do not disable ACM in such cases, ACM can prematurely 
close a bidirectional connection and thereby cause callbacks to fail unexpectedly.

36.5 Obtaining a Connection

Applications can gain access to an Ice object representing an established connec-
tion.
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36.5.1 The Ice::Connection Interface

The Slice definition of the Connection interface is shown below:

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local interface Connection {
        void close(bool force);
        Object* createProxy(Identity id);
        void setAdapter(ObjectAdapter adapter);
        ObjectAdapter getAdapter();
        Endpoint getEndpoint();
        void flushBatchRequests();
        string type();
        int timeout();
        string toString();
        ConnectionInfo getInfo();
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };

    local class TCPConnectionInfo extends IPConnectionInfo {};

    local class UDPConnectionInfo extends IPConnectionInfo {
        string mcastAddress;
        int mcastPort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};



1284 Connection Management

As indicated in the Slice definition, a connection is a local interface, similar to a 
communicator or an object adapter. A connection therefore is only usable within 
the process and cannot be accessed remotely.

The Connection interface supports the following operations:

• void close(bool force)

Explicitly closes the connection. The connection is closed gracefully if force 
is false, otherwise the connection is closed forcefully. See Section 36.5.5 for 
more information.

• Object* createProxy(Identity id)

Creates a special proxy that only uses this connection. See Section 36.7 for 
more information.

• void setAdapter(ObjectAdapter adapter)

Enables callbacks over this connection. See Section 36.7 for more informa-
tion.

• ObjectAdapter getAdapter()

Returns the object adapter associated with this connection, or nil if no associa-
tion has been made.

• Endpoint getEndpoint()

The operation returns an Endpoint interface (see Section 36.5.2).

• void flushBatchRequests()

Flushes any pending batch requests for this connection. See page 1285 for 
more information on this operation.

• string type()

Returns the connection type as a string, such as “tcp”.

• int timeout()

Returns the timeout value used when the connection was established.

• string toString()

Returns a readable description of the connection.

• ConnectionInfo getInfo()

This operation returns a ConnectionInfo class defined as follows:
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local class ConnectionInfo {
    bool incoming;
    string adapterName;
};

The incoming member is true if the connection is an incoming connection and 
false, otherwise. If incoming is true, adapterName provides the name of the 
object adapter that accepted the connection.

Note that the actual class that is returned derives from ConnectionInfo, 
depending on the connection type. You can down-cast the returned class 
instance and access the connection-specific information according to the type 
of the connection.

Flushing Batch Requests

The flushBatchRequests operation blocks the calling thread until any batch 
requests that are queued for a connection have been successfully written to the 
local transport. To avoid the risk of blocking, you can also invoke this operation 
asynchronously using the begin_flushBatchRequests method (in those 
language mappings that support it).

Since batch requests are inherently oneway invocations, the 
begin_flushBatchRequests method does not support a request callback. 
However, you can use the exception callback to handle any errors that might occur 
while flushing, and the sent callback to receive notification that the batch request 
has been flushed successfully.

For example, the code below demonstrates how to flush batch requests asyn-
chronously in C++:

class FlushCallback : public IceUtil::Shared
{
public:

    void exception(const Ice::Exception& ex)
    {
        cout << "Flush failed: " << ex << endl;
    }

    void sent(bool sentSynchronously)
    {
        cout << "Batch sent!" << endl;
    }
};
typedef IceUtil::Handle<FlushCallback> FlushCallbackPtr;
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void flushConnection(const Ice::ConnectionPtr& conn)
{
    FlushCallbackPtr f = new FlushCallback;
    Ice::Callback_Connection_flushBatchRequestsPtr cb =
        Ice::newCallback_Connection_flushBatchRequests(
            f, &FlushCallback::exception, &FlushCallback::sent);
    conn->begin_flushBatchRequests(cb);
}

For more information on asynchronous invocations, please see the relevant 
language mapping chapter.

36.5.2 The Ice::Endpoint Interface

The Connection::getEndpoint operation returns an interface of type Endpoint:

module Ice {
    const short TCPEndpointType = 1;
    const short UDPEndpointType = 3;

    local class EndpointInfo {
        int timeout;
        bool compress;
        short type();
        bool datagram();
        bool secure();
    };

    local interface Endpoint {
        EndpointInfo getInfo();
        string toString();
    };

    local class IPEndpointInfo extends EndpointInfo {
        string host;
        int port;
    };

    local class TCPEndpointInfo extends IPEndpointInfo {};

    local class UDPEndpointInfo extends IPEndpointInfo {
        byte protocolMajor;
        byte protocolMinor;
        byte encodingMajor;
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        byte encodingMinor;
        string mcastInterface;
        int mcastTtl;
    };

    local class OpaqueEndpointInfo extends EndpointInfo {
        Ice::ByteSeq rawBytes;
    };
};

module IceSSL {
    const short EndpointType = 2;

    local class EndpointInfo extends Ice::IPEndpointInfo {};
};

The getInfo operation returns an EndpointInfo instance. Note that the actual 
class that is returned derives from EndpointInfo, depending on the endpoint type. 
You can down-cast the returned class instance and access the endpoint-specific 
information according to the type of the endpoint, as returned by the type opera-
tion.

The timeout member provides the timeout in milliseconds. The compress 
member is true if the endpoint uses compression (if available). The datagram 
operation returns true if the endpoint is for a datagram transport, and the secure 
operation returns true if the endpoint uses SSL.

The derived classes provide further detail about the endpoint according to its 
type.

Opaque Endpoints

An application may receive a proxy that contains an endpoint whose type is unrec-
ognized by the Ice run time. In this situation, Ice preserves the endpoint in its 
encoded (opaque) form so that the proxy remains intact, but Ice ignores the 
endpoint for all connection-related activities. Preserving the endpoint allows an 
application to later forward that proxy with all of its original endpoints to a 
different program that might support the endpoint type in question.

Although a connection will never return an opaque endpoint, it is possible for 
a program to encounter an opaque endpoint when iterating over the endpoints 
returned by the proxy method ice_getEndpoints.

As a practical example, consider a program for which the IceSSL plug-in is 
not configured. If this program receives a proxy containing an SSL endpoint, Ice 



1288 Connection Management

treats it as an opaque endpoint such that calling getInfo on the endpoint object 
returns an instance of OpaqueEndpointInfo.

Note that the type operation of the OpaqueEndpointInfo object returns the 
actual type of the endpoint. For example, the operation returns the value 2 if the 
object encodes an SSL endpoint. As a result, your program cannot assume that an 
EndpointInfo object whose type is 2 can be safely down-cast to 
IceSSL::EndpointInfo; if the IceSSL plug-in is not configured, such a down-
cast will fail because the object is actually an instance of OpaqueEndpointInfo.

36.5.3 Clients
Clients obtain a connection by calling ice_getConnection or 
ice_getCachedConnection on a proxy (see Section 32.11.2). If the proxy 
does not yet have a connection, the ice_getConnection method attempts to 
establish one. As a result, the caller must be prepared to handle connection failure 
exceptions as described in Section 36.3.2. Furthermore, if the proxy denotes a 
collocated object and collocation optimization is enabled, calling 
ice_getConnection results in a CollocationOptimizationException.

If you wish to obtain the proxy’s connection without the potential for trig-
gering connection establishment, call ice_getCachedConnection; this 
method returns null if the proxy is not currently associated with a connection or if 
connection caching is disabled for the proxy.

As an example, the C++ code below illustrates how to obtain a connection 
from a proxy and print its type:

Ice::ObjectPrx proxy = ...
try
{
    Ice::ConnectionPtr conn = proxy->ice_getConnection();
    cout << conn->type() << endl;
}
catch(const Ice::CollocationOptimizationException&)
{
    cout << "collocated" << endl;
}

36.5.4 Servers
Servers can access a connection via the con member of the Ice::Current param-
eter passed to every operation (see Section 32.6). For collocated invocations, con 
has a nil value.



36.5 Obtaining a Connection 1289

For example, this Java code shows how to invoke toString on the connection:

public int add(int a, int b, Ice.Current curr)
{
    if (curr.con != null)
    {
        System.out.println("Request received on connection:\n" +
                           curr.con.toString());
    }
    else
    {
        System.out.println("collocated invocation");
    }
    return a + b;
}

Although the mapping for the Slice operation toString results in a Java method 
named _toString, the Ice run time implements toString to return the same 
value.

36.5.5 Closing a Connection

Applications should rarely need to close a connection explicitly, but those that do 
must be aware of its implications. Since there are two ways to close a connection, 
we discuss them separately.

Graceful Closure

Passing an argument of false to the close operation initiates graceful connection 
closure, as discussed in Section 36.6. The operation blocks until all pending 
outgoing requests on the connection have completed.

Forceful Closure

A forceful closure is initiated by passing an argument of true to the close opera-
tion, causing the peer to receive a ConnectionLostException.

A client must use caution when forcefully closing a connection. Any outgoing 
requests that are pending on the connection when close is invoked will fail with a 
ForcedCloseConnectionException. Furthermore, requests that fail with this 
exception are not automatically retried.

In a server context, forceful closure can be useful as a defense against hostile 
clients.
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The Ice run time interprets a CloseConnectionException to mean that it is 
safe to retry the request without violating at-most-once semantics (see 
Section 32.22). If automatic retries are enabled, a client must only initiate a 
graceful close when it knows that there are no outgoing requests in progress on 
that connection, or that any pending requests can be safely retried.

36.6 Connection Closure

The Ice run time may close a connection for many reasons, including the situa-
tions listed below:

• When deactivating an object adapter or shutting down a communicator

• As required by active connection management (see Section 36.4)

• When initiated by an application (see Section 36.5.5)

• After a request times out (see Section 36.3.5)

• In response to an exception, such as a socket failure or protocol error.

In most cases, the Ice run time closes a connection gracefully as required by the 
Ice protocol (see Section 37.3.6). The Ice run time only closes a connection force-
fully when a timeout occurs or when the application explicitly requests it.

36.6.1 Graceful Connection Closure

Gracefully closing a connection occurs in stages:

• In the process that initiates closure, incoming and outgoing requests that are in 
progress are allowed to complete, and then a close connection message is sent 
to the peer. Any incoming requests received after closure is initiated are 
silently discarded (but may be retried, as discussed in the next bullet). An 
attempt to make a new outgoing request on the connection results in a 
CloseConnectionException and an automatic retry (if enabled).

• Upon receipt of a close connection message, the Ice run time in the peer closes 
its end of the connection. Any outgoing requests still pending on that connec-
tion fail with a CloseConnectionException. This exception indicates to the 
Ice run time that it is safe to retry those requests without violating at-most-
once semantics (see Section 32.22), assuming automatic retries have not been 
disabled.
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• After detecting that the peer has closed the connection, the initiating Ice run 
time closes the connection.

36.6.2 Impact on Oneway Invocations
As discussed in Section 32.14, oneway invocations are generally considered reli-
able because they are sent over a stream-oriented transport. However, it is quite 
possible for oneway requests to be silently discarded if a server has initiated 
graceful connection closure (see Section 36.6.1). Whereas graceful closure causes 
a discarded twoway request to receive a CloseConnectionException and eventu-
ally be retried, the sender receives no notice about a discarded oneway request.

If an application makes assumptions about the reliability of oneway requests, 
it may be necessary to control the events surrounding connection closure as much 
as possible, for example by disabling active connection management (see 
Section 36.4) and avoiding explicit connection closures.

36.7 Bidirectional Connections

An Ice connection normally allows requests to flow in only one direction. If an 
application’s design requires the server to make callbacks to a client, the server 
normally establishes a new connection to that client in order to send callback 
requests, as shown in Figure 36.1.

Figure 36.1. Callbacks in an open network.

Client Server
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Unfortunately, network restrictions often prevent a server from being able to 
create a separate connection to the client, such as when the client resides behind a 
firewall as shown in Figure 36.2.

Figure 36.2. Callbacks with a firewall.

In this scenario, the firewall blocks any attempt to establish a connection directly 
to the client.

For situations such as these, a bidirectional connection offers a solution. 
Requests may flow in both directions over a bidirectional connection, enabling a 
server to send callback requests to a client over the client’s existing connection to 
the server.

There are two ways to make use of a bidirectional connection. First, you can 
use a Glacier2 router, in which case bidirectional connections are used automati-
cally. If you do not require the functionality offered by Glacier2 or you do not 
want an intermediary service between clients and servers, you can configure bidi-
rectional connections manually.

The remainder of this section discusses manual configuration of bidirectional 
connections. For more information on using a Glacier2 router, see Chapter 42.

36.7.1 Client Configuration

A client needs to perform the following steps in order to configure a bidirectional 
connection:

1. Create an object adapter to receive callback requests. This adapter does not 
require a name or endpoints if its only purpose is to receive callbacks over 
bidirectional connections.

2. Register the callback object with the object adapter.

3. Activate the object adapter.

4. Obtain the Ice::Connection object (see Section 36.5.1) by calling 
ice_getConnection on the proxy.

Client Firewall Server
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5. Invoke setAdapter on the connection, passing the callback object adapter. 
This associates an object adapter with the connection and enables callback 
requests to be dispatched.

6. Pass the identity of the callback object to the server.

The C++ code below illustrates these steps:

    Ice::ObjectAdapterPtr adapter =
        communicator->createObjectAdapter("");
    Ice::Identity ident;
    ident.name = IceUtil::generateUUID();
    ident.category = "";
    CallbackPtr cb = new CallbackI;
    adapter->add(cb, ident);
    adapter->activate();
    proxy->ice_getConnection()->setAdapter(adapter);
    proxy->addClient(ident);

The last step may seem unusual because a client would typically pass a proxy to 
the server, not just an identity. For example, you might be tempted to give the 
proxy returned by the adapter operation add to the server, but this would not have 
the desired effect: if the callback object adapter is configured with endpoints, the 
server would attempt to establish a separate connection to one of those endpoints, 
which defeats the purpose of a bidirectional connection. It is just as likely that the 
callback object adapter has no endpoints, in which case the proxy is of no use to 
the server.

Similarly, you might try invoking createProxy on the connection to obtain a 
proxy that the server can use for callbacks. This too would fail, because the proxy 
returned by the connection is for local use only and cannot be used by another 
process.

As you will see in the next section, the server must create its own callback 
proxy.

36.7.2 Server Configuration

A server needs to take the following steps in order to make callbacks over a bidi-
rectional connection:

1. Obtain the identity of the callback object, which is typically supplied by the 
client.
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2. Create a proxy for the callback object by calling createProxy on the connec-
tion. As discussed in Section 36.5.4, the connection object is accessible as a 
member of the Ice::Current parameter to an operation implementation.

These steps are illustrated in the C++ code below:

void addClient(const Ice::Identity& ident,
               const Ice::Current& curr)
{
    CallbackPrx client =
        CallbackPrx::uncheckedCast(curr.con->createProxy(ident));
    client->notify();
}

36.7.3 Fixed Proxies

The proxy returned by a connection’s createProxy operation is called a fixed 
proxy. It can only be used in the server process and cannot be marshaled or stringi-
fied by proxyToString; attempts to do so raise FixedProxyException.

The fixed proxy is bound to the connection that created it, and ceases to work 
once that connection is closed. If the connection is closed prematurely, either by 
active connection management or by explicit action on the part of the application 
(see Section 36.4), the server can no longer make callback requests using that 
proxy. Any attempt to use the proxy again usually results in a CloseConnection-
Exception.

Many aspects of a fixed proxy cannot be changed. For example, it is not 
possible to change the proxy’s endpoints or timeout. Attempting to invoke a 
method such as ice_timeout on a fixed proxy raises FixedProxyException.

36.7.4 Limitations

Bidirectional connections have certain limitations:

• They can only be configured for connection-oriented transports such as TCP 
and SSL.

• Most proxy factory methods are not relevant for a proxy created by a connec-
tion’s createProxy operation. The proxy is bound to an existing connection, 
therefore the proxy reflects the connection’s configuration. Attempting to 



36.7 Bidirectional Connections 1295

change settings such as the proxy’s timeout value causes the Ice run time to 
raise FixedProxyException.

It is legal to configure a fixed proxy for using oneway or twoway invocations. 
You may also invoke ice_secure on a fixed proxy if its security configura-
tion is important; a fixed proxy configured for secure communication raises 
NoEndpointException on the first invocation if the connection is not secure.

• A connection established from a Glacier2 router to a server is not configured 
for bidirectional use. Only the connection from a client to the router is bidirec-
tional. However, the client must not attempt to manually configure a bidirec-
tional connection to a router, as this is handled internally by the Ice run time.

• Bidirectional connections are not compatible with active connection manage-
ment (see Section 36.4).

36.7.5 Threading Considerations

The Ice run time normally creates two thread pools for processing network traffic 
on connections: the client thread pool manages outgoing connections and the 
server thread pool manages incoming connections. All of the object adapters in a 
server share the same thread pool by default, but an object adapter can also be 
configured to have its own thread pool. The default size of the client and server 
thread pools is one.

The client thread pool is normally waiting for the replies to pending requests. 
When a client configures an outgoing connection for bidirectional requests, the 
client thread pool also becomes responsible for processing requests received over 
that connection.

Similarly, the server thread pool normally dispatches requests from clients. If 
a server uses a connection to send callback requests, then the server thread pool 
must also process the replies to those requests.

You must increase the size of the appropriate thread pool if you need the 
ability to dispatch multiple requests in parallel, or if you need to make nested 
twoway invocations. For example, a client that receives a callback request over a 
bidirectional connection and makes nested invocations must increase the size of 
the client thread pool. See Section 32.10.5 for more information on nested invoca-
tions, and Section 32.10 for details on the Ice threading model.
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36.7.6 Example
An example that demonstrates how to configure a bidirectional connection is 
provided in the directory demo/Ice/bidir.

36.8 Summary

Most Ice applications benefit from active connection management and transparent 
connection establishment and thus need not concern themselves with the details of 
connections. Not all Ice applications can be so fortunate, and for those applica-
tions Ice provides convenient access to connections that enables developers to 
address the realities of today’s deployment environments.
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Chapter 37
The Ice Protocol

37.1 Chapter Overview

The Ice protocol definition consists of three major parts:

• a set of data encoding rules that determine how the various data types are seri-
alized

• a number of message types that are interchanged between client and server, 
together with rules as to what message is to be sent under what circumstances

• a set of rules that determine how client and server agree on a particular 
protocol and encoding version

Section 37.2 describes the encoding rules, Section 37.3 describes the various 
protocol messages, Section 37.4 describes compression, and Section 37.5 explains 
how the protocol and encoding are versioned and how client and server agree on a 
common version. (Both encoding and protocol specifications are currently at 
version 1.0.)

37.2 Data Encoding

The key goals of the Ice data encoding are simplicity and efficiency. In keeping 
with these principles, the encoding does not align primitive types on word bound-
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aries and therefore eliminates the wasted space and additional complexity that 
alignment requires. The Ice data encoding simply produces a stream of contiguous 
bytes; data contains no padding bytes and need not be aligned on word bound-
aries.

Data is always encoded using little-endian byte order for numeric types. (Most 
machines use a little-endian byte order, so the Ice data encoding is “right” more 
often than not.) Ice does not use a “receiver makes it right” scheme because of the 
additional complexity this would introduce. Consider, for example, a chain of 
receivers that merely forward data along the chain until that data arrives at an ulti-
mate receiver. (Such topologies are common for event distribution services.) The 
Ice protocol permits all the intermediates to forward the data without requiring it 
to be unmarshaled: the intermediates can forward requests by simply copying 
blocks of binary data. With a “receiver makes it right” scheme, the intermediates 
would have to unmarshal and remarshal the data whenever the byte order of the 
next receiver in the chain differs from the byte order of the sender, which is ineffi-
cient.

Ice requires clients and servers that run on big-endian machines to incur the 
extra cost of byte swapping data into little-endian layout, but that cost is insignifi-
cant compared to the overall cost of sending or receiving a request.

37.2.1 Sizes

Many of the types involved in the data encoding, as well as several protocol 
message components, have an associated size or count. A size is a non-negative 
number. Sizes and counts are encoded in one of two ways:

1. If the number of elements is less than 255, the size is encoded as a single byte 
indicating the number of elements.

2. If the number of elements is greater than or equal to 255, the size is encoded as 
a byte with value 255, followed by an int indicating the number of elements.

Using this encoding to indicate sizes is significantly cheaper than always using an 
int to store the size, especially when marshaling sequences of short strings: 
counts of up to 254 require only a single byte instead of four. This comes at the 
expense of counts greater than 254, which require five bytes instead of four. 
However, for sequences or strings of length greater than 254, the extra byte is 
insignificant.
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37.2.2 Encapsulations
An encapsulation is used to contain variable-length data that an intermediate 
receiver may not be able to decode, but that the receiver can forward to another 
recipient for eventual decoding. An encapsulation is encoded as if it were the 
following structure:

struct Encapsulation {
    int size;
    byte major;
    byte minor;
    // [... size - 6 bytes ...]
};

The size member specifies the size of the encapsulation in bytes (including the 
size, major, and minor fields). The major and minor fields specify the encoding 
version of the data contained in the encapsulation (see Section 37.5.2). The 
version information is followed by size-6 bytes of encoded data.

All the data in an encapsulation is context-free, that is, nothing inside an 
encapsulation can refer to anything outside the encapsulation. This property 
allows encapsulations to be forwarded among address spaces as a blob of data.

Encapsulations can be nested, that is, contain other encapsulations.
An encapsulations can be empty, in which case its byte count is 6.

37.2.3 Slices
Exceptions and classes are subject to slicing if the receiver of a value only 
partially understands the received value (that is, only has knowledge of a base 
type, but not of the actual run-time derived type). To allow the receiver of an 
exception or class to ignore those parts of a value that it does not understand, 
exception and class values are marshaled as a sequence of slices (one slice for 
each level of the inheritance hierarchy). A slice is a byte count encoded as a fixed-
length four-byte integer, followed by the data for the slice. (The byte count 
includes the four bytes occupied by the count itself, so an empty slice has a byte 
count of four and no data.) The receiver of a value can skip over a slice by reading 
the byte count b, and then discarding the next b4 bytes in the input stream.

37.2.4 Basic Types
The basic types are encoded as shown in Table 37.1. Integer types (short, int, 
long) are represented as two’s complement numbers, and floating point types 
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(float, double) use the IEEE standard formats [6]. All numeric types use a little-
endian byte order.

37.2.5 Strings

Strings are encoded as a size (see Section 37.2.1), followed by the string contents 
in UTF-8 format [23]. Strings are not NUL-terminated. An empty string is 
encoded with a size of zero.

37.2.6 Sequences

Sequences are encoded as a size (see Section 37.2.1) representing the number of 
elements in the sequence, followed by the elements encoded as specified for their 
type.

37.2.7 Dictionaries

Dictionaries are encoded as a size (see Section 37.2.1) representing the number of 
key–value pairs in the dictionary, followed by the pairs. Each key–value pair is 
encoded as if it were a struct containing the key and value as members, in that 
order.

Table 37.1. Encoding for basic types.

Type Encoding

bool A single byte with value 1 for true, 0 for false

byte An uninterpreted byte

short Two bytes (LSB, MSB)

int Four bytes (LSB .. MSB)

long Eight bytes (LSB .. MSB)

float Four bytes (23-bit fractional mantissa, 8-bit expo-
nent, sign bit)

double Eight bytes (52-bit fractional mantissa, 11-bit expo-
nent, sign bit)
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37.2.8 Enumerators

Enumerated values are encoded depending on the number of enumerators:

• If the enumeration has 1 - 127 enumerators, the value is marshaled as a byte.

• If the enumeration has 128 - 32767 members, the value is marshaled as a 
short.

• If the enumeration has more than 32767 members, the value is marshaled as 
an int.

The value is the ordinal value of the corresponding enumerator, with the first 
enumerator value encoded as zero.

37.2.9 Structures

The members of a structure are encoded in the order they appear in the struct 
declaration, as specified for their types.

37.2.10 Exceptions

Exceptions are marshaled as shown in Figure 37.1

Figure 37.1. Marshaling format for exceptions.

Every exception instance is preceded by a single byte that indicates whether the 
exception uses class members: the byte value is 1 if any of the exception members 
are classes (or if any of the exception members, recursively, contain class 
members) and 0, otherwise.

Following the header byte, the exception is marshaled as a sequence of pairs: 
the first member of each pair is the type ID for an exception slice, and the second 
member of the pair is a slice containing the marshaled members of that slice. The 

Uses classes (bool)

Type ID (string)

Slice for members

… Repeating group: one pair of Type 
ID and slice containing members 
for each level of the inheritance 
hierarchy

Class instances
(optional)
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sequence of pairs is marshaled in derived-to-base order, with the most-derived 
slice first, and ending with the least-derived slice. Within each slice, data members 
are marshaled as for structures: in the order in which they are defined in the Slice 
definition.

Following the sequence of pairs, any class instances that are used by the 
members of the exception are marshaled. This final part is optional: it is present 
only if the header byte is 1. (See Section 37.2.11 for a detailed explanation of how 
class instances are marshaled.)

To illustrate the marshaling, consider the following exception hierarchy:

exception Base {
    int baseInt;
    string baseString;
};

exception Derived extends Base {
    bool derivedBool;
    string derivedString;
    double derivedDouble;
};

Assume that the exception members are initialized to the values shown in 
Table 37.2.

From Table 37.2, we can see that the total size of the members of Base is 10 bytes, 
and the total size of the members of Derived is 16 bytes. None of the exception 
members are classes. An instance of this exception has the on-the-wire representa-

Table 37.2. Member values of an exception of type Derived.

Member Type Value
Marshaled Size 

(in bytes)

baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8
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tion shown in Table 37.3. (The size, type, and byte offset of the marshaled repre-
sentation is indicated for each component.)

Note that the size of each string is one larger than the actual string length. This is 
because each string is preceded by a count of its number of bytes, as explained in 
Section 37.2.5.

The receiver of this sequence of values uses the header byte to decide whether 
it eventually must unmarshal any class instances contained in the exception (none 
in this example) and then examines the first type ID (::Derived). If the receiver 
recognizes that type ID, it can unmarshal the contents of the first slice, followed 
by the remaining slices; otherwise, the receiver reads the byte count that follows 
the unknown type (20) and then skips 204 bytes in the input stream, which is the 
start of the type ID for the second slice (::Base). If the receiver does not recog-
nize that type ID either, it again reads the byte count following the type ID (14), 
skips 144 bytes, and attempts to read another type ID. (This can happen only if 
client and server have been compiled with mismatched Slice definitions that 
disagree in the exception specification of an operation.) In this case, the receiver 
will eventually encounter an unmarshaling error, which it can report with a 
MarshalException.

Table 37.3. Marshaled representation of the exception in Table 37.2.

Marshaled Value Size in Bytes Type Byte offset

0 (no class members) 1 bool 0

"::Derived" (type ID) 10 string 1

20 (byte count for slice) 4 int 11

1 (derivedBool) 1 bool 15

"World!" (derivedString) 7 string 16

3.14 (derivedDouble) 8 double 23

"::Base" (type ID) 7 string 31

14 (byte count for slice) 4 int 38

99 (baseInt) 4 int 42

"Hello" (baseString) 6 string 46
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If an exception contains class members, these members are marshaled 
following the exception slices as described in the following section.

37.2.11 Classes

The marshaling for classes is complex, due to the need to deal with the pointer 
semantics for graphs of classes, as well as the need for the receiver to slice classes 
of unknown derived type. In addition, the marshaling for classes uses a type ID 
compression scheme to avoid repeatedly marshaling the same type IDs for large 
graphs of class instances.

Basic Marshaling Format

Classes are marshaled similar to exceptions: each instance is divided into a 
number of pairs containing a type ID and a slice (one pair for each level of the 
inheritance hierarchy) and marshaled in derived-to-base order. Only data members 
are marshaled—no information is sent that would relate to operations. Unlike 
exceptions, no header byte precedes a class. Instead, each marshaled class 
instance is preceded by a (non-zero) positive integer that provides an identity for 
the instance. The sender assigns this identity during marshaling such that each 
marshaled instance has a different identity. The receiver uses that identity to 
correctly reconstruct graphs of classes. The overall marshaling format for classes 
is shown in Figure 37.2.

Figure 37.2. Marshaling format for classes.

Class Type IDs

Unlike for exception type IDs, class type IDs are not simple strings. Instead, a 
class type ID is marshaled as a boolean followed by either a string or a size, to 
conserve bandwidth. To illustrate this, consider the following class hierarchy:

Class type ID

Slice for members

… Repeating group: one pair of Type 
ID and slice containing members 
for each level of the inheritance 
hierarchy

Identity (int)
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class Base {
    // ...
};

class Derived extends Base {
    // ...
};

The type IDs for the class slices are ::Derived and ::Base. Suppose the sender 
marshals three instances of ::Derived as part of a single request. (For example, 
two instances could be out-parameters and one instance could be the return value.)

The first instance that is sent on the wire contains the type IDs ::Derived and 
::Base preceding their respective slices. Because marshaling proceeds in derived-
to-base order, the first type ID that is sent is ::Derived. Every time the sender 
sends a type ID that it has not sent previously in the same request, it sends the 
boolean value false, followed by the type ID. Internally, the sender also assigns 
a unique positive number to each type ID. These numbers start at 1 and increment 
by one for each type ID that has not been marshaled previously. This means that 
the first type ID is encoded as the boolean value false, followed by ::Derived, 
and the second type ID is encoded as the boolean value false, followed by 
::Base.

When the sender marshals the remaining two instances, it consults a lookup 
table of previously-marshaled type IDs. Because both type IDs were sent previ-
ously in the same request (or reply), the sender encodes all further occurrences of 
::Derived as the value true followed by the number 1 encoded as a size (see 
Section 37.2.1), and it encodes all further occurrences of ::Base as the value 
true followed by the number 2 encoded as a size.

When the receiver reads a type ID, it first reads its boolean marker:

• If the boolean is false, the receiver reads a string and enters that string into a 
lookup table that maps integers to strings. The first new class type ID received 
in a request is numbered 1, the second new class type ID is numbered 2, and 
so on.

• If the boolean value is true, the receiver reads a number encoded as a size 
and uses it to retrieve the corresponding class type ID from the lookup table.

Note that this numbering scheme is re-established for each new encapsulation. (As 
we will see in Section 37.3, parameters, return values, and exceptions are always 
marshaled inside an enclosing encapsulation.) For subsequent or nested encapsu-
lation, the numbering scheme restarts, with the first new type ID being assigned 
the value 1. In other words, each encapsulation uses its own independent 
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numbering scheme for class type IDs to satisfy the constraint that encapsulations 
must not depend on their surrounding context.

Encoding class type IDs in this way provides significant savings in bandwidth: 
whenever an ID is marshaled a second and subsequent time, it is marshaled as a 
two-byte value (assuming no more than 254 distinct type IDs per request) instead 
of as a string. Because type IDs can be long, especially if you are using nested 
modules, the savings are considerable.

Simple Class Marshaling Example

To make the preceding discussion more concrete, consider the following class 
definitions:

interface SomeInterface {
     void op1();
};

class Base {
    int baseInt;
    void op2();
    string baseString;
};

class Derived extends Base implements SomeInterface {
    bool derivedBool;
    string derivedString;
    void op3();
    double derivedDouble;
};

Note that Base and Derived have operations, and that Derived also implements 
the interface SomeInterface. Because marshaling of classes is concerned with 
state, not behavior, the operations op1, op2, and op3 are simply ignored during 
marshaling and the on-the-wire representation is as if the classes had been defined 
as follows:

class Base {
    int baseInt;
    string baseString;
};

class Derived extends Base {
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    bool derivedBool;
    string derivedString;
    double derivedDouble;
};

Suppose the sender marshals two instances of Derived (for example, as two in-
parameters in the same request). The member values are as shown in Table 37.4.

The sender arbitrarily assigns a non-zero identity (see page 1304) to each 
instance. Typically, the sender will simply consecutively number the instances 
starting at 1. For this example, assume that the two instances have the identities 1 

Table 37.4. Member values for two instances of class Derived.

Member Type Value
Marshaled Size 

(in bytes)

First instance baseInt int 99 4

baseString string "Hello" 6

derivedBool bool true 1

derivedString string "World!" 7

derivedDouble double 3.14 8

Second 
instance

baseInt int 115 4

baseString string "Cave" 5

derivedBool bool false 1

derivedString string "Canem" 6

derivedDouble double 6.32 8
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and 2. The marshaled representation for the two instances (assuming that they are 
marshaled immediately following each other) is shown in Table 37.5.

Table 37.5. Marshaled representation of the two instances in Table 37.4.

Marshaled Value Size in Bytes Type Byte offset

1 (identity) 4 int 0

0 (marker for class type ID) 1 bool 4

"::Derived" (class type ID) 10 string 5

20 (byte count for slice) 4 int 15

1 (derivedBool) 1 bool 19

"World!" (derivedString) 7 string 20

3.14 (derivedDouble) 8 double 27

0 (marker for class type ID) 1 bool 35

"::Base" (type ID) 7 string 36

14 (byte count for slice) 4 int 43

99 (baseInt) 4 int 47

"Hello" (baseString) 6 string 51

0 (marker for class type ID) 1 bool 57

"::Ice::Object" (class type ID) 14 string 58

5 (byte count for slice) 4 int 72

0 (number of dictionary entries) 1 size 76

2 (identity) 4 int 77

1 (marker for class type ID) 1 bool 81

1 (class type ID) 1 size 82

19 (byte count for slice) 4 int 83

0 (derivedBool) 1 bool 87

"Canem" (derivedString) 6 string 88
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Note that, because classes (like exceptions) are sent as a sequence of slices, the 
receiver of a class can slice off any derived parts of a class it does not understand. 
Also note that (as shown in Table 37.5) each class instance contains three slices. 
The third slice is for the type ::Ice::Object, which is the base type of all 
classes. The class type ID ::Ice::Object has the number 3 in this example 
because it is the third distinct type ID that is marshaled by the sender. (See entries 
at byte offsets 58 and 118 in Table 37.5.) All class instances have this final slice of 
type ::Ice::Object.

Marshaling a separate slice for ::Ice::Object dates back to Ice versions 1.3 
and earlier. In those versions, classes carried a facet map that was marshaled as if 
it were defined as follows:

module Ice {
    class Object;

    dictionary<string, Object> FacetMap;

    class Object {
        FacetMap facets; // No longer exists
    };
};

6.32 (derivedDouble) 8 double 94

1 (marker for class type ID) 1 bool 102

2 (class type ID) 1 size 103

13 (byte count for slice) 4 int 104

115 (baseInt) 4 int 108

"Cave" (baseString) 5 string 112

1 (marker for class type ID) 1 bool 117

3 (class type ID) 1 size 118

5 (byte count for slice) 4 int 119

0 (number of dictionary entries) 1 size 123

Table 37.5. Marshaled representation of the two instances in Table 37.4.

Marshaled Value Size in Bytes Type Byte offset
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As of Ice version 1.4, this facet map is always empty, that is, the count of entries 
for the dictionary that is marshaled in the ::Ice::Object slice is always zero. If a 
receiver receives a class instance with a non-empty facet map, it must throw a 
MarshalException.

Note that if a class has no data members, a type ID and slice for that class is 
still marshaled. The byte count of the slice will be 4 in this case, indicating that 
the slice contains no data.

Marshaling Pointers

Classes support pointer semantics, that is, you can construct graphs of classes. It 
follows that classes can arbitrarily point at each other. The class identity (see 
page 1304) is used to distinguish instances and pointers as follows:

• A class identity of 0 denotes a null pointer.

• A class identity > 0 precedes the marshaled contents of an instance (see 
page 1304).

• A class identity < 0 denotes a pointer to an instance.

Identity values less than zero are pointers. For example, if the receiver receives the 
identity 57, this means that the corresponding class member that is currently 
being unmarshaled will eventually point at the instance with identity 57.

For structures, classes, exceptions, sequences, and dictionary members that do 
not contain class members, the Ice protocol uses a simple depth-first traversal 
algorithm to marshal the members. For example, structure members are marshaled 
in the order of their Slice definition; if a structure member itself is of complex 
type, such as a sequence, the sequence is marshaled in toto where it appears inside 
its enclosing structure. For complex types that contain class members, this depth-
first marshaling is suspended: instead of marshaling the actual class instance at 
this point, a negative identity is marshaled that indicates which class instance that 
member must eventually denote. For example, consider the following definitions:

class C {
    // ...
};

struct S {
    int i;
    C firstC;
    C secondC;
    C thirdC;
    int j;
};
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Suppose we initialize a structure of type S as follows:

S myS;
myS.i = 99;
myS.firstC = new C;             // New instance
myS.secondC = 0;                // null
myS.thirdC = myS.firstC;        // Same instance as previously
myS.j = 100;

When this structure is marshaled, the contents of the three class members are not 
marshaled in-line. Instead, the sender marshals the negative identities of the corre-
sponding instances. Assuming that the sender has assigned the identity 78 to the 
instance assigned to myS.firstC, myS is marshaled as shown in Table 37.6.

Note that myS.firstC and myS.thirdC both use the identity 78. This 
allows the receiver to recognize that firstC and thirdC point at the same class 
instance (rather than at two different instances that happen to have the same 
contents).

Marshaling the negative identities instead of the contents of an instance allows 
the receiver to accurately reconstruct the class graph that was sent by the sender. 
However, this begs the question of when the actual instances are to be marshaled 
as described at the beginning of this section. As we will see in Section 37.3, 
parameters and return values are marshaled as if they were members of a struc-
ture. For example, if an operation invocation has five input parameters, the client 
marshals the five parameters end-to-end as if they were members of a single struc-
ture. If any of the five parameters are class instances, or are of complex type 
(recursively) containing class instances, the sender marshals the parameters in 
multiple passes: the first pass marshals the parameters end-to-end, using the usual 
depth-first algorithm:

Table 37.6. Marshaled representation of myS.

Marshaled Value Size in Bytes Type Byte offset

99 (myS.i) 4 int 0

-78 (myS.firstC) 4 int 4

0 (myS.secondC) 4 int 8

-78 (mys.thirdC) 4 int 12

100 (myS.j) 4 int 16
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• If the sender encounters a class member during marshaling, it checks whether 
it has marshaled the same instance previously for the current request or reply:

• If the instance has not been marshaled before, the sender assigns a new iden-
tity to the instance and marshals the negative identity.

• Otherwise, if the instance was marshaled previously, the sender sends the 
same negative identity that is previously sent for that instance.

In effect, during marshaling, the sender builds an identity table that is indexed 
by the address of each instance; the lookup value for the instance is its iden-
tity.

Once the first pass ends, the sender has marshaled all the parameters, but has not 
yet marshaled any of the class instances that may be pointed at by various param-
eters or members. The identity table at this point contains all those instances for 
which negative identities (pointers) were marshaled, so whatever is in the identity 
table at this point are the classes that the receiver still needs. The sender now 
marshals those instances in the identity table, but with positive identities and 
followed by their contents, as described on page 1306. The outstanding instances 
are marshaled as a sequence, that is, the sender marshals the number of instances 
as a size (see Section 37.2.1), followed by the actual instances.

In turn, the instances just sent may themselves contain class members; when 
those class members are marshaled, the sender assigns an identity to new 
instances or uses a negative identity for previously marshaled instances as usual. 
This means that, by the end of the second pass, the identity table may have grown, 
necessitating a third pass. That third pass again marshals the outstanding class 
instances as a size followed by the actual instances. The third pass contains all 
those instances that were not marshaled in the second pass. Of course, the third 
pass may trigger yet more passes until, finally, the sender has sent all outstanding 
instances, that is, marshaling is complete. At this point, the sender terminates the 
sequence of passes by marshaling an empty sequence (the value 0 encoded as a 
size).

To illustrate this with an example, consider the definitions shown in 
Section 4.11.7 on page 140 once more:

enum UnaryOp { UnaryPlus, UnaryMinus, Not };
enum BinaryOp { Plus, Minus, Multiply, Divide, And, Or };

class Node {
    idempotent long eval();
};
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class UnaryOperator extends Node {
    UnaryOp operator;
    Node operand;
};

class BinaryOperator extends Node {
    BinaryOp op;
    Node operand1;
    Node operand2;
};

class Operand {
    long val;
};

These definitions allow us to construct expression trees. Suppose the client initial-
izes a tree to the shape shown in Figure 37.3, representing the expression
. The values outside the nodes are the identities assigned by the 
client.

Figure 37.3. Expression tree for the expression . Both p1 and p2 denote the root 
node.

The client passes the root of the tree to the following operation in the parameters 
p1 and p2, as shown on page 1313. (Even though it does not make sense to pass 
the same parameter value twice, we do it here for illustration purposes):

interface Tree {
    void sendTree(Node p1, Node p2);
};
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The client now marshals the two parameters p1 and p2 to the server, resulting in 
the value -1 being sent twice in succession. (The client arbitrarily assigns an 
identity to each node. The value of the identity does not matter, as long as each 
node has a unique identity. For simplicity, the Ice implementation numbers 
instances with a counter that starts counting at 1 and increments by one for each 
unique instance.) This completes the marshaling of the parameters and results in a 
single instance with identity 1 in the identity table. The client now marshals a 
sequence containing a single element, node 1, as described on page 1306. In turn, 
node 1 results in nodes 2 and 3 being added to the identity table, so the next 
sequence of nodes contains two elements, nodes 2 and 3. The next sequence of 
nodes contains nodes 4, 5, 6, and 7, followed by another sequence containing 
nodes 8 and 9. At this point, no more class instances are outstanding, and the 
client marshals an empty sequence to indicate to the receiver that the final 
sequence has been marshaled.

Within each sequence, the order in which class instances are marshaled is 
irrelevant. For example, the third sequence could equally contain nodes 7, 6, 4, 
and 5, in that order. What is important here is that each sequence contains nodes 
that are an equal number of “hops” away from the initial node: the first sequence 
contains the initial node(s), the second sequence contains all nodes that can be 
reached by traversing a single link from the initial node(s), the third sequence 
contains all nodes that can be reached by traversing two links from the initial 
node(s), and so on.
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Now consider the same example once more, but with different parameter 
values for sendTree: p1 denotes the root of the tree, and p2 denotes the  operator 
of the right-hand sub-tree, as shown in Figure 37.4.

Figure 37.4. The expression tree of Figure 37.3, with p1 and p2 denoting different nodes.

The graph that is marshaled is exactly the same, but instances are marshaled in a 
different order and with different identities:

• During the first pass, the client sends the identities -1 and -2 for the param-
eter values.

• The second pass marshals a sequence containing nodes 1 and 2.

• The third pass marshals a sequence containing nodes 3, 4, and 5.

• The fourth pass marshals a sequence containing nodes 6 and 7.

• The fifth pass marshals a sequence containing nodes 8 and 9.

• The final pass marshals an empty sequence.

In this way, any graph of nodes can be transmitted (including graphs that contain 
cycles). The receiver reconstructs the graph by filling in a patch table during 
unmarshaling:

• Whenever the receiver unmarshals a negative identity, it adds that identity to a 
patch table; the lookup value is the memory address of the parameter or 
member that eventually will point at the corresponding instance.

• Whenever the receiver unmarshals an actual instance, it adds the instance to 
an unmarshaled table; the lookup value is the memory address of the instanti-
ated class. The receiver then uses the address of the instance to patch any 
parameters or members with the actual memory address.
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Note that the receiver may receive negative identities that denote class instances 
that have been unmarshaled already (that is, point “backward” in the unmar-
shaling stream), as well as instances that are yet to be unmarshaled (that is, point 
“forward” in the unmarshaling stream). Both scenarios are possible, depending on 
the order in which instances are marshaled, as well as their in-degree.

To provide another example, consider the following definition:

class C {
    // ...
};

sequence<C> CSeq;

Suppose the client marshals a sequence of 100 C instances to the server, with each 
instance being distinct. (That is, the sequence contains 100 pointers to 100 
different instances, not 100 pointers to the same single instance.) In that case, the 
sequence is marshaled as a size of 100, followed by 100 negative identities, 
-1 to -100. Following that, the client marshals a single sequence containing the 
100 instances, each instance with its positive identity in the range 1 to 100, and 
completes by marshaling an empty sequence.

On the other hand, if the client sends a sequence of 100 elements that all point 
to the same single class instance, the client marshals the sequence as a size of 100, 
followed by 100 negative identities, all with the value -1. The client then 
marshals a sequence containing a single element, namely instance 1, and 
completes by marshaling an empty sequence.

Class Graphs and Slicing

It is important to note that when a graph of class instances is sent, it always forms 
a connected graph. However, when the receiver rebuilds the graph, it may end up 
with a disconnected graph, due to slicing. Consider:

class Base {
    // ...
};

class Derived extends Base {
    // ...
    Base b;
};
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interface Example {
    void op(Base p);
};

Suppose the client has complete type knowledge, that is, understands both types 
Base and Derived, but the server only understands type Base, so the derived part 
of a Derived instance is sliced. The client can instantiate classes to be sent as 
parameter p as follows:

DerivedPtr p = new Derived;
p->b = new Derived;
ExamplePrx e = ...;
e->op(p);

As far as the client is concerned, the graph looks like the one shown in 
Figure 37.5.

Figure 37.5. Sender-side view of a graph containing derived instances.

However, the server does not understand the derived part of the instances and 
slices them. Yet, the server unmarshals all the class instances, leading to the situa-
tion where the class graph has become disconnected, as shown in Figure 37.6.

Figure 37.6. Receiver-side view of the graph in Figure 37.5.

Of course, more complex situations are possible, such that the receiver ends up 
with multiple disconnected graphs, each containing many instances.

Exceptions with Class Members

If an exception contains class members, its header byte (see page 1301) is 1 and 
the exception members are followed by the outstanding class instances as 
described on the preceding pages, that is, the actual exception members are 
followed by one or more sequences that contain the outstanding class instances, 
followed by an empty sequence that serves as an end marker.

p

p
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37.2.12 Interfaces
Interfaces can be marshaled by value (see Section 4.11.12). For an interface 
marshaled by value (as opposed to a class instance derived from that interface), 
only the type ID of the most-derived interface is encoded. Here are the Slice defi-
nitions once more:

interface Base { /* ... */ };

interface Derived extends Base { /* ... */ };

interface Example {
    void doSomething(Base b);
};

If the client passes a class instance to doSomething that does not have a Slice defi-
nition (but derives from Derived), the on-the-wire representation of the interface 
is as follows:

37.2.13 Proxies
The first component of an encoded proxy is a value of type Ice::Identity. If the 
proxy is a nil value, the category and name members are empty strings, and no 
additional data is encoded. The encoding for a non-null proxy consists of general 
parameters followed by endpoint parameters.

Table 37.7. Marshaled representation of a Derived instance.

Marshaled Value Size in Bytes Type Byte offset

1 (identity) 4 int 0

0 (marker for class type ID) 1 bool 4

"::Derived" (class type ID) 10 string 5

4 (byte count for slice) 4 int 15

0 (marker for class type ID) 1 bool 19

"::Ice::Object" (class type ID) 14 string 20

5 (byte count for slice) 4 int 34

0 (number of dictionary entries) 1 size 38
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General Proxy Parameters

The general proxy parameters are encoded as if they were members of the 
following structure:

struct ProxyData {
    Ice::Identity id;
    Ice::StringSeq facet;
    byte mode;
    bool secure;
};

The general proxy parameters are described in Table 37.8.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a proxy with a facet field with more than 
one element, it must throw a ProxyUnmarshalException.

Endpoint Parameters

A proxy optionally contains an endpoint list (see Appendix E) or an adapter iden-
tifier, but not both.

• If a proxy contains endpoints, they are encoded immediately following the 
general parameters. A size specifying the number of endpoints is encoded first 
(see Section 37.2.1), followed by the endpoints. Each endpoint is encoded as a 
short specifying the endpoint type (1=TCP, 2=SSL, 3=UDP), followed by 
an encapsulation (see Section 37.2.2) of type-specific parameters. The type-
specific parameters for TCP, UDP, and SSL are presented in the sections that 
follow.

Table 37.8. General proxy parameters.

Parameter Description

id The object identity

facet The facet name (zero- or one-element sequence)

mode The proxy mode (0=twoway, 1=oneway, 2=batch oneway, 
3=datagram, 4=batch datagram)

secure true if secure endpoints are required, otherwise false
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• If a proxy does not have endpoints, a single byte with value 0 immediately 
follows the general parameters and a string representing the object adapter 
identifier is encoded immediately following the zero byte.

Type-specific endpoint parameters are encapsulated because a receiver may not be 
capable of decoding them. For example, a receiver can only decode SSL endpoint 
parameters if it is configured with the SSL plug-in (see Chapter 41). However, the 
receiver must be able to re-encode the proxy with all of its original endpoints, in 
the order they were received, even if the receiver does not understand the type-
specific parameters for an endpoint. Encapsulation of the parameters allows the 
receiver to do this.

TCP Endpoint Parameters

A TCP endpoint is encoded as an encapsulation containing the following struc-
ture:

struct TCPEndpointData {
    string host;
    int port;
    int timeout;
    bool compress;
};

The endpoint parameters are described in Table 37.9.

See Section 37.4 for more information on compression.

Table 37.9. TCP endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

timeout The timeout in milliseconds for socket operations

compress true if compression should be used (if possible), other-
wise false
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UDP Endpoint Parameters

A UDP endpoint is encoded as an encapsulation containing the following struc-
ture:

struct UDPEndpointData {
    string host;
    int port;
    byte protocolMajor;
    byte protocolMinor;
    byte encodingMajor;
    byte encodingMinor;
    bool compress;
};

The endpoint parameters are described in Table 37.10.

See Section 37.4 for more information on compression.

SSL Endpoint Parameters

An SSL endpoint is encoded as an encapsulation containing the following struc-
ture:

Table 37.10. UDP endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

protocolMajor The major protocol version supported by the endpoint

protocolMinor The highest minor protocol version supported by the endpoint

encodingMajor The major encoding version supported by the endpoint

encodingMinor The highest minor encoding version supported by the endpoint

compress true if compression should be used (if possible), otherwise 
false
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struct SSLEndpointData {
    string host;
    int port;
    int timeout;
    bool compress;
};

The endpoint parameters are described in Table 37.11.

See Section 37.4 for more information on compression.

37.3 Protocol Messages

The Ice protocol uses five protocol messages:

• Request (from client to server)

• Batch request (from client to server)

• Reply (from server to client)

• Validate connection (from server to client)

• Close connection (client to server or server to client)

Of these messages, validate and close connection only apply to connection- 
oriented transports.

As with the data encoding described in Section 37.2, protocol messages have 
no alignment restrictions. Each message consists of a message header and (except 
for validate and close connection) a message body that immediately follows the 
header.

Table 37.11. SSL endpoint parameters.

Parameter Description

host The server host (a host name or IP address)

port The server port (1-65535)

timeout The timeout in milliseconds for socket operations

compress true if compression should be used (if possible), other-
wise false
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37.3.1 Message Header
Each protocol message has a 14-byte header that is encoded as if it were the 
following structure:

struct HeaderData {
    int  magic;
    byte protocolMajor;
    byte protocolMinor;
    byte encodingMajor;
    byte encodingMinor;
    byte messageType;
    byte compressionStatus;
    int  messageSize;
};

The members are described in Table 37.12.

Table 37.12. Message header members.

Member Description

magic A four-byte magic number consisting of the ASCII-
encoded values of ‘I’, ‘c’, ‘e’, ‘P’ (0x49, 0x63, 0x65, 
0x50)

protocolMajor The protocol major version number

protocolMinor The protocol minor version number

encodingMajor The encoding major version number

encodingMinor The encoding minor version number

messageType The message type

compressionStatus The compression status of the message (see Section 37.4)

messageSize The size of the message in bytes, including the header
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Currently, both the protocol and the encoding are at version 1.0. The valid 
message types are shown in Table 37.13.

The encoding for these message bodies of each of these message types is 
described in the sections that follow.

37.3.2 Request Message Body
A request message contains the data necessary to perform an invocation on an 
object, including the identity of the object, the operation name, and input parame-
ters. A request message is encoded as if it were the following structure:

struct RequestData {
    int requestId;
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;
    byte mode;
    Ice::Context context;
    Encapsulation params;
};

Table 37.13. Message types.

Message Type Encoding

Request 0

Batch request 1

Reply 2

Validate connection 3

Close connection 4
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The members are described in Table 37.14.

The request identifier zero (0) is reserved for use in oneway requests and indicates 
that the server must not send a reply to the client. A non-zero request identifier 
must uniquely identify the request on a connection, and must not be reused while 
a reply for the identifier is outstanding.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a request with a facet field with more than 
one element, it must throw a MarshalException.

37.3.3 Batch Request Message Body

A batch request message contains one or more oneway requests, bundled together 
for the sake of efficiency. A batch request message is encoded as integer (not a 
size) that specifies the number of requests in the batch, followed by the corre-
sponding number of requests, encoded as if each request were the following struc-
ture:

struct BatchRequestData {
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;

Table 37.14. Request members.

Member Description

requestId The request identifier

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name

mode A byte representation of Ice::OperationMode (0=nor-
mal, 2=idempotent)

context The invocation context

params The encapsulated input parameters, in order of declaration
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    byte mode;
    Ice::Context context;
    Encapsulation params;
};

The members are described in Table 37.15.

Note that no request ID is necessary for batch requests because only oneway invo-
cations can be batched.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a batch request with a facet field with more 
than one element, it must throw a MarshalException.

37.3.4 Reply Message Body

A reply message body contains the results of a twoway invocation, including any 
return value, out-parameters, or exception. A reply message body is encoded as if 
it were the following structure:

struct ReplyData {
    int requestId;
    byte replyStatus;
    Encapsulation body; // messageSize - 19 bytes
};

Table 37.15. Batch request members.

Member Description

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name

mode A byte representation of Ice::OperationMode

context The invocation context

params The encapsulated input parameters, in order of declaration
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The first four bytes of a reply message body contain a request ID. The request ID 
matches an outgoing request and allows the requester to associate the reply with 
the original request (see Section 37.3.2).

The byte following the request ID indicates the status of the request; the 
remainder of the reply message body following the status byte is an encapsulation 
whose contents depend on the status value. The possible status values are shown 
in Table 37.16.

Reply Status 0: Success

A successful reply message is encoded as an encapsulation containing out-param-
eters (in the order of declaration), followed by the return value for the invocation, 
encoded according to their types as specified in Section 37.2. If an operation 
declares a void return type and no out-parameters, an empty encapsulation is 
encoded.

Reply Status 1: User exception

A user exception reply message contains an encapsulation containing the user 
exception, encoded as described in Section 37.2.10.

Reply Status 2: Object does not exist

If the target object does not exist, the reply message is encoded as if it were the 
following structure inside an encapsulation:

Table 37.16. Reply status.

Reply status Encoding

Success 0

User exception 1

Object does not exist 2

Facet does not exist 3

Operation does not exist 4

Unknown Ice local exception 5

Unknown Ice user exception 6

Unknown exception 7
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struct ReplyData {
    Ice::Identity id;
    Ice::StringSeq facet;
    string operation;
};

The members are described in Table 37.17.

The facet field has either zero elements or one element. An empty sequence 
denotes the default facet, and a one-element sequence provides the facet name in 
its first member. If a receiver receives a reply with a facet field with more than 
one element, it must throw a MarshalException.

Reply Status 3: Facet does not exist

If the target object does not support the facet encoded in the request message, the 
reply message is encoded as for reply status 2.

Reply Status 4: Operation does not exist

If the target object does not support the operation encoded in the request message, 
the reply message is encoded as for reply status 2.

Reply Status 5: Unknown Ice local exception

The reply message for an unknown Ice local exception is encoded as an encapsu-
lation containing a single string that describes the exception.

Reply Status 6: Unknown Ice user exception

The reply message for an unknown Ice user exception is encoded as an encapsula-
tion containing a single string that describes the exception.

Table 37.17. Invalid object reply members.

Member Description

id The object identity

facet The facet name (zero- or one-element sequence)

operation The operation name
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Reply Status 7: Unknown exception

The reply message for an unknown exception is encoded as an encapsulation 
containing a single string that describes the exception.

37.3.5 Validate Connection Message

A server sends a validate connection message when it receives a new connection.1 
The message indicates that the server is ready to receive requests; the client must 
not send any messages on the connection until it has received the validate connec-
tion message from the server. No reply to the message is expected by the server.

The purpose of the validate connection message is two-fold:

• It informs the client of the protocol and encoding versions that are supported 
by the server (see Section 37.5.3).

• It prevents the client from writing a request message to its local transport 
buffers until after the server has acknowledged that it can actually process the 
request. This avoids a race condition caused by the server’s TCP/IP stack 
accepting connections in its backlog while the server is in the process of shut-
ting down: if the client were to send a request in this situation, the request 
would be lost but the client could not safely re-issue the request because that 
might violate at-most-once semantics.

The validate connection message guarantees that a server is not in the middle 
of shutting down when the server’s TCP/IP stack accepts an incoming connec-
tion and so avoids the race condition.

The message header described in Section 37.3.1 on page 1323 comprises the 
entire validate connection message. The compression status of a validate connec-
tion message is always 0.

37.3.6 Close Connection Message

A close connection message is sent when a peer is about to gracefully shutdown a 
connection.2 The message header described in Section 37.3.1 comprises the entire 
close connection message. The compression status of a close connection message 
is always 0.

1. Validate connection messages are only used for connection-oriented transports.

2. Close connection messages are only used for connection-oriented transports.
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Either client or server can initiate connection closure. On the client side, 
connection closure is triggered by Active Connection Management (ACM) (see 
Section 36.4), which automatically reclaims connections that have been idle for 
some time.

This means that connection closure can be initiated at will by either end of a 
connection; most importantly, no state is associated with a connection as far as the 
object model or application semantics are concerned.

The client side can close a connection whenever no reply for a request is 
outstanding on the connection. The sequence of events is:

1. The client sends a close connection message.

2. The client closes the writing end of the connection.

3. The server responds to the client’s close connection message by closing the 
connection.

The server side can close a connection whenever no operation invocation is in 
progress that was invoked via that connection. This guarantees that the server will 
not violate at-most-once semantics: an operation, once invoked in a servant, is 
allowed to complete and its results are returned to the client. Note that the server 
can close a connection even after it has received a request from the client, 
provided that the request has not yet been passed to a servant. In other words, if 
the server decides that it wants to close a connection, the sequence of events is:

1. The server discards all incoming requests on the connection.

2. The server waits until all still executing requests have completed and their 
results have been returned to the client.

3. The server sends a close connection message to the client.

4. The server closes its writing end of the connection.

5. The client responds to the server’s close connection message by closing both 
its reading and writing ends of the connection.

6. If the client has outstanding requests at the time it receives the close connec-
tion message, it re-issues these requests on a new connection. Doing so is 
guaranteed not to violate at-most-once semantics because the server guaran-
tees not to close a connection while requests are still in progress on the server 
side.
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37.3.7 Protocol State Machine
From a client’s perspective, the Ice protocol behaves according to the state 
machine shown in Figure 37.7.

Figure 37.7. Protocol state machine.

To summarize, a new connection is inactive until a validate connection message 
(see Section 37.3.5) has been received by the client, at which point the active state 
is entered. The connection remains in the active state until it is shut down, which 
can occur when there are no more proxies using the connection, or after the 
connection has been idle for a while. At this point, the connection is gracefully 
closed, meaning that a close connection message is sent (see Section 37.3.6), and 
the connection is closed.

37.3.8 Disorderly Connection Closure
Any violation of the protocol or encoding rules results in a disorderly connection 
closure: the side of the connection that detects a violation unceremoniously closes 
it (without sending a close connection message or similar). There are many poten-
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tial error conditions that can lead to disorderly connection closure; for example, 
the receiver might detect that a message has a bad magic number or incompatible 
version, receive a reply with an ID that does not match that of an outstanding 
request, receive a validate connection message when it should not, or find illegal 
data in a request (such as a negative size, or a size that disagrees with the actual 
data that was unmarshaled).

37.4 Compression

Compression is an optional feature of the Ice protocol; whether it is used for a 
particular message is determined by several factors:

1. Compression may not be supported on all platforms or in all language 
mappings.

2. Compression can be used in a request or batch request only if the endpoint 
advertises the ability to accept compressed messages (see Section 37.2.13).

3. For efficiency reasons, the Ice protocol engine does not compress messages 
smaller than 100 bytes.3

If compression is used, the entire message excluding the header is compressed 
using the bzip2 algorithm [16]. The messageSize member of the message header 
therefore reflects the size of the compressed message, including the uncompressed 
header, plus an additional four bytes (see page 1334).

3. A compliant implementation of the protocol is free to compress messages that are smaller than 
100 bytes—the choice is up to the protocol implementation.
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The compressionStatus field of the message header (see Section 37.3.1) 
indicates whether a message is compressed and whether the sender can accept a 
compressed reply, as shown in Table 37.18.

• A compression status of 0 indicates that the message is not compressed and, 
moreover, that the sender of this message cannot accept a compressed reply. A 
client that does not support compression always uses this value. A client that 
supports compression sets the value to 0 if the endpoint via which the request 
is dispatched indicates that it does not support compression.

A server uses this value for uncompressed replies.

• A compression status of 1 indicates that the message is not compressed, but 
that the server should return a compressed reply (if any). A client uses this 
value if the endpoint via which the request is dispatched indicates that it 
supports compression, but the client has decided not to use compression for 
this particular request (presumably because the request is too small, so 
compression does not provide any saving).

This value applies only to request and batch request messages.

• A compression status of 2 indicates that the message is compressed and that 
the server is free to reply with a compressed message (but need not reply with 
a compressed message). A client that supports compression (obviously) sets 
this value only if the endpoint via which the request is dispatched indicates 
that it supports compression.

A server uses this value for compressed replies.

The message body of a compressed request, batch request, or reply message is 
encoded by first writing the size of the uncompressed message (including its 

Table 37.18. Compression status values.

Reply status Encoding Applies to

Message is uncompressed, sender cannot 
accept a compressed reply.

0 Request, Batch Request, 
Reply, Validate Connec-
tion, Close Connection

Message is uncompressed, sender can 
accept a compressed reply.

1 Request, Batch Request

Message is compressed and sender can 
accept a compressed reply

2 Request, Batch Request, 
Reply
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header) as four-byte integer, followed by the compressed message body 
(excluding the header). It follows that the size of a compressed message is 
14 bytes for the header, plus four bytes to record the size of the uncompressed 
message, plus the number of bytes occupied by the compressed message body 
(encoded as specified in Sections 37.3.2 through 37.3.4). Writing the uncom-
pressed message size prior to the body enables the receiver to allocate a buffer that 
is large enough to accomodate the uncompressed message body.

Note that compression is likely to improve performance only over lower-speed 
links, for which bandwidth is the overall limiting factor. Over high-speed LAN 
links, the CPU time spent on compressing and uncompressing messages is longer 
than the time it takes to just send the uncompressed data.

37.5 Protocol and Encoding Versions

As we saw in the preceding sections, both the Ice protocol and encoding have 
separate major and minor version numbers. Separate versioning of protocol and 
encoding has the advantage that neither depends on the other: any version of the 
Ice protocol can be used with any version of the encoding, so they can evolve 
independently. (For example, Ice protocol version 1.1 could use encoding version 
2.3, and vice versa.)

The Ice versioning mechanism provides the maximum possible amount of 
interoperability between clients and servers that use different versions of the Ice 
run time. In particular, older deployed clients can communicate with newer 
deployed servers and vice versa, provided that the message contents use types that 
are understandable to both sides.

For an example, assume that a later version of Ice were to introduce a new 
Slice keyword and data type, such as complex, for complex numbers. This would 
require a new minor version number for the encoding; let us assume that 
version 1.1 of the encoding is identical to the 1.0 encoding but, in addition, 
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supports the complex type. We now have four possible combinations of client and 
server encoding versions:

As you can see, interoperability is provided to the maximum extent possible. If 
both client and server are at version 1.1, they can obviously exchange messages 
and will use encoding version 1.1. For version 1.0 clients and servers, obviously 
only operations that do not involve complex parameters can be invoked (because 
at least one of client and server do not know about the new complex type) and 
messages are exchanged using encoding version 1.0.

37.5.1 Version Ground Rules

For versioning of the protocol and encoding to be possible, all versions (present 
and future) of the Ice run time adhere to a few ground rules:

1. Encapsulations always have a six-byte header; the first four bytes are the size 
of the encapsulation (including the size of the header), followed by two bytes 
that indicate the major and minor version. How to interpret the remainder of 
the encapsulation depends on the major and minor version.

2. The first eight bytes of a message header always contain the magic number ‘I’, 
‘c’, ‘e’, ‘P’, followed by four bytes of version information (two bytes for the 
protocol major and minor number, and two bytes of the encoding major and 
minor number). How to interpret the remainder of the header and the message 
body depends on the major and minor version.

These ground rules ensure that all current and future versions of the Ice run time 
can at least identify the version and size of an encapsulation and a message. This 
is particularly important for message switches such as IceStorm (see Chapter 44); 

Table 37.19. Interoperability for different versions.

Client 
Version

Server 
Version

Operation with 
complex Parameter

Operation without 
complex Parameter

1.0 1.0 N/A ✔

1.1 1.0 N/A ✔

1.0 1.1 N/A ✔

1.1 1.1 ✔ ✔
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by keeping the version and size information in a fixed format, it is possible to 
forward messages that are, for example, at version 2.0, even though the message 
switch itself may still be at version 1.0.

37.5.2 Version Compatibility Rules

To establish whether a particular protocol version is compatible with another 
protocol version (or a particular encoding version is compatible with another 
encoding version), the following rules apply:

1. Different major versions are incompatible. There is no obligation on either 
clients or servers to support more than a single major version. For example, a 
server with major version 2 is under no obligation to also support major 
version 1.

This rule exists to permit the Ice run time to eventually get rid of old 
versions—without such a rule, all future releases of Ice would have to support 
all previous major versions forever. In plain language, the rule means that 
clients and servers that use different major versions simply cannot communi-
cate with each other.

2. A receiver that advertises minor version n guarantees to be able to successfully 
decode all minor versions less than n. Note that this does not imply that 
messages using version n1 can be decoded as if they were version n: as far as 
their physical representation is concerned, two adjacent minor versions can be 
completely incompatible. However, because any receiver advertising version n 
is also obliged to correctly deal with version n1, minor version upgrades are 
semantically backward compatible, even though their physical representation 
may be incompatible.

3. A sender that supports minor version n guarantees to be able to send messages 
using all minor versions less than n. Moreover, the sender guarantees that if it 
receives a request using minor version k (with kn), it will send the reply for 
that request using minor version k.

37.5.3 Version Negotiation

Client and server must somehow agree on which version to use to exchange 
messages. Depending on whether the underlying transport is connection-oriented 
or connection-less, different mechanisms are used to negotiate a common version.
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Negotiation for Connection-Oriented Transports

For connection-oriented transports, the client opens a connection to the server and 
then waits for a validate connection message (see page 1329). The validate 
connection message sent by the server indicates the server’s major and highest 
supported minor version numbers for both protocol and encoding. If the server’s 
and client’s major version numbers do not match, the client side raises an Unsup-
portedProtocolException or UnsupportedEncodingException.

Assuming that the client has received a validate connection message from the 
server that matches the client’s major version, the client knows the highest minor 
version number that is supported by the server. Thereafter, the client is obliged to 
send no message with a minor version number higher than the server’s limit. 
However, the client is free to send a message with a minor version number that is 
less than the server’s limit.

The server does not have a-priori knowledge of the highest minor version that 
is supported by the client (because there is no validate connection message from 
client to server). Instead, the server learns about the client version number in each 
individual message, by looking at the message header. That minor version indi-
cates the minor version number that the client can accept. The scope of that minor 
version number is a single request-reply interaction. For example, if the client 
sends a request with minor version 3, the server must reply to that request with 
minor version 3 as well. However, the next client request might be with minor 
version 2, and the server must reply to that request with minor version 2.

For orderly connection closure via a close connection message, the server can 
use any minor version, but that minor version must not be higher than the highest 
minor version number that was received from the client while the connection was 
open.

Negotiation for Connection-Less Transports

For connection-less transports, no validate connection message exists, so the 
client must learn about the highest supported minor version number of the server 
via other means. The mechanism for this depends on whether a proxy for a 
connection-less endpoint is bound directly or indirectly (see page 11):

• For direct proxies, the version information is part of the endpoint contained in 
the proxy. In this case, the client simply sends its messages with a minor 
version number that is not greater than the minor version number of the 
endpoint in the proxy.

• For indirect proxies, the proxy itself contains no version information at all 
(because the proxy contains no endpoints). Instead, the client obtains the 
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version information when it resolves the proxy’s symbolic information to one 
or more endpoints (via IceGrid or an equivalent service). The version informa-
tion of the endpoints determines the highest minor version number that is 
available to the client.
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Chapter 38
IceGrid

38.1 Chapter Overview

In this chapter we present IceGrid, an important service for building robust Ice 
applications. Section 38.3 introduces the IceGrid architecture and its core 
concepts. Section 38.4 describes a sample IceGrid application that we improve 
incrementally in Section 38.5. The subject of Section 38.6 is well-known objects, 
which are a convenient way to decouple clients and servers.

Core IceGrid features such as templates, IceBox integration, object adapter 
replication, load balancing, resource allocation, and registry replication are 
covered in individual sections from Section 38.7 through Section 38.12.

In Section 38.13 we learn how IceGrid automates the distribution of server 
executables. Using administrative sessions is the subject of Section 38.14, while 
Section 38.15 gives instructions on integrating a Glacier2 router into an applica-
tion. Section 38.16 discusses how to use an SQL database to store IceGrid’s 
persistent state. Section 38.17 is a reference for the descriptors that define an 
IceGrid application. Section 38.18 describes the semantics of variables and 
parameters in descriptors, and property sets are discussed in Section 38.19.

The convenient features that IceGrid supports for XML files are the focus of 
Section 38.20. Section 38.21 through Section 38.24 address the usage and admin-
istration of IceGrid servers. Section 38.25 explains the details of server activation, 
while Section 38.26 provides troubleshooting advice.
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38.2 Introduction

IceGrid is the location and activation service for Ice applications. In prior Ice 
releases, the IcePack service supplied this functionality. Given the increasing 
importance of grid computing, IceGrid was introduced in Ice 3.0 to support all of 
IcePack’s responsibilities and extend it with new features to simplify the develop-
ment and administration of Ice applications on grid networks.

For the purposes of this chapter, we can loosely define grid computing as the 
use of a network of relatively inexpensive computers to perform the computational 
tasks that once required costly “big iron.” Developers familiar with distributed 
computing technologies may not consider the notion of grid computing to be 
particularly revolutionary; after all, distributed applications have been running on 
networks for years, and the definition of grid computing is sufficiently vague that 
practically any server environment could be considered a “grid.”

One possible grid configuration is a homogeneous collection of computers 
running identical programs. Each computer in the grid is essentially a clone of the 
others, and all are equally capable of handling a task. As a developer, you need to 
write the code that runs on the grid computers, and Ice is ideally suited as the 
infrastructure that enables the components of a grid application to communicate 
with one another. However, writing the application code is just the first piece of 
the puzzle. Many other challenges remain:

• How do I install and update this application on all of the computers in the 
grid?

• How do I keep track of the servers running on the grid?

• How do I distribute the load across all the computers?

• How do I migrate a server from one computer to another one?

• How can I quickly add a new computer to the grid?

Of course, these are issues faced by most distributed applications. As you read this 
chapter and learn more about IceGrid’s capabilities, you will discover that it offers 
solutions to these challenges. To get you started, we have summarized IceGrid’s 
feature set below:

• Location service

As an implementation of an Ice location service (see Section 32.17), IceGrid 
enables clients to bind indirectly to their servers, making applications more 
flexible and resilient to changing requirements.
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• On-demand server activation

Starting an Ice server process is called server activation. IceGrid can be given 
responsibility for activating a server on demand, that is, when a client attempts 
to access an object hosted by the server. Activation usually occurs as a side 
effect of indirect binding, and is completely transparent to the client.

• Application distribution

IceGrid provides a convenient way to distribute your application to a set of 
computers, without the need for a shared file system or complicated scripts. 
Simply configure an IcePatch2 server (see Chapter 45) and let IceGrid down-
load the necessary files and keep them synchronized.

• Replication and load balancing

IceGrid supports replication by grouping the object adapters of several servers 
into a single virtual object adapter. During indirect binding, a client can be 
bound to an endpoint of any of these adapters. Furthermore, IceGrid monitors 
the load on each computer and can use that information to decide which of the 
endpoints to return to a client.

• Sessions and resource allocation

An IceGrid client establishes a session in order to allocate a resource such as 
an object or a server. IceGrid prevents other clients from using the resource 
until the client releases it or the session expires. Sessions enhance security 
through the use of an authentication mechanism that can be integrated with a 
Glacier2 router.

• Automatic failover

Ice supports automatic retry and failover in any proxy that contains multiple 
endpoints. When combined with IceGrid’s support for replication and load 
balancing, automatic failover means that a failed request results in a client 
transparently retrying the request on the next endpoint with the lowest load.

• Dynamic queries

In addition to transparent binding, applications can interact directly with 
IceGrid to locate objects in a variety of ways.

• Status monitoring

IceGrid supports Slice interfaces that allow applications to monitor its activi-
ties and receive notifications about significant events, enabling the develop-
ment of custom tools or the integration of IceGrid status events into an 
existing management framework.
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• Administration

IceGrid includes command-line and graphical administration tools. They are 
available on all supported platforms and allow you to start, stop, monitor, and 
reconfigure any server managed by IceGrid.

• Deployment

Using XML files, you can describe the servers to be deployed on each 
computer. Templates simplify the description of identical servers.

• Database Indepence

By default, IceGrid uses a Freeze database (Chapter 39) to store its state. 
However, you can configure IceGrid to use a different dabase, such as 
MySQL (among others).

As grid computing enters the mainstream and compute servers become commodi-
ties, users expect more value from their applications. IceGrid, in cooperation with 
the Ice run time, relieves you of these low-level tasks to accelerate the construc-
tion and simplify the administration of your distributed applications.

38.3 IceGrid Architecture

An IceGrid domain consists of a registry and any number of nodes. Together, the 
registry and nodes cooperate to manage the information and server processes that 
comprise applications. Each application assigns servers to particular nodes. The 
registry maintains a persistent record of this information, while the nodes are 
responsible for starting and monitoring their assigned server processes. In a 
typical configuration, one node runs on each computer that hosts Ice servers. The 
registry does not consume much processor time, so it commonly runs on the same 
computer as a node; in fact, the registry and a node can run in the same process if 
desired. If fault tolerance is desired, the registry supports replication using a 
master-slave design.

38.3.1 Simple Example

As an example, Figure 38.1 shows a very simple IceGrid application running on a 
network of three computers. The IceGrid registry is the only process of interest on 
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host PC1, while IceGrid nodes are running on the hosts PC2 and PC3. In this 
sample application, one server has been assigned to each node.

Figure 38.1. Simple IceGrid application.

From a client application’s perspective, the primary responsibility of the registry 
is to resolve indirect proxies as an Ice location service (see Section 32.17). As 
such, this contribution is largely transparent: when a client first attempts to use an 
indirect proxy, the Ice run time in the client contacts the registry to convert the 
proxy’s symbolic information into endpoints that allow the client to establish a 
connection.

Although the registry might sound like nothing more than a simple lookup 
table, reality is quite different. For example, behind the scenes, a locate request 
might prompt a node to start the target server automatically, or the registry might 
select appropriate endpoints based on load statistics from each computer.

This also illustrates the benefits of indirect proxies: the location service can 
provide a great deal of functionality without any special action by the client and, 
unlike with direct proxies, the client does not need advance knowledge of the 
address and port of a server. The extra level of indirection adds some latency to the 
client’s first use of a proxy; however, all subsequent interactions occur directly 
between client and server, so the cost is negligible. Furthermore, indirection 
allows servers to migrate to different computers without the need to update 
proxies held by clients.

Host: PC1

Host: PC2

Node A

Server X

Host: PC3

Node B

Server Y

Registry
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38.3.2 Server Replication

IceGrid’s flexibility allows an endless variety of configurations. For example, 
suppose we have a grid network and want to replicate a server on each blade, as 
shown in Figure 38.2.

Figure 38.2. Replicated server on grid network.

Replication in Ice is based on object adapters, not servers. Any object adapter in 
any server could participate in replication, but it is far more likely that all of the 
replicated object adapters are created by instances of the same server executable 
that is running on each computer. We are using this configuration in the example 
shown above, but IceGrid requires each server to have a unique name. Server 1 
and Server 2 are our unique names for the same executable.

The binding process works somewhat differently when replication is involved, 
since the registry now has multiple object adapters to choose from. The descrip-
tion of the IceGrid application drives the registry’s decision about which object 
adapter (or object adapters) to use. For example, the registry could consider the 
system load of each computer (as periodically reported by the nodes) and return 
the endpoints of the object adapter on the computer with the lowest load. It is also 
possible for the registry to combine the endpoints of several object adapters, in 
which case the Ice run time in the client would select the endpoint for the initial 
connection attempt.

38.3.3 Deployment

In IceGrid, deployment is the process of describing an application to the registry. 
This description includes the following information:

Host: Blade1

Registry

Node 1

Server 1

Host: BladeN

Node N

Server N

Host: Blade2

Node 2

Server 2
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• Replica groups

A replica group is the term for a collection of replicated object adapters. An 
application can create any number of replica groups. Each group requires a 
unique identifier.

• Nodes

An application must assign its servers to one or more nodes.

• Servers

A server’s description includes a unique name and the path to its executable. It 
also lists the object adapters it creates.

• Object adapters

Information about an object adapter includes its endpoints and any well-
known objects it advertises. If the object adapter is a member of a replica 
group, it must also supply that group’s identifier.

• Objects

A well-known object is one that is known solely by its identity. The registry 
maintains a global list of such objects for use during locate requests.

IceGrid uses the term descriptor to refer to the description of an application and 
its components; deploying an application involves creating its descriptors in the 
registry. The are several ways to accomplish this:

• You can use a command-line tool that reads XML descriptors.

• You can create descriptors interactively with the graphical administration tool.

• You can create descriptors programmatically via IceGrid’s administrative 
interface.

The registry server must be running in order to deploy an application, but it is not 
necessary for nodes to be active. Nodes that are started after deployment automat-
ically retrieve the information they need from the registry. Once deployed, you 
can update the application at any time.
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38.4 Getting Started

This section introduces a sample application that will help us demonstrate 
IceGrid’s capabilities. Our application “rips” music tracks from a compact disc 
(CD) and encodes them as MP3 files, as shown in Figure 38.3.

Figure 38.3. Overview of sample application.

Ripping an entire CD usually takes several minutes because the MP3 encoding 
requires lots of CPU cycles. Our distributed ripper application accelerates this 
process by taking advantage of powerful CPUs on remote Ice servers, enabling us 
to process many songs in parallel.

The Slice interface for the MP3 encoder is straightforward:

module Ripper {
exception EncodingFailedException {
    string reason;
};

sequence<short> Samples;


74 min
650 MB

about 57 MB

“rip” (extract) tracks 
from the Music CD as 
.wav files

song1.wav
song2.wav
...

song1.mp3
song2.mp3
...

encode as mp3 
(compress with lossy 
algorithm)
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interface Mp3Encoder {
    // Input: PCM samples for left and right channels
    // Output: MP3 frame(s).
    Ice::ByteSeq encode(Samples leftSamples, Samples rightSamples)
        throws EncodingFailedException;

    // You must flush to get the last frame(s). Flush also 
    // destroys the encoder object.
    Ice::ByteSeq flush()
        throws EncodingFailedException;
};

interface Mp3EncoderFactory
{
    Mp3Encoder* createEncoder();
};
};

The implementation of the encoding algorithm is not relevant for the purposes of 
this discussion. Instead, we will focus on incrementally improving the application 
as we discuss IceGrid features.

38.4.1 Architecture

The initial architecture for our application is intentionally simple, consisting of an 
IceGrid registry and a server that we start manually. Figure 38.4 shows how the 
client’s invocation on its EncoderFactory proxy causes an implicit locate request. 

Figure 38.4. Initial architecture for the ripper application.

The corresponding C++ code for the client is presented below:

Host: ComputeServer

Registry

EncoderServer

Client PC

Client

1 locate(factory@EncoderAdapter)

2 checkedCast
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Ice::ObjectPrx proxy =
    communicator->stringToProxy("factory@EncoderAdapter");
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(proxy);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Notice that the client uses an indirect proxy for the MP3EncoderFactory object. 
This stringified proxy can be read literally as “the object with identity factory 
in the object adapter identified as EncoderAdapter.” The encoding server 
creates this object adapter and ensures that the object adapter uses this identifier. 
Since each object adapter must be uniquely identified, the registry can easily 
determine the server that created the adapter and return an appropriate endpoint to 
the client.

The client’s call to checkedCast is the first remote invocation on the 
factory object, and therefore the locate request is performed during the completion 
of this invocation. The subsequent call to createEncoder is sent directly to the 
server without further involvement by IceGrid.

38.4.2 Configuring the Registry

The registry needs a subdirectory in which to create its databases, and we will use 
/opt/ripper/registry for this purpose (the directory must exist before 
starting the registry). We also need to create an Ice configuration file to hold prop-
erties required by the registry. The file /opt/ripper/registry.cfg 
contains the following properties:

IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsV
erifier
IceGrid.Registry.Data=/opt/ripper/registry
IceGrid.Registry.DynamicRegistration=1

Several of the properties define endpoints, but only the value of 
IceGrid.Registry.Client.Endpoints needs a fixed port. This prop-
erty specifies the endpoints of the IceGrid locator service; IceGrid clients must 
include these endpoints in their definition of Ice.Default.Locator, as 
discussed in the next section. The TCP port number (4061) used in this example 
has been reserved by the Internet Assigned Numbers Authority (IANA) for the 
IceGrid registry, along with SSL port number 4062.

Several other properties are worth mentioning:

http://www.iana.org/assignments/port-numbers
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• IceGrid.Registry.AdminPermissionsVerifier

This property controls access to the registry’s administrative functionality (see 
Section 38.11.2).

• IceGrid.Registry.Data

This property specifies the registry’s database directory.

• IceGrid.Registry.DynamicRegistration

By setting this property to a non-zero value, we allow servers to register their 
object adapters. Dynamic registration is explained in more detail below.

Dynamic Registration

By default, IceGrid will not permit a server to register its object adapters without 
using IceGrid’s deployment facility (see Section 38.5). In some situations, such as 
in this sample application, you may want a client to be able to bind indirectly to a 
server without having to first deploy the server. That is, simply starting the server 
should be sufficient to make the server register itself with IceGrid and be reach-
able from clients.

You can achieve this by running the registry with the property 
IceGrid.Registry.DynamicRegistration set to a non-zero value. 
With this setting, IceGrid permits an adapter to register itself upon activation even 
if it has not been previously deployed. To force the server to register its adapters, 
you must define Ice.Default.Locator (so the server can find the registry) 
and, for each adapter that you wish to register, you must set <adapter-
name>.AdapterId to an identifier that is unique within the registry. Setting 
the <adapter-name>.AdapterId property also causes the adapter to no 
longer create direct proxies but rather to create indirect proxies that must be 
resolved by the registry.

38.4.3 Configuring the Client

The client requires only minimal configuration, namely a value for the property 
Ice.Default.Locator (see Section 32.17.3). This property supplies the Ice 
run time with the proxy for the locator service. In IceGrid, the locator service is 
implemented by the registry, and the locator object is available on the registry’s 
client endpoints. The property IceGrid.Registry.Client.Endpoints 
defined in the previous section provides most of the information we need to 
construct the proxy. The missing piece is the identity of the locator object, which 
defaults to IceGrid/Locator:
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Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

The use of a locator service allows the client to take advantage of indirect binding 
and avoid static dependencies on server endpoints. However, the locator proxy 
must have a fixed port, otherwise the client has a bootstrapping problem: it cannot 
resolve indirect proxies without knowing the endpoints of the locator service.

See Section 38.21.3 for more information on client configuration.

38.4.4 Configuring the Server
We use /opt/ripper/server.cfg as the server’s configuration file. It 
contains the following properties:

EncoderAdapter.AdapterId=EncoderAdapter
EncoderAdapter.Endpoints=tcp
Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

The properties are described below:

• EncoderAdapter.AdapterId

This property supplies the object adapter identifier that the client uses in its 
indirect proxy (e.g., factory@EncoderAdapter).

• EncoderAdapter.Endpoints

This property defines the object adapter’s endpoint. Notice that the value does 
not contain any port information, meaning that the adapter uses a system-
assigned port. Without IceGrid, the use of a system-assigned port would pose 
a significant problem: how would a client create a direct proxy if the adapter’s 
port could change every time the server is restarted? IceGrid solves this 
problem nicely because clients can use indirect proxies that contain no 
endpoint dependencies. The registry resolves indirect proxies using the 
endpoint information supplied by object adapters each time they are activated.

• Ice.Default.Locator

The server requires a value for this property in order to register its object 
adapter.

38.4.5 Starting the Registry

Now that the configuration file is written and the directory structure is prepared, 
we are ready to start the IceGrid registry:

$ icegridregistry --Ice.Config=/opt/ripper/registry.cfg
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Additional command line options are supported, including those that allow the 
registry to run as a Windows service or Unix daemon. See Section 38.21.1 for 
more information.

38.4.6 Starting the Server

With the registry up and running, we can now start the server. At a command 
prompt, we run the program and pass an --Ice.Config option indicating the 
location of the configuration file:

$ /opt/ripper/bin/server \
   --Ice.Config=/opt/ripper/server.cfg

38.4.7 Review

This example demonstrated how to use IceGrid’s location service, which is a core 
component of IceGrid’s feature set. By incorporating IceGrid into our application, 
the client is now able to locate the MP3EncoderFactory object using only an indi-
rect proxy and a value for Ice.Default.Locator. Furthermore, we can 
reconfigure the application in any number of ways without modifying the client’s 
code or configuration.

For some applications, the functionality we have already achieved using 
IceGrid may be entirely sufficient. However, we have only just begun to explore 
IceGrid’s capabilities, and there is much we can still do to improve our applica-
tion. The next section shows how we can avoid the need to start our server manu-
ally by deploying our application onto an IceGrid node.

38.5 Using Deployment

In this section, we examine how to extend the capabilities of our sample applica-
tion using IceGrid’s deployment facility.

38.5.1 Architecture

The revised architecture for our application consists of a single IceGrid node 
responsible for our encoding server that runs on the computer named Compute-
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Server. Figure 38.5 shows the client’s initial invocation on its indirect proxy and 
the actions that IceGrid takes to make this invocation possible. 

Figure 38.5. Architecture for deployed ripper application.

In contrast to the architecture shown in Section 38.4.1, we no longer need to 
manually start our server. In this revised application, the client’s locate request 
prompts the registry to query the node about the server’s state and start it if neces-
sary. Once the server starts successfully, the locate request completes and subse-
quent client communication occurs directly with the server.

38.5.2 Descriptors

We can deploy our application using the icegridadmin command line utility 
(see Section 38.24.1), but first we must define our descriptors in XML. The 
descriptors are quite brief:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    id="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>

Host: ComputeServer

Registry

Node

EncoderServer

Client PC

Client

1 locate(factory@EncoderAdapter)

2 start

3 checkedCast
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For IceGrid’s purposes, we have named our application Ripper. It consists of a 
single server, EncoderServer, assigned to the node Node11. The server’s 
exe attribute supplies the pathname of its executable, and the activation 
attribute indicates that the server should be activated on demand when necessary.

The object adapter’s descriptor is the most interesting. As you can see, the 
name and id attributes both specify the value EncoderAdapter. The value of 
name reflects the adapter’s name in the server process (i.e., the argument passed 
to createObjectAdapter) that is used for configuration purposes, whereas 
the value of id uniquely identifies the adapter within the registry and is used in 
indirect proxies. These attributes are not required to have the same value. Had we 
omitted the id attribute, IceGrid would have composed a unique value by 
combining the server name and adapter name to produce the following identifier:

EncoderServer.EncoderAdapter

The endpoints attribute defines one or more endpoints for the adapter. As 
explained in Section 38.4.4, these endpoints do not require a fixed port.

See Section 38.17 for detailed information on using XML to define descrip-
tors.

38.5.3 Configuring the Registry and Node
In Section 38.4.2, we created the directory /opt/ripper/registry for use 
by the registry. The node also needs a subdirectory for its own purposes, so we 
will use /opt/ripper/node. Again, these directories must exist before 
starting the registry and node.

We also need to create an Ice configuration file to hold properties required by 
the registry and node. The file /opt/ripper/config contains the following 
properties:

# Registry properties
IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.AdminPermissionsVerifier=IceGrid/NullPermissionsV
erifier
IceGrid.Registry.Data=/opt/ripper/registry

1. Since a computer typically runs only one node process, you might be tempted to give the node a 
name that identifies its host (such as ComputeServerNode). However, this naming conven-
tion becomes problematic as soon as you need to migrate the node to another host.
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# Node properties
IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=/opt/ripper/node
IceGrid.Node.CollocateRegistry=1
Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

The registry and node can share this configuration file. In fact, by defining 
IceGrid.Node.CollocateRegistry=1, we have indicated that the 
registry and node should run in the same process.

Section 38.4.2 described the registry properties. One difference, however, is 
that we no longer define IceGrid.Registry.DynamicRegistration. 
By omitting this property, we force the registry to reject the registration of object 
adapters that have not been deployed.

The node properties are explained below:

• IceGrid.Node.Endpoints

This property specifies the node’s endpoints. A fixed port is not required.

• IceGrid.Node.Name

This property defines the unique name for this node. Its value must match the 
descriptor shown in Section 38.5.2.

• IceGrid.Node.Data

This property specifies the node’s data directory.

• Ice.Default.Locator

This property is defined for use by the icegridadmin tool. The node would 
also require this property if the registry is not collocated. Section 38.4.3 
provides more information on this setting.

38.5.4 Configuring the Server

Server configuration is accomplished using descriptors. During deployment, the 
node creates a subdirectory tree for each server. Inside this tree the node creates a 
configuration file containing properties derived from the server’s descriptors. For 
instance, the adapter’s descriptor in Section 38.5.2 generates the following proper-
ties in the server’s configuration file:
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# Server configuration
Ice.Admin.ServerId=EncoderServer
Ice.Admin.Endpoints=tcp -h 127.0.0.1
Ice.ProgramName=EncoderServer
# Object adapter EncoderAdapter
EncoderAdapter.Endpoints=tcp
EncoderAdapter.AdapterId=EncoderAdapter
Ice.Default.Locator=IceGrid/Locator:default -p 4061

As you can see, the configuration file that IceGrid generates from the descriptor 
resembles the one we created in Section 38.4.4, with two additional properties:

• Ice.Admin.ServerId

• Ice.Admin.Endpoints

These properties enable the administrative facility that, among other features, 
allows an IceGrid node to gracefully deactivate the server. See Section 38.22 for 
more information.

Using the directory structure we established for our ripper application, the 
configuration file for EncoderServer has the file name shown below:

/opt/ripper/node/servers/EncoderServer/config/config

Note that this file should not be edited directly because any changes you make are 
lost the next time the node regenerates the file. The correct way to add properties 
to the file is to include property definitions in the server’s descriptor. For example, 
we can add the property Ice.Trace.Network=1 by modifying the server 
descriptor as follows:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    id="EncoderAdapter"
                    endpoints="tcp"/>
                <property name="Ice.Trace.Network"
                    value="1"/>
            </server>
        </node>
    </application>
</icegrid>
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When a node activates a server, it passes the location of the server’s configuration 
file using the --Ice.Config command-line argument. If you start a server 
manually from a command prompt, you must supply this argument yourself.

38.5.5 Starting IceGrid

Now that the configuration file is written and the directory structure is prepared, 
we are ready to start the IceGrid registry and node. Using a collocated registry and 
node, we only need to use one command:

$ icegridnode --Ice.Config=/opt/ripper/config

Additional command line options are supported, including those that allow the 
node to run as a Windows service or Unix daemon. See Section 38.21.2 for more 
information.

38.5.6 Deploying the Application

With the registry up and running, it is now time to deploy our application. Like 
our client, the icegridadmin utility also requires a definition for the 
Ice.Default.Locator property. We can start the utility with the following 
command:

$ icegridadmin --Ice.Config=/opt/ripper/config

After confirming that it can contact the registry, icegridadmin provides a 
command prompt at which we deploy our application. Assuming our descriptor is 
stored in /opt/ripper/app.xml, the deployment command is shown below:

>>> application add "/opt/ripper/app.xml"

Next, confirm that the application has been deployed:

>>> application list
Ripper

You can start the server using this command:

>>> server start EncoderServer

Finally, you can retrieve the current endpoints of the object adapter:

>>> adapter endpoints EncoderAdapter

If you want to experiment further using icegridadmin, issue the help 
command and see Section 38.24.1.
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38.5.7 Review

We have deployed our first IceGrid application, but you might be questioning 
whether it was worth the effort. Even at this early stage, we have already gained 
several benefits:

• We no longer need to manually start the encoder server before starting the 
client, because the IceGrid node automatically starts it if it is not active at the 
time a client needs it. If the server happens to terminate for any reason, such as 
an IceGrid administrative action or a server programming error, the node 
restarts it without intervention on our part.

• We can manage the application remotely using one of the IceGrid administra-
tion tools. The ability to remotely modify applications, start and stop servers, 
and inspect every aspect of your configuration is a significant advantage.

Admittedly, we have not made much progress yet in our stated goal of improving 
the performance of the ripper over alternative solutions that are restricted to 
running on a single computer. Our client now has the ability to easily delegate the 
encoding task to a server running on another computer, but we have not achieved 
the parallelism that we really need. For example, if the client created a number of 
encoders and used them simultaneously from multiple threads, the encoding 
performance might actually be worse than simply encoding the data directly in the 
client, as the remote computer would likely slow to a crawl while attempting to 
task-switch among a number of processor-intensive tasks.

38.5.8 Adding Nodes

Adding more nodes to our environment would allow us to distribute the encoding 
load to more compute servers. Using the techniques we have learned so far, let us 
investigate the impact that adding a node would have on our descriptors, configu-
ration, and client application.

Descriptors

The addition of a node is mainly an exercise in cut and paste:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
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                    endpoints="tcp"/>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>

Note that we now have two node elements instead of a single one. You might be 
tempted to simply use the host name as the node name. However, in general, that 
is not a good idea. For example, you may want to run several IceGrid nodes on a 
single machine (for example, for testing). Similarly, you may have to rename a 
host at some point, or need to migrate a node to a different host. But, unless you 
also rename the node, that leads to the situation where you have a node with the 
name of a (possibly obsolete) host when the node in fact is not running on that 
host. Obviously, this makes for a confusing configuration—it is better to use 
abstract node names, such as Node1.

Aside from the new node element, notice that the server identifiers must be 
unique. The adapter name, however, can remain as EncoderAdapter because 
this name is used only for local purposes within the server process. In fact, using a 
different name for each adapter would actually complicate the server implementa-
tion, since it would somehow need to discover the name it should use when 
creating the adapter.

We have also removed the id attribute from our adapter descriptors; the 
default values supplied by IceGrid are sufficient for our purposes (see 
Section 38.17.1).

Configuration

We can continue to use the configuration file we created in Section 38.5.3 for our 
combined registry-node process. We need a separate configuration file for 
Node2, primarily to define a different value for the property 
IceGrid.Node.Name. However, we also cannot have two nodes configured 
with IceGrid.Node.CollocateRegistry=1 because only one master 
registry is allowed, so we must remove this property:
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IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node2
IceGrid.Node.Data=/opt/ripper/node

Ice.Default.Locator=IceGrid/Locator:tcp -h registryhost -p 4061

We assume that /opt/ripper/node refers to a local file system directory on 
the computer hosting Node2, and not a shared volume, because two nodes must 
not share the same data directory.

We have also modified the locator proxy to include the address of the host on 
which the registry is running.

Redeploying

After saving the new descriptors, you need to redeploy the application. Using 
icegridadmin, issue the following command:

$ icegridadmin --Ice.Config=/opt/ripper/config
>>> application update "/opt/ripper/app.xml"

Client

We have added a new node, but we still need to modify our client to take advan-
tage of it. As it stands now, our client can delegate an encoding task to one of the 
two MP3EncoderFactory objects. The client selects a factory by using the appro-
priate indirect proxy:

• factory@EncoderServer1.EncoderAdapter

• factory@EncoderServer2.EncoderAdapter

In order to distribute the tasks among both factories, the client could use a random 
number generator to decide which factory receives the next task:

string adapter;
if ((rand() % 2) == 0)
    adapter = "EncoderServer1.EncoderAdapter";
else
    adapter = "EncoderServer2.EncoderAdapter";
Ice::ObjectPrx proxy =
    communicator->stringToProxy("factory@" + adapter);
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(proxy);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

There are a few disadvantages in this design:
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• The client application must be modified each time a new compute server is 
added or removed because it knows all of the adapter identifiers.

• The client cannot distribute the load intelligently; it is just as likely to assign a 
task to a heavily-loaded computer as it is an idle one.

We describe better solutions in the sections that follow.

38.6 Well-known Objects

There are two types of indirect proxies (see Section 2.2.2): one specifies an iden-
tity and an object adapter identifier, while the other contains only an identity. The 
latter type of indirect proxy is known as a well-known proxy. A well-known proxy 
refers to a well-known object, that is, its identity alone is sufficient to allow the 
client to locate it. Ice requires all object identities in an application to be unique, 
but typically only a select few objects are able to be located via only their identi-
ties.

In earlier sections we showed the relationship between indirect proxies 
containing an object adapter identifier and the IceGrid configuration. Briefly, in 
order for a client to use a proxy such as factory@EncoderAdapter, an 
object adapter must be given the identifier EncoderAdapter.

A similar requirement exists for well-known objects. The registry maintains a 
table of these objects, which can be populated in a number of ways:

• statically in descriptors,

• programmatically using IceGrid’s administrative interface,

• dynamically using an IceGrid administration tool.

The registry’s database maps an object identity to a proxy. A locate request 
containing only an identity prompts the registry to consult this database. If a 
match is found, the registry examines the associated proxy to determine if addi-
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tional work is necessary. For example, consider the well-known objects in 
Table 38.1.

The proxy associated with Object1 already contains endpoints, so the registry 
can simply return this proxy to the client.

For Object2, the registry notices the adapter id and checks to see whether it 
knows about an adapter identified as TheAdapter. If it does, it attempts to 
obtain the endpoints of that adapter, which may cause its server to be started. If the 
registry is successfully able to determine the adapter’s endpoints, it returns a direct 
proxy containing those endpoints to the client. If the registry does not recognize 
TheAdapter or cannot obtain its endpoints, it returns the indirect proxy 
Object2@TheAdapter to the client. Upon receipt of another indirect proxy, 
the Ice run time in the client will try once more to resolve the proxy, but generally 
this will not succeed and the Ice run time in the client will raise a NoEndpointEx-
ception as a result.

Finally, Object3 represents a hopeless situation: how can the registry 
resolve Object3 when its associated proxy refers to itself? In this case, the 
registry returns the proxy Object3 to the client, which causes the client to raise 
NoEndpointException. Clearly, you should avoid this situation.

38.6.1 Object Types

The registry’s database not only associates an identity with a proxy, but also a 
type. Technically, the “type” is an arbitrary string but, by convention, that string 
represents the most-derived Slice type of the object. For example, the Slice type of 
the encoder factory in our ripper application is 
::Ripper::MP3EncoderFactory.

Table 38.1. Well-known objects and their proxies.

Identity Proxy

Object1 Object1:tcp -p 10001

Object2 Object2@TheAdapter

Object3 Object3
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Object types are useful when performing queries, as discussed in 
Section 38.6.5.

38.6.2 Object Descriptors
The object descriptor (see Section 38.17.14) adds a well-known object to the 
registry. It must appear within the context of an adapter descriptor, as shown in the 
XML example below:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    id="EncoderAdapter"
                    endpoints="tcp">
                    <object identity="EncoderFactory"
                        type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
    </application>
</icegrid>

During deployment, the registry associates the identity EncoderFactory with 
the indirect proxy EncoderFactory@EncoderAdapter. If the adapter 
descriptor had omitted the adapter id, the registry would have generated a unique 
identifier using the server id and the adapter name.

In this example, the object’s type is specified explicitly. See Section 38.6.1 for 
more information on object types.

38.6.3 Adding Objects in a Program
The IceGrid::Admin interface defines several operations that manipulate the 
registry’s database of well-known objects:

module IceGrid {
interface Admin {
    ...
    void addObject(Object* obj)
        throws ObjectExistsException,
               DeploymentException;
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    void updateObject(Object* obj)
        throws ObjectNotRegisteredException,
               DeploymentException;
    void addObjectWithType(Object* obj, string type)
        throws ObjectExistsException,
               DeploymentException;
    void removeObject(Ice::Identity id) 
        throws ObjectNotRegisteredException,
               DeploymentException;
    ...
};
};

• addObject

The addObject operation adds a new object to the database. The proxy argu-
ment supplies the identity of the well-known object. If an object with the same 
identity has already been registered, the operation raises ObjectExistsEx-
ception. Since this operation does not accept an argument supplying the 
object’s type, the registry invokes ice_id on the given proxy to determine its 
most-derived type. The implication here is that the object must be available in 
order for the registry to obtain its type. If the object is not available, addOb-
ject raises DeploymentException.

• updateObject

The updateObject operation supplies a new proxy for the well-known object 
whose identity is encapsulated by the proxy. If no object with the given iden-
tity is registered, the operation raises ObjectNotRegisteredException. The 
object’s type is not modified by this operation.

• addObjectWithType

The addObjectWithType operation behaves like addObject, except the 
object’s type is specified explicitly and therefore the registry does not attempt 
to invoke ice_id on the given proxy (even if the type is an empty string).

• removeObject

The removeObject operation removes the well-known object with the given 
identity from the database. If no object with the given identity is registered, 
the operation raises ObjectNotRegisteredException.

The following C++ example produces the same result as deploying the descriptor 
in Section 38.6.2:
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Ice::ObjectAdapterPtr adapter =
    communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident =
    communicator->stringToIdentity("EncoderFactory");
FactoryPtr f= new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
    admin->addObject(factory); // OOPS!
} catch (const IceGrid::ObjectExistsException &) {
    admin->updateObject(factory);
}

After obtaining a proxy for the IceGrid::Admin interface (see Section 38.14), the 
code invokes addObject. Notice that the code traps ObjectExistsExcep-
tion and calls updateObject instead when the object is already registered.

There is one subtle problem in this code: calling addObject causes the 
registry to invoke ice_id on our factory object, but we have not yet activated the 
object adapter. As a result, our program will hang indefinitely at the call to 
addObject. One solution is to activate the adapter prior to the invocation of 
addObject; another solution is to use addObjectWithType as shown 
below:

Ice::ObjectAdapterPtr adapter =
    communicator->createObjectAdapter("EncoderAdapter");
Ice::Identity ident =
    communicator->stringToIdentity("EncoderFactory");
FactoryPtr f = new FactoryI;
Ice::ObjectPrx factory = adapter->add(f, ident);
IceGrid::AdminPrx admin = // ...
try {
    admin->addObjectWithType(factory, factory->ice_id());
} catch (const IceGrid::ObjectExistsException &) {
    admin->updateObject(factory);
}

38.6.4 Adding Objects with icegridadmin

The icegridadmin utility (see Section 38.24.1) provides commands that are 
the functional equivalents of the Slice operations shown in Section 38.6.3. We can 
use the utility to manually register the EncoderFactory object from 
Section 38.6.2:
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$ icegridadmin --Ice.Config=/opt/ripper/config
>>> object add "EncoderFactory@EncoderAdapter"

Use the object list command to verify that the object was registered 
successfully:

>>> object list
EncoderFactory
IceGrid/Query
IceGrid/Locator
IceGrid/Registry
IceGrid/InternalRegistry-Master

To specify the object’s type explicitly, append it to the object add command:

>>> object add "EncoderFactory@EncoderAdapter" \
"::Ripper::MP3EncoderFactory"

Finally, the object is removed from the registry like this:

>>> object remove "EncoderFactory"

38.6.5 Queries

The registry’s database of well-known objects is not used solely for resolving indi-
rect proxies. The database can also be queried interactively to find objects in a 
variety of ways. The IceGrid::Query interface supplies this functionality:

module IceGrid {
enum LoadSample {
    LoadSample1,
    LoadSample5,
    LoadSample15
};

interface Query {
    idempotent Object* findObjectById(Ice::Identity id);
    idempotent Object* findObjectByType(string type);
    idempotent Object* findObjectByTypeOnLeastLoadedNode(
            string type, LoadSample sample);
    idempotent Ice::ObjectProxySeq findAllObjectsByType(
            string type);
    idempotent Ice::ObjectProxySeq findAllReplicas(Object* proxy);
};
};
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• findObjectById

The findObjectById operation returns the proxy associated with the given 
identity of a well-known object. It returns a null proxy if no match was found.

• findObjectByType

The findObjectByType operation returns a proxy for an object registered 
with the given type. If more than one object has the same type, the registry 
selects one at random. The operation returns a null proxy if no match was 
found.

• findObjectByTypeOnLeastLoadedNode

The findObjectByTypeOnLeastLoadedNode operation considers the system 
load when selecting one of the objects with the given type. If the registry is 
unable to determine which node hosts an object (for example, because the 
object was registered with a direct proxy and not an adapter id), the object is 
considered to have a load value of 1 for the purposes of this operation. The 
sample argument determines the interval over which the loads are averaged 
(one, five, or fifteen minutes). The operation returns a null proxy if no match 
was found.

• findAllObjectsByType

The findAllObjectsByType operation returns a sequence of proxies repre-
senting the well-known objects having the given type. The operation returns 
an empty sequence if no match was found.

• findAllReplicas

Given an indirect proxy for a replicated object, the findAllReplicas opera-
tion returns a sequence of proxies representing the individual replicas. An 
application can use this operation when it is necessary to communicate 
directly with one or more replicas.

Be aware that the operations accepting a type parameter are not equivalent to 
invoking ice_isA on each object to determine whether it supports the given type, 
a technique that would not scale well as the for a large number of registered 
objects. Rather, the operations simply compare the given type to the object’s regis-
tered type or, if the object was registered without a type, to the object’s most-
derived Slice type as determined by the registry (see Section 38.6.1).

38.6.6 Application Changes
Well-known objects are another IceGrid feature we can incorporate into our ripper 
application.
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Descriptors

First we’ll modify the descriptors from Section 38.5.8 to add two well-known 
objects:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp">
                    <object identity="EncoderFactory1"
                        type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp">
                    <object identity="EncoderFactory2"
                        type="::Ripper::MP3EncoderFactory"/>
                </adapter>
            </server>
        </node>
    </application>
</icegrid>

At first glance, the addition of the well-known objects does not appear to simplify 
our client very much. Rather than selecting which of the two adapters receives the 
next task, we now need to select one of the well-known objects.

Querying with findAllObjectsByType

The IceGrid::Query interface provides a way to eliminate the client’s depen-
dency on object adapter identifiers and object identities. Since our factories are 
registered with the same type, we can search for all objects of that type:

Ice::ObjectPrx proxy =
    communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectProxySeq seq;
string type = Ripper::MP3EncoderFactory::ice_staticId();
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seq = query->findAllObjectsByType(type);
if (seq.empty()) {
    // no match
}
Ice::ObjectProxySeq::size_type index = ... // random number
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(seq[index]);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

This example invokes findAllObjectsByType and then randomly selects an 
element of the sequence.

Querying with findObjectByType

We can simplify the client further using findObjectByType instead, which 
performs the randomization for us:

Ice::ObjectPrx proxy =
    communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByType(type);
if (!obj) {
    // no match
}
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Querying with findObjectByTypeOnLeastLoadedNode

So far the use of IceGrid::Query has allowed us to simplify our client, but we 
have not gained any functionality. If we replace the call to findObjectByType 
with findObjectByTypeOnLeastLoadedNode, we can improve the client by 
distributing the encoding tasks more intelligently. The change to the client’s code 
is trivial:

Ice::ObjectPrx proxy =
    communicator->stringToProxy("IceGrid/Query");
IceGrid::QueryPrx query = IceGrid::QueryPrx::checkedCast(proxy);
Ice::ObjectPrx obj;
string type = Ripper::MP3EncoderFactory::ice_staticId();
obj = query->findObjectByTypeOnLeastLoadedNode(type,
    IceGrid::LoadSample1);
if (!obj) {
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    // no match
}
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

Review

Incorporating intelligent load distribution is a worthwhile enhancement and is a 
capability that would be time consuming to implement ourselves. However, our 
current design uses only well-known objects in order to make queries possible. 
We do not really need the encoder factory object on each compute server to be 
individually addressable as a well-known object, a fact that seems clear when we 
examine the identities we assigned to them: EncoderFactory1, 
EncoderFactory2, and so on. IceGrid’s replication features, discussed in 
Section 38.9, give us the tools we need to improve our design.

38.7 Templates

IceGrid templates simplify the task of creating the descriptors for an application. 
A template is a parameterized descriptor that you can instantiate as often as neces-
sary. Templates are descriptors in their own right. They are components of an 
IceGrid application and therefore they are stored in the registry’s database. As 
such, their use is not restricted to XML files; templates can also be created and 
instantiated interactively using the graphical administration tool (see 
Section 38.24.2).

You can define templates for server and service descriptors. The focus of this 
section is server templates; Section 38.8 explains service descriptors and 
templates.

38.7.1 Server Templates

You may recall from prior sections that the XML description of our sample appli-
cation defined two nearly identical servers:

<icegrid>
    <application name="Ripper">
        <node name="Node1">
            <server id="EncoderServer1"
                exe="/opt/ripper/bin/server"
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                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </node>
        <node name="Node2">
            <server id="EncoderServer2"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </node>
    </application>
</icegrid>

This example is an excellent candidate for a server template. Equivalent defini-
tions that incorporate a template are shown below:

<icegrid>
    <application name="Ripper">
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <server id="EncoderServer${index}"
                exe="/opt/ripper/bin/server"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate"
                index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate"
                index="2"/>
        </node>
    </application>
</icegrid>

We have defined a server template named EncoderServerTemplate. Nested 
within the server-template element is a server element that defines an 
encoder server. The only difference between this server element and our 
previous example is that it is now parameterized: the template parameter index 
is used to form unique identifiers for the server and its adapter. The symbol 
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${index} is replaced with the value of the index parameter wherever it 
occurs.

The template is instantiated by a server-instance element, which may 
be used anywhere that a server element is used. The server-instance 
element identifies the template to be instantiated, and supplies a value for the 
index parameter.

Although we have not significantly reduced the length of our XML file, we 
have made it more readable. And more importantly, deploying this server on addi-
tional nodes has become much easier.

38.7.2 Template Parameters

Parameters enable you to customize each instance of a template as necessary. The 
example in Section 38.7.1 defined the index parameter with a different value for 
each instance to ensure that identifiers are unique. A parameter may also declare a 
default value that is used in the template if no value is specified for it. In our 
sample application the index parameter is considered mandatory and therefore 
should not have a default value, but we can illustrate this feature in another way. 
For example, suppose that the pathname of the server’s executable may change on 
each node. We can supply a default value for this attribute and override it when 
necessary:

<icegrid>
    <application name="Ripper">
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath"
                default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}"
                exe="${exepath}"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate"
                index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate"
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                index="2" exepath="/opt/ripper-test/bin/server"/>
        </node>
    </application>
</icegrid>

As you can see, the instance on Node1 uses the default value for the new param-
eter exepath, but the instance on Node2 defines a different location for the 
server’s executable.

For complete details about substitution rules and other semantics, see 
Section 38.18.

38.7.3 Property Sets

As we saw in the preceding section, template parameters allow you to customize 
each instance of a server template. Template parameters with default values allow 
you to define commonly used configuration options. However, you might want to 
have additional configuration properties for a given instance without having to add 
a parameter. For example, to debug a server instance on a specific node, you might 
want to start the server with the Ice.Trace.Network property set; it would be 
inconvenient to have to add a parameter to the template just to set that property.

To cater for such scenarios, it is possible to specify additional properties for a 
server instance without modifying the template. You can define such properties in 
the server-instance element, for example:

<icegrid>
    <application>
        ...
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate"
                             index="2"> 
                <properties>
                    <property name="Ice.Trace.Network" value="2"/>
                </properties>
            </server-instance>
        </node> 
    </application> 
</icegrid> 

This sets the Ice.Trace.Network property for a specific server.
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38.7.4 Default Templates

The IceGrid registry can be configured to supply any number of default template 
descriptors for use in your applications. The configuration property 
IceGrid.Registry.DefaultTemplates specifies the pathname of an 
XML file containing template definitions. One such template file is provided in 
the Ice distribution as config/templates.xml, which contains helpful 
templates for deploying Ice services such as IcePatch2 and Glacier2.

The template file must use the structure shown below:

<icegrid>
    <application name="DefaultTemplates">
        <server-template id="EncoderServerTemplate">
            ...
        </server-template>
    </application>
</icegrid>

The name you give to the application is not important, and you may only define 
server and service (see Section 38.8.2) templates within it. After configuring the 
registry to use this file, your default templates become available to every applica-
tion that imports them.

The descriptor for each application indicates whether the default templates 
should be imported. (By default they are not imported.) If the templates are 
imported, they are essentially copied into the application descriptor and treated no 
differently than templates defined by the application itself. As a result, changes to 
the file containing default templates have no effect on existing application descrip-
tors. In XML, the attribute import-default-templates determines 
whether the default templates are imported, as shown in the following example:

<icegrid>
    <application name="Ripper"
        import-default-templates="true">
        ...
    </application>
</icegrid>

38.7.5 Using Templates with icegridadmin

The IceGrid administration tools allow you to inspect templates and instantiate 
new servers dynamically. First, let us ask icegridadmin to describe the server 
template from Section 38.7.1:
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$ icegridadmin --Ice.Config=/opt/ripper/config
>>> server template describe Ripper \
EncoderServerTemplate

This command generates the following output:

server template `EncoderServerTemplate'
{
    parameters = `index exepath'
    server `EncoderServer${index}'
    {
        exe = `${exepath}'
        activation = `on-demand'
        properties
        {
            EncoderAdapter.Endpoints = `tcp'
        }
        adapter `EncoderAdapter'
        {
            id = `EncoderAdapter${index}'
            replica group id = `'
            endpoints = `tcp'
            register process = `false'
            server lifetime = `true'
        }
    }
}

Notice that the server id is a parameterized value; it cannot be evaluated until the 
template is instantiated with values for its parameters.

Next, we can use icegridadmin to create an instance of the encoder server 
template on a new node:

>>> server template instantiate Ripper Node3 \
EncoderServerTemplate index=3

The command requires that we identify the application, node and template, as well 
as supply any parameters needed by the template. The new server instance is 
permanently added to the registry’s database, but if we intend to keep this config-
uration it is a good idea to update the XML description of our application to 
reflect these changes and avoid potential synchronization issues.
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38.8 IceBox Integration

IceGrid makes it easy to configure an IceBox server (see Chapter 43) with one or 
more services.

38.8.1 Descriptors

An IceBox server shares many of the same characteristics as other servers, but its 
special requirements necessitate a new descriptor. Unlike other servers, an IceBox 
server generally hosts multiple independent services, each requiring its own 
communicator instance and configuration file.

As an example, the following application deploys an IceBox server containing 
one service:

<icegrid>
    <application name="IceBoxDemo">
        <node name="Node">
            <icebox id="IceBoxServer"
                exe="/opt/Ice/bin/icebox"
                activation="on-demand">
                <service name="ServiceA" entry="servicea:create">
                    <adapter name="${service}" endpoints="tcp"/>
                </service>
            </icebox>
        </node>
    </application>
</icegrid>

It looks very similar to a server descriptor. The most significant difference is the 
service descriptor, which is constructed much like a server in that you can declare 
its attributes such as object adapters and configuration properties. The order in 
which services are defined determines the order in which they are loaded by the 
IceBox server.

The value of the adapter’s name attribute needs additional explanation. The 
symbol service is one of the names reserved by IceGrid. In the context of a 
service descriptor, ${service} is replaced with the service’s name, and so the 
object adapter is also named ServiceA. See Section 38.18.2 for more informa-
tion on reserved names.
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38.8.2 Service Templates

If you are familiar with templates in general (see Section 38.7), an IceBox service 
template is readily understandable:

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}"
                    endpoints="default"/>
                <property name="${service}.Identity"
                    value="${server}-${service}"/>
            </service>
        </service-template>
        <node name="Node1">
            <icebox id="IceBoxServer" endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate"
                    name="Service1"/>
            </icebox>
        </node>
    </application>
</icegrid>

In this application, an IceBox server is deployed on a node and has one service 
instantiated from the service template. Of particular interest is the property 
descriptor, which uses another reserved name server to form the property value. 
When the template is instantiated, the symbol ${server} is replaced with the 
name of the enclosing server, so the property definition expands as follows:

Service1.Identity=IceBoxServer-Service1

See Section 38.18.2 for more information on reserved names.
As with server instances, you can specify additional properties for the service 

instance without modifying the template. These properties can be defined in the 
service-instance element, as shown below:

<icegrid>
    <application name="IceBoxApp">
        ...
        <node name="Node1">
            <icebox id="IceBoxServer"endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate"
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                    name="Service1">
                    <properties>
                        <property name="Ice.Trace.Network"
                            value="1"/>
                    </properties>
                </service-instance>
            </icebox>
        </node>
    </application>
</icegrid>

38.8.3 Advanced Templates

A more sophisticated use of templates involves instantiating a service template in 
a server template:

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}"
                    endpoints="default"/>
                <property name="${name}.Identity"
                    value="${server}-${name}"/>
            </service>
        </service-template>
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <icebox id="${id}" endpoints="default"
                exe="/opt/Ice/bin/icebox" activation="on-demand">
                <service-instance template="ServiceTemplate"
                    name="Service1"/>
            </icebox>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate"
                id="IceBoxServer"/>
        </node>
    </application>
</icegrid>

This application is equivalent to the definition from Section 38.8.2. Now, however, 
the process of deploying an identical server on several nodes has become much 
simpler.
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If you need the ability to customize the configuration of a particular service 
instance, your server instance can define a property set that applies only to the 
desired service:

<icegrid>
    <application name="IceBoxApp">
        <node name="Node1">
            <server-instance template="ServerTemplate"
                id="IceBoxServer">
                <properties service="Service1">
                    <property name="Ice.Trace.Network"
                        value="1"/>
                </properties>
            </server-instance>
        </node>
    </application>
</icegrid>

As this example demonstrates, the service attribute of the property set denotes 
the name of the target service.

38.9 Object Adapter Replication

As an implementation of an Ice location service, IceGrid supports object adapter 
replication as described on page 12. An application defines its replica groups and 
their participating object adapters using descriptors, and IceGrid generates the 
server configurations automatically.

38.9.1 Replica Group Descriptor

The descriptor that defines a replica group can optionally declare well-known 
objects as well as configure the group to determine its behavior during locate 
requests. Consider this example:

<icegrid>
    <application name="ReplicaApp">
        <replica-group id="ReplicatedAdapter">
            <object identity="TheObject"
                type="::Demo::ObjectType"/>
        </replica-group>
        <node name="Node">
            <server id="ReplicaServer" activation="on-demand"
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                exe="/opt/replica/bin/server">
                <adapter name="TheAdapter" endpoints="default"
                    replica-group="ReplicatedAdapter"/>
            </server>
        </node>
    </application>
</icegrid>

The adapter’s descriptor declares itself to be a member of the replica group 
ReplicatedAdapter, which must have been previously created by a replica 
group descriptor.

The replica group ReplicatedAdapter declares a well-known object so 
that an indirect proxy of the form TheObject is equivalent to the indirect proxy 
TheObject@ReplicatedAdapter. Since this trivial example defines only 
one adapter in the replica group, the proxy TheObject is also equivalent to 
TheObject@TheAdapter.

38.9.2 Replica Group Membership

An object adapter participates in a replica group by specifying the group’s id in 
the adapter’s ReplicaGroupId configuration property. Identifying the replica 
group in the IceGrid descriptor for an object adapter causes the node to include the 
equivalent ReplicaGroupId property in the configuration file it generates for 
the server.

By default, the IceGrid registry requires the membership of a replica group to 
be statically defined. When you create a descriptor for an object adapter that iden-
tifies a replica group, the registry adds that adapter to the group’s list of valid 
members. During an adapter’s activation, when it describes its endpoints to the 
registry, an adapter that also claims membership in a replica group is validated 
against the registry’s internal list.

In a properly configured IceGrid application, this activity occurs without inci-
dent, but there are situations in which validation can fail. For example, adapter 
activation fails if an adapter’s id is changed without notifying the registry, such as 
by manually modifying the server configuration file that was generated by a node.

It is also possible for activation to fail when the IceGrid registry is being used 
solely as a location service, in which case descriptors have not been created and 
therefore the registry has no advance knowledge of the replica groups or their 
members. In this situation, adapter activation causes the server to receive NotReg-
isteredException unless the registry is configured to allow dynamic registra-
tion, which you can do by defining the following property:
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IceGrid.Registry.DynamicRegistration=1

With this configuration, a replica group is created implicitly as soon as an adapter 
declares membership in it, and any adapter is allowed to participate.

The use of dynamic registration often leads to the accumulation of obsolete 
replica groups and adapters in the registry. The IceGrid administration tools (see 
Section 38.24) allow you to inspect and clean up the registry’s state.

38.9.3 Application Changes

Replication is a perfect fit for the ripper application. The collection of encoder 
factory objects should be treated as a single logical object, and replication makes 
that possible.

Descriptors

Adding a replica group descriptor to our application is very straightforward:

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <object identity="EncoderFactory"
                type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath"
                default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}"
                exe="${exepath}"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate"
                index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate"
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                index="2"/>
        </node>
    </application>
</icegrid>

The new descriptor adds the replica group called EncoderAdapters and regis-
ters a well-known object with the identity EncoderFactory. The adapter 
descriptor in the server template has been changed to declare its membership in 
the replica group.

Client

In comparison to the examples from Section 38.6.6 that used queries, the new 
version of our client has become much simpler:

Ice::ObjectPrx obj =
    communicator->stringToProxy("EncoderFactory");
Ripper::MP3EncoderFactoryPrx factory =
    Ripper::MP3EncoderFactoryPrx::checkedCast(obj);
Ripper::MP3EncoderPrx encoder = factory->createEncoder();

 The client no longer needs to use the IceGrid::Query interface, but simply 
creates a proxy for a well-known object and lets the Ice run time transparently 
interact with the location service. In response to a locate request for Encoder-
Factory, the registry returns a proxy containing the endpoints of both object 
adapters. The Ice run time in the client selects one of the endpoints at random, 
meaning we have now lost some functionality compared to the prior example in 
which system load was considered when selecting an endpoint. We will learn how 
to rectify this situation in Section 38.10.

38.10 Load Balancing

Replication is an important IceGrid feature but, when combined with load 
balancing, replication becomes even more useful.

IceGrid nodes regularly report the system load of their hosts to the registry. 
The replica group’s configuration determines whether the registry actually 
considers system load information while processing a locate request. Its configu-
ration also specifies how many replicas to include in the registry’s response.

IceGrid’s load balancing capability assists the client in obtaining an initial set 
of endpoints for the purpose of establishing a connection. Once a client has estab-
lished a connection, all subsequent requests on the proxy that initiated the connec-
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tion are normally sent to the same server without further consultation with the 
registry. As a result, the registry’s response to a locate request can only be viewed 
as a snapshot of the replicas at a particular moment. If system loads are important 
to the client, it must take steps to periodically contact the registry and update its 
endpoints. Section 32.17.2 provides more information on this subject.

38.10.1 Configuring a Replica Group

A replica group descriptor optionally contains a load balancing descriptor that 
determines how system loads are used in locate requests. The load balancing 
descriptor specifies the following information:

• Type

Several types of load balancing are supported. See Section 38.10.2 for details.

• Sampling interval

One of the load balancing types considers system load statistics, which are 
reported by each node at regular intervals. The replica group can specify a 
sampling interval of one, five, or fifteen minutes. Choosing a sampling 
interval requires balancing the need for up-to-date load information against 
the desire to minimize transient spikes.

On Unix platforms, the node reports the system’s load average for the selected 
interval, while on Windows the node reports the CPU utilization averaged 
over the interval.

• Number of replicas

The replica group can instruct the registry to return the endpoints of one (the 
default) or more object adapters. If the specified number N is larger than one, 
the proxy returned in response to a locate request contains the endpoints of at 
most N object adapters. If N is 0, the proxy contains the endpoints of all the 
object adapters. The Ice run time in the client selects one of these endpoints at 
random (see Section 32.11.4).

For example, the descriptor shown below uses adaptive load balancing to return 
the endpoints of the two least-loaded object adapters sampled with five-minute 
intervals:

<replica-group id="ReplicatedAdapter">
    <load-balancing type="adaptive" load-sample="5"
        n-replicas="2"/>
</replica-group>
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The type must be specified, but the remaining attributes are optional.

38.10.2 Load Balancing Types
A replica group can select one of the following load balancing types:

• Random

Random load balancing selects the requested number of object adapters at 
random. The registry does not consider system load for a replica group with 
this type.

• Adaptive

Adaptive load balancing uses system load information to choose the least-
loaded object adapters over the requested sampling interval. This is the only 
load balancing type that uses sampling intervals.

• Round Robin

Round robin load balancing returns the least recently used object adapters. 
The registry does not consider system load for a replica group with this type. 
Note that the round-robin information is not shared between registry replicas; 
each replica maintains its own notion of the “least recently used” object 
adapters.

• Ordered

Ordered load balancing selects the requested number of object adapters by 
priority. A priority can be set for each object adapter member of the replica 
group.

Choosing the proper type of load balancing is highly dependent on the needs of 
client applications. Achieving the desired load balancing and fail-over behavior 
may also require the cooperation of your clients. To that end, it is very important 
that you understand how and when the Ice run time uses a locator to resolve indi-
rect proxies; Section 32.17.2 discusses this subject in detail.

38.10.3 Application Changes
The only change we need to make to the ripper application is the addition of a load 
balancing descriptor:

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <load-balancing type="adaptive"/>
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            <object identity="EncoderFactory"
                type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath"
                default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}"
                exe="${exepath}"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate"
                index="1"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate"
                index="2"/>
        </node>
    </application>
</icegrid>

Using adaptive load balancing, we have regained the functionality we forfeited in 
Section 38.9.3. Namely, we now select the object adapter on the least-loaded 
node, and no changes were necessary in the client.

38.10.4 Interacting with Replicas

In some applications you may have a need for interacting directly with the replicas 
of an object. For example, the application may want to implement a custom load-
balancing strategy. In this situation you might be tempted to call 
ice_getEndpoints on the proxy of a replicated object in an effort to obtain 
the endpoints of all replicas, but that is not the correct solution because the proxy 
is indirect and therefore contains no endpoints. The proper approach is to use the 
findAllReplicas operation provided by the IceGrid::Query interface. See 
Section 38.6.5 for more information.
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38.11 Sessions

IceGrid provides a resource allocation facility that coordinates access to the 
objects and servers of an IceGrid application. To allocate a resource for exclusive 
use, a client must first establish a session by authenticating itself with the IceGrid 
registry or a Glacier2 router, after which the client may reserve objects and servers 
that the application indicates are allocatable. The client should release the 
resource when it is no longer needed, otherwise IceGrid reclaims it when the 
client’s session terminates or expires due to inactivity.

An allocatable server offers at least one allocatable object. The server is 
considered to be allocated when its first allocatable object is claimed, and is not 
released until all of its allocated objects are released. While the server is allocated 
by a client, no other clients can allocate its objects.

38.11.1 Creating a Session

A client must create an IceGrid session before it can allocate objects. If you have 
configured a Glacier2 router to use IceGrid’s session managers (see 
Section 38.15), the client’s router session satisfies this requirement. For more 
information on creating a Glacier2 session, see Section 42.3.6.

In the absence of Glacier2, an IceGrid client invokes createSession or crea-
teSessionFromSecureConnection on IceGrid’s Registry interface to create a 
session:

module IceGrid {
    exception PermissionDeniedException {
        string reason;
    };

    interface Registry {
        Session* createSession(string userId, string password)
            throws PermissionDeniedException;

        Session* createSessionFromSecureConnection()
            throws PermissionDeniedException;

        idempotent int getSessionTimeout();
    };
};
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The createSession operation expects a username and password and returns a 
session proxy if the client is allowed to create a session. By default, IceGrid does 
not allow the creation of sessions. You must define the registry property 
IceGrid.Registry.PermissionsVerifier with the proxy of a permis-
sions verifier object to enable session creation with createSession (see 
Section 38.11.2).

The createSessionFromSecureConnection operation does not require a 
username and password because it uses the credentials supplied by an SSL 
connection to authenticate the client (see Chapter 41). As with createSession, 
you must configure the proxy of a permissions verifier object before clients can 
use createSessionFromSecureConnection to create a session. In this case, the 
property is IceGrid.Registry.SSLPermissionsVerifier (see 
Section 38.11.2).

To create a session, the client obtains the registry proxy by converting the 
well-known proxy string "IceGrid/Registry" to a proxy object with the 
communicator, downcasts the proxy to the IceGrid::Registry interface, and 
invokes on one of the operations. The sample code below demonstrates how to do 
it in C++; the code will look very similar in other language mappings.

Ice::ObjectPrx base =
    communicator->stringToProxy("IceGrid/Registry");
IceGrid::RegistryPrx registry =
    IceGrid::RegistryPrx::checkedCast(base); 
string username = ...; 
string password = ...; 
IceGrid::SessionPrx session; 
try { 
    session = registry->createSession(username, password); 
} catch (const IceGrid::PermissionDeniedException & ex) { 
    cout << "permission denied:\n" << ex.reason << endl; 
}

Note that you have to substitute the correct instance name for the object identity 
category (see page 1902) when you call stringToProxy.

After creating the session, the client must keep it alive by periodically 
invoking its keepAlive operation. The session expires if the client does not invoke 
keepAlive within the configured timeout period, which can be obtained by 
calling the getSessionTimeout operation on the Registry interface.

If a session times out, or if the client explicitly terminates the session by 
invoking its destroy operation, IceGrid automatically releases all objects allo-
cated using that session.
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38.11.2 Access Control

As described in Section 38.11.1 above, you must configure the IceGrid registry 
with the proxy of at least one permissions verifier object to enable session 
creation:

• IceGrid.Registry.PermissionsVerifier

This property supplies the proxy of an object that implements the interface 
Glacier2::PermissionsVerifier. Defining this property allows clients to 
create sessions using createSession.

• IceGrid.Registry.SSLPermissionsVerifier

This property supplies the proxy of an object that implements the interface 
Glacier2::SSLPermissionsVerifier. Defining this property allows clients 
to create sessions using createSessionFromSecureConnection.

IceGrid supplies built-in permissions verifier objects:

• A null permissions verifier for TCP/IP. This object accepts any username and 
password and should only be used in a secure environment where no access 
control is necessary. You select this verifier object by defining the following 
configuration property:

IceGrid.Registry.PermissionsVerifier=\
    <instance-name>/NullPermissionsVerifier

Note that you have to substitute the correct instance name for the object iden-
tity category (see page 1902).

• A null permissions verifier for SSL, analogous to the one for TCP/IP. You 
select this verifier object by defining the following configuration property:

IceGrid.Registry.SSLPermissionsVerifier=\
    <instance-name>/NullSSLPermissionsVerifier

• A file-based permissions verifier. This object uses an access control list in a 
file that contains username-password pairs. The format of the password file is 
the same as the format of Glacier2 password files described in Section 42.3.2. 
You enable this verifier implementation by defining the configuration prop-
erty IceGrid.Registry.CryptPasswords with the pathname of the 
password file. Note that this property is ignored if you specify the proxy of a 
permissions verifier object using IceGrid.Registry.Permissions-
Verifier.

If you decide to implement your own permissions verifier object, Section 42.6.1 
describes the Glacier2 interfaces in detail.
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38.11.3 Allocating Objects

A client allocates objects using the session proxy returned from createSession 
or createSessionFromSecureConnection. The proxy supports the Session 
interface shown below:

module IceGrid {
    exception ObjectNotRegisteredException {
        Ice::Identity id;
    };

    exception AllocationException {
        string reason;
    };

    exception AllocationTimeoutException
        extends AllocationException {
    };

    interface Session extends Glacier2::Session {

        idempotent void keepAlive();

        Object* allocateObjectById(Ice::Identity id)
            throws ObjectNotRegisteredException,
                   AllocationException;

        Object* allocateObjectByType(string type)
            throws AllocationException;

        void releaseObject(Ice::Identity id)
            throws ObjectNotRegisteredException,
                   AllocationException;

        idempotent void setAllocationTimeout(int timeout);
    };
};

The client is responsible for keeping the session alive by periodically invoking 
keepAlive, as discussed in Section 38.11.1.

The allocateObjectById operation allocates and returns the proxy for the 
allocatable object with the given identity. If no allocatable object with the given 
identity is registered, the client receives ObjectNotRegisteredException. If the 
object cannot be allocated, the client receives AllocationException. An alloca-
tion attempt can fail for the following reasons:
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• the object is already allocated by the session

• the object is allocated by another session and did not become available during 
the configured allocation timeout period

• the session was destroyed.

The allocateObjectByType operation allocates and returns a proxy for an allo-
catable object registered with the given type. If more than one allocatable object is 
registered with the given type, the registry selects one at random. The client 
receives AllocationException if no objects with the given type could be allo-
cated. An allocation attempt can fail for the following reasons:

• no objects are registered with the given type

• all objects with the given type are already allocated (either by this session or 
other sessions) and none became available during the configured allocation 
timeout period

• the session was destroyed.

The releaseObject operation releases an object allocated by the session. The 
client receives ObjectNotRegisteredException if no allocatable object is regis-
tered with the given identity and AllocationException if the object is not allo-
cated by the session. Upon session destruction, IceGrid automatically releases all 
allocated objects.

The setAllocationTimeout operation configures the timeout used by the 
allocation operations. If no allocatable objects are available when the client 
invokes allocateObjectById or allocateObjectByType, IceGrid waits for the 
specified timeout period for an allocatable object to become available. If the 
timeout expires, the client receives AllocationTimeoutException.

38.11.4 Allocating Servers

A client does not need to explicitly allocate a server. If a server is allocatable, 
IceGrid implicitly allocates it to the first client that claims one of the server’s allo-
catable objects. Likewise, IceGrid releases the server when all of its allocatable 
objects are released.

Server allocation is useful in two situations:

• Only allocatable servers can use the session activation mode, in which the 
server is activated on demand when allocated by a client and deactivated upon 
release.
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• An allocatable server can be secured with IceSSL or Glacier2 so that its 
objects can only be invoked by the client that allocated it.

38.11.5 Security
IceGrid’s resource allocation facility allows clients to coordinate access to objects 
and servers but does not place any restrictions on client invocations to allocated 
objects; any client that has a proxy for an allocated object could conceivably 
invoke an operation on it. IceGrid assumes that clients are cooperating with each 
other and respecting allocation semantics.

To prevent unauthorized clients from invoking operations on an allocated 
object or server, you can use IceSSL or Glacier2:

• Using IceSSL, you can secure access to a server or a particular object adapter 
with the properties IceSSL.TrustOnly.Server or IceSSL.Trus-
tOnly.Server.AdapterName.

For example, if you configure a server with the session activation mode, you 
can set one of the IceSSL.TrustOnly properties to the 
${session.id} variable, which is substituted with the session id when the 
server is activated for the session. If the IceGrid session was created from a 
secure connection, the session id will be the distinguished name associated 
with the secure connection, which effectively restricts access to the server or 
one of its adapters to the client that established the session with IceGrid.

• With Glacier2, you can secure access to an allocated object or the object 
adapters of an allocated server with the Glacier2 filtering mechanism (see 
Section 42.6.2). By default, IceGrid sessions created with a Glacier2 router 
are automatically given access to allocated objects, allocatable objects, certain 
well-known objects, and the object adapters of allocated servers. See 
Section 38.15 for more information.

38.11.6 Descriptors
Allocatable objects are registered using a descriptor that is similar to well-known 
object descriptors (see Section Section 38.17.14). Allocatable objects cannot be 
replicated and therefore can only be specified within an object adapter descriptor.

Servers can be specified as allocatable by setting the server
descriptor’s allocatable attribute.

As an example, the following application defines an allocatable server and an 
allocatable object:
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<icegrid> 
    <application name="Ripper"> 
        <node name="Node1"> 
            <server id="EncoderServer" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"
                allocatable="true"> 
                <adapter name="EncoderAdapter" 
                    id="EncoderAdapter" 
                    endpoints="tcp"> 
                    <allocatable identity="EncoderFactory" 
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </node> 
    </application>
</icegrid> 

38.11.7 Application Changes

We can use the allocation facility in our MP3 encoder factory to coordinate access 
to the MP3 encoder factories. First we need to modify the descriptors to define an 
allocatable object:

<icegrid> 
    <application name="Ripper"> 
        <server-template id="EncoderServerTemplate"> 
            <parameter name="index"/> 
            <server id="EncoderServer${index}" 
                exe="/opt/ripper/bin/server" 
                activation="on-demand"> 
                <adapter name="EncoderAdapter" 
                    endpoints="tcp">
                    <allocatable identity="EncoderFactory${index}"
                        type="::Ripper::MP3EncoderFactory"/> 
                </adapter> 
            </server> 
        </server-template> 
        <node name="Node1"> 
            <server-instance template="EncoderServerTemplate" 
                index="1"/> 
        </node> 
        <node name="Node2"> 
            <server-instance template="EncoderServerTemplate" 
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                index="2"/> 
        </node> 
    </application> 
</icegrid> 

Next, the client needs to create a session and allocate a factory:

Ice::ObjectPrx obj = session->allocateObjectByType(
    Ripper::MP3EncoderFactory::ice_staticId());
try {
    Ripper::MP3EncoderPrx encoder = factory->createEncoder(); 
    // Use the encoder to encode a file ...
}
catch (const Ice::LocalException & ex) {
    // There was a problem with the encoding, we catch the
    // exception to make sure we release the factory.
}
session->releaseObject(obj->ice_getIdentity());

It is important to release an allocated object when it is no longer needed so that 
other clients may use it. If you forget to release an object, it remains allocated 
until the session is destroyed.

38.12 Registry Replication

The failure of an IceGrid registry or registry host can have serious consequences. 
A client can continue to use an existing connection to a server without interrup-
tion, but any activity that requires interaction with the registry is vulnerable to a 
single point of failure. As a result, the IceGrid registry supports replication using a 
master-slave configuration to provide high availability for applications that 
require it.

38.12.1 Overview

In IceGrid’s registry replication architecture, there is one master replica and any 
number of slave replicas. The master synchronizes its deployment information 
with the slaves so that any replica is capable of responding to locate requests, 
managing nodes, and starting servers on demand. Should the master registry or its 
host fail, properly configured clients transparently fail over to one of the slaves.
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Each replica has a unique name. The name Master is reserved for the master 
replica, while replicas can use any name that can legally appear in an object iden-
tity.

Figure 38.6 illustrates the underlying concepts of registry replication:

Figure 38.6. Overview of registry replication.

1. The slave replica contacts the master replica at startup and synchronizes its 
databases. Any subsequent modifications to the deployed applications are 
made via the master replica, which distributes them to all active slaves.

2. The nodes contact the master replica at startup to notify it about their avail-
ability.

3. The master replica provides a list of slave replicas to the nodes so that the 
nodes can also notify the slaves.

4. The client’s configuration determines which replica it contacts initially. In this 
example, it contacts the master replica.

5. In the case of a failure, the client automatically fails over to the slave. If the 
master registry’s host has failed, then Node1 and any servers that were active 
on this host also become unavailable. The use of object adapter replication 
(see Section 38.9) allows the client to transparently reestablish communica-
tion with a server on Node2.
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38.12.2 Replica Capabilities

A master registry replica has a number of responsibilities, only some of which are 
supported by slaves. The master replica knows all of its slaves, but the slaves are 
not in contact with one another. If the master replica fails, the slaves can perform 
several vital functions that should keep most applications running without inter-
ruption. Eventually, however, a new master replica must be started to restore full 
registry functionality. For a slave replica to become the master, the slave must be 
restarted.

Locate Requests

One of the most important functions of a registry replica is responding to locate 
requests from clients, and every replica has the capability to service these 
requests. Slaves synchronize their databases with the master so that they have all 
of the information necessary to transform object identities, object adapter identi-
fiers, and replica group identifiers into an appropriate set of endpoints.

Server Activation

Nodes establish sessions with each active registry replica so that any of the 
replicas are capable of activating a server on behalf of a client.

Queries

Replicating the registry also replicates the object that supports the 
IceGrid::Query interface (see Section 38.6.5). A client that resolves the 
IceGrid/Query object identity receives the endpoints of all active replicas, 
any of which can execute the client’s requests.

Allocation

A client that needs to allocate a resource must establish a session with the master 
replica.

Administration

The state of an IceGrid registry is accessible via the IceGrid::Admin interface or 
(more commonly) using an administrative tool that encapsulates this interface. 
Modifications to the registry’s state, such as deploying or updating an application, 
can only be done using the master replica. Administrative access to slave replicas 
is allowed but restricted to read-only operations. The administrative utilities 
provide mechanisms for you to select a particular replica to contact.
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For programmatic access to a replica’s administrative interface, the 
IceGrid/Registry identity corresponds to the master replica and the identity 
IceGrid/Registry-name corresponds to the slave with the given name.

Glacier2 Support

The registry implements the session manager interfaces required for integration 
with a Glacier2 router (see Section 38.15). The master replica supports the object 
identities IceGrid/SessionManager and IceGrid/AdminSession-
Manager. The slave replicas offer support for read-only administrative sessions 
using the object identity IceGrid/AdminSessionManager-name.

38.12.3 Configuration

Incorporating registry replication into an application is primarily accomplished by 
modifying your IceGrid configuration settings.

Replicas

Each replica must specify a unique name in the configuration property 
IceGrid.Registry.ReplicaName. The default value of this property is 
Master, therefore the master replica can omit this property if desired.

At startup, a slave replica attempts to register itself with its master in order to 
synchronize its databases and obtain the list of active nodes. The slave uses the 
proxy supplied by the Ice.Default.Locator property to connect to the 
master, therefore this proxy must be defined and contain at least the endpoint of 
the master replica.

For better reliability if a failure occurs, we recommend that you also include 
the endpoints of all slave replicas in the Ice.Default.Locator property. 
There is no harm in adding the slave’s own endpoints to the proxy in 
Ice.Default.Locator; in fact, it makes configuration simpler because all of 
the slaves can share the same property definition. Although slaves do not commu-
nicate with each other, it is possible for one of the slaves to be promoted to the 
master, therefore supplying the endpoints of all slaves minimizes the chance of a 
communication failure.

Shown below is an example of the configuration properties for a master 
replica:
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IceGrid.InstanceName=DemoIceGrid
IceGrid.Registry.Client.Endpoints=default -p 12000
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/master
...

You can configure a slave replica to use this master with the following settings:

Ice.Default.Locator=DemoIceGrid/Locator:default -p 12000
IceGrid.Registry.Client.Endpoints=default -p 12001
IceGrid.Registry.Server.Endpoints=default
IceGrid.Registry.Internal.Endpoints=default
IceGrid.Registry.Data=db/replica1
IceGrid.Registry.ReplicaName=Replica1
...

Clients

The endpoints contained in the Ice.Default.Locator property determine 
which registry replicas the client can use when issuing locate requests. If high 
availability is important, this property should include the endpoints of at least two 
(and preferably all) replicas. Not only does this increase the reliability of the 
client, it also distributes the work load of responding to locate requests among all 
of the replicas.

Continuing the example from the previous section, you can configure a client 
with the Ice.Default.Locator property as shown below:

Ice.Default.Locator=\
    DemoIceGrid/Locator:default -p 12000:default -p 12001

Nodes

As with slave replicas and clients, an IceGrid node should be configured with an 
Ice.Default.Locator property that contains the endpoints of all replicas. 
Doing so allows a node to notify each of them about its presence, thereby enabling 
the replicas to activate its servers and obtain the endpoints of its object adapters.

The following properties demonstrate how to configure a node with a repli-
cated registry:

Ice.Default.Locator=\
    DemoIceGrid/Locator:default -p 12000:default -p 12001
IceGrid.Node.Name=node1
IceGrid.Node.Endpoints=default
IceGrid.Node.Data=db/node1
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Diagnostics

You can use several configuration properties to enable trace messages that may 
help in diagnosing registry replication issues:

• IceGrid.Registry.Trace.Replica

Displays information about the sessions established between master and slave 
replicas.

• IceGrid.Registry.Trace.Node
IceGrid.Node.Trace.Replica

Displays information about the sessions established between replicas and 
nodes.

38.13 Application Distribution

In the chapter so far, “deployment” has meant the creation of descriptors in the 
registry. A broader definition involves a number of other tasks:

• Writing IceGrid configuration files and preparing data directories on each 
computer

• Installing the IceGrid binaries and dependent libraries on each computer

• Starting the registry and/or node on each computer, and possibly configuring 
the systems to launch them automatically

• Distributing your server executables, dependent libraries and supporting files 
to the appropriate nodes.

The first three tasks are the responsibility of the system administrator, but IceGrid 
can help with the fourth. Using an IcePatch2 server (see Chapter 45), you can 
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configure the nodes to download servers automatically and patch them at any 
time. Figure 38.7 shows the interactions of the components.

Figure 38.7. Overview of application distribution.

As you can see, deploying an IceGrid application has greater significance when 
IcePatch2 is also involved. After deployment, the administrative tool initiates a 
patch, causing the registry to notify all active nodes that are configured for appli-
cation distribution to begin the patching process. Since each IceGrid node is an 
IcePatch2 client, the node performs the patch just like any IcePatch2 client: it 
downloads everything if no local copy of the distribution exists, otherwise it does 
an incremental patch in which it downloads only new files and those whose signa-
tures have changed.

The benefits of this feature are clear:

• The distribution files are maintained in a central location

• Updating a distribution on all of the nodes is a simple matter of preparing the 
master distribution and letting IceGrid do the rest

• Manually transferring executables and supporting files to each computer is 
avoided, along with the mistakes that manual intervention sometimes intro-
duces.

38.13.1 Deploying an IcePatch2 Server

If you plan to use IceGrid’s distribution capabilities, we generally recommend 
deploying an IcePatch2 server along with your application. Doing so gives you the 
same benefits as any other IceGrid server, including on-demand activation and 
remote administration. We’ll only use one server in our sample application, but 
you might consider replicating a number of IcePatch2 servers in order to balance 
the patching load for large distributions.

Host: Server1
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Host: Server2
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Admin PC

Admin
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3 patch

IcePatch2
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Patching Considerations

Deploying an IcePatch2 server with your application presents a chicken-and-egg 
dilemma: how do the nodes download their distributions if the IcePatch2 server is 
included in the deployment? To answer this question, we need to learn more about 
IceGrid’s behavior.

Deploying and patching are treated as two separate steps: first you deploy the 
application, then you initiate the patching process. The icegridadmin utility 
combines these steps into one command (application add), but also 
provides an option to disable the patching step if so desired.

Let’s consider the state of the application after deployment but before 
patching: we have described the servers that run on each node, including file 
system-dependent attributes such as the pathnames of their executables and 
default working directories. If these pathnames refer to directories in the distribu-
tion, and the distribution has not yet been downloaded to that node, then clearly 
we cannot attempt to use those servers until patching has completed. Similarly, we 
cannot deploy an IcePatch2 server whose executable resides in the distribution to 
be downloaded2.

For these reasons, we assume that the IcePatch2 server and supporting 
libraries are distributed by the system administrator along with the IceGrid 
registry and nodes to the appropriate computers. The server should be configured 
for on-demand activation so that its node starts it automatically when patching 
begins. If the server is configured for manual activation, you must start it prior to 
patching.

Server Template

The Ice distribution includes an IcePatch2 server template that simplifies the 
inclusion of IcePatch2 in your application. The relevant portion from the file 
config/templates.xml is shown below:

<server-template id="IcePatch2">
    <parameter name="instance-name"
        default="${application}.IcePatch2"/>
    <parameter name="endpoints" default="default"/>
    <parameter name="directory"/>

    <server id="${instance-name}" exe="icepatch2server"

2. We are ignoring the case where a temporary IcePatch2 server is used to bootstrap other IcePatch2 
servers.
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        application-distrib="false" activation="on-demand">
        <adapter name="IcePatch2" endpoints="${endpoints}">
            <object identity="${instance-name}/server"
                type="::IcePatch2::FileServer"/>
        </adapter>
        <adapter name="IcePatch2.Admin" id=""
            endpoints="tcp -h 127.0.0.1"/>
        <property name="IcePatch2.InstanceName"
            value="${instance-name}"/>
        <property name="IcePatch2.Directory"
            value="${directory}"/>
    </server>
</server-template>

Notice that the server’s pathname is icepatch2server, meaning the program 
must be present in the node’s executable search path. The only mandatory param-
eter is directory, which specifies the server’s data directory and becomes the 
value of the IcePatch2.Directory property. The value of the instance-
name parameter is used as the server’s identifier when the template is instanti-
ated; its default value includes the name of the application in which the template is 
used. This identifier also affects the identities of the two well-known objects 
declared by the server (see Section 45.6).

Consider the following sample application:

<icegrid>
    <application name="PatchDemo">
        <node name="Node">
            <server-instance template="IcePatch2"
                directory="/opt/icepatch2/data"/>
            ...
        </node>
    </application>
</icegrid>

Instantiating the IcePatch2 template creates a server identified as Patch-
Demo.IcePatch2 (as determined by the default value for the instance-
name parameter). The well-known objects use this value as the category in their 
identities, such as PatchDemo.IcePatch2/server.

In order to refer to the IcePatch2 template in your application, you must 
have already configured the registry to use the config/templates.xml file 
as your default templates (see Section 38.7.4), or copied the template into the 
XML file describing your application.
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38.13.2 Distribution Descriptor

A distribution descriptor provides the details that a node requires in order to 
download the necessary files. Specifically, the descriptor supplies the proxy of the 
IcePatch2 server and the names of the subdirectories comprising the distribution, 
all of which are optional. If the descriptor does not define the proxy, the following 
default value is used instead:

${application}.IcePatch2/server

You may recall that this value matches the default identity configured by the 
IcePatch2 server template described in Section 38.13.1. Also notice that this is an 
indirect proxy, implying that the IcePatch2 server was deployed with the applica-
tion and can be started on-demand if necessary.

If the descriptor does not select any subdirectories, the node downloads the 
entire contents of the IcePatch2 data directory.

In XML, a descriptor having the default behavior as described above can be 
written as shown below:

<distrib/>

To specify a proxy, use the icepatch attribute:

<distrib icepatch="PatchDemo.IcePatch2/server"/>

Finally, select subdirectories using a nested element:

<distrib>
    <directory>dir1</directory>
    <directory>dir2/subdir</directory>
</distrib>

By including only certain subdirectories in a distribution, you are minimizing the 
time and effort required to download and patch each node. For example, each 
node in a heterogeneous network might download a platform-specific subdirec-
tory and another subdirectory containing files common to all platforms.

38.13.3 Application and Server Distributions

A distribution descriptor can be used in two contexts: within an application, and 
within a server. When the descriptor appears at the application level, it means 
every node in the application downloads that distribution. This is useful for 
distributing files required by all of the nodes on which servers are deployed, espe-
cially in a grid of homogeneous computers where it would be tedious to repeat the 



1404 IceGrid

same distribution information in each server descriptor. Here is a simple XML 
example:

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        ...
    </application>
</icegrid>

At the server level, a distribution descriptor downloads the specified directories 
for the private use of the server:

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" ...>
                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

When a distribution descriptor is defined at both the application and server levels, 
as shown in the previous example, IceGrid assumes that a dependency relationship 
exists between the two unless the server is configured otherwise. IceGrid checks 
this dependency before patching a server; if the server is dependent on the applica-
tion’s distribution, IceGrid patches the application’s distribution first, and then 
proceeds to patch the server’s. You can disable this dependency by modifying the 
server’s descriptor:

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="SimpleServer" application-distrib="false"
                ...>
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                <distrib>
                    <directory>ServerFiles</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Setting the application-distrib attribute to false informs IceGrid to 
consider the two distributions independent of one another.

38.13.4 Server Integrity

Before an IceGrid node begins patching a distribution, it ensures that all relevant 
servers are shut down and prevents them from reactivating until patching 
completes. For example, the node disables all of the servers whose descriptors 
declare a dependency on the application distribution (see Section 38.13.3).

38.13.5 Using Distributions

The node stores application and server distributions in its data directory. The path-
names of the distributions are represented by reserved variables that you can use 
in your descriptors:

• application.distrib

This variable can be used within server descriptors to refer to the top-level 
directory of the application distribution.

• server.distrib

The value of this variable is the top-level directory of a server distribution. It 
can be used only within a server descriptor that has a distribution.

The XML example shown below illustrates the use of these variables:

<icegrid>
    <application name="PatchDemo">
        <distrib>
            <directory>Common</directory>
        </distrib>
        <node name="Node">
            <server id="Server1"
                exe="${application.distrib}/Common/Bin/Server1"
                ...>
            </server>
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            <server id="Server2"
                exe="${server.distrib}/Server2Files/Bin/Server2"
                ...>
                <option>-d</option>
                <option>${server.distrib}/Server2Files</option>
                <distrib>
                    <directory>Server2Files</directory>
                </distrib>
            </server>
        </node>
    </application>
</icegrid>

Notice that the descriptor for Server2 supplies the server’s distribution direc-
tory as command-line options.

For more information on variables, see Section 38.18.

38.13.6 Application Changes

Adding an application distribution to our ripper example requires two minor 
changes to our descriptors from Section 38.9.3:

<icegrid>
    <application name="Ripper">
        <replica-group id="EncoderAdapters">
            <load-balancing type="adaptive"/>
            <object identity="EncoderFactory"
                type="::Ripper::MP3EncoderFactory"/>
        </replica-group>
        <server-template id="EncoderServerTemplate">
            <parameter name="index"/>
            <parameter name="exepath"
                default="/opt/ripper/bin/server"/>
            <server id="EncoderServer${index}"
                exe="${exepath}"
                activation="on-demand">
                <adapter name="EncoderAdapter"
                    replica-group="EncoderAdapters"
                    endpoints="tcp"/>
            </server>
        </server-template>
        <distrib/>
        <node name="Node1">
            <server-instance template="EncoderServerTemplate"
                index="1"/>
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            <server-instance template="IcePatch2"
                directory="/opt/ripper/icepatch"/>
        </node>
        <node name="Node2">
            <server-instance template="EncoderServerTemplate"
                index="2"/>
        </node>
    </application>
</icegrid>

An application distribution is sufficient for this example because we are deploying 
the same server on each node. We have also deployed an IcePatch2 server on 
Node1 using the template described in Section 38.13.1.

38.14 Administrative Sessions

To access IceGrid’s administrative facilities from a program, you must first estab-
lish an administrative session. Once done, a wide range of services are at your 
disposal, including the manipulation of IceGrid registries, nodes, and servers; 
deployment of new components such as well-known objects; and dynamic moni-
toring of IceGrid events.

Note that an administrative session can be established with either the master or 
a slave registry replica, but a session with a slave replica is restricted to read-only 
operations; see Section 38.12 for more information.

38.14.1 Creating an Administrative Session

The Registry interface provides two operations for creating an administrative 
session:

module IceGrid {
    exception PermissionDeniedException {
        string reason;
    };

    interface Registry {
        AdminSession* createAdminSession(string userId,
                                         string password)
            throws PermissionDeniedException;

        AdminSession* createAdminSessionFromSecureConnection()
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            throws PermissionDeniedException;

        idempotent int getSessionTimeout();

        // ...
    };
};

The createAdminSession operation expects a username and password and 
returns a session proxy if the client is allowed to create a session. By default, 
IceGrid does not allow the creation of administrative sessions. You must define 
the property IceGrid.Registry.AdminPermissionsVerifier with 
the proxy of a permissions verifier object to enable session creation with create-
AdminSession. The verifier object must implement the interface 
Glacier2::PermissionsVerifier (see Section 42.6.1).

The createAdminSessionFromSecureConnection operation does not require 
a username and password because it uses the credentials supplied by an SSL 
connection to authenticate the client (see Chapter 41). As with createAdminSes-
sion, you must configure the proxy of a permissions verifier object before clients 
can use createAdminSessionFromSecureConnection to create a session. In this 
case, the IceGrid.Registry.AdminSSLPermissionsVerifier prop-
erty specifies the proxy of a verifier object that implements the interface 
Glacier2::SSLPermissionsVerifier (see Section 42.6.1).

As an example, the following code demonstrates how to obtain a proxy for the 
registry and invoke createAdminSession:

Ice::ObjectPrx base =
    communicator->stringToProxy("IceGrid/Registry");
IceGrid::RegistryPrx registry =
    IceGrid::RegistryPrx::checkedCast(base); 
string username = ...; 
string password = ...; 
IceGrid::AdminSessionPrx session; 
try { 
    session = registry->createAdminSession(username, password); 
} catch (const IceGrid::PermissionDeniedException & ex) { 
    cout << "permission denied:\n" << ex.reason << endl; 
}

The AdminSession interface provides operations for accessing log files (see 
Section 38.14.2) and establishing observers (see Section 38.14.3). Furthermore, 
two additional operations are worthy of your attention:
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module IceGrid {
    interface AdminSession extends Glacier2::Session {
        idempotent void keepAlive();
        idempotent Admin* getAdmin();
        // ...
    };
};

If your program uses an administrative session indefinitely, you must prevent the 
session from expiring by invoking keepAlive periodically. You can determine the 
timeout period by calling getSessionTimeout on the Registry interface (see 
Section 38.11.1). Typically a program uses a dedicated thread for this purpose.

The getAdmin operation returns a proxy for the IceGrid::Admin interface, 
which provides complete access to the registry’s settings. For this reason, you 
must use extreme caution when enabling administrative sessions.

38.14.2 Log Files

IceGrid’s AdminSession interface provides operations for remotely accessing the 
log files of a registry, node, or server:

module IceGrid {
interface AdminSession extends Glacier2::Session {
    // ...

    FileIterator* openServerLog(string id, string path, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;
    FileIterator* openServerStdErr(string id, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;
    FileIterator* openServerStdOut(string id, int count)
        throws FileNotAvailableException, ServerNotExistException,
               NodeUnreachableException, DeploymentException;

    FileIterator* openNodeStdErr(string name, int count)
        throws FileNotAvailableException, NodeNotExistException,
               NodeUnreachableException;
    FileIterator* openNodeStdOut(string name, int count)
        throws FileNotAvailableException, NodeNotExistException,
               NodeUnreachableException;

    FileIterator* openRegistryStdErr(string name, int count)
        throws FileNotAvailableException,
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               RegistryNotExistException,
               RegistryUnreachableException;
    FileIterator * openRegistryStdOut(string name, int count)
        throws FileNotAvailableException,
               RegistryNotExistException,
               RegistryUnreachableException;
};
};

In order to access the text of a program’s standard output or standard error log, 
you must configure it using the Ice.StdOut and Ice.StdErr properties, 
respectively (see Section D.11). For registries and nodes, you must define these 
properties explicitly but, for servers, the node defines these properties automati-
cally if the property IceGrid.Node.Output is defined (see Section D.15), 
causing the server’s output to be logged in individual files.

If IceGrid.Node.Output is not defined, the following rules apply:

• If the node is started from a console or shell, servers share the node’s stdout 
and stderr. If Ice.StdOut and/or Ice.StdErr properties are defined 
for the node, the servers’ output is redirected to the specified files as well.

• If the node is started as a Unix daemon and --noclose is not used, the 
servers’ output is lost, except if Ice.StdOut and/or Ice.StdErr proper-
ties are set for node, in which case the servers’ output is redirected to the spec-
ified files.

• If the node is started as a Windows service, the servers’ output is lost even if 
Ice.StdOut and/or Ice.StdErr are set.

Log messages from the node itself are sent to stderr unless you set 
Ice.Syslog (for Unix). If the node is started as a Windows service, its log 
messages always are sent to the Windows event log.

In the case of openServerLog, the value of the path argument must resolve to 
the same file as one of the server’s log descriptors (see Section 38.17.12). This 
security measure prevents a client from opening an arbitrary file on the server’s 
host.

All of the operations accept a count argument and return a proxy to a FileIt-
erator object. The count argument determines where to start reading the log file: 
if the value is negative, the iterator is positioned at the beginning of the file, other-
wise the iterator is positioned to return the last count lines of text.

The FileIterator interface is quite simple:
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module IceGrid {
interface FileIterator {
    bool read(int size, out Ice::StringSeq lines)
        throws FileNotAvailableException;
    void destroy();
};
};

A client may invoke the read operation as many times as necessary. The size 
argument specifies the maximum number of bytes that read can return; the client 
must not use a size that would cause the reply to exceed the client’s configured 
maximum message size (see the property Ice.MessageSizeMax in Section 
D.11).

If this is the client’s first call to read, the lines argument holds whatever text 
was available from the iterator’s initial position, and the iterator is repositioned in 
preparation for the next call to read. The operation returns false to indicate that 
more text is available and true if all available text has been read.

Line termination characters are removed from the contents of lines. When 
displaying the text, you must be aware that the first and last elements of the 
sequence can be partial lines. For example, the last line of the sequence might be 
incomplete if the limit specified by size is reached. The next call to read returns 
the remainder of that line as the first element in the sequence.

As an example, the C++ code below displays the contents of a log file and 
waits for new text to become available:

IceGrid::FileIteratorPrx iter = ...;
while(true) {
    Ice::StringSeq lines;
    bool end = iter->read(10000, lines);
    if (!lines.empty()) {
        // The first line might be a continuation from
        // the previous call to read.
        cout << lines[0];
        for (Ice::StringSeq::const_iterator p =
             ++lines.begin(); p != lines.end(); ++p)
            cout << endl << *p << flush;
    }
    if (end)
        sleep(1);
}

Notice that the loop includes a delay in case read returns true, which prevents the 
client from entering a busy loop when no data is currently available.
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The client should call destroy when the iterator object is no longer required. 
At the time the client’s session terminates, IceGrid reclaims any iterators that were 
not explicitly destroyed.

If the client waits indefinitely for new data, it must invoke keepAlive on the 
administrative session to prevent it from expiring (see Section 38.14.1).

38.14.3 Dynamic Monitoring
IceGrid allows an application to monitor relevant state changes by registering call-
back objects. (The IceGrid GUI tool uses these callback interfaces for its imple-
mentation.) The callback interfaces are useful to, for example, automatically 
generate an email notification when a node goes down or some other state change 
of interest occurs.

The Observer Interfaces

IceGrid offers a callback interface for each major component of the IceGrid archi-
tecture:

module IceGrid {
interface NodeObserver {
    void nodeInit(NodeDynamicInfoSeq nodes);
    void nodeUp(NodeDynamicInfo node);
    void nodeDown(string name);
    void updateServer(string node, ServerDynamicInfo updatedInfo);
    void updateAdapter(string node,
                       AdapterDynamicInfo updatedInfo);
};

interface ApplicationObserver {
    void applicationInit(int serial,
                         ApplicationInfoSeq applications);
    void applicationAdded(int serial, ApplicationInfo desc);
    void applicationRemoved(int serial, string name);
    void applicationUpdated(int serial,
                            ApplicationUpdateInfo desc);
};

interface AdapterObserver {
    void adapterInit(AdapterInfoSeq adpts);
    void adapterAdded(AdapterInfo info);
    void adapterUpdated(AdapterInfo info);
    void adapterRemoved(string id);
};
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interface ObjectObserver {
    void objectInit(ObjectInfoSeq objects);
    void objectAdded(ObjectInfo info);
    void objectUpdated(ObjectInfo info);
    void objectRemoved(Ice::Identity id);
};

interface RegistryObserver {
    void registryInit(RegistryInfoSeq registries);
    void registryUp(RegistryInfo node);
    void registryDown(string name);
};
};

The next section describes how to install an observer.

Registering Observers

The AdminSession interface provides two operations for registering your 
observers:

module IceGrid {
    interface AdminSession extends Glacier2::Session {
        idempotent void keepAlive();

        idempotent void setObservers(
                RegistryObserver* registryObs,
                NodeObserver* nodeObs,
                ApplicationObserver* appObs,
                AdapterObserver* adptObs,
                ObjectObserver* objObs)
            throws ObserverAlreadyRegisteredException;

        idempotent void setObserversByIdentity(
                Ice::Identity registryObs,
                Ice::Identity nodeObs,
                Ice::Identity appObs,
                Ice::Identity adptObs,
                Ice::Identity objObs)
            throws ObserverAlreadyRegisteredException;

        // ...
    };
};
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You should invoke setObservers and supply proxies when it is possible for the 
registry to establish a separate connection to the client to deliver its callbacks. If 
network restrictions such as firewalls prevent such a connection, you should use 
the setObserversByIdentity operation, which creates a bidirectional connection 
instead (see Section 36.7).

You can pass a null proxy for any parameter to setObservers, or an empty 
identity for any parameter to setObserversByIdentity, if you want to use only 
some of the observers. In addition, passing a null proxy or an empty identity for an 
observer cancels a previous registration of that observer. The operations raise 
ObserverAlreadyRegisteredException if you pass a proxy or identity that was 
registered in a previous call.

Once the observers are registered, operations corresponding to state changes 
will be invoked on the observers. (See the online Slice API Reference for details 
on the data passed to the observers. You can also look at the source code for the 
IceGrid GUI implementation in the Ice for Java distribution to see how observers 
are used by the GUI.)

Finally, remember to invoke keepAlive periodically to prevent the session 
from expiring (see Section 38.14.1).

38.15 Glacier2 Integration

This section provides information on integrating a Glacier2 router (see 
Chapter 42) into your IceGrid environment.

38.15.1 Configuration Requirements
A typical IceGrid client must be configured with a locator proxy (see 
Section 38.4.3), but the configuration requirements change when the client 

http://www.zeroc.com/doc/Ice-3.4.1/reference
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accesses the location service indirectly via a Glacier2 router as shown in 
Figure 38.8.

Figure 38.8. Using IceGrid via a Glacier2 router.

In this situation, it is the router that must be configured with a locator proxy.
Assuming the registry’s client endpoint in Figure 38.8 uses port 8000, the 

router requires the following configuration property:

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 8000

Fortunately, the node supplies this property when it starts the router, so there is no 
need to configure it explicitly. Note that all of the router’s clients use the same 
locator.

38.15.2 Remote Administration

If you intend to administer IceGrid remotely via a Glacier2 router, you must 
define one of the following properties (or both), depending on whether you use 
user name and password authentication or a secure connection:

Glacier2.SessionManager=IceGrid/AdminSessionManager
Glacier2.SSLSessionManager=IceGrid/AdminSSLSessionManager

These session managers are accessible via the registry’s administrative session 
manager endpoints (see Section 38.21.1), so the Glacier2 router must be autho-
rized to establish a connection to these endpoints. Note that you must secure these 
endpoints, otherwise arbitrary clients can manipulate the session managers. An 
administrative session is allowed to access any object by default. To restrict access 
to the IceGrid::AdminSession object and the IceGrid::Admin object that is 
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returned by the session’s getAdmin operation, you must set the property 
IceGrid.Registry.AdminSessionFilters to one (see page 1911).

38.15.3 Allocating Servers and Objects

To allocate servers and objects, a program can establish a client session via 
Glacier2. Depending on the authentication method, one or both of the following 
properties must be set in the Glacier2 configuration:

Glacier2.SessionManager=IceGrid/SessionManager
Glacier2.SSLSessionManager=IceGrid/SSLSessionManager

These session managers are accessible via the registry’s session manager 
endpoints, so the Glacier2 router must be authorized to establish a connection to 
these endpoints.

A client session is allowed to access any object by default. To restrict access to 
the IceGrid::Session and IceGrid::Query objects, you must set the property 
IceGrid.Registry.SessionFilters to one (see page 1916). However, you can 
use the allocation mechanism to access additional objects and adapters. IceGrid 
adds an identity filter when a client allocates an object and removes that filter 
again when the object is released. When a client allocates a server, IceGrid adds 
an adapter identity filter for the server’s indirect adapters and removes that filter 
again when the server is released.

38.15.4 Session Management

Providing access to administrative sessions (Section 38.15.2) and client sessions 
(Section 38.15.3) both require that you define at least one of the properties 
Glacier2.SessionManager and Glacier2.SSLSessionManager, 
which presents a potential problem if you intend to access both types of sessions 
via the same Glacier2 router.

The simplest solution is to dedicate a router instance to each type of session. 
However, if you need to access both types of sessions from a single router, you 
can accomplish it only if you use a different authentication mechanism for each 
type of session. For example, you can configure the router as follows:

Glacier2.SessionManager=IceGrid/SessionManager
Glacier2.SSLSessionManager=IceGrid/AdminSSLSessionManager
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This configuration uses user name and password authentication for client sessions, 
and SSL authentication for administrative sessions. If this restriction is too 
limiting, you must use two router instances.

38.15.5 Deploying a Router

The Ice distribution includes default server templates for Ice services such as 
IcePatch2 (see Section 38.13.1) and Glacier2 that simplify the task of deploying 
these servers in an IceGrid domain.

The relevant portion from the file config/template.xml is shown 
below:

<server-template id="Glacier2">
    <parameter name="instance-name"
               default="${application}.Glacier2"/>
    <parameter name="client-endpoints"/>   
    <parameter name="server-endpoints"/>
    <parameter name="session-timeout" default="0"/>

    <server id="${instance-name}" exe="glacier2router">
    <properties>
        <property name="Glacier2.Client.Endpoints"
                  value="${client-endpoints}"/>
        <property name="Glacier2.Server.Endpoints"
                  value="${server-endpoints}"/>
        <property name="Glacier2.Admin.Endpoints"
                  value="tcp -h 127.0.0.1"/>
        <property name="Glacier2.Admin.RegisterProcess"
                  value="1"/>
        <property name="Glacier2.InstanceName"
                  value="${instance-name}"/>
        <property name="Glacier2.SessionTimeout"
                  value="${session-timeout}"/>
    </properties>
</server-template>

Notice that the server’s pathname is glacier2router, meaning the program 
must be present in the node’s executable search path. Another important point is 
the server’s activation mode: it uses manual activation (the default), meaning the 
router must be started manually. This requirement becomes clear when you 
consider that the router is the point of contact for remote clients; if the router is not 
running, there is no way for a client to contact the locator and cause the router to 
be started on-demand.
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The template defines only a few properties; if you want to set additional prop-
erties, you can define them in the server instance property set.

Of interest is the instance-name parameter, which allows you to 
configure the Glacier2.InstanceName property. The parameter’s default 
value includes the name of the application in which the template is used. This 
parameter also affects the identities of the objects implemented by the router (see 
Section 42.3.5).

Consider the following sample application:

<icegrid>
    <application name="Glacier2Demo">
        <node name="Node">
            <server-instance template="Glacier2"
                client-endpoints="tcp -h 5.6.7.8 -p 8000"
                session-timeout="300"
                server-endpoints="tcp -h 10.0.0.1"/>
            ...
        </node>
    </application>
</icegrid>

Instantiating the Glacier2 template creates a server identified as 
Glacier2Demo.Glacier2 (as determined by the default value for the 
instance-name parameter). The router’s objects use this value as the category 
in their identities, such as Glacier2Demo.Glacier2/router. The router 
proxy used by clients must contain a matching identity.

In order to refer to the Glacier2 template in your application, you must 
have already configured the registry to use the config/templates.xml file 
as your default templates (see Section 38.7.4), or copied the template into the 
XML file describing your application.

Note that IceGrid cannot start a Glacier2 router if the router’s security config-
uration requires that a passphrase be entered. In this situation, you have no choice 
but to start the router yourself so that you can provide the passphrase when 
prompted.

38.16 Using an SQL Database

By default, IceGrid uses a Freeze database (see Chapter 39) to store its persistent 
state. You can configure IceGrid to use an SQL database by setting a number of 
properties. (Note that SQL support requires recompilation of IceGrid with appro-



38.17 XML Reference 1419

priate settings. See the release notes of your Ice distribution for details for how to 
do this, as well as the supported SQL databases.)

If you use IceGrid with an SQL database, its persistent state is stored in four 
tables:

• <instance-name>_<replica-name>_Applications

• <instance-name>_<replica-name>_Adapters

• <instance-name>_<replica-name>_Objects

• <instance-name>_<replica-name>_InternalObjects

A number of properties control how IceGrid accesses an SQL database:

• Ice.Plugin.DB

To use IceGrid with an SQL database, you must set this property to the value 
IceGridSqlDB:createSqlDB.

• IceGrid.SQL.DatabaseType

• IceGrid.SQL.DatabaseName

• IceGrid.SQL.HostName

• IceGrid.SQL.Port

• IceGrid.SQL.UserName

• IceGrid.SQl.Password

These properties are described in detail in Appendix D.

38.17 XML Reference

This section provides a reference for the XML elements that define IceGrid 
descriptors, in alphabetical order.

IceGrid XML files must use UTF-8 encoding.

38.17.1 Adapter

An adapter element defines an indirect object adapter. Refer to Section 32.4 for 
more information on object adapters.

Context

This element may only appear as a child of a server or service element.
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Attributes

This element supports the attributes in Table 38.2.

Table 38.2. Attributes of the adapter element.

Attribute Description Required

endpoints Specifies one or more endpoints for this 
object adapter. These endpoints typically do 
not specify a port. This attribute is translated 
into a definition of the adapter’s Endpoints 
configuration property (see Appendix D).

No

id Specifies an object adapter identifier. The 
identifier must be unique among all adapters 
and replica groups in the registry. This attri-
bute is translated into a definition of the 
adapter’s AdapterId configuration prop-
erty (see Appendix D). If not defined, a 
default value is constructed from the adapter 
name and server id (and service name for an 
IceBox service).

Yes

name The name of the object adapter as used in the 
server that creates it.

Yes

priority Specifies the priority of the object adapter as 
an integer value. The object adapter priority is 
used by the Ordered replica group load bal-
ancing policy to determine the order of the 
endpoints returned by a locate request. End-
points are ordered from the smallest priority 
value to the highest. If not defined, the value 
is 0. See Section 38.10.2 for more informa-
tion.

No
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An optional nested description element provides free-form descriptive text.

register-pro-
cess

This attribute is only valid if the enclosing 
server uses an Ice version prior to 3.3. In Ice 
3.3 or later, this functionality is replaced by 
the administrative facility (see Section 38.22).
If the value is true, this object adapter regis-
ters an object in the IceGrid registry that 
facilitates graceful shutdown of the server. 
Only one object adapter in a server should set 
this attribute to true. If not defined, the 
default value is false.

No

replica-group Specifies a replica group identifier. A non-
empty value signals that this object adapter is 
a member of the indicated replica group. This 
attribute is translated into a definition of the 
adapter’s RepliaGroupId configuration 
property (see Appendix D). See Section 38.9 
for more information on replication. If not 
defined, the default value is an empty string.

No

server-life-
time

A value of true indicates that the lifetime of 
this object adapter is the same as the lifetime 
of its server. This information is used by the 
IceGrid node to determine the state of the 
server. Specifically, the server is considered 
activated (see Section 38.25) when all the 
object adapters with the server-lifetime attri-
bute set to true are registered with the regis-
try (the object adapter registers itself during 
activation).
Furthermore, server deactivation is consid-
ered to begin as soon as one object adapter 
with the server-lifetime attribute set to true 
is unregistered with the registry (the object 
adapter unregisters itself during deactivation).
If not defined, the default value is true.

No

Table 38.2. Attributes of the adapter element.

Attribute Description Required
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Example

<adapter name="MyAdapter"
    endpoints="default"
    id="MyAdapterId"
    replica-group="MyReplicaGroup">
    <description>A description of the adapter.</description>
    ...
</adapter>

38.17.2 Allocatable

An allocatable element defines an allocatable object in the IceGrid registry. 
Clients can allocate this object using only its identity, or they can allocate objects 
of a specific type. Refer to Section 38.11.3 for more information on allocatable 
objects.

Context

This element may only appear as a child of an adapter element 
(Section 38.17.1).

Attributes

This element supports the attributes in Table 38.3.

Table 38.3. Attributes of the allocatable element.

Attribute Description Required

identity Specifies the identity by which this allocat-
able object is known.

Yes

property Specifies the name of a property to generate 
that contains the stringified identity of this 
allocatable.

No

type An arbitrary string used to group allocatable 
objects. By convention, the string represents 
the most-derived Slice type of the object, but 
an application is free to use another conven-
tion.

No
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38.17.3 Application

An application element defines an IceGrid application. Refer to Section 38.3 
for more information. An application typically contains at least one node 
element, but it may also be used for other purposes such as defining server and 
service templates, default templates, replica groups and property sets.

Context

This element must be a child of an icegrid element. Only one application 
element is permitted per file.

Attributes

This element supports the attributes in Table 38.4.

An optional nested description element provides free-form descriptive text.

Example

<icegrid>
    <application name="MyApplication"
        import-default-templates="true">
        <description>A description of the

Table 38.4. Attributes of the application element.

Attribute Description Required

import-
default-tem-
plates

If true, the default templates configured for 
the IceGrid registry are imported and avail-
able for use within this application. See 
Section 38.7.4 for more information on 
default templates. If not specified, the default 
value is false.

No

name The name of the application. This name must 
be unique among all applications in the regis-
try. Within the application, child elements can 
refer to its name using the reserved variable 
${application}.

Yes
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            application.</description>
        ...
    </application>
</icegrid>

38.17.4 DbEnv

A dbenv element causes an IceGrid node to generate Freeze configuration prop-
erties for the server or service in which it is defined, and may cause the node to 
create a database environment directory if necessary. This element may contain 
dbproperty elements (Section 38.17.5). See Chapter 39 for more information 
on Freeze.

Context

This element may only appear as a child of a server element (Section 38.17.19) 
or a service element (Section 38.17.22).

Attributes

This element supports the attributes in Table 38.5.

The values of the name and home attributes are used to define the configuration 
property shown below:

Freeze.DbEnv.name.DbHome=home

An optional nested description element provides free-form descriptive text.

Table 38.5. Attributes of the dbenv element.

Attribute Description Required

home Specifies the directory to use as the database 
environment. If not defined, a subdirectory 
within the node’s data directory is used.

No

name The name of the database environment. Yes
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Example

<dbenv name="MyEnv" home="/opt/data/db">
    <description>A description of the
        database environment.</description>
    ...
</dbenv>

38.17.5 DbProperty

A dbproperty element defines a BerkeleyDB configuration property. See 
Chapter 39 for more information on Freeze.

Context

This element may only appear as a child of a dbenv element (Section 38.17.4).

Attributes

This element supports the attributes in Table 38.6.

Example

<dbenv name="MyEnv" home="/opt/data/db">
    <description>A description of the
        database environment.</description>
    <dbproperty name="set_cachesize" value="0 52428800 1"/>
</dbenv>

38.17.6 Description

A description element specifies a description of its parent element.

Table 38.6. Attributes of the dbproperty element.

Attribute Description Required

name The name of the configuration property. Yes

value The value of the configuration property. If not 
defined, the value is an empty string.

No
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Context

This element may only appear as a child of the application, replica-
group, node, server, service, icebox, adapter, and dbenv elements. 

Attributes

This element supports no attributes.

Example

<node name="localnode">
    <description>Free form descriptive text for
    localnode</description>
</node>

38.17.7 Directory

A directory element specifies a directory in a distribution. Refer to 
Section 38.13 for more information on distribution descriptors.

Context

This element may only appear as a child of the distrib element 
(Section 38.17.8). 

Attributes

This element supports no attributes.

38.17.8 Distrib

A distrib element specifies the files to download from an IcePatch2 server as 
well as the server’s proxy. Refer to Section 38.13 for more information on distri-
bution descriptors.

Context

This element may only appear as a child of an application element 
(Section 38.17.3) or a server element (Section 38.17.19).
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Attributes

This element supports the attributes in Table 38.7.

Example

<distrib icepatch="DemoIcePatch2/server:tcp -p 12345">  
    <directory>dir1</directory> 
    <directory>dir2/subdir</directory> 
</distrib>

38.17.9 IceBox

An icebox element defines an IceBox server to be deployed on a node. It typi-
cally contains at least one service element (Section 38.17.22), and may supply 
additional information such as command-line options (Section 38.17.26), environ-
ment variables (Section 38.17.27), configuration properties (Section 38.17.17) 
and a server distribution (Section 38.13).

The element may optionally contain a single adapter element 
(Section 38.17.1) that configures the IceBox service manager’s object adapter and 
must have the name IceBox.ServiceManager. If no such element is 
defined, the service manager’s object adapter is disabled. Note however that the 
service manager’s functionality remains available as an administrative facet even 
when its object adapter is disabled. See Chapter 43 for more information on 
IceBox.

Context

This element may only appear as a child of a node element (Section 38.17.13) or 
a server-template element (Section 38.17.21).

Table 38.7. Attributes of the distrib element.

Attribute Description Required

icepatch Specifies the proxy of the IcePatch2 server. If 
not defined, the default value is
${applica-
tion}.IcePatch2/server.

No
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Attributes

This element supports the same attributes as the server element (see 
Table 38.16).

The IceGrid node on which this server is deployed generates the following 
configuration property for the server:

IceBox.InstanceName=${server}

An optional nested description element provides free-form descriptive text.

Example

<icebox id="MyIceBox"
    activation="on-demand"
    activation-timeout="60"
    application-distrib="false"
    deactivation-timeout="60"
    exe="/opt/Ice/bin/icebox"
    pwd="/">
    <option>--Ice.Trace.Network=1</option>
    <env>PATH=/opt/Ice/bin:$PATH</env>
    <property name="IceBox.UseSharedCommunicator.Service1"
        value="1"/>
    <service name="Service1".../>
    <service-instance template="ServiceTemplate" name="Service2"/>
</icebox>

38.17.10 IceGrid

The icegrid element is the top-level element for IceGrid descriptors in XML 
files. This elements supports no attributes.

38.17.11 Load Balancing

A load-balancing element determines the load balancing policy used by a 
replica group. Refer to Section 38.10 for details on load balancing.

Context

This element may only appear as a child of a replica-group element 
(Section 38.17.18).
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Attributes

This element supports the attributes in Table 38.8.

Example

<application name="MyApp">
    <replica-group id="ReplicatedAdapter">
        <load-balancing type="adaptive" load-sample="15"
            n-replicas="3"/>
        <description>A description of this
            replica group.</description>
        <object identity="WellKnownObject" .../>
    </replica-group>
    ...
</application>

38.17.12 Log

A log element specifies the name of a log file for a server or service. A log 
element must be defined for each log file that can be accessed remotely by an 
administrative tool. Note that it is not necessary to define a log element for the 
values of the Ice.StdErr and Ice.StdOut properties.

See Section 38.14.2 for more information on log files.

Table 38.8. Attributes of the load-balancing element.

Attribute Description Required

load-sample Specifies the load sample to use for the adap-
tive load balancing policy. It can only be 
defined if type is set to adaptive. Legal 
values are 1, 5 and 15. If not specified, the 
load sample default value is 1.

No

n-replicas Specifies the maximum number of replicas 
used to compute the endpoints of the replica 
group. If not specified, the default value is 1.

No

type Specifies the type of load balancing. Legal 
values are adaptive, ordered, 
round-robin and random.

Yes
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Context

This element may only appear as a child of a server element (Section 38.17.19) 
or a service element (Section 38.17.22).

Attributes

This element supports the attributes in Table 38.9.

Example

<server id="MyServer" ...>
    <log path="${server}.log" property="LogFile"/>
</server>

38.17.13 Node

A node element defines an IceGrid node. The servers that the node is responsible 
for managing are described in child elements.

Context

This element may only appear as a child of an application element 
(Section 38.17.3). Multiple node elements having the same name may appear in 
an application. Their contents are merged and the last definition of load-
factor has precedence.

Table 38.9. Attributes of the log element.

Attribute Description Required

path The path name of the log file. If a relative 
path is specified, it is relative to the current 
working directory of the node. The node must 
have sufficient access privileges to read the 
file.

Yes

property Specifies the name of a property in which to 
store the path name of the log file as given in 
the path attribute.

No
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Attributes

This element supports the attributes in Table 38.10.

Example

<node name="Node1" load-factor="2.0">
    <description>A description of this node.</description>
    <server id="Server1" ...>
        <property name="NodeName" value="${node}"/>
        ...
    </server>
</node>

Table 38.10. Attributes of the node element.

Attribute Description Required

load-factor A floating point value defining the factor that 
is multiplied with the node’s load average. 
The load average is used by the adaptive load 
balancing policy to figure out which node is 
the least loaded (see Section 38.10.2). The 
default is 1.0 on Unix platforms and 
1/NCPUS on Windows (where NCPUS is the 
number of CPUs in the node’s computer).
Note that, if Unix and Windows machines are 
part of a replica group, the Unix and Win-
dows figures are not directly comparable, but 
the registry still makes an attempt to pick the 
least-loaded node.

No

name Specifies the name of this node. The name 
must be unique among all nodes in the regis-
try. Within the node, child elements can refer 
to its name using the reserved variable 
${node}. An icegridnode process 
representing this node must be started on the 
desired computer and its configuration prop-
erty IceGrid.Node.Name must match 
this attribute (see Section 38.21.2).

Yes
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38.17.14 Object

An object element defines a well-known object in the IceGrid registry. Clients 
can refer to this object using only its identity, or they can search for well-known 
objects of a specific type. Refer to Section 38.6 for more information on well-
known objects.

Context

This element may only appear as a child of an adapter element 
(Section 38.17.1) or a replica-group element (Section 38.17.18).

Attributes

This element supports the attributes in Table 38.11.

Example

<adapter name="MyAdapter" id="WellKnownAdapter" ...>
    <object identity="WellKnownObject"
        type="::Module::WellKnownInterface"/>
</adapter>

In the configuration above, the object can be located via the equivalent proxies 
WellKnownObject and WellKnownObject@WellKnownAdapter.

Table 38.11. Attributes of the object element.

Attribute Description Required

identity Specifies the identity by which this object is 
known.

Yes

property Specifies the name of a property to generate 
that contains the stringified identity of the 
object. This attribute is only allowed if this 
object element is a child of an adapter 
element.

No

type An arbitrary string used to group objects. By 
convention, the string represents the most-
derived Slice type of the object, but an appli-
cation is free to use another convention.

No
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38.17.15 Parameter
A parameter element defines a template parameter. Template parameters must 
be declared with this element to be used in template instantiation.

Context

This element may only appear as a child of a server-template element 
(Section 38.17.21) or a service-template element (Section 38.17.24).

Attributes

This element supports the attributes in Table 38.12.

Example

<server-template id="MyServerTemplate"> 
    <parameter name="index"/> 
    <parameter name="exepath" default="/opt/myapp/bin/server"/> 
    ...
</server-template> 

38.17.16 Properties
The properties element is used in three situations:

• as a named property set if the id attribute is specified

• as a reference to a named property set if the refid attribute is specified

• as an unnamed property set if the id or refid attributes are not specified.

Table 38.12. Attributes of the parameter element.

Attribute Description Required

name The name of the parameter. For example, if 
index is used as the name of a parameter, it 
can be referenced using ${index} in the 
server or service template.

Yes

default An optional default value for the parameter. 
This value is used if the parameter is not 
defined when a server or service is instanti-
ated.

No
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A property set is useful to define a set of properties (a named property set) in 
application or node descriptors. Named property sets can be included in named or 
unnamed property sets with property set references.

Context

A named property set element may only be a child of an application element 
(Section 38.17.3) or a node (Section 38.17.13) element. An unnamed property 
set element may only be a child of a server, icebox, service, server-
instance or service-instance element. An unnamed property set 
element with the service attribute defined may only be a child of a server-
instance element. A reference to a named property set can only be a child of a 
named or unnamed property set element.

Attributes

This element supports the attributes in Table 38.13.

Table 38.13. Attributes of the properties element.

Attribute Description Required

id Defines a new named property set with the 
given identifier. The identifier must be unique 
among all named property sets defined in the 
same scope. If not specified, the properties 
element refers to an unnamed property set or 
a property set reference.

No

refid Defines a reference to the named property set 
with the given identifier. If not specified, the 
element refers to an unnamed or named prop-
erty set.

No

service Specifies the name of a service that is defined 
in the enclosing server-instance 
descriptor. The server instance must be an 
IceBox server that includes a service with the 
given name. An unnamed property set with 
this attribute defined extends the properties of 
the service. If not specified, the unnamed 
property set extends the properties of the 
server instance.

No
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Example

<application name="Simple">
   <properties id="Debug">
        <property name="Ice.Trace.Network" value="1"/>
   </properties>

    <server id="MyServer" exe="./server">
        <properties>
            <properties refid="Debug"/>
            <property name="AppProperty" value="1"/>
        </properties>
    </server>
</application>

38.17.17 Property
An IceGrid node generates a configuration file for each of its servers and services. 
This file generally should not be edited manually because any changes are lost the 
next time the node generates the file. The property element is the correct way 
to define additional properties in a configuration file.

Note that IceGrid administrative utilities can retrieve the configuration proper-
ties of a server or service, as described in Section 38.22.4.

Context

This element may only appear as a child of a server element 
(Section 38.17.19), a service element (Section 38.17.22), an icebox element 
(Section 38.17.9) or a properties element (Section 38.17.16).

Attributes

This element supports the attributes in Table 38.14.

Table 38.14. Attributes of the property element.

Attribute Description Required

name Specifies the property name. Yes

value Specifies the property value. If not defined, 
the value is an empty string.

No
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Example

<server id="MyServer" ...>
    <property name="Ice.ThreadPool.Server.SizeMax" value="10"/>
    ...
</server>

This property element adds the following definition to the server’s configura-
tion file:

Ice.ThreadPool.Server.SizeMax=10

38.17.18 Replica Group
A replica-group element creates a virtual object adapter in order to provide 
replication and load balancing for a collection of object adapters. An adapter 
element (Section 38.17.1) declares its membership in a group by identifying the 
desired replica group. The element may declare well-known objects 
(Section 38.6) that are available in all of the participating object adapters. A 
replica-group element may contain a load-balancing child element 
that specifies the load-balancing algorithm the registry should use when resolving 
locate requests. If not specified, the registry uses a random load balancing policy 
with the number of replicas set to 0.

Refer to Section 38.9 for more information on replication and Section 38.10 
for details on load balancing.

Context

This element may only appear as a child of an application element 
(Section 38.17.3).
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Attributes

This element supports the attributes in Table 38.15.

An optional nested description element provides free-form descriptive text.

Example

<application name="MyApp">
    <replica-group id="ReplicatedAdapter">
        <load-balancing type="adaptive" load-sample="15"
            n-replicas="3"/>
        <description>A description of this
            replica group.</description>
        <object identity="WellKnownObject" .../>
    </replica-group>
    ...
</application>

In this example, the proxy WellKnownObject is equivalent to the proxy 
WellKnownObject@ReplicatedAdapter.

38.17.19 Server

A server element defines a server to be deployed on a node. It typically 
contains at least one adapter element (Section 38.17.1), and may supply addi-
tional information such as command-line options (Section 38.17.26), environment 
variables (Section 38.17.27), configuration properties (Section 38.17.17), and a 
server distribution (Section 38.13).

Table 38.15. Attributes of the replica-group element.

Attribute Description Required

id Specifies the identifier of the replica group, 
which must be unique among all adapters and 
replica groups in the registry. This identifier 
can be used in indirect proxies in place of an 
adapter identifier.

Yes
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Context

This element may only appear as a child of a node element (Section 38.17.13) or 
a server-template element (Section 38.17.21).

Attributes

This element supports the attributes in Table 38.16.

Table 38.16. Attributes of the server element.

Attribute Description Required

activation Specifies whether the server’s activation 
mode. Legal values are manual,
on-demand, always and session. If not 
specified, manual activation is used by 
default. See Section 38.25 for more informa-
tion.

No

activation-
timeout

Defines the number of seconds a node will 
wait for the server to activate. If the timeout 
expires, a client waiting to receive the end-
points of an object adapter in this server will 
receive an empty set of endpoints. If not 
defined, the default timeout is the value of the 
IceGrid.Node.WaitTime property con-
figured for the server’s node.

No

allocatable Specifies whether the server can be allocated. 
A server is allocated implicitly when one of 
its allocatable objects is allocated. The value 
of this attribute is ignored if the server activa-
tion mode is session; a server with this 
activation mode is always allocatable. Other-
wise, if not specified and the server activation 
mode is not session, the server is not allo-
catable.

No

application-
distrib

Specifies whether this server’s distribution is 
dependent on the application’s distribution. If 
the value is true, the server cannot be 
patched until the application has been 
patched. If not defined, the default value is 
true. See Section 38.13.3 for more informa-
tion on distribution dependencies.

No
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deactivation-
timeout

Defines the number of seconds a node will 
wait for the server to deactivate. If the timeout 
expires, the node terminates the server pro-
cess. If not defined, the default timeout is the 
value of the node’s configuration property 
IceGrid.Node.WaitTime.

No

exe The pathname of the server executable. Yes

ice-version Specifies the Ice version in use by this server. 
If not defined, IceGrid assumes the server 
uses the same version that IceGrid itself uses. 
A server that uses an Ice version prior to 3.3 
must define this attribute if its adapters use 
the register-process attribute (see 
Section 38.17.1). For example, a server using 
Ice 3.2.x should use 3.2 as the value of this 
attribute.

No

id Specifies the identifier for this server. The 
identifier must be unique among all servers in 
the registry. Within the server, child elements 
can refer to its identifier using the reserved 
variable ${server}.

Yes

pwd The default working directory for the server. 
If not defined, the server is started in the 
node’s current working directory.

No

Table 38.16. Attributes of the server element.

Attribute Description Required
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An optional nested description element provides free-form descriptive text.

Example

<server id="MyServer"
    activation="on-demand"
    activation-timeout="60"
    application-distrib="false"
    deactivation-timeout="60"
    exe="/opt/app/bin/myserver"
    pwd="/">
    <option>--Ice.Trace.Network=1</option>
    <env>PATH=/opt/Ice/bin:$PATH</env>
    <property name="ServerId" value="${server}"/>
    <adapter name="Adapter1" .../>
</server>

user Specifies the name of the user account under 
which the server is activated and run. If a user 
account mapper is configured for the node, 
the value of this attribute is used to find the 
corresponding account in the map.

On Unix, the node must be running as root to 
be able to run servers under a different user 
account. On Windows, or if the node is not 
running as root on Unix, the only permissible 
value for this attribute is an empty string or 
the name of the user account under which the 
node is running.

On Unix, if the node is running as root and 
this attribute is not specified, the server is run 
under the user ${session.id} if the 
server activation mode is session or under 
the user nobody if the activation mode is 
manual, on-demand or always.

No

Table 38.16. Attributes of the server element.

Attribute Description Required
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38.17.20 Server Instance

A server-instance element deploys an instance of a server-template 
element (Section 38.17.21) on a node. Refer to Section 38.7 for more information 
on templates.

Context

This element may only appear as a child of a node element (Section 38.17.13).

Attributes

This element supports the attributes in Table 38.17.

All other attributes of the element must correspond to parameters declared by the 
template. The server-instance element must provide a value for each 
parameter that does not have a default value supplied by the template.

Example

<icegrid>
    <application name="SampleApp">
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <server id="${id}" activation="manual" .../>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate"
                id="TheServer"/>
        </node>
    </application>
</icegrid>

Table 38.17. Attributes of the server-instance element.

Attribute Description Required

template Identifies the server template. Yes
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38.17.21 Server Template

A server-template element defines a template for a server element 
(Section 38.17.19), simplifying the task of deploying multiple instances of the 
same server definition. The template should contain a parameterized server 
element that is instantiated using a server-instance element 
(Section 38.17.20). Refer to Section 38.7 for more information on templates.

Context

This element may only appear as a child of an application element 
(Section 38.17.3).

Attributes

This element supports the attributes in Table 38.18.

Parameters

A template may declare parameters that are used to instantiate the server 
element. You can define a default value for each parameter. Parameters without a 
default value are considered mandatory and values for them must be supplied by 
the server-instance element. See Section 38.18 for more information on 
parameter semantics.

Example

<icegrid>
    <application name="SampleApp">
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <server id="${id}" activation="manual" .../>
        </server-template>
        <node name="Node1">

Table 38.18. Attributes of the server-template element.

Attribute Description Required

id Specifies the identifier for the server tem-
plate. This identifier must be unique among 
all server templates in the application.

Yes
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            <server-instance template="ServerTemplate"
                id="TheServer"/>
        </node>
    </application>
</icegrid>

38.17.22 Service

A service element defines an IceBox service. It typically contains at least one 
adapter element (Section 38.17.1), and may supply additional information such 
as configuration properties (Section 38.17.17).

Refer to Section 38.8 for more information on using IceBox services in 
IceGrid.

Context

This element may only appear as a child of an icebox element (Section 38.17.9) 
or a service-template element (Section 38.17.24).

Attributes

This element supports the attributes in Table 38.19.

An optional nested description element provides free-form descriptive text.

Example

<icebox id="MyIceBox" ...>
    <service name="Service1" entry="service1:Create">
        <description>A description of this service.</description>
        <property name="ServiceName" value="${service}"/>

Table 38.19. Attributes of the service element.

Attribute Description Required

entry Specifies the entry point of this service. Yes

name Specifies the name of this service. Within the 
service, child elements can refer to its name 
using the reserved variable ${service}.

Yes
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        <adapter name="MyAdapter" id="${service}Adapter" .../>
    </service>
    <service name="Service2" entry="service2:Create"/>
</icebox>

38.17.23 Service Instance

A service-instance element creates an instance of a service-
template element in an IceBox server (see Section 38.8). Refer to Section 38.7 
for more information on templates.

Context

This element may only appear as a child of an icebox element 
(Section 38.17.9).

Attributes

This element supports the attributes in Table 38.20.

All other attributes of the element must correspond to parameters declared by the 
template. The service-instance element must provide a value for each 
parameter that does not have a default value supplied by the template.

Example

<icebox id="IceBoxServer" ...>
    <service-instance template="ServiceTemplate" name="Service1"/>
</icebox>

38.17.24 Service Template

A service-template element defines a template for a service element 
(Section 38.17.22), simplifying the task of deploying multiple instances of the 

Table 38.20. Attributes of the service-instance element.

Attribute Description Required

template Identifies the service template. Yes
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same service definition. The template should contain a parameterized service 
element that is instantiated using a service-instance element 
(Section 38.17.23). Refer to Section 38.8.2 for more information on service 
templates.

Context

This element may only appear as a child of an application element 
(Section 38.17.3).

Attributes

This element supports the attributes in Table 38.21.

Parameters

A template may declare parameters that are used to instantiate the service 
element. You can define a default value for each parameter. Parameters without a 
default value are considered mandatory and values for them must be supplied by 
the service-instance element. See Section 38.18 for more information on 
parameter semantics.

Example

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                <adapter name="${service}" .../>
            </service>
        </service-template>
        <node name="Node1">
            <icebox id="IceBoxServer" ...>

Table 38.21. Attributes of the service-template element.

Attribute Description Required

id Specifies the identifier for the service tem-
plate. This identifier must be unique among 
all service templates in the application.

Yes
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                <service-instance template="ServiceTemplate"
                    name="Service1"/>
            </icebox>
        </node>
    </application>
</icegrid>

38.17.25 Variable

A variable element defines a variable. See Section 38.18 for more information 
on variable semantics.

Context

This element may only appear as a child of an application element 
(Section 38.17.3) or node element (Section 38.17.13).

Attributes

This element supports the attributes in Table 38.22.

Example

<icegrid>
    <application name="SampleApp">
        <variable name="Var1" value="foo"/>
        <variable name="Var2" value="${Var1}bar"/>
        ...
    </application>
</icegrid>

Table 38.22. Attributes of the variable element.

Attribute Description Required

name Specifies the variable name. The value of this 
variable is substituted whenever its name is 
used in variable syntax, as in ${name}.

Yes

value Specifies the variable value. If not defined, 
the default value is an empty string.

No
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38.17.26 Command Line Options

Server descriptors (Section 38.17.19) and icebox descriptors (Section 38.17.9) 
may specify command-line options that the node will pass to the program at 
startup. As the node prepares to execute the server, it assembles the command by 
appending options to the server executable’s pathname.

In XML, you define a command-line option using the option element:

<server id="Server1" ...>
    <option>--Ice.Trace.Protocol</option>
    ...
</server>

The node preserves the order of options, which is especially important for Java 
servers. For example, JVM options must appear before the class name, as shown 
below:

<server id="JavaServer" exe="java" ...>
    <option>-Xnoclassgc</option>
    <option>ServerClassName</option>
    <option>--Ice.Trace.Protocol</option>
    ...
</server>

The node translates these options into the following command:

java -Xnoclassgc ServerClassName --Ice.Trace.Protocol

38.17.27 Environment Variables

Server descriptors (Section 38.17.19) and icebox descriptors (Section 38.17.9) 
may specify environment variables that the node will define when starting a 
server. An environment variable definition uses the familiar name=value 
syntax, and you can also refer to other environment variables within the value. 
The exact syntax for variable references depends on the platform on which the 
server’s descriptor is deployed.

On a Unix platform, the Bourne shell syntax is required:

LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH

On a Windows platform, the syntax uses the conventional style:

PATH=C:\Ice\lib;%PATH%

In XML, the env element supplies a definition for an environment variable:
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<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>LD_LIBRARY_PATH=/opt/Ice/lib:$LD_LIBRARY_PATH</env>
        ...
    </server>
</node>
<node name="WindowsBox">
    <server id="WindowsServer" exe="C:/app/bin/server.exe" ...>
        <env>PATH=C:\Ice\lib;%PATH%</env>
        ...
    </server>
</node>

If a value refers to an environment variable that is not defined, the reference is 
substituted with an empty string.

Environment variable definitions may also refer to descriptor variables and 
template parameters:

<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>PATH=${server.distrib}/bin:$PATH</env>
        ...
    </server>
</node>

On Unix, an environment variable VAR can be referenced as $VAR or ${VAR}. 
You must be careful when using the latter syntax because IceGrid assumes 
${VAR} refers to a descriptor variable or parameter and will report an error if no 
match is found. If you prefer to use this style to refer to environment variables, 
you must escape these occurrences as shown in the example below:

<node name="UnixBox">
    <server id="UnixServer" exe="/opt/app/bin/server" ...>
        <env>PATH=${server.distrib}/bin:$${PATH}</env>
        ...
    </server>
</node>

IceGrid does not attempt to perform substitution on $${PATH}, but rather 
removes the leading $ character and then performs environment variable substitu-
tion on ${PATH}. See Section 38.18.1 for more information on escaping vari-
ables.



38.18 Variable and Parameter Semantics 1449

38.18 Variable and Parameter Semantics

Variable descriptors (see Section 38.17.25) allow you to define commonly-used 
information once and refer to them symbolically throughout your application 
descriptors.

38.18.1 Syntax

Substitution for a variable or parameter VP is attempted whenever the symbol 
${VP} is encountered, subject to the limitations and rules described below. 
Substitution is case-sensitive, and a fatal error occurs if VP is not defined.

Limitations

Substitution is only performed in string values, and excludes the following cases:

• in the identifier of a template descriptor definition:

<server-template id="${invalid}" ...>

• in the name of a variable definition

<variable name="${invalid}" ...>

• in the name of a template parameter definition

<parameter name="${invalid}" ...>

• in the name of a template parameter assignment

<server-instance template="T" ${invalid}="val" ...>

• in the name of a node definition

<node name="${invalid}" ...>

• in the name of an application definition

<application name="${invalid}" ...>

Substitution is not supported for values of other types. The example below 
demonstrates an invalid use of substitution:

<variable name="register" value="true"/>
<node name="Node">
    <server id="Server1" ...>
        <adapter name="Adapter1" register-process=${register} .../>
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In this case, a variable cannot supply the value of register-process because 
that attribute expects a boolean value, not a string.

Most values are strings, however, so this limitation is rarely a problem.

Escaping a Variable

You can prevent substitution by escaping a variable reference with an additional 
leading $ character. For example, in order to assign the literal string ${abc} to a 
variable, you must escape it as shown below:

<variable name="x" value="$${abc}"/>

The extra $ symbol is only meaningful when immediately preceding a variable 
reference, therefore text such as US$$55 is not modified. Each occurrence of the 
characters $$ preceding a variable reference is replaced with a single $ character, 
and that character does not initiate a variable reference. Consider these examples:

<variable name="a" value="hi"/>
<variable name="b" value="$${a}"/>
<variable name="c" value="$$${a}"/>
<variable name="d" value="$$$${a}"/>

After substitution, b has the value $${a}, c has the value $hi, and d has the 
value $${a}.

38.18.2 Reserved Names

IceGrid defines a set of read-only variables to hold information that may be of use 
to descriptors. The names of these variables are reserved and cannot be used as 
variable or parameter names. Table 38.23 describes the purpose of each variable 
and defines the context in which it is valid.

Table 38.23. Reserved names.

Name Description

application The name of the enclosing application.

application.distrib The pathname of the enclosing application’s distri-
bution directory, and an alias for ${node.data-
dir}/distrib/${application}.
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node The name of the enclosing node.

node.os The name of the enclosing node’s operating sys-
tem. On Unix, this is value is provided by uname. 
On Windows, the value is Windows.

node.hostname The host name of the enclosing node.

node.release The operating system release of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value is obtained from the 
OSVERSIONINFO data structure.

node.version The operating system version of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value represents the current ser-
vice pack level.

node.machine The machine hardware name of the enclosing 
node. On Unix, this value is provided by uname. 
On Windows, the value can be x86, x64, or IA64, 
depending on the machine architecture.

node.datadir The absolute pathname of the enclosing node’s 
data directory.

server The id of the enclosing server.

server.distrib The pathname of the enclosing server’s distribution 
directory, and an alias for ${node.data-
dir}/servers/${server}/distrib.

service The name of the enclosing service.

session.id The client session identifier. For sessions created 
with a user name and password, the value is the 
user ID; for sessions created from a secure connec-
tion, the value is the distinguished name associated 
with the connection.

Table 38.23. Reserved names.

Name Description
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The availability of a variable is easily determined in some cases, but may not be 
readily apparent in others. For example, the following example represents a valid 
use of the ${node} variable:

<icegrid>
    <application name="App">
        <server-template id="T" ...>
            <parameter name="id"/>
            <server id="${id}" ...>
                <property name="NodeName" value="${node}"/>
                ...
            </server>
        </server-template>
        <node name="TheNode">
            <server-instance template="T" id="TheServer"/>
        </node>
    </application>
</icegrid>

Although the server template descriptor is defined as a child of an application 
descriptor, its variables are not evaluated until it is instantiated. Since a template 
instance is always enclosed within a node, it is able to use the ${node} variable.

38.18.3 Scoping Rules
Descriptors may only define variables at the application and node levels. Each 
node introduces a new scope, such that defining a variable at the node level over-
rides (but does not modify) the value of an application variable with the same 
name. Similarly, a template parameter overrides the value of a variable with the 
same name in an enclosing scope. A descriptor may refer to a variable defined in 
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any enclosing scope, but its value is determined by the nearest scope. Figure 38.9 
illustrates these concepts.

Figure 38.9. Variable scoping semantics.

In this diagram, the variable x is defined at the application level with the value 1. 
In nodeA, x is overridden with the value 2, whereas x remains unchanged in 
nodeB. Within the context of nodeA, x continues to have the value 2 in a server 
instance definition. However, when x is used as the name of a template parameter, 

application

<variable name="x"
   value="1">

${x} == 1

server instance

<server-instance
   template="T" x="3">

${x} == 2

nodeA

<variable name="x"
   value="2">

${x} == 2

nodeB

<variable name="y"
   value="4">

${x} == 1

server template

<server-template ...>
   <parameter name="x">

${x} == 3
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the node’s definition of x is overridden and x has the value 3 in the template’s 
scope.

Resolving a Reference

To resolve a variable reference ${var}, IceGrid searches for a definition of var 
using the following order of precedence:

1. Pre-defined variables (see Section 38.18.2)

2. Template parameters, if applicable

3. Node variables, if applicable

4. Application variables

After the initial substitution, any remaining references are resolved recursively 
using the following order of precedence:

1. Pre-defined variables (see Section 38.18.2)

2. Node variables, if applicable

3. Application variables

Template Parameters

Template parameters are not visible in nested template instances. This situation 
can only occur when an IceBox server template instantiates a service template, as 
shown in the following example:

<icegrid>
    <application name="IceBoxApp">
        <service-template id="ServiceTemplate">
            <parameter name="name"/>
            <service name="${name}" entry="DemoService:create">
                ...
                <property name="${name}.Identity"
                    value="${id}-${name}"/> <!-- WRONG! -->
            </service>
        </service-template>
        <server-template id="ServerTemplate">
            <parameter name="id"/>
            <icebox id="${id}" endpoints="default" ...>
                <service-instance template="ServiceTemplate"
                    name="Service1"/>
            </icebox>
        </server-template>
        <node name="Node1">
            <server-instance template="ServerTemplate"
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                id="IceBoxServer"/>
        </node>
    </application>
</icegrid>

The service template incorrectly refers to id, which is a parameter of the server 
template.

Template parameters can be referenced only in the body of a template; they 
cannot be used define other parameters. For example, the following is illegal:

<server-template id="ServerTemplate">
    <parameter name="par1"/>
    <parameter name="par2" default="${par1}"/>
    ...
</server-template>

Modifying a Variable

A variable definition can be overridden in an inner scope, but the inner definition 
does not modify the outer variable. If a variable is defined multiple times in the 
same scope (which is only relevant in XML definitions), the most recent definition 
is used for all references to that variable. Consider the following example:

<application name="MyApp">
    <variable name="x" value="1"/>
    <variable name="y" value="${x}"/>
    <variable name="x" value="2"/>
    ...
</application>

When descriptors such as these are created, IceGrid validates their variable refer-
ences but does not perform substitution until the descriptor is acted upon (such as 
when a node is generating a configuration file for a server). As a result, the value 
of y in the above example is 2 because that is the most recent definition of x.

38.19 Property Set Semantics

Ice servers and clients are configured with properties. For servers deployed with 
IceGrid, these properties are automatically generated into a configuration file 
from the information contained in the application descriptor. The settings in that 
configuration file are passed to server via the --Ice.Config command-line 
option.
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Descriptors allow you to define property sets to efficiently manage and specify 
properties. Here are some of the benefits of using property sets:

• You can define sets of properties at the application or node element level and 
reference these properties in other property sets.

• You can specify properties for a specific server or service instance.

There are two kinds of property sets:

• Named property sets

Named property sets are defined at the application or node level. They are 
useful only as the target of references from other property sets. Specifically, a 
named property set has no effect unless you reference it from a server 
descriptor.

• Unnamed property sets

Unnamed property sets are defined at the server, service, icebox, 
server-instance or service-instance element level and define 
the properties for a server or service. Unnamed property sets can reference 
named property sets.

Named and unnamed property sets are defined with the same properties 
element. The context and the attributes of a properties element distinguish 
named property sets from unnamed property sets. Here is an example that defines 
a named and an unnamed property set:

<application name="App">
    <properties id="Debug">
        <property name="UseDebug" value="1"/>
    </properties>

    <node name="TheNode">
        <server id="TheServer" exe="./server">
            <properties>
                <property name="Identity" value="hello"/>
            </properties>
        </server>
    </node>
</application>

In this example, we define the named property set Debug and the unnamed prop-
erty set of the server TheServer. The server configuration will contain only the 
Identity property because the server property set does not reference the 
Debug named property set.
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The properties element is used to reference a named property set: if a 
properties element appears inside another properties element, it is a 
reference to another property set and it must specify the refid attribute. With the 
previous example, to reference the Debug property set, we would write the 
following:

<application name="App">
    <properties id="Debug">
        <property name="UseDebug" value="1"/>
    </properties>

    <node name="TheNode">
        <server id="TheServer" exe="./server">
            <properties>
                <properties refid="Debug"/>
                <property name="Identity" value="hello"/>
        </properties>
        </server>
    </node>
</application>

Property sets, whether named or unnamed, are evaluated as follows:

1. Within a properties element, IceGrid locates all references to named 
property sets and evaluates all property settings in the referenced property 
sets.

2. Explicit property definitions following any named references are then evalu-
ated and added to the property set formed in the preceding step. This means 
that explicit property settings override corresponding settings in any refer-
enced property sets.

It is illegal to define a reference to a property set after setting a property value, so 
references to property sets must precede property definitions. For example, the 
following is illegal:

<properties>
    <property name="Prop1" value="Value1"/>
    <properties refid="Ref1"/>
</properties>

Just as the order of the property definitions is important, the order of property set 
references is also important. For example, the following two property sets are not 
equivalent:
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<properties>
    <properties refid="Ref1"/>
    <properties refid="Ref2"/>
</properties>

<properties>
    <properties refid="Ref2"/>
    <properties refid="Ref1"/>
</properties>

Named property sets are evaluated at the point of definition. If you reference other 
property sets or use variables in a named property set definition, you must make 
sure that the referenced property sets or variables are defined in the same scope. 
For example, the following is correct:

<application name="App">

    <variable name="level" value="1"/>

    <properties id="DebugApp">
        <property name="DebugLevel value="${level}">
    </properties>

</application>

However, the following example is wrong because the ${level} variable is not 
defined at the application scope:

<application name="App">

    <properties id="DebugApp">
        <property name="DebugLevel value="${level}">
    </properties>

    <node name="TheNode">
        <variable name="level" value="1"/>
    </node>

</application>

If both the application and the node define the ${level} variable, the 
value of the ${level} variable in the DebugApp property set will be the value 
of the variable defined in the application descriptor.

So far, we have seen the definition of an unnamed property set only in a server 
descriptor. However, it is also possible to define an unnamed property set for 
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server or service instances. This is a good way to specify or override properties 
specific to a server or service instance. For example:

<application name="TheApp">
  <server-template id="Template">
  
    <parameter name="instance-name"/>
  
    <server id="${instance-name}" exe="./server">
      <properties>
        <property name="Timeout" value="30"/>
      </properties>
    </server>
  </server-template>
  
  <node name="TheNode">
    <server-instance template="Template" instance-name="MyInst">
      <properties>
        <property name="Debug" value="1"/>
        <property name="Timeout" value="-1"/>
      </properties>
    </server-instance>
  </node>
</application>

Here, the server instance overrides the Timeout property and defines an addi-
tional Debug property.

The server or service instance properties are evaluated as follows:

1. The unnamed property set from the template server or service descriptor is 
evaluated.

2. The unnamed property set from the server or service instance descriptor is 
evaluated and the resulting properties are added to the property set formed in 
the preceding step. This means that property settings in a server or service 
instance descriptor override corresponding settings in a template server or 
service descriptor.

The server or service instance unnamed property set and its parameters provide 
two different ways to customize the properties of a server or service template 
instance. It might not always be obvious which method to use: is it better to use a 
parameter to parameterize a given property or is it better to just specify it in the 
server or service instance property set?

For example, in the previous descriptor, we could have used a parameter with 
a default value for the Timeout property:
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<application name="TheApp">
  <server-template id="Template">
    
    <parameter name="instance-name"/>
    <parameter name="timeout" default="30"/>
    
    <server id="${instance-name}" exe="./server">
      <properties>
        <property name="Timeout" value="${timeout}"/>
      </properties>
    </server>
  </server-template>
  
  <node name="TheNode">
    <server-instance template="Template"
                     instance-name="MyInst" timeout="-1">
      <properties>
        <property name="Debug" value="1"/>
      </properties>
    </server-instance>
  </node>
</application>

Here are some guidelines to help you decide whether to use a parameter or a prop-
erty:

• Use a parameter for a property that should always be set.

• Use a parameter if you want to make the property obvious to the reader and 
user of the template.

• Do not use a parameter for optional properties if you want to rely on a default 
value for the server.

• Do not use parameters for properties that are rarely used.

38.20 XML Features

IceGrid provides some convenient features to simplify the task of defining 
descriptors in XML.
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38.20.1 Targets

An IceGrid XML file may contain optional definitions that are deployed only 
when specifically requested. These definitions are called targets and must be 
defined within a target element. The elements that may legally appear within a 
target element are determined by its enclosing element. For example, a node 
element is legal inside a target element of an application element, but not 
inside a target element of a server element. Each target element must 
define a value for the name attribute, but names are not required to be unique. 
Rather, targets should be considered as optional components or features of an 
application that are deployed in certain circumstances.

The example below defines targets named debug that, if requested during 
deployment, configure their servers with an additional property:

<icegrid>
    <application name="MyApp">
        <node name="Node">
            <server id="Server1" ...>
                <target name="debug">
                    <property name="Ice.Trace.Network" value="2"/>
                </target>
                ...
            </server>
            <server id="Server2" ...>
                <target name="debug">
                    <property name="Ice.Trace.Network" value="2"/>
                </target>
                ...
            </server>
        </node>
    </application>
</icegrid>

Target names specified in an icegridadmin command (see Section 38.24.1) 
can be unqualified names like debug, in which case every target with that name 
is deployed, regardless of the target’s nesting level. If you want to deploy targets 
more selectively, you can specify a fully-qualified name instead. A fully-qualified 
target name consists of its unqualified name prefaced by the names or identifiers 
of each enclosing element. For instance, a fully-qualified target name from the 
example above is MyApp.Node.Server1.debug.
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38.20.2 Including Files

You can include the contents of another XML file into the current file using the 
include element, which is replaced with the contents of the included file. The 
elements in the included file must be enclosed in an icegrid element, as shown 
in the following example:

<!-- File: A.xml -->
<icegrid>
    <server-template id="ServerTemplate">
        <parameter name="id"/>
        ...
    </server-template>
</icegrid>

<!-- File: B.xml -->
<icegrid>
    <application name="MyApp">
        <include file="A.xml"/>
        <node name="Node">
            <server-instance template="ServerTemplate" .../>
        </node>
    </application>
</icegrid>

In B.xml, the include element identifies the name of the file to include using 
the file attribute. The top-level icegrid element is discarded from A.xml 
and its contents are inserted at the position of the include element in B.xml.

Note that the file name of an included file is relative to the application 
descriptor, not relative to the working directory.

You can include specific targets (see Section 38.20.1) from a file by specifying 
their names in the optional targets attribute. If multiple targets are included, 
their names must be separated by whitespace. The example below illustrates the 
use of a target:

<!-- File: A.xml -->
<icegrid>
    <server-template id="ServerTemplate">
        <parameter name="id"/>
        ...
    </server-template>
    <target name="targetA">
        <server-template id="AnotherTemplate">
            ...
        </server-template>
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    </target>
</icegrid>

<!-- File: B.xml -->
<icegrid>
    <application name="MyApp">
        <include file="A.xml" targets="targetA"/>
        <node name="Node">
            <server-instance template="ServerTemplate" .../>
            <server-instance template="AnotherTemplate" .../>
        </node>
    </application>
</icegrid>

38.21 Server Reference

38.21.1 icegridregistry

The IceGrid registry is a centralized repository of information, including deployed 
applications and well-known objects. A registry can optionally be collocated with 
an IceGrid node, which conserves resources and can be convenient during devel-
opment and testing. The registry server is implemented by the 
icegridregistry executable.

Usage

The registry supports the following command-line options:

$ icegridregistry -h
Usage: icegridregistry [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
--nowarn             Don't print any security warnings.
--readonly           Start the master registry in read-only mode.

The --readonly option prevents any updates to the registry’s database; it also 
prevents slaves from synchronizing their databases with this master. This option is 
useful when you need to verify that the master registry’s database is correct after 
promoting a slave to become the new master (see Section 38.21.5).
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Additional command line options are supported, including those that allow the 
registry to run as a Windows service or Unix daemon. See Appendix H for more 
information.

Configuring Endpoints

The IceGrid registry creates up to five sets of endpoints, configured with the 
following properties:

• IceGrid.Registry.Client.Endpoints

Client-side endpoints supporting the following interfaces:
• Ice::Locator

• IceGrid::Query

• IceGrid::Registry

• IceGrid::Session

• IceGrid::AdminSession

• IceGrid::Admin

There are security implications in allowing access to administrative sessions, 
as explained in the next section.

• IceGrid.Registry.Server.Endpoints

Server-side endpoints for object adapter registration.

• IceGrid.Registry.SessionManager.Endpoints

Optional endpoints for supporting integration with a Glacier2 router. See 
Section 38.15 for more information.

• IceGrid.Registry.AdminSessionManager.Endpoints

Optional endpoints for supporting integration with a Glacier2 router. See 
Section 38.15 for more information.

• IceGrid.Registry.Internal.Endpoints

Internal endpoints used by IceGrid nodes and registry replicas. This property 
must be defined even if no nodes or replicas are being used.

See Appendix D for more information on these properties.

Security Considerations

A client that successfully establishes an administrative session with the registry 
has the ability to compromise the security of the registry host. As a result, it is 
imperative that you configure the registry carefully if you intend to allow the use 
of administrative sessions.
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Administrative sessions are disabled unless you explicitly configure the 
registry to use an authentication mechanism. To allow authentication with a user 
name and password, you can specify a password file using the property 
IceGrid.Registry.AdminCryptPasswords or use your own permis-
sions verifier object by supplying its proxy in the property 
IceGrid.Registry.AdminPermissionsVerifier. Your verifier object 
must implement the Glacier2::PermissionsVerifier interface.

To authenticate administrative clients using their SSL connections, define 
IceGrid.Registry.AdminSSLPermissionsVerifier with the proxy 
of a verifier object that implements the Glacier2::SSLPermissionsVerifier 
interface.

Section 42.6.1 provides more information on implementing permissions veri-
fier objects.

Configuring a Data Directory

You must provide an empty directory in which the registry can initialize its data-
bases. The pathname of this directory is supplied by the configuration property 
IceGrid.Registry.Data.

The files in this directory must not be edited manually, but rather indirectly 
using one of the administrative tools described in Section 38.24. To clear a 
registry’s databases, first ensure the server is not currently running, then remove 
all of the files in its data directory and restart the server.

Minimal Configuration

The registry requires values for the three mandatory endpoint properties, as well 
as the data directory property, as shown in the following example:

IceGrid.Registry.Client.Endpoints=tcp -p 4061
IceGrid.Registry.Server.Endpoints=tcp
IceGrid.Registry.Internal.Endpoints=tcp
IceGrid.Registry.Data=/opt/ripper/registry

In addition, we also recommend defining IceGrid.InstanceName, which is 
discussed in Section 38.21.3.

The remaining configuration properties are discussed in Appendix D.

38.21.2 icegridnode
An IceGrid node is a process that activates, monitors, and deactivates registered 
server processes. You can run any number of nodes in a domain, but typically 
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there is one node per host. A node must be running on each host on which servers 
are activated automatically, and nodes cannot run without an IceGrid registry.

The IceGrid node server is implemented by the icegridnode executable. If 
you wish to run a registry and node in one process, icegridnode is the execut-
able you must use.

Usage

The node supports the following command-line options:

Usage: icegridnode [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
--nowarn             Don't print any security warnings.
--readonly           Start the collocated master registry in
                     read-only mode.

--deploy DESCRIPTOR [TARGET1 [TARGET2 ...]]
                     Add or update descriptor in file DESCRIPTOR,
                     with optional targets.

If you are running the node with a collocated registry, the --readonly option 
prevents any updates to the registry’s database; it also prevents slaves from 
synchronizing their databases with this master. This option is useful when you 
need to verify that the master registry’s database is correct after promoting a slave 
to become the new master (see Section 38.21.5).

The --deploy option allows an application to be deployed automatically as 
the node process starts, which can be especially useful during testing. The 
command expects the name of the XML deployment file, and optionally allows 
the names of the individual targets within the file to be specified.

Additional command line options are supported, including those that allow the 
node to run as a Windows service or Unix daemon. See Appendix H for more 
information.

Security Considerations

It is important that you give careful consideration to the permissions of the 
account under which the node runs. If the servers that the node will activate have 
no special access requirements, and all of the servers can use the same account, it 
is recommended that you do not run the node under an account with system privi-
leges, such as the root account on Unix or the Administrator account on Windows. 
See Section 38.25.4 for more information on this subject.
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Configuring Endpoints

The IceGrid node’s endpoints are defined by the IceGrid.Node.Endpoints 
property and must be accessible to the registry. It is not necessary to use a fixed 
port because each node contacts the registry at startup to provide its current 
endpoint information.

Configuring a Data Directory

The node requires an empty directory that it can use to store server files. The path-
name of this directory is supplied by the configuration property 
IceGrid.Node.Data. To clear a node’s state, first ensure the server is not 
currently running, then remove all of the files in its data directory and restart the 
server.

When running a collocated node and registry server, we recommend using 
separate directories for the registry and node data directories.

Minimal Configuration

A minimal node configuration is shown in the following example:

IceGrid.Node.Endpoints=tcp
IceGrid.Node.Name=Node1
IceGrid.Node.Data=/opt/ripper/node

Ice.Default.Locator=IceGrid/Locator:tcp -p 4061

The value of the IceGrid.Node.Name property must match that of a deployed 
node known by the registry.

The Ice.Default.Locator property is used by the node to contact the 
registry. The value is a proxy that contains the registry’s client endpoints (see 
Section 38.4.3).

If you wish to run a collocated registry and node server, add the property 
IceGrid.Node.CollocateRegistry=1 and include the registry’s config-
uration properties as described in Section 38.21.1.

The remaining configuration properties are discussed in Appendix D.
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38.21.3 Object Identities
The IceGrid registry hosts several well-known objects. Table 38.24 shows the 
default identities of these objects and their corresponding Slice interfaces.

It is a good idea to assign unique identities to these objects by configuring them 
with different values for the IceGrid.InstanceName property, as shown in 
the following example:

IceGrid.InstanceName=MP3Grid

Table 38.24. IceGrid’s well-known objects.

Default Identity Interface

IceGrid/AdminSessionManager Glacier2::SessionManager

IceGrid/AdminSessionManager-
replica

Glacier2::SessionManager

IceGrid/AdminSSLSessionManager Glacier2::SSLSessionManager

IceGrid/AdminSSLSessionManager-
replica

Glacier2::SSLSessionManager

IceGrid/Locator Ice::Locator

IceGrid/Query IceGrid::Query

IceGrid/Registry IceGrid::Registry

IceGrid/Registry-replica IceGrid::Registry

IceGrid/RegistryUserAccountMap-
per

IceGrid::UserAccountMapper

IceGrid/RegistryUserAccountMap-
per-replica

IceGrid::UserAccountMapper

IceGrid/SessionManager Glacier2::SessionManager

IceGrid/SSLSessionManager Glacier2::SSLSessionManager
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This property changes the identities of the well-known objects to use MP3Grid 
instead of IceGrid as the identity category. For example, the identity of the 
locator becomes MP3Grid/Locator.

The client’s configuration must also be changed to reflect the new identity:

Ice.Default.Locator=MP3Grid/Locator:tcp -h registryhost -p 4061

Furthermore, any uses of these identities in application code must be updated as 
well.

38.21.4 Persistent Data
The IceGrid registry and node both store information in the data directories speci-
fied by the IceGrid.Registry.Data and IceGrid.Node.Data proper-
ties, respectively. This section describes what the registry and node are storing and 
discusses backup and recovery techniques.

Registry

The contents of the registry’s data directory depends on the registry’s database 
configuration. By default, the data directory contains a Freeze database environ-
ment. It might also contain an SQLite database, or nothing at all if the registry is 
using a remote SQL server. Regardless of the storage mechanism, the registry 
stores the following information:

• Applications deployed using the addApplication operation on the 
IceGrid::Admin interface (which includes the IceGrid GUI and command-
line administrative clients). Applications specify servers, well-known objects, 
object adapters, replica groups, and allocatable objects. Applications can be 
removed with the removeApplication operation.

• Well-known objects registered using the addObject and addObjectWithType 
operations on the IceGrid::Admin interface. Well-known objects added by 
these operations can be removed using the removeObject operation.

• Adapter endpoints registered dynamically by servers using the Ice::Loca-
torRegistry interface. The property IceGrid.Registry.Dynami-
cRegistration must be set to a value larger than zero to allow the 
dynamic registration of object adapters. These adapters can be removed using 
the removeAdapter operation.

• Some internal proxies used by the registry to contact nodes and other registry 
replicas during startup. The proxies enable the registry to notify these entities 
about the registry’s availability.
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Client and administrative sessions established with the IceGrid registry are not 
persistent. If the registry is restarted, these sessions must be recreated. For client 
sessions in particular, this implies that objects allocated using the allocation mech-
anism will no longer be allocated once the IceGrid registry restarts.

If the registry’s database is corrupted or lost, you must recover the deployed 
applications, the well-known objects, and the adapter endpoints. You do not need 
to worry about the internal proxies stored by the registry, as the nodes and registry 
replicas will eventually contact the registry again.

Depending on your deployed applications and your use of the registry, you 
should consider backing up the registry’s database, especially if you cannot easily 
recover the persistent information.

For example, if you rely on dynamically-registered adapters, or on well-
known objects registered programmatically via the IceGrid::Admin interface, 
you should back up the registry database because recovering this information may 
be difficult. On the other hand, if you only deploy a few applications from XML 
files, you can easily recover the applications by redeploying their XML files, and 
therefore backing up the database may be unnecessary.

Be aware that restarting the registry with an empty database may cause the 
server information stored by the nodes to be deleted. This can be an issue if the 
deployed servers have databases stored in the node data directory. The next 
section provides more information on this subject.

Node

The IceGrid node stores information for servers deployed by IceGrid applications. 
This information is stored in the servers subdirectory of the node’s data direc-
tory. There is one subdirectory per server; the name of the subdirectory is the 
server’s ID. Each server directory contains configuration files, database environ-
ments (see Section 38.17.4) and the distribution data of the server (see 
Section 38.13). The node’s data directory also contains a distrib directory to 
store per-application distribution data. This directory contains a subdirectory for 
each application that specifies a distribution and has a server deployed on the 
node.

If a server directory is deleted, the node recreates it at startup. The node will 
also recreate the server configuration files and the database environment directo-
ries. However, the node cannot restore the prior contents of a server’s database 
environment. It is your responsibility to back up these database environments and 
restore them when necessary. If the server or application distribution data is 
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deleted from the node’s data directory, you can easily recover the deleted informa-
tion by patching these distributions again using the IceGrid administrative tools.

If you store your server database environments outside the node’s data direc-
tory (such as in a directory that is regularly backed up), or if you do not have any 
database environments inside the node’s data directory, you do not need to back 
up the contents of the node’s data directory.

38.21.5 Slave Promotion

You may need to promote a slave to be the new master if the current master 
becomes unavailable. For example, this situation can occur when the original 
master cannot be restarted immediately due to a hardware problem, or when your 
application requires a feature that is only accessible via the master, such as the 
resource allocation mechanism or the ability to modify the deployment data.

To promote a slave to become the new master, you must shut down the slave 
and change its IceGrid.Registry.ReplicaName property to Master (or 
remove the property altogether). On restart, the new master notifies the nodes and 
registries that were active before it was shut down. An inactive registry or node 
will eventually connect to the new master if its default locator proxy contains the 
endpoint of the new master registry or the endpoint of a slave that is connected to 
the new master. If you cannot afford any down-time of the registry and want to 
minimize the down-time of the master, you should run at least two slaves. That 
way, if the master becomes unavailable, there will always be one registry available 
while you promote one of the slaves.

A slave synchronizes its database upon connecting to the new master, there-
fore it is imperative that you promote a slave whose database is valid and up-to-
date. To verify that the promoted master database is up-to-date, you can start the 
new master with the --readonly command-line option. While this option is in 
force, the new master does not update its database, and slaves do not synchronize 
their databases. You can review the master database with the IceGrid administra-
tive tools and, if the deployment looks correct, you can restart the master without 
the --readonly option to permit updates and slave synchronization.

Note that there is nothing to prevent you from running two masters. If you 
start two masters and they contain different versions of the deployment informa-
tion, some slaves and nodes might get updated with out-of-date deployment infor-
mation (causing some of your servers to be deactivated). You can correct the 
problem by shutting down the faulty master, but it is important to keep this issue 
in mind when you restart a master since it might disrupt your applications.
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38.21.6 Using a Different Database

By default, the IceGrid registry uses a Freeze database (see Chapter 39) to store its 
persistent state. You can configure the registry to use an SQL database by setting a 
number of properties.

If you use the registry with an SQL database, its persistent state is stored in 
four tables:

• <instance-name>_<replica-name>_Applications

• <instance-name>_<replica-name>_Adapters

• <instance-name>_<replica-name>_Objects

• <instance-name>_<replica-name>_InternalObjects

In these tables, instance-name is the value of IceGrid.InstanceName 
and replica-name is the value of IceGrid.Registry.ReplicaName.

A number of properties control how IceStorm accesses an SQL database:

• Ice.Plugin.DB

To use the IceGrid registry with an SQL database, you must set this property 
to the value IceGridSqlDB:createSqlDB.

• IceGrid.SQL.DatabaseType

• IceGrid.SQL.DatabaseName

• IceGrid.SQL.HostName

• IceGrid.SQL.Port

• IceGrid.SQL.UserName

• IceGrid.SQl.Password

These properties are described in detail in Appendix D.

38.22 Administrative Facility Integration

The Ice administrative facility described in Section 32.18 provides a general 
purpose solution for administering individual Ice programs. IceGrid extends this 
functionality in several convenient ways:

• IceGrid automatically enables the facility in deployed servers.

• IceGrid uses the Process facet to terminate an active server, giving it an 
opportunity to perform an orderly shutdown.
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• IceGrid provides a secure mechanism for invoking administrative operations 
on deployed servers.

• IceGrid administrative tools use the facility to display the properties of servers 
and services, and manipulate and monitor IceBox services.

We discuss each of these items in separate sections below.

38.22.1 Enabling the Facility

As we saw in Section 38.5.4, the configuration properties for a deployed server 
include definitions for the following properties:

• Ice.Admin.Endpoints

• Ice.Admin.ServerId

In conjunction with the Ice.Default.Locator property, these definitions 
satisfy the requirements explained in Section 32.18.2 for enabling the administra-
tive facility. See Appendix D for more information on these properties.

Endpoints

If a server’s descriptor does not supply a value for Ice.Admin.Endpoints, 
IceGrid supplies the default value shown below:

Ice.Admin.Endpoints=tcp -h 127.0.0.1

For the security reasons explained in Section 32.18.8, IceGrid specifies the local 
host interface (127.0.0.1) so that administrative access is limited to clients 
running on the same host. This configuration permits the IceGrid node to invoke 
operations on the server’s admin object, but prevents remote access unless the 
client establishes an IceGrid administrative session (see Section 38.14).

Specifying a static port is unnecessary because the server registers its 
endpoints with IceGrid upon each new activation.

38.22.2 Server Deactivation

An IceGrid node uses the Ice::Process interface (see Section 32.18.4) to grace-
fully deactivate a server. In programs using Ice 3.3 or later, this interface is imple-
mented by the administrative facet named Process. In earlier versions of Ice, an 
object adapter implemented this interface in a special servant if the adapter’s 
RegisterProcess property was enabled.
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Regardless of version, the Ice run time registers an Ice::Process proxy with 
the IceGrid registry when properly configured. Registration normally occurs 
during communicator initialization, but it can be delayed when a server needs to 
install its own administrative facets (see Section 32.18.7).

When the node is ready to deactivate a server, it invokes the shutdown opera-
tion on the server’s Ice::Process proxy. If the server does not terminate in a 
timely manner, the node asks the operating system to terminate the process. Each 
server can be configured with its own deactivation timeout (see Section 38.17.19). 
If no timeout is configured, the node uses the value of the property 
IceGrid.Node.WaitTime, which defaults to 60 seconds.

If a server does not register an Ice::Process proxy, the IceGrid node cannot 
request a graceful termination and must resort instead to a more drastic, and 
potentially harmful, alternative by asking the operating system to terminate the 
server’s process. On Unix, the node sends the SIGTERM signal to the process and, 
if the server does not terminate within the deactivation timeout period, sends the 
SIGKILL signal.

On Windows, the node first sends a Ctrl+Break event to the server and, if 
the server does not stop within the deactivation timeout period, terminates the 
process immediately.

Servers that disable the Process facet can install a signal handler in order to 
intercept the node’s notification about pending deactivation. For example, portable 
C++ programs could use the IceUtil::CtrlCHandler class (see 
Section 31.10) for this purpose. However, we recommend that servers be allowed 
to use the Process facet when possible.

38.22.3 Administrative Requests

Section 38.22.1 explained the reasoning behind IceGrid’s use of the local host 
interface when defining the endpoints of a deployed server’s administrative object 
adapter. Briefly, this configuration allows local clients such as the IceGrid node to 
access the server’s admin object while preventing direct invocations from remote 
clients. A server’s admin object may still be accessed remotely, but only by 
clients that establish an IceGrid administrative session. To facilitate these 
requests, IceGrid uses an intermediary object that relays requests to the server via 
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its node. For example, Figure 38.10 illustrates the path of a getProperty invoca-
tion: 

Figure 38.10. Routing for administrative requests on a server.

Obtaining a Proxy

During an administrative session, a client has two ways of obtaining the interme-
diary proxy for a server’s admin object:

module IceGrid {
    interface Admin {
        idempotent string getServerAdminCategory();
        idempotent Object* getServerAdmin(string id)
            throws ServerNotExistException,
                   NodeUnreachableException,
                   DeploymentException;
        // ...
    };
};

If the client wishes to construct the proxy itself and already knows the server’s id, 
the client need only modify the proxy of the IceGrid::Admin object with a new 
identity. The identity’s category must be the return value of getServerAdminCat-
egory, while its name is the id of the desired server. The example below demon-
strates how to create the proxy and access the Properties facet of a server:

// C++
IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::Identity serverAdminId;
serverAdminId.category = admin->getServerAdminCategory();
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serverAdminId.name = "MyServerId";
Ice::PropertiesAdminPrx props =
    Ice::PropertiesAdminPrx::checkedCast(
        admin->ice_identity(serverAdminId), "Properties");

Alternatively, the getServerAdmin operation returns a proxy that refers to the 
admin object of the given server. This operation performs additional validation 
and therefore may raise one of the exceptions shown in its signature above.

Callbacks without Glacier2

IceGrid also supports the relaying of callback requests from a back-end server to 
an administrative client over the client’s existing connection to the registry, which 
is especially important for a client using a network port that is forwarded by a fire-
wall or protected by a secure tunnel.

For this mechanism to work properly, a client that established its administra-
tive session directly with IceGrid and not via a Glacier2 router must take addi-
tional steps to ensure that the proxies for its callback objects contain the proper 
identities and endpoints. The IceGrid::AdminSession interface provides an 
operation to help with the client’s preparations:

module IceGrid {
interface AdminSession ... {
    idempotent Object* getAdminCallbackTemplate();
    // ...
};
};

As its name implies, the getAdminCallbackTemplate operation returns a 
template proxy that supplies the identity and endpoints a client needs to configure 
its callback objects. The information contained in the template proxy is valid for 
the lifetime of the administrative session. This operation returns a null proxy if the 
client’s administrative session was established via a Glacier2 router, in which case 
the client should use the callback strategy described in the next section instead.

The endpoints contained in the template proxy are those of an object adapter 
in the IceGrid registry. The client must transfer these endpoints to the proxies for 
its callback objects so that callback requests from a server are sent first to IceGrid 
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and then relayed over a bidirectional connection (see Section 36.7) to the client, as 
shown in Figure 38.11. 

Figure 38.11. Routing for callback requests from a server.

The complete list of steps is shown below:

1. Invoke getAdminCallbackTemplate to obtain the template proxy.

2. Extract the category from the template proxy’s identity and use it in all call-
back objects.

3. Extract the endpoints from the template proxy and use them to establish the 
published endpoints of the callback object adapter.

4. Create the callback object adapter and associate it with the administrative 
session’s connection, thereby establishing a bidirectional connection with 
IceGrid.

5. Add servants to the callback object adapter.

As an example, let us assume that we have deployed an IceBox server with the 
server id icebox1 and our objective is to register a ServiceObserver callback 
that monitors the state of the IceBox services (see Section 43.5.1). The first step is 
to obtain a proxy for the administrative facet named IceBox.ServiceMan-
ager:

// C++
IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
    IceBox::ServiceManagerPrx::checkedCast(
        obj, "IceBox.ServiceManager");

Server PC

Registry

Node

Server

Client PC

Admin Client
1 callback

2 callback
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Next, we retrieve the template proxy and compose the published endpoints for our 
callback object adapter:

Ice::ObjectPrx tmpl = admin->getAdminCallbackTemplate();
Ice::EndpointSeq endpts = tmpl->ice_getEndpoints();
string publishedEndpoints;
for (Ice::EndpointSeq::const_iterator p = endpts.begin();
     p != endpts.end(); ++p) {
    if (p == endpts.begin())
        publishedEndpoints = (*p)->toString();
    else
        publishedEndpoints += ":" + (*p)->toString();
}
communicator->getProperties()->setProperty(
    "CallbackAdapter.PublishedEndpoints", publishedEndpoints);

The final steps involve creating the callback object adapter, adding a servant, 
establishing the bidirectional connection and registering our callback with the 
service manager:

Ice::ObjectAdapterPtr callbackAdapter =
    communicator->createObjectAdapter("CallbackAdapter");
Ice::Identity cbid;
cbid.category = tmpl->ice_getIdentity().category;
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb =
    IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
session->ice_getConnection()->setAdapter(callbackAdapter);
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server when-
ever one of its services changes state.

Callbacks with Glacier2

A client that creates an administrative session via a Glacier2 router (see 
Section 38.15) already has a bidirectional connection over which callbacks from 
administrative facets are relayed. The flow of requests is shown in Figure 38.12, 
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which presents a simplified view with the router and IceGrid services all running 
on the same host. 

Figure 38.12. Routing for callback requests from a server.

To prepare for receiving callbacks, the client must perform the same steps as for 
any router client (see Section 42.4):

1. Obtain a proxy for the router.

2. Retrieve the category to be used in callback objects.

3. Create the callback object adapter and associate it with the router, thereby 
establishing a bidirectional connection.

4. Add servants to the callback object adapter.

Repeating the example from the previous section, we assume that we have 
deployed an IceBox server with the server id icebox1 and our objective is to 
register a ServiceObserver callback that monitors the state of the IceBox 
services (see Section 43.5.1). The first step is to obtain a proxy for the administra-
tive facet named IceBox.ServiceManager:

// C++
IceGrid::AdminSessionPrx session = ...;
IceGrid::AdminPrx admin = session->getAdmin();
Ice::ObjectPrx obj = admin->getServerAdmin("icebox1");
IceBox::ServiceManagerPrx svcmgr =
    IceBox::ServiceManagerPrx::checkedCast(
        obj, "IceBox.ServiceManager");

Now we are ready to create the object adapter and register the observer:
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Registry

Server
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1 callback2
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Ice::RouterPrx router = communicator->getDefaultRouter();
Ice::ObjectAdapterPtr callbackAdapter =
    communicator->createObjectAdapterWithRouter(
        "CallbackAdapter", router);
Ice::Identity cbid;
cbid.category = router->getCategoryForClient();
cbid.name = "observer";
IceBox::ServiceObserverPtr obs = new ObserverI;
Ice::ObjectPrx cbobj = callbackAdapter->add(obs, cbid);
IceBox::ServiceObserverPrx cb =
    IceBox::ServiceObserverPrx::uncheckedCast(cbobj);
callbackAdapter->activate();
svcmgr->addObserver(cb);

At this point the client is ready to receive callbacks from the IceBox server when-
ever one of its services changes state.

38.22.4 Using the Facility in IceGrid Utilities

This section discusses the ways in which the IceGrid utilities make use of the 
administrative facility. See Section 38.24 for more information on the administra-
tive utilities.

Properties

The command line and graphical utilities allow you to explore the configuration 
properties of a server or service.

One property in particular, BuildId, is given special consideration by the 
graphical utility. Although it is not used by the Ice run time, the BuildId prop-
erty gives you the ability to describe the build configuration of your application. 
The property’s value is shown by the graphical utility in its own field in the attri-
butes of a server or service, as well as in the list of properties. You can also 
retrieve the value of this property using the command-line utility with the 
following statement:

> server property MyServerId BuildId

Or, for an IceBox service, with this command:

> service property MyServerId MyService BuildId

Section 32.18.5 describes the Slice interface that the utilities use to access these 
properties, and Section 38.22.3 explains how to obtain an appropriate proxy.
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Administering IceBox Services

IceBox provides an administrative facet that implements the IceBox::ServiceM-
anager interface, which supports operations for stopping an active service, and for 
starting a service that is currently inactive. These operations are available in both 
the command line and graphical utilities.

IceBox also defines a ServiceObserver interface for receiving callbacks 
when services are stopped or started. The graphical utility implements this inter-
face so that it can present an updated view of the state of an IceBox server. 
Section 38.22.3 includes examples that demonstrate how to register an observer 
with the IceBox administrative facet.

See Chapter 43 for more information on IceBox.

38.23 Securing IceGrid

IceGrid’s registry and node services expose multiple network endpoints that a 
malicious client could use to gain access to IceGrid functionality and interfere 
with deployed applications. This presents a significant security risk in network 
environments that are exposed to untrusted clients. For example, a malicious 
client could connect to a node and use IceGrid’s internal interfaces to deploy and 
run its own server executable.

Using a firewall is one way to prevent unauthorized use of IceGrid’s facilities. 
Another solution is to use IceSSL: you can generate SSL certificates for each 
component and configure them to trust and accept connections only from other 
authorized components. The remainder of this section discusses the IceSSL solu-
tion but also provides useful information for those interested in securing IceGrid 
with a firewall.

To restrict access using IceSSL, we need to establish trust relationships 
between IceGrid registry replicas, nodes, and deployed servers. IceSSL allows us 
to do this using configuration properties, as described in Section 41.4.6. The trust 
relationships are based on the information contained in SSL certificates.

There are several possible strategies for generating certificates. At a minimum 
you will need the following:

• one certificate for all of the registries

• one certificate for all of the nodes

• one certificate for all of the servers managed by IceGrid
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The certificates that you generate for registries and nodes should be protected with 
a password to ensure that only privileged users can start these services. However, 
we do not recommend using a password to protect the certificate for deployed 
servers because it would need to be specified in clear text in each server’s configu-
ration (servers that are activated by IceGrid must not prompt for a password). 
Furthermore, this password might appear in multiple places, such as an XML 
descriptor file, the IceGrid registry database, and property files generated by 
IceGrid nodes. The complexity involved in protecting access to every file that 
contains a clear text password could be overwhelming. Instead, we recommend 
that you protect access to the server certificate using file system permissions.

Depending on your organization and the roles of each person that uses 
IceGrid, you may decide to create additional certificates. For example, you might 
create a unique certificate for each IceGrid node instance if you deploy nodes on 
end-user machines and wish to configure the IceGrid registry to authorize connec-
tions only from the nodes of trusted users.

You can use the iceca script to establish a certificate authority and generate 
certificates (see Section 41.7). The sections that follow describe the interactions 
between the registry, node, and servers, and show how to configure IceSSL to 
restrict access to trusted peers. For the purposes of this discussion, we assume that 
the SSL certificates use the common names shown below:

• IceGrid Registry

• IceGrid Node

• Server

The Ice distribution includes a C++ example that demonstrates how to configure a 
secure IceGrid deployment (see demo/IceGrid/secure). The example 
includes a script to generate certificates for a registry, a node, a Glacier2 router, 
and a server. For more information, see the README file provided with the 
example.

38.23.1 Registry Endpoints

The IceGrid registry has three mandatory endpoints representing the client, server, 
and internal endpoints. The registry also has two optional endpoints (the session 
manager and administrative session manager endpoints) that are only useful when 
IceGrid is accessed via Glacier2 (see Section 38.15).
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Client Endpoint

The registry client endpoint is used by Ice applications that create client sessions 
in order to use the object allocation facility. It is also used by administrative 
clients that create sessions for managing the registry. Finally, the client endpoint is 
used by Ice applications that use the IceGrid::Query interface or resolve indirect 
proxies via the IceGrid locator.

Two distinct permission verifiers authorize the creation of client sessions (see 
Section 38.11.2) and administrative sessions (see Section 38.14.1). The remaining 
functionality available via the client endpoint, such as resolving objects and object 
adapters using the IceGrid::Query interface or the Ice locator mechanism, is 
accessible to any client that is able to connect to the client endpoint.

It is safe to use an insecure transport for the client endpoint if it is only being 
used for locator queries. However, you should use a secure transport if you have 
enabled client and administrative sessions (by configuring the appropriate permis-
sion verifiers). Creating a session over an insecure transport poses a security risk 
because the user name and password are sent in clear text over the network.

If you include secure and insecure transports in the registry’s client endpoints, 
you should ensure that applications that need to authenticate with IceGrid permis-
sion verifiers use a secure transport (see Section 41.4.7 for more information on 
configuring proxies to use a secure connection).

It is not necessary to restrict SSL access to the client endpoints (using the 
property IceSSL.TrustOnly.Server.IceGrid.Registry.Client) 
as long as you use client and administrative permission verifiers for authentica-
tion. This property is only useful for restricting access to client and administrative 
sessions when using null permission verifiers. Note however that if both client and 
administrative sessions are enabled, you will only be able to restrict access to one 
set of clients since you cannot distinguish clients that create client sessions from 
clients that create administrative sessions.

Server Endpoint

Ice servers use the registry’s server endpoint to register their object adapter 
endpoints and send information to administrative clients connected via the registry 
(see Section 38.22).

Securing this endpoint with IceSSL is necessary to prevent a malicious 
program from potentially hijacking a server by registering its endpoints first. The 
property definition shown below demonstrates how to limit access to this endpoint 
to trusted Ice servers:

IceSSL.TrustOnly.Server.IceGrid.Registry.Server=CN="Server"
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Internal Endpoint

IceGrid nodes and registry replicas use the internal endpoint to communicate with 
the registry. For example, nodes connect to the internal endpoint of each active 
registry, and registry slaves establish a session with their master via this endpoint.

The internal endpoint must be secured with IceSSL to prevent malicious Ice 
applications from gaining access to sensitive functionality that is intended to be 
used only by nodes and registry replicas. You can restrict access to this endpoint 
with the following property:

IceSSL.TrustOnly.Server.IceGrid.Registry.Internal=CN="IceGrid 
Node";CN="IceGrid Registry"

Session Manager Endpoint

The session manager endpoint is used by Glacier2 to create IceGrid client sessions 
(see Section 38.15.3). The functionality exposed by this endpoint is unrestricted 
so you must either secure it or disable it (this endpoint is disabled by default). The 
property shown below demonstrates how to configure IceSSL so that only 
Glacier2 routers are accepted by this endpoint:

IceSSL.TrustOnly.Server.IceGrid.Registry.SessionManager=CN="Glacie
r2 Router Client"

In this example, Glacier2 Router Client is the common name of the 
Glacier2 router used by clients to create IceGrid client sessions.

Administrative Session Manager Endpoint

Glacier2 routers use the registry’s administrative session manager endpoint to 
create IceGrid administrative sessions (see Section 38.15.2). The functionality 
exposed by this endpoint is unrestricted, so you must either secure it or disable it 
(this endpoint is disabled by default). The property shown below demonstrates 
how to configure IceSSL so that only Glacier2 routers are accepted by this 
endpoint:

IceSSL.TrustOnly.Server.IceGrid.Registry.AdminSessionManager=CN="G
lacier2 Router Admin"

In this example, Glacier2 Router Admin is the common name of the 
Glacier2 router used by clients to create IceGrid administrative sessions. Note that 
if you use a single Glacier2 router instance for both client and administrative 
sessions (see Section 38.15.4), you will need to use the same common name to 
restrict access to both session manager endpoints:
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IceSSL.TrustOnly.Server.IceGrid.Registry.SessionManager=CN="Glacie
r2 Router Client"
IceSSL.TrustOnly.Server.IceGrid.Registry.AdminSessionManager=CN="G
lacier2 Router Client"

Outgoing Connections

The registry establishes outgoing connections to other registries and nodes. You 
should configure the IceSSL.TrustOnly.Client property to restrict 
connections to these trusted peers:

IceSSL.TrustOnly.Client=CN="IceGrid Registry";CN="IceGrid Node"

The registry can also connect to Glacier2 routers and permission verifier objects. 
To allow connections to these services, you must include in this property the 
common names of Glacier2 routers that create client or administrative sessions, as 
well as the common names of servers that host the permission verifier objects.

38.23.2 Node Endpoints

An IceGrid node has only one endpoint, which is used for internal communica-
tions with the registry. As a result, it should be configured to accept connections 
only from IceGrid registries:

IceSSL.TrustOnly.Server=CN="IceGrid Registry"

A node also establishes outgoing connections to the registry’s internal endpoint, as 
well as the Ice.Admin endpoint of deployed servers (see Section 38.23.3). You 
should configure the IceSSL.TrustOnly.Client property as shown below 
to verify the identity of these peers:

IceSSL.TrustOnly.Client=CN="Server";CN="IceGrid Registry"

38.23.3 Server’s Ice.Admin Endpoints

By default, IceGrid sets the endpoints of a deployed server’s Ice.Admin adapter 
to tcp -h 127.0.0.1. This setting is already quite secure because it only 
accepts connections from processes running on the same host. However, since you 
already need to configure IceSSL so that a server can authenticate with the 
IceGrid registry (servers connect to the registry to register their endpoints), you 
might as well use a secure endpoint for the Ice.Admin adapter and configure it 
accept connections only from IceGrid nodes:

IceSSL.TrustOnly.Server.Ice.Admin=CN="IceGrid Node"
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This is only necessary if the Ice.Admin endpoint is enabled (which it is by 
default).

You can also set the IceSSL.TrustOnly.Client property so that the 
server is only permitted to connect to the IceGrid registry:

IceSSL.TrustOnly.Client=CN="IceGrid Registry" 

If your server invokes on other servers, you will need to modify this setting to 
allow secure connections to them.

38.24 Administrative Utilities

IceGrid provides two administrative clients: a command-line tool and a graphical 
application.

38.24.1 Command Line Client

The icegridadmin utility is a command-line tool for administering an IceGrid 
domain. Deploying an application with this utility requires an XML file that 
defines the descriptors.

Usage

The IceGrid administration tool supports the following command-line options:

Usage: icegridadmin [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
-e COMMANDS          Execute COMMANDS.
-d, --debug          Print debug messages.
-s, --server         Start icegridadmin as a server (to parse XML
                     files).
-u, --username       Login with the given username.
-p, --password       Login with the given password.
-S, --ssl            Authenticate through SSL.
-r, --replica NAME   Connect to the replica NAME.

The -e option causes the tool to execute the given commands and then exit 
without entering an interactive mode. The -s option starts icegridadmin in a 
server mode that supports the IceGrid::FileParser interface; a proxy for the 
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object is printed to standard output. If neither -e nor -s is specified, the tool 
enters an interactive mode in which you issue commands at a prompt.

To communicate with the IceGrid registry, icegridadmin establishes an 
administrative session as described in Section 38.14.1. The tool uses SSL authen-
tication if you specify the -S option or define its equivalent property IceGrid-
Admin.AuthenticateUsingSSL. Otherwise, icegridadmin uses 
password authentication and prompts you for the username and password if you 
do not specify them via command-line options or properties. If you want icegr-
idadmin to establish its session using a Glacier2 router, define 
Ice.Default.Router appropriately. See Section D.16 for more information 
on the tool’s configuration properties.

Once the session is successfully established, icegridadmin displays its 
command prompt. The help command displays the following usage information:

help

Print this message.

exit, quit

Exit this program.

CATEGORY help

Print the help section of the given CATEGORY.

COMMAND help

Print the help of the given COMMAND.

The tool’s commands are organized by category. The supported command catego-
ries are shown below:

• application

• node

• registry

• server

• service

• adapter

• object

• server template

• service template
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You can obtain more information about each category using the help command:

>>> application help

Application Commands

application add [-n | --no-patch] DESC [TARGET ... ]
    [NAME=VALUE ... ]

Add applications described in the XML descriptor file DESC. If specified the 
optional targets are deployed. Variables are defined using the NAME=VALUE 
syntax. The application is automatically patched unless the -n or --no-
patch option is used to disable it (see Section 38.13).

application remove NAME

Remove the application named NAME.

application describe NAME

Describe the application named NAME.

application diff DESC [TARGET ...] [NAME=VALUE ...]

Print the differences between the application in the XML descriptor file DESC 
and the current deployment. Variables are defined using the NAME=VALUE 
syntax.

application update DESC [TARGET ...] [NAME=VALUE ...]

Update the application in the XML descriptor file DESC. Variables are 
defined using the NAME=VALUE syntax.

application patch [-f | --force] NAME

Patch the application named NAME. If -f or --force is specified, IceGrid 
will first shut down any servers that depend on the data to be patched.

application list

List all deployed applications.

Node Commands

node list

List all registered nodes.



38.24 Administrative Utilities 1489

node describe NAME

Show information about node NAME.

node ping NAME

Ping node NAME.

node load NAME

Print the load of the node NAME.

node processors [NAME]

Print the number of processor sockets for node NAME. If NAME is omitted, 
print the number of processor sockets for each node. (The 
IceGrid.Node.ProcessorSocketCount property allows you to 
explicitly set this value for systems where the number of sockets cannot be 
obtained programatically.)

node show [OPTIONS] NAME [stderr | stdout]

Print the text from the node’s standard error or standard output. The supported 
options are shown below:

-f, --follow

Wait for new text to be available.

-t, --tail N

Print the last N lines of text.

-h, --head N

Print the first N lines of text.

node shutdown NAME

Shutdown node NAME.

Registry Commands

registry list

List all registered registries.
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registry describe NAME

Show information about registry NAME.

registry ping NAME

Ping registry NAME.

registry show [OPTIONS] NAME [stderr | stdout]

Print the text from the registry’s standard error or standard output. The 
supported options are shown below:

-f, --follow

Wait for new text to be available.

-t, --tail N

Print the last N lines of text.

-h, --head N

Print the first N lines of text.

registry shutdown NAME

Shutdown registry NAME.

Server Commands

server list

List all registered servers.

server remove ID

Remove server ID.

server describe ID

Describe server ID.

server properties ID

Get the run-time properties of server ID.

server property ID NAME

Get the run-time property NAME of server ID.
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server state ID

Get the state of server ID.

server pid ID

Get the process id of server ID.

server start ID

Start server ID.

server stop ID

Stop server ID.

server patch ID

Patch server ID.

server signal ID SIGNAL

Send SIGNAL (such as SIGTERM or 15) to server ID.

server stdout ID MESSAGE

Write MESSAGE on server ID’s standard output.

server stderr ID MESSAGE

Write MESSAGE on server ID’s standard error.

server show [OPTIONS] ID [stderr | stdout | LOGFILE]

Print the text from the server’s standard error, standard output, or the log file 
LOGFILE. The supported options are shown below:

-f, --follow

Wait for new text to be available.

-t, --tail N

Print the last N lines of text.

-h, --head N

Print the first N lines of text.
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server enable ID

Enable server ID.

server disable ID

Disable server ID (a disabled server can’t be started on demand or administra-
tively).

Service Commands

service start ID NAME

Starts service NAME in IceBox server ID.

service stop ID NAME

Stops service NAME in IceBox server ID.

service describe ID NAME

Describes service NAME in IceBox server ID.

service properties ID NAME

Get the run-time properties of service NAME from IceBox server ID.

service property ID NAME PROPERTY

Get the run-time property PROPERTY of service NAME from IceBox server 
ID.

service list ID

List the services in IceBox server ID.

Adapter Commands

adapter list

List all registered adapters.

adapter endpoints ID

Show the endpoints of adapter or replica group ID.

adapter remove ID

Remove adapter or replica group ID.
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Object Commands

object add PROXY [TYPE]

Add a well-known object to the registry, optionally specifying its type.

object remove IDENTITY

Remove a well-known object from the registry.

object find TYPE

Find all well-known objects with the type TYPE.

object describe EXPR

Describe all well-known objects whose stringified identities match the expres-
sion EXPR. A trailing wildcard is supported in EXPR, for example "object 
describe Ice*".

object list EXPR

List all well-known objects whose stringified identities match the expression 
EXPR. A trailing wildcard is supported in EXPR, for example "object 
list Ice*".

Server Template

server template instantiate APPLICATION NODE TEMPLATE
    [NAME=VALUE ...]

Instantiate the requested server template defined in the given application on a 
node. Variables are defined using the NAME=VALUE syntax.

server template describe APPLICATION TEMPLATE

Describe a server template TEMPLATE from the given application.

Service Template

service template describe APPLICATION TEMPLATE

Describe a service template TEMPLATE from the given application.

Configuration

icegridadmin requires that the locator proxy be defined in the configuration 
property Ice.Default.Locator. If a configuration file already exists that 
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defines this property, you can start icegridadmin using the configuration file 
as shown below:

$ icegridadmin --Ice.Config=<file>

Otherwise, you can define the property on the command line:

$ icegridadmin --Ice.Default.Locator=<proxy>

Section 38.4.3 describes how to configure the Ice.Default.Locator prop-
erty for an IceGrid client.

38.24.2 Graphical Client

The graphical administration tool, IceGrid Admin, allows you to perform 
anything that you can do from the command line via a GUI. Please refer to the 
instructions included with your Ice distribution for details on how to start the 
administration tool.

38.25 Server Activation

You can choose among four activation modes for servers deployed and managed 
by an IceGrid node:

• manual

You must start the server explicitly via the IceGrid GUI or icegridadmin, 
or programmatically via the IceGrid::Admin interface.

• always

IceGrid activates the server when its node starts. If the server stops, IceGrid 
automatically reactivates it.

• on demand

IceGrid activates the server when a client invokes an operation on an object in 
the server.

• session

This mode also provides on-demand activation but requires the server to be 
allocated by a session.
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38.25.1 Activation in Detail

On-demand server activation is a valuable feature of distributed computing archi-
tectures for a number of reasons:

• It minimizes application startup times by avoiding the need to pre-start all 
servers.

• It allows administrators to use their computing resources more efficiently 
because only those servers that are actually needed are running.

• It provides more reliability in the case of some server failure scenarios, e.g., 
the server is reactivated after a failure and may still be capable of providing 
some services to clients until the failure is resolved.

• It allows remote activation and deactivation.

On-demand activation occurs when an Ice client requests the endpoints of one of 
the server’s object adapters via a locate request (see Section 38.3.1). If the server 
is not active at the time the client issues the request, the node activates the server 
and waits for the target object adapter to register its endpoints. Once the object 
adapter endpoints are registered, the registry returns the endpoint information 
back to the client. This sequence ensures that the client receives the endpoint 
information after the server is ready to receive requests.

38.25.2 Requirements

In order to use on-demand activation for an object adapter, the adapter must have 
an identifier and be entered in the IceGrid registry.

When using session activation mode, IceGrid requires that the server be allo-
cated; on-demand activation fails for servers that have not been allocated. (See 
Section 38.11 for more information on server allocation.)

The session activation mode recognizes an additional reserved variable in the 
server descriptor, ${session.id}. The value of this variable is the user ID or, 
for SSL sessions, the distinguished name associated with the session.

38.25.3 Efficiency

Once a server is activated, it remains running indefinitely (unless it uses the 
session activation mode). A node deactivates a server only when explicitly 
requested to do so (see Section 32.17.6). As a result, server processes tend to 
accumulate on the node’s host.



1496 IceGrid

One of the advantages of on-demand activation is the ability to manage 
computing resources more efficiently. Of course there are many aspects to this, 
but Ice makes one technique particularly simple: servers can be configured to 
terminate gracefully after they have been idle for a certain amount of time.

A typical scenario involves a server that is activated on demand, used for a 
while by one or more clients, and then terminated automatically when no requests 
have been made for a configurable number of seconds. All that is necessary is 
setting the server’s configuration property Ice.ServerIdleTime to the 
desired idle time. See Appendix D for more information on this property.

For a server activated in session activation mode, IceGrid deactivates the 
server when the session releases the server or when the session is destroyed.

38.25.4 Activating Servers with Specific User IDs

On Unix platforms you can activate server processes with specific effective user 
IDs, provided that the IceGrid node is running as root. If the IceGrid node does 
not run as root, servers are always activated with the effective user ID of the 
IceGrid node process. (The same is true for Windows—servers always run with 
the same user ID as the IceGrid node process.)

For the remainder of this section, we assume that the node runs as root on a 
Unix machine.

The user attribute of the server descriptor specifies the user ID for a 
server. If this attribute is not specified and the activation mode is not session, 
the default value is nobody. Otherwise, the default value is ${session.id} if 
the activation mode is session.

Since individual users often have different account names and user IDs on 
different machines, IceGrid provides a mechanism to map the value of the user 
attribute in the server descriptor to a user account. To do this, you must 
configure the node to use a user account mapper object. This object must imple-
ment the IceGrid::UserAccountMapper interface:

exception UserAccountNotFoundException {};

interface UserAccountMapper {
    string getUserAccount(string user)
            throws UserAccountNotFoundException;
};

The IceGrid node invokes getUserAccount and passes the value of the server 
descriptor’s user attribute. The return value is the name of the user account.
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IceGrid provides a built-in file-based user account mapper that you can 
configure for the node and the registry. The file contains any number of user–
account-ID pairs. Each pair appears on a separate line, with white space sepa-
rating the user account from the identifier. For example, the file shown below 
contains two entries that map two distinguished names to the user account lisa:

lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa
lisa O=ZeroC\\, Inc., OU=Ice, CN=Lisa S.

The distinguished names must be unique. If the same distinguished name appears 
several times in a file, the last entry is used.

You can specify the path of the user account file with the 
IceGrid.Registry.UserAccounts property for the registry and the

IceGrid.Node.UserAccounts property for a node.

To configure an IceGrid node to use the IceGrid registry file-based user 
account mapper, you need to set the IceGrid.Node.UserAccountMapper 
property to the well-known proxy
IceGrid/RegistryUserAccountMapper. Alternatively, you can set this 
property to the proxy of your own user account mapper object. Note that if this

property is set, the node ignores the setting of
IceGrid.Node.UserAccounts.

38.25.5 Endpoint Registration

Section 32.17.5 discusses the configuration requirements for enabling automatic 
endpoint registration in servers. It should be noted however that IceGrid simplifies 
the configuration process in two ways:

1. The IceGrid deployment mechanism automates the creation of a configuration 
file for the server, including the definition of object adapter identifiers and 
endpoints (see Section 38.4.4).

2. A server that is activated automatically by an IceGrid node does not need to 
explicitly configure a proxy for the locator because the IceGrid node defines it 
in the server’s configuration file.
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38.26 Solving Problems

38.26.1 Activation Failure
Server activation failure is usually indicated by the receipt of a NoEndpointEx-
ception. This can happen for a number of reasons, but the most likely cause is an 
incorrect configuration. For example, an IceGrid node may fail to activate a server 
because the server’s executable file, shared libraries, or classes could not be found. 
There are several steps you can take in this case:

1. Enable activation tracing in the node by setting the configuration property 
IceGrid.Node.Trace.Activator=3.

2. Examine the tracing output and verify the server’s command line and working 
directory are correct.

3. Relative pathnames specified in a command line may not be correct relative to 
the node’s current working directory. Either replace relative pathnames with 
absolute pathnames, or restart the node in the proper working directory.

4. Verify that the server is configured with the correct PATH or 
LD_LIBRARY_PATH settings for its shared libraries. For a Java server, its 
CLASSPATH may also require changes.

Another cause of activation failure is a server fault during startup. After you have 
confirmed that the node successfully spawns the server process using the steps 
above, you should then check for signs of a server fault (e.g., on Unix, look for a 
core file in the node’s current working directory). See Section 38.26.3 for more 
information on server failures.

38.26.2 Proxy Failure
A client may receive Ice::NotRegisteredException if binding fails for an indi-
rect proxy (see Section 32.17.2). This exception indicates that the proxy’s object 
identity or object adapter is not known by the IceGrid registry. The following steps 
may help you discover the cause of the exception:

1. Use icegridadmin (see Section 38.24.1) to verify that the object identity 
or object adapter identifier is actually registered, and that it matches what is 
used by the proxy:

>>> adapter list
...
>>> object find ::Hello



38.26 Solving Problems 1499

...

2. If the problem persists, review your configuration to ensure that the locator 
proxy used by the client matches the registry’s client endpoints, and that those 
endpoints are accessible to the client (i.e., are not blocked by a firewall).

3. Finally, enable locator tracing in the client by setting the configuration prop-
erty Ice.Trace.Locator=2, then run the client again to see if any log 
messages are emitted that may indicate the problem.

38.26.3 Server Failure

Diagnosing a server failure can be difficult, especially when servers are activated 
automatically on remote hosts. Here are a few suggestions:

1. If the server is running on a Unix host, check the current working directory of 
the IceGrid node process for signs of a server failure, such as a core file.

2. Judicious use of tracing can help to narrow the search. For example, if the 
failure occurs as a result of an operation invocation, enable protocol tracing in 
the Ice run time by setting the configuration property 
Ice.Trace.Protocol=1 to discover the object identity and operation 
name of all requests.

Of course, the default log output channels (standard out and standard error) 
will probably be lost if the server is activated automatically, so either start the 
server manually (see below) or redirect the log output (see Appendix D for a 
description of the Ice.UseSyslog property).

You can also use the Ice::Logger interface to emit your own trace messages.

3. Run the server in a debugger; a server configured for automatic activation can 
also be started manually if necessary. However, since the IceGrid node did not 
activate the server, it cannot monitor the server process and therefore will not 
know when the server terminates. This will prevent subsequent activation 
unless you clean up the IceGrid state when you have finished debugging and 
terminated the server. You can do this by starting the server using 
icegridadmin (see Section 38.24.1):

>>> server start TheServer

This will cause the node to activate (and therefore monitor) the server process. 
If you do not want to leave the server running, you can stop it with the 
server stop command.
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4. After the server is activated and is in a quiescent state, attach your debugger to 
the running server process. This avoids the issues associated with starting the 
server manually (as described in the previous step), but does not provide as 
much flexibility in customizing the server’s startup environment.

Another cause for a server to fail to activate correctly is if there is a mismatch in 
the adapter names used by the server for its adapters, and the adapter names spec-
ified in the server’s deployment descriptor. After starting a server process, the 
node waits for the server to activate all its object adapters and report them as 
ready; if the server does not do this, the node reports a failure once a timeout 
expires. The timeout is controlled by the setting of the property 
IceGrid.Node.WaitTime. (The default value is 60 seconds.)

You can check the status of each of a server’s adapters using 
icegridadmin or the GUI tool. While the node waits for an adapter to be acti-
vated by the server, it reports the status of the adapter as “activating”. If you expe-
rience timeouts before each adapter’s status changes to “active”, the most likely 
cause is that the deployment descriptor for the server either mentions more object 
adapters than are actually created by the server, or that the server uses a name for 
one or more adapters that does not match the corresponding name in the deploy-
ment descriptor.

38.26.4 Disabling Faulty Servers

You may find it necessary to disable a server that terminates in an error condition. 
For example, on a Unix platform each server failure might result in the creation of 
a new (and potentially quite large) core file. This problem is exacerbated when the 
server is used frequently, in which case repeated cycles of activation and failure 
can consume a great deal of disk space and threaten the viability of the application 
as a whole.

As a defensive measure, you can configure an IceGrid node to disable these 
servers automatically using the IceGrid.Node.DisableOnFailure prop-
erty. In the disabled state, a server cannot be activated on demand. The default 
value of the property is zero, meaning the node does not disable a server that 
terminates improperly. A positive value causes the node to temporarily disable a 
faulty server, with the value representing the number of seconds the server should 
remain disabled. If the property has a negative value, the server is disabled indefi-
nitely, or until the server is explicitly enabled or started via an administrative 
action.
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38.27 Summary

This chapter provided a detailed discussion of IceGrid, including the modifica-
tions required to incorporate IceGrid into client and server applications, as well as 
the configuration and administration of IceGrid components. Once you under-
stand the basic concepts on which IceGrid is founded, you quickly begin to appre-
ciate the flexibility, power, and convenience of IceGrid’s capabilities:

• Replication, load balancing, and automatic server activation increase reli-
ability and make more efficient use of processing resources.

• The location service simplifies administrative requirements and minimizes 
coupling between clients and servers.

• Deploying an application can be done using easily-understood, reusable XML 
files, or interactively using a graphical client.

• Distributing and updating executables, dependent libraries and other files on 
all nodes can be automated and managed remotely.

In short, IceGrid provides the tools you need to develop robust, enterprise-class 
Ice applications.
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Chapter 39
Freeze

39.1 Chapter Overview

This chapter describes how to use Freeze to add persistence to Ice applications. 
Section 39.3 presents the Freeze evictors, and Section 39.4 demonstrates a Freeze 
evictor in another file system implementation. Section 39.5 discusses Freeze maps 
and shows how to use them in a simple example. Section 39.6 examines an imple-
mentation of the file system using a Freeze map. Finally, Sections 39.7 and 39.7 
describes Freeze catalogs and backups.
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39.2 Introduction

Freeze represents a set of persistence services, as shown in Figure 39.1.

Figure 39.1. Layer diagram for Freeze persistence services.

The Freeze persistence services are described below:

• The Freeze evictor is a highly-scalable implementation of an Ice servant 
locator that provides automatic persistence and eviction of servants with only 
minimal application code.

• The Freeze map is a generic associative container. Code generators are 
provided that produce type-specific maps for Slice key and value types. Appli-
cations interact with a Freeze map just like any other associative container, 
except the keys and values of a Freeze map are persistent.

As you will see from the examples in this chapter, integrating a Freeze map or 
evictor into your Ice application is quite straightforward: once you define your 
persistent data in Slice, Freeze manages the mundane details of persistence.

Freeze is implemented using Berkeley DB, a compact and high-performance 
embedded database. The Freeze map and evictor APIs insulate applications from 
the Berkeley DB API, but do not prevent applications from interacting directly 
with Berkeley DB if necessary.

39.3 Freeze Evictors

Freeze evictors combine persistence and scalability features into a single facility 
that is easily incorporated into Ice applications.

As an implementation of the ServantLocator interface (see Section 32.7), a 
Freeze evictor takes advantage of the fundamental separation between Ice object 
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and servant to activate servants on demand from persistent storage, and to deacti-
vate them again using customized eviction constraints. Although an application 
may have thousands of Ice objects in its database, it is not practical to have 
servants for all of those Ice objects resident in memory simultaneously. The appli-
cation can conserve resources and gain greater scalability by setting an upper limit 
on the number of active servants, and letting a Freeze evictor handle the details of 
servant activation, persistence, and deactivation.

39.3.1 Specifying Persistent State

The persistent state of servants managed by a Freeze evictor must be described in 
Slice. Specifically, every servant must implement a Slice class, and a Freeze 
evictor automatically stores and retrieves all the (Slice-defined) data members of 
these Slice classes. Data members that are not specified in Slice are not persistent.

A Freeze evictor relies on the Ice object factory facility to load persistent 
servants from disk: the evictor creates a brand new servant using the registered 
factory and then restores the servant’s data members. Therefore, for every persis-
tent servant class you define, you need to register a corresponding object factory 
with the Ice communicator. (See the relevant language mapping chapter for more 
details on object factories.)

39.3.2 Servant Association

With a Freeze evictor, each <object identity, facet> pair is associated with its own 
dedicated persistent object (servant). Such a persistent object cannot serve several 
identities or facets. Each servant is loaded and saved independently of other 
servants; in particular, there is no special grouping for the servants that serve the 
facets of a given Ice object.

Like an object adapter, the Freeze evictor provides operations named add, 
addFacet, remove, and removeFacet. They have the same signature and 
semantics, except that with the Freeze evictor, the mapping and the state of the 
mapped servants is stored in a database.

39.3.3 Background Save and Transactional Evictors

Freeze provides two types of evictors, a background save evictor and a transac-
tional evictor, with corresponding local interfaces: BackgroundSaveEvictor and 
TransactionalEvictor. These two local interfaces derive from the 
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Freeze::Evictor local interface, which defines most evictor operations, in 
particular add, addFacet, remove, and removeFacet.

Furthermore, the on-disk format of these two types of evictors is the same: you 
can switch from one type of evictor to the other without any data transformation.

Background Save Evictor

A background-save evictor keeps all its servants in a map and writes the state of 
newly-created, modified, and deleted servants to disk asynchronously, in a back-
ground thread. You can configure how often servants are saved; for example you 
could decide to save every three minutes, or whenever ten or more servants have 
been modified. For applications with frequent updates, this allows you to group 
many updates together to improve performance.

The downside of the background-save evictor is recovery from a crash. 
Because saves are asynchronous, there is no way to force an immediate save to 
preserve a critical update. Moreover, you cannot group several related updates 
together: for example, if you transfer funds between two accounts (servants) and a 
crash occurs shortly after this update, it is possible that, once your application 
comes back up, you will see the update on one account but not on the other. Your 
application needs to handle such inconsistencies when restarting after a crash.

Similarly, a background-save evictor provides no ordering guarantees for 
saves. If you update servant 1, servant 2, and then servant 1 again, it is possible 
that, after recovering from a crash, you will see the latest state for servant 1, but no 
updates at all for servant 2.

Transactional Evictor

A transactional evictor maintains a servant map as well, but only keeps read-only 
servants in this map. The state of these servants corresponds to the latest data on 
disk. Any servant creation, update, or deletion is performed within a database 
transaction. This transaction is committed (or rolled back) immediately, typically 
at the end of the dispatch of the current operation, and the associated servants are 
then discarded.

With such an evictor, you can ensure that several updates, often on different 
servants (possibly managed by different transactional evictors) are grouped 
together: either all or none of these updates occur. In addition, updates are written 
almost immediately, so crash recovery is a lot simpler: few (if any) updates will be 
lost, and you can maintain consistency between related persistent objects.
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However, an application based on a transactional evictor is likely to write a lot 
more to disk than an application with a background-save evictor, which may have 
an adverse impact on performance.

39.3.4 Eviction Strategy
Both background-save and transactional evictors associate a queue with their 
servant map and manage this queue using a “least recently used” eviction algo-
rithm: if the queue is full, the least recently used servant is evicted to make room 
for a new servant.

Here is the sequence of events for activating a servant as shown in Figure 39.2. 
Let us assume that we have configured the evictor with a size of five, that the 
queue is full, and that a request has arrived for a servant that is not currently 
active. (With a transactional evictor, we also assume this request does not change 
any persistent state.)

1. A client invokes an operation.

2. The object adapter invokes on the evictor to locate the servant.

3. The evictor first checks its servant map and fails to find the servant, so it 
instantiates the servant and restores its persistent state from the database.

4. The evictor adds an item for the servant (servant 1) at the head of the queue.

5. The queue’s length now exceeds the configured maximum, so the evictor 
removes servant 6 from the queue as soon as it is eligible for eviction. With a 
background save evictor, this occurs once there are no outstanding requests 
pending on servant 6, and once the servant’s state has been safely stored in the 
database. With a transactional save, the servant is removed from the queue 
immediately.
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6. The object adapter dispatches the request to the new servant.

Figure 39.2. An evictor queue after restoring servant 1 and evicting servant 6.

39.3.5 Detecting Updates

A Freeze evictor considers that a servant’s persistent state has been modified when 
a read-write operation on this servant completes. To indicate whether an operation 
is read-only or read-write, you add metadata directives to the Slice definitions of 
the objects:

• The ["freeze:write"] directive informs the evictor that an operation modi-
fies the persistent state of the target servant.

• The ["freeze:read”] directive informs the evictor that an operation does not 
modify the persistent state of the target.

If no metadata directive is present, an operation is assumed to not modify its 
target.

Here is how you could mark the operations on an interface with these meta-
data directives:
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interface Example {
    ["freeze:read"]  string readonlyOp();
    ["freeze:write"] void   writeOp();
};

This marks readonlyOp as an operation that does not modify its target, and marks 
writeOp as an operation that does modify its target. Because, without any direc-
tive, an operation is assumed to not modify its target, the preceding definition can 
also be written as follows:

interface Example {
    string readonlyOp(); // ["freeze:read"] implied
    ["freeze:write"] void writeOp();
};

The metadata directives can also be applied to an interface or a class to establish a 
default. This allows you to mark an interface as ["freeze:write"] and to only 
add a ["freeze:read"] directive to those operations that are read-only, for 
example:

["freeze:write"]
interface Example {
    ["freeze:read"] string readonlyOp();
                    void   writeOp1();
                    void   writeOp2();
                    void   writeOp3();
};

This marks writeOp1, writeOp2, and writeOp3 as read-write operations, and 
readonlyOp as a read-only operation.

Note that it is important to correctly mark read-write operations with a 
["freeze:write"] metadata directive—without the directive, Freeze will not 
know when an object has been modified and may not store the updated persistent 
state to disk.

Also note that, if you make calls directly on servants (so the calls are not 
dispatched via the Freeze evictor), the evictor will have no idea when a servant’s 
persistent state is modified; if any such direct call modifies the servant’s data 
members, the update may be lost.

39.3.6 Evictor Iterator

A Freeze evictor iterator provides the ability to iterate over the identities of the 
objects stored in an evictor. The operations are similar to Java iterator methods: 
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hasNext returns true while there are more elements, and next returns the next 
identity:

local interface EvictorIterator {
    bool hasNext();
    Ice::Identity next();
};

You create an iterator by calling getIterator on your evictor:

EvictorIterator getIterator(string facet, int batchSize);

The new iterator is specific to a facet (specified by the facet parameter). Inter-
nally, this iterator will retrieve identities in batches of batchSize objects; we 
recommend to use a fairly large batch size to get good performance.

39.3.7 Indexing a Database

A Freeze evictor supports the use of indexes to quickly find persistent servants 
using the value of a data member as the search criteria. The types allowed for 
these indexes are the same as those allowed for Slice dictionary keys (see 
Section 4.9.4).

The slice2freeze and slice2freezej tools can generate an Index 
class when passed the --index option:

• --index CLASS,TYPE,MEMBER
[,case-sensitive|case-insensitive]

CLASS is the name of the class to be generated. TYPE denotes the type of 
class to be indexed (objects of different classes are not included in this index). 
MEMBER is the name of the data member in TYPE to index. When MEMBER 
has type string, it is possible to specify whether the index is case-sensitive or 
not. The default is case-sensitive.

The generated Index class supplies three methods whose definitions are mapped 
from the following Slice operations:

• sequence<Ice::Identity>
findFirst(member-type index, int firstN)

Returns up to firstN objects of TYPE whose MEMBER is equal to index. 
This is useful to avoid running out of memory if the potential number of 
objects matching the criteria can be very large.
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• sequence<Ice::Identity> find(member-type index)

Returns all the objects of TYPE whose MEMBER is equal to index.

• int count(<type> index)

Returns the number of objects of TYPE having MEMBER equal to index.

Indexes are associated with a Freeze evictor during evictor creation. See the defi-
nition of the createBackgroundSaveEvictor and createTransac-
tionalEvictor functions for details.

Indexed searches are easy to use and very efficient. However, be aware that an 
index adds significant write overhead: with Berkeley DB, every update triggers a 
read from the database to get the old index entry and, if necessary, replace it.

If you add an index to an existing database, by default existing facets are not 
indexed. If you need to populate a new or empty index using the facets stored in 
your Freeze evictor, set the property Freeze.Evictor.env-name.file-
name.PopulateEmptyIndices to a value other than 0, which instructs 
Freeze to iterate over the corresponding facets and create the missing index entries 
during the call to createBackgroundSaveEvictor or createTrans-
actionalEvictor. When you use this feature, you must register the object 
factories for all of the facet types before you create your evictor.

39.3.8 Using a Servant Initializer

In some applications, it may be necessary to initialize a servant after the servant is 
instantiated by the evictor but before an operation is dispatched to the servant. The 
Freeze evictor allows an application to specify a servant initializer for this 
purpose.

To illustrate the sequence of events, let us assume that a request has arrived for 
a servant that is not currently active:

1. The evictor restores a servant for the target Ice object (and facet) from the 
database. This involves two steps:

1.The Ice run time locates and invokes the factory for the Ice facet’s type, 
thereby obtaining a new instance with uninitialized data members.

2.The data members are populated from the persistent state.

2. The evictor invokes the application’s servant initializer (if any) for the servant.

3. If the evictor is a background-save evictor, it adds the servant to its cache.

4. The evictor dispatches the operation.
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With a background-save evictor, the servant initializer is called before the object is 
inserted into the evictor’s internal cache, and without holding any internal lock, 
but in such a way that when the servant initializer is called, the servant is guaran-
teed to be inserted in the evictor cache.

There is only one restriction on what a servant initializer can do: it must not 
make a remote invocation on the object (facet) being initialized. Failing to follow 
this rule will result in deadlocks.

The file system implementation presented in Section 39.4 on page 1521 
demonstrates the use of a servant initializer.

39.3.9 Background-Save Evictor Features

Creation

You create a background-save evictor in C++ with the global function 
Freeze::createBackgroundSaveEvictor, and in Java with the static 
method Freeze.Util.createBackgroundSaveEvictor.

For C++, the signatures are as follows:

BackgroundSaveEvictorPtr
createBackgroundSaveEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    const string& filename,
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

BackgroundSaveEvictorPtr
    createBackgroundSaveEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    DbEnv& dbEnv, 
    const string& filename,
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

For Java, the method signatures are:

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
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    String filename,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

public static BackgroundSaveEvictor
createBackgroundSaveEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    com.sleepycat.db.Environment dbEnv,
    String filename,
    ServantInitializer initializer, 
    Index[] indexes,
    boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens 
and manages the underlying Berkeley DB environment; in the other case, you 
provide a DbEnv object that represents a Berkeley DB environment you opened 
yourself. (Usually, it is easiest to let Freeze take care of all interactions with 
Berkeley DB.)

The envName parameter represents the name of the underlying Berkeley DB 
environment, and is also used as the default Berkeley DB home directory. (See 
Freeze.Evictor.env-name.DbHome in the Ice properties reference.)

The filename parameter represents the name of the Berkeley DB database 
file associated with this evictor. The persistent state of all your servants is stored 
in this file.

The initializer parameter represents the servant initializer. It is an 
optional parameter in C++; in Java, pass null if you do not need a servant initial-
izer.

The indexes parameter is a vector or array of evictor indexes. It is an 
optional parameter in C++; in Java, pass null if your evictor does not define an 
index.

Finally, the createDb parameter tells Freeze what to do when the corre-
sponding Berkeley DB database does not exist. When true, Freeze creates a new 
database; when false, Freeze raises a Freeze::DatabaseException.

Saving Thread

All persistence activity of a background-save evictor is handled in a background 
thread created by the evictor. This thread wakes up periodically and saves the state 
of all newly-registered, modified, and destroyed servants in the evictor’s queue.
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For applications that experience bursts of activity that result in a large number 
of modified servants in a short period of time, you can also configure the evictor’s 
thread to begin saving as soon as the number of modified servants reaches a 
certain threshold.

Synchronization

When the saving thread takes a snapshot of a servant it is about to save, it is neces-
sary to prevent the application from modifying the servant’s persistent data 
members at the same time.

The Freeze evictor and the application need to use a common synchronization 
to ensure correct behavior. In Java, this common synchronization is the servant 
itself: the Freeze evictor synchronizes the servant (a Java object) while taking the 
snapshot. In C++, the servant is required to inherit from the class 
IceUtil::AbstractMutex: the background-save evictor locks the servant 
through this interface while taking a snapshot. On the application side, the 
servant’s implementation is required to use the same mechanism to synchronize 
all operations that access the servant’s Slice-defined data members.

Keeping Servants in Memory

Occasionally, automatically evicting and reloading all servants can be inefficient. 
You can remove a servant from the evictor’s queue by locking this servant “in 
memory” using the keep or keepFacet operation on the evictor:

local interface BackgroundSaveEvictor extends Evictor {
    void keep(Ice::Identity id);
    void keepFacet(Ice::Identity id, string facet);
    void release(Ice::Identity id);
    void releaseFacet(Ice::Identity id, string facet);
};

keep and keepFacet are recursive: you need to call release or releaseFacet for 
this servant the same number of times to put it back in the evictor queue and make 
it eligible again for eviction.

Servants kept in memory (using keep or keepFacet) do not consume a slot in 
the evictor queue. As a result, the maximum number of servants in memory is 
approximately the number of kept servants plus the evictor size. (It can be larger 
while you have many evictable objects that are modified but not yet saved.)
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39.3.10 Transactional Evictor Features

Creation

You create a transactional evictor in C++ with the global function 
Freeze::createTransactionalEvictor, and in Java with the static 
method Freeze.Util.createTransactionalEvictor.

For C++, the signatures are as follows:

typedef map<string, string> FacetTypeMap;

TransactionalEvictorPtr
createTransactionalEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName, 
    const string& filename,
    const FacetTypeMap& facetTypes = FacetTypeMap(),
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

TransactionalEvictorPtr
createTransactionalEvictor(
    const ObjectAdapterPtr& adapter,
    const string& envName,
    DbEnv& dbEnv, 
    const string& filename,
    const FacetTypeMap& facetTypes = FacetTypeMap(),
    const ServantInitializerPtr& initializer = 0,
    const vector<IndexPtr>& indexes = vector<IndexPtr>(),
    bool createDb = true);

For Java, the method signatures are:

public static TransactionalEvictor
createTransactionalEvictor(
    Ice.ObjectAdapter adapter,
    String envName,
    String filename,
    java.util.Map facetTypes,
    ServantInitializer initializer,
    Index[] indexes,
    boolean createDb);

public static TransactionalEvictor
createTransactionalEvictor(
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    Ice.ObjectAdapter adapter,
    String envName,
    com.sleepycat.db.Environment dbEnv,
    String filename,
    java.util.Map facetTypes,
    ServantInitializer initializer, 
    Index[] indexes,
    boolean createDb);

Both C++ and Java provide two overloaded functions: in one case, Freeze opens 
and manages the underlying Berkeley DB environment; in the other case, you 
provide a DbEnv object that represents a Berkeley DB environment you opened 
yourself. (Usually, it is easier to let Freeze take care of all interactions with 
Berkeley DB.)

The envName parameter represents the name of the underlying Berkeley DB 
environment, and is also used as the default Berkeley DB home directory. (See 
Freeze.Evictor.env-name.DbHome in the Ice properties reference.)

The filename parameter represents the name of the Berkeley DB database 
file associated with this evictor. The persistent state of all your servants is stored 
in this file.

The facetTypes parameter allows you to specify a single class type (Ice 
type ID string) for each facet in your new evictor (see below). Most applications 
use only the default facet, represented by an empty string. This parameter is 
optional in C++; in Java, pass null if you do not want to specify such a facet-to-
type mapping.

The initializer parameter represents the servant initializer. It is an 
optional parameter in C++; in Java, pass null if you do not need a servant initial-
izer.

The indexes parameter is a vector or array of evictor indexes. It is an 
optional parameter in C++; in Java, pass null if your evictor does not define an 
index.

Finally, the createDb parameter tells Freeze what to do when the corre-
sponding Berkeley DB database does not exist. When true, Freeze creates a new 
database; when false, Freeze raises a Freeze::DatabaseException.

Homogeneous Databases

When a transactional evictor processes an incoming request without an associated 
transaction, it first needs to find out whether the corresponding operation is read-
only or read-write (as specified by the "freeze:read" and "freeze:write" 
operation metadata). This is straightforward if the evictor knows the target’s type; 
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in this case, it simply instantiates and keeps a “dummy” servant to look up the 
attributes of each operation.

However, if the target type can vary, the evictor needs to look up and some-
times load a read-only servant to find this information. For read-write requests, it 
will then load the servant from disk a second time (within a new transaction). 
Once the transaction commits, the read-only servant—sometimes freshly loaded 
from disk—is discarded.

When you create a transactional evictor with createTransactionalEvictor, 
you can pass a facet name to type ID map to associate a single servant type with 
each facet and speed up the operation attribute lookups.

Synchronization

With a transactional evictor, there is no need to perform any synchronization on 
the servants managed by the evictor:

• For read-only operations, the application must not modify any data member, 
and hence there is no need to synchronize. (Many threads can safely read the 
same data members concurrently.)

• For read-write operations, each operation dispatch gets its own private servant 
or servants (see transaction propagation below).

Not having to worry about synchronization can dramatically simplify your appli-
cation code.

Transaction Propagation

Without a distributed transaction service, it is not possible to invoke several 
remote operations within the same transaction. Nevertheless, Freeze supports 
transaction propagation for collocated calls: when a request is dispatched within a 
transaction, the transaction is associated with the dispatch thread and will propa-
gate to any other servant reached through a collocated call. If the target of a collo-
cated call is managed by a transactional evictor associated with the same database 
environment, Freeze reuses the propagated transaction to load the servant and 
dispatch the request. This allows you to group updates to several servants within a 
single transaction.

You can also control how a transactional evictor handles an incoming transac-
tion through optional metadata added after "freeze:write" and "freeze:read". 
There are six valid directives:
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• "freeze:read:never"

Verify that no transaction is propagated to this operation. If a transaction is 
present, the transactional evictor raises a Freeze::DatabaseException.

• "freeze:read:supports"

Accept requests with or without a transaction, and re-use the transaction if 
present. "supports" is the default for "freeze:read" operations.

• "freeze:read:mandatory" and "freeze:write:mandatory"

Verify that a transaction is propagated to this operation. If there is no transac-
tion, the transactional evictor raises a Freeze::DatabaseException.

• "freeze:read:required" and "freeze:write:required"

Accept requests with or without a transaction, and re-use the transaction if 
present. If no transaction is propagated, the transactional evictor creates a new 
transaction before dispatching the request. "required" is the default for 
"freeze:write" operations.

Commit or Rollback on User Exception

When a transactional evictor processes an incoming read-write request, it starts a 
new database transaction, loads a servant within the transaction, dispatches the 
request, and then either commits or rolls back the transaction depending on the 
outcome of this dispatch. If the dispatch does not raise an exception, the transac-
tion is committed just before the response is sent back to the client. If the dispatch 
raises a system exception, the transaction is rolled back. If the dispatch raises a 
user exception, by default, the transaction is committed. However, you can 
configure Freeze to rollback on user-exceptions by setting 
Freeze.Evictor.env-name.fileName.RollbackOnUserException to a 
value other than 0.

Deadlocks and Automatic Retries

When reading and writing in separate concurrent transactions, deadlocks are 
likely to occur. For example, one transaction may lock pages in a particular order 
while another transaction locks the same pages in a different order; the outcome is 
a deadlock. Berkeley DB automatically detects such deadlocks, and “kills” one of 
the transactions. 

With a Freeze transactional evictor, the application does not need to catch any 
deadlock exceptions or retry when deadlock occurs because the transactional 
evictor automatically retries its transactions whenever it encounters a deadlock 
situation.
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However, this can affect how you implement your operations: for any opera-
tion called within a transaction (mainly read-write operations), you must antici-
pate the possibility of several calls for the same request, all in the same dispatch 
thread.

Asynchronous Method Dispatch

When a transactional evictor dispatches a read-write operation implemented using 
AMD, it starts a transaction before dispatching the request, and commits or rolls 
back the transaction when the dispatch is done. Two threads are involved here: the 
dispatch thread and the callback thread. The dispatch thread is a thread from an 
Ice thread pool tasked with dispatching a request, and the callback thread is the 
thread that invokes the AMD callback to send the response to the client. These 
threads may be one and the same if the servant invokes the AMD callback from 
the dispatch thread.

It is important to understand the threading semantics of an AMD request with 
respect to the transaction:

• If a successful AMD response is sent from the dispatch thread, the transaction 
is committed after the response is sent. If a deadlock occurs during this 
commit, the request is not retried and the client receives no indication of the 
failure.

• If a successful AMD response is sent from another thread, the evictor commits 
its transaction when the dispatch thread completes, regardless of whether the 
servant has sent the AMD response. The callback thread waits until the trans-
action has been committed by the dispatch thread before sending the response. 

• If a commit results in a deadlock and the AMD response has not yet been sent, 
the evictor cancels the original AMD callback and automatically retries the 
request again with a new AMD callback. Invocations on the original AMD 
callback are ignored (ice_response and ice_exception on this callback do 
nothing).

• Otherwise, if the servant sends an exception via the AMD callback, the 
response is sent directly to the client.

Transactions and Freeze Maps

A transactional evictor uses the same transaction objects as Freeze maps, which 
allows you to update a Freeze map within a transaction managed by a transac-
tional evictor.
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You can get the current transaction created by a transactional evictor by 
calling getCurrentTransaction. Then, you would typically retrieve the associ-
ated Freeze connection (with getConnection) and construct a Freeze map using 
this connection:

local interface TransactionalEvictor extends Evictor {
    Transaction getCurrentTransaction();
    void setCurrentTransaction(Transaction tx);
};

A transactional evictor also gives you the ability to associate your own transaction 
with the current thread, using setCurrentTransaction. This is useful if you want 
to perform many updates within a single transaction, for example to add or 
remove many servants in the evictor. (A less convenient alternative is to imple-
ment all such updates within a read-write operation on some object.)

39.3.11 Application Design Considerations

The Freeze evictor creates a snapshot of a servant’s state for persistent storage by 
marshaling the servant, just as if the servant were being sent “over the wire” as a 
parameter to a remote invocation. Therefore, the Slice definitions for an object 
type must include the data members comprising the object’s persistent state.

For example, we could define a Slice class as follows:

class Stateless {
    void calc();
};

However, without data members, there will not be any persistent state in the data-
base for objects of this type, and hence there is little value in using the Freeze 
evictor for this type.

Obviously, Slice object types need to define data members, but there are other 
design considerations as well. For example, suppose we define a simple applica-
tion as follows:

class Account {
    ["freeze:write"] void withdraw(int amount);
    ["freeze:write"] void deposit(int amount);

    int balance;
};
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interface Bank {
    Account* createAccount();
};

In this application, we would use a Freeze evictor to manage Account objects that 
have a data member balance representing the persistent state of an account.

From an object-oriented design perspective, there is a glaring problem with 
these Slice definitions: implementation details (the persistent state) are exposed in 
the client–server contract. The client cannot directly manipulate the balance 
member because the Bank interface returns Account proxies, not Account 
instances. However, the presence of the data member may cause unnecessary 
confusion for client developers.

A better alternative is to clearly separate the persistent state as shown below:

interface Account {
    ["freeze:write"] void withdraw(int amount);
    ["freeze:write"] void deposit(int amount);
};

interface Bank {
    Account* createAccount();
};

class PersistentAccount implements Account {
    int balance;
};

Now the Freeze evictor can manage PersistentAccount objects, while clients 
interact with Account proxies. (Ideally, PersistentAccount would be defined in 
a different source file and inside a separate Slice module.)

39.4 Using the Freeze Evictor in a File System Server

In this section, we present file system implementations that use a transactional 
evictor. The implementations are based on the ones discussed in Chapter 34, and 
in this section we only discuss code that illustrates use of the Freeze evictor.

In general, incorporating a Freeze evictor into your application requires the 
following steps:

1. Evaluate your existing Slice definitions for a suitable persistent object type.
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2. If no suitable type is found, you typically define a new derived class that 
captures your persistent state requirements. Consider placing these definitions 
in a separate file: they are only used by the server for persistence, and there-
fore do not need to appear in the “public” definitions required by clients. Also 
consider placing your persistent types in a separate module to avoid name 
clashes.

3. Generate code (using slice2freeze or slice2freezej) for your new 
definitions.

4. Create an evictor and register it as a servant locator with an object adapter.

5. Create instances of your persistent type and register them with the evictor.

39.4.1 Slice Definitions

Fortunately, it is unnecessary for us to change any of the existing file system Slice 
definitions to incorporate the Freeze evictor. However, we do need to add meta-
data definitions to inform the evictor which operations modify object state (see 
Section 39.3.5):

module Filesystem {
    // ...

    interface Node {
        idempotent string name();

        ["freeze:write"]
        void destroy() throws PermissionDenied;
    };

    // ...

    interface File extends Node {
        idempotent Lines read();

        ["freeze:write"]
        idempotent void write(Lines text) throws GenericError;
    };

    // ...

    interface Directory extends Node {
        idempotent NodeDescSeq list();
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        idempotent NodeDesc find(string name) throws NoSuchName;

        ["freeze:write"]
        File* createFile(string name) throws NameInUse;

        ["freeze:write"]
        Directory* createDirectory(string name) throws NameInUse;
    };
};

This definitions are identical to the original ones, with the exception of the added 
["freeze:write"] directives.

The remaining definitions are in derived classes:

#include <Filesystem.ice>

module Filesystem {
    class PersistentDirectory;

    class PersistentNode implements Node {
        string nodeName;
        PersistentDirectory* parent;
    };

    class PersistentFile
            extends PersistentNode implements File {
        Lines text;
    };

    dictionary<string, NodeDesc> NodeDict;

    class PersistentDirectory
            extends PersistentNode implements Directory {
        ["freeze:write"]
        void removeNode(string name);

        NodeDict nodes;
    };
};

As you can see, we have sub-classed all of the node interfaces. Let us examine 
each one in turn.

The PersistentNode class adds two data members: nodeName1 and parent. 
The file system implementation requires that a child node knows its parent node in 
order to properly implement the destroy operation. Previous implementations 
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had a state member of type DirectoryI, but that is not workable here. It is no 
longer possible to pass the parent node to the child node’s constructor because the 
evictor may be instantiating the child node (via a factory), and the parent node will 
not be known. Even if it were known, another factor to consider is that there is no 
guarantee that the parent node will be active when the child invokes on it, because 
the evictor may have evicted it. We solve these issues by storing a proxy to the 
parent node. If the child node invokes on the parent node via the proxy, the evictor 
automatically activates the parent node if necessary.

The PersistentFile class is very straightforward, simply adding a text 
member representing the contents of the file. Notice that the class extends 
PersistentNode, and therefore inherits the state members declared by the base 
class.

Finally, the PersistentDirectory class defines the removeNode operation, 
and adds the nodes state member representing the immediate children of the 
directory node. Since a child node contains only a proxy for its PersistentDi-
rectory parent, and not a reference to an implementation class, there must be a 
Slice-defined operation that can be invoked when the child is destroyed.

If we had followed the advice at the beginning of Section 39.3, we would have 
defined Node, File, and Directory classes in a separate PersistentFilesystem 
module, but in this example we use the existing Filesystem module for the sake 
of simplicity.

39.4.2 Implementing the File System Server in C++

The Server main Program

The server’s main program is responsible for creating the evictor and initializing 
the root directory node. Many of the administrative duties, such as creating and 
destroying a communicator, are handled by the class Ice::Application as 
described in Section 8.3.1. Our server main program has now become the 
following:

#include <PersistentFilesystemI.h>

using namespace std;
using namespace Filesystem;

1. We used nodeName instead of name because name is already used as an operation in the Node 
interface.
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class FilesystemApp : virtual public Ice::Application
{
public:

    FilesystemApp(const string& envName) :
        _envName(envName)
    {
    }

    virtual int run(int, char*[])
    {
        Ice::ObjectFactoryPtr factory = new NodeFactory;
        communicator()->addObjectFactory(
            factory, PersistentFile::ice_staticId());
        communicator()->addObjectFactory(
            factory, PersistentDirectory::ice_staticId());

        Ice::ObjectAdapterPtr adapter = communicator()->
                    createObjectAdapter("EvictorFilesystem");

        Freeze::EvictorPtr evictor =
            Freeze::createTransactionalEvictor(
                adapter, _envName, "evictorfs");
        FileI::_evictor = evictor;
        DirectoryI::_evictor = evictor;

        adapter->addServantLocator(evictor, "");

        Ice::Identity rootId;
        rootId.name = "RootDir";
        if(!evictor->hasObject(rootId))
        {
            PersistentDirectoryPtr root = new DirectoryI;
            root->nodeName = "/";
            evictor->add(root, rootId);
        }

        adapter->activate();

        communicator()->waitForShutdown();
        if(interrupted())
        {
            cerr << appName()
                 << ": received signal, shutting down" << endl;
        }
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        return 0;
    }

private:

    string _envName;
};

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

Let us examine the changes in detail. First, we are now including Persistent-
FilesystemI.h. This header file includes all of the other Freeze (and Ice) 
header files this source file requires.

Next, we define the class FilesystemApp as a subclass of Ice::Appli-
cation, and provide a constructor taking a string argument:

    FilesystemApp(const string& envName) :
        _envName(envName) { }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. A single instance of NodeFactory is installed for both types.

        Ice::ObjectFactoryPtr factory = new NodeFactory;
        communicator()->addObjectFactory(
            factory,
            PersistentFile::ice_staticId());
        communicator()->addObjectFactory(
            factory,
            PersistentDirectory::ice_staticId());

After creating the object adapter, the program initializes a Freeze evictor by 
invoking createTransactionalEvictor. The third argument to crea-
teTransactionalEvictor is the name of the database file, which by 
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default is created if it does not exist. The new evictor is then added to the object 
adapter as a servant locator for the default category.

        NodeI::_evictor = Freeze::createTransactionalEvictor(
                           adapter, _envName, "evictorfs");
        adapter->addServantLocator(NodeI::_evictor, "");

Next, the program creates the root directory node if it is not already being 
managed by the evictor.

        Ice::Identity rootId;
        rootId.name = "RootDir";
        if(!evictor->hasObject(rootId))
        {
            PersistentDirectoryPtr root = new DirectoryI;
            root->nodeName = "/";
            evictor->add(root, rootId);
        }

Finally, the main function instantiates the FilesystemApp, passing db as the 
name of the database environment.

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

The Servant Class Definitions

The servant classes must also be changed to incorporate the Freeze evictor. We no 
longer derive the servants from a common base class. Instead, FileI and 
DirectoryI each have their own _destroyed and _mutex members, as 
well as a static _evictor smart pointer that points at the transactional evictor.

#include <PersistentFilesystem.h>
#include <IceUtil/IceUtil.h>
#include <Freeze/Freeze.h>

namespace Filesystem {

class FileI : virtual public PersistentFile {
public:

    FileI();
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    // Slice operations... 

    static Freeze::EvictorPtr _evictor;

private:

    bool _destroyed;
    IceUtil::Mutex _mutex;
};

class DirectoryI : virtual public PersistentDirectory {
public:

    DirectoryI();

    // Slice operations...

    virtual void removeNode(const std::string&,
                            const Ice::Current&);

    static Freeze::EvictorPtr _evictor;

public:
    bool _destroyed;
    IceUtil::Mutex _mutex;
};

In addition to the node implementation classes, we have also declared an object 
factory:

namespace Filesystem {
    class NodeFactory : virtual public Ice::ObjectFactory {
    public:
        virtual Ice::ObjectPtr create(const std::string&);
        virtual void destroy();
    };

Implementing FileI

The FileI methods are mostly trivial, because the Freeze evictor handles persis-
tence for us.

Filesystem::FileI::FileI() : _destroyed(false)
{
}

string
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Filesystem::FileI::name(const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(
            __FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    return nodeName;
}

void
Filesystem::FileI::destroy(const Ice::Current& c)
{
    {
        IceUtil::Mutex::Lock lock(_mutex);

        if (_destroyed) {
            throw Ice::ObjectNotExistException(
                __FILE__, __LINE__, c.id, c.facet, c.operation);
        }
        _destroyed = true;
    }

    //
    // Because we use a transactional evictor,
    // these updates are guaranteed to be atomic.
    //
    parent->removeNode(nodeName);
    _evictor->remove(c.id);
}

Filesystem::Lines
Filesystem::FileI::read(const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(
            __FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    return text;
}
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void
Filesystem::FileI::write(const Filesystem::Lines& text,
                         const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(
            __FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    this->text = text;
}

The code checks that the node has not been destroyed before acting on the invoca-
tion by updating or returning state. Note that destroy must update two separate 
nodes: as well as removing itself from the evictor, the node must also update the 
parent’s node map. Because we are using a transactional evictor, the two updates 
are guaranteed to be atomic, so it is impossible to the leave the file system in an 
inconsistent state.

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

Filesystem::DirectoryPrx
Filesystem::DirectoryI::createDirectory(const string& name,
                                        const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(
            __FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    if (name.empty() || nodes.find(name) != nodes.end()) {
        throw NameInUse(name);
    }

    Ice::Identity id;
    id.name = IceUtil::generateUUID();
    PersistentDirectoryPtr dir = new DirectoryI;
    dir->nodeName = name;
    dir->parent = PersistentDirectoryPrx::uncheckedCast(
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                            c.adapter->createProxy(c.id));
    DirectoryPrx proxy = DirectoryPrx::uncheckedCast(
                            _evictor->add(dir, id));

    NodeDesc nd;
    nd.name = name;
    nd.type = DirType;
    nd.proxy = proxy;
    nodes[name] = nd;

    return proxy;
}

After validating the node name, the operation obtains a unique identity for the 
child directory, instantiates the servant, and registers it with the Freeze evictor. 
Finally, the operation creates a proxy for the child and adds the child to its node 
table.

The implementation of the createFile operation has the same structure as 
createDirectory.

Filesystem::FilePrx
Filesystem::DirectoryI::createFile(const string& name,
                                   const Ice::Current& c)
{
    IceUtil::Mutex::Lock lock(_mutex);

    if (_destroyed) {
        throw Ice::ObjectNotExistException(
            __FILE__, __LINE__, c.id, c.facet, c.operation);
    }

    if (name.empty() || nodes.find(name) != nodes.end()) {
        throw NameInUse(name);
    }

    Ice::Identity id;
    id.name = IceUtil::generateUUID();
    PersistentFilePtr file = new FileI;
    file->nodeName = name;
    file->parent = PersistentDirectoryPrx::uncheckedCast(
                            c.adapter->createProxy(c.id));
    FilePrx proxy = FilePrx::uncheckedCast(
                            _evictor->add(file, id));

    NodeDesc nd;
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    nd.name = name;
    nd.type = FileType;
    nd.proxy = proxy;
    nodes[name] = nd;

    return proxy;
}

Implementing NodeFactory

We use a single factory implementation for creating two types of Ice objects: 
PersistentFile and PersistentDirectory. These are the only two types that 
the Freeze evictor will be restoring from its database.

Ice::ObjectPtr
Filesystem::NodeFactory::create(const string& type)
{
    if (type == PersistentFile::ice_staticId())
        return new FileI;
    else if (type == PersistentDirectory::ice_staticId())
        return new DirectoryI;
    else {
        assert(false);
        return 0;
    }
}

void
Filesystem::NodeFactory::destroy()
{
}

The remaining Slice operations have trivial implementations, so we do not show 
them here.

39.4.3 Implementing the File System Server in Java

The Server main Method

The server’s main method is responsible for creating the evictor and initializing 
the root directory node. Many of the administrative duties, such as creating and 
destroying a communicator, are handled by the class Ice.Application as 
described in Section 12.3.1. Our server main program has now become the 
following:
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import Filesystem.*;

public class Server extends Ice.Application
{
    public
    Server(String envName)
    {
        _envName = envName;
    }

    public int
    run(String[] args)
    {
        Ice.ObjectFactory factory = new NodeFactory();
        communicator().addObjectFactory(
            factory, PersistentFile.ice_staticId());
        communicator().addObjectFactory(
            factory, PersistentDirectory.ice_staticId());

        Ice.ObjectAdapter adapter =
            communicator().createObjectAdapter(
                "EvictorFilesystem");

        Freeze.Evictor evictor =
            Freeze.Util.createTransactionalEvictor(
                adapter, _envName, "evictorfs",
                    null, null, null, true);
        DirectoryI._evictor = evictor;
        FileI._evictor = evictor;

        adapter.addServantLocator(evictor, "");

        Ice.Identity rootId = new Ice.Identity();
        rootId.name = "RootDir";
        if(!evictor.hasObject(rootId))
        {
            PersistentDirectory root = new DirectoryI();
            root.nodeName = "/";
            root.nodes =
                new java.util.HashMap<
                    java.lang.String, NodeDesc>();
            evictor.add(root, rootId);
        }

        adapter.activate();
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        communicator().waitForShutdown();

        return 0;
    }

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        int status = app.main("Server", args, "config.server");
        System.exit(status);
    }

    private String _envName;
}

Let us examine the changes in detail. First, we define the class Server as a 
subclass of Ice.Application, and provide a constructor taking a string argu-
ment:

    public
    Server(String envName)
    {
        _envName = envName;
    }

The string argument represents the name of the database environment, and is 
saved for later use in run.

One of the first tasks run performs is installing the Ice object factories for 
PersistentFile and PersistentDirectory. Although these classes are not 
exchanged via Slice operations, they are marshalled and unmarshalled in exactly 
the same way when saved to and loaded from the database, therefore factories are 
required. A single instance of NodeFactory is installed for both types.

        Ice.ObjectFactory factory = new NodeFactory();
        communicator().addObjectFactory(
            factory, PersistentFile.ice_staticId());
        communicator().addObjectFactory(
            factory, PersistentDirectory.ice_staticId());

After creating the object adapter, the program initializes a transactional evictor by 
invoking createTransactionalEvictor. The third argument to createT-
ransactionalEvictor is the name of the database, the fourth is null to indi-
cate that we do not use facets, the fifth is null to indicate that we do not use a 
servant initializer, the sixth argument (null) indicates no indexes are in use, and 
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the true argument requests that the database be created if it does not exist. The 
evictor is then added to the object adapter as a servant locator for the default cate-
gory.

        Freeze.Evictor evictor =
            Freeze.Util.createTransactionalEvictor(
                adapter, _envName, "evictorfs",
                    null, null, null, true);
        DirectoryI._evictor = evictor;
        FileI._evictor = evictor;

        adapter.addServantLocator(evictor, "");

Next, the program creates the root directory node if it is not already being 
managed by the evictor.

        Ice.Identity rootId = new Ice.Identity();
        rootId.name = "RootDir";
        if(!evictor.hasObject(rootId))
        {
            PersistentDirectory root = new DirectoryI();
            root.nodeName = "/";
            root.nodes =
                new java.util.HashMap<
                    java.lang.String, NodeDesc>();
            evictor.add(root, rootId);
        }

Finally, the main function instantiates the Server class, passing db as the name 
of the database environment.

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        int status = app.main("Server", args, "config.server");
        System.exit(status);
    }

The Servant Class Definitions

The servant classes must also be changed to incorporate the Freeze evictor. The 
FileI class now has a static state member _evictor.
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import Filesystem.*;

public final class FileI extends PersistentFile
{
    public
    FileI()
    {
        _destroyed = false;
    }

    // Slice operations...

    public static Freeze.Evictor _evictor;
    private boolean _destroyed;
}

The DirectoryI class has undergone a similar transformation.

import Filesystem.*;

public final class DirectoryI extends PersistentDirectory
{
    public
    DirectoryI()
    {
        _destroyed = false;
        nodes = new java.util.HashMap
                    <java.lang.String, NodeDesc>();
    }

    // Slice operations...

    public static Freeze.Evictor _evictor;
    private boolean _destroyed;
}

Implementing FileI

The FileI methods are mostly trivial, because the Freeze evictor handles persis-
tence for us.

    public synchronized String
    name(Ice.Current current)
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(
                current.id, current.facet, current.operation);
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        }

        return nodeName;
    }

    public void
    destroy(Ice.Current current)
        throws PermissionDenied
    {
        synchronized(this) {
            if (_destroyed) {
                throw new Ice.ObjectNotExistException(
                    current.id, current.facet, current.operation);
            }
            _destroyed = true;
        }

        //
        // Because we use a transactional evictor,
        // these updates are guaranteed to be atomic.
        //
        parent.removeNode(nodeName);
        _evictor.remove(current.id);
    }

    public synchronized String[]
    read(Ice.Current current)
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(
                current.id, current.facet, current.operation);
        }

        return (String[])text.clone();
    }

    public synchronized void
    write(String[] text, Ice.Current current)
        throws GenericError
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(
                current.id, current.facet, current.operation);
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        }

        this.text = text;
    }

The code checks that the node has not been destroyed before acting on the invoca-
tion by updating or returning state. Note that destroy must update two separate 
nodes: as well as removing itself from the evictor, the node must also update the 
parent’s node map. Because we are using a transactional evictor, the two updates 
are guaranteed to be atomic, so it is impossible to the leave the file system in an 
inconsistent state.

Implementing DirectoryI

The DirectoryI implementation requires more substantial changes. We begin 
our discussion with the createDirectory operation.

    public synchronized DirectoryPrx
    createDirectory(String name, Ice.Current current)
        throws NameInUse
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(
                current.id, current.facet, current.operation);
        }

        if (name.length() == 0 || nodes.containsKey(name)) {
            throw new NameInUse(name);
        }

        Ice.Identity id =
            current.adapter.getCommunicator().
                stringToIdentity(
                    java.util.UUID.randomUUID().toString());
        PersistentDirectory dir = new DirectoryI();
        dir.nodeName = name;
        dir.parent = PersistentDirectoryPrxHelper.uncheckedCast(cu
rrent.adapter.createProxy(current.id));
        DirectoryPrx proxy = DirectoryPrxHelper.uncheckedCast(_evi
ctor.add(dir, id));

        NodeDesc nd = new NodeDesc();
        nd.name = name;
        nd.type = NodeType.DirType;
        nd.proxy = proxy;
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        nodes.put(name, nd);

        return proxy;
    }

After validating the node name, the operation obtains a unique identity for the 
child directory, instantiates the servant, and registers it with the Freeze evictor. 
Finally, the operation creates a proxy for the child and adds the child to its node 
table.

The implementation of the createFile operation has the same structure as 
createDirectory.

    public synchronized FilePrx
    createFile(String name, Ice.Current current)
        throws NameInUse
    {
        if (_destroyed) {
            throw new Ice.ObjectNotExistException(
                current.id, current.facet, current.operation);
        }

        if (name.length() == 0 || nodes.containsKey(name)) {
            throw new NameInUse(name);
        }

        Ice.Identity id = current.adapter.getCommunicator().
            stringToIdentity(
                java.util.UUID.randomUUID().toString());
        PersistentFile file = new FileI();
        file.nodeName = name;
        file.parent = PersistentDirectoryPrxHelper.uncheckedCast(
            current.adapter.createProxy(current.id));
        FilePrx proxy =
            FilePrxHelper.uncheckedCast(_evictor.add(file, id));

        NodeDesc nd = new NodeDesc();
        nd.name = name;
        nd.type = NodeType.FileType;
        nd.proxy = proxy;
        nodes.put(name, nd);

        return proxy;
    }

The remaining Slice operations have trivial implementations, so we do not show 
them here.
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Implementing NodeFactory

We use a single factory implementation for creating two types of Ice objects: 
PersistentFile and PersistentDirectory. These are the only two types that 
the Freeze evictor will be restoring from its database.

package Filesystem;

public class NodeFactory implements Ice.ObjectFactory
{
    public Ice.Object
    create(String type)
    {
        if (type.equals(PersistentFile.ice_staticId()))
            return new FileI();
        else if (type.equals(PersistentDirectory.ice_staticId()))
            return new DirectoryI();
        else {
            assert(false);
            return null;
        }
    }

    public void
    destroy()
    {
    }
}

39.5 The Freeze Map

A Freeze map is a persistent, associative container in which the key and value 
types can be any primitive or user-defined Slice types. For each pair of key and 
value types, the developer uses a code-generation tool to produce a language-
specific class that conforms to the standard conventions for maps in that language. 
For example, in C++, the generated class resembles a std::map, and in Java it 
implements the java.util.SortedMap interface. Most of the logic for 
storing and retrieving state to and from the database is implemented in a Freeze 
base class. The generated map classes derive from this base class, so they contain 
little code and therefore are efficient in terms of code size.

You can only store data types that are defined in Slice in a Freeze map. Types 
without a Slice definition (that is, arbitrary C++ or Java types) cannot be stored 
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because a Freeze map reuses the Ice-generated marshaling code to create the 
persistent representation of the data in the database. This is especially important to 
remember when defining a Slice class whose instances will be stored in a Freeze 
map; only the “public” (Slice-defined) data members will be stored, not the 
private state members of any derived implementation class.

39.5.1 Freeze Connections

In order to create a Freeze map object, you first need to obtain a Freeze Connec-
tion object by connecting to a database environment.

As illustrated in Figure 39.3, a Freeze map is associated with a single connec-
tion and a single database file. Connection and map objects are not thread-safe: if 
you want to use a connection or any of its associated maps from multiple threads, 
you must serialize access to them. If your application requires concurrent access 
to the same database file (persistent map), you must create several connections 
and associated maps.

Figure 39.3. Freeze connections and maps.

Freeze connections provide operations that allow you to begin a transaction, 
access the current transaction, get the communicator associated with a connection, 
close a connection, and remove a map index. See the online Slice reference for 
more information on these operations.

39.5.2 Transactions

You may optionally use transactions with Freeze maps. Freeze transactions 
provide the usual ACID (atomicity, concurrency, isolation, durability) properties. 
For example, a transaction allows you to group several database updates in one 
atomic unit: either all or none of the updates within the transaction occur.

Application Berkeley DB
environment

Map 2 database file

Connection

Connection

Map1

Map2

Map2

Map 1 database file

http://www.zeroc.com/doc/3.4.1/reference
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You start a transaction by calling beginTransaction on the Connection 
object. Once a connection has an associated transaction, all operations on the map 
objects associated with this connection use this transaction. Eventually, you end 
the transaction by calling commit or rollback: commit saves all your updates 
while rollback undoes them. The currentTransaction operation returns the 
transaction associated with a connection, if any; otherwise, it returns nil.

module Freeze {

local interface Transaction {
    void commit();
    void rollback();
}; 

local interface Connection {
    Transaction beginTransaction();
    idempotent Transaction currentTransaction();
    // ...
};
};

If you do not use transactions, every non-iterator update is enclosed in its own 
internal transaction, and every read-write iterator has an associated internal trans-
action that is committed when the iterator is closed.

Using Transactions with C++

You must ensure that you either commit or roll back each transaction that you 
begin (otherwise, locks will be held by the database until they time out):

ConnectionPtr connection = ...;

TransactionPtr tx = connection->beginTransaction();
try {

    // DB updates that might throw here...

    tx->commit();

    // More code that might throw here...

} catch (...) {
    try {
        tx->rollback();
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    } catch (...) {
    }
    throw;
}

The outer try-catch blocks are necessary because, if the code encounters an excep-
tion, we must roll back any updates that were made. In turn, the attempt to roll 
back might throw itself, namely, if the code following the commit throws an 
exception (in which case the transaction cannot be rolled back because it is 
already committed).

Code such as this is difficult to maintain: for example, an early return state-
ment can cause the transaction to be neither committed nor rolled back. The 
TransactionHolder class ensures that such errors cannot happen:

namespace Freeze {
    class TransactionHolder {
    public:
        TransactionHolder(const ConnectionPtr&);
        ~TransactionHolder();

        void commit();
        void rollback();

    private:
        // Copy and assignment are forbidden.
        TransactionHolder(const TransactionHolder&);
        TransactionHolder& operator=(const TransactionHolder&);
    };
}

The constructor calls beginTransaction if the connection does not already 
have a transaction in progress, so instantiating the holder also starts a transaction. 
When the holder instance goes out of scope, its destructor calls rollback on the 
transaction and suppresses any exceptions that the rollback attempt might throw. 
This ensures that the transaction is rolled back if it was not previously committed 
or rolled back and ensures that an early return or an exception cannot cause the 
transaction to remain open:

ConnectionPtr connection = ...;

{ // Open scope

    TransactionHolder tx(connection); // Begins transaction

    // DB updates that might throw here...
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    tx.commit();

    // More code that might throw here...

} // Transaction rolled back here if not previously
  // committed or rolled back.

If you instantiate a TransactionHolder when a transaction is already in 
progress, it does nothing: the constructor notices that it could not begin a new 
transaction and turns commit, rollback, and the destructor into no-ops. For 
example, the nested TransactionHolder instance in the following code is 
benign and does nothing:

ConnectionPtr connection = ...;

{ // Open scope

    TransactionHolder tx(connection); // Begins transaction

    // DB updates that might throw here...

    { // Open nested scope

        TransactionHolder tx2(connection); // Does nothing

        // DB updates that might throw here...

        tx2.commit(); // Does nothing

        // More code that might throw here...

    } // Destructor of tx2 does nothing

    tx.commit();

    // More code that might throw here...

} // Transaction rolled back here if not previously
  // committed or rolled back.

Using Transactions with Java

You must ensure that you either commit or roll back each transaction that you 
begin (otherwise, locks will be held by the database until they time out):
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Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

    // DB updates that might throw here...

    tx.commit();

    // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
    try {
        tx.rollback();
    } catch (DatabaseException e) {
    }
    throw ex;
}

The catch handler ensures that the transaction is rolled back before re-throwing 
the exception. Note that the nested try-catch blocks are necessary: if the transac-
tion committed successfully but the code following the commit throws an excep-
tion, the rollback attempt will fail therefore we need to suppress the corresponding 
DatabaseException that is raised in that case.

Also use caution with early return statements:

Connection connection = ...;

Transaction tx = connection.beginTransaction();
try {

    // DB updates that might throw here...

    if (error) {
        // ...
        return; // Oops, bad news!
    }

    // ...

    tx.commit();

    // More code that might throw here...

} catch (java.lang.RuntimeException ex) {
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    try {
        tx.rollback();
    } catch (DatabaseException e) {
    }
    throw ex;
}

The early return statement in the preceding code causes the transaction to be 
neither committed nor rolled back. To deal with this situation, avoid early return 
statements or ensure that you either commit or roll back the transaction before 
returning. Alternatively, you can use a finally block to ensure that the transac-
tion is rolled back:

Connection connection = ...;

try {

    Transaction tx = connection.beginTransaction();

    // DB updates that might throw here...

    if (error) {
        // ...
        return; // No problem, see finally block.
    }

    // ...

    tx.commit();

    // More code that might throw here...

} finally {
    if (connection.currentTransaction() != null)
        connection.currentTransaction().rollback();
}

39.5.3 Iterators

Iterators allow you to traverse the contents of a Freeze map. Iterators are imple-
mented using Berkeley DB cursors and acquire locks on the underlying database 
page files. In C++, both read-only (const_iterator) and read-write iterators 
(iterator) are available. In Java, an iterator is read-write if it is obtained in the 
context of a transaction and read-only if it is obtained outside a transaction.
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Locks held by an iterator are released when the iterator is closed (if you do not 
use transactions) or when the enclosing transaction ends. Releasing locks held by 
iterators is very important to let other threads access the database file through 
other connection and map objects. Occasionally, it is even necessary to release 
locks to avoid self-deadlock (waiting forever for a lock held by an iterator created 
by the same thread).

To improve ease of use and make self-deadlocks less likely, Freeze often 
closes iterators automatically. If you close a map or connection, associated itera-
tors are closed. Similarly, when you start or end a transaction, Freeze closes all the 
iterators associated with the corresponding maps. If you do not use transactions, 
any write operation on a map (such as inserting a new element) automatically 
closes all iterators opened on the same map object, except for the current iterator 
when the write operation is performed through that iterator. In Java, Freeze also 
closes a read-only iterator when no more elements are available.

There is, however, one situation in C++ where an explicit iterator close is 
needed to avoid self-deadlock: 

• you do not use transactions, and

• you have an open iterator that was used to update a map (it holds a write lock), 
and

• in the same thread, you read that map.

Read operations in C++ never close iterators automatically: you need to either use 
transactions or explicitly close the iterator that holds the write lock. This is not an 
issue in Java because you cannot use an iterator to update a map outside of a trans-
action.

39.5.4 Recovering from Deadlock Exceptions
If you use multiple threads to access a database file, Berkeley DB may acquire 
locks in conflicting orders (on behalf of different transactions or iterators). For 
example, an iterator could have a read-lock on page P1 and attempt to acquire a 
write-lock on page P2, while another iterator (on a different map object associated 
with the same database file) could have a read-lock on P2 and attempt to acquire a 
write-lock on P1. 

When this occurs, Berkeley DB detects a deadlock and resolves it by returning 
a “deadlock” error to one or more threads. For all non-iterator operations 
performed outside any transaction, such as an insertion into a map, Freeze catches 
such errors and automatically retries the operation until it succeeds. (In that case, 
the most-recently acquired lock is released before retrying.) For other operations, 
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Freeze reports this deadlock by raising Freeze::DeadlockException. In that 
case, the associated transaction or iterator is also automatically rolled back or 
closed. A properly written application is expected to catch deadlock exceptions 
and retry the transaction or iteration.

39.5.5 Key Sorting

Keys in Freeze maps and indexes are always sorted. By default, Freeze sorts keys 
according to their Ice-encoded binary representation; this is very efficient but the 
resulting order is rarely meaningful for the application. Starting with Ice 3.0, 
Freeze offers the ability to specify your own comparator objects so that you can 
customize the traversal order of your maps. Note however that the comparator of a 
Freeze map should remain the same throughout the life of the map. Berkeley DB 
stores records according to the key order provided by this comparator; switching 
to another comparator will cause undefined behavior.

C++

In C++, you specify the name of your comparator objects during code generation. 
The generated map provides the standard features of std::map, so that iterators 
return entries according to the order you have defined for the main key with your 
comparator object. The lower_bound, upper_bound, and equal_range 
provide range-searches (see the definition of these functions on std::map).

Apart from these standard features, the generated map provides additional 
functions and methods to perform range searches using secondary keys. The addi-
tional functions are lowerBoundForMember, upperBoundForMember, 
and equalRangeForMember, where Member is the name of the secondary-
key member. These functions return regular iterators on the Freeze map.

Java

In Java, you supply comparator objects (instances of the standard Java interface 
java.util.Comparator) at run time when instantiating the generated map 
class. The map constructor accepts a comparator for the main key and optionally a 
collection of comparators for secondary keys. The map also provides a number of 
methods for performing range searches on the main key and on secondary keys 
(see page 1563).
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39.5.6 Indexing a Map
Freeze maps support efficient reverse lookups: if you define an index when you 
generate your map (with slice2freeze or slice2freezej), the generated 
code provides additional methods for performing reverse lookups. If your value 
type is a structure or a class, you can also index on a member of the value, and 
several such indexes can be associated with the same Freeze map.

Indexed searches are easy to use and very efficient. However, be aware that an 
index adds significant write overhead: with Berkeley DB, every update triggers a 
read from the database to get the old index entry and, if necessary, replace it.

If you later add an index to an existing map, Freeze automatically populates 
the index the next time you open the map. Freeze populates the index by instanti-
ating each map entry, so it is important that you register the object factories for 
any class types in your map before you open the map.

Note that the index key comparator of a Freeze map index should remain the 
same throughout the life of the index. Berkeley DB stores records according to the 
key order provided by this comparator; switching to another comparator will 
cause undefined behavior.

39.5.7 Using a Freeze Map in C++
This section describes the code generator and demonstrates how to use a Freeze 
map in a C++ program.

slice2freeze Command-Line Options

The Slice-to-Freeze compiler, slice2freeze, creates C++ classes for Freeze 
maps. The compiler offers the following command-line options in addition to the 
standard options described in Section 4.20:

• --header-ext EXT

Changes the file extension for the generated header files from the default h to 
the extension specified by EXT.

• --source-ext EXT

Changes the file extension for the generated source files from the default cpp 
to the extension specified by EXT.

• --add-header HDR[,GUARD]

This option adds an include directive for the specified header at the beginning 
of the generated source file (preceding any other include directives). If GUARD 
is specified, the include directive is protected by the specified guard. For 
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example, --add-header precompiled.h,__PRECOMPILED_H__ 
results in the following directives at the beginning of the generated source file:

#ifndef __PRECOMPILED_H__
#define __PRECOMPILED_H__
#include <precompiled.h>
#endif

As this example demonstrates, the --add-header option is useful mainly 
for integrating the generated code with a compiler’s precompiled header 
mechanism.

This option can be repeated to create include directives for several files.

• --include-dir DIR

Modifies #include directives in source files to prepend the path name of 
each header file with the directory DIR. See Section 6.16.1 for more informa-
tion.

• --dll-export SYMBOL

Use SYMBOL to control DLL exports or imports. See the slice2cpp 
description for details.

• --dict NAME,KEY,VALUE[,sort[,COMPARE]]

Generate a Freeze map class named NAME using KEY as key and VALUE as 
value. This option may be specified multiple times to generate several Freeze 
maps. NAME may be a scoped C++ name, such as 
Demo::Struct1ObjectMap. By default, keys are sorted using their 
binary Ice-encoded representation. Include sort to sort with the COMPARE 
functor class. If COMPARE is not specified, the default value is 
std::less<KEY>.

• --dict-index MAP[,MEMBER]
[,case-sensitive|case-insensitive][,sort[,COMPARE]]

Add an index to the Freeze map named MAP. If MEMBER is specified, the map 
value type must be a structure or a class, and MEMBER must be a member of 
this structure or class. Otherwise, the entire value is indexed. When the 
indexed member (or entire value) is a string, the index can be case-sensitive 
(default) or case-insensitive. An index adds additional member functions to 
the generated C++ map:

• iterator findByMEMBER(MEMBER_TYPE, bool = true);

• const_iterator findByMEMBER(MEMBER_TYPE,
                            bool = true) const;
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• iterator beginForMEMBER();

• const_iterator beginForMEMBER() const;

• iterator endForMEMBER();

• const_iterator endForMEMBER() const;

• iterator lowerBoundForMEMBER(MEMBER_TYPE);

• const_iterator lowerBoundForMEMBER(MEMBER_TYPE) const;

• iterator upperBoundForMEMBER(MEMBER_TYPE);

• const_iterator upperBoundForMEMBER(MEMBER_TYPE) const;

• std::pair<iterator, iterator>
equalRangeForMEMBER(MEMBER_TYPE);

• std::pair<const_iterator, const_iterator>
equalRangeForMEMBER(MEMBER_TYPE) const;

• int MEMBERCount(MEMBER_TYPE) const;

When MEMBER is not specified, these functions are findByValue (const 
and non-const), lowerBoundForValue (const and non-const), value-
Count, and so on. When MEMBER is specified, its first letter is capitalized in 
the findBy function name. MEMBER_TYPE corresponds to an in-parameter of 
the type of MEMBER (or the type of the value when MEMBER is not specified). 
For example, if MEMBER is a string, MEMBER_TYPE is a const 
std::string&.

By default, keys are sorted using their binary Ice-encoded representation. 
Include sort to sort with the COMPARE functor class. If COMPARE is not 
specified, the default value is std::less<MEMBER_TYPE>.

findByMEMBER returns an iterator to the first element in the Freeze map 
that matches the given index value. It returns end() if there is no match. 
When the second parameter is true (the default), the returned iterator provides 
only the elements with an exact match (and then skips to end()). Otherwise, 
the returned iterator sets a starting position and then provides all elements 
until the end of the map, sorted according to the index comparator. 

lowerBoundForMEMBER returns an iterator to the first element in the 
Freeze map whose index value is not less than the given index value. It returns 
end() if there is no such element. The returned iterator provides all elements 
until the end of the map, sorted according to the index comparator.

upperBoundForMEMBER returns an iterator to the first element in the 
Freeze map whose index value is greater than the given index value. It returns 
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end() if there is no such element. The returned iterator provides all elements 
until the end of the map, sorted according to the index comparator.

beginForMEMBER returns an iterator to the first element in the map.

endForMEMBER returns an iterator to the last element in the map.

equalRangeForMEMBER returns a range (pair of iterators) of all the 
elements whose index value matches the given index value. This function is 
similar to findByMEMBER (see above).

MEMBERCount returns the number of elements in the Freeze map whose index 
value matches the given index value.

Please note that index-derived iterators do not allow you to set new values in 
the underlying map.

• --index CLASS,TYPE,MEMBER
[,case-sensitive|case-insensitive]

Generate an index class for a Freeze evictor (see Section 39.3.7). CLASS is 
the name of the class to be generated. TYPE denotes the type of class to be 
indexed (objects of different classes are not included in this index). MEMBER 
is the name of the data member in TYPE to index. When MEMBER has type 
string, it is possible to specify whether the index is case-sensitive or not. The 
default is case-sensitive.

Section 6.16.1 provides a discussion of the semantics of #include directives 
that is also relevant for users of slice2freeze.

Generating a Simple Map

As an example, the following command generates a simple map:

$ slice2freeze --dict StringIntMap,string,int StringIntMap

This command directs the compiler to create a map named StringIntMap, 
with the Slice key type string and the Slice value type int. The final argument is 
the base name for the output files, to which the compiler appends the .h and 
.cpp suffixes. As a result, this command produces two C++ source files, 
StringIntMap.h and StringIntMap.cpp.

The Map Class

If you examine the contents of the header file created by the example in the 
previous section, you will discover that a Freeze map is an instance of the 
template class Freeze::Map:
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// StringIntMap.h
typedef Freeze::Map<std::string, Ice::Int, ...> StringIntMap;

The Freeze::Map template class closely resembles the STL container class 
std::map, as shown in the following class definition:

namespace Freeze {
template<...> class Map {
public:
    typedef ... value_type;
    typedef ... iterator;
    typedef ... const_iterator;

    typedef size_t size_type;
    typedef ptrdiff_t difference_type;

    Map(const Freeze::ConnectionPtr& connection, 
        const std::string& dbName,
        bool createDb = true,
        const Compare& compare = Compare());

    template<class _InputIterator>
    Map(const Freeze::ConnectionPtr& connection, 
        const std::string& dbName, 
        bool createDb,
        _InputIterator first, _InputIterator last,
        const Compare& compare = Compare());

    static void recreate(const Freeze::ConnectionPtr& connection,
                         const std::string& dbName,
                         const Compare& compare = Compare());

    bool operator==(const Map& rhs) const;
    bool operator!=(const Map& rhs) const;

    void swap(Map& rhs);

    iterator begin();
    const_iterator begin() const;

    iterator end();
    const_iterator end() const;

    bool empty() const;
    size_type size() const;
    size_type max_size() const;
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    iterator insert(iterator /*position*/,
                    const value_type& elem);

    std::pair<iterator, bool> insert(const value_type& elem);

    template <typename InputIterator>
    void insert(InputIterator first, InputIterator last);

    void put(const value_type& elem);

    template <typename InputIterator>
    void put(InputIterator first, InputIterator last);

    void erase(iterator position);
    size_type erase(const key_type& key);
    void erase(iterator first, iterator last);

    void clear();

    void destroy(); // Non-standard.

    iterator find(const key_type& key);
    const_iterator find(const key_type& key) const;

    size_type count(const key_type& key) const;

    iterator lower_bound(const key_type& key);
    const_iterator lower_bound(const key_type& key) const;
    iterator upper_bound(const key_type& key);
    const_iterator upper_bound(const key_type& key) const;

    std::pair<iterator, iterator>
    equal_range(const key_type& key);

    std::pair<const_iterator, const_iterator> 
    equal_range(const key_type& key) const;

    const Ice::CommunicatorPtr&
    communicator() const;

    ...
};
}
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The semantics of the Freeze::Map methods are identical to those of 
std::map unless otherwise noted. In particular, the overloaded insert 
method shown below ignores the position argument:

iterator insert(iterator /*position*/,
                const value_type& elem);

A Freeze map class supports only those methods shown above; other features of 
std::map, such as allocators and overloaded array operators, are not available.

Non-standard methods that are specific to Freeze maps are discussed below:

• Constructors

The following overloaded constructors are provided:

Map(const Freeze::ConnectionPtr& connection, 
    const std::string& dbName,
    bool createDb = true,
    const Compare& compare = Compare());

template<class _InputIterator>
Map(const Freeze::ConnectionPtr& connection, 
    const std::string& dbName, 
    bool createDb,
    _InputIterator first, _InputIterator last,
    const Compare& compare = Compare());

The first constructor accepts a connection, the database name, a flag indicating 
whether to create the database if it does not exist, and an object used to 
compare keys. The second constructor accepts all of the parameters of the 
first, with the addition of iterators from which elements are copied into the 
map.

Note that a database can only contain the persistent state of one map type. Any 
attempt to instantiate maps of different types on the same database results in 
undefined behavior.

• Map copy

The recreate function copies an existing database:

static void recreate(const Freeze::ConnectionPtr& connection,
                     const std::string& dbName,
                     const Compare& compare = Compare())

The dbName parameter specifies an existing database name. The copy has the 
name<dbName>.old-<uuid>. For example, if the database name is 
MyDB, the copy might be named
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MyDB.old-edefd55a-e66a-478d-a77b-f6d53292b873. (Obvi-
ously, a different UUID is used each time you recreate a database).

• destroy

This method deletes the database from its environment and from the Freeze 
catalog (see Section 39.7). If a transaction is not currently open, the method 
creates its own transaction in which to perform this task.

• communicator

This method returns the communicator with which the map’s connection is 
associated.

Iterators

A Freeze map’s iterator works like its counterpart in std::map. The iterator 
class supports one convenient (but nonstandard) method:

void set(const mapped_type& value)

Using this method, a program can replace the value at the iterator’s current posi-
tion.

Sample Program

The program below demonstrates how to use a StringIntMap to store 
<string, int> pairs in a database. You will notice that there are no explicit 
read or write operations called by the program; instead, simply using the map 
has the side effect of accessing the database.

#include <Freeze/Freeze.h>
#include <StringIntMap.h>

int
main(int argc, char* argv[])
{
    // Initialize the Communicator.
    //
    Ice::CommunicatorPtr communicator =
        Ice::initialize(argc, argv);

    // Create a Freeze database connection.
    //
    Freeze::ConnectionPtr connection =
        Freeze::createConnection(communicator, "db");

    // Instantiate the map.
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    //
    StringIntMap map(connection, "simple");

    // Clear the map.
    //
    map.clear();

    Ice::Int i;
    StringIntMap::iterator p;

    // Populate the map.
    //
    for (i = 0; i < 26; i++) {
        std::string key(1, 'a' + i);
        map.insert(make_pair(key, i));
    }

    // Iterate over the map and change the values.
    //
    for (p = map.begin(); p != map.end(); ++p)
        p.set(p->second + 1);

    // Find and erase the last element.
    //
    p = map.find("z");
    assert(p != map.end());
    map.erase(p);

    // Clean up.
    //
    connection->close();
    communicator->destroy();

    return 0;
}

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB 
database environment:

Freeze::ConnectionPtr connection =
    Freeze::createConnection(communicator, "db");

The second argument is the name of a Berkeley DB database environment; by 
default, this is also the file system directory in which Berkeley DB creates all 
database and administrative files. Note that properties with the prefix 
Freeze.DbEnv can modify a number of environment settings (see page 1950), 
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including the file system directory. For the preceding example, you could change 
the directory to FreezeDir by setting the property 
Freeze.DbEnv.db.DbHome to FreezeDir.

Next, the code instantiates the StringIntMap on the connection. The 
constructor’s second argument supplies the name of the database file, which by 
default is created if it does not exist:

StringIntMap map(connection, "simple");

After instantiating the map, we clear it to make sure it is empty in case the 
program is run more than once:

map.clear();

Next, we populate the map using a single-character string as the key:

for (i = 0; i < 26; i++) {
    std::string key(1, 'a' + i);
    map.insert(make_pair(key, i));
}

Iterating over the map will look familiar to std::map users. However, to modify 
a value at the iterator’s current position, we use the nonstandard set method:

for (p = map.begin(); p != map.end(); ++p)
    p.set(p->second + 1);

Next, the program obtains an iterator positioned at the element with key z, and 
erases it:

p = map.find("z");
assert(p != map.end());
map.erase(p);

Finally, the program closes the database connection:

connection->close();

It is not necessary to explicitly close the database connection, but we demonstrate 
it here for the sake of completeness.

39.5.8 Using a Freeze Map in Java

This section describes the code generator and demonstrates how to use a Freeze 
map in a Java program.
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slice2freezej Command-Line Options

The Slice-to-Freeze compiler, slice2freezej, creates Java classes for Freeze 
maps. The compiler offers the following command-line options in addition to the 
standard options described in Section 4.20:

• --dict NAME,KEY,VALUE

Generate a Freeze map class named NAME using KEY as key and VALUE as 
value. This option may be specified multiple times to generate several Freeze 
maps. NAME may be a scoped Java name, such as 
Demo.Struct1ObjectMap.

• --dict-index MAP[,MEMBER]
[,case-sensitive|case-insensitive]

Add an index to the Freeze map named MAP. If MEMBER is specified, the map 
value type must be a structure or a class, and MEMBER must be the name of a 
member of that type. If MEMBER is not specified, the entire value is indexed. 
When the indexed member (or entire value) is a string, the index can be case-
sensitive (default) or case-insensitive. See page 1569 for more information on 
the Freeze map API for indices.

• --index CLASS,TYPE,MEMBER
[,case-sensitive|case-insensitive]

Generate an index class for a Freeze evictor (see Section 39.3.7). CLASS is 
the name of the index class to be generated. TYPE denotes the type of class to 
be indexed (objects of different classes are not included in this index). 
MEMBER is the name of the data member in TYPE to index. When MEMBER 
has type string, it is possible to specify whether the index is case-sensitive or 
not. The default is case-sensitive.

• --meta META

Define the global metadata directive META. Using this option is equivalent to 
defining the global metadata META in each named Slice file, as well as in any 
file included by a named Slice file.

Generating a Simple Map

As an example, the following command generates a simple map:

$ slice2freezej --dict StringIntMap,string,int

This command directs the compiler to create a map named StringIntMap, 
with the Slice key type string and the Slice value type int. The compiler 
produces one Java source file: StringIntMap.java.
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Ant Task

In addition to the ant task for executing slice2java, Ice also includes an ant 
task for executing slice2freezej. The classes for Slice2FreezeJTask 
are stored in the same JAR file (ant-ice.jar) as Slice2JavaTask. Both 
tasks also share the same logic for locating a compiler in your execution environ-
ment and for managing dependencies between Slice files; refer to Section 10.18.2 
for more information.

The Slice2FreezeJTask supports the parameters listed in Table 39.1:

Several Slice compiler options must be defined as nested elements of the task:

Table 39.1. Ant task parameters

Attribute Description Required

dependencyfile Specifies an alternate name for the dependency 
file. If you specify a relative filename, it is rel-
ative to ant’s current working directory. If not 
specified, the task uses the name .depend by 
default. If you do not define this attribute and 
outputdir is defined, the task creates the 
.depend file in the designated output direc-
tory (see outputdir).

No

ice Instructs the Slice compiler to permit symbols 
that have the reserved prefix Ice. This param-
eter is used in the Ice build system and is not 
normally required by applications.

No

outputdir Specifies the directory in which the Slice com-
piler generates Java source files. If not speci-
fied, the task uses ant’s current working 
directory.

No

translator Specifies the path name of the Slice compiler. 
If not specified, the task locates the Slice com-
piler in its execution environment as described 
in Section 10.18.2.

No
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• define

Defines a preprocessor macro. The element supports the attributes name and 
(optionally) value, as shown below:

<define name="FOO">
<define name="BAR" value="5">

These definitions are equivalent to the command-line options -DFOO and
-DBAR=5, respectively.

• dict

Generates a Freeze map. This element is equivalent to the --dict option and 
supports three attributes: name, key, and value. Refer to page 1560 for 
more information on this option.

• dictindex

Generates an index for a Freeze map. This element is equivalent to the 
--dict-index option and supports three attributes: name, member, and 
casesensitive. Refer to page 1560 for more information on this option.

• fileset

Specifies the set of Slice files to be compiled. Refer to the ant documentation 
of its FileSet type for more information.

• includepath

Specifies the include file search path for Slice files. In ant terminology, 
includepath is a path-like structure. Refer to the ant documentation of its 
Path type for more information.

• index

Generates an index for a Freeze evictor. This element is equivalent to the 
--index option and supports four attributes: name, type, member, and 
casesensitive. Refer to page 1560 for more information on this option.

• meta

Defines a global metadata directive in each Slice file as well as in each 
included Slice file. The element supports the attributes name and value.

To enable the Slice2FreezeJTask in your ant project, define the following 
taskdef element in your project’s build file:

<taskdef name="slice2freezej" classname="Slice2FreezeJTask"/>

This configuration assumes that ant-ice.jar is already present in ant’s class 
path. Alternatively, you can specify the JAR explicitly as follows:
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<taskdef name="slice2freezej" classpath="/opt/Ice/lib/ant-ice.jar"
    classname="Slice2FreezeJTask"/>

Once activated, you can invoke the task to translate your Slice files. The example 
shown below is a simplified version of the ant project for the library demo:

<target name="generate" depends="init">
    <mkdir dir="generated"/>
    <slice2java outputdir="generated">
        <fileset dir="." includes="Library.ice"/>
    </slice2java>
    <slice2freezej ice="on" outputdir="generated">
        <fileset dir="/opt/Ice/slice/Ice"
            includes="BuiltinSequences.ice"/>
        <fileset dir="." includes="Library.ice"/>
        <dict name="StringIsbnSeqDict" key="string"
            value="Ice::StringSeq"/>
    </slice2freezej>
</target>

This invocation of the slice2freezej task enables the ice option because 
the generated Freeze map relies on a type that is defined in an Ice namespace and 
therefore loads the Slice file BuiltinSequences.ice directly.

The Map Class

The class generated by slice2freezej implements the Freeze.Map inter-
face, as shown below:

package Freeze;

public interface Map<K, V> extends NavigableMap<K, V>
{
    void fastPut(K key, V value);
    void close();
    int closeAllIterators();
    void destroy();

    public interface EntryIterator<T>
        extends java.util.Iterator<T>
    {
        void close();
        void destroy(); // an alias for close
    }
}
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The Map interface implements standard Java interfaces and provides nonstandard 
methods that improve efficiency and support database-oriented features. Map 
defines the following methods:

• fastPut

Inserts a new key-value pair. This method is more efficient than the standard 
put method because it avoids the overhead of reading and decoding the 
previous value associated with the key (if any).

• close

Closes the database associated with this map along with all open iterators. A 
map must be closed when it is no longer needed, either by closing the map 
directly or by closing the Freeze Connection object with which this map is 
associated.

• closeAllIterators

Closes all open iterators and returns the number of iterators that were closed. 
We discuss iterators in more detail in the next section.

• destroy

Removes the database associated with this map along with any indices.

Map inherits much of its functionality from the Freeze.NavigableMap inter-
face, which derives from the standard Java interface java.util.SortedMap 
and also supports a subset of the java.util.NavigableMap2 interface from 
Java6:

package Freeze;

public interface NavigableMap<K, V>
    extends java.util.SortedMap<K, V>
{
    java.util.Map.Entry<K, V> firstEntry();
    java.util.Map.Entry<K, V> lastEntry();

    java.util.Map.Entry<K, V> ceilingEntry(K key);
    java.util.Map.Entry<K, V> floorEntry(K key);
    java.util.Map.Entry<K, V> higherEntry(K key);
    java.util.Map.Entry<K, V> lowerEntry(K key);


2. The generated class does not implement java.util.NavigableMap because Freeze maps 
must remain compatible with Java5.
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    K ceilingKey(K key);
    K floorKey(K key);
    K higherKey(K key);
    K lowerKey(K key);

    java.util.Set<K> descendingKeySet();
    NavigableMap<K, V> descendingMap();

    NavigableMap<K, V> headMap(K toKey, boolean inclusive);
    NavigableMap<K, V> tailMap(K fromKey, boolean inclusive);
    NavigableMap<K, V> subMap(K fromKey, boolean fromInclusive,
                              K toKey, boolean toInclusive);

    java.util.Map.Entry<K, V> pollFirstEntry();
    java.util.Map.Entry<K, V> pollLastEntry();

    boolean fastRemove(K key);
}

The NavigableMap interface provides a number of useful methods:

• firstEntry
lastEntry

Returns the first and last key-value pair, respectively.

• ceilingEntry

Returns the key-value pair associated with the least key greater than or equal 
to the given key, or null if there is no such key.

• floorEntry

Returns the key-value pair associated with the greatest key less than or equal 
to the given key, or null if there is no such key.

• higherEntry

Returns the key-value pair associated with the least key greater than the given 
key, or null if there is no such key.

• lowerEntry

Returns the key-value pair associated with the greatest key less than the given 
key, or null if there is no such key.

• ceilingKey
floorKey
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higherKey
lowerKey

These methods have the same semantics as those described above, except they 
return only the key portion of the matching key-value pair or null if there is no 
such key.

• descendingKeySet

Returns a set representing a reverse-order view of the keys in this map.

• descendingMap

Returns a reverse-order view of the entries in this map.

• headMap

Returns a view of the portion of this map whose keys are less than (or equal to, 
if inclusive is true) the given key.

• tailMap

Returns a view of the portion of this map whose keys are greater than (or equal 
to, if inclusive is true) the given key.

• subMap

Returns a view of the portion of this map whose keys are within the given 
range.

• pollFirstEntry
pollLastEntry

Removes and returns the first and last key-value pair, respectively.

• fastRemove

Removes an existing key-value pair. As for fastPut, this method is a more 
efficient alternative to the standard remove method that returns true if a key-
value pair was removed, or false if no match was found.

Many of these methods raise UnsupportedOperationException if you 
fail to construct the Freeze map using a custom comparator object. The only 
exceptions are firstEntry, lastEntry, pollFirstEntry, pollLas-
tEntry, and fastRemove. (The same applies to NavigableMap objects 
created for secondary keys.)

Note that NavigableMap also inherits overloaded methods named 
headMap, tailMap, and subMap from the SortedMap interface. These 
methods have the same semantics as the ones defined in NavigableMap but 
they omit the boolean arguments (refer to the JDK documentation for complete 
details). Although these methods are declared as returning a SortedMap, the 
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actual type of the returned object is a NavigableMap that you can downcast if 
necessary.

There are some limitations in the sub maps returned by the headMap, 
tailMap and subMap methods:

• A new entry in the Freeze map cannot be added via a sub map, therefore 
calling put raises UnsupportedOperationException

• An existing entry in the Freeze map cannot be removed via a sub map or iter-
ator for a secondary key (see page 1569).

Now let us examine the contents of the source file created by the example in the 
previous section:

public class StringIntMap extends ...
    // implements Freeze.Map<String, Integer>
{
    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb,
        java.util.Comparator<String> comparator);

    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb);

    public StringIntMap(
        Freeze.Connection connection,
        String dbName);
}

StringIntMap derives from an internal Freeze base class that implements the 
interface Freeze.Map<String, Integer>. The generated class defines 
several overloaded constructors whose arguments are described below:

• connection

The Freeze connection object (see Section 39.5.1).

• dbName

The name of the database in which to store this map’s persistent state. Note 
that a database can only contain the persistent state of one map type. Any 
attempt to instantiate maps of different types on the same database results in 
undefined behavior.
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• createDb

A flag indicating whether the map should create the database if it does not 
already exist. If this argument is not specified, the default value is true.

• comparator

An object used to compare the map’s keys. If this argument is not specified, 
the default behavior compares the encoded form of the keys.

Iterators

You can iterate over a Freeze map just as you can with any container that imple-
ments the java.util.Map interface. For example, the code below displays the 
key and value of each element:

StringIntMap m = new StringIntMap(...);
java.util.Iterator<java.util.Map.Entry<String, Integer>> i =
    m.entrySet().iterator();
while (i.hasNext()) {
    java.util.Map.Entry<String, Integer> e = i.next();
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
}

Generally speaking, a program should close an iterator when it is no longer neces-
sary for the reasons given in Section 39.5.3. (An iterator that is garbage collected 
without being closed emits a warning message.) However, an explicit close was 
not necessary in the preceding example because Freeze automatically closes a 
read-only iterator when it reaches the last element (a read-only iterator is one that 
is opened outside of any transaction). If instead our program had stopped using the 
iterator prior to reaching the last element, an explicit close would have been 
necessary:

StringIntMap m = new StringIntMap(...);
java.util.Iterator<java.util.Map.Entry<String, Integer>> i =
    m.entrySet().iterator();
while (i.hasNext()) {
    java.util.Map.Entry<String, Integer> e = i.next();
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
    if (e.getValue().intValue() == 5)
        break;
}
((Freeze.Map.EntryIterator)i).close();
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Closing the iterator requires downcasting it to a Freeze-specific interface named 
Freeze.Map.EntryIterator. The definition of this interface was shown in 
the previous section.

Freeze maps also support the enhanced for loop functionality in Java5. Here 
is a simpler way to write our original program:

StringIntMap m = new StringIntMap(...);
for (java.util.Map.Entry<String, Integer> e : m.entrySet()) {
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
}

As in the first example, Freeze automatically closes the iterator when no more 
elements are available. Although the enhanced for loop is convenient, it is not 
appropriate for all situations because the loop hides its iterator and therefore 
prevents the program from accessing the iterator in order to close it. In this case, 
you can use the traditional while loop instead of the for loop, or you can 
invoke closeAllIterators on the map as shown below:

StringIntMap m = new StringIntMap(...);
for (java.util.Map.Entry<String, Integer> e : m.entrySet()) {
    System.out.println("Key: " + e.getKey());
    System.out.println("Value: " + e.getValue());
    if (e.getValue().intValue() == 5)
        break;
}
int num = m.closeAllIterators();
assert(num <= 1); // The iterator may already be closed.

The closeAllIterators method returns an integer representing the number 
of iterators that were actually closed. This value can be useful for diagnostic 
purposes, such as to assert that a program is correctly closing its iterators.

Indices

Using the --dict-index option to define an index for a secondary key causes 
slice2freezej to generate the following additional code in a Freeze map:

• A static nested class named IndexComparators, which allows you to 
supply a custom comparator object for each index in the map.

• An overloading of the map constructor that accepts an instance of Index-
Comparators.

• An overloading of the recreate method that accepts an instance of 
IndexComparators.



39.5 The Freeze Map 1569

• Searching, counting, and range-searching methods for finding key-value pairs 
using the secondary key.

We discuss each of these additions in more detail below. In this discussion, 
MEMBER refers to the optional argument of the --dict-index option, and 
MEMBER_TYPE refers to the type of that member. As explained earlier, if 
MEMBER is not specified, slice2freezej creates an index for the value type 
of the map. The sample code presented in this section assumes we have generated 
a Freeze map using the following command:

$ slice2freezej --dict StringIntMap,string,int \
    --dict-index StringIntMap

By default, index keys are sorted using their binary Ice-encoded representation. 
This is an efficient sorting scheme but does not necessarily provide a meaningful 
traversal order for applications. You can choose a different order by providing an 
instance of the IndexComparators class to the map constructor. This class 
has a public data member holding a comparator (an instance of 
java.util.Comparator<MEMBER_TYPE>) for each index in the map. The 
class also provides an empty constructor as well as a convenience constructor that 
allows you to instantiate and initialize the object all at once. The name of each 
data member is MEMBERComparator. If MEMBER is not specified, the Index-
Comparators class has a single data member named valueComparator. 
Note that much of the functionality offered by a map index requires that you 
provide a custom comparator.

Here is the definition of IndexComparators for StringIntMap:

public class StringIntMap ... {
    public static class IndexComparators {
        public IndexComparators() {}

        public IndexComparators(
            java.util.Comparator<Integer> valueComparator);

        public java.util.Comparator<Integer> valueComparator;
    }

    ...
}

To instantiate a Freeze map using your custom comparators, you must use the 
overloaded constructor that accepts the IndexComparators object. For our 
StringIntMap, this constructor has the following definition:
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public class StringIntMap ... {
    public StringIntMap(
        Freeze.Connection connection,
        String dbName,
        boolean createDb,
        java.util.Comparator<String> comparator,
        IndexComparators indexComparators);

    ...
}

Now we can instantiate our StringIntMap as follows:

java.util.Comparator<String> myMainKeyComparator = ...;
StringIntMap.IndexComparators indexComparators =
    new StringIntMap.IndexComparators();
indexComparators.valueComparator = ...;
StringIntMap m =
    new StringIntMap(connection, "stringIntMap", true,
                     myMainKeyComparator, indexComparators);

If you later need to change the index configuration of a Freeze map, you can use 
one of the recreate methods to update the database. Here are the definitions 
from StringIntMap:

public class StringIntMap ... {
    public static void recreate(
        Freeze.Connection connection,
        String dbName,
        java.util.Comparator<String> comparator);

    public static void recreate(
        Freeze.Connection connection,
        String dbName,
        java.util.Comparator<String> comparator,
        IndexComparators indexComparators);

    ...
}

The first overloading is generated for every map, whereas the second overloading 
is only generated when the map has at least one index. As its name implies, the 
recreate method creates a new copy of the database. More specifically, the 
method removes any existing indices, copies every key-value pair to a temporary 
database, and finally replaces the old database with the new one. As a side-effect, 
this process also populates any remaining indices. The first overloading of 
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recreate is useful when you have regenerated the map to remove the last index 
and wish to clean up the map’s database state.

slice2freezej also generates a number of index-specific methods. The 
names of these methods incorporate the member name (MEMBER), or use value 
if MEMBER is not specified. In each method name, the value of MEMBER is used 
unchanged if it appears at the beginning of the method’s name. Otherwise, if 
MEMBER is used elsewhere in the method name, its first letter is capitalized. The 
index methods are described below:

• public Freeze.Map.EntryIterator<Map.Entry<K, V>>
findByMEMBER(MEMBER_TYPE index)

public Freeze.Map.EntryIterator<Map.Entry<K, V>>
findByMEMBER(MEMBER_TYPE index, boolean onlyDups)

Returns an iterator over elements of the Freeze map starting with an element 
with whose index value matches the given index value. If there is no such 
element, the returned iterator is empty (hasNext always returns false). When 
the second parameter is true (or is not provided), the returned iterator provides 
only “duplicate” elements, that is, elements with the very same index value. 
Otherwise, the iterator sets a starting position in the map, and then provides 
elements until the end of the map, sorted according to the index comparator. 
Any attempt to modify the map via this iterator results in an Unsupported-
OperationException.

• public int MEMBERCount(MEMBER_TYPE index)

Returns the number of elements in the Freeze map whose index value matches 
the given index value.

• public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
headMapForMEMBER(MEMBER_TYPE to, boolean inclusive)

public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
headMapForMEMBER(MEMBER_TYPE to)

Returns a view of the portion of the Freeze map whose keys are less than (or 
equal to, if inclusive is true) the given key. If inclusive is not speci-
fied, the method behaves as if inclusive is false.

• public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
tailMapForMEMBER(MEMBER_TYPE from, boolean inclusive)
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public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
tailMapForMEMBER(MEMBER_TYPE from)

Returns a view of the portion of the Freeze map whose keys are greater than 
(or equal to, if inclusive is true) the given key. If inclusive is not 
specified, the method behaves as if inclusive is true.

• public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
subMapForMEMBER(MEMBER_TYPE from, boolean fromInclusive,
              MEMBER_TYPE to, boolean toInclusive)

public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
subMapForMEMBER(MEMBER_TYPE from, MEMBER_TYPE to)

Returns a view of the portion of the Freeze map whose keys are within the 
given range. If fromInclusive and toInclusive are not specified, the 
method behaves as if fromInclusive is true and toInclusive is false.

• public NavigableMap<MEMBER_TYPE, Set<Map.Entry<K, V>>>
mapForMEMBER()

Returns a view of the entire Freeze map ordered by the index key.

For the methods returning a NavigableMap, the key type is the secondary key 
type and the value is the set of matching key-value pairs from the Freeze map. 
(For the sake of readability, we have omitted the java.util prefix from Set 
and Map.Entry.) In other words, the returned map is a mapping of the 
secondary key to all of the entries whose value contains the same key. Any attempt 
to add, remove, or modify an element via a sub map view or an iterator of a sub 
map view results in an UnsupportedOperationException.

Note that iterators returned by the findByMEMBER methods, as well as those 
created for sub map views, may need to be closed explicitly, just like iterators 
obtained for the main Freeze map. (See page 1568 for more information.)

Here are the definitions of the index methods for StringIntMap:

public Freeze.Map.EntryIterator<Map.Entry<String, Integer>>
findByValue(Integer index);

public Freeze.Map.EntryIterator<Map.Entry<String, Integer>>
findByValue(Integer index, boolean onlyDups);

public int valueCount(Integer index);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
headMapForValue(Integer to, boolean inclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
headMapForValue(Integer to);
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public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
tailMapForValue(Integer from, boolean inclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
tailMapForValue(Integer from);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
subMapForValue(Integer from, boolean fromInclusive,
               Integer to, boolean toInclusive);
public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
subMapForValue(Integer from, Integer to);

public NavigableMap<Integer, Set<Map.Entry<String, Integer>>>
mapForValue();

Sample Program

The program below demonstrates how to use a StringIntMap to store 
<string, int> pairs in a database. You will notice that there are no explicit 
read or write operations called by the program; instead, simply using the map 
has the side effect of accessing the database.

public class Client
{
    public static void
    main(String[] args)
    {
        // Initialize the Communicator.
        //
        Ice.Communicator communicator = Ice.Util.initialize(args);

        // Create a Freeze database connection.
        //
        Freeze.Connection connection =
            Freeze.Util.createConnection(communicator, "db");

        // Instantiate the map.
        //
        StringIntMap map = 
            new StringIntMap(connection, "simple", true);

        // Clear the map.
        //
        map.clear();

        int i;
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        // Populate the map.
        //
        for (i = 0; i < 26; i++) {
            final char[] ch = { (char)('a' + i) };
            map.put(new String(ch), i);
        }

        // Iterate over the map and change the values.
        //
        for (java.util.Map.Entry<String, Integer> e :
             map.entrySet()) {
            Integer in = e.getValue();
            e.setValue(in.intValue() + 1);
        }

        // Find and erase the last element.
        //
        boolean b;
        b = map.containsKey("z");
        assert(b);
        b = map.fastRemove("z");
        assert(b);

        // Clean up.
        //
        map.close();
        connection.close();
        communicator.destroy();

        System.exit(0);
    }
}

Prior to instantiating a Freeze map, the application must connect to a Berkeley DB 
database environment:

Freeze.Connection connection =
    Freeze.Util.createConnection(communicator, "db");

The second argument is the name of a Berkeley DB database environment; by 
default, this is also the file system directory in which Berkeley DB creates all 
database and administrative files.

Next, the code instantiates the StringIntMap on the connection. The 
constructor’s second argument supplies the name of the database file, and the third 
argument indicates that the database should be created if it does not exist:
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StringIntMap map = new StringIntMap(connection, "simple", true);

After instantiating the map, we clear it to make sure it is empty in case the 
program is run more than once:

map.clear();

We populate the map, using a single-character string as the key. As with 
java.util.Map, the key and value types must be Java objects but the compiler 
takes care of autoboxing the integer argument:

for (i = 0; i < 26; i++) {
    final char[] ch = { (char)('a' + i) };
    map.put(new String(ch), i);
}

Iterating over the map is no different from iterating over any other map that imple-
ments the java.util.Map interface:

for (java.util.Map.Entry<String, Integer> e :
     map.entrySet()) {
    Integer in = e.getValue();
    e.setValue(in.intValue() + 1);
}

Next, the program verifies that an element exists with key z, and then removes it 
using fastRemove:

b = map.containsKey("z");
assert(b);
b = map.fastRemove("z");
assert(b);

Finally, the program closes the map and its connection.

map.close();
connection.close();

39.6 Using a Freeze Map in the File System Server

We can use a Freeze map to add persistence to the file system server, and we 
present C++ and Java implementations in this section. However, as we describe in 
Section 39.3, a Freeze evictor is often a better choice for applications (such as the 
file system server) in which the persistent value is an Ice object.

In general, incorporating a Freeze map into your application requires the 
following steps:
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1. Evaluate your existing Slice definitions for suitable key and value types.

2. If no suitable key or value types are found, define new (possibly derived) types 
that capture your persistent state requirements. Consider placing these defini-
tions in a separate file: these types are only used by the server for persistence, 
and therefore do not need to appear in the “public” definitions required by 
clients. Also consider placing your persistent types in a separate module to 
avoid name clashes.

3. Generate a Freeze map for your persistent types using the Freeze compiler.

4. Use the Freeze map in your operation implementations.

39.6.1 Choosing Key and Value Types

Our goal is to implement the file system using Freeze maps for all persistent 
storage, including files and their contents. There are various options for how to 
implement the server. For this example, the server is stateless; whenever a client 
invokes an operation, the server accesses the database to satisfy the request. 
Implementing the server in this way has the advantage that it scales very well: we 
do not need a separate servant for each node; instead two default servants (see 
Section 32.8), one for directories and one for files, are sufficient. This keeps the 
memory requirements of the server to a minimum and also allows us to rely on the 
database for transactions and locking. (This is a very common implementation 
technique for servers that act as a front end to a database: the server is a simple 
facade that implements each operation by accessing the database.)

Our first step is to select the Slice types we will use for the key and value types 
for our maps. For each file, we need to store the name of the file, its parent direc-
tory, and the contents of the file. For directories, we also store the name and parent 
directory, as well as a dictionary that keeps track of the subdirectories and files in 
that directory. This leads to Slice definitions (in file FilesystemDB.ice) as 
follows:

#include <Filesystem.ice>
#include <Ice/Identity.ice>

module FilesystemDB {
    struct FileEntry {
        string name;
        Ice::Identity parent;
        Filesystem::Lines text;
    };
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    dictionary<string, Filesystem::NodeDesc> StringNodeDescDict;

    struct DirectoryEntry {
        string name;
        Ice::Identity parent;
        StringNodeDescDict nodes;
    };
};

Note that the definitions are placed into a separate module, so they do not affect 
the existing definitions of the non-persistent version of the application. For refer-
ence, here is the definition of NodeDesc once more:

module Filesystem {
    // ...

    enum NodeType { DirType, FileType };

    struct NodeDesc {
        string name;
        NodeType type;
        Node* proxy;
    };

    // ...
};

To store the persistent state for the file system, we use two Freeze maps: one map 
for files and one map for directories. For files, we map the identity of the file to its 
corresponding FileEntry structure and, similarly, for directories, we map the 
identity of the directory to its corresponding DirectoryEntry structure.

When a request arrives from a client, the object identity is available in the 
server. The server uses the identity to retrieve the state of the target node for the 
request from the database and act on that state accordingly.

39.6.2 Implementing the File System Server in C++

In this section, we present a C++ implementation of the file system as outlined in 
the preceding section. (See Section 39.6.3 for a Java implementation.)

Generating the Maps

Now that we have selected our key and value types, we can generate the maps as 
follows:
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$ slice2freeze -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB::IdentityFileEntryMap,Ice::Identity,\
    FilesystemDB::FileEntry \
    IdentityFileEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice
$ slice2freeze -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB::IdentityDirectoryEntryMap,Ice::Identity,\
    FilesystemDB::DirectoryEntry \
    IdentityDirectoryEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map classes are named IdentityFileEntryMap and Iden-
tityDirectoryEntryMap.

The Server main Program

The server’s main program is very simple:

#include <FilesystemI.h>
#include <IdentityFileEntryMap.h>
#include <IdentityDirectoryEntryMap.h>
#include <Ice/Application.h>
#include <Freeze/Freeze.h>

using namespace std;
using namespace Filesystem;
using namespace FilesystemDB;

class FilesystemApp : public virtual Ice::Application
{
public:

    FilesystemApp(const string& envName)
        : _envName(envName)
    {
    }

    virtual int run(int, char*[])
    {
        shutdownOnInterrupt();

        Ice::ObjectAdapterPtr adapter =
            communicator()->createObjectAdapter("MapFilesystem");

        const Freeze::ConnectionPtr connection(
            Freeze::createConnection(communicator(), _envName));
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        const IdentityFileEntryMap fileDB(
                                    connection, FileI::filesDB());
        const IdentityDirectoryEntryMap dirDB(
                                    connection,
                                    DirectoryI::directoriesDB());

        adapter->addDefaultServant(
                    new FileI(communicator(), _envName), "file");
        adapter->addDefaultServant(
                    new DirectoryI(communicator(), _envName), "");

        adapter->activate();

        communicator()->waitForShutdown();

        if(interrupted())
            cerr << appName()
                 << ": received signal, shutting down" << endl;

        return 0;
    }

private:

    string _envName;
};

int
main(int argc, char* argv[])
{
    FilesystemApp app("db");
    return app.main(argc, argv, "config.server");
}

Let us examine the code in detail. First, we are now including IdentityFi-
leEntry.h and IdentityDirectoryEntry.h. These header files 
includes all of the other Freeze (and Ice) header files we need.

Next, we define the class FilesystemApp as a subclass of Ice::Appli-
cation, and provide a constructor taking a string argument:

    FilesystemApp(const string& envName)
        : _envName(envName) {}

The string argument represents the name of the database environment, and is 
saved for later use in run.
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The interesting part of run are the few lines of code that create the database 
connection and the two maps that store files and directories, plus the code to add 
the two default servants:

        const Freeze::ConnectionPtr connection(
            Freeze::createConnection(communicator(), _envName));

        const IdentityFileEntryMap fileDB(
                                    connection, FileI::filesDB());
        const IdentityDirectoryEntryMap dirDB(
                                    connection,
                                    DirectoryI::directoriesDB());

        adapter->addDefaultServant(
                    new FileI(communicator(), _envName), "file");
        adapter->addDefaultServant(
                    new DirectoryI(communicator(), _envName), "");

run keeps the database connection open for the duration of the program for 
performance reasons. As we will see shortly, individual operation implementa-
tions will use their own connections; however, it is substantially cheaper to create 
second (and subsequent connections) than it is to create the first connection.

For the default servants, we use file as the category for files. For directories, 
we use the empty default category.

The Servant Class Definitions

The class definition for FileI is very simple:

namespace Filesystem {
    class FileI : public File {
    public:
        FileI(const Ice::CommunicatorPtr& communicator,
              const std::string& envName);

        // Slice operations...

        static std::string filesDB();

    private:
        void halt(const Freeze::DatabaseException& ex) const;

        const Ice::CommunicatorPtr _communicator;
        const std::string _envName;
    };
}
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The FileI class stores the communicator and the environment name. These 
members are initialized by the constructor. The filesDB static member function 
returns the name of the file map, and the halt member function is used to stop 
the server if it encounters a catastrophic error.

The DirectoryI class looks very much the same, also storing the commu-
nicator and environment name. The directoriesDB static member function 
returns the name of the directory map.

namespace Filesystem {
    class DirectoryI : public Directory {
    public:
        DirectoryI(const Ice::CommunicatorPtr& communicator,
                   const std::string& envName);

        // Slice operations...

        static std::string directoriesDB();

    private:
        void halt(const Freeze::DatabaseException& ex) const;

        const Ice::CommunicatorPtr _communicator;
        const std::string _envName;
    };
}

Implementing FileI

The FileI constructor and the filesDB and halt member functions have 
trivial implementations:

FileI::FileI(const Ice::CommunicatorPtr& communicator,
             const string& envName)
    : _communicator(communicator), _envName(envName)
{
}

string
FileI::filesDB()
{
    return "files";
}

void
FileI::halt(const Freeze::DatabaseException& ex) const
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{
    Ice::Error error(_communicator->getLogger());
    error << "fatal exception: " << ex
          << "\n*** Aborting application ***";

    abort();
}

The Slice operations all follow the same implementation strategy: we create a 
database connection and the file map and place the body of the operation into an 
infinite loop:

string
FileI::someOperation(/* ... */ const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            
            // Operation implementation here...

        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Each operation creates its own database connection and map for concurrency 
reasons: the database takes care of all the necessary locking, so there is no need 
for any other synchronization in the server. If the database detects a deadlock, the 
code handles the corresponding DeadlockException and simply tries again 
until the operation eventually succeeds; any other database exception indicates 
that something has gone seriously wrong and terminates the server.

Here is the implementation of the name method:

string
FileI::name(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());
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    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                    __LINE__);
            }
            return p->second.name;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

The implementation could hardly be simpler: the default servant uses the identity 
in the Current object to index into the file map. If a record with this identity 
exists, it returns the name of the file as stored in the FileEntry structure in the 
map. Otherwise, if no such entry exists, it throws ObjectNotExistExcep-
tion. This happens if the file existed at some time in the past but has since been 
destroyed.

The read implementation is almost identical. It returns the text that is stored 
by the FileEntry:

Lines
FileI::read(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                   __LINE__);
            }
            return p->second.text;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
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            halt(ex);
        }
    }
}

The write implementation updates the file contents and calls set on the iterator 
to update the map with the new contents:

void
FileI::write(const Filesystem::Lines& text, const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());

    for (;;) {
        try {
            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                   __LINE__);
            }
            FileEntry entry = p->second;
            entry.text = text;
            p.set(entry);
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Finally, the destroy implementation for files must update two maps: it needs to 
remove its own entry in the file map as well as update the nodes map in the 
parent to remove itself from the parent’s map of children. This raises a potential 
problem: if one update succeeds but the other one fails, we end up with an incon-
sistent file system: either the parent still has an entry to a non-existent file, or the 
parent lacks an entry to a file that still exists.

To make sure that the two updates happen atomically, destroy performs 
them in a transaction:
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void
FileI::destroy(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityFileEntryMap fileDB(connection, filesDB());
    IdentityDirectoryEntryMap dirDB(connection,
                                    DirectoryI::directoriesDB());

    for (;;) {
        try {
            Freeze::TransactionHolder txn(connection);

            IdentityFileEntryMap::iterator p = fileDB.find(c.id);
            if (p == fileDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                   __LINE__);
            }
            FileEntry entry = p->second;

            IdentityDirectoryEntryMap::iterator pp =
                dirDB.find(entry.parent);
            if (pp == dirDB.end()) {
                halt(Freeze::DatabaseException(
                       __FILE__, __LINE__,
                       "consistency error: file without parent"));
            }

            DirectoryEntry dirEntry = pp->second;
            dirEntry.nodes.erase(entry.name);
            pp.set(dirEntry);

            fileDB.erase(p);
            txn.commit();
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

As you can see, the code first establishes a transaction and then locates the file in 
the parent directory’s map of nodes. After removing the file from the parent, the 
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code updates the parent’s persistent state by calling set on the parent iterator and 
then removes the file from the file map before committing the transaction.

Implementing DirectoryI

The DirectoryI::directoriesDB implementation returns the string 
directories, and the halt implementation is the same as for FileI, so we 
do not show them here.

Turning to the constructor, we must cater for two different scenarios:

• The server is started with a database that already contains a number of nodes.

• The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be 
present in the database. Accordingly, the constructor looks for the root directory 
(with the fixed identity RootDir); if the root directory does not exist in the data-
base, it creates it:

DirectoryI::DirectoryI(const Ice::CommunicatorPtr& communicator,
                       const string& envName)
    : _communicator(communicator), _envName(envName)
{
    const Freeze::ConnectionPtr connection =
        Freeze::createConnection(_communicator, _envName);
    IdentityDirectoryEntryMap dirDB(connection, directoriesDB());

    for (;;) {
        try {
            Ice::Identity rootId;
            rootId.name = "RootDir";
            IdentityDirectoryEntryMap::const_iterator p =
                dirDB.find(rootId);
            if (p == dirDB.end()) {
                DirectoryEntry d;
                d.name = "/";
                dirDB.put(make_pair(rootId, d));
            }
            break;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}
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Next, let us examine the implementation of createDirectory. Similar to the 
FileI::destroy operation, createDirectory must update both the 
parent’s nodes map and create a new entry in the directory map. These updates 
must happen atomically, so we perform them in a separate transaction:

DirectoryPrx
DirectoryI::createDirectory(const string& name,
                            const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityDirectoryEntryMap directoryDB(connection,
                                          directoriesDB());

    for (;;) {
        try {
            Freeze::TransactionHolder txn(connection);

            IdentityDirectoryEntryMap::iterator p =
                directoryDB.find(c.id);
            if (p == directoryDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                   __LINE__);
            }

            DirectoryEntry entry = p->second;
            if (name.empty()
               || entry.nodes.find(name) != entry.nodes.end()) {
                throw NameInUse(name);
            }

            DirectoryEntry d;
            d.name = name;
            d.parent = c.id;

            Ice::Identity id;
            id.name = IceUtil::generateUUID();
            DirectoryPrx proxy = DirectoryPrx::uncheckedCast(
                                    c.adapter->createProxy(id));

            NodeDesc nd;
            nd.name = name;
            nd.type = DirType;
            nd.proxy = proxy;
            entry.nodes.insert(make_pair(name, nd));
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            p.set(entry);
            directoryDB.put(make_pair(id, d));

            txn.commit();

            return proxy;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

After establishing the transaction, the code ensures that the directory does not 
already contain an entry with the same name and then initializes a new Direc-
toryEntry, setting the name to the name of the new directory, and the parent to 
its own identity. The identity of the new directory is a UUID, which ensures that 
all directories have unique identities. In addition, the UUID prevents the “acci-
dental rebirth” of a file or directory in the future (see Section 34.8).

The code then initializes a new NodeDesc structure with the details of the 
new directory and, finally, updates its own map of children as well as adding the 
new directory to the map of directories before committing the transaction.

The createFile implementation is almost identical, so we do not show it 
here. Similarly, the name and destroy implementations are almost identical to 
the ones for FileI, so let us move to list:

NodeDescSeq
DirectoryI::list(const Ice::Current& c)
{
    const Freeze::ConnectionPtr connection(
        Freeze::createConnection(_communicator, _envName));
    IdentityDirectoryEntryMap directoryDB(connection,
                                          directoriesDB());

    for (;;) {
        try {
            IdentityDirectoryEntryMap::iterator p =
                directoryDB.find(c.id);
            if (p == directoryDB.end()) {
                throw Ice::ObjectNotExistException(__FILE__,
                                                   __LINE__);
            }
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            NodeDescSeq result;
            for (StringNodeDescDict::const_iterator q =
                                        p->second.nodes.begin();
                 q != p->second.nodes.end();
                 ++q) {
                result.push_back(q->second);
            }
            return result;
        } catch (const Freeze::DeadlockException&) {
            continue;
        } catch (const Freeze::DatabaseException& ex) {
            halt(ex);
        }
    }
}

Again, the code is very simple: it iterates over the nodes map, adding each 
NodeDesc structure to the returned sequence.

The find implementation is even simpler, so we do not show it here.

39.6.3 Implementing the File System Server in Java

In this section, we present a Java implementation of the file system as outlined in 
Section 39.6.1. (See Section 39.6.2 for a C++ implementation.)

Generating the Maps

Now that we have selected our key and value types, we can generate the maps as 
follows:

$ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB.IdentityFileEntryMap,Ice.Identity,\
    FilesystemDB.FileEntry \
    IdentityFileEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice
$ slice2freezej -I$(ICE_HOME)/slice -I. --ice --dict \
    FilesystemDB.IdentityDirectoryEntryMap,Ice.Identity,\
    FilesystemDB.DirectoryEntry \
    IdentityDirectoryEntryMap FilesystemDB.ice \
    $(ICE_HOME)/slice/Ice/Identity.ice

The resulting map classes are named IdentityFileEntryMap and Iden-
tityDirectoryEntryMap.
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The Server Main Program

The server’s main program is very simple:

import Filesystem.*;
import FilesystemDB.*;

public class Server extends Ice.Application
{
    public
    Server(String envName)
    {
        _envName = envName;
    }

    public int
    run(String[] args)
    {
        Ice.ObjectAdapter adapter =
            communicator().createObjectAdapter("MapFilesystem");

        Freeze.Connection connection = null;
        try {
            connection =
                Freeze.Util.createConnection(communicator(),
                                             _envName);
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(
                    connection, FileI.filesDB(), true); 
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(
                    connection, DirectoryI.directoriesDB(), true);

            adapter.addDefaultServant(
                new FileI(communicator(), _envName), "file");
            adapter.addDefaultServant(
                new DirectoryI(communicator(), _envName), "");
            
            adapter.activate();
            
            communicator().waitForShutdown();
        } finally {
            connection.close();
        }
            
        return 0;
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    }

    public static void
    main(String[] args)
    {
        Server app = new Server("db");
        app.main("MapServer", args, "config.server");
        System.exit(0);
    }

    private String _envName;
}

First, we import the Filesystem and FilesystemDB packages.
Next, we define the class FilesystemApp as a subclass of Ice.Appli-

cation, and provide a constructor taking a string argument:

    FilesystemApp(const string& envName)
        : _envName(envName) {}

The string argument represents the name of the database environment, and is 
saved for later use in run.

The interesting part of run are the few lines of code that create the database 
connection and the two maps that store files and directories, plus the code to add 
the two default servants:

            connection =
                Freeze.Util.createConnection(communicator(),
                                             _envName);
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(
                    connection, FileI.filesDB(), true); 
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(
                    connection, DirectoryI.directoriesDB(), true);

            adapter.addDefaultServant(
                new FileI(communicator(), _envName), "file");
            adapter.addDefaultServant(
                new DirectoryI(communicator(), _envName), "");

run keeps the database connection open for the duration of the program for 
performance reasons. As we will see shortly, individual operation implementa-
tions will use their own connections; however, it is substantially cheaper to create 
second (and subsequent connections) than it is to create the first connection.
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For the default servants, we use file as the category for files. For directories, 
we use the empty default category.

Implementing FileI

The class definition for FileI is very simple:

public class FileI extends _FileDisp
{
    public
    FileI(Ice.Communicator communicator,
                 String envName)
    {
        _communicator = communicator;
        _envName = envName;
    }

    // Slice operations...

    public static String
    filesDB()
    {
        return "files";
    }

    private void
    halt(Freeze.DatabaseException e)
    {
        java.io.StringWriter sw = new java.io.StringWriter();
        java.io.PrintWriter pw = new java.io.PrintWriter(sw);
        e.printStackTrace(pw);
        pw.flush();
        _communicator.getLogger().error(
            "fatal database error\n" + sw.toString() +
            "\n*** Halting JVM ***");
        Runtime.getRuntime().halt(1);
    }

    private Ice.Communicator _communicator;
    private String _envName;
}

The FileI class stores the communicator and the environment name. These 
members are initialized by the constructor. The filesDB static method returns 
the name of the file map, and the halt member function is used to stop the server 
if it encounters a catastrophic error.
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The Slice operations all follow the same implementation strategy: we create a 
database connection and the file map and place the body of the operation into an 
infinite loop:

    public String
    someOperation(/* ... */ Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {

                    // Operation implementation here...

                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Each operation creates its own database connection and map for concurrency 
reasons: the database takes care of all the necessary locking, so there is no need 
for any other synchronization in the server. If the database detects a deadlock, the 
code handles the corresponding DeadlockException and simply tries again 
until the operation eventually succeeds; any other database exception indicates 
that something has gone seriously wrong and terminates the server.

Here is the implementation of the name method:

    public String
    name(Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try
        {
            IdentityFileEntryMap fileDB =
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                new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    return entry.name;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

The implementation could hardly be simpler: the default servant uses the identity 
in the Current object to index into the file map. If a record with this identity 
exists, it returns the name of the file as stored in the FileEntry structure in the 
map. Otherwise, if no such entry exists, it throws ObjectNotExistExcep-
tion. This happens if the file existed at some time in the past but has since been 
destroyed.

The read implementation is almost identical. It returns the text that is stored 
by the FileEntry:

    public String[]
    read(Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB = new
                IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    return entry.text;
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                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

The write implementation updates the file contents and calls put on the iterator 
to update the map with the new contents:

    public void
    write(String[] text, Ice.Current c)
        throws GenericError
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(connection, filesDB());

            for (;;) {
                try {
                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    entry.text = text;
                    fileDB.put(c.id, entry);
                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Finally, the destroy implementation for files must update two maps: it needs to 
remove its own entry in the file map as well as update the nodes map in the 
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parent to remove itself from the parent’s map of children. This raises a potential 
problem: if one update succeeds but the other one fails, we end up with an incon-
sistent file system: either the parent still has an entry to a non-existent file, or the 
parent lacks an entry to a file that still exists.

To make sure that the two updates happen atomically, destroy performs 
them in a transaction:

    public void
    destroy(Ice.Current c)
        throws PermissionDenied
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityFileEntryMap fileDB =
                new IdentityFileEntryMap(connection, filesDB());
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(
                    connection, DirectoryI.directoriesDB());

            for (;;) {
                Freeze.Transaction txn = null;
                try {
                    txn = connection.beginTransaction();

                    FileEntry entry = fileDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }

                    DirectoryEntry dirEntry =
                        (DirectoryEntry)dirDB.get(entry.parent);
                    if (dirEntry == null) {
                        halt(new Freeze.DatabaseException(
                                        "consistency error: " +
                                        "file without parent"));
                    }

                    dirEntry.nodes.remove(entry.name);
                    dirDB.put(entry.parent, dirEntry);

                    fileDB.remove(c.id);

                    txn.commit();
                    txn = null;
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                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                } finally {
                    if (txn != null) {
                        txn.rollback();
                    }
                }
            }
        }
        finally
        {
            connection.close();
        }
    }

As you can see, the code first establishes a transaction and then locates the file in 
the parent directory’s map of nodes. After removing the file from the parent, the 
code updates the parent’s persistent state by calling put on the parent iterator and 
then removes the file from the file map before committing the transaction.

Implementing DirectoryI

The DirectoryI.directoriesDB implementation returns the string 
directories, and the halt implementation is the same as for FileI, so we 
do not show them here.

Turning to the constructor, we must cater for two different scenarios:

• The server is started with a database that already contains a number of nodes.

• The server is started for the very first time with an empty database.

This means that the root directory (which must always exist) may or may not be 
present in the database. Accordingly, the constructor looks for the root directory 
(with the fixed identity RootDir); if the root directory does not exist in the data-
base, it creates it:

    public
    DirectoryI(Ice.Communicator communicator, String envName)
    {
        _communicator = communicator;
        _envName = envName;

        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
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        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection,
                                              directoriesDB());

            for (;;) {
                try {
                    Ice.Identity rootId =
                        new Ice.Identity("RootDir", "");
                    DirectoryEntry entry = dirDB.get(rootId);
                    if (entry == null) {
                        dirDB.put(rootId,
                            new DirectoryEntry("/",
                                new Ice.Identity("", ""), null));
                    }
                    break;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
        } finally {
            connection.close();
        }
    }

Next, let us examine the implementation of createDirectory. Similar to the 
FileI::destroy operation, createDirectory must update both the 
parent’s nodes map and create a new entry in the directory map. These updates 
must happen atomically, so we perform them in a separate transaction:

    public DirectoryPrx
    createDirectory(String name, Ice.Current c)
        throws NameInUse
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection,
                                              directoriesDB());

            for (;;) {
                Freeze.Transaction txn = null;
                try {
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                    txn = connection.beginTransaction();

                    DirectoryEntry entry = dirDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    if(name.length() == 0
                       || entry.nodes.get(name) != null) {
                        throw new NameInUse(name);
                    }

                    DirectoryEntry newEntry =
                        new DirectoryEntry(name, c.id, null);
                    Ice.Identity id = new Ice.Identity(
                        java.util.UUID.randomUUID().toString(),
                        "");
                    DirectoryPrx proxy =
                        DirectoryPrxHelper.uncheckedCast(
                                    c.adapter.createProxy(id));

                    entry.nodes.put(name,
                                    new NodeDesc(name,
                                                 NodeType.DirType,
                                                 proxy));
                    dirDB.put(c.id, entry);
                    dirDB.put(id, newEntry);

                    txn.commit();
                    txn = null;

                    return proxy;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                } finally {
                    if(txn != null) {
                        txn.rollback();
                    }
                }
            }
        } finally {
            connection.close();
        }
    }
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After establishing the transaction, the code ensures that the directory does not 
already contain an entry with the same name and then initializes a new Direc-
toryEntry, setting the name to the name of the new directory, and the parent to 
its own identity. The identity of the new directory is a UUID, which ensures that 
all directories have unique identities. In addition, the UUID prevents the “acci-
dental rebirth” of a file or directory in the future (see Section 34.8).

The code then initializes a new NodeDesc structure with the details of the 
new directory and, finally, updates its own map of children as well as adding the 
new directory to the map of directories before committing the transaction.

The createFile implementation is almost identical, so we do not show it 
here. Similarly, the name and destroy implementations are almost identical to 
the ones for FileI, so let us move to list:

    public NodeDesc[]
    list(Ice.Current c)
    {
        Freeze.Connection connection =
            Freeze.Util.createConnection(_communicator, _envName);
        try {
            IdentityDirectoryEntryMap dirDB =
                new IdentityDirectoryEntryMap(connection,
                                              directoriesDB());

            for (;;) {
                try {
                    DirectoryEntry entry = dirDB.get(c.id);
                    if (entry == null) {
                        throw new Ice.ObjectNotExistException();
                    }
                    NodeDesc[] result =
                        new NodeDesc[entry.nodes.size()];
                    java.util.Iterator<NodeDesc> p =
                        entry.nodes.values().iterator();
                    for (int i = 0; i < entry.nodes.size(); ++i) {
                        result[i] = p.next();
                    }
                    return result;
                } catch (Freeze.DeadlockException ex) {
                    continue;
                } catch (Freeze.DatabaseException ex) {
                    halt(ex);
                }
            }
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        } finally {
            connection.close();
        }
    }

Again, the code is very simple: it iterates over the nodes map, adding each 
NodeDesc structure to the returned sequence.

The find implementation is even simpler, so we do not show it here.

39.7 The Freeze Catalog

In each database environment, Freeze maintains an internal table that contains 
type information describing all the databases in the environment. This table is an 
instance of a Freeze map in which the key is a string representing the database 
name and the value is an instance of Freeze::CatalogData:

module Freeze {
    struct CatalogData {
        bool evictor;
        string key;
        string value;
    };
};

An entry describes an evictor database if the evictor member is true, in which 
case the key and value members are empty strings. An entry that describes a 
Freeze map sets evictor to false; the key and value members contain the Slice 
types used when the map was defined.

Tools such as transformdb and dumpdb (see Chapter 40) access the 
catalog to obtain type information when none is supplied by the user. You can also 
use dumpdb to display the catalog of a database environment.

Freeze applications may access the catalog in the same manner as any other 
Freeze map. For example, the following C++ code displays the contents of a 
catalog:

#include <Freeze/Catalog.h>
...
string envName = ...;
Freeze::ConnectionPtr conn =
    Freeze::createConnection(communicator, envName);
Freeze::Catalog catalog(conn, Freeze::catalogName());
for (Freeze::Catalog::const_iterator p = catalog.begin();
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    p != catalog.end(); ++p) {
    if (p->second.evictor)
        cout << p->first << ": evictor" << endl;
    else
        cout << p->first << ": map<" << p->second.key
             << ", " << p->second.value << ">" << endl;
}
conn->close();

The equivalent Java code is shown below:

String envName = ...;
Freeze.Connection conn =
    Freeze.Util.createConnection(communicator, envName);
Freeze.Catalog catalog =
    new Freeze.Catalog(conn, Freeze.Util.catalogName(), true);
for (java.util.Map.Entry<String, Freeze.CatalogData> e :
     catalog.entrySet()) {
    String name = e.getKey();
    Freeze.CatalogData data = e.getValue();
    if (data.evictor)
        System.out.println(name + ": evictor");
    else
        System.out.println(name + ": map<" + data.key + ", " +
                           data.value + ">");
}
conn.close();

39.8 Backups

When you store important information in a Freeze database environment, you 
should consider regularly backing up the database environment.

There are two forms of backups: cold backups, where you just copy your data-
base environment directory while no application is using these files (very straight-
forward), and hot backups, where you backup a database environment while an 
application is actively reading and writing data.

In order to perform a hot backup on a Freeze environment, you need to 
configure this Freeze environment with two non-default settings:

• Freeze.DbEnv.envName.OldLogsAutoDelete=0
This instructs Freeze to keep old log files instead of periodically deleting 
them. This setting is necessary for proper hot backups; it implies that you will 
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need to take care of deleting old files yourself (typically as part of your peri-
odic backup procedure).

• Freeze.DbEnv.envName.DbPrivate=0
By default, Freeze is configured with DbPrivate set to 1, which means only 
one process at a time can safely access the database environment. When 
performing hot backups, you need to access this database environment 
concurrently from various Berkeley DB utilities (such as db_archive or 
db_hotbackup), so you need to set this property to 0.

The Freeze/backup C++ demo in your Ice distribution shows one way to 
perform such backups and recovery. Please consult the Berkeley DB documenta-
tion for further details.

39.9 Summary

Freeze is a collection of services that simplify the use of persistence in Ice appli-
cations. The Freeze map is an associative container mapping any Slice key and 
value types, providing a convenient and familiar interface to a persistent map. 
Freeze evictors are an especially powerful facility for supporting persistent Ice 
objects in a highly-scalable implementation.
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Chapter 40
FreezeScript

40.1 Chapter Overview

This chapter describes the FreezeScript tools for migrating and inspecting the 
databases created by Freeze maps and evictors. The discussion of database migra-
tion begins in Section 40.3 and continues through Section 40.5. Database inspec-
tion is presented in Section 40.6 and Section 40.7. Finally, Section 40.8 describes 
the expression language supported by the FreezeScript tools.

40.2 Introduction

As described in Chapter 39, Freeze supplies a valuable set of services for simpli-
fying the use of persistence in Ice applications. However, while Freeze makes it 
easy for an application to manage its persistent state, there are additional adminis-
trative responsibilities that must also be addressed:

• Migration

As an application evolves, it is not unusual for the types describing its persis-
tent state to evolve as well. When these changes occur, a great deal of time can 
be saved if existing databases can be migrated to the new format while 
preserving as much information as possible.
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• Inspection

The ability to examine a database can be helpful during every stage of the 
application’s lifecycle, from development to deployment.

FreezeScript provides tools for performing both of these activities on Freeze map 
and evictor databases. These databases have a well-defined structure because the 
key and value of each record consist of the marshaled bytes of their respective 
Slice types. This design allows the FreezeScript tools to operate on any Freeze 
database using only the Slice definitions for the database types.

40.3 Database Migration

The FreezeScript tool transformdb migrates a database created by a Freeze 
map or evictor. It accomplishes this by comparing the “old” Slice definitions (i.e., 
the ones that describe the current contents of the database) with the “new” Slice 
definitions, and making whatever modifications are necessary to ensure that the 
transformed database is compatible with the new definitions.

This would be difficult to achieve by writing a custom transformation program 
because that program would require static knowledge of the old and new types, 
which frequently define many of the same symbols and would therefore prevent 
the program from being loaded. The transformdb tool avoids this issue using 
an interpretive approach: the Slice definitions are parsed and used to drive the 
migration of the database records.

The tool supports two modes of operation:

1. automatic migration, in which the database is migrated in a single step using 
only the default set of transformations, and

2. custom migration, in which you supply a script to augment or override the 
default transformations.

40.3.1 Default Transformations

The default transformations performed by transformdb preserve as much 
information as possible. However, there are practical limits to the tool’s capabili-
ties, since the only information it has is obtained by performing a comparison of 
the Slice definitions.

For example, suppose our old definition for a structure is the following:
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struct AStruct {
    int i;
};

We want to migrate instances of this struct to the following revised definition:

struct AStruct {
    int j;
};

As the developers, we know that the int member has been renamed from i to j, 
but to transformdb it appears that member i was removed and member j was 
added. The default transformation results in exactly that behavior: the value of i is 
lost, and j is initialized to a default value. If we need to preserve the value of i 
and transfer it to j, then we need to use custom migration (see Section 40.3.5).

The changes that occur as a type system evolves can be grouped into three 
categories:

• Data members

The data members of class and structure types are added, removed, or 
renamed. As discussed above, the default transformations initialize new and 
renamed data members to default values (see Section 40.3.3).

• Type names

Types are added, removed, or renamed. New types do not pose a problem for 
database migration when used to define a new data member; the member is 
initialized with default values as usual. On the other hand, if the new type 
replaces the type of an existing data member, then type compatibility becomes 
a factor (see the following item).

Removed types generally do not cause problems either, because any uses of 
that type must have been removed from the new Slice definitions (e.g., by 
removing data members of that type). There is one case, however, where 
removed types become an issue, and that is for polymorphic classes (see 
Section 40.5.10).

Renamed types are a concern, just like renamed data members, because of the 
potential for losing information during migration. This is another situation for 
which custom migration is recommended.

• Type content

Examples of changes of type content include the key type of a dictionary, the 
element type of a sequence, or the type of a data member. If the old and new 
types are not compatible (as defined in Section 40.3.2), then the default trans-
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formation emits a warning, discards the current value, and reinitializes the 
value as described in Section 40.3.3.

40.3.2 Type Compatibility
Changes in the type of a value are restricted to certain sets of compatible changes. 
This section describes the type changes supported by the default transformations. 
All incompatible type changes result in a warning indicating that the current value 
is being discarded and a default value for the new type assigned in its place. Addi-
tional flexibility is provided by custom migration, as described in Section 40.3.5.

Boolean

A value of type bool can be transformed to and from string. The legal string 
values for a bool value are "true" and "false".

Integer

The integer types byte, short, int, and long can be transformed into each other, 
but only if the current value is within range of the new type. These integer types 
can also be transformed into string.

Floating Point

The floating-point types float and double can be transformed into each other, as 
well as to string. No attempt is made to detect a loss of precision during transfor-
mation.

String

A string value can be transformed into any of the primitive types, as well as into 
enumeration and proxy types, but only if the value is a legal string representation 
of the new type. For example, the string value "Pear" can be transformed into 
the enumeration Fruit, but only if Pear is an enumerator of Fruit.

Enum

An enumeration can be transformed into an enumeration with the same type id, or 
into a string. Transformation between enumerations is performed symbolically. 
For example, consider our old type below:

enum Fruit { Apple, Orange, Pear };

Suppose the enumerator Pear is being transformed into the following new type:
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enum Fruit { Apple, Pear };

The transformed value in the new enumeration is also Pear, despite the fact that 
Pear has changed positions in the new type. However, if the old value had been 
Orange, then the default transformation emits a warning because that enumerator 
no longer exists, and initializes the new value to Apple (the default value).

If an enumerator has been renamed, then custom migration is required to 
convert enumerators from the old name to the new one.

Sequence

A sequence can be transformed into another sequence type, even if the new 
sequence type does not have the same type id as the old type, but only if the 
element types are compatible. For example, sequence<short> can be transformed 
into sequence<int>, regardless of the names given to the sequence types.

Dictionary

A dictionary can be transformed into another dictionary type, even if the new 
dictionary type does not have the same type id as the old type, but only if the key 
and value types are compatible. For example, dictionary<int, string> can be 
transformed into dictionary<long, string>, regardless of the names given to 
the dictionary types.

Caution is required when changing the key type of a dictionary, because the 
default transformation of keys could result in duplication. For example, if the key 
type changes from int to short, any int value outside the range of short results 
in the key being initialized to a default value (namely zero). If zero is already used 
as a key in the dictionary, or another out-of-range key is encountered, then a dupli-
cation occurs. The transformation handles key duplication by removing the dupli-
cate element from the transformed dictionary. (Custom migration can be useful in 
these situations if the default behavior is not acceptable.)

Structure

A struct type can only be transformed into another struct type with the same 
type id. Data members are transformed as appropriate for their types.

Proxy

A proxy value can be transformed into another proxy type, or into string. Trans-
formation into another proxy type is done with the same semantics as in a 
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language mapping: if the new type does not match the old type, then the new type 
must be a base type of the old type (that is, the proxy is widened).

Class

A class type can only be transformed into another class type with the same type 
id. A data member of a class type is allowed to be widened to a base type. Data 
members are transformed as appropriate for their types. See Section 40.5.10 for 
more information on transforming classes.

40.3.3 Default Values

Data types are initialized with default values, as shown in Table 40.1.

40.3.4 Running an Automatic Transformation

In order to use automatic transformation, we need to supply the following infor-
mation to transformdb:

• The old and new Slice definitions

• The old and new types for the database key and value

• The database environment directory, the database file name, and the name of a 
new database environment directory to hold the transformed database

Here is an example of a transformdb command:

Table 40.1. Default values for Slice types.

Type Default Value

Boolean false

Numeric Zero (0)

String Empty string

Enumeration The first enumerator

Sequence Empty sequence

Dictionary Empty dictionary

Struct Data members are initialized recursively

Proxy Nil

Class Nil
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$ transformdb --old old/MyApp.ice --new new/MyApp.ice \
--key int,string --value ::Employee db emp.db newdb

Briefly, the --old and --new options specify the old and new Slice definitions, 
respectively. These options can be specified as many times as necessary in order to 
load all of the relevant definitions. The --key option indicates that the database 
key is evolving from int to string. The --value option specifies that 
::Employee is used as the database value type in both old and new type defini-
tions, and therefore only needs to be specified once. Finally, we provide the path-
name of the database environment directory (db), the file name of the database 
(emp.db), and the pathname of the database environment directory for the trans-
formed database (newdb).

See Section 40.5 for more information on using transformdb.

40.3.5 Custom Migration

Custom migration is useful when your types have changed in ways that make 
automatic migration difficult or impossible. It is also convenient to use custom 
migration when you have complex initialization requirements for new types or 
new data members, because custom migration enables you to perform many of the 
same tasks that would otherwise require you to write a throwaway program.

Custom migration operates in conjunction with automatic migration, allowing 
you to inject your own transformation rules at well-defined intercept points in the 
automatic migration process. These rules are called transformation descriptors, 
and are written in XML.

A Simple Example

We can use a simple example to demonstrate the utility of custom migration. 
Suppose our application uses a Freeze map whose type is string and whose value 
is an enumeration, defined as follows:

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

We now wish to rename the enumerator DaimlerChrysler, as shown in our new 
definition:

enum BigThree { Ford, Daimler, GeneralMotors };

As explained in Section 40.3.2, the default transformation results in all occur-
rences of the DaimlerChrysler enumerator being transformed into Ford, because 
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Chrysler no longer exists in the new definition and therefore the default value 
Ford is used instead.

To remedy this situation, we use the following transformation descriptors:

<transformdb>
    <database key="string" value="::BigThree">
        <record>
            <if test="oldvalue == ::Old::DaimlerChrysler>
                <set target="newvalue"
                    value="::New::Daimler"/>
            </if>
        </record>
    </database>
</transformdb>

When executed, these descriptors convert occurrences of DaimlerChrysler in the 
old type system into Daimler in the transformed database’s new type system. 
Transformation descriptors are described in detail in Section 40.4.

40.4 Transformation Descriptors

This section describes the XML elements comprising the FreezeScript transfor-
mation descriptors.

40.4.1 Overview

A transformation descriptor file has a well-defined structure. The top-level 
descriptor in the file is <transformdb>. A <database> descriptor must be 
present within <transformdb> to define the key and value types used by the 
database. Inside <database>, the <record> descriptor triggers the transfor-
mation process. See Section 40.3.5 for an example that demonstrates the structure 
of a minimal descriptor file.

During transformation, type-specific actions are supported by the <trans-
form> and <init> descriptors, both of which are children of <trans-
formdb>. One <transform> descriptor and one <init> descriptor may be 
defined for each type in the new Slice definitions. Each time transformdb 
creates a new instance of a type, it executes the <init> descriptor for that type, 
if one is defined. Similarly, each time transformdb transforms an instance of 
an old type into a new type, the <transform> descriptor for the new type is 
executed.
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The <database>, <record>, <transform>, and <init> descriptors 
may contain general-purpose action descriptors such as <if>, <set>, and 
<echo>. These actions resemble statements in programming languages like C++ 
and Java, in that they are executed in the order of definition and their effects are 
cumulative. Actions make use of the expression language described in 
Section 40.8.

40.4.2 Flow of Execution
The transformation descriptors are executed as described below.

• <database> is executed first. Each child descriptor of <database> is 
executed in the order of definition. If a <record> descriptor is present, data-
base transformation occurs at that point. Any child descriptors of <data-
base> that follow <record> are not executed until transformation 
completes.

• During transformation of each record, transformdb creates instances of 
the new key and value types, which includes the execution of the <init> 
descriptors for those types. Next, the old key and value are transformed into 
the new key and value, in the following manner:

1.Locate the <transform> descriptor for the type.

2. If no descriptor is found, or the descriptor exists and it does not preclude 
default transformation, then transform the data as described in 
Section 40.3.1.

3. If the <transform> descriptor exists, execute it.

4.Finally, execute the child descriptors of <record>.

See Section 40.4.4 for detailed information on the transformation descriptors.

40.4.3 Scopes
The <database> descriptor creates a global scope, allowing child descriptors of 
<database> to define symbols that are accessible in any descriptor1. Further-
more, certain other descriptors create local scopes that exist only for the duration 
of the descriptor’s execution. For example, the <transform> descriptor creates 

1. In order for a global symbol to be available to a <transform> or <init> descriptor, the 
symbol must be defined before the <record> descriptor is executed.
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a local scope and defines the symbols old and new to represent a value in its old 
and new forms. Child descriptors of <transform> can also define new symbols 
in the local scope, as long as those symbols do not clash with an existing symbol 
in that scope. It is legal to add a new symbol with the same name as a symbol in an 
outer scope, but the outer symbol will not be accessible during the descriptor’s 
execution.

The global scope is useful in many situations. For example, suppose you want 
to track the number of times a certain value was encountered during transforma-
tion. This can be accomplished as shown below:

<transformdb>
    <database key="string" value="::Ice::Identity">
        <define name="categoryCount" type="int" value="0"/>
        <record/>
        <echo message="categoryCount = " value="categoryCount"/>
    </database>
    <transform type="::Ice::Identity">
        <if test="new.category == 'Accounting'">
            <set target="categoryCount"
                value="categoryCount + 1"/>
        </if>
    </transform>
</transformdb>

In this example, the <define> descriptor introduces the symbol category-
Count into the global scope, defining it as type int with an initial value of zero. 
Next, the <record> descriptor causes transformation to proceed. Each occur-
rence of the type Ice::Identity causes its <transform> descriptor to be 
executed, which examines the category member and increases category-
Count if necessary. Finally, after transformation completes, the <echo> 
descriptor displays the final value of categoryCount.

To reinforce the relationships between descriptors and scopes, consider the 
diagram in Figure 40.1. Several descriptors are shown, including the symbols they 
define in their local scopes. In this example, the <iterate> descriptor has a 
dictionary target and therefore the default symbol for the element value, value, 
hides the symbol of the same name in the parent <init> descriptor’s scope2. In 

2. This situation can be avoided by assigning a different symbol name to the element value.
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addition to symbols in the <iterate> scope, child descriptors of <iterate> 
can also refer to symbols from the <init> and <database> scopes.

Figure 40.1. Relationship between descriptors and scopes.

40.4.4 Descriptor Reference

<transformdb>

The top-level descriptor in a descriptor file. It requires at least one <database> 
descriptor, and supports any number of <transform> and <init> descriptors. 
This descriptor has no attributes.

<database>

The attributes of this descriptor define the old and new key and value types for the 
database to be transformed, and optionally the name of the database to which 

<database>

No default symbols

<record>

oldkey
newkey
oldvalue
newvalue
facet

<transform>

old
new

<init>

value

<iterate>

key
value
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these types apply. It supports any number of child descriptors, but at most one 
<record> descriptor. The <database> descriptor also creates a global scope 
for user-defined symbols (see Section 40.4.3).

The attributes supported by the <database> descriptor are described in 
Table 40.2.

As an example, consider the following <database> descriptor. In this case, the 
Freeze map to be transformed currently has key type int and value type 
::Employee, and is migrating to a key type of string:

<database key="int,string" value="::Employee">

<record>

Commences the transformation. Child descriptors are executed for each record in 
the database, providing the user with an opportunity to examine the record's old 
key and value, and optionally modify the new key and value. Default transforma-
tions, as well as <transform> and <init> descriptors, are executed before 
the child descriptors. The <record> descriptor introduces the following 
symbols into a local scope: oldkey, newkey, oldvalue, newvalue, 
facet. These symbols are accessible to child descriptors, but not to <trans-
form> or <init> descriptors. The oldkey and oldvalue symbols are read-
only. The facet symbol is a string indicating the facet name of the object in the 
current record, and is only relevant for Freeze evictor databases.

Use caution when modifying database keys to ensure that duplicate keys do 
not occur. If a duplicate database key is encountered, transformation fails immedi-
ately.

Table 40.2. Attributes for <database> descriptor.

Name Description

name Specifies the name of the database defined by this descriptor. 
(Optional)

key Specifies the Slice types of the old and new keys. If the types 
are the same, only one needs to be specified. Otherwise, the 
types are separated by a comma.

value Specifies the Slice types of the old and new values. If the types 
are the same, only one needs to be specified. Otherwise, the 
types are separated by a comma.
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Note that database transformation only occurs if a <record> descriptor is 
present.

<transform>

Customizes the transformation for all instances of a type in the new Slice defini-
tions. The children of this descriptor are executed after the optional default trans-
formation has been performed, as described in Section 40.3.1. Only one 
<transform> descriptor can be specified for a type, but a <transform> 
descriptor is not required for every type. The symbols old and new are intro-
duced into a local scope and represent the old and new values, respectively. The 
old symbol is read-only. The attributes supported by this descriptor are described 
in Table 40.3.

Below is an example of a <transform> descriptor that initializes a new data 
member:

Table 40.3. Attributes for <transform> descriptor.

Name Description

type Specifies the type id in the new Slice definitions.

default If false, no default transformation is performed on values of 
this type. If not specified, the default value is true.

base This attribute determines whether <transform> descriptors 
of base class types are executed. If true, the <transform> 
descriptor of the immediate base class is invoked. If no 
descriptor is found for the immediate base class, the class hier-
archy is searched until a descriptor is found. The execution of 
any base class descriptors occurs after execution of this 
descriptor’s children. If not specified, the default value is 
true.

rename Indicates that a type in the old Slice definitions has been 
renamed to the new type identified by the type attribute. The 
value of this attribute is the type id of the old Slice definition. 
Specifying this attribute relaxes the strict compatibility rules 
defined in Section 40.3.2 for enum, struct and class types.
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<transform type="::Product">
    <set target="new.salePrice"
         value="old.listPrice * old.discount"/>
</transform>

For class types, transformdb first attempts to locate a <transform> 
descriptor for the object’s most-derived type. If no descriptor is found, trans-
formdb proceeds up the class hierarchy in an attempt to find a descriptor. The 
base object type, Object, is the root of every class hierarchy and is included in the 
search for descriptors. It is therefore possible to define a <transform> 
descriptor for type Object, which will be invoked for every class instance.

Note that <transform> descriptors are executed recursively. For example, 
consider the following Slice definitions:

struct Inner {
    int sum;
};
struct Outer {
    Inner i;
};

When transformdb is performing the default transformation on a value of type 
Outer, it recursively performs the default transformation on the Inner member, 
then executes the <transform> descriptor for Inner, and finally executes the 
<transform> descriptor for Outer. However, if default transformation is 
disabled for Outer, then no transformation is performed on the Inner member and 
therefore the <transform> descriptor for Inner is not executed.

<init>

Defines custom initialization rules for all instances of a type in the new Slice defi-
nitions. Child descriptors are executed each time the type is instantiated. The 
typical use case for this descriptor is for types that have been introduced in the 
new Slice definitions and whose instances require default values different than 
what transformdb supplies. The symbol value is introduced into a local 
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scope to represent the instance. The attributes supported by this descriptor are 
described in Table 40.4.

Here is a simple example of an <init> descriptor:

<init type="::Player">
    <set target="value.currency" value="100"/>
</init>

Note that, like <transform>, <init> descriptors are executed recursively. For 
example, if an <init> descriptor is defined for a struct type, the <init> 
descriptors of the struct’s members are executed before the struct’s descriptor.

<iterate>

Iterates over a dictionary or sequence, executing child descriptors for each 
element. The symbol names selected to represent the element information may 
conflict with existing symbols in the enclosing scope, in which case those outer 
symbols are not accessible to child descriptors. The attributes supported by this 
descriptor are described in Table 40.5.

Table 40.4. Attributes for <init> descriptor.

Name Description

type Specifies the type id of the new Slice definition.

Table 40.5. Attributes for <iterate> descriptor.

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not speci-
fied, the default symbol is i.

element The symbol name used for the sequence element. If not speci-
fied, the default symbol is elem.

key The symbol name used for the dictionary key. If not specified, 
the default symbol is key.

value The symbol name used for the dictionary value. If not speci-
fied, the default symbol is value.
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Shown below is an example of an <iterate> descriptor that sets the new data 
member reviewSalary to true if the employee’s salary is greater than 
$3000.

<iterate target="new.employeeMap" key="id" value="emp">
    <if test="emp.salary > 3000">
        <set target="emp.reviewSalary" value="true"/>
    </if>
</iterate>

<if>

Conditionally executes child descriptors. The attributes supported by this 
descriptor are described in Table 40.6.

See Section 40.8 for more information on the descriptor expression language.

<set>

Modifies a value. The value and type attributes are mutually exclusive. If 
target denotes a dictionary element, that element must already exist (i.e., 
<set> cannot be used to add an element to a dictionary). The attributes supported 
by this descriptor are described in Table 40.7.

Table 40.6. Attributes for <if> descriptor.

Name Description

test A boolean expression.

Table 40.7. Attributes for <set> descriptor.

Name Description

target An expression that must select a modifiable value.

value An expression that must evaluate to a value compatible with 
the target’s type.

type If specified, set the target to be an instance of the given Slice 
class. The value is a type id from the new Slice definitions. 
The class must be compatible with the target’s type.
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The <set> descriptor below modifies a member of a dictionary element:

<set target="new.parts['P105J3'].cost"
      value="new.parts['P105J3'].cost * 1.05"/>

This <set> descriptor adds an element to a sequence and initializes its value:

<set target="new.partsList" length="new.partsList.length + 1"
     value="'P105J3'"/>

As another example, the following <set> descriptor changes the value of an 
enumeration. Notice that the value refers to a symbol in the new Slice definitions 
(see Section 40.8.3 for more information).

<set target="new.ingredient" value="::New::Apple"/>

<add>

Adds a new element to a sequence or dictionary. It is legal to add an element while 
traversing the sequence or dictionary using <iterate>, however the traversal 
order after the addition is undefined. The key and index attributes are mutually 
exclusive, as are the value and type attributes. If neither value nor type is 

length An integer expression representing the desired new length of a 
sequence. If the new length is less than the current size of the 
sequence, elements are removed from the end of the sequence. 
If the new length is greater than the current size, new elements 
are added to the end of the sequence. If value or type is 
also specified, it is used to initialize each new element.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.

Table 40.7. Attributes for <set> descriptor.

Name Description
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specified, the new element is initialized with a default value. The attributes 
supported by this descriptor are described in Table 40.8.

Below is an example of an <add> descriptor that adds a new dictionary element 
and then initializes its member:

<add target="new.parts" key="'P105J4'"/>
<set target="new.parts['P105J4'].cost" value="3.15"/>

Table 40.8. Attributes for <add> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the target dictionary’s key type.

index An expression that must evaluate to an integer value represent-
ing the insertion position. The new element is inserted before 
index. The value must not exceed the length of the target 
sequence.

value An expression that must evaluate to a value compatible with 
the target dictionary’s value type, or the target sequence’s ele-
ment type.

type If specified, set the target value or element to be an instance of 
the given Slice class. The value is a type id from the new Slice 
definitions. The class must be compatible with the target dic-
tionary’s value type, or the target sequence’s element type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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<define>

Defines a new symbol in the current scope. The attributes supported by this 
descriptor are described in Table 40.9.

Below are two examples of the <define> descriptor. The first example defines 
the symbol identity to have type Ice::Identity, and proceeds to initialize its 
members using <set>:

<define name="identity" type="::New::Ice::Identity"/>
<set target="identity.name" value="steve"/>
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in Section 40.3.5 to define 
the symbol manufacturer and assign it a default value:

<define name="manufacturer" type="::New::BigThree"
        value="::New::Daimler"/>

<remove>

Removes an element from a sequence or dictionary. It is legal to remove an 
element while traversing a sequence or dictionary using <iterate>, however 

Table 40.9. Attributes for <define> descriptor.

Name Description

name The name of the new symbol. An error occurs if the name 
matches an existing symbol in the current scope.

type The name of the symbol’s formal Slice type. For user-defined 
types, the name should be prefixed with ::Old or ::New to 
indicate the source of the type. The prefix can be omitted for 
primitive types.

value An expression that must evaluate to a value compatible with 
the symbol’s type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Execution fails immediately if a range error occurs. If not 
specified, the default value is false.
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the traversal order after removal is undefined. The attributes supported by this 
descriptor are described in Table 40.10.

<fail>

Causes transformation to fail immediately. If test is specified, transformation 
fails only if the expression evaluates to true. The attributes supported by this 
descriptor are described in Table 40.11.

The following <fail> descriptor terminates the transformation if a range error is 
detected:

<fail message="range error occurred in ticket count!"
      test="old.ticketCount > 32767"/>

<delete>

Causes transformation of the current database record to cease, and removes the 
record from the transformed database. This descriptor has no attributes.

Table 40.10. Attributes for <remove> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the key type of the target dictionary.

index An expression that must evaluate to an integer value represent-
ing the index of the sequence element to be removed.

Table 40.11. Attributes for <fail> descriptor.

Name Description

message A message to display upon transformation failure.

test A boolean expression.
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<echo>

Displays values and informational messages. If no attributes are specified, only a 
newline is printed. The attributes supported by this descriptor are described in 
Table 40.12.

Shown below is an <echo> descriptor that uses both message and value attri-
butes:

<if test="old.ticketCount > 32767">
    <echo message="deleting record with invalid ticket count: "
          value="old.ticketCount"/>
    <delete/>
</if>

40.4.5 Descriptor Guidelines

There are three points at which you can intercept the transformation process: 
when transforming a record (<record>), when transforming an instance of a 
type (<transform>), and when creating an instance of a type (<init>).

In general, <record> is used when your modifications require access to both 
the key and value of the record. For example, if the database key is needed as a 
factor in an equation, or to identify an element in a dictionary, then <record> is 
the only descriptor in which this type of modification is possible. The <record> 
descriptor is also convenient to use when the number of changes to be made is 
small, and does not warrant the effort of writing separate <transform> or 
<init> descriptors.

The <transform> descriptor has a more limited scope than <record>. It is 
used when changes must potentially be made to all instances of a type (regardless 
of the context in which that type is used) and access to the old value is necessary. 
The <transform> descriptor does not have access to the database key and 

Table 40.12. Attributes for <echo> descriptor.

Name Description

message A message to display.

value An expression. The value of the expression is displayed in a 
structured format.
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value, therefore decisions can only be made based on the old and new instances of 
the type in question.

Finally, the <init> descriptor is useful when access to the old instance is not 
required in order to properly initialize a type. In most cases, this activity could 
also be performed by a <transform> descriptor that simply ignored the old 
instance, so <init> may seem redundant. However, there is one situation where 
<init> is required: when it is necessary to initialize an instance of a type that is 
introduced by the new Slice definitions. Since there are no instances of this type in 
the current database, a <transform> descriptor for that type would never be 
executed.

40.5 Using transformdb

This section describes the invocation of the transformdb tool, and provides 
advice on how best to use it. The tool operates in one of three modes:

• Automatic migration

• Custom migration

• Analysis

Section 40.3 provided an overview of the tool’s automatic and custom migration 
modes. The only difference between these two modes is the source of the transfor-
mation descriptors: for automatic migration, transformdb internally generates 
and executes a default set of descriptors, whereas for custom migration the user 
specifies an external file containing the transformation descriptors to be executed.

In analysis mode, transformdb creates a file containing the default trans-
formation descriptors it would have used during automatic migration. You would 
normally review this file and possibly customize it prior to executing the tool 
again in its custom migration mode.

40.5.1 Database Catalogs

As explained in Section 39.7, Freeze maintains schema information in a catalog 
for each database environment. If necessary, transformdb will use the catalog 
to determine the names of the databases in the environment, and to determine the 
key and value types of a particular database. There are two advantages to the tool’s 
use of the catalog:
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1. it allows transformdb to operate on all of the databases in a single invoca-
tion

2. it eliminates the need for you to specify type information for a database.

For example, you can use automatic migration to transform all of the databases at 
one time, as shown below:

$ transformdb [options] old-env new-env

Since we omitted the name of a database to be migrated, transformdb uses the 
catalog in the environment old-env to discover all of the databases and their 
types, generates default transformations for each database, and performs the 
migration. However, we must still ensure that transformdb has loaded the old 
and new Slice types used by all of the databases in the environment.

40.5.2 Slice Options

The tool supports the standard command-line options common to all Slice proces-
sors listed in Section 4.20, with the exception of the include directory (-I) option. 
The options specific to transformdb are described below.

• --old SLICE
--new SLICE

Loads the old or new Slice definitions contained in the file SLICE. These 
options may be specified multiple times if several files must be loaded. 
However, it is the user’s responsibility to ensure that duplicate definitions do 
not occur (which is possible when two files are loaded that share a common 
include file). One strategy for avoiding duplicate definitions is to load a single 
Slice file that contains only #include statements for each of the Slice files 
to be loaded. No duplication is possible in this case if the included files use 
include guards correctly.

• --include-old DIR
--include-new DIR

Adds the directory DIR to the set of include paths for the old or new Slice 
definitions.

40.5.3 Type Options

In invocation modes for which transformdb requires that you define the types 
used by a database, you must specify one of the following options:



1628 FreezeScript

• --key TYPE[,TYPE]
--value TYPE[,TYPE]

Specifies the Slice type(s) of the database key and value. If the type does not 
change, then the type only needs to be specified once. Otherwise, the old type 
is specified first, followed by a comma and the new type. For example, the 
option --key int,string indicates that the database key is migrating 
from int to string. On the other hand, the option --key int,int indi-
cates that the key type does not change, and could be given simply as 
--key int. Type changes are restricted to those allowed by the compati-
bility rules defined in Section 40.3.2, but custom migration provides addi-
tional flexibility.

• -e

Indicates that a Freeze evictor database is being migrated. As a convenience, 
this option automatically sets the database key and value types to those appro-
priate for the Freeze evictor, and therefore the--key and --value options 
are not necessary. Specifically, the key type of a Freeze evictor database is 
Ice::Identity, and the value type is Freeze::ObjectRecord. The latter is 
defined in the Slice file Freeze/EvictorStorage.ice; however, this 
file does not need to be loaded into your old and new Slice definitions.

40.5.4 General Options

These options may be specified during analysis or migration, as indicated below:

• -i

Requests that transformdb ignore type changes that violate the compati-
bility rules defined in Section 40.3.2. If this option is not specified, trans-
formdb fails immediately if such a violation occurs. With this option, a 
warning is displayed but transformdb continues the requested action. The 
-i option can be specified in analysis or automatic migration modes.

• -p

During migration, this option requests that transformdb purge object 
instances whose type is no longer found in the new Slice definitions. See 
Section 40.5.10 for more information.

• -c

Use catastrophic recovery on the old BerkeleyDB database environment prior 
to migration.
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• -w

Suppress duplicate warnings during migration. This option is especially useful 
to minimize diagnostic messages when transformdb would otherwise emit 
the same warning many times, such as when it detects the same issue in every 
record of a database.

40.5.5 Database Arguments
In addition to the options described above, transformdb accepts as many as 
three arguments that specify the names of databases and database environments:

• dbenv

The pathname of the old database environment directory.

• db

The name of an existing database file in dbenv. transformdb never modi-
fies this database.

• newdbenv

The pathname of the database environment directory to contain the trans-
formed database(s). This directory must exist and must not contain an existing 
database whose name matches a database being migrated.

40.5.6 Automatic Migration
You can use transformdb to automatically migrate one database or all data-
bases in an environment.

Migrating a Single Database

Use the following command line to migrate one database:

$ transformdb [slice-opts] [type-opts] [gen-opts] \
dbenv db newdbenv

If you omit type-opts, the tool obtains type information for database db from 
the catalog (see Section 40.5.1). For example, consider the following command, 
which uses automatic migration to transform a database with a key type of int 
and value type of string into a database with the same key type and a value type 
of long:

$ transformdb --key int --value string,long \
dbhome data.db newdbhome
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Note that we did not need to specify the Slice options --old or --new because 
our key and value types are primitives. Upon successful completion, the file 
newdbhome/data.db contains our transformed database.

Migrating All Databases

To migrate all databases in the environment, use a command like the one shown 
below:

$ transformdb [slice-opts] [gen-opts] dbenv newdbenv

In this invocation mode, you must ensure that transformdb has loaded the old 
and new Slice definitions for all of the types it will encounter among the databases 
in the environment.

40.5.7 Analysis

Custom migration is a two-step process: you first write the transformation 
descriptors, and then execute them to transform a database. To assist you in the 
process of creating a descriptor file, transformdb can generate a default set of 
transformation descriptors by comparing your old and new Slice definitions. This 
feature is enabled by specifying the following option:

• -o FILE

Specifies the descriptor file FILE to be created during analysis. No migration 
occurs in this invocation mode.

Generated File

The generated file contains a <transform> descriptor for each type that 
appears in both old and new Slice definitions, and an <init> descriptor for types 
that appear only in the new Slice definitions. In most cases, these descriptors are 
empty. However, they can contain XML comments describing changes detected 
by transformdb that may require action on your part.

For example, let us revisit the enumeration we defined in Section 40.3.5:

enum BigThree { Ford, DaimlerChrysler, GeneralMotors };

This enumeration has evolved into the one shown below. In particular, the Daim-
lerChrysler enumerator has been renamed to reflect a corporate name change:

enum BigThree { Ford, Daimler, GeneralMotors };

Next we run transformdb in analysis mode:
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$ transformdb --old old/BigThree.ice \
--new new/BigThree.ice --key string \
--value ::BigThree -o transform.xml

The generated file transform.xml contains the following descriptor for the 
enumeration BigThree:

<transform type="::BigThree">
    <!-- NOTICE: enumerator `DaimlerChrysler' has been removed -->
</transform>

The comment indicates that enumerator DaimlerChrysler is no longer present in 
the new definition, reminding us that we need to add logic in this <transform> 
descriptor to change all occurrences of DaimlerChrysler to Daimler.

The descriptor file generated by transformdb is well-formed and does not 
require any manual intervention prior to being executed. However, executing an 
unmodified descriptor file is simply the equivalent of using automatic migration.

Invocation Modes

The sample command line shown in the previous section specified the key and 
value types of the database explicitly. This invocation mode has the following 
general form:

$ transformdb [slice-opts] [type-opts] [gen-opts] \
-o FILE

Upon successful completion, the generated file contains a <database> 
descriptor that records the type information supplied by type-opts, in addition 
to the <transform> and <init> descriptors described earlier.

For your convenience, you can omit type-opts and allow transformdb 
to obtain type information from the catalog instead:

$ transformdb [slice-opts] [gen-opts] -o FILE dbenv

In this case, the generated file contains a <database> descriptor for each data-
base in the catalog. Note that in this invocation mode, transformdb must 
assume that the names of the database key and value types have not changed, since 
the only type information available is the catalog in the old database environment. 
If the tool is unable to locate a new Slice definition for a database’s key or value 
type, it emits a warning message and generates a placeholder value in the output 
file that you must modify prior to migration.
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40.5.8 Custom Migration

After preparing a descriptor file, either by writing one completely yourself, or 
modifying one generated by the analysis mode described in the previous section, 
you are ready to migrate a database. One additional option is provided for migra-
tion:

• -f FILE

Execute the transformation descriptors in the file FILE.

To transform one database, use the following command:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv db \
newdbenv

The tool searches the descriptor file for a <database> descriptor whose name 
attribute matches db. If no match is found, it searches for a <database> 
descriptor that does not have a name attribute.

If you want to transform all databases in the environment, you can omit the 
database name:

$ transformdb [slice-opts] [gen-opts] -f FILE dbenv \
newdbenv

In this case, the descriptor file must contain a <database> element for each 
database in the environment.

Continuing our enumeration example from the analysis discussion above, 
assume we have modified transform.xml to convert the Chrysler enumer-
ator, and are now ready to execute the transformation:

$ transformdb --old old/BigThree.ice \
--new new/BigThree.ice -f transform.xml \
dbhome bigthree.db newdbhome

40.5.9 Usage Strategies

If it becomes necessary for you to transform a Freeze database, we generally 
recommend that you attempt to use automatic migration first, unless you already 
know that custom migration is necessary. Since transformation is a non-destruc-
tive process, there is no harm in attempting an automatic migration, and it is a 
good way to perform a sanity check on your transformdb arguments (for 
example, to ensure that all the necessary Slice files are being loaded), as well as 
on the database itself. If transformdb detects any incompatible type changes, 
it displays an error message for each incompatible change and terminates without 
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doing any transformation. In this case, you may want to run transformdb 
again with the -i option, which ignores incompatible changes and causes trans-
formation to proceed.

Pay careful attention to any warnings that transformdb emits, as these may 
indicate the need for using custom migration. For example, if we had attempted to 
transform the database containing the BigThree enumeration from previous 
sections using automatic migration, any occurrences of the Chrysler enumerator 
would display the following warning:

warning: unable to convert ‘Chrysler’ to ::BigThree

If custom migration appears to be necessary, use analysis to generate a default 
descriptor file, then review it for NOTICE comments and edit as necessary. 
Liberal use of the <echo> descriptor can be beneficial when testing your 
descriptor file, especially from within the <record> descriptor where you can 
display old and new keys and values.

40.5.10 Transforming Objects

The polymorphic nature of Slice classes can cause problems for database migra-
tion. As an example, the Slice parser can ensure that a set of Slice definitions 
loaded into transformdb is complete for all types but classes (and exceptions, 
but we ignore those because they are not persistent). transformdb cannot 
know that a database may contain instances of a subclass that is derived from one 
of the loaded classes but whose definition is not loaded. Alternatively, the type of 
a class instance may have been renamed and cannot be found in the new Slice 
definitions.

By default, these situations result in immediate transformation failure. 
However, the -p option is a (potentially drastic) way to handle these situations: if 
a class instance has no equivalent in the new Slice definitions and this option is 
specified, transformdb removes the instance any way it can. If the instance 
appears in a sequence or dictionary element, that element is removed. Otherwise, 
the database record containing the instance is deleted.

Now, the case of a class type being renamed is handled easily enough using 
custom migration and the rename attribute of the <transform> descriptor. 
However, there are legitimate cases where the destructive nature of the -p option 
can be useful. For example, if a class type has been removed and it is simply easier 
to start with a database that is guaranteed not to contain any instances of that type, 
then the -p option may simplify the broader migration effort.
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This is another situation in which running an automatic migration first can 
help point out the trouble spots in a potential migration. Using the -p option, 
transformdb emits a warning about the missing class type and continues, 
rather than halting at the first occurrence, enabling you to discover whether you 
have forgotten to load some Slice definitions, or need to rename a type.

40.5.11 Using transformdb on an Open Environment

It is possible to use transformdb to migrate databases in an environment that is 
currently open by another process, but if you are not careful you can easily corrupt 
the environment and cause the other process to fail. To avoid such problems, you 
must configure both transformdb and the other process to set 
Freeze.DbEnv.env-name.DbPrivate=0 (refer to Appendix D for a 
description of this property). This property has a default value of one, therefore 
you must explicitly set it to zero. Note that transformdb makes no changes to 
the existing database environment, but it requires exclusive access to the new data-
base environment until transformation is complete.

If you run transformdb on an open environment but neglect to set 
Freeze.DbEnv.env-name.DbPrivate=0, you can expect trans-
formdb to terminate immediately with an error message stating that the database 
environment is locked. Before running transformdb on an open environment, 
we strongly recommend that you first verify that the other process was also 
configured with Freeze.DbEnv.env-name.DbPrivate=0.

40.6 Database Inspection

The FreezeScript tool dumpdb is used to examine a Freeze database. Its simplest 
invocation displays every record of the database, but the tool also supports more 
selective activities. In fact, dumpdb supports a scripted mode that shares many of 
the same XML descriptors as transformdb (see Section 40.4), enabling 
sophisticated filtering and reporting.

40.6.1 Descriptor Overview

A dumpdb descriptor file has a well-defined structure. The top-level descriptor in 
the file is <dumpdb>. A <database> descriptor must be present within 
<dumpdb> to define the key and value types used by the database. Inside 
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<database>, the <record> descriptor triggers database traversal. Shown 
below is an example that demonstrates the structure of a minimal descriptor file:

<dumpdb>
    <database key="string" value="::Employee">
        <record>
            <echo message="Key: " value="key"/>
            <echo message="Value: " value="value"/>
        </record>
    </database>
</dumpdb>

During traversal, type-specific actions are supported by the <dump> descriptor, 
which is a child of <dumpdb>. One <dump> descriptor may be defined for each 
type in the Slice definitions. Each time dumpdb encounters an instance of a type, 
the <dump> descriptor for the type is executed.

The <database>, <record>, and <dump> descriptors may contain 
general-purpose action descriptors such as <if> and <echo>. These actions 
resemble statements in programming languages like C++ and Java, in that they are 
executed in the order of definition and their effects are cumulative. Actions make 
use of the expression language described in Section 40.8.

Although dumpdb descriptors are not allowed to modify the database, they 
can still define local symbols for scripting purposes. Once a symbol is defined by 
the <define> descriptor, other descriptors such as <set>, <add>, and 
<remove> can be used to manipulate the symbol’s value.

40.6.2 Flow of Execution

The descriptors are executed as described below.

• <database> is executed first. Each child descriptor of <database> is 
executed in the order of definition. If a <record> descriptor is present, data-
base traversal occurs at that point. Any child descriptors of <database> 
that follow <record> are not executed until traversal completes.

• For each record, dumpdb interprets the key and value, invoking <dump> 
descriptors for each type it encounters. For example, if the value type of the 
database is a struct, then dumpdb first attempts to invoke a <dump> 
descriptor for the structure type, and then recursively interprets the structure’s 
members in the same fashion.

See Section 40.6.4 for detailed information on the dumpdb descriptors.
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40.6.3 Scopes

The <database> descriptor creates a global scope, allowing child descriptors of 
<database> to define symbols that are accessible in any descriptor3. Further-
more, certain other descriptors create local scopes that exist only for the duration 
of the descriptor’s execution. For example, the <dump> descriptor creates a local 
scope and defines the symbol value to represent a value of the specified type. 
Child descriptors of <dump> can also define new symbols in the local scope, as 
long as those symbols do not clash with an existing symbol in that scope. It is 
legal to add a new symbol with the same name as a symbol in an outer scope, but 
the outer symbol will not be accessible during the descriptor’s execution.

The global scope is useful in many situations. For example, suppose you want 
to track the number of times a certain value was encountered during database 
traversal. This can be accomplished as shown below:

<dumpdb>
    <database key="string" value="::Ice::Identity">
        <define name="categoryCount" type="int" value="0"/>
        <record/>
        <echo message="categoryCount = " value="categoryCount"/>
    </database>
    <dump type="::Ice::Identity">
        <if test="value.category == `Accounting'">
            <set target="categoryCount"
                value="categoryCount + 1"/>
        </if>
    </dump>
</dumpdb>

In this example, the <define> descriptor introduces the symbol category-
Count into the global scope, defining it as type int with an initial value of zero. 
Next, the <record> descriptor causes traversal to proceed. Each occurrence of 
the type Ice::Identity causes its <dump> descriptor to be executed, which 
examines the category member and increases categoryCount if necessary. 
Finally, after traversal completes, the <echo> descriptor displays the final value 
of categoryCount.

To reinforce the relationships between descriptors and scopes, consider the 
diagram in Figure 40.2. Several descriptors are shown, including the symbols they 

3. In order for a global symbol to be available to a <dump> descriptor, the symbol must be defined 
before the <record> descriptor is executed.
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define in their local scopes. In this example, the <iterate> descriptor has a 
dictionary target and therefore the default symbol for the element value, value, 
hides the symbol of the same name in the parent <dump> descriptor’s scope4. In 
addition to symbols in the <iterate> scope, child descriptors of <iterate> 
can also refer to symbols from the <dump> and <database> scopes.

Figure 40.2. Relationship between descriptors and scopes.

40.6.4 Descriptor Reference

<dumpdb>

The top-level descriptor in a descriptor file. It requires one child descriptor, 
<database>, and supports any number of <dump> descriptors. This descriptor 
has no attributes.

4. This situation can be avoided by assigning a different symbol name to the element value.

<database>

No default symbols

<record>

key
value
facet

<dump>

value

<iterate>

key
value
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<database>

The attributes of this descriptor define the key and value types of the database. It 
supports any number of child descriptors, but at most one <record> descriptor. 
The <database> descriptor also creates a global scope for user-defined 
symbols (see Section 40.6.3).

The attributes supported by the <database> descriptor are described in 
Table 40.13.

As an example, consider the following <database> descriptor. In this case, the 
Freeze map to be examined has key type int and value type ::Employee:

<database key="int" value="::Employee">

<record>

Commences the database traversal. Child descriptors are executed for each record 
in the database, but after any <dump> descriptors are executed. The <record> 
descriptor introduces the read-only symbols key, value and facet into a local 
scope. These symbols are accessible to child descriptors, but not to <dump> 
descriptors. The facet symbol is a string indicating the facet name of the object 
in the current record, and is only relevant for Freeze evictor databases.

Note that database traversal only occurs if a <record> descriptor is present.

<dump>

Executed for all instances of a Slice type. Only one <dump> descriptor can be 
specified for a type, but a <dump> descriptor is not required for every type. The 

Table 40.13. Attributes for <database> descriptor.

Name Description

key Specifies the Slice type of the database key.

value Specifies the Slice type of the database value.
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read-only symbol value is introduced into a local scope. The attributes 
supported by this descriptor are described in Table 40.14.

Below is an example of a <dump> descriptor that searches for certain products:

<dump type="::Product">
    <if test="value.description.find(`scanner') != -1">
        <echo message="Scanner SKU: " value="value.SKU"/>
    </if>
</dump>

For class types, dumpdb first attempts to locate a <dump> descriptor for the 
object’s most-derived type. If no descriptor is found, dumpdb proceeds up the 
class hierarchy in an attempt to find a descriptor. The base object type, Object, is 
the root of every class hierarchy and is included in the search for descriptors. It is 
therefore possible to define a <dump> descriptor for type Object, which will be 
invoked for every class instance.

Note that <dump> descriptors are executed recursively. For example, consider 
the following Slice definitions:

struct Inner {
    int sum;
};
struct Outer {
    Inner i;
};

Table 40.14. Attributes for <dump> descriptor.

Name Description

type Specifies the Slice type id.

base If type denotes a Slice class, this attribute determines 
whether the <dump> descriptor of the base class is invoked. If 
true, the base class descriptor is invoked after executing the 
child descriptors. If not specified, the default value is true.

contents For class and struct types, this attribute determines 
whether descriptors are executed for members of the value. 
For sequence and dictionary types, this attribute deter-
mines whether descriptors are executed for elements. If not 
specified, the default value is true.
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When dumpdb is interpreting a value of type Outer, it executes the <dump> 
descriptor for Outer, then recursively executes the <dump> descriptor for the 
Inner member, but only if the contents attribute of the Outer descriptor has 
the value true.

<iterate>

Iterates over a dictionary or sequence, executing child descriptors for each 
element. The symbol names selected to represent the element information may 
conflict with existing symbols in the enclosing scope, in which case those outer 
symbols are not accessible to child descriptors. The attributes supported by this 
descriptor are described in Table 40.15.

Shown below is an example of an <iterate> descriptor that displays the name 
of an employee if the employee’s salary is greater than $3000.

<iterate target="value.employeeMap" key="id" value="emp">
    <if test="emp.salary > 3000">
        <echo message="Employee: " value="emp.name"/>
    </if>
</iterate>

Table 40.15. Attributes for <iterate> descriptor.

Name Description

target The sequence or dictionary.

index The symbol name used for the sequence index. If not speci-
fied, the default symbol is i.

element The symbol name used for the sequence element. If not speci-
fied, the default symbol is elem.

key The symbol name used for the dictionary key. If not specified, 
the default symbol is key.

value The symbol name used for the dictionary value. If not speci-
fied, the default symbol is value.
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<if>

Conditionally executes child descriptors. The attributes supported by this 
descriptor are described in Table 40.16.

See Section 40.8 for more information on the descriptor expression language.

<set>

Modifies a value. The value and type attributes are mutually exclusive. If 
target denotes a dictionary element, that element must already exist (i.e., 
<set> cannot be used to add an element to a dictionary). The attributes supported 
by this descriptor are described in Table 40.17.

Table 40.16. Attributes for <if> descriptor.

Name Description

test A boolean expression.

Table 40.17. Attributes for <set> descriptor.

Name Description

target An expression that must select a modifiable value.

value An expression that must evaluate to a value compatible with 
the target’s type.

type The Slice type id of a class to be instantiated. The class must 
be compatible with the target’s type.

length An integer expression representing the desired new length of a 
sequence. If the new length is less than the current size of the 
sequence, elements are removed from the end of the sequence. 
If the new length is greater than the current size, new elements 
are added to the end of the sequence. If value or type is 
also specified, it is used to initialize each new element.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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The <set> descriptor below modifies a member of a dictionary element:

<set target="new.parts['P105J3'].cost"
      value="new.parts['P105J3'].cost * 1.05"/>

This <set> descriptor adds an element to a sequence and initializes its value:

<set target="new.partsList" length="new.partsList.length + 1"
     value="'P105J3'"/>

<add>

Adds a new element to a sequence or dictionary. It is legal to add an element while 
traversing the sequence or dictionary using <iterate>, however the traversal 
order after the addition is undefined. The key and index attributes are mutually 
exclusive, as are the value and type attributes. If neither value nor type is 
specified, the new element is initialized with a default value. The attributes 
supported by this descriptor are described in Table 40.18.

Table 40.18. Attributes for <add> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the target dictionary’s key type.

index An expression that must evaluate to an integer value represent-
ing the insertion position. The new element is inserted before 
index. The value must not exceed the length of the target 
sequence.

value An expression that must evaluate to a value compatible with 
the target dictionary’s value type, or the target sequence’s ele-
ment type.

type The Slice type id of a class to be instantiated. The class must 
be compatible with the target dictionary’s value type, or the 
target sequence’s element type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Transformation fails immediately if a range error occurs. 
If not specified, the default value is false.
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Below is an example of an <add> descriptor that adds a new dictionary element 
and then initializes its member:

<add target="new.parts" key="'P105J4'"/>
<set target="new.parts['P105J4'].cost" value="3.15"/>

<define>

Defines a new symbol in the current scope. The attributes supported by this 
descriptor are described in Table 40.19.

Below are two examples of the <define> descriptor. The first example defines 
the symbol identity to have type Ice::Identity, and proceeds to initialize its 
members using <set>:

<define name="identity" type="::Ice::Identity"/>
<set target="identity.name" value="steve"/>
<set target="identity.category" value="Admin"/>

The second example uses the enumeration we first saw in Section 40.3.5 to define 
the symbol manufacturer and assign it a default value:

<define name="manufacturer" type="::BigThree"
    value="::DaimlerChrysler"/>

<remove>

Removes an element from a sequence or dictionary. It is legal to remove an 
element while traversing a sequence or dictionary using <iterate>, however 

Table 40.19. Attributes for <define> descriptor.

Name Description

name The name of the new symbol. An error occurs if the name 
matches an existing symbol in the current scope.

type The name of the symbol’s formal Slice type.

value An expression that must evaluate to a value compatible with 
the symbol’s type.

convert If true, additional type conversions are supported: between 
integer and floating point, and between integer and enumera-
tion. Execution fails immediately if a range error occurs. If not 
specified, the default value is false.
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the traversal order after removal is undefined. The attributes supported by this 
descriptor are described in Table 40.20.

<fail>

Causes transformation to fail immediately. If test is specified, transformation 
fails only if the expression evaluates to true. The attributes supported by this 
descriptor are described in Table 40.21.

The following <fail> descriptor terminates the transformation if a range error is 
detected:

<fail message="range error occurred in ticket count!"
      test="value.ticketCount > 32767"/>

Table 40.20. Attributes for <remove> descriptor.

Name Description

target An expression that must select a modifiable sequence or dic-
tionary.

key An expression that must evaluate to a value compatible with 
the key type of the target dictionary.

index An expression that must evaluate to an integer value represent-
ing the index of the sequence element to be removed.

Table 40.21. Attributes for <fail> descriptor.

Name Description

message A message to display upon transformation failure.

test A boolean expression.
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<echo>

Displays values and informational messages. If no attributes are specified, only a 
newline is printed. The attributes supported by this descriptor are described in 
Table 40.22.

Shown below is an <echo> descriptor that uses both message and value attri-
butes:

<if test="value.ticketCount > 32767">
    <echo message="range error occurred in ticket count: "
          value="value.ticketCount"/>
</if>

40.7 Using dumpdb

This section describes the invocation of dumpdb and provides advice on how to 
best use it.

40.7.1 Options
The tool supports the standard command-line options common to all Slice proces-
sors listed in Section 4.20. The options specific to dumpdb are described below:

• --load SLICE

Loads the Slice definitions contained in the file SLICE. This option may be 
specified multiple times if several files must be loaded. However, it is the 
user’s responsibility to ensure that duplicate definitions do not occur (which is 
possible when two files are loaded that share a common include file). One 
strategy for avoiding duplicate definitions is to load a single Slice file that 
contains only #include statements for each of the Slice files to be loaded. No 

Table 40.22. Attributes for <echo> descriptor.

Name Description

message A message to display.

value An expression. The value of the expression is displayed in a 
structured format.
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duplication is possible in this case if the included files use include guards 
correctly.

• --key TYPE
--value TYPE

Specifies the Slice type of the database key and value. If these options are not 
specified, and the -e option is not used, dumpdb obtains type information 
from the catalog.

• -e

Indicates that a Freeze evictor database is being examined. As a convenience, 
this option automatically sets the database key and value types to those appro-
priate for the Freeze evictor, and therefore the --key and --value options 
are not necessary. Specifically, the key type of a Freeze evictor database is 
Ice::Identity, and the value type is Freeze::ObjectRecord. The latter is 
defined in the Slice file Freeze/EvictorStorage.ice, however this 
file does not need to be explicitly loaded.

If this option is not specified, and the --key and --value options are not 
used, dumpdb obtains type information from the catalog.

• -o FILE

Create a file named FILE containing sample descriptors for the loaded Slice 
definitions. If type information is not specified, dumpdb obtains it from the 
catalog. If the --select option is used, its expression is included in the 
sample descriptors. Database traversal does not occur when the -o option is 
used.

• -f FILE

Execute the descriptors in the file named FILE. The file’s <database> 
descriptor specifies the key and value types; therefore it is not necessary to 
supply type information.

• --select EXPR

Only display those records for which the expression EXPR is true. The expres-
sion can refer to the symbols key and value.

• -c, --catalog

Display information about the databases in an environment, or about a partic-
ular database. This option presents the type information contained in the 
catalog (see Section 39.7).
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40.7.2 Database Arguments

If dumpdb is invoked to examine a database, it requires two arguments:

• dbenv

The pathname of the database environment directory.

• db

The name of the database file. dumpdb opens this database as read-only, and 
traversal occurs within a transaction.

To display catalog information using the -c option, the database environment 
directory dbenv is required. If the database file argument db is omitted, dumpdb 
displays information about every database in the catalog.

40.7.3 Use Cases

The command line options described in Section 40.7.1 support several modes of 
operation:

• Dump an entire database.

• Dump selected records of a database.

• Emit a sample descriptor file.

• Execute a descriptor file.

• Examine the catalog.

These use cases are described in the following sections.

Dump an Entire Database

The simplest way to examine a database with dumpdb is to dump its entire 
contents. You must specify the database key and value types, load the necessary 
Slice definitions, and supply the names of the database environment directory and 
database file. For example, this command dumps a Freeze map database whose 
key type is string and value type is Employee:

$ dumpdb --key string --value ::Employee \
--load Employee.ice db emp.db

As a convenience, you may omit the key and value types, in which case dumpdb 
obtains them from the catalog (see Section 39.7):

$ dumpdb --load Employee.ice db emp.db
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Dump Selected Records

If only certain records are of interest to you, the --select option provides a 
convenient way to filter the output of dumpdb. In the following example, we 
select employees from the accounting department:

$ dumpdb --load Employee.ice \
--select "value.dept == 'Accounting'" db emp.db

In cases where the database records contain polymorphic class instances, you 
must be careful to specify an expression that can be successfully evaluated against 
all records. For example, dumpdb fails immediately if the expression refers to a 
data member that does not exist in the class instance. The safest way to write an 
expression in this case is to check the type of the class instance before referring to 
any of its data members.

In the example below, we assume that a Freeze evictor database contains 
instances of various classes in a class hierarchy, and we are only interested in 
instances of Manager whose employee count is greater than 10:

$ dumpdb -e --load Employee.ice \
--select "value.servant.ice_id == '::Manager' and \
value.servant.group.length > 10" db emp.db

Alternatively, if Manager has derived classes, then the expression can be written in 
a different way so that instances of Manager and any of its derived classes are 
considered:

$ dumpdb -e --load Employee.ice \
  --select "value.servant.ice_isA('::Manager') and \
  value.servant.group.length > 10" db emp.db

Creating a Sample Descriptor File

If you require more sophisticated filtering or scripting capabilities, then you must 
use a descriptor file. The easiest way to get started with a descriptor file is to 
generate a template using dumpdb:

$ dumpdb --key string --value ::Employee \
--load Employee.ice -o dump.xml

The output file dump.xml is complete and can be executed immediately if 
desired, but typically the file is used as a starting point for further customization. 
Again, you may omit the key and value types by specifying the database instead:

$ dumpdb --load Employee.ice -o dump.xml db emp.db
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If the --select option is specified, its expression is included in the generated 
<record> descriptor as the value of the test attribute in an <if> descriptor.

dumpdb terminates immediately after generating the output file.

Executing a Descriptor File

Use the -f option when you are ready to execute a descriptor file. For example, 
we can execute the descriptor we generated in the previous section using this 
command:

$ dumpdb -f dump.xml --load Employee.ice db emp.db

Examine the Catalog

The -c option displays the contents of the database environment’s catalog:

$ dumpdb -c db

The output indicates whether each database in the environment is associated with 
an evictor or a map. For maps, the output includes the key and value types.

If you specify the name of a database, dumpdb only displays the type infor-
mation for that database:

$ dumpdb -c db emp.db

40.7.4 Using dumpdb on an Open Environment

It is possible to use dumpdb to migrate databases in an environment that is 
currently open by another process, but if you are not careful you can easily corrupt 
the environment and cause the other process to fail. To avoid such problems, you 
must configure both dumpdb and the other process to set 
Freeze.DbEnv.env-name.DbPrivate=0 (refer to Appendix D for a 
description of this property). This property has a default value of one, therefore 
you must explicitly set it to zero.

If you run dumpdb on an open environment but neglect to set 
Freeze.DbEnv.env-name.DbPrivate=0, you can expect dumpdb to 
terminate immediately with an error message stating that the database environ-
ment is locked. Before running dumpdb on an open environment, we strongly 
recommend that you first verify that the other process was also configured with 
Freeze.DbEnv.env-name.DbPrivate=0.
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40.8 Descriptor Expression Language

An expression language is provided for use in FreezeScript descriptors.

40.8.1 Operators

The language supports the usual complement of operators: and, or, not, +, -, /, 
*, %, <, >, ==, !=, <=, >=, (, ). Note that the < character must be escaped as 
&lt; in order to comply with XML syntax restrictions.

40.8.2 Literals

Literal values can be specified for integer, floating point, boolean, and string. The 
expression language supports the same syntax for literal values as that of Slice 
(see Section 4.9.5), with one exception: string literals must be enclosed in single 
quotes.

40.8.3 Symbols

Certain descriptors introduce symbols that can be used in expressions. These 
symbols must comply with the naming rules for Slice identifiers (i.e., a leading 
letter followed by zero or more alphanumeric characters). Data members are 
accessed using dotted notation, such as value.memberA.memberB.

Expressions can refer to Slice constants and enumerators using scoped names. 
In a transformdb descriptor, there are two sets of Slice definitions, therefore 
the expression must indicate which set of definitions it is accessing by prefixing 
the scoped name with ::Old or ::New. For example, the expression 
old.fruitMember == ::Old::Pear evaluates to true if the data 
member fruitMember has the enumerated value Pear. In dumpdb, only one 
set of Slice definitions is present and therefore the constant or enumerator can be 
identified without any special prefix.

40.8.4 Nil

The keyword nil represents a nil value of type Object. This keyword can be 
used in expressions to test for a nil object value, and can also be used to set an 
object value to nil.
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40.8.5 Elements

Dictionary and sequence elements are accessed using array notation, such as 
userMap['joe'] or stringSeq[5]. An error occurs if an expression 
attempts to access a dictionary or sequence element that does not exist. For 
dictionaries, the recommended practice is to check for the presence of a key 
before accessing it:

<if test="userMap.containsKey('joe') and userMap['joe'].active">

See Section 40.8.8 for more information on the containsKey function.
Similarly, expressions involving sequences should check the length of the 

sequence:

<if test="stringSeq.length > 5 and stringSeq[5] == 'fruit'">

See Section 40.8.7 for details on the length member.

40.8.6 Reserved Keywords

The following keywords are reserved: and, or, not, true, false, nil.

40.8.7 Implicit Members

Certain Slice types support implicit data members:

• Dictionary and sequence instances have a member length representing the 
number of elements.

• Object instances have a member ice_id denoting the actual type of the 
object.

40.8.8 Functions

The expression language supports two forms of function invocation: member 
functions and global functions. A member function is invoked on a particular data 
value, whereas global functions are not bound to a data value. For instance, here is 
an expression that invokes the find member function of a string value:

old.stringValue.find('theSubstring') != -1

And here is an example that invokes the global function stringToIdentity:

stringToIdentity(old.stringValue)
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If a function takes multiple arguments, the arguments must be separated with 
commas.

String Member Functions

The string data type supports the following member functions:

• int find(string match[, int start])

Returns the index of the substring, or -1 if not found. A starting position can 
optionally be supplied.

• string replace(int start, int len, string str)

Replaces a given portion of the string with a new substring, and returns the modified 
string.

• string substr(int start[, int len])

Returns a substring beginning at the given start position. If the optional length 
argument is supplied, the substring contains at most len characters, otherwise 
the substring contains the remainder of the string.

Dictionary Member Functions

The dictionary data type supports the following member function:

• bool containsKey(key)

Returns true if the dictionary contains an element with the given key, or 
false otherwise. The key argument must have a value that is compatible 
with the dictionary’s key type.

Object Member Functions

Object instances support the following member function:

• bool ice_isA(string id)

Returns true if the object implements the given interface type, or false 
otherwise. This function cannot be invoked on a nil object.

Global Functions

The following global functions are provided:

• string generateUUID()

Returns a new UUID.

• string identityToString(Ice::Identity id)

Converts an identity into its string representation.
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• string lowercase(string str)

Returns a new string converted to lowercase.

• string proxyToString(Ice::ObjectPrx prx)

Returns the string representation of the given proxy.

• Ice::Identity stringToIdentity(string str)

Converts a string into an Ice::Identity.

• Ice::ObjectPrx stringToProxy(string str)

Converts a string into a proxy.

• string typeOf(val)

Returns the formal Slice type of the argument.

40.9 Summary

FreezeScript provides tools that ease the maintenance of Freeze databases. The 
transformdb tool simplifies the task of migrating a database when its persis-
tent types have changed, offering an automatic mode requiring no manual inter-
vention, and a custom mode in which scripted changes are possible. Database 
inspection and reporting is accomplished using the dumpdb tool, which supports 
a number of operational modes including a scripting capability.
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Chapter 41
IceSSL

41.1 Chapter Overview

In this chapter we present IceSSL, an optional security component for Ice applica-
tions. Section 41.2 provides an overview of the SSL protocol and the infrastruc-
ture required to support it. Section 41.3 discusses the installation requirements for 
each supported language mapping, while Section 41.4 describes typical configura-
tion scenarios. For programs that need to interact directly with IceSSL, the appli-
cation programming interface is covered in Section 41.5 and Section 41.6. To set 
up your own certificate authority, you can use the utilities described in 
Section 41.7.

41.2 Introduction

Security is an important consideration for many distributed applications, both 
within corporate intranets as well as over untrusted networks, such as the Internet. 
The ability to protect sensitive information, ensure its integrity, and verify the 
identities of the communicating parties is essential for developing secure applica-
tions. With those goals in mind, Ice includes the IceSSL plug-in that provides 
these capabilities using the Secure Socket Layer (SSL) protocol.1



1656 IceSSL

41.2.1 SSL Overview

SSL is the protocol that enables Web browsers to conduct secure transactions and 
therefore is one of the most commonly used protocols for secure network commu-
nication. You do not need to know the technical details of the SSL protocol in 
order to use IceSSL successfully (and those details are outside the scope of this 
text). However, it would be helpful to have a high-level understanding of how the 
protocol works and the infrastructure required to support it. (For more information 
on the SSL protocol, see [24].)

SSL provides a secure environment for communication (without sacrificing 
too much performance) by combining a number of cryptographic techniques:

• public key encryption

• symmetric (shared key) encryption

• message authentication codes

• digital certificates

When a client establishes an SSL connection to a server, a handshake is 
performed. During a typical handshake, digital certificates that identify the 
communicating parties are validated, and symmetric keys are exchanged for 
encrypting the session traffic. Public key encryption, which is too slow to be used 
for the bulk of a session’s data transfer, is used heavily during the handshaking 
phase. Once the handshake is complete, SSL uses message authentication codes to 
ensure data integrity, allowing the client and server to communicate at will with 
reasonable assurance that their messages are secure.

41.2.2 Public Key Infrastructure

Security requires trust, and public key cryptography by itself does nothing to 
establish trust. SSL addresses the issue of trust using Public Key Infrastructure 
(PKI), which binds public keys to identities using certificates. A certificate issuer 
creates a certificate for an entity, called the subject. The subject is often a person, 
but it may also be a computer or a specific application. The subject’s identity is 
represented by a distinguished name, which includes information such as the 
subject’s name, organization and location. A certificate alone is not sufficient to 

1. IceSSL is available for C++, Java and .NET applications. Python, PHP and Ruby applications 
can use IceSSL for C++ via configuration.
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establish the subject’s identity, however, as anyone can create a certificate for a 
particular distinguished name.

In order to authenticate a certificate, we need a third-party to guarantee that 
the certificate belongs to the subject described by the distinguished name. This 
third party, called a Certificate Authority (CA), expresses this guarantee by using 
its own private key to sign the subject’s certificate. Combining the CA’s certificate 
with the subject’s certificate forms a certificate chain that provides SSL with most 
of the information it needs to authenticate the remote peer. In many cases, the 
chain contains only the aforementioned two certificates, but it is also possible for 
the chain to be longer when the root CA issues a certificate that the subject may 
use to sign other certificates. Regardless of the length of the chain, this scheme 
can only work if we trust that the root CA has sufficiently verified the identity of 
the subject before issuing the certificate.

An implementation of the SSL protocol also needs to know which root CAs 
we trust. An application supplies that information as a list of certificates repre-
senting the trusted root CAs. With that list in hand, the SSL implementation 
authenticates a peer by obtaining the peer’s certificate chain and examining it 
carefully for validity. If we view the chain as a hierarchy with the root CA certifi-
cate at the top and the peer’s certificate at the bottom, we can describe SSL’s vali-
dation activities as follows:

• The root CA certificate must be self-signed and be present among the applica-
tion’s trusted CA certificates.

• All other certificates in the chain must be signed by the one immediately 
preceding it.

• The certificates must not be expired or revoked.

These tests certify that the chain is valid, but applications often require the chain 
to undergo more intensive scrutiny (see Section 41.4.6).

Commercial CAs exist to supply organizations with a reliable source of certif-
icates, but in many cases a private CA is completely sufficient. You can create and 
manage your CA using freely-available tools, and in fact Ice includes a collection 
of utilities that simplify this process (see Section 41.7).

Depending on your implementation language, it may also possible to avoid the 
use of certificates altogether; encryption is still used to obscure the session traffic, 
but the benefits of authentication are sacrificed in favor of reduced complexity and 
administration.

For more information on PKI, see [5].
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41.2.3 Requirements
Integrating IceSSL into your application often requires no changes to your source 
code, but does involve the following administrative tasks:

• creating a public key infrastructure (if necessary)

• configuring the IceSSL plug-in

• modifying your application’s configuration to install the IceSSL plug-in and 
use secure connections

The remainder of this chapter discusses plug-in configuration and programming.

41.3 Using IceSSL

Incorporating IceSSL into your application requires installing the plug-in, config-
uring it according to your security requirements, and creating SSL endpoints.

41.3.1 Installing IceSSL
Ice supports a generic plug-in facility that allows extensions (such as IceSSL) to 
be installed dynamically without changing the application source code. The 
Ice.Plugin property (see Appendix D) provides language-specific information 
that enables the Ice run time to install a plug-in.

C++ Applications

The executable code for the IceSSL C++ plug-in resides in a shared library on 
Unix and a dynamic link library (DLL) on Windows. The format for the 
Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=IceSSL:createIceSSL

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value IceSSL:createIceSSL is sufficient 
to allow the Ice run time to locate the IceSSL library (on both Unix and Windows) 
and initialize the plug-in. The only requirement is that the library reside in a direc-
tory that appears in the shared library path (LD_LIBRARY_PATH on most Unix 
platforms, PATH on Windows).

Additional configuration properties are usually necessary as well; see 
Section 41.4.1 for more information.
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Java Applications

The format for the Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=IceSSL.PluginFactory

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value IceSSL.PluginFactory is the 
name of a class that allows the Ice run time to initialize the plug-in. The IceSSL 
classes are included in Ice.jar, therefore no additional changes to your 
CLASSPATH are necessary.

Additional configuration properties are usually necessary as well; see 
Section 41.4.2 for more information.

.NET Applications

The format for the Ice.Plugin property is shown below:

Ice.Plugin.IceSSL=C:/Ice/bin/IceSSL.dll:IceSSL.PluginFactory

The last component of the property name (IceSSL) becomes the plug-in’s offi-
cial identifier for configuration purposes, but the IceSSL plug-in requires its iden-
tifier to be IceSSL. The property value contains the file name of the IceSSL 
assembly as well as the name of a class, IceSSL.PluginFactory, that allows 
the Ice run time to initialize the plug-in. As described in Appendix D, you may 
also specify the full assembly name instead of the file name in an Ice.Plugin 
property.

Additional configuration properties are usually necessary as well; see 
Section 41.4.3 for more information.

Ice Touch Applications

The IceSSL plug-in is included in the Ice Touch run time and installed automati-
cally, therefore it is not necessary to explicitly load it. See Section 41.4.4 for more 
information on configuring IceSSL in Ice Touch applications.

41.3.2 Creating SSL Endpoints

Installing the IceSSL plug-in enables you to use a new protocol, ssl, in your 
endpoints. For example, the following endpoint list creates a TCP endpoint, an 
SSL endpoint, and a UDP endpoint:

MyAdapter.Endpoints=tcp -p 4063:ssl -p 4064:udp -p 4063
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As this example demonstrates, it is possible for a UDP endpoint to use the same 
port number as a TCP or SSL endpoint, because UDP is a different protocol and 
therefore has its own set of ports. It is not possible for a TCP endpoint and an SSL 
endpoint to use the same port number, because SSL is essentially a layer over 
TCP.

Using SSL in stringified proxies is equally straightforward:

MyProxy=MyObject:tcp -p 4063:ssl -p 4064:udp -p 4063

For more information on proxies and endpoints, see Appendix E.

41.3.3 Security Considerations
Defining an object adapter’s endpoints to use multiple protocols, as shown in the 
example in Section 41.3.2, has obvious security implications. If your intent is to 
use SSL to protect session traffic and/or restrict access to the server, then you 
should only define SSL endpoints.

There can be situations, however, in which insecure endpoint protocols are 
advantageous. Figure 41.1 illustrates an environment in which TCP endpoints are 
allowed behind the firewall, but external clients are required to use SSL.

Figure 41.1. An application of multiple protocol endpoints.

The firewall in Figure 41.1 is configured to block external access to TCP port 
4063 and to forward connections to port 4064 to the server machine.

One reason for using TCP behind the firewall is that it is more efficient than 
SSL and requires less administrative work. Of course, this scenario assumes that 
internal clients can be trusted, which is not true in many environments.

For more information on using SSL in complex network architectures, see 
Chapter 42.

Client

Server Firewall Client

tcp -p 4063
ssl -p 4064

tcp -p 4063
ssl -p 4064
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41.4 Configuring IceSSL

After installing IceSSL as described in Section 41.3.1, an application typically 
needs to define a handful of additional properties to configure settings such as the 
location of certificate and key files. This section provides an introduction to 
configuring the plug-in for each of the supported language mappings. For a 
complete listing of the IceSSL configuration properties, see Appendix D.

41.4.1 C++

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey.pem
IceSSL.KeyFile=privkey.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the default 
location of your certificate and key files. The three properties that follow it define 
the files containing the program’s certificate, private key, and trusted CA certifi-
cate, respectively. This example assumes the files contain RSA keys, and IceSSL 
requires the files to use the Privacy Enhanced Mail (PEM) encoding. Finally, the 
IceSSL.Password property specifies the password of the private key.

Note that it is a security risk to define a password in a plain text file, such as an 
Ice configuration file, because anyone who can gain read access to your configura-
tion file can obtain your password. See Section 41.6.1 for alternate ways to supply 
IceSSL with a password.

DSA Example

If you used DSA to generate your keys, one additional property is necessary:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey_dsa.pem
IceSSL.KeyFile=privkey_dsa.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password
IceSSL.Ciphers=DEFAULT:DSS
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The IceSSL.Ciphers property adds support for DSS authentication to the 
plug-in’s default set of ciphersuites. See Appendix D for more information on this 
property.

RSA and DSA Example

It is also possible to specify certificates and keys for both RSA and DSA by 
including two filenames in the IceSSL.CertFile and IceSSL.KeyFile 
properties. The filenames must be separated using the platform’s path separator. 
The example below demonstrates the Unix separator (a colon):

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=pubkey_rsa.pem:pubkey_dsa.pem
IceSSL.KeyFile=privkey_rsa.pem:privkey_dsa.pem
IceSSL.CertAuthFile=ca.pem
IceSSL.Password=password
IceSSL.Ciphers=DEFAULT:DSS

On Windows, you would use a semicolon to separate the filenames.

ADH Example

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH 
is not a good choice in most cases because, as its name implies, there is no authen-
tication of the communicating parties, and it is vulnerable to man-in-the-middle 
attacks. However, it still provides encryption of the session traffic and requires 
very little administration and therefore may be useful in certain situations. The 
configuration properties shown below demonstrate how to use ADH:

Ice.Plugin.IceSSL=IceSSL:createIceSSL
IceSSL.Ciphers=ADH
IceSSL.VerifyPeer=0

The IceSSL.Ciphers property enables support for ADH, which is disabled by 
default.

The IceSSL.VerifyPeer property changes the plug-in’s default behavior 
with respect to certificate verification. Without this setting, IceSSL rejects a 
connection if the peer does not supply a certificate (as is the case with ADH).

See Appendix D for more information on these properties.

41.4.2 Java
IceSSL uses Java’s native format for storing keys and certificates: the keystore.
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A keystore is represented as a file containing key pairs and associated certificates, 
and is usually administered using the keytool utility supplied with the Java run 
time. Keystores serve two roles in Java’s SSL architecture:

1. A keystore containing a key pair identifies the peer and is usually closely 
guarded.

2. A keystore containing public certificates represents the identities of trusted 
peers and can be freely shared. These keystores are also referred to as “trust-
stores” when they are used to store only trusted certificate chains.

A single keystore file can fulfill both of these purposes.

Java supports a pluggable architecture for keystore implementations in which 
a system property selects a particular implementation as the default keystore type. 
IceSSL uses the default keystore type unless otherwise specified.

A password is assigned to each key pair in a keystore, as well as to the 
keystore itself. IceSSL must be provided with the password for the key pair, but 
the keystore password is optional. If a keystore password is specified, it is used 
only to verify the keystore’s integrity. IceSSL requires that all of the key pairs in a 
keystore have the same password.

Our first example shows the properties that are sufficient in many situations:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=keys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

IceSSL resolves the filenames defined in its configuration properties as follows:

1. Attempt to open the file as a class loader resource. This is especially useful for 
deploying applications with special security restrictions, such as applets.

2. Attempt to open the file in the local file system.

3. If IceSSL.DefaultDir is defined, prepend its value and try steps 1 and 2 
again. The IceSSL.DefaultDir property is a convenient way to specify 
the default location of your keystore and truststore files.

The IceSSL.Password property specifies the password of the key pair. Note 
that it is a security risk to define a password in a plain text file, such as an Ice 
configuration file, because anyone who can gain read access to your configuration 
file can obtain your password. Section 41.6.1 describes a more secure way to 
configure the plug-in.
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DSA Example

Java supports both RSA and DSA keys. No additional properties are necessary to 
use DSA:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Keystore=dsakeys.jks
IceSSL.Truststore=ca.jks
IceSSL.Password=password

ADH Example

The following example uses ADH (the Anonymous Diffie-Hellman cipher). ADH 
is not a good choice in most cases because, as its name implies, there is no authen-
tication of the communicating parties, and it is vulnerable to man-in-the-middle 
attacks. However, it still provides encryption of the session traffic and requires 
very little administration and therefore may be useful in certain situations. The 
configuration properties shown below demonstrate how to use ADH:

Ice.Plugin.IceSSL=IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.Ciphers=NONE (DH_anon)
IceSSL.VerifyPeer=0

The IceSSL.Ciphers property enables support for ADH, which is disabled by 
default.

The IceSSL.VerifyPeer property changes the plug-in’s default behavior 
with respect to certificate verification. Without this setting, IceSSL rejects a 
connection if the peer does not supply a certificate (as is the case with ADH).

See Appendix D for more information on these properties.

41.4.3 .NET

The Common Language Runtime (CLR) in .NET uses certificate stores as the 
persistent repositories of certificates and keys. Furthermore, the CLR maintains 
two distinct sets of certificate stores, one for the current user and another for the 
local machine. Although it is possible to load a certificate and its corresponding 
private key from a regular file, the CLR requires trusted CA certificates to reside 
in an appropriate certificate store.
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Managing Certificates with the Microsoft Management Console

On Windows, you can use the Microsoft Management Console (MMC) to browse 
the contents of the various certificate stores. To start the console, run MMC.EXE 
from a command window, or choose Run from the Start menu and enter 
MMC.EXE.

Once the console is running, you need to install the Certificates “snap-in” by 
choosing Add/Remove Snap-in from the File menu. Click the Add button, choose 
Certificates in the popup window and click Add. If you wish to manage certifi-
cates for the current user, select My Current Account and click Finish. To manage 
certificates for the local computer, select Computer Account and click Next, then 
select Local Computer and click Finish.

When you have finished adding snap-ins, close the Add Standalone Snap-in 
window and click OK on the Add/Remove Snap-in window. Your Console Root 
window now contains a tree structure that you can expand to view the available 
certificate stores. If you have a certificate in a file that you want to add to a store, 
click on the desired store, then open the Action menu and select All Tasks/Import.

Using Certificate Files

Our first example demonstrates how to configure IceSSL with a file that contains 
the program’s certificate and key:

Ice.Plugin.IceSSL=IceSSL.dll:IceSSL.PluginFactory
IceSSL.DefaultDir=/opt/certs
IceSSL.CertFile=cert.pfx
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the default 
location of your certificate file. This file must use the Personal Information 
Exchange (PFX, also known as PKCS#12) format and contain both a certificate 
and its corresponding private key. The IceSSL.Password property specifies 
the password used to secure the file.

Note that it is a security risk to define a password in a plain text file, such as an 
Ice configuration file, because anyone who can gain read access to your configura-
tion file can obtain your password. More secure methods of configuring the 
plug-in are described in the next section and in Section 41.6.1.

This configuration assumes that any trusted CA certificates necessary to 
authenticate the program’s peers are already installed in an appropriate certificate 
store. You may also use a configuration property to automatically import a certifi-
cate from a file, as described in a subsequent section below.
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Using Certificate Stores

If the program’s certificate and private key are already installed in a certificate 
store, you can select it using the IceSSL.FindCert configuration property as 
shown in the following example:

Ice.Plugin.IceSSL=IceSSL.dll:IceSSL.PluginFactory
IceSSL.FindCert.LocalMachine.My=subject:"Quote Server"

An IceSSL.FindCert property executes a query in a particular certificate 
store and selects all of the certificates that match the given criteria. In the example 
above, the location of the certificate store is LocalMachine, and the store’s 
name is My. When using MMC to browse the certificate stores, this specification 
is equivalent to the store “Personal” in the location “Certificates (Local 
Computer).”

The other legal value for the location component of the property name is 
CurrentUser. Table 41.1 shows the valid values for the store name component 
and their equivalents in MMC.

The search criteria consists of name:value pairs that perform case-insensitive 
comparisons against the fields of each certificate in the specified store, and the 
special property value * selects every certificate in the store. Typically, however, 

Table 41.1. Certificate store names.

Property Name MMC Name

AddressBook Other People

AuthRoot Third-Party Root Certification Authorities

CertificateAuthority Intermediate Certification Authorities

Disallowed Untrusted Certificates

My Personal

Root Trusted Root Certification Authorities

TrustedPeople Trusted People

TrustedPublisher Trusted Publishers
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the criteria should select a single certificate. In a server, IceSSL must supply the 
CLR with the certificate that represents the server’s identity; if a configuration 
matches several certificates, IceSSL chooses one (in an undefined manner) and 
logs a warning to notify you of the situation.

Selecting a certificate from a store is more secure than using a certificate file 
via the IceSSL.CertFile property because it is not necessary to specify a 
plain-text password. MMC prompts you for the password when initially importing 
a certificate into a store, so the password is not required when an application uses 
that certificate to identify itself.

For complete details about the syntax of the IceSSL.FindCert property, 
see its description in Appendix D.

Importing Certificates

IceSSL can be configured to import a certificate into a particular store. The Ice 
demos and test suites use this capability to ensure that the CA certificate is 
present, which avoids the need for a user to manually import the certificate using 
MMC before she could use the Ice sample programs and tests.

The IceSSL.ImportCert property uses the same format for its name as 
the IceSSL.FindCert property described above, in that the certificate store’s 
location and name are part of the property name:

IceSSL.ImportCert.LocalMachine.AuthRoot=cacert.pem

The property’s value is the name of a certificate file and an optional password. If a 
file is protected with a password, append the password to the property value using 
a semicolon as the separator. IceSSL uses the value of IceSSL.DefaultDir 
to complete the file name if necessary. The CLR accepts a number of encoding 
formats for the certificate, including PEM, DER and PFX.

The store name should be chosen with care. When installing a trusted CA 
certificate, authentication succeeds only when the certificate is installed into one 
of the following stores:

• LocalMachine.Root

• LocalMachine.AuthRoot

• CurrentUser.Root

Note that administrative privileges are required when installing a certificate into a 
LocalMachine store.

If you specify a store name other than those listed in Table 41.1, IceSSL 
creates a new store with the given name and adds the certificate to it. Once 



1668 IceSSL

installed in the specified store, the application (or the user) is responsible for 
removing the certificate when it is no longer necessary.

41.4.4 Ice Touch
In Ice Touch, certificate files are loaded from the application’s resource bundle. If 
the application’s target platform is Mac OS, certificate files can also be loaded 
directly from the file system. Consider the following properties:

IceSSL.DefaultDir=certs
IceSSL.CertAuthFile=cacert.der
IceSSL.CertFile=cert.pfx
IceSSL.Password=password

The IceSSL.DefaultDir property is a convenient way to specify the location 
of your certificate files. Defining IceSSL.DefaultDir means IceSSL 
searches for certificate files relative to the specified directory. For the properties in 
the example above, IceSSL composes the pathnames certs/cacert.der and 
certs/cert.pfx. If IceSSL.DefaultDir is not defined, IceSSL uses the 
certificate file pathnames exactly as they are supplied.

As mentioned earlier, IceSSL has different semantics for locating certificate 
files depending on the target platform. For the iPhone and iPhone simulator, 
IceSSL attempts to open a certificate file in the application’s resource bundle as 
Resources/DefaultDir/file if IceSSL.DefaultDir is defined, or as 
simply Resources/file otherwise. If the target platform is Mac OS and the 
certificate file cannot be found in the resource bundle, IceSSL also attempts to 
open the file in the file system as DefaultDir/file if a default directory is 
specified, or as simply file otherwise.

IceSSL requires that the CA certificate file specified by IceSSL.CertAu-
thFile use the DER format. The certificate file in IceSSL.CertFile must 
use the Personal Information Exchange (PFX, also known as PKCS#12) format 
and contain both a certificate and its corresponding private key. The 
IceSSL.Password property specifies the password used to secure the certifi-
cate file.

Keychains

IceSSL imports the certificate specified by IceSSL.CertFile into a keychain. 
IceSSL uses the login keychain by default unless you choose a different one by 
defining the IceSSL.Keychain property:

IceSSL.Keychain=Test Keychain
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The login keychain is the user’s default keychain, which is normally unlocked 
after logging into the system. IceSSL does not usually require a password to 
import a certificate into the login keychain. However, if your login keychain 
is not unlocked automatically, or if you have selected a different keychain, you can 
supply a password using the IceSSL.KeychainPassword property:

IceSSL.KeychainPassword=password

41.4.5 Ciphersuites

A ciphersuite represents a particular combination of encryption, authentication 
and hashing algorithms. The IceSSL plug-ins for C++ and Java allow you to 
configure the ciphersuites that their underlying SSL engines are allowed to nego-
tiate during handshaking with a peer. By default, IceSSL uses the underlying 
engine’s default ciphersuites, but you can define a property to customize the list as 
we demonstrated earlier in this section with the ADH examples. Normally the 
default configuration is chosen to eliminate relatively insecure ciphersuites such 
as ADH, which is the reason it must be explicitly enabled.

Configuring Ciphersuites in C++

The value of the IceSSL.Ciphers property is given directly to the low-level 
OpenSSL library, on which IceSSL is based. Therefore, OpenSSL determines the 
allowable ciphersuites, which in turn depend on how the OpenSSL distribution 
was compiled. You can obtain a complete list of the supported ciphersuites using 
the openssl command:

$ openssl ciphers

This command will likely generate a long list. To simplify the selection process, 
OpenSSL supports several classes of ciphers, as shown in Table 41.2.

Table 41.2. Cipher classes.

Class Description

ALL All possible combinations.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.
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Classes and ciphers can be excluded by prefixing them with an exclamation point. 
The special keyword @STRENGTH sorts the cipher list in order of their strength, 
so that SSL gives preference to the more secure ciphers when negotiating a cipher 
suite. The @STRENGTH keyword must be the last element in the list.

For example, here is a good value for the cipherlist attribute:

ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

This value excludes the ciphers with low bit strength and known problems, and 
orders the remaining ciphers according to their strength.

Note that no warning is given if an unrecognized cipher is specified.

Configuring Ciphersuites in Java

IceSSL for Java interprets the value of IceSSL.Ciphers as a sequence of 
expressions that filter the selected ciphersuites using name and pattern matching. 
If the property is not defined, the Java security provider’s default ciphersuites are 
used. Table 41.3 defines the valid expressions that may appear in the property 
value.

To determine the set of enabled ciphersuites, the plug-in begins with a list of 
ciphersuite names containing the default set as determined by the security 

Table 41.3. Ciphersuite filter expressions.

Expression Description

NONE Disables all ciphersuites. If specified, it must appear first.

ALL Enables all supported ciphersuites. If specified, it must appear 
first. This expression should be used with caution, as it may 
enable low-security ciphersuites

NAME Enables the ciphersuite matching the given name.

!NAME Disables the ciphersuite matching the given name.

(EXP) Enables ciphersuites whose names contain the regular expression 
EXP.

!(EXP) Disables ciphersuites whose names contain the regular expres-
sion EXP.
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provider. The expressions in the property value add and remove ciphersuites from 
this list and are evaluated in the order of appearance. For example, consider the 
following property definition:

IceSSL.Ciphers=NONE (RSA.*AES) !(EXPORT)

The expressions in this property have the following effects:

• NONE clears the list of enabled ciphersuites.

• (RSA.*AES) is a regular expression that enables ciphersuites whose names 
contain the string “RSA” followed by “AES”, meaning ciphersuites using 
RSA authentication and AES encryption.

• !(EXPORT) is a regular expression that disables any of the selected cipher-
suites whose names contain the string “EXPORT”, meaning ciphersuites 
having export-quality strength.

As another example, this property adds anonymous Diffie-Hellman to the default 
set of ciphersuites and disables export ciphersuites:

IceSSL.Client.Ciphers=(DH_anon) !(EXPORT)

Finally, this example selects only one ciphersuite:

IceSSL.Client.Ciphers=NONE SSL_RSA_WITH_RC4_128_SHA

41.4.6 Trust
As described in Section 41.2.2, declaring that you trust a certificate authority 
implies that you trust any peer whose certificate was signed directly or indirectly 
by that certificate authority. It is necessary to use this broad definition of trust in 
some applications, such as a public Web server. In more controlled environments, 
it is a good idea to restrict access as much as possible, and IceSSL provides a 
number of ways for you to do that.

Trusted Peers

After the low-level SSL engine has completed its authentication process, IceSSL 
can be configured to take additional steps to verify whether a peer should be 
trusted. The IceSSL.TrustOnly family of properties (see Appendix D) 
defines a collection of acceptance and rejection filters that IceSSL applies to the 
distinguished name of a peer’s certificate in order to determine whether to allow 
the connection to proceed. IceSSL permits the connection if the peer’s distin-
guished name matches any of the acceptance filters and does not match any of the 
rejection filters.
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A distinguished name uniquely identifies a person or entity and is generally 
represented in the following textual form:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.",
OU=Servers, CN=Quote Server

Suppose we are configuring a client to communicate with the server whose distin-
guished name is shown above. If we know that the client is allowed to communi-
cate only with this server, we can enforce this rule using the following property:

IceSSL.TrustOnly=O="ZeroC, Inc.", OU=Servers, CN=Quote Server

With this property in place, IceSSL allows a connection to proceed only if the 
distinguished name in the server’s certificate matches this filter. The property may 
contain multiple filters, separated by semicolons, if the client needs to communi-
cate with more than one server. Additional variations of the property are also 
supported, as described in Appendix D.

If the IceSSL.TrustOnly properties do not provide the selectivity you 
require, the next step is to install a custom certificate verifier (see Section 41.5).

Verification Depth

In order to authenticate a peer, SSL obtains the peer’s certificate chain, which 
includes the peer’s certificate as well as that of the root CA. SSL verifies that each 
certificate in the chain is valid, but there still remains a subtle security risk. 
Suppose that we have identified a trusted root CA (via its certificate), and a peer 
has supplied a valid certificate chain signed by our trusted root CA. It is possible 
for an attacker to obtain a special signing certificate that is signed by our root CA 
and therefore trusted implicitly. The attacker can use this certificate to sign fraud-
ulent certificates with the goal of masquerading as a trusted peer, presumably for 
some nefarious purpose.

We could use the IceSSL.TrustOnly properties described above in an 
attempt to defend against such an attack. However, the attacker could easily manu-
facture a certificate containing a distinguished name that satisfies the trust proper-
ties.

If you know that all trusted peers present certificate chains of a certain length, 
set the property IceSSL.VerifyDepthMax so that IceSSL automatically 
rejects longer chains. The default value of this property is two, therefore you may 
need to set it to a larger value if you expect peers to present longer chains.

In situations where you cannot make assumptions about the length of a peer’s 
certificate chain, yet you still want to examine the chain before allowing the 
connection, you should install a custom certificate verifier (see Section 41.5).
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41.4.7 Secure Proxies

Proxies may contain any combination of secure and insecure endpoints. An appli-
cation that requires secure communication can guarantee that proxies it manufac-
tures itself, such as those created by calling stringToProxy, contain only secure 
endpoints. However, the application cannot make the same assumption about 
proxies received as the result of a remote invocation.

The simplest way to guarantee that all proxies use only secure endpoints is to 
define the following configuration property:

Ice.Override.Secure=1

Setting this property is equivalent to invoking ice_secure(true) on every 
proxy. When enabled, attempting to establish a connection using a proxy that does 
not contain a secure endpoint results in NoEndpointException.

If you want the default behavior of proxies to give precedence to secure 
endpoints, you can set this property instead:

Ice.Default.PreferSecure=1

Note that proxies may still attempt to establish connections to insecure endpoints, 
but they try all secure endpoints first. This is equivalent to invoking 
ice_preferSecure(true) on a proxy.

Refer to Section 32.11.2 for more information on these proxy methods, and 
Section 32.11.4 for details on the connection establishment process used by the 
Ice run time.

41.4.8 Diagnostics

You can use two configuration properties to obtain more information about the 
plug-in’s activities. Setting IceSSL.Trace.Security=1 enables the 
plug-in’s diagnostic output, which includes a variety of messages regarding events 
such as ciphersuite selection, peer verification and trust evaluation. The other 
property, Ice.Trace.Network, determines how much information is logged 
about network events such as connections and packets. Note that the output gener-
ated by Ice.Trace.Network also includes other transports such as TCP and 
UDP.

System Logging in Java

In Java, you can use a system property that displays a great deal of information 
about SSL certificates and connections, including the ciphersuite that is selected 
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for use by each connection. For example, the following command sets the system 
property that activates the diagnostics:

$ java -Djavax.net.debug=ssl MyProgram

System Logging in .NET

Enabling additional tracing output in .NET requires the creation of an XML file 
such as the one shown below:

<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
    <system.diagnostics>
        <trace autoflush="true"/>
        <sources>
            <source name="System.Net">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
            <source name="System.Net.Sockets">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
            <source name="System.Net.Cache">
                <listeners>
                    <add name="System.Net"/>
                </listeners>
            </source>
        </sources>
        <sharedListeners>
            <add
            name="System.Net"
            type="System.Diagnostics.TextWriterTraceListener"
            initializeData="trace.txt"
            />
        </sharedListeners>
        <switches>
            <add name="System.Net" value="Verbose"/>
            <add name="System.Net.Sockets" value="Verbose"/> 
         
            <add name="System.Net.Cache" value="Verbose"/>
        </switches>
    </system.diagnostics>
</configuration>
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In this example, the output is stored in the file trace.txt. To activate tracing, 
give the XML file the same name as your executable with a .config extension 
as in server.exe.config, and place it in the same directory as the execut-
able.

41.5 Programming with IceSSL

The configuration properties described in Section 41.4 are flexible enough to 
satisfy the requirements of many applications, and IceSSL supports a public API 
that offers even more functionality for those applications that need it.

41.5.1 C++

This section describes the C++ API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native C++ 
class IceSSL::Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr =
    communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin =
    IceSSL::PluginPtr::dynamicCast(plugin);

The Plugin class supports the following methods:

namespace IceSSL
{
class Plugin : public Ice::Plugin
{
public:
    virtual void setContext(SSL_CTX*) = 0;
    virtual SSL_CTX* getContext() = 0;

    virtual void setCertificateVerifier(
        const CertificateVerifierPtr&) = 0;

    virtual void setPasswordPrompt(
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        const PasswordPromptPtr&) = 0;
};
typedef IceUtil::Handle<Plugin> PluginPtr;
}

The setContext and getContext methods are rarely used in practice; see 
Section 41.6 for more information. The setCertificateVerifier method 
installs a custom certificate verifier object that the plug-in invokes for each new 
connection. The setPasswordPrompt method provides an alternate way to 
supply IceSSL with passwords, as discussed in Section 41.6.

Obtaining Connection Information

You can obtain information about any SSL connection using the Ice::Connec-
tion::getInfo operation (see Section 36.5). It returns an IceSSL::Native-
ConnectionInfo class instance that derives from the Slice class 
IceSSL::ConnectionInfo. The Slice base class is defined as follows:

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the C++ class NativeConnectionInfo is defined as follows:
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class NativeConnectionInfo : public ConnectionInfo {
public:
    std::vector<CertificatePtr> nativeCerts;
};

typedef IceUtil::Handle<NativeConnectionInfo>
                            NativeConnectionInfoPtr;

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 41.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 41.4.6). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

namespace IceSSL
{
class CertificateVerifier : public IceUtil::Shared
{
public:

    virtual bool verify(const NativeConnectionInfoPtr&) = 0;
};
typedef IceUtil::Handle<CertificateVerifier>
    CertificateVerifierPtr;
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a ConnectionInfo 
object that describes the connection’s attributes.

The nativeCerts member is a vector of certificates representing the peer’s 
certificate chain. The vector is structured so that the first element is the peer’s 
certificate, followed by its signing certificates in the order they appear in the 
chain, with the root CA certificate as the last element. The vector is empty if the 
peer did not present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated for 
this connection. The local and remote address information is provided in loca-
lAddress and remoteAddress2, respectively. The incoming member indicates 
whether the connection is inbound (a server connection) or outbound (a client 
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connection). Finally, if incoming is true, the adapterName member supplies the 
name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

class Verifier : public IceSSL::CertificateVerifier
{
public:

    bool verify(const IceSSL::NativeConnectionInfo& info)
    {
        if (!info.nativeCerts.empty())
        {
            string dn = info.nativeCerts[0].getIssuerDN();
            transform(dn.begin(), dn.end(), dn.begin(),
                      ::tolower);
            if (dn.find("zeroc") != string::npos)
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plug-in interface:

IceSSL::PluginPtr sslPlugin = // ...
sslPlugin->setCertificateVerifier(new Verifier);

You should install the verifier before any SSL connections are established.
See Section 41.6.2 for more information on installing a certificate verifier.

Certificates

The ConnectionInfo class contains a vector of Certificate objects 
representing the peer’s certificate chain. Certificate is a reference-counted 

2. A bug in Windows XP prevents IceSSL from obtaining the remote address information when 
using IPv6.
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convenience class that hides the complexity of the underlying OpenSSL API. Its 
methods are inspired by the Java class X509Certificate:

namespace IceSSL
{
class Certificate : public IceUtil::Shared
{
public:

    Certificate(X509*);

    static CertificatePtr load(const string&);
    static CertificatePtr decode(const string&);

    bool operator==(const Certificate&) const;
    bool operator!=(const Certificate&) const;

    PublicKeyPtr getPublicKey() const;

    bool verify(const PublicKeyPtr&) const;

    string encode() const;

    bool checkValidity() const;
    bool checkValidity(const IceUtil::Time&) const;

    IceUtil::Time getNotAfter() const;
    IceUtil::Time getNotBefore() const;

    string getSerialNumber() const;

    DistinguishedName getIssuerDN() const;
    vector<pair<int, string> > getIssuerAlternativeNames();

    DistinguishedName getSubjectDN() const;
    vector<pair<int, string> > getSubjectAlternativeNames();

    int getVersion() const;

    string toString() const;

    X509* getCert() const;
};
typedef IceUtil::Handle<Certificate> CertificatePtr;
}
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The more commonly-used methods are described below; refer to the documenta-
tion in IceSSL/Plugin.h for information on the methods that are not covered.

The static method load creates a certificate from the contents of a PEM-
encoded file. If an error occurs, the function raises IceSSL::Certifica-
teReadException; the reason member provides a description of the problem.

Use decode to obtain a certificate from a PEM-encoded string representing a 
certificate. The caller must be prepared to catch IceSSL::CertificateEn-
codingException if decode fails; the reason member provides a description 
of the problem.

The encode method creates a PEM-encoded string that represents the certifi-
cate. The return value can later be passed to decode to recreate the certificate.

The checkValidity methods determine whether the certificate is valid. 
The overloading with no arguments returns true if the certificate is valid at the 
current time; the other overloading accepts an IceUtil::Time object and 
returns true if the certificate is valid at the given time. See Appendix F.12 for more 
information on IceUtil::Time.

The getNotAfter and getNotBefore methods return instances of 
IceUtil::Time that define the certificate’s valid period.

The methods getIssuerDN and getSubjectDN supply the distinguished 
names of the certificate’s issuer (i.e., the CA that signed the certificate) and 
subject (i.e., the person or entity to which the certificate was issued). The methods 
return instances of the class IceSSL::DistinguishedName, another conve-
nience class that is described in the next section.

Finally, the toString method returns a human-readable string describing 
the certificate.

Distinguished Names

X.509 certificates use a distinguished name to identify a person or entity. The 
name is an ordered sequence of relative distinguished names that supply values for 
fields such as common name, organization, state, and country. Distinguished 
names are commonly displayed in stringified form according to the rules specified 
by RFC 2253, as shown in the following example:

C=US, ST=Florida, L=Palm Beach Gardens, O="ZeroC, Inc.",
OU=Servers, CN=Quote Server

DistinguishedName is a convenience class provided by IceSSL to simplify 
the tasks of parsing, formatting and comparing distinguished names.
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namespace IceSSL
{
class DistinguishedName
{
public:

    DistinguishedName(const std::string&);
    DistinguishedName(
        const std::list<std::pair<std::string, std::string> >&);

    bool operator==(const DistinguishedName&) const;
    bool operator!=(const DistinguishedName&) const;
    bool operator<(const DistinguishedName&) const;

    bool match(const DistinguishedName&) const;

    operator std::string() const;
};
}

The first overloaded constructor accepts a string argument representing a distin-
guished name encoded using the rules set forth in RFC 2253. The new Distin-
guishedName instance preserves the order of the relative distinguished names 
in the string. The caller must be prepared to catch IceSSL::ParseExcep-
tion if an error occurs during parsing.

The second overloaded constructor requires a list of type–value pairs repre-
senting the relative distinguished names. The new DistinguishedName 
instance preserves the order of the relative distinguished names in the list.

The overloaded operator functions operator==, operator!=, and 
operator< perform an exact match of distinguished names in which the order 
of the relative distinguished names is important. For two distinguished names to 
be equal, they must have the same relative distinguished names in the same order.

The match function performs a partial comparison that does not consider the 
order of relative distinguished names. If N1 and N2 are instances of Distin-
guishedName, N1.match(N2) returns true if all of the relative distinguished 
names in N2 are present in N1.

Finally, the string conversion operator encodes the distinguished name in the 
format described by RFC 2253.

41.5.2 Java

This section describes the Java API for the IceSSL plug-in.
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The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native Java 
interface IceSSL.Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The Plugin interface supports the following methods:

package IceSSL;

public interface Plugin extends Ice.Plugin
{
    void setContext(javax.net.ssl.SSLContext context);
    javax.net.ssl.SSLContext getContext();

    void setCertificateVerifier(CertificateVerifier verifier);
    CertificateVerifier getCertificateVerifier();

    void setPasswordCallback(PasswordCallback callback);
    PasswordCallback getPasswordCallback();

    void setKeystoreStream(java.io.InputStream stream);

    void setTruststoreStream(java.io.InputStream stream);

    void addSeedStream(java.io.InputStream stream);
}

The methods are summarized below:

• setContext
getContext

These methods are rarely used in practice; see Section 41.6 for more informa-
tion.

• setCertificateVerifier
getCertificateVerifier

These methods install and retrieve a custom certificate verifier object that the 
plug-in invokes for each new connection. getCertificateVerifier 
returns null if a verifier has not been set.
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• setPasswordCallback
getPasswordCallback

These methods install and retrieve a password callback object that supplies 
IceSSL with passwords, as discussed in Section 41.6. getPasswordCall-
back returns null if a callback has not been set.

• setKeystoreStream

Supplies an input stream for a keystore containing the key pair. The 
IceSSL.Keystore property is ignored if this method is called with a non-
null value. You may supply the same input stream object to this method and to 
setTruststoreStream if your keystore contains your key pair as well as 
your trusted CA certificates.

• setTruststoreStream

Supplies an input stream for a truststore containing your trusted CA certifi-
cates. The IceSSL.Truststore property is ignored if this method is 
called with a non-null value. You may supply the same input stream object to 
this method and to setKeystoreStream if your keystore contains your 
key pair as well as your trusted CA certificates.

• addSeedStream

Adds an input stream that supplies seed data for the random number generator. 
You may call this method multiple times if necessary.

Obtaining Connection Information

You can obtain information about any SSL connection using the Ice::Connec-
tion::getInfo operation (see Section 36.5). It returns an IceSSL.Native-
ConnectionInfo class instance that derives from the Slice class 
IceSSL::ConnectionInfo. The Slice base class is defined as follows:

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
        string remoteAddress;
        int remotePort;
    };
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};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the Java class NativeConnectionInfo is defined as follows.

public class NativeConnectionInfo extends ConnectionInfo
{
    public java.security.cert.Certificate[] nativeCerts;
}

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 41.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 41.4.6). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

package IceSSL;

public interface CertificateVerifier
{
    boolean verify(NativeConnectionInfo info);
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a NativeConnec-
tionInfo object that describes the connection’s attributes.

The nativeCerts member of the NativeConnectionInfo is an array 
of certificates representing the peer’s certificate chain. The array is structured so 
that the first element is the peer’s certificate, followed by its signing certificates in 
the order they appear in the chain, with the root CA certificate as the last element. 
This member is null if the peer did not present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated for 
this connection. The local and remote address information is provided in loca-
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lAddress and remoteAddress, respectively. The incoming member indicates 
whether the connection is inbound (a server connection) or outbound (a client 
connection). Finally, if incoming is true, the adapterName member supplies the 
name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

import java.security.cert.X509Certificate;
import javax.security.auth.x500.X500Principal;

class Verifier implements IceSSL.CertificateVerifier
{
    public boolean
    verify(IceSSL.NativeConnectionInfo info)
    {
        if (info.nativeCerts != null)
        {
            X509Certificate cert =
                (X509Certificate)info.nativeCerts[0];
            X500Principal p = cert.getIssuerX500Principal();
            if (p.getName().toLowerCase().indexOf("zeroc") != -1)
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plug-in interface:

IceSSL.Plugin sslPlugin = // ...
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established. An 
alternate way of installing the verifier is to define the IceSSL.CertVerifier 
property with the class name of your verifier implementation. IceSSL instantiates 
the class using its default constructor.

See Section 41.6.2 for more information on installing a certificate verifier.
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Converting Certificates

Java does not provide a simple way to create a certificate object from a PEM-
encoded string, therefore IceSSL offers the following convenience method:

package IceSSL;

public final class Util
{
    // ...

    public static java.security.cert.X509Certificate
    createCertificate(String certPEM)
        throws java.security.cert.CertificateException;
}

Given a string in the PEM format, createCertificate returns the equivalent 
X509Certificate object.

41.5.3 .NET
This section describes the .NET API for the IceSSL plug-in.

The Plugin Interface

Applications can interact directly with the IceSSL plug-in using the native C# 
interface IceSSL.Plugin. A reference to a Plugin object must be obtained 
from the communicator in which the plug-in is installed:

Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;

The Plugin interface supports the following methods:

namespace IceSSL
{
    using System.Security.Cryptography.X509Certificates;

    abstract public class Plugin : Ice.Plugin
    {
        abstract public void
        setCertificates(X509Certificate2Collection certs);

        abstract public void
        setCertificateVerifier(CertificateVerifier verifier);
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        abstract public CertificateVerifier
        getCertificateVerifier();

        abstract public void
        setPasswordCallback(PasswordCallback callback);

        abstract public PasswordCallback
        getPasswordCallback();
    }
}

The methods are summarized below:

• setCertificates

This method is rarely used in practice; see Section 41.6 for more information.

• setCertificateVerifier
getCertificateVerifier

These methods install and retrieve a custom certificate verifier object that the 
plug-in invokes for each new connection. getCertificateVerifier 
returns null if a verifier has not been set.

• setPasswordCallback
getPasswordCallback

These methods install and retrieve a password callback object that supplies 
IceSSL with passwords, as discussed in Section 41.6. getPasswordCall-
back returns null if a callback has not been set.

Obtaining Connection Information

You can obtain information about any SSL connection using the Ice::Connec-
tion::getInfo operation (see Section 36.5). It returns an IceSSL.Native-
ConnectionInfo class instance that derives from the Slice class 
IceSSL::ConnectionInfo. The Slice base class is defined as follows:

module Ice {
    local class ConnectionInfo {
        bool incoming;
        string adapterName;
    };

    local class IPConnectionInfo extends ConnectionInfo {
        string localAddress;
        int localPort;
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        string remoteAddress;
        int remotePort;
    };
};

module IceSSL {
    local class ConnectionInfo extends Ice::IPConnectionInfo {
        string cipher;
        Ice::StringSeq certs;
    };
};

In turn, the C# class NativeConnectionInfo is defined as follows.

public sealed class NativeConnectionInfo : ConnectionInfo
{
    public System.Security.Cryptography.
                X509Certificates.X509Certificate2[] nativeCerts;
}

Installing a Certificate Verifier

A new connection undergoes a series of verification steps before an application is 
allowed to use it. The low-level SSL engine executes the validation procedures 
described in Section 41.2.2. Assuming the certificate chain is successfully vali-
dated, IceSSL performs additional verification as directed by its configuration 
properties (see Section 41.4.6). Finally, if a certificate verifier is installed, IceSSL 
invokes it to provide the application with an opportunity to decide whether to 
allow the connection to proceed.

The CertificateVerifier interface has only one method:

namespace IceSSL
{
    public interface CertificateVerifier
    {
        bool verify(NativeConnectionInfo info);
    }
}

IceSSL rejects the connection if verify returns false, and allows it to proceed 
if the method returns true. The verify method receives a NativeConnec-
tionInfo object that describes the connection’s attributes.

The nativeCerts member of the c is an array of certificates representing 
the peer’s certificate chain. The array is structured so that the first element is the 
peer’s certificate, followed by its signing certificates in the order they appear in 
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the chain, with the root CA certificate as the last element. This member is null if 
the peer did not present a certificate chain.

The cipher member is a description of the ciphersuite that SSL negotiated for 
this connection. The local and remote address information is provided in loca-
lAddress and remoteAddr, respectively. The incoming member indicates 
whether the connection is inbound (a server connection) or outbound (a client 
connection). Finally, if incoming is true, the adapterName member supplies the 
name of the object adapter that hosts the endpoint.

The following class is a simple implementation of a certificate verifier:

using System.Security.Cryptography.X509Certificates;

class Verifier : IceSSL.CertificateVerifier
{
    public boolean
    verify(IceSSL.NativeConnectionInfo info)
    {
        if (info.nativeCerts != null)
        {
            X500DistinguishedName dn =
                    info.nativeCerts[0].IssuerName;
            if (dn.Name.ToLower().Contains("zeroc"))
            {
                return true;
            }
        }
        return false;
    }
}

In this example, the verifier rejects the connection unless the string zeroc is 
present in the issuer’s distinguished name of the peer’s certificate. In a more real-
istic implementation, the application is likely to perform detailed inspection of the 
certificate chain.

Installing the verifier is a simple matter of calling setCertificateVeri-
fier on the plug-in interface:

IceSSL.Plugin sslPlugin = // ...
sslPlugin.setCertificateVerifier(new Verifier());

You should install the verifier before any SSL connections are established. An 
alternate way of installing the verifier is to define the IceSSL.CertVerifier 
property with the class name of your verifier implementation. IceSSL instantiates 
the class using its default constructor.



1690 IceSSL

See Section 41.6.2 for more information on installing a certificate verifier.

Converting Certificates

IceSSL offers the following convenience method to create a certificate object from 
a PEM-encoded string:

namespace IceSSL
{
    using System.Security.Cryptography.X509Certificates;

    public sealed class Util
    {
        // ...

        public static X509Certificate2
        createCertificate(string certPEM);
    }
}

Given a string in the PEM format, createCertificate returns the equivalent 
X509Certificate2 object.

41.6 Advanced Topics

This section discusses some additional capabilities of the IceSSL plug-in.

41.6.1 Passwords

IceSSL may need to obtain a password if it loads a file that contains secure data, 
such as an encrypted private key. Section 41.4 showed how an application can 
supply a plain-text password in a configuration property and mentioned that doing 
so is a potential security risk. For example, if you define the property on the appli-
cation’s command-line, it may be possible for other users on the same host to see 
the password simply by obtaining a list of active processes. If you define the prop-
erty in a configuration file, the password is only as secure as the file in which it is 
defined.

In highly secure environments where access to a host is tightly restricted, a 
password can safely be supplied as a plain-text configuration property, or the need 
for the password can be eliminated altogether by using unsecured key files.
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In situations where password security is a concern, the application generally 
needs to take additional action.

Dynamic Properties

A common technique is to prompt the user for a password and transfer the user’s 
input to a configuration property that the application defines dynamically, as 
shown below:

// C++
string password = // ...
Ice::InitializationData initData;
initData.properties = Ice::createProperties(argc, argv);
initData.properties->setProperty("IceSSL.Password", password);
Ice::CommunicatorPtr comm = Ice::initialize(initData);

The password must be present in the property set before the communicator is 
initialized, since IceSSL needs the password during its initialization, and the 
communicator initializes plug-ins automatically by default.

Password Callbacks in C++

If a password is required but the application has not configured one, IceSSL 
prompts the user at the terminal during the plug-in’s initialization. This behavior is 
not suitable for some types of applications, such as a program that runs automati-
cally at system startup as a Unix daemon or Windows service (see Section 8.3.2).

A terminal prompt is equally undesirable for graphical applications, which 
would generally prefer to prompt the user in an application window. The dynamic 
property technique described in the previous section is usually appropriate in this 
situation.

If your application must supply a password, and you do not want to use a 
configuration property or a terminal prompt, your remaining option is to install a 
PasswordPrompt object in the plug-in using the setPasswordPrompt 
method shown in Section 41.5.1. The PasswordPrompt class has the following 
definition:

namespace IceSSL
{
class PasswordPrompt : public IceUtil::Shared
{
public:
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    virtual std::string getPassword() = 0;
};
typedef IceUtil::Handle<PasswordPrompt> PasswordPromptPtr;
}

IceSSL invokes getPassword on the object when a password is required. If the 
object returns an incorrect password, IceSSL tries again, up to the limit defined by 
the IceSSL.PasswordRetryMax property (see Appendix D).

Note that you must delay the initialization of the IceSSL plug-in until after the 
PasswordPrompt object is installed. To illustrate this point, consider the 
following example:

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr =
    communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin =
    IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt); // OOPS!

This code is incorrect because the PasswordPrompt object is installed too late: 
the communicator is already initialized, which means IceSSL has already 
attempted to load the file that required a password.

The correct approach is to define the following configuration property:

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured 
plug-ins. The application becomes responsible for initializing the plug-ins, as 
shown below:

Ice::CommunicatorPtr communicator = // ...
Ice::PluginManagerPtr pluginMgr =
    communicator->getPluginManager();
Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
IceSSL::PluginPtr sslPlugin =
    IceSSL::PluginPtr::dynamicCast(plugin);
sslPlugin->setPasswordPrompt(new Prompt);
pluginMgr->initializePlugins();

We assume the communicator was initialized with Ice.InitPlugins=0. 
After installing the PasswordPrompt object, the application invokes initial-
izePlugins on the plug-in manager to complete the plug-in initialization process.
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Password Callbacks in Java

If you do not want to use configuration properties to define passwords, you can 
install a PasswordCallback object in the plug-in using a configuration prop-
erty, or using the setPasswordCallback method shown in Section 41.5.2. 
The PasswordCallback interface has the following definition:

public interface PasswordCallback
{
    char[] getPassword(String alias);
    char[] getTruststorePassword();
    char[] getKeystorePassword();
}

The methods are described below:

• getPassword

Supplies the password for the key with the given alias. The return value must 
not be null.

• getTruststorePassword

Supplies the password for a truststore. The method may return null, in which 
case the integrity of the truststore is not verified.

• getKeystorePassword to obtain the password for a keystore. 

Supplies the password for a keystore. The method may return null, in which 
case the integrity of the keystore is not verified.

For each of these methods, IceSSL clears the contents of the returned array as 
soon as possible.

The simplest way to install the callback is by defining the configuration prop-
erty IceSSL.PasswordCallback. The property’s value is the name of your 
callback implementation class (see Appendix D). IceSSL instantiates the class 
using its default constructor.

To install the callback manually, you must delay the initialization of the 
IceSSL plug-in until after the PasswordCallback object is installed. To illus-
trate this point, consider the following example:

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!
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This code is incorrect because the PasswordCallback object is installed too 
late: the communicator is already initialized, which means IceSSL has already 
attempted to retrieve the certificate that required a password.

The correct approach is to define the following configuration property:

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured 
plug-ins. The application becomes responsible for initializing the plug-ins, as 
shown below:

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with Ice.InitPlugins=0. 
After installing the PasswordCallback object, the application invokes 
initializePlugins on the plug-in manager to complete the plug-in initialization 
process.

Password Callbacks in .NET

If you do not want to use configuration properties to define passwords, you can 
install a PasswordCallback object in the plug-in using a configuration prop-
erty, or using the setPasswordCallback method shown in Section 41.5.2. 
The PasswordCallback interface has the following definition:

using System.Security;

public interface PasswordCallback
{
    SecureString getPassword(string file);
    SecureString getImportPassword(string file);
}

The methods are described below:

• getPassword

Supplies the password for the given file. The method may return null if no 
password is required.
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• getImportPassword

Supplies the password for a file from which certificates are imported into the 
certificate store. The method may return null if no password is required.

The simplest way to install the callback is by defining the configuration property 
IceSSL.PasswordCallback. The property’s value is the name of your call-
back implementation class (see Appendix D). IceSSL instantiates the class using 
its default constructor.

To install the callback manually, you must delay the initialization of the 
IceSSL plug-in until after the PasswordCallback object is installed. To illus-
trate this point, consider the following example:

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI()); // OOPS!

This code is incorrect because the PasswordCallback object is installed too 
late: the communicator is already initialized, which means IceSSL has already 
attempted to retrieve the certificate that required a password.

The correct approach is to define the following configuration property:

Ice.InitPlugins=0

This setting causes the communicator to install, but not initialize, its configured 
plug-ins. The application becomes responsible for initializing the plug-ins, as 
shown below:

Ice.Communicator communicator = // ...
Ice.PluginManager pluginMgr = communicator.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
sslPlugin.setPasswordCallback(new CallbackI());
pluginMgr.initializePlugins();

We assume the communicator was initialized with Ice.InitPlugins=0. 
After installing the PasswordCallback object, the application invokes 
initializePlugins on the plug-in manager to complete the plug-in initialization 
process.
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Manual Configuration

The Plugin interface described in Section 41.5 supports a method in each of the 
supported language mappings that provides an application with more control over 
the plug-in’s configuration.

In C++ and Java, an application can call the setContext method to supply 
a pre-configured “context” object used by the underlying SSL engines. In .NET, 
the setCertificates method accepts a collection of certificates that the 
plug-in should use. In all cases, using one of these methods causes IceSSL to 
ignore (at a minimum) the configuration properties related to certificates and keys. 
The application is responsible for accumulating its certificates and keys, and must 
also deal with any password requirements.

Describing the use of these plug-in methods in detail is outside the scope of 
this book, however it is important to understand their prerequisites. In particular, 
the application needs to have the communicator load the plug-in but not actually 
initialize it until after the application has had a chance to interact directly with it. 
(The previous section showed one example of this technique.) The application 
must define the following configuration property:

Ice.InitPlugins=0

With this setting, the application becomes responsible for completing the plug-in 
initialization process by invoking initializePlugins on the PluginManager. 
The C# example below demonstrates the proper steps:

// C#
Ice.Communicator comm = // ...
Ice.PluginManager pluginMgr = comm.getPluginManager();
Ice.Plugin plugin = pluginMgr.getPlugin("IceSSL");
IceSSL.Plugin sslPlugin = (IceSSL.Plugin)plugin;
X509Certificate2Collection certs = // ...
sslPlugin.setCertificates(certs);
pluginMgr.initializePlugins();

41.6.2 Custom Plug-Ins

The Ice plug-in facility is not restricted to protocol implementations. Ice only 
requires that a plug-in implement the Ice::Plugin interface and support the 
language-specific mechanism for dynamic loading.

The customization options of the IceSSL plug-in make it possible for you to 
install an application-specific implementation of a certificate verifier in an 
existing program. For example, you could install a custom certificate verifier in a 
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Glacier2 router without the need to modify Glacier2’s source code or rebuild the 
executable. You would have to write a C++ plug-in to accomplish this, since 
Glacier2 is written in C++. In short, your plug-in must interact with the IceSSL 
plug-in and install a certificate verifier.

For this technique to work, it is important that the plug-ins be loaded in a 
particular order. Specifically, the IceSSL plug-in must be loaded first, followed by 
the certificate verifier plug-in. By default, Ice loads plug-ins in an undefined order, 
but you can use the property Ice.PluginLoadOrder to specify a particular 
order.

As an example, let’s write a plug-in that installs the simple certificate verifier 
from Section 41.5.1. Here is the definition of our plug-in class:

class VerifierPlugin : public Ice::Plugin
{
public:
    VerifierPlugin(const Ice::CommunicatorPtr & comm) :
        _comm(comm)
    {
    }

    virtual void initialize()
    {
        Ice::PluginManagerPtr pluginMgr =
            _comm->getPluginManager();
        Ice::PluginPtr plugin = pluginMgr->getPlugin("IceSSL");
        IceSSL::PluginPtr sslPlugin =
            IceSSL::PluginPtr::dynamicCast(plugin);
        sslPlugin->setCertificateVerifier(new Verifier);
    }

    virtual void destroy()
    {
    }

private:
    Ice::CommunicatorPtr _comm;
};

The class implements the two operations in the Plugin interface, initialize and 
destroy. The code in initialize installs the certificate verifier object, while 
nothing needs to be done in destroy.

The next step is to write the plug-in’s factory function, which the communi-
cator invokes to obtain an instance of the plug-in:
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extern "C"
{

Ice::Plugin*
createVerifierPlugin(
    const Ice::CommunicatorPtr & communicator,
    const string & name,
    const Ice::StringSeq & args)
{
    return new VerifierPlugin(communicator);
}

}

We can give the function any name; in this example, we chose createVerifi-
erPlugin.

Finally, to install the plug-in we need to define the following properties:

Ice.PluginLoadOrder=IceSSL,Verifier
Ice.Plugin.IceSSL=IceSSL:createIceSSL
Ice.Plugin.Verifier=Verifier:createVerifierPlugin

The value of Ice.PluginLoadOrder guarantees that IceSSL is loaded first. 
The plug-in specification Verifier:createVerifierPlugin identifies 
the name of the shared library or DLL and the name of the registration function; 
see the description of the Ice.Plugin property in Appendix D for more infor-
mation.

There are a few more details you must attend to, such as ensuring that the 
factory function is exported properly and building the shared library or DLL that 
contains the new plug-in. Refer to Section 32.25 for more information on devel-
oping a plug-in.

41.7 Setting up a Certificate Authority

During development, it is convenient to have a simple way of creating new certifi-
cates. OpenSSL includes all of the necessary infrastructure for setting up your 
own certificate authority (CA), but it requires getting more familiar with OpenSSL 
than is really necessary. To simplify the process, Ice includes the Python script 
iceca, located in the bin subdirectory of your Ice installation, that hides the 
complexity of OpenSSL and allows you to quickly perform the essential tasks:

• initializing a new root CA
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• generating new certificate requests

• signing certificate requests to create a valid certificate chain

• converting certificates to match platform-specific requirements.

You are not obligated to use this script; IceSSL accepts certificates from any 
source as long as they are provided in the appropriate formats. However, you may 
find this tool sufficient for your development needs, and possibly even for your 
deployed application as well.

Some of the script’s activities use a directory that contains configuration files 
and a database of issued certificates. The script selects a default location for this 
directory that depends on your platform, or you can specify the parent directory 
explicitly by defining the ICE_CA_HOME environment variable and the script 
will use $ICE_CA_HOME/ca for its files.

41.7.1 Initializing a Certificate Authority

The script command iceca init initializes a new CA by preparing a database 
directory and generating the root CA certificate and private key. It accepts the 
following command-line arguments:

$ python iceca init [--no-password] [--overwrite]

Upon execution, the script first checks the database directory to determine 
whether it has already been initialized. If so, the script terminates immediately 
with a warning unless you specify the --overwrite option, in which case the 
script overwrites the previous contents of the directory.

Next, the script displays the database directory it is using and begins to prompt 
you for the information it needs to generate the root CA certificate and private key. 
It offers a default choice for the CA’s distinguished name and allows you to 
change it:

The subject name for your CA will be
CN=Grid-CA ,  O=GridCA-server
Do you want to keep this as the CA subject name? (y/n) [y]

To specify an alternate value for the distinguished name, enter n and type the new 
information, otherwise hit Enter to proceed.

Enter the email address of the CA: ca-admin@company.com

The address you provide in response to this prompt is shown to users that create 
certificate requests. Enter the address to which such requests should be sent.
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The script shows its progress as it generates the certificate and private key, 
then prompts you for a pass phrase. If you prefer not to secure your CA’s private 
key with a pass phrase, use the --no-password option.

Upon completion, the script emits the following instructions:

The CA is initialized.

You need to distribute the following files to all machines that
can request certificates:

C:\iceca\req.cnf
C:\iceca\ca_cert.pem

These files should be placed in the user's home directory in
~/.iceca. On Windows, place these files in <ice-install>/config.

In this example, the ICE_CA_HOME environment variable was set to C:\iceca. 
As the script states, the files req.cnf and ca_cert.pem must be present on 
each host that can generate a certificate request. The script suggests a location for 
these files, which is the default directory used by the scripts if ICE_CA_HOME is 
not defined.

The ca_cert.pem file contains the root CA’s certificate. Your IceSSL 
configurations must identify this certificate (in its proper form for each platform) 
as a trusted certificate. For example, you can use this file directly in the configura-
tion of the C++ plug-in:

IceSSL.CertAuthFile=C:\iceca\ca_cert.pem

For .NET applications, you should import the certificate file into the proper store, 
as described in Section 41.4.3.

In Java, you need to add the certificate to your truststore:

$ keytool -import -trustcacerts -file ca_cert.pem -keystore ca.jks
Enter keystore password:

The keytool program requires you to enter a password, which you could use as the 
value of the property IceSSL.TruststorePassword (see Appendix D).

Now that your certificate authority is initialized, you can begin generating 
certificate requests.
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41.7.2 Generating Certificate Requests

The script command iceca request uses the files you created in 
Section 41.7.1 to generate a request for a new certificate. It accepts the following 
command-line arguments:

$ python iceca request [--overwrite] [--no-password]
file common-name [email]

The script looks for the files req.cnf and ca_cert.pem in the directory 
defined by the ICE_CA_HOME environment variable. If that variable is not 
defined, the script uses a default directory that depends on your platform.

The purpose of the script is to generate two files: a private key and a file 
containing the certificate request. The request file must be transmitted to the 
certificate authority for signing, which produces a valid certificate chain.

The argument file is used as a prefix for the names of the two output files 
created by the script:

• file_key.pem contains the private key

• file_req.pem contains the certificate request

If the output files already exist, you must specify --overwrite to force the 
script to overwrite them.

The common-name argument defines the common name component of the 
certificate’s distinguished name. If the optional email argument is provided, it is 
also included in the certificate request.

During execution, the script displays its progress as it generates the necessary 
files. It will prompt you for a pass phrase unless you used the --no-password 
option, and finish by showing the names of the files it created as well as instruc-
tions on how to proceed. The example below shows the output from generating a 
request for an IceGrid node using a filename prefix of node:

$ iceca request node "IceGrid Node"

Created key: node_key.pem
Created certificate request: node_req.pem

The certificate request must be signed by the CA. Send the
certificate request file to the CA at the following email
address:
ca-admin@company.com
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The file node_key.pem is the new private key for the node; this file 
must be kept secure. The file node_req.pem must be given to the 
certificate authority. As a convenience, the script displays the CA’s 
email address that you entered in Section 41.7.1.

41.7.3 Signing Certificate Requests

As a certificate authority, you are responsible for certifying the validity of certifi-
cate requests by signing them with your private key. The product of signing a 
request is a valid certificate chain that a person or application can use as an iden-
tity. The iceca sign command performs this task for you and accepts the 
following command-line arguments:

$ python iceca sign --in <req> --out <cert> [--ip <ip> --dns <dns>]

The input file req is the certificate request, and the output file cert is the certif-
icate chain. The script does not overwrite the file cert unless you also specify 
--overwrite. The --ip and --dns options allow you to add subject alterna-
tive names to the certificate for IP and DNS addresses, respectively.

Continuing the example from Section 41.7.2, we can sign the node’s request 
with the following command:

$ python iceca sign --in node_req.pem --out node_cert.pem

If the CA’s private key is protected by a pass phrase, we must enter that first. Next, 
the script displays the relevant information from the certificate request and asks 
you to confirm that you wish to sign the certificate:

The Subject's Distinguished Name is as follows
organizationName      :PRINTABLE:'Company.com'
commonName            :PRINTABLE:'IceGrid Node TestNode'
Certificate is to be certified until Jun 15 18:32:36 2011 GMT
Sign the certificate? [y/n]:

After reviewing the request, enter y to sign the certificate, and y again to finish the 
process. Upon completion, the script stores the certificate chain in the file 
node_cert.pem in your current working directory. This file, together with the 
node’s private key we created in Section 41.7.2, establishes a secure identity for 
the node.
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41.7.4 Converting Certificates

For Java and .NET users, the private key and certificate chain must be converted 
into a suitable format for your platform. The script command iceca import 
simplifies this process and accepts the following command-line arguments:

$ python iceca import [--overwrite] [--key-pass password]
[--store-pass password] [--java alias cert key keystore]
[--cs cert key out-file]

The script does not overwrite an existing file unless you specify --overwrite. 
To avoid interactive prompts for passwords, you can use the --key-pass option 
to specify the password for the private key, and the --store-pass option to 
define the password for the Java keystore. Completing our node example from 
prior sections, the command below imports the private key and certificate chain 
into a Java keystore:

$ python iceca import --java mycert node_cert.pem
node_key.pem cert.jks

The value mycert represents the alias associated with this entry in the keystore, 
and cert.jks is the name of the new keystore file. In an IceSSL configuration, 
the property IceSSL.Keystore refers to this file.

The equivalent command for .NET is shown below:

$ python iceca import --cs node_cert.pem node_key.pem cert.pfx

The file cert.pfx uses the PKCS#12 encoding and contains the certificate 
chain and private key. You can import this certificate into a store, or refer directly 
to the file using the configuration property IceSSL.CertFile.

41.7.5 Diagnostics

If you encounter a problem while using the iceca script, or simply want to learn 
more about the underlying OpenSSL commands used by the script, you can run 
the script with the --verbose option as shown below:

$ python iceca --verbose command ...

This option causes the script to display the commands as it executes them.
The script creates temporary files and directories that are normally deleted 

prior to the script’s completion. If you would like to examine the contents of these 
files and directories, use the --keep option:

$ python iceca --keep command ...
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41.8 Summary

The Secure Socket Layer (SSL) protocol is the de facto standard for secure 
network communication. Its support for authentication, non-repudiation, data 
integrity, and strong encryption makes it the logical choice for securing Ice appli-
cations.

Although security is an optional component of Ice, it is not an afterthought. 
The IceSSL plug-in integrates easily into existing Ice applications, in most cases 
requiring nothing more than configuration changes. Naturally, some additional 
effort is required to create the necessary security infrastructure for an application, 
but in many enterprises this work will have already been done.
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Chapter 42
Glacier2

42.1 Chapter Overview

In this chapter we present the Glacier2 service, a lightweight firewall solution for 
Ice applications. The basic requirements for using Glacier2 are discussed in 
Section 42.3. Glacier2 supports callbacks from servers to clients and Section 42.4 
provides details about the configuration and application requirements necessary to 
use callbacks. Section 42.6 covers security issues, while Section 42.7 presents an 
overview of Glacier2 session management. Dynamic filtering is covered in 
Section 42.8. Section 42.9 describes Glacier2’s buffering semantics, and 
Section 42.10 describes the handling of request contexts. The use of a network 
firewall in conjunction with Glacier2 is the topic of Section 42.11. Finally, clients 
with special requirements are addressed by Section 42.12, and IceGrid integration 
is the subject of Section 42.13.

42.2 Introduction

We have presented many examples of client/server applications in this book, all of 
which assume that the client and server programs are running either on the same 
host, or on multiple hosts with no network restrictions. We can justify this 
assumption because this is an instructional text, but a real-world network environ-
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ment is usually much more complicated: client and server hosts with access to 
public networks often reside behind protective router-firewalls that not only 
restrict incoming connections, but also allow the protected networks to run in a 
private address space using Network Address Translation (NAT). These features, 
which are practically mandatory in today’s hostile network environments, also 
disrupt the ideal world in which our examples are running.

42.2.1 Common Scenarios
Let us assume that a client and server need to communicate over an untrusted 
network, and that the client and server hosts reside in private networks behind fire-
walls, as shown in Figure 42.1.

Figure 42.1. Client request in a typical network scenario.

Although the diagram looks fairly straightforward, there are several troublesome 
issues:

• A dedicated port on the server’s firewall must be opened and configured to 
forward messages to the server.

• If the server uses multiple endpoints (e.g., to support both TCP and SSL), then 
a firewall port must be dedicated to each endpoint.

• The client’s proxy must be configured to use the server’s “public” endpoint, 
which is the host name and dedicated port of the firewall.

• If the server returns a proxy as the result of a request, the proxy must not 
contain the server’s private endpoint because that endpoint is inaccessible to 
the client.

Client Firewall Firewall Server
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To complicate the scenario even further, Figure 42.2 adds a callback from the 
server to the client. Callbacks imply that the client is also a server, therefore all of 
the issues associated with Figure 42.1 now apply to the client as well.

Figure 42.2. Callbacks in a typical network scenario.

As if this was not complicated enough already, Figure 42.3 adds multiple clients 
and servers. Each additional server (including clients requiring callbacks) adds 
more work for the firewall administrator as more ports are dedicated to forwarding 
requests.

Figure 42.3. Multiple clients and servers with callbacks in a typical network scenario.

Clearly, these scenarios do not scale well, and are unnecessarily complex. Fortu-
nately, Ice provides a solution.

42.2.2 What is Glacier2?
Glacier2, the router-firewall for Ice applications, addresses the issues raised in 
Section 42.2.1 with minimal impact on clients or servers (or firewall administra-
tors). In Figure 42.4, Glacier2 becomes the server firewall for Ice applications. 

Client Firewall Firewall Server

Client A

Firewall Firewall

Server

Client B

Server A

Server B
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What is not obvious in the diagram, however, is how Glacier2 eliminates much of 
the complexity of the previous scenarios.

Figure 42.4. Multiple clients and servers with callbacks using Glacier.

In particular, Glacier2 provides the following advantages:

• Clients often require only minimal changes to use Glacier2.

• Only one front end port is necessary to support any number of servers, 
allowing a Glacier2 router to easily receive connections from a port-
forwarding firewall.

• The number of connections to back end servers is reduced. Glacier2 effec-
tively acts as a connection concentrator, establishing a single connection to 
each back end server to forward requests from any number of clients. Simi-
larly, connections from back end servers to Glacier2 for the purposes of 
sending callbacks are also concentrated.

• Servers are unaware of Glacier2’s presence, and require no modifications 
whatsoever to use Glacier2. From a server’s perspective, Glacier2 is just 
another local client, therefore servers are no longer required to advertise 
“public” endpoints in the proxies they create. Furthermore, back-end services 
such as IceGrid (see Chapter 38) can continue to be used transparently via a 
Glacier2 router.

• Callbacks are supported without requiring new connections from servers to 
clients (see Section 42.4). In other words, a callback from a server to a client is 
sent over an existing connection from the client to the server, thereby elimi-
nating the administrative requirements associated with supporting callbacks in 
the client firewall.

• Glacier2 requires no knowledge of the application’s Slice definitions and 
therefore is very efficient: it routes request and reply messages without unmar-
shalling the message contents.
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• In addition to its primary responsibility of forwarding Ice requests, Glacier2 
offers support for user-defined session management and authentication, inac-
tivity timeouts, and request buffering and batching.

42.2.3 How it works

The Ice core supports a generic router facility, represented by the Ice::Router 
interface, that allows a third-party service to “intercept” requests on a properly-
configured proxy and deliver them to the intended server. Glacier2 is an imple-
mentation of this service, although other implementations are certainly possible.

Glacier2 normally runs on a host in the private network behind a port-
forwarding firewall (see Section 42.11), but it can also operate on a host with 
access to both public and private networks. In this configuration it follows that 
Glacier2 must have endpoints on each network, as shown in Figure 42.5.

Figure 42.5. Glacier2’s client and server endpoints.

In the client, proxies must be configured to use Glacier2 as a router. This configu-
ration can be done statically for all proxies created by a communicator, or 
programmatically for a particular proxy. A proxy configured to use a router is 
called a routed proxy.

When a client invokes an operation on a routed proxy, the client connects to 
one of Glacier2’s client endpoints and sends the request as if Glacier2 were the 
server. Glacier2 then establishes a client connection to the intended server, 
forwards the request, and returns the reply (if any). Glacier2 is essentially acting 
as a local client on behalf of the remote client.

If a server returns a proxy as the result of an operation, that proxy contains the 
server’s endpoints in the private network, as usual. (Remember, the server is 
unaware of Glacier2’s presence, and therefore assumes that the proxy is usable by 
the client that requested it.) Of course, those endpoints are not accessible to the 
client and, in the absence of a router, the client would receive an exception if it 
were to use the proxy. When that proxy is configured with a router, however, the 
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client ignores the server’s endpoints and only sends requests to the router’s client 
endpoints.

Glacier2’s server endpoints, which reside in the private network, are only used 
when a server makes a callback to a client. See Section 42.4 for more information 
on callbacks.

42.2.4 Limitations

Glacier2 has the following limitations:

• Datagram protocols, such as UDP, are not supported.

• Callback objects in a client must use a Glacier2-supplied category in their 
identities (see Section 42.4).

42.3 Using Glacier2

Getting started with Glacier2 in a minimal configuration involves the following 
tasks:

1. Write a configuration file for the router.

2. Write a password file for the router. (Section 42.6 discusses alternative ways 
to authenticate users.)

3. Decide whether to use the router’s internal session manager, or supply your 
own (see Section 42.7).

4. Start the router on a host with access to the public and private networks.

5. Modify the client configuration to use the router.

6. Modify the client to create a router session.

7. Ensure that the router session remains active for as long as the client requires 
it.

For the sake of example, let us assume that the router’s public address is 
5.6.7.8 and its private address is 10.0.0.1.

42.3.1 Configuring the Router

The following router configuration properties establish the necessary endpoint and 
define when a session expires due to inactivity:
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Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 4063
Glacier2.SessionTimeout=60

The endpoint defined by Glacier2.Client.Endpoints is used by the Ice 
run time in a client to interact directly with the router. It is also the endpoint where 
requests from routed proxies are sent. This endpoint is defined on the public 
network interface because it must be accessible to clients.1 Furthermore, the 
endpoint uses a fixed port because clients may be statically configured with a 
proxy for this endpoint.

The port numbers 4063 (for TCP) and 4064 (for SSL) are reserved for 
Glacier2 by the Internet Assigned Numbers Authority (IANA).

A client’s session is destroyed when explicitly requested, or when the session 
is inactive for a configurable number of seconds. For this example, we have speci-
fied a timeout of 60 seconds. It is not mandatory to define a timeout, but it is 
recommended, otherwise session state might accumulate in the router. See 
Section 42.7 for more information on sessions.

Note that this configuration enables the router to forward requests from clients 
to servers, but not from servers to clients (that is, it cannot forward callbacks). We 
discuss callbacks in Section 42.4.

You must also decide which authentication scheme (or schemes) to use. 
Section 42.3.2 describes a file-based mechanism, and Section 42.6 covers the 
router’s more sophisticated facilities.

If clients access a location service via the router, additional router configura-
tion is typically necessary (see Section 38.15).

42.3.2 Writing a Password File

The router’s simplest authentication mechanism uses an access control list in a file 
consisting of user name–password pairs. The password is a 13-character string 
encoded using the crypt algorithm, similar to a passwd file on a typical Unix 
system. The property Glacier2.CryptPasswords specifies the name of the 
password file:

Glacier2.CryptPasswords=passwords

1. This sample configuration uses TCP as the endpoint protocol, although in most cases SSL is pref-
erable (see Section 42.6).

http://www.iana.org/assignments/port-numbers
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The format of the password file is very simple. Each user name–password pair 
must reside on a separate line, with whitespace separating the user name from the 
password. For example, the following password file contains an entry for the user 
name test:

test xxMqsnnDcK8tw

You can use the openssl utility (included in the OpenSSL toolkit) to generate 
crypt passwords:

$ openssl
OpenSSL> passwd
Password:
Verifying - Password:
xxMqsnnDcK8tw

At the prompt, issue the passwd command. You are asked for a password, and 
then asked to confirm the password, at which point the utility displays the crypt-
encoded version of your password that you can paste into the router’s password 
file.

42.3.3 Starting the Router

The router supports the following command-line options:

$ glacier2router -h
Usage: glacier2router [options]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
--nowarn             Suppress warnings.

The --nowarn option prevents the router from displaying warning messages at 
startup when it is unable to contact a permissions verifier object or a session 
manager object specified by its configuration.

Additional command line options are supported, including those that allow the 
router to run as a Windows service or Unix daemon. See Appendix H for more 
information.

Assuming the configuration properties shown in Section 42.3.1 and 
Section 42.3.2 are stored in a file named config, you can start the router with 
the following command:

$ glacier2router --Ice.Config=config
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42.3.4 Configuring the Client

The following properties configure a client to use a Glacier2 router:

Ice.Default.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063
Ice.ACM.Client=0
Ice.RetryIntervals=-1

The value of the Ice.Default.Router property is a proxy whose endpoints 
must match those in Glacier2.Client.Endpoints.

The property Ice.ACM.Client governs the behavior of active connection 
management (ACM, see Section 36.4), which conserves resources by periodically 
closing idle outgoing connections. This feature must be disabled in a client that 
uses a Glacier2 router, otherwise ACM might transparently close a client’s 
connection to a router and thereby terminate the router session prematurely. ACM 
is enabled by default, and therefore must be disabled by setting this property to 
zero.

Finally, setting Ice.RetryIntervals to -1 disables automatic retries, 
which are not useful for proxies configured to use a Glacier2 router. For more 
information about automatic retries, see Section 32.22.

42.3.5 Object Identities

A Glacier2 router hosts two well-known objects. The default identities of these 
objects are Glacier2/router and Glacier2/admin, corresponding to the 
Glacier2::Router and Glacier2::Admin interfaces, respectively. If an applica-
tion requires the use of multiple different (that is, not replicated) routers, it is a 
good idea to assign unique identities to these objects by configuring the routers 
with different values of the Glacier2.InstanceName property, as shown in 
the following example:

Glacier2.InstanceName=PublicRouter

This property changes the category of the object identities, which become 
PublicRouter/router and PublicRouter/admin. The client’s config-
uration must also be changed to reflect the new identity:

Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063

One exception to this rule is if you deploy multiple Glacier2 routers as replicas, 
for example, to gain redundancy or to distribute the message forwarding load over 
a number of machines. In that case, all the routers must use the same instance 
name; the clients in that case use proxies with multiple endpoints, such as:
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Ice.Default.Router=PublicRouter/router:tcp -h 5.6.7.8 -p 4063:
tcp -h 6.10.7.8 -p 4063

42.3.6 Creating a Session

Session management is provided by the Glacier2::Router interface:2

module Glacier2 {
    exception PermissionDeniedException {
        string reason;
    };

    interface Router extends Ice::Router {
        Session* createSession(string userId, string password)
            throws PermissionDeniedException,
                   CannotCreateSessionException;

        Session* createSessionFromSecureConnection()
            throws PermissionDeniedException,
                   CannotCreateSessionException;

        idempotent string getCategoryForClient();

        void refreshSession()
            throws SessionNotExistException;

        void destroySession()
            throws SessionNotExistException;

        idempotent long getSessionTimeout();
    };
};

The interface defines two operations for creating sessions: createSession and 
createSessionFromSecureConnection. The router requires each client to create 
a session using one of these operations; only after the session is created will the 
router forward requests on behalf of the client.

The createSession operation expects a user name and password, and returns 
a Session proxy or nil, depending on the router’s configuration (see 
Section 42.7). When using the default authentication scheme, the given user name 

2. The getCategoryForClient operation is used for bidirectional connections (see page 1719).
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and password must match an entry in the router’s password file in order to 
successfully create a session.

The createSessionFromSecureConnection operation does not require a user 
name and password because it uses the credentials supplied by an SSL connection 
to authenticate the client (see Section 42.6).

To create a session, the client typically obtains the router proxy from the 
communicator, downcasts the proxy to the Glacier2::Router interface, and 
invokes one of the operations. The sample code below demonstrates how to do it 
in C++; the code will look very similar in the other language mappings.

Ice::RouterPrx defaultRouter =
    communicator->getDefaultRouter();
Glacier2::RouterPrx router =
    Glacier2::RouterPrx::checkedCast(defaultRouter);
string username = ...;
string password = ...;
Glacier2::SessionPrx session;
try
{
    session = router->createSession(username, password);
}
catch(const Glacier2::PermissionDeniedException& ex)
{
    cout << "permission denied:\n" << ex.reason << endl;
}
catch(const Glacier2::CannotCreateSessionException& ex)
{
    cout << "cannot create session:\n" << ex.reason << endl;
}

If the router is configured with a session manager, the createSession and crea-
teSessionFromSecureConnection operations may return a proxy for an object 
implementing the Glacier2::Session interface (or an application-specific 
derived interface). The client receives a null proxy if no session manager is 
configured.

In order to successfully use a session proxy, it must be configured with the 
router that created it; that is, the session object is only accessible via the router. If 
the router is configured as the client’s default router at the time createSession or 
createSessionFromSecureConnection is invoked, as is the case in the example 
above, then the session proxy is already properly configured and nothing else is 
required. Otherwise, the client must explicitly configure the session proxy with a 
router using the ice_router proxy method (see Section 32.11.2).



1716 Glacier2

If the client wishes to destroy the session explicitly, it must invoke destroy-
Session on the router proxy. If a client does not destroy its session, the router 
destroys it automatically when it expires due to inactivity. A client can obtain the 
inactivity timeout value by calling getSessionTimeout and keep the session alive 
by periodically calling refreshSession if necessary (see Section 42.3.7).

An example of a Glacier2 client is provided in the directory 
demo/Glacier2/callback.

42.3.7 Session Expiration

A Glacier2 router may be configured to destroy sessions after a period of inac-
tivity. This feature allows the router, as well as a custom session manager, to 
reclaim resources acquired during the session (see Section 42.7), but it requires 
some coordination between the router and its clients.

Ideally you would select a session timeout that is long enough to accommo-
date the usage patterns of your clients. For example, a session timeout of thirty 
seconds is a reasonable choice for a client that invokes an operation on a back-end 
server once every five seconds. However, that timeout could disrupt a different 
client that has long periods of inactivity, such as when its invocations are 
prompted by human interaction.

If you cannot predict with certainty the usage patterns of your clients, we 
recommend modifying the clients so that they actively prevent their sessions from 
expiring. A client simply needs to make an invocation at regular intervals, where 
the period is less than the router’s timeout by a comfortable margin. Typically a 
client creates a dedicated thread whose only purpose is keeping the session alive. 
It can accomplish this by invoking refreshSession on the router proxy, or by 
invoking the ice_ping operation on the proxy of any back-end object that is 
accessed via the router (including the Session proxy, if one was returned by 
createSession). Ice includes helper classes that you can use to simplify the task 
of create a session and keeping it alive (see XREF).

Note that if a session times out, the next client invocation raises Connection-
LostException. To re-establish the session, the client must explicitly re-create it. 
If the client uses callbacks (see Section 42.4), it must re-create the callback 
adapter and re-add the callback servants to the ASM.

See Section 42.7.2 for more information on configuring session timeouts.
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42.4 Callbacks

Callbacks from servers to clients are commonly used in distributed applications, 
often for notification purposes (such as the completion of a long-running calcula-
tion or a change to a database record). Unfortunately, supporting callbacks in a 
complicated network environment presents its own set of problems, as described 
in Section 42.2.1. Ice overcomes these obstacles using a Glacier2 router and bidi-
rectional connections.

42.4.1 Bidirectional Connections

While a regular unrouted connection allows requests to flow in only one direction 
(from client to server), a bidirectional connection enables requests to flow in both 
directions. This capability is necessary to circumvent the network restrictions 
discussed in Section 42.2.1, namely, client-side firewalls that prevent a server 
from establishing an independent connection directly to the client. By sending 
callback requests over the existing connection from the client to the server (more 
accurately, from the client to the router), we have created a virtual connection 
back to the client. Figure 42.6 illustrates the steps involved in making a callback 
using Glacier2.

Figure 42.6. A callback via Glacier2.

1. The client has a routed proxy for the server and makes an invocation. A 
connection is established to the router’s client endpoint and the request is sent 
to the router.

2. The router, using information from the client’s proxy, establishes a connection 
to the server and forwards the request. In this example, one of the arguments in 
the request is a proxy for a callback object in the client.

3. The server makes a callback to the client. For this to succeed, the proxy for the 
callback object must contain endpoints that are accessible to the server. The 
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only path back to the client is through the router, therefore the proxy contains 
the router’s server endpoints (see Section 42.4.3). The server connects to the 
router and sends the request.

4. The router forwards the callback request to the client using the bidirectional 
connection established in step 1.

The arrows in Figure 42.6 indicate the flow of requests; notice that two connec-
tions are used between the router and the server. Since the server is unaware of the 
router, it does not use routed proxies, and therefore does not use bidirectional 
connections.

It is also possible for applications to manually configure bidirectional connec-
tions without the use of a router. See Section 36.7 for more information on bidi-
rectional connections.

42.4.2 Lifetime of a Bidirectional Connection

When a client terminates, it closes its connection to the router. If a server later 
attempts to make a callback to the client, the attempt fails because the router has 
no connection to the client over which to forward the request. This situation is no 
worse than if the server attempted to contact the client directly, which would be 
prevented by the client firewall. However, this illustrates the inherent limitation of 
bidirectional connections: the lifetime of a client’s callback proxy is bounded by 
the lifetime of the client’s router session.

42.4.3 Configuring the Router

In order for the router to support callbacks from servers, it needs to have endpoints 
in the private network. The configuration file shown below adds the property 
Glacier2.Server.Endpoints:

Glacier2.Client.Endpoints=tcp -h 5.6.7.8 -p 4063
Glacier2.Server.Endpoints=tcp -h 10.0.0.1

As the example shows, the server endpoint does not require a fixed port.

42.4.4 Configuring the Client’s Object Adapter

A client that receives callbacks is also a server, and therefore must have an object 
adapter. Typically, an object adapter has endpoints in the local network, but those 
endpoints are of no use to a server in our restricted network environment. We 
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really want the client’s callback proxy to contain the router’s server endpoints, and 
we accomplish that by configuring the client’s object adapter with a proxy for the 
router3. We supply the router’s proxy by creating the object adapter with 
createObjectAdapterWithRouter, or by defining an object adapter property as 
shown below:

CallbackAdapter.Router=Glacier2/router:tcp -h 5.6.7.8 -p 4063

For each object adapter, the Ice run time maintains a list of endpoints that are 
embedded in proxies created by that adapter (see Section 32.4.6). Normally, this 
list simply contains the local endpoints defined for the object adapter but, when 
the adapter is configured with a router, the list only contains the router’s server 
endpoints. When using a router, this object adapter allows the client to service 
callback requests via the router. Because the adapter only contains the router’s 
server endpoints, this means that, if the client also wants to service requests via 
local (non-routed) endpoints, the client must create a separate adapter for these 
requests.

42.4.5 Callback Object Identities

Glacier2 assigns a unique category to each client for use in the identities of the 
client’s callback objects. The client creates proxies that contain this identity cate-
gory for back-end servers to use when making callback requests to the client. This 
category serves two purposes:

1. Upon receipt of a callback request from a back-end server, the router uses the 
request’s category to identify the intended client.

2. The category is sufficiently random that, without knowing the category in 
advance, it is practically impossible for a misbehaving or malicious back-end 
server to send callback requests to an arbitrary client.

A client can obtain its assigned category by calling getCategoryForClient on 
the Router interface as shown in the C++ example below:

Glacier2::RouterPrx router = // ...
string category = router->getCategoryForClient();

3. Note that multiple object adapters created by the same communicator cannot use the same router.
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42.4.6 Nested Invocations

If a router client intends to receive callbacks and make nested twoway invocations, 
it is important that the client be configured correctly. When using the thread pool 
concurrency model, you must increase the size of the client thread pool to at least 
two threads. See Section 36.7.5 for more information.

42.4.7 Session Timeout

If the client’s session times out, the next invocation raises ConnectionLostEx-
ception. The client can recover from this situation by re-creating the session and 
re-creating the callback adapter (adding all the callback servants to the ASM of 
the re-created adapter).

42.4.8 Example

The demo/Glacier2/callback example illustrates the use of callbacks with 
Glacier2. The README file in the directory provides instructions on running the 
example, and comments in the configuration file describe the properties in detail.

42.5 Helper Classes

Ice includes a number of helper classes to help you build robust Glacier2 clients.

42.5.1 The Glacier2::Application class

You may already be familiar with the Ice::Application class, which encap-
sulates some basic Ice functionality such as communicator initialization, commu-
nicator destruction, and proper handling of signals and exceptions. The 
Glacier2::Application extends Ice::Application to add function-
ality that is commonly needed by Glacier2 clients:

• Keeps a session alive by periodically sending “ping” requests from a back-
ground thread

• Automatically restarts a session if a failure occurs

• Optionally creates an object adapter for callbacks

• Destroys the session when the application completes
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The C++ definition of Glacier2::Application is shown below. (The Java 
and C# versions offer identical functionality so we do not show them here.)

namespace Glacier2 {

class Application : public Ice::Application {
public:
    Application();
    Application(Ice::SignalPolicy policy);

    virtual int runWithSession(int argc, char* argv[]) = 0;

    virtual Glacier2::SessionPrx createSession() = 0;

    virtual void sessionDestroyed();

    static Glacier2::RouterPrx router();

    static Glacier2::SessionPrx session();

    void restart();

    std::string categoryForClient();

    Ice::Identity createCallbackIdentity(const std::string& name);

    Ice::ObjectPrx addWithUUID(const Ice::ObjectPtr& servant);

    Ice::ObjectAdapterPtr objectAdapter();
};

}

The following methods are supported:

• Application()

Instantiating the class using its default constructor has the same semantics as 
calling Application(Ice::HandleSignals).

• Application(Ice::SignalPolicy policy)

This constructor allows you to indicate whether the class should handle 
signals. The SignalPolicy enumeration contains two enumerators: 
HandleSignals and NoSignalHandling. If you specify HandleS-
ignals, the class automatically shuts down or destroys its communicator 
upon receipt of certain signals. Refer to the Ice::Application documen-
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tation in the relevant language mapping chapter for more information on 
signal handling.

• int runWithSession(int argc, char* argv[])

This method must be overridden by a subclass and represents the “main loop” 
of the application. It is called after the communicator has been initialized and 
the Glacier2 session has been established. The argument vector passed to this 
method contains the arguments passed to Application::main with all 
Ice-related options removed. The implementation of runWithSession 
must return zero to indicate success and non-zero to indicate failure; the value 
returned by runWithSession becomes the return value of Applica-
tion::main.

• Glacier2::SessionPrx createSession()

This method must be overridden by a subclass and implements the logic 
necessary to create the application’s Glacier2 session. A call to createSes-
sion always precedes a call to runWithSession. The application termi-
nates if createSession raises (or allows to be raised) an 
Ice::LocalException.

• void sessionDestroyed()

A subclass can optionally override this method to take action when connec-
tivity with the Glacier2 router is lost.

• Glacier2::RouterPrx router()

Returns the proxy for the Glacier2 router.

• Glacier2::SessionPrx session()

Returns the proxy for the current session.

• void restart()

Causes the Application class to destroy the current session, create a new 
session (by calling createSession), and start a new main loop (in 
runWithSession). This method does not return but rather raises a 
RestartSessionException that is trapped by the Application 
class.

• std::string categoryForClient()

Returns the category to be used in the identities of all of the client’s callback 
objects. Clients must use this category for the router to forward callback 
requests to the intended client. The method raises SessionNotExistEx-
ception if no session is currently active.



42.5 Helper Classes 1723

• Ice::Identity createCallbackIdentity(
    const std::string& name)

Creates a new Ice identity for a callback object with the given identity name.

• Ice::ObjectPrx addWithUUID(
    const Ice::ObjectPtr& servant)

Adds a servant to the callback object adapter's Active Servant Map using a 
UUID for the identity name.

• Ice::ObjectAdapterPtr objectAdapter()

Returns the object adapter used for callbacks, creating the object adapter if 
necessary.

The Ice distribution includes an example in demo/Glacier2/callback that 
shows how to use the Glacier2::Application class.

42.5.2 GUI Helper Classes

The “main loop” design imposed by the Glacier2::Application class is 
not suitable for graphical applications, therefore Ice also includes a collection of 
Java and C# classes that better accommodate the needs of GUI programs:

• Glacier2.SessionFactoryHelper

This class simplifies the task of creating a Glacier2 session. It provides over-
loaded connect methods that support the two authentication styles (user-
name/password and SSL credentials) accepted by the Glacier2 router, and 
returns an instance of Glacier2.SessionHelper for each new session.

• Glacier2.SessionHelper

This class encapsulates a Glacier2 session and provides much of the same 
functionality as Glacier2::Application. If the application supplies an 
instance of Glacier2.SessionCallback when creating the session, 
SessionHelper invokes the callback object about important events in the 
session’s lifecycle.

• Glacier2.SessionCallback

An application can implement this interface to receive notification about 
session lifecycle events.

The classes are discussed further in the subsections below. You can find sample 
applications that make use of these classes in the demo/Glacier2/chat 
directory of your Ice distribution.
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The SessionFactoryHelper Class

The SessionFactoryHelper class provides convenience methods for 
configuring the settings that are commonly used to create a Glacier2 session, such 
as the router’s host and port number. Once the application has completed its 
configuration, it calls one of the connect methods to initialize a communicator, 
establish a Glacier2 session, and receive a SessionHelper object with which it 
can manage new session. An application should create a new SessionFacto-
ryHelper object for each router instance that it uses.

SessionFactoryHelper creates an Ice.InitializationData 
object if the application does not pass one to the SessionFactoryHelper 
constructor. SessionFactoryHelper also creates a new property set if 
necessary, and then sets some configuration properties required by Glacier2 
clients. The resulting InitializationData object is eventually used in 
connect to initialize a new communicator.

The Java definition of SessionFactoryHelper is shown below (the C# 
version is nearly identical and is not shown here):

package Glacier2;

public class SessionFactoryHelper {

    public SessionFactoryHelper(SessionCallback callback)
        throws Ice.InitializationException;

    public SessionFactoryHelper(Ice.InitializationData initData,
                                SessionCallback callback)
        throws Ice.InitializationException;

    public SessionFactoryHelper(Ice.Properties properties,
                                SessionCallback callback)
        throws Ice.InitializationException;

    public void setRouterIdentity(Ice.Identity identity);
    public Ice.Identity getRouterIdentity();

    public void setRouterHost(String hostname);
    public String getRouterHost();

    public void setSecure(boolean secure);
    public boolean getSecure();

    public void setTimeout(int timeoutMillisecs);
    public int getTimeout();
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    public void setPort(int port);
    public int getPort();

    public Ice.InitializationData getInitializationData();

    public void setConnectContext(
        java.util.Map<String, String> ctx);

    public SessionHelper connect();
    public SessionHelper connect(String username,
                                 String password);
}

The following methods are supported:

• SessionFactoryHelper(SessionCallback callback)

This constructor is useful when your application has no other configuration 
requirements. The constructor allocates an InitializationData object 
and a new property set. The callback argument must not be null.

• SessionFactoryHelper(
    Ice.InitializationData initData,
    SessionCallback callback)

Use this constructor when you want to prepare your own instance of 
InitializationData. The callback argument must not be null.

• SessionFactoryHelper(Ice.Properties properties,
                      SessionCallback callback)

This constructor is convenient when you wish to supply an initial set of prop-
erties. The callback argument must not be null.

• void setRouterIdentity(Ice.Identity identity)
Ice.Identity getRouterIdentity()

Determines the object identity of the Glacier2 router. Note that this setting is 
only used if Ice.Default.Router is undefined.

• void setRouterHost(String hostname)
String getRouterHost()

Determines the host name of the Glacier2 router. Note that this setting is only 
used if Ice.Default.Router is undefined.
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• void setSecure(boolean secure)
boolean getSecure()

Determines whether the connection to the Glacier2 router must be secure. 
Note that this setting is only used if Ice.Default.Router is undefined.

• void setTimeout(int timeoutMillisecs)
int getTimeout()

Determines the timeout setting (in milliseconds) for the connection to the 
Glacier2 router. No timeout is used if the argument is less than or equal to 
zero. Note that this setting is only used if Ice.Default.Router is unde-
fined.

• void setPort(int port)
int getPort()

Determines the port on which the Glacier2 router is listening. Note that this 
setting is only used if Ice.Default.Router is undefined.

• Ice.InitializationData getInitializationData()

Returns a reference to the InitializationData object that will be used 
during communicator initialization. If necessary, an application can make 
modifications to this object prior to calling connect.

• void setConnectContext(
    java.util.Map<String, String> ctx)

Sets the request context to be used when creating a session. This method must 
be invoked prior to connect.

• SessionHelper connect()

Initializes a communicator, creates a Glacier2 session using SSL credentials, 
and returns a new SessionHelper object. The connected method is 
invoked on the session callback if the session was created successfully, other-
wise the connectFailed method is invoked.

• SessionHelper connect(String username,
                       String password)

Initializes a communicator, creates a Glacier2 session using the given user 
name and password, and returns a new SessionHelper object. The 
connected method is invoked on the session callback if the session was 
created successfully, otherwise the connectFailed method is invoked.
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The SessionHelper Class

The SessionHelper class encapsulates a Glacier2 session and keeps the 
session alive by periodically “pinging” the router. SessionHelper also 
provides several convenience methods for common session-related actions (shown 
below in Java):

package Glacier2;

public class SessionHelper {

    public void destroy();

    public Ice.Communicator communicator();

    public String categoryForClient()
        throws SessionNotExistException;

    public Ice.ObjectPrx addWithUUID(Ice.Object servant)
        throws SessionNotExistException;

    public Glacier2.SessionPrx session()
        throws SessionNotExistException;

    public boolean isConnected();

    public Ice.ObjectAdapter objectAdapter()
        throws SessionNotExistException;
}

The following methods are supported:

• void destroy()

Destroys the Glacier2 session.

• Ice.Communicator communicator()

Returns the communicator created by the SessionHelper.

• String categoryForClient()

Returns the category that must be used in the identities of all callback objects. 
Raises SessionNotExistException if no session is currently active.

• Ice.ObjectPrx addWithUUID(Ice.Object servant)

Adds a servant to the callback object adapter using a UUID for the identity 
name. Raises SessionNotExistException if no session is currently 
active.
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• Glacier2.SessionPrx session()

Returns a proxy for the Glacier2 session. Raises SessionNotExistEx-
ception if no session is currently active.

• boolean isConnected()

Returns true if the session is currently active, false otherwise.

• Ice.ObjectAdapter objectAdapter()

Returns the callback object adapter, creating it if necessary. Raises Sessi-
onNotExistException if no session is currently active.

The SessionCallback Interface

An application must supply an instance of SessionCallback when instanti-
ating a SessionFactoryHelper object. The callback methods allow the 
application to receive notification about events in the lifecycle of the session 
(shown below in Java):

package Glacier2;

public interface SessionCallback {

    void createdCommunicator(SessionHelper session);

    void connected(SessionHelper session)
        throws SessionNotExistException;

    void disconnected(SessionHelper session);

    void connectFailed(SessionHelper session, Throwable ex);
}

The following callback methods are supported:

• void createdCommunicator(SessionHelper session)

Called after successfully initializing a communicator.

• void connected(SessionHelper session)

Called after successfully establishing the Glacier2 session. The method can 
raise SessionNotExistException to force the new session to be 
destroyed.

• void disconnected(SessionHelper session)

Called after the Glacier2 session is destroyed.
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• void connectFailed(SessionHelper session,
                    Throwable ex)

Called if a failure occurred while attempting to establish a Glacier2 session.

42.6 Router Security

As a firewall, a Glacier2 router represents a doorway into a private network, and in 
most cases that doorway should have a good lock. The obvious first step is to use 
SSL for the router’s client endpoints. This allows you to secure the message traffic 
and restrict access to clients having the proper credentials (see Chapter 41). 
However, the router takes security even further by providing access control and 
filtering capabilities.

42.6.1 Access Control

The authentication capabilities of SSL may not be sufficient for all applications: 
the certificate validation phase of the SSL handshake verifies that the user is who 
he says he is, but how do we know that he should be allowed to use the router? 
Glacier2 addresses this issue through the use of an access control facility that 
supports two forms of authentication: passwords and certificates. You can 
configure the router to use whichever authentication method is most appropriate 
for your application, or you can configure both methods in the same router.

Password Authentication

The router verifies the user name and password arguments to its createSession 
operation before it forwards any requests on behalf of the client. Given that the 
password is sent “in the clear,” it is important to protect these values by using an 
SSL connection with the router. Section 42.3.6 demonstrates how to use the crea-
teSession operation.

There are two ways for the router to verify a user name and password. By 
default, the router uses a file-based access control list, but you can override this 
behavior by installing a proxy for an application-defined verifier object. Configu-
ration properties define the password file name or the verifier proxy; if you install 
a verifier proxy, the password file is ignored. Since we have already discussed the 
password file in Section 42.3.2, we will focus on the custom verifier interface in 
the remainder of this section.
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An application that has special requirements can implement the interface 
Glacier2::PermissionsVerifier to gain programmatic control over access to a 
router. This can be especially useful in situations where a repository of account 
information already exists (such as an LDAP directory), in which case duplicating 
that information in another file would be tedious and error-prone.

The Slice definition for the interface contains just one operation:

module Glacier2 {
    interface PermissionsVerifier {
        idempotent
        bool checkPermissions(string userId, string password,
                              out string reason);
    };
};

The router invokes checkPermissions on the verifier object, passing it the user 
name and password arguments that were given to createSession. The operation 
must return true if the arguments are valid, and false otherwise. If the operation 
returns false, a reason can be provided in the output parameter.

To configure a router with a custom verifier, set the configuration property 
Glacier2.PermissionsVerifier with the proxy for the object.

In situations where authentication is not necessary, such as during develop-
ment or when running in a trusted environment, you can use Glacier2’s built-in 
“null” permissions verifier. This object accepts any combination of username and 
password, and you can enable it with the following property definition:

Glacier2.PermissionsVerifier=Glacier2/NullPermissionsVerifier

Note that the category of the object’s identity (Glacier2 in this example) must 
match the value of the property Glacier2.InstanceName.

A sample implementation of the PermissionsVerifier interface is provided 
in the demo/Glacier2/callback directory.

Certificate Authentication

As shown in Section 42.3.6, the createSessionFromSecureConnection opera-
tion does not require a user name or password because the client’s SSL connection 
to the router already supplies the credentials necessary to sufficiently identify the 
client, in the form of X.509 certificates. (See Chapter 41 for details on IceSSL 
configuration.)

It is up to you to decide what constitutes sufficient identification. For example, 
a single certificate could be shared by all clients if there is no need to distinguish 
between them, or you could generate a unique certificate for each client or a group 



42.6 Router Security 1731

of clients. Glacier2 does not enforce any particular policy, but simply delegates 
the decision of whether to accept the client’s credentials to an application-defined 
object that implements the Glacier2::SSLPermissionsVerifier interface:

module Glacier2 {
    interface SSLPermissionsVerifier {
        idempotent bool authorize(SSLInfo info,
                                   out string reason);
    };
};

Router clients may only use createSessionFromSecureConnection if the router 
is configured with a proxy for an SSLPermissionsVerifier object. The imple-
mentation of authorize must return true to allow the client to establish a session. 
To reject the session, authorize must return false and may optionally provide a 
value for reason, which is returned to the client as a member of PermissionDe-
niedException.

The verifier examines the members of SSLInfo to authenticate a client:

module Glacier2 {
    struct SSLInfo {
        string remoteHost;
        int remotePort;
        string localHost;
        int localPort;
        string cipher;
        Ice::StringSeq certs;
    };
};

The structure includes address information about the remote and local hosts, and a 
string that describes the ciphersuite negotiated for the SSL connection between 
the client and the router. These values are generally of interest for logging 
purposes, whereas the certs member supplies the information the verifier needs 
to make its decision. The client’s certificate chain is represented as a sequence of 
strings that use the Privacy Enhanced Mail (PEM) encoding. The first element of 
the sequence corresponds to the client’s certificate, followed by its signing certifi-
cates. The certificate of the root Certificate Authority (CA) is the last element of 
the sequence. An empty sequence indicates that the client did not supply a certifi-
cate chain.

Although the certificate chain has already been validated by the SSL imple-
mentation, a verifier implementation typically needs to examine it in detail before 
making its decision. As a result, the verifier will need to convert the contents of 
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certs into a more usable form. Some Ice platforms, such as Java and .NET 2, 
already provide certificate abstractions, and IceSSL supplies its own for C++ 
users. IceSSL for Java and .NET 2 defines the method 
IceSSL.Util.createCertificate, which accepts a PEM-encoded string 
and returns an instance of the platform’s certificate class. In C++, the class 
IceSSL::Certificate has a constructor that accepts a PEM-encoded string. 
Chapter 41 provides the relevant details.

In addition to examining certificate attributes such as the distinguished name 
of the subject and issuer, it is also important that a verifier consider the length of 
the certificate chain. Refer to Section 41.4.6 for a discussion of this issue.

To install your verifier, set the Glacier2.SSLPermissionsVerifier 
property with the proxy of your verifier object.

In situations where authentication is not necessary, such as during develop-
ment or when running in a trusted environment, you can use Glacier2’s built-in 
“null” permissions verifier. This object accepts the credentials of any client, and 
you can enable it with the following property definition:

Glacier2.SSLPermissionsVerifier=\
    Glacier2/NullSSLPermissionsVerifier

Note that the category of the object’s identity (Glacier2 in this example) must 
match the value of the property Glacier2.InstanceName.

Interaction with a Permissions Verifier

The router attempts to contact the configured permissions verifiers at startup. If an 
object is unreachable, the router logs a warning message but continues its normal 
operation (you can suppress the warning using the --nowarn option – see 
Section 42.3.3). The router does not contact a verifier again until it needs to 
invoke an operation on the object. For example, when a client asks the router to 
create a new session, the router makes another attempt to contact the verifier; if 
the object is still unavailable, the router logs a message and returns Permission-
DeniedException to the client.

Obtaining SSL Credentials

Servers that wish to receive information about a client’s SSL connection to the 
router can define the Glacier2.AddConnectionContext property (see 
Section D.18). When enabled, the router adds several entries to the request context 
of each invocation it forwards to a server, providing information such as the 
client’s encoded certificate (if supplied) and addressing details.



42.6 Router Security 1733

If the client’s connection uses SSL, the router defines the _con.peerCert 
entry in the context. A server can check for the presence of this entry and also 
extract additional context entries as shown below in this C++ example:

void unlockDoor(string id, const Ice::Current& curr)
{
    Ice::Context::const_iterator i = curr.ctx.find("_con.peerCert"
);
    if (i != curr.ctx.end()) {
        string certPEM;
        certPEM = i->second;
        cout << "Client address = "
             << curr.ctx["_con.remoteAddress"]
             << ":" << curr.ctx["_con.remotePort"] << endl;
        ...
    }
    ...
}

If the client supplied a certificate, the server can decode and examine it using the 
techniques discussed in Chapter 41.

42.6.2 Filtering

The Glacier2 router is capable of filtering requests based on a variety of criteria, 
which helps to ensure that clients do not gain access to unintended objects.

Address Filters

To prevent a client from accessing arbitrary back-end hosts or ports, you can 
configure a Glacier2 router to validate the address information in each proxy the 
client attempts to use. Two properties determine the router’s filtering behavior:

• Glacier2.Filter.Address.Accept

An address is accepted if it matches an entry in this property and does not 
match an entry in Glacier2.Filter.Address.Reject.

• Glacier2.Filter.Address.Reject

An address is rejected if it matches an entry in this property.

The value of each property is a list of address:port pairs separated by spaces, as 
shown in the example below:

Glacier2.Filter.Address.Accept=192.168.1.5:4063 192.168.1.6:4063
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This configuration allows clients to use only two hosts in the back-end network, 
and only one port on each host. A client that attempts to use a proxy containing 
any other host or port receives an ObjectNotExistException on its initial 
request.

You can also use ranges, groups and wildcards when defining your address 
filters. For example, the following property value shows how to use an address 
range:

Glacier2.Filter.Address.Accept=192.168.1.[5-6]:4063

This property is equivalent to the first example, but the range notation allows us to 
define the filter more concisely. Similarly, we can restate the property using the 
group notation by separating values with a comma:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:4063

The wildcard notation uses the * character to substitute for a value:

Glacier2.Filter.Address.Accept=10.0.*.1:4063

The range, group, and wildcard notation is also supported when specifying ports, 
as shown below:

Glacier2.Filter.Address.Accept=192.168.1.[5,6]:[10000-11000]
Glacier2.Filter.Address.Reject=192.168.1.[5,6]:[10500,10501]

In this configuration, the router allows clients to access all of the ports in the range 
10000 to 11000, except for the two ports 10500 and 10501.

At first glance, you might think that the following property definition is point-
less because it would prevent clients from accessing any back-end server:

Glacier2.Filter.Address.Reject=*

In reality, this configuration only prevents clients from accessing servers using 
direct proxies, that is, proxies that contain endpoints. As a result, the property 
causes Glacier2 to accept only indirect proxies (see Section 2.2.2).

NOTE: By default, a Glacier2 router forwards requests for any address, which is equiva-
lent to defining the property Glacier2.Filter.Address.Accept=*.

Category Filters

As described in Section 32.5, the Ice::Identity type contains two string 
members: category and name. You can configure a router with a list of valid iden-
tity categories, in which case it only routes requests for objects in those categories. 
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The configuration property Glacier2.Filter.Category.Accept 
supplies the category list:

Glacier2.Filter.Category.Accept=cat1 cat2

This property does not affect the routing of callback requests from back-end 
servers to router clients. See Section 42.4 for more information on callbacks.

NOTE: By default a Glacier2 router forwards requests for any category.

If a category contains spaces, you can enclose the value in single or double quotes. 
If a category contains a quote character, it must be escaped with a leading backs-
lash.

Glacier2 can optionally manipulate the category filter automatically. When 
you set Glacier2.Filter.Category.AcceptUser to a value of 1, the 
router adds the session’s username (for password authentication) or distinguished 
name (for SSL authentication) to the list of accepted categories. To ensure the 
uniqueness of your categories, you may prefer setting the property to a value of 2, 
which causes the router to prepend an underscore to the username or distinguished 
name before adding it to the list.

A session manager can also configure category filters dynamically; see 
Section 42.8 for details.

Identity Filters

The ability to filter on identity categories, as described in the previous section, is a 
convenient way to limit clients to particular groups of objects. For even stricter 
control over the identities that clients are allowed to access, you can use the 
Glacier2.Filter.Identity.Accept property. The value of this prop-
erty is a list of identities, separated by whitespace, representing the only objects 
the router’s clients may use.

If an identity contains spaces, you can enclose the value in single or double 
quotes. If an identity contains a quote character, it must be escaped with a leading 
backslash.

Clearly, specifying a static list of identities is only practical for a small set of 
objects. Furthermore, in many applications, the complete set of identities cannot 
be known in advance, such as when objects are created on a per-session basis and 
use UUIDs in their identities. For these situations, category-based filtering is 
generally sufficient. However, a session manager can also use Glacier2’s dynamic 
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filtering interface, SessionControl, to manage the set of valid identities at run 
time. See Section 42.8 for more information.

Adapter Filters

Applications often use IceGrid in their back-end network to simplify server 
administration and take advantage of the benefits offered by indirect proxies. 
Once you have configured Glacier2 with an appropriate locator (see 
Section 42.13), clients can use indirect proxies to refer to objects in IceGrid-
managed servers. Recall from Section 2.2.2 that an indirect proxy comes in two 
forms: one that contains only an identity, and one that contains an identity and an 
object adapter identifier. You can use the category and identity filters described in 
previous sections to control identity-only proxies, and you can use the property 
Glacier2.Filter.AdapterId.Accept to enforce restrictions on indirect 
proxies that use an object adapter identifier.

For example, the following property definition allows a client to use the proxy 
factory@WidgetAdapter but not the proxy factory@SecretAdapter:

Glacier2.Filter.AdapterId.Accept=WidgetAdapter

If an adapter identifier contains spaces, you can enclose the value in single or 
double quotes. If an adapter identifier contains a quote character, it must be 
escaped with a leading backslash.

A session manager can also configure this filter dynamically, as described in 
Section 42.8.

Proxy Filters

The Glacier2 router maintains an internal routing table that contains an entry for 
each proxy used by a router client; the size of the routing table grows in propor-
tion to the number of clients and their proxy usage. Furthermore, the amount of 
memory that the routing table consumes is affected by the number of endpoints in 
each proxy. Glacier2 provides two properties that you can use to limit the size of 
the routing table and defend against malicious router clients.

The property Glacier2.RoutingTable.MaxSize specifies the 
maximum number of entries allowed in the routing table. If the size of the table 
exceeds the value of this property, the router evicts older entries on a least-
recently-used basis. (Eviction of proxies from the routing table is transparent to 
router clients.) The default size of the routing table is 1000, but you may need to 
define a different value depending on the needs of your application. While experi-
menting with different values, you may find it useful to define the property 
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Glacier2.Trace.RoutingTable to see a log of the router’s activities with 
respect to the routing table.

The property Glacier2.Filter.ProxySizeMax sets a limit on the size 
of a stringified proxy. The Ice run time places no limits on the size of proxy 
components such as identities and host names, but a malicious client could manu-
facture very large proxies in a denial-of-service attack on a Glacier2 router. By 
setting this property to a reasonably small value, you can prevent proxies from 
consuming excessive memory in the router process.

Client Impact

The Glacier2 router immediately terminates a client’s session if it attempts to use 
a proxy that is rejected by an address filter or exceeds the size limit defined by the 
property Glacier2.Filter.ProxySizeMax. The Ice run time in the client 
responds by raising ConnectionLostException to the application.

For category, identity, and adapter identifier filters, the router raises Object-
NotExistException if any of the filters rejects a proxy and none of the filters 
accepts it.

To obtain more information on the router’s reasons for terminating a session or 
rejecting a request, set the following property and examine the router’s log output:

Glacier2.Client.Trace.Reject=1

42.6.3 Administration

Glacier2 supports an administrative interface that allows you to shut down a router 
programmatically:

module Glacier2 {
    interface Admin {
        idempotent void shutdown();
    };
};

To prevent unwanted clients from using the Admin interface, the object is only 
accessible on the endpoints defined by the Glacier2.Admin.Endpoints 
property. This property has no default value, meaning the Admin interface is inac-
cessible unless you explicitly define it.

If you decide to define Glacier2.Admin.Endpoints, choose your 
endpoints carefully. We generally recommend the use of endpoints that are acces-
sible only from behind a firewall.
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42.7 Session Management

A Glacier2 router requires a client to create a session (see Section 42.3.6) and 
forwards requests on behalf of the client until its session expires. A session 
expires when it is explicitly destroyed, or when it times out due to inactivity.

If your application needs to track the session activities of a router, you can 
configure the router to use a custom session manager. For example, your applica-
tion may need to acquire resources and initialize the state of back-end services for 
each new session, and later reclaim those resources when the session expires.

As with the authentication facility described in Section 42.6, Glacier2 
provides two session manager interfaces that an application can implement. The 
SessionManager interface receives notifications about sessions that use password 
authentication, while the SSLSessionManager interface is for sessions authenti-
cated using SSL certificates.

42.7.1 The Session Manager Interfaces

The relevant Slice definitions are shown below:

module Glacier2 {
    exception CannotCreateSessionException {
        string reason;
    };

    interface Session {
        void destroy();
    };

    interface SessionManager {
        Session* create(string userId, SessionControl* control)
            throws CannotCreateSessionException;
    };

    interface SSLSessionManager {
        Session* create(SSLInfo info, SessionControl* control)
            throws CannotCreateSessionException;
    };
};

When a client invokes createSession on the Router interface (see 
Section 42.3.6), the router validates the client’s user name and password and then 
calls SessionManager::create. Similarly, a call to createSessionFromSecure-
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Connection causes the router to invoke SSLSessionManager::create. The 
SSLInfo structure is described in Section 42.6.1. The second argument to the 
create operations is a proxy for a SessionControl object, which a session can 
use to perform dynamic filtering (see Section 42.8).

The create operations must return the proxy of a new Session object, or 
raise CannotCreateSessionException and provide an appropriate reason. The 
Session proxy returned by create is ultimately returned to the client as the result 
of createSession or createSessionFromSecureConnection.

Glacier2 invokes the destroy operation on a Session proxy when the session 
expires. This provides a custom session manager with the opportunity to reclaim 
resources that were acquired for the session during create.

NOTE: The create operations may be called with information that identifies an existing 
session. For example, this can occur if a client has lost its connection to the router 
and therefore must create a new session but its previous session has not expired 
yet, and the router therefore has not yet invoked destroy on its Session proxy. A 
session manager implementation must be prepared to handle this situation.

To configure the router with a custom session manager, define the properties 
Glacier2.SessionManager or Glacier2.SSLSessionManager with 
the proxies of the session manager objects. If necessary, you can configure a 
router with proxies for both types of session managers. If a session manager proxy 
is not supplied, the call to createSession or createSessionFromSecureCon-
nection always returns a null proxy.

The router attempts to contact the configured session manager at startup. If the 
object is unreachable, the router logs a warning message but continues its normal 
operation (you can suppress the warning using the --nowarn option – see 
Section 42.3.3). The router does not contact the session manager again until it 
needs to invoke an operation on the object. For example, when a client asks the 
router to create a new session, the router makes another attempt to contact the 
session manager; if the session manager is still unavailable, the router logs a 
message and returns CannotCreateSessionException to the client.

A sample implementation of the SessionManager interface is provided in the 
demo/Glacier2/callback directory.
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42.7.2 Session Timeouts
The value of the Glacier2.SessionTimeout property specifies the number 
of seconds a session must be inactive before it expires. If the property is not 
defined, then sessions never expire due to inactivity. If a non-zero value is speci-
fied, it is very important that the application chooses a value that does not result in 
premature session expiration. For example, if it is normal for a client to create a 
session and then have long periods of inactivity, then a suitably long timeout must 
be chosen, or the client must actively keep its session alive, or timeouts must be 
disabled altogether.

Once a session has expired (or been destroyed for some other reason), the 
client will no longer be able to send requests via the router, but instead receives a 
ConnectionLostException. The client must explicitly create a new session in 
order to continue using the router. If necessary, clients can use a dedicated thread 
to keep their sessions alive (see Section 42.3.6).

In general, we recommend the use of an appropriate session timeout, other-
wise resources created for each session will accumulate in the router. However, 
you can safely disable the session timeout if the server regularly calls back to the 
client. In that case, Glacier2 will automatically destroy the session if a failure 
occurs while forwarding a server callback to the client.

42.7.3 Invocation Timeouts
If you require invocation timeouts in the client for routed proxies, you must set the 
timeout on the router that you use to establish the session. This is because the Ice 
run time forwards the invocation to Glacier2, and the timeout applies to that invo-
cation.

In other words, whatever timeout you set on the router you use to create the 
session is the timeout that applies to all routed proxies. Do not attempt to override 
the timeout on a per-proxy basis; if you do, any setting other than the timeout used 
to establish the session results in a ConnectionLostException. This is because 
proxies with different timeout values establish separate connections, but there can 
be only one connection to Glacier2.4

For invocations made by Glacier2 to the server, whatever timeout value is set 
on the first proxy that is used to make an invocation applies to all proxies for the 
same object. This is because Glacier2 adds the proxy to its routing table during the 

4. A future version of Ice may make it illegal to set a timeout on a routed proxy.
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first invocation and, thereafter, reuses that cached proxy for all invocations to the 
same object identity.

Here is an example to illustrate this:

// 10-second session timeout for router.
ObjectPrx router = communicator->stringToProxy(
    "Glacier2/router:tcp -h host1 -p 4063 -t 10000");
communicator->setDefaultRouter(
    RouterPrx::uncheckedCast(router));

// Ping with 20-second timeout
communicator->stringToProxy("id:tcp -h host2 -p 12345 -t 20000")
    ->ice_ping();

// Ping with 30-second timeout
communicator->stringToProxy("id:tcp -h host2 -p 12345 -t 30000")
    ->ice_ping();

In this case, all invocations made by the client use a 10-second timeout to forward 
the invocations to Glacier2. The first call to ice_ping, when forwarded by 
Glacier2 to the server, uses a 20-second timeout. The second call to ice_ping 
also uses a 20-second timeout, even though the proxy specifies a 30-second 
timeout.

If you have a timeout on both the client–Glacier2 and the Glacier2–server 
connections, the timeout on the client–Glacier2 connection should be slightly 
longer; otherwise, invocation timeouts that are encountered by Glacier2 when it 
forwards an operation to the server cannot be propagated back to the client.

42.7.4 Connection Caching

Glacier2 disables connection caching on session manager proxies, therefore if you 
configure the router with a session manager proxy that contains multiple 
endpoints, the router attempts to use a different endpoint for each invocation on a 
session manager. The purpose of this behavior is to distribute the load among 
multiple active session manager objects without using the replication features 
provided by IceGrid. Be aware that including an invalid endpoint in your session 
manager proxy, such as the endpoint of a session manager server that is not 
currently running, can cause router clients to experience delays during session 
creation.

If your session managers are in a replica group, Section 42.13.2 provides more 
information on the router’s caching behavior.
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42.8 Dynamic Filtering

Section 42.6.2 described various ways of statically configuring a router to filter 
requests. Glacier2 also allows a session manager to customize filters for each 
session at run time via its SessionControl interface:

module Glacier2 {
    interface SessionControl {
        StringSet* categories();
        StringSet* adapterIds();
        IdentitySet* identities();
        void destroy();
    };
};

The router creates a SessionControl object for each client session and supplies a 
proxy for the object to the session manager create operations (see Section 42.7). 
Note that the SessionControl proxy is null unless the router is configured with 
server endpoints; refer to Section 42.4.3 for an example of configuring these 
endpoints.

Invoking the destroy operation causes the router to destroy the client’s 
session, which eventually results in an invocation of destroy on the application-
defined Session object, if one was provided.

The interface operations categories, adapterIds and identities return 
proxies to objects representing the modifiable filters for the session. The router 
initializes these filters using their respective static configuration properties.

The SessionControl object uses a StringSet to manage the category and 
adapter identifier filters:

module Glacier2 {
    interface StringSet {
        idempotent void add(Ice::StringSeq additions);
        idempotent void remove(Ice::StringSeq deletions);
        idempotent Ice::StringSeq get();
    };
};

Similarly, the IdentitySet interface manages the identity filters:
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module Glacier2 {
    interface IdentitySet {
        idempotent void add(Ice::IdentitySeq additions);
        idempotent void remove(Ice::IdentitySeq deletions);
        idempotent Ice::IdentitySeq get();
    };
};

In both interfaces, the add operation silently ignores duplicates, and the remove 
operation silently ignores non-existent entries.

Dynamic filtering is often necessary when each session must be restricted to a 
particular group of objects. Upon session creation, a session manager typically 
allocates a number of objects in back-end servers for that session to use. To 
prevent other sessions from accessing these objects (intentionally or not), the 
session manager can configure the session’s filters so that it is only permitted to 
use the objects that were created for it.

For example, a session manager can retain the SessionControl proxy and add 
a new identity to the IdentitySet as each new object is created for the session. A 
simpler solution is to create a unique identifier for the session, add it to the 
session’s category filter, and use that category in the identities of all of the objects 
accessible by that session. Using a category filter in this way reserves an identity 
namespace for each session and avoids the need to update the filter for each new 
object.

To aid in logging and debugging, you can select a category that identifies the 
client, such as the user name that was supplied during session creation, or an attri-
bute of the client’s certificate such as the common name, as long as the selected 
category is sufficiently unique that it will not conflict with another client’s 
session. You must also ensure that the categories you assign to sessions never 
match the categories of back-end objects that are not meant to be accessed by 
router clients. As an example, consider the following session manager implemen-
tation:

class SessionManagerI : public Glacier2::SessionManager
{
public:

    virtual Glacier2::SessionPrx
    create(const string& username,
           const Glacier2::SessionControlPrx& ctrl,
           const Ice::Current& curr)
    {
        string category = "_" + username;



        ctrl->categories()->add(category);
        // ...
    }
};

This session manager derives a category for the session by prepending an under-
score to the user name and then adds this category to the session’s filter. As long 
as our back-end objects do not use a leading underscore in their identity catego-
ries, this guarantees that a session’s category can never match the category of a 
back-end object.

For your convenience, Glacier2 already includes support for automatic cate-
gory filtering. See the discussion of category filters on page 1734 for more infor-
mation.

42.9 Request Buffering

A Glacier2 router can forward requests in buffered or unbuffered mode. In addi-
tion, the buffering mode can be set independently for each direction (client-to-
server and server-to-client).

The configuration properties Glacier2.Client.Buffered and 
Glacier2.Server.Buffered govern the buffering behavior. The former 
affects buffering of requests from clients to servers, and the latter affects buffering 
of requests from servers to clients. If a property is not specified, the default value 
is 1, which enables buffering. A property value of 0 selects the unbuffered mode.

The primary difference between the two modes is in the way requests are 
forwarded:

• Buffered

The router queues incoming requests and outgoing replies for delivery in a 
separate thread.

• Unbuffered

The router forwards requests in the same thread that received the request.

Although unbuffered mode consumes fewer resources than buffered mode, certain 
features such as request overriding (see Section 42.10.2) and request batching (see 
Section 42.10.3) are available only in buffered mode.
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42.10 Request Contexts

The Glacier2 router examines the context of an incoming request (see 
Section 32.12) for special keys that affect how the router forwards the request. 
These contexts have the same semantics regardless of whether the request is sent 
from client to server or from server to client.

42.10.1 _fwd 

The _fwd context determines the proxy mode that the router uses when 
forwarding the request. The value associated with the _fwd key must be a string 
containing one or more of the characters shown in Table 42.1.

These characters match the stringified proxy options described in Appendix E.
For requests whose _fwd context specify a batch mode, the forwarding 

behavior of the router depends on whether it is buffering requests (see 
Section 42.10.3).

If the _fwd key is not present in a request context, the mode used by the 
router to forward that request depends on the mode used by the client’s proxy and 
the router’s own configuration. If the client used twoway mode, the router also 
uses twoway mode. If the client sent the request as a oneway or batch oneway, the 

Table 42.1. Legal values for _fwd context key.

Value Mode

d Datagram

D Batch datagram

o Oneway

O Batch oneway

s Secure

t Twoway

z Compress
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router’s behavior is determined by the configuration properties described in 
Section 42.10.3.

42.10.2 _ovrd 
In buffered mode, the router allows a new incoming request to override any 
pending requests that are still in the router’s queue, effectively replacing any 
pending requests with the new request. For a new request to override a pending 
request, both requests must meet the following criteria:

• they specify the _ovrd key in the request context with the same value

• they are oneway requests

• they are requests on the same object.

This feature is intended to be used by clients that are sending frequent oneway 
requests in which the most recent request takes precedence. This feature mini-
mizes the number of requests that are forwarded to the server when requests are 
sent frequently enough that they accumulate in the router’s queue before the router 
has a chance to process them.

Note that the properties Glacier2.Client.SleepTime and 
Glacier2.Server.SleepTime can be used to add a delay to the router once 
it has sent all pending requests (see page 1747). Setting a delay increases the like-
lihood of overrides actually taking effect.

42.10.3 Batch Requests
Clients can direct the router to forward oneway requests in batches by including 
the D or O characters in the _fwd context, as described in Section 42.10.1. If the 
router is configured for buffered mode and several such requests accumulate in its 
queue, the router forwards them together in a batch rather than as individual 
requests. See Section 32.16 for more information on batched invocations.

In addition, the properties Glacier2.Client.AlwaysBatch and 
Glacier2.Server.AlwaysBatch determine whether oneway requests are 
always batched regardless of the _fwd context. The former property affects 
requests from clients to servers, while the latter affects requests from servers to 
clients. If a property is defined with a non-zero value, then all requests whose 
_fwd context includes the o character or were sent as oneway invocations are 
treated as if O were specified instead, and are batched when possible. Likewise, 
requests whose _fwd context includes the d character or were sent as datagram 
invocations are treated as if D were specified.
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If a property is not defined, the router does not batch requests unless specifi-
cally directed to do so by the _fwd context.

The configuration properties Glacier2.Client.SleepTime and 
Glacier2.Server.SleepTime can be used to force the router’s delivery 
threads to sleep for the specified number of milliseconds after the router has sent 
all of its pending requests. (Incoming requests are queued during this period.) The 
delay is useful to increase the effectiveness of batching because it makes it more 
likely for additional requests to accumulate in a batch before the batch is sent.

If these properties are not defined, or their value is zero, the corresponding 
thread does not sleep after sending queued requests.

42.10.4 Context Forwarding
The configuration properties Glacier2.Client.ForwardContext and 
Glacier2.Server.ForwardContext determine whether the router 
includes the context when forwarding a request. The former property affects 
requests from clients to servers, while the latter affects requests from servers to 
clients. If a property is not defined or has the value zero, the router does not 
include the context when forwarding requests.

42.11 Firewalls

The Glacier2 router requires only one external port to receive connections from 
clients and therefore can easily coexist with a network firewall device. For 
example, consider the network shown in Figure 42.7.

Figure 42.7. Using Glacier2 with a network firewall.

In contrast to Figure 42.6, the Glacier2 router in this example has both of its 
endpoints in the private network and its host requires only one IP address. We 
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assume that the firewall has been configured to forward connections from port 
4064 to the router’s client endpoint at port 9998. Meanwhile, the client must be 
configured to use the firewall’s address information in its router proxy, as shown 
below:

Ice.Default.Router=Glacier2/router:ssl -h 5.6.7.8 -p 4064

The Glacier2 router configuration for this example requires the following proper-
ties:

Glacier2.Client.Endpoints=ssl -h 10.0.0.1 -p 9998
Glacier2.Server.Endpoints=tcp -h 10.0.0.1 -p 9999

Note that the server endpoint specifies a fixed port (9999), but the router does not 
require a fixed port in this endpoint to operate properly.

42.12 Advanced Client Configurations

This section discusses strategies that Glacier2 clients can use to address more 
advanced requirements.

42.12.1 Object Adapter Strategies
An application that needs to support callback requests from a router as well as 
requests from local clients should use multiple object adapters. This strategy 
ensures that proxies created by these object adapters contain the appropriate 
endpoints. For example, suppose we have the network configuration shown in 
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Figure 42.8. Notice that the two local area networks use the same private network 
addresses, which is not an unrealistic scenario.

Figure 42.8. Supporting callback and local requests.

Now, if the callback client were to use a single object adapter for handling both 
callback requests and local requests, then any proxies created by that object 
adapter would contain the application’s local endpoints as well as the router’s 
server endpoints. As you might imagine, this could cause some subtle problems.

1. When the local client attempts to establish a connection to the callback client 
via one of these proxies, it might arbitrarily select one of the router’s server 
endpoints to try first. Since the router’s server endpoints use addresses in the 
same network, the local client attempts to make a connection over the local 
network, with two possible outcomes: the connection attempts to those 
endpoints fail, in which case they are skipped and the real local endpoints are 
attempted; or, even worse, one of the endpoints might accidentally be valid in 
the local network, in which case the local client has just connected to some 
unknown server.

2. The server may encounter similar problems when attempting to establish a 
local connection to the router in order to make a callback request.

The solution is to dedicate an object adapter solely to handling callback requests, 
and another one for servicing local clients. The object adapter dedicated to call-
back requests must be configured with the router proxy as described in 
Section 42.4.4.
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42.12.2 Using Multiple Routers

A client is not limited to using only one router at a time: the proxy operation 
ice_router allows a client to configure its routed proxies as necessary. With 
respect to callbacks, a client must create a new callback object adapter for each 
router that can forward callback requests to the client.

For information on configuring multiple routers, see Section 42.3.5.

42.13 IceGrid Integration

IceGrid is a server activation and location service, as described in Chapter 38. 
This section describes the ways in which you can integrate Glacier2 and IceGrid.

42.13.1 Configuring Clients

It is not uncommon for a Glacier2 client to require access to a locator service such 
as IceGrid. A locator client would typically define the property 
Ice.Default.Locator with a stringified proxy for the locator service, as 
described in Section 38.4.3. However, when that locator service is accessed via a 
Glacier2 router, the configuration requirements are slightly different. It is no 
longer necessary for the client to define Ice.Default.Locator; this prop-
erty must be defined in the Glacier2 router’s configuration instead.

For example, consider the following network architecture:

In this case the Glacier2 router’s configuration must include the property shown 
below:

Ice.Default.Locator=IceGrid/Locator:tcp -h 10.0.0.2 -p 4061
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42.13.2 Locator Timeouts
An IceGrid application might want to use replication (see Section 38.9) to 
increase the availability of Glacier2 session managers. When you configure an 
indirect proxy for a session manager (and configure Glacier2 with a locator proxy, 
as described in Section 42.13.1), the Ice run time in the router queries the locator 
to obtain a proxy for a session manager replica. By default, this proxy is cached 
for 10 minutes, meaning the router uses the same session manager proxy to create 
sessions for a 10-minute period, after which it queries the locator again. If you 
want to distribute the session-creation load among the session manager replicas 
more evenly, you can decrease the locator cache timeout using configuration prop-
erties. For example, the following settings use a timeout of 30 seconds:

Glacier2.SessionManager.LocatorCacheTimeout=30
Glacier2.SSLSessionManager.LocatorCacheTimeout=30

As you can see, timeouts are specified individually for the SessionManager and 
SSLSessionManager proxies. You can also disable caching completely by using a 
value of 0, in which case the router queries the locator before every invocation on 
a session manager.

See Section 42.7.4 for more information on connection caching.

42.14 Summary

Complex network environments are a fact of life. Unfortunately, the cost of 
securing an enterprise’s network is increased application complexity and adminis-
trative overhead. Glacier2 helps to minimize these costs by providing a low-
impact, efficient and secure router for Ice applications.
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Chapter 43
IceBox

43.1 Chapter Overview

In this chapter we present IceBox, an easy-to-use framework for Ice application 
services. Section 43.2 provides an overview of IceBox and the advantages of 
using it. A tutorial on writing and configuring an IceBox service is presented in 
Section 43.3, and Section 43.4 describes how to start the server. IceBox adminis-
tration is the subject of Section 43.5. 

43.2 Introduction

The Service Configurator pattern [7] is a useful technique for configuring services 
and centralizing their administration. In practical terms, this means services are 
developed as dynamically-loadable components that can be configured into a 
general purpose “super server” in whatever combinations are necessary. IceBox is 
an implementation of the Service Configurator pattern for Ice services.

A generic IceBox server replaces the typical monolithic Ice server you 
normally write. The IceBox server is configured via properties with the applica-
tion-specific services it is responsible for loading and managing, and it can be 
administered remotely. There are several advantages in using this architecture:
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• Services loaded by the same IceBox server can be configured to take advan-
tage of Ice’s collocation optimizations. For example, if one service is a client 
of another service, and those services reside in the same IceBox server, then 
invocations between them can be optimized.

• Composing an application consisting of various services is done by configura-
tion, not by compiling and linking. This decouples the service from the server, 
allowing services to be combined or separated as needed.

• Multiple Java services can be active in a single instance of a Java Virtual 
Machine (JVM). This conserves operating system resources when compared 
to running several monolithic servers, each in its own JVM.

• Services implement an IceBox service interface, providing a common frame-
work for developers and a centralized administrative facility.

• IceBox support is integrated into IceGrid, the server activation and deploy-
ment service (see Section 38.8).

43.3 Developing a Service

Writing an IceBox service requires implementing one of the IceBox service inter-
faces. The sample implementations we present in this section implement 
IceBox::Service, shown below:

module IceBox {
local interface Service {
    void start(string name,
               Ice::Communicator communicator,
               Ice::StringSeq args);
    void stop();
};
};

As you can see, a service needs to implement only two operations, start and 
stop. These operations are invoked by the server; start is called after the service 
is loaded, and stop is called when the IceBox server is shutting down.

The start operation is the service’s opportunity to initialize itself; this typi-
cally includes creating an object adapter and servants. The name and args parame-
ters supply information from the service’s configuration (see Section 43.3.4), and 
the communicator parameter is an Ice::Communicator object created by the 
server for use by the service. Depending on the service configuration, this 
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communicator instance may be shared by other services in the same IceBox 
server, therefore care should be taken to ensure that items such as object adapters 
are given unique names.

The stop operation must reclaim any resources used by the service. Generally, 
a service deactivates its object adapter, and may also need to invoke waitForDe-
activate on the object adapter in order to ensure that all pending requests have 
been completed before the clean up process can proceed. The server is responsible 
for destroying the communicator instance that was passed to start.

Whether the service’s implementation of stop should explicitly destroy its 
object adapter depends on other factors. For example, the adapter should be 
destroyed if the service uses a shared communicator, especially if the service 
could eventually be restarted. In other circumstances, the service can allow its 
adapter to be destroyed as part of the communicator’s destruction.

These interfaces are declared as local for a reason: they represent a contract 
between the server and the service, and are not intended to be used by remote 
clients. Any interaction the service has with remote clients is done via servants 
created by the service.

43.3.1 C++ Service Example

The example we present here is taken from the IceBox/hello sample program 
provided in the Ice distribution.

The class definition for our service is quite straightforward, but there are a few 
aspects worth mentioning:

#include <IceBox/IceBox.h>

#if defined(_WIN32)
#   define HELLO_API __declspec(dllexport)
#else
#   define HELLO_API /**/
#endif

class HELLO_API HelloServiceI : public IceBox::Service {
public:
    virtual void start(const std::string&,
                       const Ice::CommunicatorPtr&,
                       const Ice::StringSeq&);
    virtual void stop();
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private:
    Ice::ObjectAdapterPtr _adapter;
};

First, we include the IceBox header file so that we can derive our implementation 
from IceBox::Service. Second, the preprocessor definitions are necessary 
because, on Windows, this service resides in a Dynamic Link Library (DLL), 
therefore we need to export the class so that the server can load it properly.

The member definitions are equally straightforward:

#include <Ice/Ice.h>
#include <HelloServiceI.h>
#include <HelloI.h>

using namespace std;

void
HelloServiceI::start(
    const string& name,
    const Ice::CommunicatorPtr& communicator,
    const Ice::StringSeq& args)
{
    _adapter = communicator->createObjectAdapter(name);
    Ice::ObjectPtr object = new HelloI(communicator);
    _adapter->add(object,
                  communicator->stringToIdentity("hello"));
    _adapter->activate();
}

void
HelloServiceI::stop()
{
    _adapter->deactivate();
}

The start method creates an object adapter with the same name as the service, 
activates a single servant of type HelloI (not shown), and activates the object 
adapter. The stop method simply deactivates the object adapter.

Entry Point

The last piece of the puzzle is the entry point function, which the IceBox server 
calls to obtain an instance of the service:
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extern "C" {
    HELLO_API IceBox::Service*
    create(Ice::CommunicatorPtr communicator)
    {
        return new HelloServiceI;
    }
}

In this example, the create function returns a new instance of the Hello 
service. The name of the function is not important, but it must have the signature 
shown above. In particular, the function must have C linkage, accept a single 
parameter of type Ice::CommunicatorPtr, and return a native pointer to 
IceBox::Service.

C linkage is required so that the IceBox server can locate this function in a 
dynamically-loaded library. The restrictions imposed on functions with C linkage 
prevent us from using the normal Ice calling conventions, which never return 
native pointers and always pass smart pointers by const reference. For example, 
such a function cannot return an object type (such as a smart pointer), which 
forces us to return a native pointer instead.

Section 43.3.4 provides more information on entry points and describes how 
to configure your service into an IceBox server.

43.3.2 Java Service Example

As with the C++ example presented in the previous section, the complete source 
for the Java example can be found in the IceBox/hello directory of the Ice 
distribution. The class definition for our service looks as follows:

public class HelloServiceI implements IceBox.Service
{
    public void
    start(String name,
          Ice.Communicator communicator,
          String[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        Ice.Object object = new HelloI(communicator);
        _adapter.add(object, Ice.Util.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void
    stop()
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    {
        _adapter.deactivate();
    }

    private Ice.ObjectAdapter _adapter;
}

The start method creates an object adapter with the same name as the service, 
activates a single servant of type HelloI (not shown), and activates the object 
adapter. The stop method simply deactivates the object adapter.

The server requires a service implementation to have a default constructor. 
This is the entry point for a Java IceBox service; that is, the server dynamically 
loads the service implementation class and invokes the default constructor to 
obtain an instance of the service.

This example is a trivial service, and yours will likely be much more inter-
esting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox 
server as described in Section 43.3.4.

43.3.3 C# Service Example

The complete source for the C# example can be found in the IceBox/hello 
directory of the Ice distribution. The class definition for our service looks as 
follows:

class HelloServiceI : IceBox.Service
{
    public void
    start(string name,
          Ice.Communicator communicator,
          string[] args)
    {
        _adapter = communicator.createObjectAdapter(name);
        _adapter.add(new HelloI(),
                     Ice.Util.stringToIdentity("hello"));
        _adapter.activate();
    }

    public void
    stop()
    {
        _adapter.deactivate();
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    }

    private Ice.ObjectAdapter _adapter;
}

The start method creates an object adapter with the same name as the service, 
activates a single servant of type HelloI (not shown), and activates the object 
adapter. The stop method simply deactivates the object adapter.

The server requires a service implementation to have a default constructor. 
This is the entry point for a C# IceBox service; that is, the server dynamically 
loads the service implementation class from an assembly and invokes the default 
constructor to obtain an instance of the service.

This example is a trivial service, and yours will likely be much more inter-
esting, but this does demonstrate how easy it is to write an IceBox service. After 
compiling the service implementation class, it can be configured into an IceBox 
server as described in Section 43.3.4.

43.3.4 Configuring a Service

A service is configured into an IceBox server using a single property. This prop-
erty serves several purposes: it defines the name of the service, it provides the 
server with the service entry point, and it defines properties and arguments for the 
service.

The format of the property is shown below:

IceBox.Service.name=entry_point [args]

The name component of the property key is the service name (IceStorm, in this 
example). This name is passed to the service’s start operation, and must be 
unique among all services configured in the same IceBox server. It is possible, 
though rarely necessary, to load two or more instances of the same service under 
different names.

The first argument in the property value is the entry point specification. Any 
arguments following the entry point specification are examined. If an argument 
has the form --name=value, then it is interpreted as a property definition that 
appears in the property set of the communicator passed to the service start oper-
ation. These arguments are removed, and any remaining arguments are passed to 
the start operation in the args parameter.



1760 IceBox

C++ Service

For a C++ service, the entry point must have the form library[,version]:symbol, 
where library is the simple name of the service’s shared library or DLL, and 
symbol is the name of the entry point function. A “simple name” is one without 
any platform-specific prefixes or extensions; the server adds appropriate decora-
tions depending on the platform. The version is optional. If specified, the version 
is embedded in the library name.

As an example, here is how we could configure IceStorm (see Chapter 44), 
which is implemented as an IceBox service in C++:

IceBox.Service.IceStorm=IceStormService,34:createIceStorm

IceBox uses the information provided in the entry point specification to compose 
a library name. For the IceStorm example shown above, IceBox on Windows 
would compose the library name IceStormService34.dll. If IceBox is 
compiled with debug information, it appends a d to the library name, so the name 
becomes IceStormService34d.dll instead.1 The shared library or DLL 
must reside in a directory that appears in PATH on Windows or the shared library 
search path (such as LD_LIBRARY_PATH) on POSIX systems.

The entry point function, symbol, must have the signature that we originally 
presented in Section 43.3.1:

extern "C" IceBox::Service* function(Ice::CommunicatorPtr);

The communicator instance passed to this function is the IceBox server’s commu-
nicator and should only be used for administrative purposes. For example, the 
entry point function could use this communicator’s logger to display log 
messages. For a service’s normal operations, it must use the communicator that it 
receives as an argument to its start method.

Here is sample configuration for our C++ service from Section 43.3.1:

IceBox.Service.Hello=HelloService:create \
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in HelloService.dll on Windows or libHelloSer-
vice.so on Linux, and the entry point function create is invoked to create an 

1. The exact name of the library that is loaded depends on the naming conventions of the platform 
IceBox executes on. For example, on Apple machines, the library name is
libIceStormService34.dylib.
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instance of the service. The argument --Ice.Trace.Network=1 is converted 
into a property definition, and the arguments hello and there become the two 
elements in the args sequence parameter that is passed to the start method.

Java Service

For a Java service, the entry point is simply the complete class name (including 
any package) of the service implementation class. The class must reside in the 
class path of the server, and must define a public default constructor.

Here is a sample configuration for our Java example from Section 43.3.2:

IceBox.Service.Hello=HelloServiceI \
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in the class HelloServiceI. The argument 
--Ice.Trace.Network=1 is converted into a property definition, and the 
arguments hello and there become the two elements in the args sequence 
parameter that is passed to the start method.

.NET Service

The entry point of a .NET service has the form assembly:class. The assembly 
component can be specified as the name of a DLL present in PATH, or as the full 
name of an assembly residing in the Global Assembly Cache (GAC), such as 
hello,Version=0.0.0.0,Culture=neutral. The class component is 
the complete class name of the service implementation class, which must define a 
public default constructor.

Here is a sample configuration for our C# example from Section 43.3.3:

IceBox.Service.Hello=helloservice.dll:HelloServiceI \
    --Ice.Trace.Network=1 hello there

This configuration results in the creation of a service named Hello. The service 
is expected to reside in the assembly named helloservice.dll, imple-
mented by the class HelloServiceI. The argument 
--Ice.Trace.Network=1 is converted into a property definition, and the 
arguments hello and there become the two elements in the args sequence 
parameter that is passed to the start method.

Sharing a Communicator

A service can be configured to use a shared communicator using the following 
property:
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IceBox.UseSharedCommunicator.name=1

The default behavior if this property is not specified is to create a new communi-
cator instance for the service. However, if collocation optimizations between 
services are desired, each of those services must be configured to use the shared 
communicator.

Inherited Properties

By default, a service does not inherit the server’s configuration properties. For 
example, consider the following server configuration:

IceBox.Service.Weather=... --Ice.Config=svc.cfg
Ice.Trace.Network=1

The Weather service only receives the properties that are defined in its 
IceBox.Service property. In the example above, the service’s communicator 
is initialized with the properties from the file svc.cfg.

If services need to inherit the server’s configuration properties, define the 
following property in the IceBox server’s configuration:

IceBox.InheritProperties=1

The properties of the shared communicator (see page 1761) are also affected by 
this setting.

Loading Services

By default, the server loads the configured services in an undefined order, 
meaning services in the same IceBox server should not depend on one another. If 
services must be loaded in a particular order, the IceBox.LoadOrder property 
can be used:

IceBox.LoadOrder=Service1,Service2

In this example, Service1 is loaded first, followed by Service2. Any 
remaining services are loaded after Service2, in an undefined order. Each 
service mentioned in IceBox.LoadOrder must have a matching 
IceBox.Service property.

During shutdown, services are stopped in the reverse of the order in which 
they were loaded.
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43.4 Starting IceBox

Incorporating everything we discussed in the previous sections, we can now 
configure and start IceBox servers.

43.4.1 Starting the C++ Server
The configuration file for our example C++ service is shown below:

IceBox.Service.Hello=HelloService:create
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the Hello 
service.

Assuming these properties reside in a configuration file named config, we 
can start the C++ IceBox server as follows:

$ icebox --Ice.Config=config

Additional command line options are supported, including those that allow the 
server to run as a Windows service or Unix daemon. See Section 8.3.2 for more 
information.

43.4.2 Starting the Java Server
Our Java configuration is nearly identical to the C++ version, except for the entry 
point specification:

IceBox.Service.Hello=HelloServiceI
Hello.Endpoints=tcp -p 10001

Notice that we define an endpoint for the object adapter created by the Hello 
service.

Assuming these properties reside in a configuration file named config, we 
can start the Java IceBox server as follows:

$ java IceBox.Server --Ice.Config=config

43.4.3 Starting the C# Server
The configuration file for our example C# service is shown below:

IceBox.Service.Hello=helloservice.dll:HelloService
Hello.Endpoints=tcp -p 10001
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Notice that we define an endpoint for the object adapter created by the Hello 
service.

Assuming these properties reside in a configuration file named config, we 
can start the C# IceBox server as follows:

$ iceboxnet --Ice.Config=config

43.4.4 Initialization Failure

At startup, an IceBox server inspects its configuration for all properties having the 
prefix IceBox.Service. and initializes each service. If initialization fails for 
a service, the IceBox server invokes the stop operation on any initialized services, 
reports an error, and terminates.

43.5 IceBox Administration

An IceBox server internally creates an object called the service manager that is 
responsible for loading and initializing the configured services. You can option-
ally expose this object to remote clients, such as the IceBox and IceGrid adminis-
trative utilities, so that they can execute certain administrative tasks. 

43.5.1 Slice Interfaces

The Slice definitions shown below comprise the IceBox administrative interface:

module IceBox {
exception AlreadyStartedException {};
exception AlreadyStoppedException {};
exception NoSuchServiceException {};

interface ServiceObserver {
    ["ami"] void servicesStarted(Ice::StringSeq services);
    ["ami"] void servicesStopped(Ice::StringSeq services);
};

interface ServiceManager {
    idempotent Ice::SliceChecksumDict getSliceChecksums();
    ["ami"] void startService(string service)
        throws AlreadyStartedException, NoSuchServiceException;
    ["ami"] void stopService(string service)
        throws AlreadyStoppedException, NoSuchServiceException;
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    ["ami"] void addObserver(ServiceObserver* observer)
    void shutdown();
};
};

ServiceManager

The ServiceManager interface provides access to the service manager object of 
an IceBox server. It defines the following operations:

• getSliceChecksums

Returns a dictionary of checksums that allows a client to verify that it is using 
the same Slice definitions as the server (see Section 4.21).

• startService

Starts a pre-configured service that is currently inactive. This operation cannot 
be used to add new services at run time, nor will it cause an inactive service’s 
implementation to be reloaded. If no matching service is found, the operation 
raises NoSuchServiceException. If the service is already active, the opera-
tion raises AlreadyStartedException.

• stopService

Stops an active service but does not unload its implementation. The operation 
raises NoSuchServiceException if no matching service is found, and 
AlreadyStoppedException if the service is stopped at the time stopService 
is invoked.

• addObserver

Adds an observer that is called when IceBox services are started or stopped. 
The service manager ignores operations that supply a null proxy, or a proxy 
that has already been registered.

• shutdown

Terminates the services and shuts down the IceBox server.

ServiceObserver

An administrative client that is interested in receiving callbacks when IceBox 
services are started or stopped must implement the ServiceObserver interface 
and register the callback object’s proxy with the service manager using its addOb-
server operation. The ServiceObserver interface defines two operations:

• servicesStarted

Invoked immediately upon registration to supply the current list of active 
services, and thereafter each time a service is started.



1766 IceBox

• servicesStopped

Invoked whenever a service is stopped, and when the IceBox server is shutting 
down.

The IceBox server unregisters an observer if the invocation of either operation 
causes an exception.

Section 38.22.3 demonstrates how to register a ServiceObserver callback 
with an IceBox server deployed with IceGrid.

43.5.2 Enabling the Service Manager
IceBox’s administrative functionality is disabled by default. You can enable it in 
two ways:

1. Define endpoints for the IceBox.ServiceManager object adapter.

2. Satisfy the prerequisites for enabling the Ice administrative facility described 
in Section 32.18.

For example, the following configuration property enables the 
IceBox.ServiceManager object adapter:

IceBox.ServiceManager.Endpoints=tcp -h 127.0.0.1 -p 10000

Similarly, the Ice administrative facility requires that endpoints be defined for the 
Ice.Admin object adapter with the property Ice.Admin.Endpoints. Note 
that the Ice.Admin object adapter is enabled automatically in an IceBox server 
that is deployed by IceGrid (see Section 38.22).

Regardless of which object adapter(s) you choose to enable, exposing the 
service manager makes an IceBox server vulnerable to denial-of-service attacks 
from malicious clients. Consequently, you should choose the endpoints and trans-
ports carefully; Section 32.18.8 explores these issues in greater depth.

43.5.3 Object Identities
Although an IceBox server has only one service manager object, the object is 
accessible via two different identities depending on how the administrative func-
tionality was enabled (see Section 43.5.2).

The IceBox.ServiceManager Object Adapter

When this object adapter is enabled, the service manager object has the default 
identity IceBox/ServiceManager. If an application requires the use of 
multiple IceBox servers, it is a good idea to assign unique identities to their 
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service manager objects by configuring the servers with different values for the 
IceBox.InstanceName property, as shown in the following example:

IceBox.InstanceName=IceBox1

This property changes the category of the object’s identity, which becomes 
IceBox1/ServiceManager. A corresponding change must be made in the 
configuration of administrative clients.

The Ice Administrative Facility

When this facility is enabled, the service manager is added as a facet of the 
server’s admin object. As a result, the identity of the service manager is the same 
as that of the admin object, and the name of its facet is IceBox.ServiceM-
anager. Section 32.18.1 explains that the identity of the admin object uses 
either a UUID or a statically-configured value for its category, and the value 
admin for its name. For example, consider the following property definitions:

Ice.Admin.Endpoints=tcp -h 127.0.0.1 -p 10001
Ice.Admin.InstanceName=IceBox

In this case, the identity of the admin object is IceBox/admin.

IceBox also registers a Properties facet (see Section 32.18.5) for each of 
its services so that the configuration properties of a service can be inspected 
remotely. The facet name is constructed as follows:

IceBox.Service.name.Properties

The value name represents the service name.

43.5.4 Client Configuration

A client requiring administrative access to the service manager can create a proxy 
using the endpoints configured in Section 43.5.2.

Using the IceBox.ServiceManager Object Adapter

To access the service manager via the IceBox.ServiceManager object 
adapter, the proxy should use the default identity IceBox/ServiceManager 
unless the server has changed the category using the IceBox.InstanceName 
property (see Section 43.5.3).
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Using the Ice Administrative Facility

To access the service manager via the administrative facility, the client must first 
obtain (or be able to construct) a proxy for the admin object. As explained in 
Section 32.18.1, the default identity of the admin object uses a UUID for its cate-
gory, which means the client cannot predict the identity and therefore will be 
unable to construct the proxy itself. If the IceBox server is deployed with IceGrid, 
the client can use the technique described in Section 38.22.3 to access its admin 
object.

In the absence of IceGrid, the IceBox server should set the 
Ice.Admin.InstanceName property if remote administration is required. In 
so doing, the identity of the admin object becomes well-known, and a client can 
construct the proxy on its own. For example, let us assume that the IceBox server 
defines the following property:

Ice.Admin.InstanceName=IceBox

A client can define the proxy for the admin object in a configuration property as 
follows:

ServiceManager.Proxy=IceBox/admin -f IceBox.ServiceManager
-h 127.0.0.1 -p 10001

The proxy option -f IceBox.ServiceManager specifies the name of the 
service manager’s administrative facet.

43.5.5 Administrative Utility
IceBox includes C++ and Java implementations of an administrative utility. The 
utilities have the same usage:

Usage: iceboxadmin [options] [command...]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.

Commands:
start SERVICE        Start a service.
stop SERVICE         Stop a service.
shutdown             Shutdown the server.

The C++ utility is named iceboxadmin, while the Java utility is represented by 
the class IceBox.Admin.

The start command is equivalent to invoking startService on the service 
manager interface. Its purpose is to start a pre-configured service; it cannot be 
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used to add new services at run time. Note that this command does not cause the 
service’s implementation to be reloaded.

Similarly, the stop command stops the requested service but does not cause 
the IceBox server to unload the service’s implementation.

The shutdown command stops all active services and shuts down the IceBox 
server.

The C++ and Java utilities obtain the service manager’s proxy from the prop-
erty IceBoxAdmin.ServiceManager.Proxy, therefore this proxy must be 
defined in the program’s configuration file or on the command line, and the 
proxy’s contents of depend on the server’s configuration. If the IceBox server is 
deployed with IceGrid, we recommend using the IceGrid administrative utilities 
instead (see Section 38.24), which provide equivalent commands for adminis-
tering an IceBox server. Otherwise, the proxy should have the endpoints config-
ured for the server as described in Section 43.5.2 and the identity as described in 
Section 43.5.3.

43.6 Summary

IceBox offers a refreshing change of perspective: developers focus on writing 
services, not applications. The definition of an application changes as well; using 
IceBox, an application becomes a collection of discrete services whose composi-
tion is determined dynamically by configuration, rather than statically by the 
linker.
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Chapter 44
IceStorm

44.1 Chapter Overview

In this chapter we present IceStorm, an efficient publish/subscribe service for Ice 
applications. Section 44.2 provides an introduction to IceStorm, while 
Section 44.3 discusses some basic IceStorm concepts. An overview of the IceS-
torm Slice interfaces is provided in Section 44.4, and Section 44.5 presents an 
example IceStorm application. An IceStorm publisher can optionally publish 
events to specific subscribers; this mechanism is detailed in Section 44.6. Infor-
mation about IceStorm’s replication facilities can be found in Section 44.7. The 
IceStorm administration tool is described in Section 44.8, and the subject of feder-
ation is discussed in Section 44.9. IceStorm’s quality of service parameters are 
defined in Section 44.10, and Section 44.11 reviews the various modes of event 
delivery. Finally, IceStorm configuration is addressed in Section 44.12.

44.2 Introduction

Applications often need to disseminate information to multiple recipients. For 
example, suppose we are developing a weather monitoring application in which 
we collect measurements such as wind speed and temperature from a meteorolog-
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ical tower and periodically distribute them to weather monitoring stations. We 
initially consider using the architecture shown in Figure 44.1.

Figure 44.1. Initial design for a weather monitoring application.

However, the primary disadvantage of this architecture is that it tightly couples the 
collector to its monitors, needlessly complicating the collector implementation by 
requiring it to manage the details of monitor registration, measurement delivery, 
and error recovery. We can rid ourselves of these mundane duties by incorporating 
IceStorm into our architecture, as shown in Figure 44.2.

Figure 44.2. A weather monitoring application using IceStorm.

IceStorm simplifies the collector implementation significantly by decoupling it 
from the monitors. As a publish/subscribe service, IceStorm acts as a mediator 
between the collector (the publisher) and the monitors (the subscribers), and offers 
several advantages:
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• When the collector is ready to distribute a new set of measurements, it makes 
a single request to the IceStorm server. The IceStorm server takes responsi-
bility for delivering the request to the monitors, including handling any excep-
tions caused by ill-behaved or missing subscribers. The collector no longer 
needs to be aware of its monitors, or whether it even has any monitors at that 
moment.

• Similarly, monitors interact with the IceStorm server to perform tasks such as 
subscribing and unsubscribing, thereby allowing the collector to focus on its 
application-specific responsibilities and not on administrative trivia.

• The collector and monitor applications require very few changes to incorpo-
rate IceStorm.

44.3 Concepts

This section discusses several concepts that are important for understanding IceS-
torm’s capabilities.

44.3.1 Message
An IceStorm message is strongly typed and is represented by an invocation of a 
Slice operation: the operation name identifies the type of the message, and the 
operation parameters define the message contents. A message is published by 
invoking the operation on an IceStorm proxy in the normal fashion. Similarly, 
subscribers receive the message as a regular servant upcall. As a result, IceStorm 
uses the “push” model for message delivery; polling is not supported.

44.3.2 Topic
An application indicates its interest in receiving messages by subscribing to a 
topic. An IceStorm server supports any number of topics, which are created 
dynamically and distinguished by unique names. Each topic can have multiple 
publishers and subscribers.

A topic is essentially equivalent to an application-defined Slice interface: the 
operations of the interface define the types of messages supported by the topic. A 
publisher uses a proxy for the topic interface to send its messages, and a 
subscriber implements the topic interface (or an interface derived from the topic 
interface) in order to receive the messages. This is no different than if the 
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publisher and subscriber were communicating directly in the traditional client-
server style; the interface represents the contract between the client (the publisher) 
and the server (the subscriber), except IceStorm transparently forwards each 
message to multiple recipients.

IceStorm does not verify that publishers and subscribers are using compatible 
interfaces, therefore applications must ensure that topics are used correctly.

44.3.3 Unidirectional Messages
IceStorm messages are unidirectional, that is, they must have void return type, 
cannot have out-parameters, and cannot raise user exceptions. It follows that a 
publisher cannot receive replies from its subscribers. Any of the Ice transports 
(TCP, SSL, and UDP) can be used to publish and receive messages.

44.3.4 Federation
IceStorm supports the formation of topic graphs, also known as federation. A 
topic graph is formed by creating links between topics, where a link is a unidirec-
tional association from one topic to another. Each link has a cost that may restrict 
message delivery on that link (see Section 44.9.2). A message published on a topic 
is also published on all of the topic’s links for which the message cost does not 
exceed the link cost.

Once a message has been published on a link, the receiving topic publishes the 
message to its subscribers, but does not publish it on any of its links. In other 
words, IceStorm messages propagate at most one hop from the originating topic in 
a federation (see Section 44.9.1).

Figure 44.3 presents an example of topic federation. Topic T1 has links to T2 
and T3, as indicated by the arrows. The subscribers S1 and S2 receive all messages 
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published on T2, as well as those published on T1. Subscriber S3 receives 
messages only from T1, and S4 receives messages from both T3 and T1.

Figure 44.3. Topic federation.

IceStorm makes no attempt to prevent a subscriber from receiving duplicate 
messages. For example, if a subscriber is subscribed to both T2 and T3, then it 
would receive two requests for each message published on T1.

44.3.5 Quality of Service

IceStorm allows each subscriber to specify its own quality of service (QoS) 
parameters that affect the delivery of its messages. Quality of service parameters 
are represented as a dictionary of name–value pairs. The supported QoS parame-
ters are described in Section 44.10.

44.3.6 Replication

IceStorm supports replication to provide higher availability for publishers and 
subscribers. Refer to Section 44.7 for more information on this subject.

44.3.7 Persistent Mode

IceStorm’s default behavior maintains information about topics, links, and 
subscribers in a database. However, a message sent via IceStorm is not stored 
persistently, but rather is discarded as soon as it is delivered to the topic’s current 
set of subscribers. If an error occurs during delivery to a subscriber, IceStorm does 
not queue messages for that subscriber.
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By default, IceStorm stores its persistent state in a Freeze database (see 
Chapter 39). However, you can configure IceStorm to use a different dabase, such 
as MySQL, among others (see Section 44.12.6).

44.3.8 Transient Mode

IceStorm can optionally run in a fully transient mode in which no database is 
required. Replication is not supported in this mode.

44.3.9 Subscriber Errors

If IceStorm encounters a failure while attempting to deliver a message to a 
subscriber, the subscriber is immediately unsubscribed from the topic on which 
the message was published.

Note that this is important if you make changes to a Slice data type or opera-
tion signature: if you do, you must ensure that both publishers and subscribers use 
the same Slice definitions; if you do not, IceStorm is likely to encounter 
marshaling errors when forwarding an event to a subscriber with a mismatched 
Slice definition and remove the subscription.

44.4 IceStorm Interface Overview

This section provides a brief introduction to the Slice interfaces comprising the 
IceStorm service. See the online Slice API Reference for the Slice documentation.

44.4.1 TopicManager

The TopicManager is a singleton object that acts as a factory and repository of 
Topic objects. Its interface and related types are shown below:

module IceStorm {
dictionary<string, Topic*> TopicDict;

exception TopicExists {
    string name;
};

exception NoSuchTopic {
    string name;

http://www.zeroc.com/doc/Ice-3.4.1/reference
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};

interface TopicManager {
    Topic* create(string name) throws TopicExists;
    idempotent Topic* retrieve(string name) throws NoSuchTopic;
    idempotent TopicDict retrieveAll();
    idempotent Ice::SliceChecksumDict getSliceChecksums();
};
};

The create operation is used to create a new topic, which must have a unique 
name. The retrieve operation allows a client to obtain a proxy for an existing 
topic, and retrieveAll supplies a dictionary of all existing topics. The getSli-
ceChecksums operation returns Slice checksums for the IceStorm definitions (see 
Section 4.21 for more information).

44.4.2 Topic

The Topic interface represents a topic and provides several administrative opera-
tions for configuring links and managing subscribers.

module IceStorm {
struct LinkInfo {
    Topic* theTopic;
    string name;
    int cost;
};
sequence<LinkInfo> LinkInfoSeq;

dictionary<string, string> QoS;

exception LinkExists {
    string name;
};

exception NoSuchLink {
    string name;
};

exception AlreadySubscribed {};

exception BadQoS {
    string reason;
};
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interface Topic {
    idempotent string getName();
    idempotent Object* getPublisher();
    idempotent Object* getNonReplicatedPublisher();
    Object* subscribeAndGetPublisher(
                QoS theQoS, Object* subscriber)
        throws AlreadySubscribed, BadQoS;
    idempotent void unsubscribe(Object* subscriber);
    idempotent void link(Topic* linkTo, int cost)
        throws LinkExists;
    idempotent void unlink(Topic* linkTo) throws NoSuchLink;
    idempotent LinkInfoSeq getLinkInfoSeq();
    void destroy();
};
};

The getName operation returns the name assigned to the topic, while the getPub-
lisher and getNonReplicatedPublisher operations return proxies for the 
topic’s publisher object (see Section 44.5.2).

The subscribeAndGetPublisher operation adds a subscriber’s proxy to the 
topic; if another subscriber proxy already exists with the same object identity, the 
operation throws AlreadySubscribed. The operation returns the publisher for the 
topic (see Section 44.6).

The unsubscribe operation removes the subscriber from the topic.
A link to another topic is created using the link operation; if a link already 

exists to the given topic, the LinkExists exception is raised. Links are destroyed 
using the unlink operation.

Finally, the destroy operation permanently destroys the topic.

44.5 Using IceStorm

In this section we expand on the weather monitoring example from Section 44.2, 
demonstrating how to create, subscribe to and publish messages on a topic. We 
use the following Slice definitions in our example:

struct Measurement {
    string tower; // tower id
    float windSpeed; // knots
    short windDirection; // degrees
    float temperature; // degrees Celsius
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};

interface Monitor {
    void report(Measurement m);
};

Monitor is our topic interface. For the sake of simplicity, it defines just one opera-
tion, report, taking a Measurement struct as its only parameter.

44.5.1 Implementing a Publisher
The implementation of our collector application can be summarized easily:

1. Obtain a proxy for the TopicManager. This is the primary IceStorm object, 
used by both publishers and subscribers.

2. Obtain a proxy for the Weather topic, either by creating the topic if it does 
not exist, or retrieving the proxy for the existing topic.

3. Obtain a proxy for the Weather topic’s “publisher object.” This proxy is 
provided for the purpose of publishing messages, and therefore is narrowed to 
the topic interface (Monitor).

4. Collect and report measurements.

In the sections below, we present collector implementations in C++ and Java.

C++ Example

As usual, our C++ example begins by including the necessary header files. The 
interesting ones are IceStorm/IceStorm.h, which is generated from the 
IceStorm Slice definitions, and Monitor.h, containing the generated code for 
our monitor definitions shown above.

#include <Ice/Ice.h>
#include <IceStorm/IceStorm.h>
#include <Monitor.h>

int main(int argc, char* argv[])
{
    ...
    Ice::ObjectPrx obj = communicator->stringToProxy(
        "IceStorm/TopicManager:tcp -p 9999");
    IceStorm::TopicManagerPrx topicManager =
        IceStorm::TopicManagerPrx::checkedCast(obj);
    IceStorm::TopicPrx topic;
    while (!topic) {
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        try {
            topic = topicManager->retrieve("Weather");
        } catch (const IceStorm::NoSuchTopic&) {
            try {
                topic = topicManager->create("Weather");
            } catch (const IceStorm::TopicExists&) {
                // Another client created the topic.
            }
        }
    }

    Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);
    while (true) {
        Measurement m = getMeasurement();
        monitor->report(m);
    }
    ...
}

Note that this example assumes that IceStorm uses the instance name IceStorm. 
The actual instance name may differ, and you need to use it as the category when 
calling stringToProxy (see page 1928).

After obtaining a proxy for the topic manager, the collector attempts to 
retrieve the topic. If the topic does not exist yet, the collector receives a NoSuch-
Topic exception and then creates the topic.

    IceStorm::TopicPrx topic;
    while(!topic) {
        try {
            topic = topicManager->retrieve("Weather");
        } catch (const IceStorm::NoSuchTopic&) {
            try {
                topic = topicManager->create("Weather");
            } catch (const IceStorm::TopicExists&) {
                // Another client created the topic.
            }
        }
    }

The next step is obtaining a proxy for the publisher object, which the collector 
narrows to the Monitor interface. (We create a oneway proxy for the publisher 
purely for efficiency reasons.)

    Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();
    MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);
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Finally, the collector enters its main loop, collecting measurements and publishing 
them via the IceStorm publisher object.

    while (true) {
        Measurement m = getMeasurement();
        monitor->report(m);
    }

Java Example

The equivalent Java version is shown below.

public static void main(String[] args)
{
    ...
    Ice.ObjectPrx obj = communicator.stringToProxy(
        "IceStorm/TopicManager:tcp -p 9999");
    IceStorm.TopicManagerPrx topicManager =
        IceStorm.TopicManagerPrxHelper.checkedCast(obj);
    IceStorm.TopicPrx topic = null;
    while (topic == null) {
        try {
            topic = topicManager.retrieve("Weather");
        } catch (IceStorm.NoSuchTopic ex) {
            try {
                topic = topicManager.create("Weather");
            } catch (IceStorm.TopicExists ex) {
                // Another client created the topic.
            }
        }
    }

    Ice.ObjectPrx pub = topic.getPublisher().ice_oneway();
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub);
    while (true) {
        Measurement m = getMeasurement();
        monitor.report(m);
    }
    ...
}

Note that this example assumes that IceStorm uses the instance name IceStorm. 
The actual instance name may differ, and you need to use it as the category when 
calling stringToProxy (see page 1928).
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After obtaining a proxy for the topic manager, the collector attempts to 
retrieve the topic. If the topic does not exist yet, the collector receives a NoSuch-
Topic exception and then creates the topic.

    IceStorm.TopicPrx topic = null;
    while (topic == null) {
        try {
            topic = topicManager.retrieve("Weather");
        } catch (IceStorm.NoSuchTopic ex) {
            try {
                topic = topicManager.create("Weather");
            } catch (IceStorm.TopicExists ex) {
                // Another client created the topic.
            }
        }
    }

The next step is obtaining a proxy for the publisher object, which the collector 
narrows to the Monitor interface.

    Ice.ObjectPrx pub = topic.getPublisher().ice_oneway();
    MonitorPrx monitor = MonitorPrxHelper.uncheckedCast(pub);

Finally, the collector enters its main loop, collecting measurements and publishing 
them via the IceStorm publisher object.

    while (true) {
        Measurement m = getMeasurement();
        monitor.report(m);
    }

44.5.2 Using a Publisher Object

Each topic creates a publisher object for the express purpose of publishing 
messages. It is a special object in that it implements an Ice interface that allows 
the object to receive and forward requests (i.e., IceStorm messages) without 
requiring knowledge of the operation types.

Type Safety

From the publisher’s perspective, the publisher object appears to be an applica-
tion-specific type. In reality, the publisher object can forward requests for any 
type, and that introduces a degree of risk: a misbehaving publisher can use 
uncheckedCast to narrow the publisher object to any type and invoke any 



44.5 Using IceStorm 1783

operation; the publisher object unknowingly forwards those requests to the 
subscribers.

If a publisher sends a request using an incorrect type, the Ice run time in a 
subscriber typically responds by raising OperationNotExistException. 
However, since the subscriber receives its messages as oneway invocations, no 
response can be sent to the publisher object to indicate this failure, and therefore 
neither the publisher nor the subscriber is aware of the type-mismatch problem. In 
short, IceStorm places the burden on the developer to ensure that publishers and 
subscribers are using it correctly.

Oneway or Twoway?

IceStorm messages are unidirectional, but publishers may use either oneway or 
twoway invocations when sending messages to the publisher object. Each invoca-
tion style has advantages and disadvantages that you should consider when 
deciding which one to use. The differences between the invocation styles affect a 
publisher in four ways:

• Efficiency

Oneway invocations have the advantage in efficiency because the Ice run time 
in the publisher does not await a reply to each message (and, of course, no 
reply is sent by IceStorm on the wire).

• Ordering

The use of oneway invocations by a publisher may affect the order in which 
subscribers receive messages. If ordering is important, use twoway invoca-
tions with a reliability QoS of ordered, or use a single thread in the 
subscriber (see also Section 44.10.1).

• Reliability

Oneway invocations can be lost under certain circumstances, even when they 
are sent over a reliable transport such as TCP (see Section 32.14). If the loss of 
messages is unacceptable, or you are unable to address the potential causes of 
lost oneway messages, then twoway invocations are recommended.

• Delays

A publisher may experience network-related delays when sending messages to 
IceStorm if subscribers are slow in processing messages. Twoway invocations 
are more susceptible to these delays than oneway invocations.
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Transports

Each publisher can select its own transport for message delivery, therefore the 
transport used by a publisher to communicate with IceStorm has no effect on how 
IceStorm delivers messages to its subscribers.

For example, a publisher can use a UDP transport if the possibility of lost 
messages is acceptable (and if IceStorm provides a UDP endpoint to publishers). 
However, the TCP or SSL transports are generally recommended for IceStorm’s 
publisher endpoint in order to ensure that published messages are delivered reli-
ably to IceStorm, even if they may not be delivered reliably to some subscribers.

Request Contexts

A request context is an optional argument of all remote invocations (see 
Section 32.12). If a publisher supplies a request context when publishing a 
message, IceStorm will forward it intact to subscribers.

Services such as Glacier2 employ request contexts to provide applications 
with more control over the service’s behavior. For example, if a publisher knows 
that IceStorm is delivering messages to subscribers via a Glacier2 router, the 
publisher can influence Glacier2’s behavior by including a request context, as 
shown in the following C++ example:

    Ice::ObjectPrx pub = topic->getPublisher();
    Ice::Context ctx;
    ctx["_fwd"] = "Oz";
    MonitorPrx monitor =
        MonitorPrx::uncheckedCast(pub->ice_context(ctx));

The _fwd context key, when encountered by Glacier2, causes the router to 
forward the request using compressed batch oneway messages. The 
ice_context method is used to obtain a proxy that includes the Glacier2 
request context in every invocation, eliminating the need for the publisher to 
specify it explicitly. See Section 42.10 for more information on Glacier2’s use of 
request contexts.

44.5.3 Implementing a Subscriber

Our subscriber implementation takes the following steps:

1. Obtain a proxy for the TopicManager. This is the primary IceStorm object, 
used by both publishers and subscribers.

2. Create an object adapter to host our Monitor servant.
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3. Instantiate the Monitor servant and activate it with the object adapter.

4. Subscribe to the Weather topic.

5. Process report messages until shutdown.

6. Unsubscribe from the Weather topic.

In the sections below, we present monitor implementations in C++ and Java.

C++ Example

Our C++ monitor implementation begins by including the necessary header files. 
The interesting ones are IceStorm/IceStorm.h, which is generated from the 
IceStorm Slice definitions, and Monitor.h, containing the generated code for 
our monitor definitions shown at the beginning of Section 44.2.

#include <Ice/Ice.h>
#include <IceStorm/IceStorm.h>
#include <Monitor.h>

using namespace std;

class MonitorI : virtual public Monitor {
public:
    virtual void report(const Measurement& m,
                        const Ice::Current&) {
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << endl;
    }
};

int main(int argc, char* argv[])
{
    ...
    Ice::ObjectPrx obj = communicator->stringToProxy(
        "IceStorm/TopicManager:tcp -p 9999");
    IceStorm::TopicManagerPrx topicManager =
        IceStorm::TopicManagerPrx::checkedCast(obj);

    Ice::ObjectAdapterPtr adapter =
        communicator->createObjectAdapter("MonitorAdapter");

    MonitorPtr monitor = new MonitorI;
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    Ice::ObjectPrx proxy = adapter->
                addWithUUID(monitor)->ice_oneway();

    IceStorm::TopicPrx topic;
    try {
        topic = topicManager->retrieve("Weather");
        IceStorm::QoS qos;
        topic->subscribeAndGetPublisher(qos, proxy);
    }
    catch (const IceStorm::NoSuchTopic&) {
        // Error! No topic found!
        ...
    }

    adapter->activate();
    communicator->waitForShutdown();

    topic->unsubscribe(proxy);
    ...
}

Our implementation of the Monitor servant is currently quite simple. A real 
implementation might update a graphical display, or incorporate the measure-
ments into an ongoing calculation.

class MonitorI : virtual public Monitor {
public:
    virtual void report(const Measurement& m,
                        const Ice::Current&) {
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << endl;
    }
};

After obtaining a proxy for the topic manager, the program creates an object 
adapter, instantiates the Monitor servant and activates it.

    Ice::ObjectAdapterPtr adapter =
        communicator->createObjectAdapter("MonitorAdapter");

    MonitorPtr monitor = new MonitorI;
    Ice::ObjectPrx proxy =
        adapter->addWithUUID(monitor)->ice_oneway();
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Note that the code creates a oneway proxy for the Monitor servant. This is for 
efficiency reasons: by subscribing with a oneway proxy, IceStorm will deliver 
events to the subscriber via oneway messages, instead of via twoway messages.

Next, the monitor subscribes to the topic.

    IceStorm::TopicPrx topic;
    try {
        topic = topicManager->retrieve("Weather");
        IceStorm::QoS qos;
        topic->subscribeAndGetPublisher(qos, proxy);
    }
    catch (const IceStorm::NoSuchTopic&) {
        // Error! No topic found!
        ...
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After 
waitForShutdown returns, the monitor cleans up by unsubscribing from the 
topic.

    adapter->activate();
    communicator->waitForShutdown();

    topic->unsubscribe(proxy);

Java Example

The Java implementation of the monitor is shown below.

class MonitorI extends _MonitorDisp {
    public void report(Measurement m, Ice.Current curr) {
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature + "\n");
    }
}

public static void main(String[] args)
{
    ...
    Ice.ObjectPrx obj = communicator.stringToProxy(
        "IceStorm/TopicManager:tcp -p 9999");
    IceStorm.TopicManagerPrx topicManager =
        IceStorm.TopicManagerPrxHelper.checkedCast(obj);
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    Ice.ObjectAdapterPtr adapter =
        communicator.createObjectAdapter("MonitorAdapter");

    Monitor monitor = new MonitorI();
    Ice.ObjectPrx proxy =
        adapter.addWithUUID(monitor).ice_oneway();

    IceStorm.TopicPrx topic = null;
    try {
        topic = topicManager.retrieve("Weather");
        java.util.Map qos = null;
        topic.subscribeAndGetPublisher(qos, proxy);
    }
    catch (IceStorm.NoSuchTopic ex) {
        // Error! No topic found!
        ...
    }

    adapter.activate();
    communicator.waitForShutdown();

    topic.unsubscribe(proxy);
    ...
}

Our implementation of the Monitor servant is currently quite simple. A real 
implementation might update a graphical display, or incorporate the measure-
ments into an ongoing calculation.

class MonitorI extends _MonitorDisp {
    public void report(Measurement m, Ice.Current curr) {
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature + "\n");
    }
}

After obtaining a proxy for the topic manager, the program creates an object 
adapter, instantiates the Monitor servant and activates it.

    Monitor monitor = new MonitorI();
    Ice.ObjectPrx proxy =
        adapter.addWithUUID(monitor).ice_oneway();
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Note that the code creates a oneway proxy for the Monitor servant. This is for 
efficiency reasons: by subscribing with a oneway proxy, IceStorm will deliver 
events to the subscriber via oneway messages, instead of via twoway messages.

Next, the monitor subscribes to the topic.

    IceStorm.TopicPrx topic = null;
    try {
        topic = topicManager.retrieve("Weather");
        java.util.Map qos = null;
        topic.subscribeAndGetPublisher(qos, proxy);
    }
    catch (IceStorm.NoSuchTopic ex) {
        // Error! No topic found!
        ...
    }

Finally, the monitor activates its object adapter and waits to be shutdown. After 
waitForShutdown returns, the monitor cleans up by unsubscribing from the 
topic.

    adapter.activate();
    communicator.waitForShutdown();

    topic.unsubscribe(proxy);

44.6 Publishing to a Specific Subscriber

If you send events to the publisher object you obtain by calling Topic::getPub-
lisher, the event is forwarded to all subscribers for that topic:

IceStorm::TopicPrx topic = ...;
Ice::ObjectPrx pub = topic->getPublisher()->ice_oneway();

MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);
Measurement m = ...;

monitor->report(m); // Sent to all subscribers

You can also publish an event to a single specific subscriber, by using the return 
value of subscribeAndGetPublisher. For example:

MonitorPtr monitor = new MonitorI;
Ice::ObjectPrx proxy = adapter->
                    addWithUUID(monitor)->ice_oneway();
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IceStorm::topicPrx topic = ...;

Icestorm::QoS qos;
Ice::ObjectPrx pub = topic->subscribeAndGetPublisher(qos, proxy);
MonitorPrx monitor = MonitorPrx::uncheckedCast(pub);

Measurement m = ...;
monitor->report(m); // Sent to only to this subscriber

Note that, here, we save the return value of subscribeAndGetPublisher. 
The return value is a proxy that connects specifically to the MonitorI instance 
denoted by proxy. However, when the code calls report on that proxy, instead 
of directly invoking on the MonitorI instance, the request is forwarded via 
IceStorm.

As it stands, this code is not very interesting. After all, the call to 
monitor->report is just a round-about way for the subscriber to publish a 
message to itself. However, the subscriber can pass this subscriber-specific 
publisher proxy to another process. When that process publishes an event via the 
proxy, the event is sent only to the specific subscriber, instead of to all subscribers 
for the topic. In turn, this is useful if you are using the observer pattern, with all 
observers attached to an IceStorm topic.

As an example, we might have a list whose state is to be monitored by a 
number of observers. Updates to the list are published to an IceStorm topic, say, 
ListUpdates. The observers of the list subscribe with an interface such as:

interface ListObserver {
    void init(/* The entire state of the list */);
    void itemChange(/* The added or deleted item */);
};

The idea is that, when an observer first starts observing the list, the init operation 
is called on the observer and passed the entire list. This initializes the observer 
with the current state of the list. Thereafter, whenever the list changes, it calls 
itemChange on the observer to inform it of the addition or deletion of an item. 
(The details of how this happens are secondary; the important point is that the 
observer is informed of the current state of the list initially and, thereafter, receives 
incremental updates about modifications to the list, rather than the entire list 
whenever it changes.)

The list itself might look something like this:
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interface List {
    void add(Item i);
    void remove(Item i);

    void addObserver(ListObserver* lo);
    void removeObserver(ListObserver* lo);
};

The list provides operations to add and remove an item, as well as operations to 
add and remove an observer. Every time add or remove are called on the list, the 
list publishes an itemChange event to the ListUpdates topic; this informs all the 
subscribed observers of the change to the list. However, when an observer is first 
added, the observer’s init operation must be called. Moreover, we want to call 
that method only once for each observer, so we cannot just publish the initial state 
of the list on a topic that all observers subscribe to.

The subscriber-specific proxy that is returned by subscribeAndGetPub-
lisher solves this nicely: the implementation of addObserver calls subscribe-
AndGetPublisher, and then invokes init on the observer. This both subscribes 
the observer to the topic, and IceStorm forwards the call to init to the observer. 
This is preferable to the list invoking init on the observer directly: if the observer 
is misbehaved (for example, if its init implementation blocks for some time), the 
list is unaffected because IceStorm shields the list from such behavior.

44.7 Highly Available IceStorm

IceStorm offers a highly available (HA) mode that employs master-slave replica-
tion with automatic failover in case the master fails.

44.7.1 Algorithm

HA IceStorm uses the Garcia-Molina “Invitation Election Algorithm” as 
described in [28], in which each replica has a priority and belongs to a replica 
group. The replica with the highest priority in the group becomes the coordinator, 
and the remaining replicas are slaves of the coordinator.

All replicas are statically configured with information about all other replicas, 
including their priority. The group combining works as follows:

• When recovering from an error, or during startup, replicas form a single self-
coordinated group.
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• Coordinators periodically attempt to combine their groups with other groups 
in order to form larger groups.

At regular intervals, slave replicas contact their coordinator to ensure that the 
coordinator is still the master of the slave’s group. If a failure occurs, the replica 
considers itself in error and performs error recovery as described above.

Replication commences once a group contains a majority of replicas. A 
majority is necessary to avoid the possibility of network partitioning, in which two 
groups of replicas form that cannot communicate and whose database contents 
diverge. With respect to IceStorm, a consequence of requiring a majority is that a 
minimum of three replicas are necessary.

An exception to the majority rule is made during full system startup (i.e., 
when no replica is currently running). In this situation, replication can only 
commence with the participation of every replica in the group. This requirement 
guarantees that the databases of all replicas are synchronized, and avoids the risk 
that the database of an offline replica might contain more recent information.

Once a majority group has been formed, all database states are compared. The 
most recent database state (as determined by comparing a time stamp recorded 
upon each database change) is transferred to all replicas and replication 
commences. IceStorm is now available for use.

44.7.2 Replica State

IceStorm replicas can have one of four states:

• Inactive

The node is inactive and awaiting an election.

• Election

The node is electing a coordinator.

• Reorganization

The replica group is reorganizing.

• Normal

The replica group is active and replicating.

For debugging purposes, you can obtain the state of the replicas using the 
replica command, as shown below:
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$ icestormadmin --Ice.Config=config
>>> replica
replica count: 3
1: id:         1
1: coord:      3
1: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
1: state:      normal
1: group:
1: max:        3
2: id:         2
2: coord:      3
2: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
2: state:      normal
2: group:
2: max:        3
3: id:         3
3: coord:      3
3: group name: 3:191131CC-703A-41D6-8B80-D19F0D5F0410
3: state:      normal
3: group:      1,2
3: max:        3

Each line begins with the identifier of the replica. The command displays the 
following information:

• id

The identifier of the replica.

• coord

The identifier of the group’s coordinator.

• group name

The name of the group to which this replica belongs.

• state

The replica’s current state.

• group

The identifiers of the other replicas in the group. Note that only the coordi-
nator knows, or cares about, this information.

• max

The maximum number of replicas seen by this replica. This value is used 
during startup to determine whether full participation is necessary. If the value 
is less than the total number of replicas, full participation is required.
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See Section 44.8 for more information on the icestormadmin utility.

44.7.3 IceStorm Clients
As previously noted, an individual IceStorm replica can be in one of several states. 
However, IceStorm clients have a different perspective in which the replication 
group as a whole is in one of the states shown below:

• Down

All requests to IceStorm fail.

• Inactive

All requests to IceStorm block until the replica is either down (in which case 
the request fails), or becomes Active.

• Active

Requests are processed.

It is also possible, but highly unlikely, for a request to result in an Ice::Unknown-
Exception. This can happen, for example, if a replica loses the majority and thus 
progresses to the inactive state during request processing. In this case, the result of 
the request is indeterminate (the request may or may not have succeeded) and 
therefore the IceStorm client can draw no conclusion. The client should retry the 
request and be prepared for the request to fail. Consider this example:

// C++
TopicPrx topic = ...;
Ice::ObjectPrx sub = ...;
IceStorm::QoS qos;
topic->subscribeAndGetPublisher(qos, sub);

The call to subscribeAndGetPublisher may fail in very rare cases with an 
UnknownException, indicating that the subscription may or may not have 
succeeded. Here is the proper way to deal with the possibility of an UnknownEx-
ception:

// C++
TopicPrx topic = ...;
Ice::ObjectPrx sub = ...;
IceStorm::QoS qos;
while(true) {
    try {
        topic->subscriberAndGetPublisher(qos, sub);
    } catch(const Ice::UnknownException&) {
        continue;
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    } catch(const IceStorm::AlreadySubscribed&) {
        // Expected.
    }
    break;
}

44.7.4 Subscribers

Subscribers can receive events from any replica. The subscriber will stop 
receiving events under two circumstances:

• The subscriber is unsubscribed by calling Topic::unsubscribe.

• The subscriber is removed as a result of a failure to deliver events. See 
Section 44.10.2 for more details.

44.7.5 Publishers

A publisher for HA IceStorm typically receives a proxy containing multiple 
endpoints. With this proxy, the publisher normally binds to a single replica and 
continues using that replica unless there is a failure, or until active connection 
management (ACM) closes the connection.

As with non-HA IceStorm, event delivery ordering can be guaranteed if the 
subscriber and publisher are suitably configured (see Section 44.11) and the 
publisher continues to use the same replica when publishing events.

Ordering guarantees are lost as soon as a publisher changes to a different 
replica. Furthermore, a publisher may receive no notification that a change has 
occurred, which is possible under two circumstances:

• ACM has closed the connection (see Section 36.4).

• Publishing to a replica fails and the Ice invocation can be retried, in which 
case the Ice run time in the publisher automatically and transparently attempts 
to send the request to another replica. The publisher receives an exception if 
the invocation cannot be retried.

A publisher has two ways of ensuring that it is notified about a change in replicas:

• The simplest method is to use the Topic::getNonReplicatedPublisher 
operation. The proxy returned by this operation points directly at the current 
replica and no transparent failover to a different replica can occur.

• If you never want transparent failover to occur during publishing, you can 
configure your publisher proxy so that it contains only one endpoint (see 



1796 IceStorm

Section 44.12.3). In this configuration, the Topic::getPublisher operation 
behaves exactly like getNonReplicatedPublisher.

Of the two strategies, using getNonReplicatedPublisher is preferable for two 
reasons:

• It does not involve changes to IceStorm’s configuration.

• It is still possible to obtain a replicated publisher proxy by calling getPub-
lisher, whereas if you had used the second strategy you would have elimi-
nated that possibility.

The second strategy may be necessary in certain circumstances, such as when an 
existing IceStorm application is deployed and cannot be changed.

Regardless of the strategy you choose, a publisher can recover from the failure 
of a replica by requesting another proxy from the replicated topic using getPub-
lisher or getNonReplicatedPublisher.

44.8 IceStorm Administration

The IceStorm administration tool is a command-line program that provides 
administrative control of an IceStorm server. The tool requires that the IceStorm-
Admin.TopicManager.Default property be specified as described in 
Section 44.12.4.

The following command-line options are supported:

$ icestormadmin -h
Usage: icestormadmin [options] [file...]
Options:
-h, --help           Show this message.
-v, --version        Display the Ice version.
-e COMMANDS          Execute COMMANDS.
-d, --debug          Print debug messages.

If one or more -e options are specified, the tool executes the given commands and 
exits, otherwise the tool enters an interactive session. The help command 
displays the following usage information:

help

Print this message.

exit, quit

Exit this program.
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create TOPICS

Add TOPICS.

destroy TOPICS

Remove TOPICS.

link FROM TO [COST]

Link FROM to TO with the optional COST.

unlink FROM TO

Unlink TO from FROM.

links [INSTANCE-NAME]

Without an argument, links displays the links of all topics in the current 
topic manager. You can specify a different topic manager by providing its 
instance name.

topics [INSTANCE-NAME]

Without an argument, topics displays the names of all topics in the current 
topic manager. You can specify a different topic manager by providing its 
instance name.

current [INSTANCE-NAME]

Set the current topic manager to the topic manager with instance name 
INSTANCE-NAME. The proxy of the corresponding topic manager must be 
specified by setting an IceStormAdmin.TopicManager.name property. 
Without an argument, the command shows the current topic manager.

replica [INSTANCE-NAME]

Display replication information for the given INSTANCE-NAME. See 
Section 44.7.2 for more details on this command.

Some of the commands accept one or more topic names (TOPICS) as arguments. 
Topic names containing white space or matching a command keyword must be 
enclosed in single or double quotes.

By default, icestormadmin uses the topic manager specified by the setting 
of the IceStormAdmin.TopicManager.Default property, which specifies the 
proxy for the topic manager. For example, without additional arguments, the 
create command operates on that topic manager.
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If you are using multiple topic managers, you can specify the proxies by 
setting the property IceStormAdmin.TopicManager.name for each topic manager. 
For example:

IceStormAdmin.TopicManager.A=A/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.B=Foo/TopicManager:tcp -h x -p 9996
IceStormAdmin.TopicManager.C=Bar/TopicManager:tcp -h z -p 9995

This sets the proxies for three topic managers. Note that name need not match the 
instance name of the corresponding topic manager—name simply serves as a tag. 
With these property settings, the icestormadmin commands that accept a 
topic can now specify a topic manager other than the default topic manager that is 
configured with IceStormAdmin.TopicManager.Default. For example:

current Foo
create myTopic
create Bar/myOtherTopic

This sets the current topic manager to the one with instance name Foo; the first 
create command then creates the topic within that topic manager, whereas the 
second create command uses the topic manager with instance name Bar.

44.9 Topic Federation

The ability to link topics together into a federation provides IceStorm applications 
with a lot of flexibility, while the notion of a “cost” associated with links allows 
applications to restrict the flow of messages in creative ways. IceStorm applica-
tions have complete control of topic federation using the TopicManager interface 
described in the online Slice Reference, allowing links to be created and removed 
dynamically as necessary. For many applications, however, the topic graph is 
static and therefore can be configured using the administrative tool discussed in 
Section 44.8.

http://www.zeroc.com/doc/Ice-3.4.1/reference/index.html
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44.9.1 Message Propagation

IceStorm messages are never propagated over more than one link. For example, 
consider the topic graph shown in Figure 44.4.

Figure 44.4. Message propagation.

In this case, messages published on A are propagated to B, but B does not propa-
gate A’s messages to C. Therefore, subscriber SB receives messages published on 
topics A and B, but subscriber SC only receives messages published on topics B 
and C. If the application needs messages to propagate from A to C, then a link 
must be established directly between A and C.

44.9.2 Cost

As described in Section 44.9.1, IceStorm messages are only propagated on the 
originating topic’s immediate links. In addition, applications can use the notion of 
cost to further restrict message propagation.

A cost is associated with messages and links. When a message is published on 
a topic, the topic compares the cost associated with each of its links against the 
message cost, and only propagates the message on those links whose cost equals 
or exceeds the message cost. A cost value of zero (0) has the following implica-
tions:

• messages with a cost value of zero (0) are published on all of the topic’s links 
regardless of the link cost;

• links with a cost value of zero (0) accept all messages regardless of the 
message cost.
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For example, consider the topic graph shown in Figure 44.5.

Figure 44.5. Cost semantics.

Publisher P1 publishes a message on topic A with a cost of 1. This message is 
propagated on the link to topic B because the link has a cost of 0 and therefore 
accepts all messages. The message is also propagated on the link to topic C, 
because the message cost does not exceed the link cost (1). On the other hand, the 
message published by P2 with a cost of 2 is only propagated on the link to B.

Request Context

The cost of a message is specified in an Ice request context. Each Ice proxy opera-
tion has an implicit argument of type Ice::Context representing the request 
context (see Section 32.12). This argument is rarely used, but it is the ideal loca-
tion for specifying the cost of an IceStorm message because an application only 
needs to supply a request context if it actually uses IceStorm’s cost feature. If the 
request context does not contain a cost value, the message is assigned the default 
cost value of zero (0).

Publishing a Message with a Cost

The code examples below demonstrate how a collector can publish a measurement 
with a cost value of 5. First, the C++ version:

    Measurement m = getMeasurement();
    Ice::Context ctx;
    ctx["cost"] = "5";
    monitor->report(m, ctx);

And here is the equivalent version in Java:

IceStorm

B

C

A

P1

P2

0

1

1

2
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    Measurement m = getMeasurement();
    java.util.HashMap ctx = new java.util.HashMap();
    ctx.put("cost", "5");
    monitor.report(m, ctx);

Receiving a Message with a Cost

A subscriber can discover the cost of a message by examining the request context 
supplied in the Ice::Current argument. For example, here is a C++ implementa-
tion of Monitor::report that displays the cost value if it is present:

    virtual void report(const Measurement& m,
                        const Ice::Current& curr) {
        Ice::Context::const_iterator p = curr.ctx.find("cost");
        cout << "Measurement report:" << endl
             << "  Tower: " << m.tower << endl
             << "  W Spd: " << m.windSpeed << endl
             << "  W Dir: " << m.windDirection << endl
             << "   Temp: " << m.temperature << endl
             << "   Temp: " << m.temperature << endl;
        if (p != curr.ctx.end())
            cout << "   Cost: " << p->second << endl;
        cout << endl;
    }

And here is the equivalent Java implementation:

    public void report(Measurement m, Ice.Current curr) {
        String cost = null;
        if (curr.ctx != null)
            cost = curr.ctx.get("cost");
        System.out.println(
            "Measurement report:\n" +
            "  Tower: " + m.tower + "\n" +
            "  W Spd: " + m.windSpeed + "\n" +
            "  W Dir: " + m.windDirection + "\n" +
            "   Temp: " + m.temperature);
        if (cost != null)
            System.out.println("   Cost: " + cost);
        System.out.println();
    }

For the sake of efficiency, the Ice for Java run time may supply a null value for the 
request context in Ice.Current, therefore an application is required to check 
for null before using the request context.
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44.9.3 Automating Federation

Given the restrictions on message propagation described in the previous sections, 
creating a complex topic graph can be a tedious endeavor. Of course, creating a 
topic graph is not typically a common occurrence, since IceStorm keeps a persis-
tent record of the graph. However, there are situations where an automated proce-
dure for creating a topic graph can be valuable, such as during development when 
the graph might change significantly and often, or when graphs need to be recom-
puted based on changing costs.

Administration Tool Script

A simple way to automate the creation of a topic graph is to create a text file 
containing commands to be executed by the IceStorm administration tool. For 
example, the commands to create the topic graph shown in Figure 44.5 are shown 
below:

create A B C
link A B 0
link A C 1

If we store these commands in the file graph.txt, we can execute them using 
the following command:

$ icestormadmin --Ice.Config=config graph.txt

We assume that the configuration file config contains the definition for the 
property IceStormAdmin.TopicManager.Default.

44.9.4 Proxies for Federation

Note that, if you federate IceStorm servers, you must ensure that the proxies for 
the linked topics always use the same host and port (or, alternatively, can be indi-
rectly bound via IceGrid), otherwise the federation cannot be re-established if one 
of the servers in the federation shuts down and is restarted later.

44.10 Quality of Service

An IceStorm subscriber specifies Quality of Service (QoS) parameters at the time 
of subscription. The supported QoS parameters are described in the sections 
below.
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44.10.1 Reliability

The QoS parameter reliability affects message delivery. The only legal 
values at this point are ordered and the empty string. If not specified, the 
default value is the empty string (meaning not ordered).

If you specify ordered as the reliability QoS, IceStorm forwards events to 
subscribers in the order in which they are received. Without this setting, events are 
forwarded immediately, as soon as they are received; because events can arrive 
from different publishers publishing to the same topic, this means that they can be 
forwarded to subscribers in an order that differs from the order in which they were 
received.

Whether the subscriber receives events in the same order in which they are 
sent by IceStorm also depends on the subscriber’s threading model—see 
Section 44.11.

44.10.2 Retry Count

IceStorm automatically removes a subscriber if ObjectNotExistException or 
NotRegisteredException is raised while attempting to deliver an event. IceS-
torm considers these exceptions as indicators of a hard failure, after which it is 
unnecessary to continue event delivery.

For other kinds of failures, IceStorm uses the QoS parameter retryCount 
to determine when to remove a subscriber. A value of -1 means IceStorm retries 
forever and never automatically removes a subscriber unless a hard failure occurs. 
A value of zero means IceStorm never retries and immediately removes the 
subscriber. For positive values, IceStorm decrements the subscriber’s retry count 
for each failure and removes the subscriber once it reaches zero. Linked topics 
always have a configured retry count of -1. The default value of the retry-
Count parameter is zero.

A retry count of -1 adds some resiliency to your IceStorm application by 
ignoring intermittent network failures such as ConnectionRefusedException. 
However, there is also some risk inherent in using a retry count of -1 because an 
improperly configured subscriber may never be removed. For example, consider 
what happens when a subscriber registers using a transient endpoint: if that 
subscriber happens to terminate and resubscribe with a different endpoint, IceS-
torm will continue trying to deliver events to the subscriber at its old endpoint. 
IceStorm can only remove the subscriber if it receives a hard error, and that is only 
possible when the subscriber is reachable.
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To use a retry count of -1 successfully, the subscriber should either register 
with a fixed endpoint, or use IceGrid to take advantage of indirect proxies and 
automatic activation (see Chapter 38). Furthermore, if the subscriber is expected 
to function correctly after a restart of its process, the subscriber must use the same 
identity. The application can rely on the subscribeAndGetPublisher operation 
to raise AlreadySubscribed when the subscriber is already subscribed.

44.10.3 Example

The Slice type IceStorm::QoS is defined as a dictionary whose key and value 
types are both string, therefore the QoS parameter name and value are both 
represented as strings. The example code presented in Section 44.5.3 used an 
empty dictionary for the QoS argument, meaning default values are used. The 
C++ and Java examples shown below illustrate how to set the reliability 
parameter to ordered.

C++ Example

IceStorm::QoS qos;
qos["reliability"] = "ordered";
topic->subscribeAndGetPublisher(qos, proxy->ice_twoway());

Java Example

java.util.Map qos = new java.util.HashMap();
qos.put("reliability", "ordered");
topic.subscribeAndGetPublisher(qos, proxy.ice_twoway());

44.11 Delivery Mode

The delivery mode for events sent to subscribers is controlled by the proxy that the 
subscriber passes to IceStorm. For example, if the subscriber subscribes with a 
oneway proxy, events will be forwarded by IceStorm as oneway messages. 
Subscribers can use the following proxies:

• Twoway

Each event is sent to the subscriber as a separate twoway message. Using this 
delivery mode allows the subscriber to enable server-side active connection 
management without risking lost messages (see Section 36.4) because IceS-
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torm will re-send an event if the subscriber happens to close its connection at 
the wrong moment.

If you combine a twoway proxy with a reliability QoS of ordered, 
messages will be forwarded to the subscriber in the order in which they are 
received. This is guaranteed because IceStorm will wait for a reply from the 
subscriber for each event before sending the next event.

Without ordered delivery, events may be delivered out-of-order to the 
subscriber because IceStorm will send an event as soon as possible (without 
waiting for a reply for the preceding event). If the subscriber uses a thread 
pool with more than one thread, this can result in out-of-order dispatch of 
messages in the subscriber.

For single-threaded subscribers and subscribers using a serialized thread pool 
(see Section 32.10), twoway delivery always results in in-order dispatch of 
events in the subscriber.

With twoway delivery, IceStorm is informed of any failure to deliver an event 
by the Ice run time. For example, IceStorm may not be able to establish a 
connection to a subscriber, or may receive an ObjectNotExistException 
when it forwards an event. Any failure to deliver an event to a subscriber 
(possibly after a transparent retry by the Ice run time) results in the cancella-
tion of the corresponding subscription.

• Oneway

Each event is sent to the subscriber as a oneway message. If more than one 
event is ready to be delivered, the events are sent in a single batch. This 
delivery mode is more efficient than using twoway delivery. However, the 
subscriber cannot use active connection management without the risk of 
events being lost. In addition, if something goes wrong with the subscriber, 
such as the subscriber having destroyed its callback object without unsub-
scribing, or having subscribed an object with the wrong interface, IceStorm 
does not notice the failure and will continue to send events to the non-existent 
subscriber object for as long as it can maintain a connection to the subscriber’s 
endpoint.

For multi-threaded subscribers, oneway delivery can result in out-of-order 
delivery of events. For single-threaded subscribers and subscribers using a 
serialized thread pool, events are delivered in order.
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• Batch Oneway

With this delivery mode, IceStorm buffers events from publishers and sends 
them in batches to the subscriber (see Section 32.16). This reduces network 
overhead and is more efficient than oneway delivery. However, as for oneway 
delivery, the subscriber cannot use active connection management without the 
risk of losing events. In addition, events can be delivered out of order if the 
subscriber is multi-threaded. Batch oneway delivery, while providing better 
throughput, increases latency because events arrive in “bursts”. You can 
control the interval at which batched events are flushed by setting the IceS-
torm.Flush.Timeout Property (see page 1927).

• Datagram

With this delivery mode, events are forwarded as UDP messages, optionally 
with multicast semantics. Obviously, this means that events can be delivered 
out of order, can be lost, and can even be duplicated. In addition, IceStorm 
cannot detect anything about the delivery status of events. This means that if a 
subscriber disappears without unsubscribing, IceStorm will attempt to forward 
events to the subscriber indefinitely. If you use datagram delivery, you need to 
be careful that subscribers unsubscribe before they disappear; otherwise, stale 
subscriptions can accumulate in IceStorm over time, bogging down the 
service as it delivers more and more events to no-longer-existent subscribers.

• Batch Datagram

With this delivery mode, events are forwarded as batches within a datagram. 
The same considerations as for datagram delivery and oneway batched 
delivery apply here. In addition, keep in mind that, due to the size limit for 
datagrams, batched datagram delivery makes sense only if events are small. 
(You should also consider enabling compression with this delivery mode.)

44.12 Configuring IceStorm

IceStorm is a relatively lightweight service in that it requires very little configura-
tion and is implemented as an IceBox service (see Chapter 43). The configuration 
properties supported by IceStorm are described in Appendix D; some of them 
control diagnostic output and are not discussed in this chapter.
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44.12.1 Property Prefix

As you will see in the description of the IceStorm properties in Appendix D, IceS-
torm uses its IceBox service name as the prefix for all of its properties. For 
example, the property service.TopicManager.Endpoints becomes DemoIceS-
torm.TopicManager.Endpoints when IceStorm is configured as the IceBox 
service DemoIceStorm.

44.12.2 Server Configuration

The first step is configuring IceBox to run the IceStorm service:

IceBox.Service.DemoIceStorm=IceStormService,34:createIceStorm --
Ice.Config=config.service

In this example, the IceStorm service itself is configured by the properties in the 
config.service file, which might look as follows for a non-replicated 
service:

Freeze.DbEnv.DemoIceStorm.DbHome=db
DemoIceStorm.TopicManager.Endpoints=tcp -p 9999
DemoIceStorm.Publish.Endpoints=tcp -p 10000

In this example, IceStorm uses Freeze to manage the service’s persistent state, 
therefore the first property specifies the pathname of the Freeze database environ-
ment directory (see Chapter 39) for the service. Here the directory db is used, 
which must already exist in the current working directory. This property can be 
omitted when the service is running in transient mode; see the description of the 
service.Transient property in Appendix D for more information.

The final two properties specify the endpoints used by the IceStorm object 
adapters; notice that their property names begin with DemoIceStorm, matching the 
service name. The TopicManager property specifies the endpoints on which the 
TopicManager and Topic objects reside; these endpoints must use a connection-
oriented protocol such as TCP or SSL. The Publish property specifies the 
endpoints used by topic publisher objects; using datagram endpoints in this prop-
erty is possible but carries additional risk (see Section 44.5.2 for more information 
on publisher objects).

Threads

IceStorm’s default thread pool configuration is sufficient when the service is 
running on a single CPU machine. On a host with multiple CPUs, you may be able 
to improve IceStorm’s performance by increasing the size of its client-side thread 
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pool using the Ice.ThreadPool.Client.* properties, but the optimal 
number of threads can only be determined with careful benchmarking. Refer to 
Section 32.10 for more information on the Ice threading model.

44.12.3 Deploying IceStorm Replicas

There are two ways of deploying IceStorm in its highly available (replicated) 
mode. In both cases, adding another replica requires that all active replicas be 
stopped while their configurations are updated; it is not possible to add a replica 
while replication is running.

To remove a replica, stop all replicas and alter the configuration as necessary. 
You must be careful not to remove a replica if it has the latest database state. This 
situation will never occur during normal operation since the database state of all 
replicas is identical. However, in the event of a crash it is possible for a coordi-
nator to have later database state than all replicas. The safest approach is to verify 
that all replicas are active prior to stopping them. You can do this using the 
icestormadmin utility by checking that all replicas are in the Normal state 
(see Section 44.8).

IceGrid Deployment

IceGrid (see Chapter 38) is a convenient way of deploying IceStorm replicas. The 
term replica is also used in the context of IceGrid, specifically when referring to 
groups of object adapters that participate in replication, as described in 
Section 38.9. It is important to be aware of the distinction between IceStorm repli-
cation and object adapter replication; IceStorm replication uses object adapter 
replication when deployed with IceGrid, but IceStorm does not require object 
adapter replication as you will see in the next section.

An IceGrid deployment typically uses two adapter replica groups: one for the 
publisher proxies, and another for the topics, as shown below:

<replica-group id="DemoIceStorm-PublishReplicaGroup">
</replica-group>

<replica-group id="DemoIceStorm-TopicManagerReplicaGroup">
    <object identity="DemoIceStorm/TopicManager"
        type="::IceStorm::TopicManager"/>
</replica-group>

The object adapters are then configured to use these replica groups:
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<adapter name="${service}.Publish"
    endpoints="tcp"
    replica-group="${instance-name}-PublishReplicaGroup"/>

<adapter name="${service}.TopicManager"
    endpoints="tcp"
    replica-group="${instance-name}-TopicManagerReplicaGroup"/>

As discussed in Section 44.7.5, an application may not want publisher proxies to 
contain multiple endpoints. In this case you should remove PublishReplica-
Group from the above deployment.

The next step is defining the endpoints for the adapter Node, which is used 
internally for communication with other IceStorm replicas and is not part of an 
adapter replica group:

<adapter name="${service}.Node" endpoints="tcp"/>

Finally, you must define the node id for each IceStorm replica using the NodeId 
property. The node id must be a non-negative integer:

<property name="${service}.NodeId" value="${index}"/>

You can find a complete example of an IceGrid deployment in the directory 
demo/IceStorm/replicated in the C++ distribution.

Manual Deployment

You can also deploy IceStorm replicas without IceGrid, although it requires more 
manual configuration; an IceGrid deployment is simpler to maintain.

The first step is defining the set of node proxies using properties of the form 
Nodes.id. These proxies allow replicas to contact each other; their object identi-
ties are composed using instance-name/nodeid.

For example, assuming we are using the IceBox service name IceStorm and 
have three replicas with the identifiers 0, 1, 2 and an instance name of DemoIceS-
torm, we can configure the proxies as shown below:

IceStorm.InstanceName=DemoIceStorm
IceStorm.Nodes.0=DemoIceStorm/node0:tcp -p 13000
IceStorm.Nodes.1=DemoIceStorm/node1:tcp -p 13010
IceStorm.Nodes.2=DemoIceStorm/node2:tcp -p 13020

These properties must be defined in each replica. Additionally, each replica must 
define its node id, as well as the node’s endpoints. For example, we can configure 
node 0 as follows:
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IceStorm.NodeId=0
IceStorm.Node.Endpoints=tcp -p 13000

The endpoints for each replica and id must match the proxies configured in the 
Nodes.id properties.

Two additional properties allow you to configure replicated endpoints:

• service-name.ReplicatedTopicManagerEndpoints

Defines the endpoints contained in proxies returned by the topic manager.

• service-name.ReplicatedPublishEndpoints

Defines the endpoints contained in the publisher proxy returned by the topic.

For example, suppose we configure three replicas:

IceStorm.NodeId=0
IceStorm.TopicManager.Endpoints=tcp -p 10000
IceStorm.Publish.Endpoints=tcp -p 10001:udp -p 10001

IceStorm.NodeId=1
IceStorm.TopicManager.Endpoints=tcp -p 10010
IceStorm.Publish.Endpoints=tcp -p 10011:udp -p 10011

IceStorm.NodeId=2
IceStorm.TopicManager.Endpoints=tcp -p 10020
IceStorm.Publish.Endpoints=tcp -p 10021:udp -p 10021

Each replica should also define these properties:

IceStorm.ReplicatedPublishEndpoints=tcp -p 10001:tcp -p 10011:tcp 
-p 10021:udp -p 10001:udp -p 10011:udp -p 10021
IceStorm.ReplicatedTopicManagerEndpoints=tcp -p 10000:tcp -p 10010
:tcp -p 10020

As discussed in Section 44.7.5, an application may not want publisher proxies to 
contain multiple endpoints. In this case you should remove the definition of the 
ReplicatedPublishEndpoints property from the above deployment.

You can find a complete example of a manual deployment in the directory 
demo/IceStorm/replicated2 in the C++ distribution.

44.12.4 Client Configuration

Clients of the service can define a proxy for the TopicManager object as follows:

TopicManager.Proxy=IceStorm/TopicManager:tcp -p 9999
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The name of the property is not relevant, but the endpoint must match that of the 
service.TopicManager.Endpoints property, and the object identity must use 
the IceStorm instance name as the category and TopicManager as the name.

44.12.5 Object Identities
IceStorm hosts one well-known object, which implements the IceStorm::Topic-
Manager interface. The default identity of this object is IceStorm/TopicManager, 
as seen in the stringified proxy example from Section 44.12.4. If an application 
requires the use of multiple IceStorm services, it is a good idea to assign unique 
identities to the well-known objects by configuring the services with different 
values for the service.InstanceName property, as shown in the following 
example:

DemoIceStorm.InstanceName=Measurement

This property changes the category of the object’s identity, which becomes 
Measurement/TopicManager. The client’s configuration must also be changed to 
reflect the new identity:

TopicManager.Proxy=Measurement/TopicManager:tcp -p 9999

44.12.6 Using a Different Database
By default, IceStorm uses a Freeze database (see Chapter 39) to store its persistent 
state. You can configure IceStorm to use an SQL database by setting a number of 
properties.

If you use IceStorm with an SQL database, its persistent state is stored in two 
tables:

• <service-name>[_<node-id>]_SubscriberMap

• <service-name>[_<node-id>]_LLU

A number of properties control how IceStorm accesses an SQL database:

• Ice.Plugin.DB

To use IceStorm with an SQL database, you must set this property to the value 
IceStormSqlDB:createSqlDB.

• Ice.Plugin.SQLThreadHook

This property is necessary to ensure that SQL resources are cleaned up prop-
erly and must be set to IceStormService:createThreadHook.

• service.SQL.DatabaseType
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• service.SQL.DatabaseName

• service.SQL.HostName

• service.SQL.Port

• service.SQL.UserName

• service.SQl.Password

These properties are described in detail in Appendix D.

44.13 Summary

IceStorm is a publish/subscribe service that offers Ice applications a flexible and 
efficient means of publishing unidirectional requests to a group of subscribers. 
IceStorm simplifies development by relieving the application from the burden of 
managing subscribers and handling delivery errors, allowing the application to 
focus on publishing its data and not on the minutiae of distribution. Its support for 
replication and integration with IceGrid provides greater reliability in the face of 
network and system failures without complex administrative burdens. Finally, 
IceStorm leverages Ice request-forwarding facilities in order to provide a typed 
interface to publishers and subscribers, minimizing the impact on applications.
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Chapter 45
IcePatch2

45.1 Chapter Overview

This chapter presents IcePatch2,1 the Ice solution for secure replication of a direc-
tory tree. Section 45.2 provides an overview of IcePatch2 concepts and operation, 
and Sections 45.3 to 45.5 discuss how to prepare a file set and how to run the 
IcePatch2 client and server. Section 45.6 shows how to configure multiple 
IcePatch2 servers, and Section 45.7 describes a C++ utility library for use in 
custom IcePatch2 clients.

45.2 Introduction

IcePatch2 is an efficient file patching service that is easy to configure and use. It 
includes the following components:

• the IcePatch server (icepatch2server)

• a text-based IcePatch client (icepatch2client)

1. IcePatch2 supersedes IcePatch, which was a previous version of this service.
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• a text-based tool to compress files and calculate checksums 
(icepatch2calc)

• a Slice API and C++ convenience library for developing custom IcePatch2 
clients

As with all Ice services, IcePatch2 can be configured to use Ice facilities such as 
Glacier2 for firewall support and IceSSL for secure communication.

IcePatch2 is conceptually quite simple. The server is given responsibility for a 
file system directory (the data directory) containing the files and subdirectories 
that are to be distributed to IcePatch2 clients. You use icepatch2calc to 
compress these files and to generate an index containing a checksum for each file. 
The server transmits the compressed files to the client, which recreates the data 
directory and its contents on the client side, patching any files that have changed 
since the previous run.

IcePatch2 is efficient: transfer rates for files are comparable to what you 
would get using ftp.

45.3 Using icepatch2calc

Suppose we have the directories and files shown in Figure 45.1 in the data direc-
tory on the server side.

Figure 45.1. An example data directory.

Assume that the file named emptyFile is empty (contains zero bytes) and that 
the remaining files contain data.

To prepare this directory for the transmission by the server, you must first run 
icepatch2calc. (The command shown assumes that the data directory is the 
current directory.)

$ icepatch2calc .

Data Directory

bin emptyFile

hello

= Directory

= File

nonEmptyFile
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After running this command, the contents of the data directory are as shown in 
Figure 45.2.

Figure 45.2. Contents of the data directory after running icepatch2calc.

Note that icepatch2calc compresses the files in the data directory (except for 
emptyFile, which is not compressed). Also note that icepatch2calc 
creates an additional file, IcePatch2.sum in the data directory. The contents of 
this file are as follows:

. 3a52ce780950d4d969792a2559cd519d7ee8c727 -1

./bin bd362140a3074eb3edb5e4657561e029092c3d91 -1

./bin/hello 77b11db586a1f20aab8553284241bb3cd532b3d5 70

./emptyFile 082c37fc2641db68d195df83844168f8a464eada 0

./nonEmptyFile aec7301c408e6ce184ae5a34e0ea46e0f0563746 72

Each line in the checksum file contains the name of the uncompressed file or 
directory (relative to the data directory), the checksum of the uncompressed file, 
and a byte count. For directories, the count is -1; for uncompressed files, the 
count is 0; for compressed files, the count is the number of bytes in the 
compressed file. The lines in the file are sorted alphabetically by their pathname.

If you add files or delete files from the data directory or make changes to 
existing files, you must stop the server, run icepatch2calc again to update the 
IcePatch2.sum checksum file, and restart the server.

45.3.1 icepatch2calc Options

icepatch2calc has the following syntax:

icepatch2calc [options] data_dir [file...]

Normally, you will run icepatch2calc by simply specifying a data directory, 
in which case the program traverses the data directory, compresses all files, and 
creates an entry in the checksum file for each file and directory.

Data Directory

bin emptyFile

hello

= Directory

= File

nonEmptyFileIcePatch2.sum

hello.bz2

nonEmptyFile.bz2
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You can also nominate specific files or directories on the command line. In 
this case, icepatch2calc only compresses and calculates checksums for the 
specified files and directories. This is useful if you have a very large file tree and 
want to refresh the checksum entries for only a few selected files or directories 
that you have updated. (In this case, the program does not traverse the entire data 
directory and, therefore, will also not detect any updated, added, or deleted files, 
except in any of the specified directories.) Any file or directory names you specify 
on the command line must either be pathnames relative to the data directory or, if 
you use absolute pathnames, those pathnames must have the data directory as a 
prefix.

The command supports the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays the version number.

• -z, --compress

Normally, icepatch2calc scans the data directory and compresses a file 
only if no compressed version exists, or if the compressed version of a file has 
a modification time that predates that of the uncompressed version. If you 
specify -z, the tool re-scans and recompresses the entire data directory, 
regardless of the time stamps on files. This option is useful if you suspect that 
time stamps in the data directory may be incorrect.

• -Z, --no-compress

This option allows you to create a client-side checksum file.

Do not use this option when creating the checksum file for the server—the 
option is for creating a client-side IcePatch2.sum file for updates of soft-
ware on distribution media (see page 1820).

• -i, --case-insensitive

This option disallows file names that differ only in case. (An error message 
will be printed if icepatch2calc encounters any files that differ in case 
only.) This is particularly useful for Unix servers with Windows clients, since 
Windows folds the case of file names, and therefore such files would override 
each other on the Windows client.
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• -V, --verbose

This option prints a progress message for each file that is compressed and for 
each checksum that is computed.

45.4 Running the Server

Once you have run icepatch2calc on the data directory, you can start the 
icepatch2server:

$ icepatch2server .

The server expects the data directory as its single command-line argument. If you 
omit to specify the data directory, the server uses the setting of the 
IcePatch2.Directory property (see Appendix D) to determine the data 
directory.

The server has two different sets of endpoints, one for regular operations, and 
one for administration:

• IcePatch2.Endpoints

This property determines the endpoint at which the server listens for client 
requests. This property must be specified.

• IcePatch2.Admin.Endpoints

If this property is not set, the only way to shut down the server is to kill it 
somehow, such as by interrupting the server from the command line. If this 
property is set, the server offers an additional IcePatch2::Admin interface:

interface Admin {
    void shutdown();
};

By default, the identity of this object is IcePatch2/admin. You can change 
the category of this identity by setting the property IcePatch2.Instance-
Name.

Calling the shutdown operation shuts down the server. Note that any client 
with access to the Admin interface’s port can stop the server. Typically, you 
would set this property to a port that is not accessible to potentially hostile 
clients.
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45.4.1 icepatch2server Options

Regardless of whether you run the server under Windows or a Unix-like operating 
system, it provides the following options:

• -h, --help

Displays a help message.

• -v, --version

Displays a version number.

Additional command line options are supported, including those that allow the 
router to run as a Windows service or Unix daemon. See Section 8.3.2 for more 
information.

45.5 Running the Client

Once the icepatch2server is running, you can use icepatch2client to 
get a copy of the data directory that is maintained by the server. For example:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com \
> -p 10000" .

The client expects the data directory as its single command-line argument. As for 
the server, you must specify the IcePatch2.Endpoints property so the 
client knows where to find the server.

If you have not run the client previously, it asks you whether you want to do a 
thorough patch. You must reply “yes” at this point (or run the client with the -t 
option—see page 1819). The client then executes the following steps:

1. It traverses the local data directory and creates a local IcePatch2.sum 
checksum file.

2. It obtains the relevant list of checksums from the server and compares it to the 
list of checksums it has built locally:

1.The client deletes each file that appears in the local checksum file but not in 
the server’s file.

2.The client retrieves every file that appears in the server’s checksum file, but 
not in the local checksum file.

3.The client patches every file that, locally, has a checksum that differs from 
the corresponding checksum on the server side.
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When the client finishes, the contents of the data directory on the client side 
exactly match the contents of the data directory on the server side. However, only 
the uncompressed files are created on the client side—the server stores the 
compressed version of the files simply to avoid redundantly compressing a file 
every time it is retrieved by a client.

Note that, on the initial patch, any files that exist in the client’s data directory 
are deleted or, if they have the same name as a file on the server, will be over-
written with the corresponding file as it exists on the server.

Using icepatch2client for Partial Updates

Once you have run the client, the client-side data directory contains an 
IcePatch2.sum file that reflects the contents of the data directory. If you run 
icepatch2client a second time, the program uses the contents of the local 
checksum file: for each entry in the local checksum file, the client compares the 
local checksum with the server-side checksum for the same file; if the checksums 
differ, the client updates the corresponding file. In addition, the client deletes any 
files that appear in the client’s checksum file but not in the server’s checksum file, 
and it fetches any files that appear in the server’s checksum file but are missing 
from the client’s checksum file.

If you edit a client-side file and change its contents, icepatch2client 
does not realize that this has happened and therefore will not patch the file to be in 
sync with the version on the server again. This is because the client does not auto-
matically recompute the checksum for a file to see whether the stored checksum in 
IcePatch2.sum still agrees with the actual checksum for the current file 
contents.

Similarly, if you create an arbitrary file on the client side, but that file is not 
mentioned in either the client’s or the server’s checksum file, that file will simply 
be left alone. In other words, a normal patch operates on the differences between 
the client’s and server’s checksum files, not on any differences that could be 
detected by examining the contents of the file system.

If you have locally created files that have nothing to do with the distribution or 
if you have locally modified some files and want to make sure that those modified 
files are updated to reflect the contents of the same files on the server side, you 
must run a thorough patch with the -t option. This forces the client to traverse the 
local data directory and recompute the checksum for each file, and then compare 
these checksums against the server-side ones. As a result, if you edit a file locally 
so it differs from the server-side version, -t forces that file to be updated. Simi-
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larly, if you have added a file of your own on the client side that does not have a 
counterpart on the server side, that file will be deleted by a thorough patch.

Preventing Deletion of Local Files

By default, a normal patch deletes any files that appear in the client’s checksum 
file but that are absent in the server’s checksum file. Similarly, by default, a thor-
ough patch deletes all files in the local data directory that do not appear in the 
server’s checksum file. If you do not want this behavior, you can set the 
IcePatch2.Remove property to 0 (the default value is 1). This prevents dele-
tion of files and directories that exist only on the client side, whether the patch is a 
normal patch or a thorough patch.

Patching Software Installed from Media

Suppose you distribute your application on a DVD that clients use to install the 
software. The DVD might be out of date so, after installation, the install script 
needs to perform a patch to update the application to the latest version. The script 
can perform a thorough patch to do this but, for large file sets, this is expensive 
because the client has to recompute the checksum for every file in the distribution.

To avoid this cost, you can place all the files for the distribution into a direc-
tory on the server and run icepatch2calc -Z on that directory. With the 
-Z option, icepatch2calc creates a checksum file with the correct check-
sums, but with a file size of 0 for each file, that is, the -Z option omits 
compressing the files (and the considerable cost associated with that). Once you 
have created the new IcePatch2.sum file in this way, you can include it on the 
DVD and install it on the client along with all the other files.

This guarantees that the checksum file on the client is in agreement with the 
actual files that were just installed and, therefore, it is sufficient for the install 
script to do a normal patch to update the distribution and so avoid the cost of 
recomputing the checksum for every file.

Setting Transfer Size

You can set the IcePatch2.ChunkSize property to control the number of 
bytes that the client fetches per request. The default value is 100 kilobytes.

45.5.1 icepatch2client Options

The client supports the following options:
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• -h, --help

Displays a help message.

• -v, --version

Displays a version number.

• -t, --thorough

Do a thorough patch, recomputing all checksums.

45.6 Object Identities

An IcePatch2 service hosts two well-known objects, which implement the 
IcePatch2::FileServer and IcePatch2::Admin interfaces and have the default 
identity IcePatch2/server and IcePatch2/admin, respectively. If an 
application requires the use of multiple IcePatch2 services, it is a good idea to 
assign unique identities to the well-known objects by configuring the servers with 
different values for the IcePatch2.InstanceName property, as shown in the 
following example:

$ icepatch2server --IcePatch2.InstanceName=PublicFiles ...

This property changes the category of the objects’ identities, which become 
PublicFiles/server and PublicFiles/admin, respectively. The 
client’s configuration must also be changed to reflect the new identity:

$ icepatch2client --IcePatch2.Endpoints="tcp -h somehost.com \
> -p 10000" --IcePatch2.InstanceName=PublicFiles .

45.7 The IcePatch2 Client Utility Library

IcePatch2 includes a pair of C++ classes that simplify the task of writing your own 
patch client, along with a Microsoft Foundation Classes (MFC) example that 
shows how to use these classes. You can find the MFC example in the subdirec-
tory demo/IcePatch2/MFC of your Ice distribution.

The remainder of this section discusses the classes. To incorporate them into a 
custom patch client, your program must include the header file 
IcePatch2/ClientUtil.h and link with the IcePatch2 library.
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45.7.1 Performing a Patch

The Patcher class encapsulates all of the patching logic required by a client:

namespace IcePatch2 {
class Patcher : ... {
public:

    Patcher(const Ice::CommunicatorPtr& communicator,
            const PatcherFeedbackPtr& feedback);

    Patcher(const FileServerPrx& server,
            const PatcherFeedbackPtr& feedback,
            const std::string& dataDir, bool thorough,
            Ice::Int chunkSize, Ice::Int remove);

    bool prepare();

    bool patch(const std::string& dir);

    void finish();
};
typedef IceUtil::Handle<Patcher> PatcherPtr;
}

Constructing a Patcher

The constructors provide two ways of configuring a Patcher instance. The first 
form obtains the following IcePatch2 configuration properties from the supplied 
communicator:

• IcePatch2.InstanceName

• IcePatch2.Endpoints

• IcePatch2.Directory

• IcePatch2.Thorough

• IcePatch2.ChunkSize

• IcePatch2.Remove

The second constructor accepts arguments that correspond to each of these prop-
erties.

Both constructors also accept a PatcherFeedback object (see 
Section 45.7.2), which allows the client to monitor the progress of the patch.
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Executing the Patch

Patcher provides three methods that reflect the three stages of a patch:

• bool prepare()

The first stage of a patch includes reading the contents of the checksum file (if 
present), retrieving the file information from the server, and examining the 
local data directory to compose the list of files that require updates. The 
PatcherFeedback object is notified incrementally about each local task 
and has the option of aborting the patch at any time. This method returns true 
if patch preparation completed successfully, or false if the PatcherFeed-
back object aborted the patch. If an error occurs, prepare raises an excep-
tion in the form of a std::string containing a description of the problem.

• bool patch(const std::string& dir)

The second stage of a patch updates the files in the local data directory. If the 
dir argument is an empty string or ".", patch updates the entire data 
directory. Otherwise, patch updates only those files whose path names begin 
with the path in dir. For each file requiring an update, Patcher downloads 
its compressed data from the server and writes it to the local data directory. 
The PatcherFeedback object is notified about the progress of each file 
and, as in the preparation stage, may abort the patch if necessary. This method 
returns true if patching completed successfully, or false if the Patcher-
Feedback object aborted the patch. If an error occurs, patch raises an 
exception in the form of a std::string containing a description of the 
problem.

• void finish()

The final stage of a patch writes a new checksum file to the local data direc-
tory. If an error occurs, finish raises an exception in the form of a 
std::string containing a description of the problem.

The code below demonstrates a simple patch client:

#include <IcePatch2/ClientUtil.h>
...
Ice::CommunicatorPtr communicator = ...;
IcePatch2::PatcherFeedbackPtr feedback = new MyPatcherFeedbackI;
IcePatch2::PatcherPtr patcher =
    new IcePatch2::Patcher(communicator, feedback);

try {
    bool aborted = !patcher->prepare();
    if(!aborted)
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        aborted = !patcher->patch("");
    if(!aborted)
        patcher->finish();
    if(aborted)
        cerr << "Patch aborted" << endl;
} catch(const string& reason) {
    cerr << "Patch error: " << reason << endl;
}

For a more sophisticated example, see demo/IcePatch2/MFC in your Ice 
distribution.

45.7.2 Monitoring Patch Progress

The class PatcherFeedback is an abstract base class that allows you to 
monitor the progress of a Patcher object (see Section 45.7.1). The class decla-
ration is shown below:

namespace IcePatch2 {
class PatcherFeedback : ... {
public:

    virtual bool noFileSummary(const std::string& reason) = 0;

    virtual bool checksumStart() = 0;
    virtual bool checksumProgress(const std::string& path) = 0;
    virtual bool checksumEnd() = 0;

    virtual bool fileListStart() = 0;
    virtual bool fileListProgress(Ice::Int percent) = 0;
    virtual bool fileListEnd() = 0;

    virtual bool patchStart(
        const std::string& path, Ice::Long size,
        Ice::Long updated, Ice::Long total) = 0;
    virtual bool patchProgress(
        Ice::Long pos, Ice::Long size,
        Ice::Long updated, Ice::Long total) = 0;
    virtual bool patchEnd() = 0;
};
typedef IceUtil::Handle<PatcherFeedback> PatcherFeedbackPtr;
}

Each of these methods returns a boolean value: true allows Patcher to continue, 
and false directs Patcher to abort the patch. The methods are described below:
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• bool noFileSummary(const std::string& reason)

Invoked when the local checksum file cannot be found. Returning true initi-
ates a thorough patch, while returning false causes Patcher::prepare to 
return false (see page 1823).

• bool checksumStart()
bool checksumProgress(const std::string& path)
bool checksumEnd()

Invoked by Patcher::prepare during a thorough patch. The check-
sumProgress method is invoked as each file’s checksum is being 
computed.

• bool fileListStart()
bool fileListProgress(Ice::Int percent)
bool fileListEnd()

Invoked by Patcher::prepare when collecting the list of files to be 
updated. The percent argument to fileListProgress indicates how 
much of the collection process has completed so far.

• bool patchStart(
    const std::string& path, Ice::Long size,
    Ice::Long updated, Ice::Long total)
bool patchProgress(
    Ice::Long pos, Ice::Long size,
    Ice::Long updated, Ice::Long total)
bool patchEnd()

For each file that requires updating, Patcher::patch invokes patch-
Start to indicate the beginning of the patch, patchProgress one or more 
times as chunks of the file are downloaded and written, and finally 
patchEnd to signal the completion of the file’s patch. The path argument 
supplies the path name of the file, and size provides the file’s compressed 
size. The pos argument denotes the number of bytes written so far, while 
updated and total represent the cumulative number of bytes updated so 
far and the total number of bytes to be updated, respectively, of the entire 
patch operation.
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45.8 Summary

IcePatch2 addresses a requirement common to both development and deployment 
scenarios: the safe, secure, and efficient replication of a directory tree. The 
IcePatch2 server is easy to configure and efficient. For simple uses, IcePatch2 
provides a client that can be used to patch directory hierarchies from the command 
line. With the C++ utility library, you can also create custom patch clients if you 
require better integration of the client with your application.



Appendixes





1829

Appendix A
Slice Keywords

The following identifiers are Slice keywords:

Keywords must be capitalized as shown.

bool enum implements module struct
byte exception int Object throws
class extends interface out true
const false local sequence void
dictionary float LocalObject short
double idempotent long string
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Appendix B
Slice Metadata Directives

B.1 General Metadata Directives

ami

This directives applies to interfaces, classes, and individual operations. It enables 
code generation for asynchronous method invocation, described in Appendix K.

NOTE: This directive applies to the deprecated AMI mapping described in Appendix K. 
For the new AMI mapping there is no need for this directive.

amd

This directive applies to interfaces, classes, and individual operations. It enables 
code generation for asynchronous method dispatch. (See the relevant language 
mapping chapter for details.)

deprecated

This directive allows you to emit a deprecation warning for Slice constructs. See 
Section 4.19 for more detail.
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protected

This directive applies to data members of classes and changes code generation to 
make these members protected. See class mapping of the relevant language 
mapping chapter for more information.

UserException

This directive applies only to operations on local interfaces. The metadata direc-
tive indicates that the operation can throw any user exception, regardless of its 
specific definition. (This directive is used for the locate and finished operations 
on servant locators, which can throw any user exception.)

B.2 Metadata Directives for C++

cpp:array
cpp:range:array

These directives apply to sequences. They direct the code generator to create zero-
copy APIs for passing sequences as parameters. See Section 6.7.4 for details.

cpp:class

This directive applies to structures. It directs the code generator to create a C++ 
class (instead of a C++ structure) to represent a Slice structure. (See 
Section 6.7.2.)

cpp:const

This directive applies to operations. It directs the code generator to create a 
const pure virtual member function for the skeleton class. (See Section 8.4.2.)

cpp:type:wstring

This directive applies to data members of type string as well as to containers, such 
as structures, classes, and exceptions. It changes the default mapping for strings 
from std::string to std::wstring. (See Section 6.6.1.)
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cpp:header-ext

This global directive allows you to use a file extension for C++ header files other 
than the default .h extension. (See Section 6.16.)

cpp:include

This global directive allows you inject additional #include directives into the 
generated code. This is useful for custom types. (See Section 6.7.4.)

cpp:virtual

This directive applies to classes. If the directive is present and a class has base 
classes, the generated C++ class derives virtually from its bases; without this 
directive, slice2cpp generates the class so it derives non-virtually from its 
bases.

This directive is useful if you use Slice classes as servants and want to inherit 
the implementation of operations in the base class in the derived class. For 
example:

class Base {
    int baseOp();
};

["cpp:virtual"]
class Derived extends Base {
    string derivedOp();
};

The metadata directive causes slice2cpp to generate the class definition for 
Derived using virtual inheritance:

class Base : virtual public Ice::Object {
    // ...
};

class Derived : virtual public Base {
    // ...
};

This allows you to reuse the implementation of baseOp in the servant for 
Derived using ladder inheritance:
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class BaseI : public virtual Base {
    Ice::Int baseOp(const Ice::Current&);
    // ...
};

class DerivedI : public virtual Derived,
                 public virtual BaseI {
    // Re-use inherited baseOp()
};

Note that, if you have data member in classes and use virtual inheritance, you 
need to take care to correctly call base class constructors if you implement your 
own one-shot constructor. For example:

class Base {
    int baseInt;
};

class Derived extends Base {
    int derivedInt;
};

The generated one-shot constructor for Derived initializes both baseInt and 
derivedInt:

Derived::Derived(Ice::Int __ice_baseInt,
                 Ice::Int __ice_derivedInt)
    : M::Base(__ice_baseInt),
      derivedInt(__ice_derivedInt)
{
}

If you derive your own class from Derived and add a one-shot constructor to 
your class, you must explicitly call the constructor of all the base classes, 
including Base. Failure to call the Base constructor will result in Base being 
default-constructed instead of getting a defined value. For example:

class DerivedI : public virtual Derived {
public:
    DerivedI(int baseInt, int derivedInt, const string& s)
        : Base(baseInt), Derived(baseInt, derivedInt), _s(s)
    {
    }

private:
    string _s;
};
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This code correctly initializes the baseInt member of the Base part of the 
class. Note that the following does not work as intended and leaves the Base part 
default-constructed (meaning that baseInt is not initialized):


class DerivedI : public virtual Derived {
public:
    DerivedI(int baseInt, int derivedInt, const string& s)
        : Derived(baseInt, derivedInt), _s(s)
    {
        // WRONG: Base::baseInt is not initialized.
    }

private:
    string _s;
};

B.3 Metadata Directives for Java

java:package

This global directive instructs the code generator to place the generated classes 
into a specific package. (See Section 10.16.1.)

java:getset

This directive applies to data members and structures, classes, and exceptions. It 
adds accessor and modifier methods (JavaBean methods) for data members. (See 
Section 10.16.3.)

java:serializable

This directive allows you to use Ice to transmit serializable Java classes as native 
objects, without having to define corresponding Slice definitions for these classes. 
See Section 10.15 for more detail.
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java:type

This directive allows to use custom types for sequences and dictionaries. (See 
Section 10.16.2.)

B.4 Metadata Directives for C#

Note that C# (and other Common Language Runtime languages) are also affected 
by metadata with a clr: prefix. (See Section B.5.)

cs:attribute

This directive can be used both as a global directive and as directive for specific 
Slice constructs. It injects C# attribute definitions into the generated code. (See 
Section 14.15.)

B.5 Metadata Directives for .NET and Mono

clr:class

This directive applies to Slice structures. It directs the code generator to emit a C# 
class instead of a structure. (See Section 14.7.2.)

clr:collection

This directive applies to sequences and dictionaries and maps them to types that 
are derived from CollectionBase and DictionaryBase, respectively. 
(See Section 14.7.3 and Section 14.7.4.)

clr:generic:List
clr:generic:LinkedList
clr:generic:Queue
clr:generic:Stack

This directives apply to sequences and map them to the specified sequence type. 
(See Section 14.7.3.)
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clr:generic:SortedDictionary

This directive applies to dictionaries and maps them to SortedDictionary. 
(See Section 14.7.4.)

clr:generic

This directive applies to sequences and allows you map them to custom types. 
(See Section 14.7.3.)

clr:property

This directive applies to Slice structures and classes. It directs the code generator 
to create C# property definitions for data members. (See Section 14.7.2.)

clr:serializable

This directive allows you to use Ice to transmit serializable CLR classes as native 
objects, without having to define corresponding Slice definitions for these classes. 
See Section 14.14 for more detail.

B.6 Metadata Directives for Objective-C

objc:prefix

This directive applies to modules and changes the default mapping for modules to 
use a specified prefix. (See Section 18.3.)

B.7 Metadata Directives for Python

python:package

This global directive instructs the code generator to place the generated code into 
a specified Python package. (See Section 22.16.5.)
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python:seq:default
python:seq:list
python:seq:tuple

These directives allow you change the mapping for Slice sequences. (See 
Section 22.7.3.)

B.8 Metadata Directives for Freeze

freeze:read
freeze:write

These directives inform a Freeze evictor whether an operation updates the state of 
an object, so the evictor knows whether it must save an object before evicting it. 
(See Section 39.3.5.)



1839

Appendix C
Slice API Reference

See http://www.zeroc.com/doc/3.4.1/reference for the online Slice API Reference.

http://www.zeroc.com/doc/Ice-3.4.1/reference
http://www.zeroc.com/doc/Ice-3.4.1/reference
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Appendix D
Properties

This chapter provides a reference for all properties used by the Ice run time and its 
services.

Unless stated otherwise in the description of an individual property, its default 
value is the empty string. If a property takes a numeric value, the empty string is 
interpreted as zero.

Note that Ice reads properties that control the run time and its services only 
once on start-up, when you create a communicator. This means that you must set 
Ice-related properties to their correct values before you create a communicator. If 
you change the value of an Ice-related property after that point, it is likely that the 
new setting will simply be ignored.

D.1 Ice Configuration Property

Ice.Config

Synopsis

--Ice.Config
--Ice.Config=1
--Ice.Config=config_file[,config_file,...]
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Description

This property must be set from the command line with the --Ice.Config, 
--Ice.Config=1, or --Ice.Config=config_file option.

If the Ice.Config property is empty or set to 1, the Ice run time examines the 
contents of the ICE_CONFIG environment variable to retrieve the path names of 
one or more configuration files. Otherwise, Ice.Config must be set to the path 
names of one or more configuration files, separated by commas. (Path names can 
be relative or absolute.) Further property values are read from the configuration 
files thus specified.

In Java, Ice first attempts to open a configuration file as a class loader 
resource. If that attempt fails, Ice opens the configuration file in the local file 
system. Section 30.3 describes the semantics in more detail.

Configuration File Syntax

A configuration file contains a number of property settings, one setting per line. 
Property settings have one of the forms

property_name= # Set property to the empty string or zero

property_name=value # Assign value to property

The # character indicates a comment: the # character and anything following the 
# character on the same line are ignored. A line that has the # character as its first 
non-white space character is ignored in its entirety.

A configuration file is free-form: blank, tab, and newline characters serve as 
token delimiters and are otherwise ignored.

Any setting of the Ice.Config property inside the configuration file itself is 
ignored.

Refer to Chapter 30 for more information on configuration files.

D.2 Ice Trace Properties

Ice.Trace.GC

Synopsis

Ice.Trace.GC=num
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Description

The garbage collector trace level:

Ice.Trace.Locator

Synopsis

Ice.Trace.Locator=num

Description

The locator trace level: 

Ice.Trace.Network

Synopsis

Ice.Trace.Network=num

Description

The network trace level:

0 No garbage collector trace (default).

1 Show the total number of instances collected, the total number of 
instances examined, the time spent in the collector in milliseconds, 
and the total number of runs of the collector.

2 Like 1, but also produces a trace message for each run of the collector.

0 No locator trace (default).

1 Trace Ice locator and locator registry requests. The Ice run time makes 
locator requests to resolve the endpoints of object adapters and well-
known objects. Requests on the locator registry are used to update 
object adapter endpoints and set the server process proxy.

2 Like 1, but also trace the removal of endpoints from the cache.

0 No network trace (default).
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Ice.Trace.Protocol

Synopsis

Ice.Trace.Protocol=num

Description

The protocol trace level: 

Ice.Trace.Retry

Synopsis

Ice.Trace.Retry=num

Description

The request retry trace level: 

1 Trace successful connection establishment and closure.

2 Like 1, but also trace attempts to bind, connect, and disconnect sock-
ets.

3 Like 2, but also trace data transfer, the published endpoints for an 
object adapter, and the current list of local addresses for an endpoint 
that uses the wildcard address.

0 No protocol trace (default).

1 Trace Ice protocol messages.

0 No request retry trace (default).

1 Trace Ice operation call retries.

2 Also trace Ice endpoint usage.
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Ice.Trace.Slicing

Synopsis

Ice.Trace.Slicing=num

Description

The slicing trace level: 

Ice.Trace.ThreadPool

Synopsis

Ice.Trace.ThreadPool=num

Description

The thread pool trace level: 

D.3 Ice Warning Properties

Ice.Warn.Connections

Synopsis

Ice.Warn.Connections=num

Description

If num is set to a value larger than zero, Ice applications print warning messages 
for certain exceptional conditions in connections. The default value is 0.

0 No trace of slicing activity (default).

1 Trace all exception and class types that are unknown to the receiver 
and therefore sliced.

0 No trace of thread pool activity (default).

1 Trace the creation, growing, and shrinking of thread pools.
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Ice.Warn.Datagrams

Synopsis

Ice.Warn.Datagrams=num

Description

If num is set to a value larger than zero, servers print a warning message if they 
receive a datagram that exceeds the servers' receive buffer size. (Note that this 
condition is not detected by all UDP implementations—some implementations 
silently drop received datagrams that are too large.) The default value is 0.

Ice.Warn.Dispatch

Synopsis

Ice.Warn.Dispatch=num

Description

If num is set to a value larger than zero, Ice applications print warning messages 
for certain exceptions that are raised while an incoming request is dispatched.

Ice.Warn.Endpoints

Synopsis

Ice.Warn.Endpoints=num

0 No warnings.

1 Print warnings for unexpected Ice::LocalException, 
Ice::UserException, C++ exceptions, and Java run-time excep-
tions (default).

2 Like 1, but also issue warnings for Ice::ObjectNotExistExcep-
tion, Ice::FacetNotExistException, and Ice::Operation-
NotExistException.
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Description

If num is set to a value larger than zero, a warning is printed if a stringified proxy 
contains an endpoint that cannot be parsed. (For example, on versions of Ice that 
do not support SSL, stringified proxies containing SSL endpoints cause this 
warning.) The default value is 1.

Ice.Warn.AMICallback

Synopsis

Ice.Warn.AMICallback=num

Description

If num is set to a value larger than zero, warnings are printed if an AMI callback 
raises an exception. The default value is 1.

Ice.Warn.UnknownProperties

Synopsis

Ice.Warn.UnknownProperties=num

Description

If num is set to a value larger than zero, the Ice run time prints a warning about 
unknown properties for object adapters (see Section D.4) and proxies (see Section 
D.9). The default value is 1.

Ice.Warn.UnusedProperties

Synopsis

Ice.Warn.UnusedProperties=num

Description

If num is set to a value larger than zero, the Ice run time prints a warning about 
properties that were set but not read. The warning is emitted when a communi-
cator is destroyed; it is useful to detect mis-spelled properties, such as File-
system.MaxFilSize. The default value is 0.
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D.4 Ice Object Adapter Properties

adapter.ACM

Synopsis

adapter.ACM=num

Description

If num is set to a value larger than zero, the adapter automatically closes an 
incoming connection after it has been idle for num seconds. The default value is 
the setting of Ice.ACM.Server.

ACM can cause incoming oneway requests to be silently discarded. See 
Section 36.4 for more information.

adapter.AdapterId

Synopsis

adapter.AdapterId=id

Description

Specifies an identifier for the object adapter with the name adapter. This identi-
fier must be unique among all object adapters using the same locator instance. If a 
locator proxy is defined using adapter.Locator or Ice.Default.Locator, this 
object adapter sets its endpoints with the locator registry upon activation.

adapter.Endpoints

Synopsis

adapter.Endpoints=endpoints

Description

Sets the endpoints for the object adapter adapter to endpoints. These endpoints 
specify the network interfaces on which the object adapter receives requests. 
Proxies created by the object adapter contain these endpoints, unless the 
adapter.PublishedEndpoints property is also specified.
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adapter.Locator

Synopsis

adapter.Locator=locator

Description

Specifies a locator for the object adapter with the name adapter. The value is a 
stringified proxy to the Ice locator interface.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

adapter.ProxyOptions

Synopsis

adapter.ProxyOptions=options

Description

Specifies the proxy options for proxies created by the object adapter. The value is 
a string representing the proxy options as they would be specified in a stringified 
proxy. See Appendix E for more information on proxy options. The default value 
is "-t", that is, proxies created by the object adapter are configured to use twoway 
invocations by default.

adapter.PublishedEndpoints

Synopsis

adapter.PublishedEndpoints=endpoints

Description

When creating a proxy, the object adapter adapter normally includes the 
endpoints defined by adapter.Endpoints. If adapter.PublishedEndpoints is 
defined, the object adapter uses these endpoints instead. This is useful in many 
situations, such as when a server resides behind a port-forwarding firewall, in 
which case the object adapter's public endpoints must specify the address and port 
of the firewall. The adapter.ProxyOptions property also influences the proxies 
created by an object adapter.
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adapter.ReplicaGroupId

Synopsis

adapter.ReplicaGroupId=id

Description

Identifies the group of replicated object adapters to which this adapter belongs. 
The replica group is treated as a virtual object adapter, so that an indirect proxy of 
the form identity@id refers to the object adapters in the group. During binding, a 
client will attempt to establish a connection to an endpoint of one of the partici-
pating object adapters, and automatically try others until a connection is success-
fully established or all attempts have failed. Similarly, an outstanding request will, 
when permitted, automatically fail over to another object adapter of the replica 
group upon connection failure. The set of endpoints actually used by the client 
during binding is determined by the locator's configuration policies.

Defining a value for this property has no effect unless adapter.AdapterId is 
also defined. Furthermore, the locator registry may require replica groups to be 
defined in advance (see IceGrid.Registry.DynamicRegistration), otherwise 
Ice.NotRegisteredException is raised upon adapter activation. Regardless of 
whether an object adapter is replicated, it can always be addressed individually in 
an indirect proxy if it defines a value for adapter.AdapterId.

adapter.Router

Synopsis

adapter.Router=router

Description

Specifies a router for the object adapter with the name adapter. The value is a 
stringified proxy to the Ice router control interface. Defining a router allows the 
object adapter to receive callbacks from the router over outgoing connections 
from this process to the router, thereby avoiding the need for the router to establish 
a connection back to the object adapter.

A router can only be assigned to one object adapter. Specifying the same 
router for more than one object adapter results in undefined behavior. The default 
value is no router.
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As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

adapter.ThreadPool.Serialize

Synopsis

adapter.ThreadPool.Serialize=num

Description

If num is a value greater than zero, the adapter’s thread pool serializes all messages 
from each connection. It is not necessary to enable this feature in a thread pool 
whose maximum size is one thread. In a multi-threaded pool, enabling serializa-
tion allows requests from different connections to be dispatched concurrently 
while preserving the order of messages on each connection. Note that serialization 
has a signficant impact on latency and throughput. See Section 32.10 for more 
information on thread pools. If not defined, the default value is zero.

adapter.ThreadPool.Size

Synopsis

adapter.ThreadPool.Size=num

Description

A communicator creates a default server thread pool that dispatches requests to its 
object adapters. An object adapter can also be configured with its own thread pool. 
This is useful in avoiding deadlocks due to thread starvation by ensuring that a 
minimum number of threads is available for dispatching requests to certain Ice 
objects. Section 32.10 describes thread pools in greater detail.

num is the initial number of threads in the thread pool. The default value is 
zero, meaning that an object adapter by default uses the communicator's server 
thread pool. See Ice.ThreadPool.Server.Size for more information.

adapter.ThreadPool.SizeMax

Synopsis

adapter.ThreadPool.SizeMax=num
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Description

num is the maximum number of threads for the thread pool. See Ice.Thread-
Pool.Server.SizeMax for more information.

The default value is the value of adapter.ThreadPool.Size, meaning the 
thread pool can never grow larger than its initial size.

adapter.ThreadPool.SizeWarn

Synopsis

adapter.ThreadPool.SizeWarn=num

Description

Whenever num threads are active in a thread pool, a “low on threads” warning is 
printed. The default value is zero, which disables the warning.

adapter.ThreadPool.StackSize

Synopsis

adapter.ThreadPool.StackSize=num

Description

num is the stack size (in bytes) of threads in the thread pool. The default value is 
zero, meaning the operating system's default is used.

adapter.ThreadPool.ThreadIdleTime

Synopsis

adapter.ThreadPool.ThreadIdleTime=num

Description

In a dynamically-sized thread pool, Ice reaps a thread after it is idle for num 
seconds. Setting this property to zero disables idle thread reaping. If not specified, 
the default value is 60 seconds. See Ice.ThreadPool.Server.ThreadIdleTime 
for more information.
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adapter.ThreadPool.ThreadPriority

Synopsis

adapter.ThreadPool.ThreadPriority=num

Description

num specifes a thread priority. The object adapter creates its threads with the spec-
ified priority. Leaving this property unset causes the adapter to create threads with 
the priority specified by Ice.ThreadPool.Server.ThreadPriority or, if that 
property is unset, the priority specified by Ice.ThreadPriority.

D.5 Ice Administrative Properties

Ice.Admin.name

Synopsis

Ice.Admin.name=value

Description

The Ice run time creates an internal object adapter named Ice.Admin if 
Ice.Admin.Endpoints is defined and one of the following are true:

• Ice.Admin.InstanceName is defined

• Ice.Admin.ServerId and Ice.Default.Locator are defined

The purpose of this object adapter is to host an Ice object whose facets provide 
administrative capabilities to remote clients. All of the adapter properties detailed 
in Section D.4 can be used to configure the Ice.Admin object adapter.

Note that enabling the Ice.Admin object adapter is a security risk because a 
hostile client could use the administrative object to shut down the process. As a 
result, the endpoints for this object adapter should be carefully defined so that 
only trusted clients are allowed to use it.

See Section 32.18 for more information on the administrative object.
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Ice.Admin.DelayCreation

Synopsis

Ice.Admin.DelayCreation=num

Description

If num is a value greater than zero, the Ice run time delays the creation of the 
administrative object adapter until getAdmin is invoked on the communicator. If 
not specified, the default value is zero, meaning the object adapter is created 
immediately after all plug-ins are initialized. See Section 32.18.2 for more infor-
mation on the administrative object adapter.

Ice.Admin.Facets

Synopsis

Ice.Admin.Facets=name [name ...]

Description

Specifies the facets enabled by the administrative object. See Section 32.18.6 for a 
discussion of the facets that the administrative object enables by default. Facet 
names are delimited by commas or white space. A facet name that contains white 
space must be enclosed in single or double quotes. If not specified, all facets are 
enabled.

Ice.Admin.InstanceName

Synopsis

Ice.Admin.InstanceName=name

Description

Specifies an identity category for the administrative object (see Section 32.18). If 
defined, the identity of the object becomes name/admin. If not specified, the 
default identity category is a UUID.
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Ice.Admin.ServerId

Synopsis

Ice.Admin.ServerId=id

Description

Specifies an identifier that uniquely identifies the process when the Ice.Admin 
object adapter registers with the locator registry. See Section 38.22 for more infor-
mation.

D.6 Ice Plug-In Properties

Ice.Plugin.name.cpp

Synopsis

Ice.Plugin.name.cpp=basename[,version]:function [args]

Description

Defines a C++ plug-in to be installed during communicator initialization. The 
basename and optional version components are used to construct the name of a 
DLL or shared library. If no version is supplied, the Ice version is used. The func-
tion component is the name of a function with C linkage. For example, the entry 
point MyPlugin,34:create would imply a shared library name of libMyPl-
ugin.so.34 on Unix and MyPlugin34.dll on Windows. Furthermore, if 
Ice is built on Windows with debugging, a d is automatically appended to the 
version (for example, MyPlugin34d.dll).

The function must be declared with external linkage and have the following 
signature:

<Plugin>* function(const Ice::CommunicatorPtr& communicator,
                   const std::string& name,
                   const Ice::StringSeq& args);

Note that the function must return a pointer and not a smart pointer. The Ice core 
deallocates the object when it unloads the library.

Any arguments that follow the entry point are passed to the create method. 
For example:



1856 Properties

Ice.Plugin.MyPlugin=MyFactory,34:create arg1 arg2

Ice.Plugin.name.java

Synopsis

Ice.Plugin.name.java=class [args]

Description

Defines a Java plug-in to be installed during communicator initialization. The 
specified class must implement the Ice.PluginFactory interface. Any arguments 
that follow the class name are passed to the create method. For example:

Ice.Plugin.MyPlugin=MyFactory arg1 arg2

Ice.Plugin.name.clr

Synopsis

Ice.Plugin.name.clr=assembly:class [args]

Description

Defines a .NET plug-in to be installed during communicator initialization. The 
assembly can be the full assembly name, such as 
myplugin, Version=0.0.0.0, Culture=neutral, or an assembly DLL name 
such as myplugin.dll. The specified class must implement the Ice.Plugin-
Factory interface. Any arguments that follow the class name are passed to the 
create method. For example:

Ice.Plugin.MyPlugin=MyFactory, Version=1.2.3.4, Culture=neutral:My
Factory arg1 arg2

Ice.Plugin.name

Synopsis

Ice.Plugin.name=entry_point [args]
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Description

Defines a plug-in to be installed during communicator initialization. The format of 
entry_point varies by Ice implementation language, therefore this property 
cannot be defined in a configuration file that is shared by programs in different 
languages. Ice provides an alternate syntax that facilitates such sharing:

• Ice.Plugin.name.cpp for C++

• Ice.Plugin.name.java for Java

• Ice.Plugin.name.clr for the .NET Common Language Runtime

Refer to the description of each of these properties for more information on the 
expected entry point syntax.

Ice.PluginLoadOrder

Synopsis

Ice.PluginLoadOrder=names

Description

Determines the order in which plug-ins are loaded. The Ice run time loads the 
plug-ins in the order they appear in names, where each plug-in name is separated 
by a comma or white space. Any plug-ins not mentioned in names are loaded 
afterward, in an undefined order.

Ice.InitPlugins

Synopsis

Ice.InitPlugins=num

Description

If num is a value greater than zero, the Ice run time automatically initializes the 
plug-ins it has loaded. The order in which plug-ins are loaded and initialized is 
determined by Ice.PluginLoadOrder. An application may need to set this prop-
erty to zero in order to interact directly with a plug-in after it has been loaded but 
before it is initialized. In this case, the application must invoke initializePl-
ugins on the plug-in manager to complete the initialization process. If not 
defined, the default value is 1.
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D.7 Ice Thread Pool Properties

Ice.ThreadPool.Client.Serialize
Ice.ThreadPool.Server.Serialize

Synopsis

Ice.ThreadPool.Client.Serialize=num
Ice.ThreadPool.Server.Serialize=num

Description

If num is a value greater than zero, the thread pool serializes all messages from 
each connection. It is not necessary to enable this feature in a thread pool whose 
maximum size is one thread. In a multi-threaded pool, enabling serialization 
allows requests from different connections to be dispatched concurrently while 
preserving the order of messages on each connection. Note that serialization has a 
signficant impact on latency and throughput. See Section 32.10 for more informa-
tion on thread pools. If not defined, the default value is zero.

Ice.ThreadPool.Client.Size
Ice.ThreadPool.Server.Size

Synopsis

Ice.ThreadPool.Client.Size=num
Ice.ThreadPool.Server.Size=num

Description

A communicator creates two thread pools: the client thread pool dispatches AMI 
callbacks and incoming requests on bidirectional connections, and the server 
thread pool dispatches requests to object adapters.

Thread pools in Ice can grow and shrink dynamically, based on an average 
load factor. A thread pool always has at least one thread and may grow as load 
increases up to the maximum size specified by SizeMax. If SizeMax is not speci-
fied, Ice uses the value of Size as the pool’s maximum size. A thread pool is 
initialized with num active threads, but the pool may shrink to only one thread 
during idle periods as determined by ThreadIdleTime.

If not specified, the default value is one for both properties.
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An object adapter can also be configured with its own thread pool. See the 
object adapter properties for more information.

Note that multiple threads for the client thread pool are only required for 
nested AMI invocations, or to allow multiple AMI callbacks to be dispatched 
concurrently.

To monitor the thread pool activities of the Ice run time, enable the 
Ice.Trace.ThreadPool property.

Ice.ThreadPool.Client.SizeMax
Ice.ThreadPool.Server.SizeMax

Synopsis

Ice.ThreadPool.Client.SizeMax=num
Ice.ThreadPool.Server.SizeMax=num

Description

num is the maximum number of threads for the thread pool. Refer to the Size 
property for more information on configuring the size of a thread pool.

The default value for SizeMax is the value of Size, meaning the thread pool 
can never grow larger than its initial size.

To monitor the thread pool activities of the Ice run time, enable the 
Ice.Trace.ThreadPool property.

Ice.ThreadPool.Client.SizeWarn
Ice.ThreadPool.Server.SizeWarn

Synopsis

Ice.ThreadPool.Client.SizeWarn=num
Ice.ThreadPool.Server.SizeWarn=num

Description

Whenever num threads are active in a thread pool, a “low on threads” warning is 
printed. The default value is zero, which disables the warning.

To monitor the thread pool activities of the Ice run time, enable the 
Ice.Trace.ThreadPool property.
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Ice.ThreadPool.Client.StackSize
Ice.ThreadPool.Server.StackSize

Synopsis

Ice.ThreadPool.Client.StackSize=num
Ice.ThreadPool.Server.StackSize=num

Description

num is the stack size (in bytes) of threads in the thread pool. The default value is 
zero meaning the operating system's default is used.

Ice.ThreadPool.Client.ThreadIdleTime
Ice.ThreadPool.Server.ThreadIdleTime

Synopsis

Ice.ThreadPool.Client.ThreadIdleTime=num
Ice.ThreadPool.Server.ThreadIdleTime=num

Description

Ice can automatically reap idle threads in a thread pool to conserve resources. The 
ThreadIdleTime property specifies the number of seconds a thread must be idle 
before it is reaped. If not specified, the default value is 60 seconds.

To disable the reaping of idle threads, set ThreadIdleTime to zero. In this 
situation, the thread pool is initialized with Size active threads and may grow to 
contain SizeMax active threads, but the size of the pool never decreases.

To monitor the thread pool activities of the Ice run time, enable the 
Ice.Trace.ThreadPool property.

Ice.ThreadPool.Client.ThreadPriority
Ice.ThreadPool.Server.ThreadPriority

Synopsis

Ice.ThreadPool.Client.ThreadPriority=num
Ice.ThreadPool.Server.ThreadPriority=num
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Description

num specifes a thread priority. Threads created by the Ice run time are by default 
created with the specified priority for the client and server thread pool, respec-
tively. Leaving these properties unset causes the run time to create threads with the 
default priority specified by Ice.ThreadPriority.

These properties are unset by default.
You can override the default priority for a specific object adapter (see 

adapter.ThreadPool.Priority).

Ice.ThreadPriority

Synopsis

Ice.ThreadPriority=num

Description

num specifes a thread priority. Threads created by the Ice run time are by default 
created with the specified priority. Leaving this property unset causes the run time 
to create threads with the system default priority. This property is unset by default.
You can separately override the default priorities for the client and server thread 
pool (see Ice.ThreadPool.Client.ThreadPriority and Ice.Thread-
Pool.Server.ThreadPriority) as well as for a specific object adapter (see 
adapter.ThreadPool.ThreadPriority).

D.8 Ice Default and Override Properties

Ice.Default.CollocationOptimized

Synopsis

Ice.Default.CollocationOptimized=num

Description

Specifies whether proxy invocations use collocation optimization (see 
Section 32.21) by default. When enabled, proxy invocations on a collocated 
servant (i.e., a servant whose object adapter was created by the same communi-
cator as the proxy) are made as a direct method call if possible. Collocated invoca-
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tions are more efficient because they avoid the overhead of marshaling parameters 
and sending requests over the network.

Collocation optimization is not supported for asynchronous or Dynamic Ice 
invocations, nor is it supported in Ice for Python and Ice for Ruby.

If not specified, the default value is 1. Set the property to 0 to disable colloca-
tion optimization by default.

Ice.Default.EndpointSelection

Synopsis

Ice.Default.EndpointSelection=policy

Description

This property controls the default endpoint selection policy for proxies with 
multiple endpoints. Permissible values are Ordered and Random. The default value 
of this property is Random.

Ice.Default.Host

Synopsis

Ice.Default.Host=host

Description

If an endpoint is specified without a host name (i.e., without a -h host option), 
the host value from this property is used instead. The property has no default 
value.

Ice.Default.Locator

Synopsis

Ice.Default.Locator=locator
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Description

Specifies a default locator for all proxies and object adapters. The value is a strin-
gified proxy to the IceGrid locator interface. The default locator can be overridden 
on a proxy using the ice_locator operation. The default value is no locator.

The default identity of the IceGrid locator object is IceGrid/Locator (see 
IceGrid.InstanceName). It is listening on the IceGrid client endpoints. For 
example, if IceGrid.Registry.Client.Endpoints is set to 
tcp -p 12000 -h localhost, the stringified proxy for the IceGrid locator 
is IceGrid/Locator:tcp -p 12000 -h localhost.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

Ice.Default.LocatorCacheTimeout

Synopsis

Ice.Default.LocatorCacheTimeout=num

Description

Specifies the default locator cache timeout for indirect proxies. If num is set to a 
value larger than zero, locator cache entries older than num seconds will be 
ignored. If set to 0, the locator cache won't be used. If set to -1, locator cache 
entries won't expire.

Once a cache entry has expired, the Ice run time performs a new locate request 
to refresh the cache before sending the next invocation; therefore, the invocation is 
delayed until the run time has refreshed the entry. If you set Ice.BackgroundLo-
catorCacheUpdates to a non-zero value, the lookup to refresh the cache is still 
performed but happens in the background; this avoids the delay for the first invo-
cation that follows expiry of a cache entry.

Ice.Default.Package

Synopsis

Ice.Default.Package=package
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Description

Specifies a default package to use if other attempts by the Ice run time to dynami-
cally load a generated class have failed. If global metadata is used to enclose 
generated Java classes in a user-defined package, the Ice run time must be config-
ured in order to successfully unmarshal exceptions and concrete class types. See 
also Ice.Package.module.

Ice.Default.PreferSecure

Synopsis

Ice.Default.PreferSecure=num

Description

Specifies whether secure endpoints are given precedence in proxies by default. 
The default value of num is zero, meaning that insecure endpoints are given prefer-
ence.

Setting this property to a non-zero value is the equivalent of invoking 
ice_preferSecure(true) on proxies created by the Ice run time, such as 
those returned by stringToProxy or received as the result of an invocation. 
Proxies created by proxy factory methods such as ice_oneway inherit the 
setting of the original proxy. If you want to force all proxies to use only secure 
endpoints, use Ice.Override.Secure instead.

See Section 36.3.1 for more information on endpoint selection and 
Section 41.4.7 for a discussion of secure proxies.

Ice.Default.Protocol

Synopsis

Ice.Default.Protocol=protocol

Description

Sets the protocol that is being used if an endpoint uses default as the protocol 
specification. The default value is tcp.
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Ice.Default.Router

Synopsis

Ice.Default.Router=router

Description

Specifies the default router for all proxies. The value is a stringified proxy to the 
Glacier2 router control interface. The default router can be overridden on a proxy 
using the ice_router operation. The default value is no router.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

Ice.Override.Compress

Synopsis

Ice.Override.Compress=num

Description

If set, this property overrides compression settings in all proxies. If num is set to a 
value larger than zero, compression is enabled. If zero, compression is disabled.

The setting of this property is ignored in the server role.

Note that, if a client sets Ice.Override.Compress=1 and sends a compressed 
request to a server that does not support compression, the server will close the 
connection and the client will receive ConnectionLostException.

If a client does not support compression and Ice.Override.Compress=1, the 
setting is ignored and a warning message is printed on stderr.

Regardless of the setting of this property, requests smaller than 100 bytes are 
never compressed.

Ice.Override.ConnectTimeout

Synopsis

Ice.Override.ConnectTimeout=num
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Description

This property overrides timeout settings used to establish connections. num is the 
timeout value in milliseconds, or -1 for no timeout. If this property is not set, then 
Ice.Override.Timeout is used.

Ice.Override.Secure

Synopsis

Ice.Override.Secure=num

Description

If set to a value larger than zero, this property overrides security settings in all 
proxies by allowing only secure endpoints. Defining this property is equivalent to 
invoking ice_secure(true) on every proxy. If you wish to give priority to 
secure endpoints without precluding the use of non-secure endpoints, see 
Ice.Default.PreferSecure. Refer to Section 41.4.7 for more information on 
secure proxies.

Ice.Override.Timeout

Synopsis

Ice.Override.Timeout=num

Description

If set, this property overrides timeout settings in all endpoints. num is the timeout 
value in milliseconds, or -1 for no timeout.

D.9 Ice Proxy Properties

The communicator operation propertyToProxy creates a proxy from a group of 
configuration properties (see Section 32.2). The argument to propertyToProxy is 
a string representing the base name of the property group. This name must corre-
spond to a property that supplies the stringified form of the proxy. Subordinate 
properties can be defined to customize the proxy’s local configuration.
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The communicator operation proxyToProperty performs the inverse opera-
tion, that is, returns the property group for a proxy.

name

Synopsis

name=proxy

Description

A property with an application-specific name supplies the stringified representa-
tion of a proxy. The application uses the communicator operation propertyTo-
Proxy to retrieve the property and convert it into a proxy (see Section 32.11.1).

name.CollocationOptimized

Synopsis

name.CollocationOptimized=num

Description

If num is a value greater than zero, the proxy is configured to use collocation invo-
cations (see Section 32.21) when possible. Defining this property is equivalent to 
invoking the ice_collocationOptimized factory method, which is 
described in Section 32.11.2.

name.ConnectionCached

Synopsis

name.ConnectionCached=num

Description

If num is a value greater than zero, the proxy caches its chosen connection for use 
in subsequent requests. Defining this property is equivalent to invoking the 
ice_connectionCached factory method (see Section 32.11.2).
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name.EndpointSelection

Synopsis

name.EndpointSelection=type

Description

Specifies the proxy’s endpoint selection type. Legal values are Random and 
Ordered. Defining this property is equivalent to invoking the 
ice_endpointSelection factory method (see Section 32.11.2).

name.Locator

Synopsis

name.Locator=proxy

Description

Specifies the proxy of the locator to be used by this proxy. Defining this property 
is equivalent to invoking the ice_locator factory method (see 
Section 32.11.2).

This is a proxy property, so you can configure additional local aspects of the 
proxy with subordinate properties.

name.LocatorCacheTimeout

Synopsis

name.LocatorCacheTimeout=num

Description

Specifies the locator cache timeout to be used by this proxy. Defining this prop-
erty is equivalent to invoking the ice_locatorCacheTimeout factory 
method (see Section 32.11.2).
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name.PreferSecure

Synopsis

name.PreferSecure=num

Description

If num is a value greater than zero, the proxy gives precedence to secure endpoints. 
If not defined, the proxy uses the value of Ice.Default.PreferSecure.

Defining this property is equivalent to invoking the ice_preferSecure 
factory method (see Section 32.11.2).

name.Router

Synopsis

name.Router=proxy

Description

Specifies the proxy of the router to be used by this proxy. Defining this property is 
equivalent to invoking the ice_router factory method (see Section 32.11.2).

This is a proxy property, so you can configure additional local aspects of the 
proxy with subordinate properties.

D.10 Ice Transport Properties

Ice.IPv4

Synopsis

Ice.IPv4=num

Description

Specifies whether Ice uses IPv4. If num is a value greater than zero, IPv4 is 
enabled. If not specified, the default value is 1.
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Ice.IPv6

Synopsis

Ice.IPv6=num

Description

Specifies whether Ice uses IPv6. If num is a value greater than zero, IPv6 is 
enabled. If not specified, the default value is zero.

Ice.TCP.Backlog

Synopsis

Ice.TCP.Backlog=num

Description

Specifies the size of the listen queue for each TCP or SSL server endpoint. If not 
defined, the default value for C++ programs uses the value of SOMAXCONN if 
present, or 511 otherwise. In Java and .NET, the default value is 511.

Ice.TCP.RcvSize
Ice.TCP.SndSize

Synopsis

Ice.TCP.RcvSize=num
Ice.TCP.SndSize=num

Description

These properties set the TCP receive and send buffer sizes to the specified value in 
bytes. The default value depends on the configuration of the local TCP stack. (A 
common default values is 65535 bytes.)

The OS may impose lower and upper limits on the receive and send buffer 
sizes or otherwise adjust the buffer sizes. If a limit is requested that is lower than 
the OS-imposed minimum, the value is silently adjusted to the OS-imposed 
minimum. If a limit is requested that is larger than the OS-imposed maximum, the 
value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning 
showing the requested size and the adjusted size.
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Ice.UDP.RcvSize
Ice.UDP.SndSize

Synopsis

Ice.UDP.RcvSize=num
Ice.UDP.SndSize=num

Description

These properties set the UDP receive and send buffer sizes to the specified value 
in bytes. Ice messages larger than num - 28 bytes cause a DatagramLimitExcep-
tion. The default value depends on the configuration of the local UDP stack. 
(Common default values are 65535 and 8192 bytes.)

The OS may impose lower and upper limits on the receive and send buffer 
sizes or otherwise adjust the buffer sizes. If a limit is requested that is lower than 
the OS-imposed minimum, the value is silently adjusted to the OS-imposed 
minimum. If a limit is requested that is larger than the OS-imposed maximum, the 
value is adjusted to the OS-imposed maximum; in addition, Ice logs a warning 
showing the requested size and the adjusted size.

Settings of these properties less than 28 are ignored.
Note that, on many operating systems, it is possible to set buffer sizes greater 

than 65535. Such settings do not change the hard limit of 65507 bytes for the 
payload of a UDP packet, but merely affect how much data can be buffered by the 
kernel.

Settings less than 65535 limit the size of Ice datagrams as well as adjust the 
kernel buffer sizes.

D.11 Ice Miscellaneous Properties

Ice.ACM.Client

Synopsis

Ice.ACM.Client=num

Description

If num is set to a value larger than zero, client-side Active Connection Manage-
ment (ACM) is enabled. This means that connections are automatically closed by 
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the client after they have been idle for num seconds. This is transparent to applica-
tions because connections closed by ACM are automatically reestablished if they 
are needed again. The default value is 60, meaning that idle connections are auto-
matically closed after one minute.

Ice.ACM.Server

Synopsis

Ice.ACM.Server=num

Description

This property is the server-side equivalent of Ice.ACM.Client. If num is set to a 
value larger than zero, server-side Active Connection Management (ACM) is 
enabled, in which the server automatically closes an incoming connection after it 
has been idle for num seconds. The default value is 0, meaning that server-side 
ACM is disabled by default.

Server-side ACM can cause incoming oneway requests to be silently 
discarded. See Section 36.4 for more information.

Ice.BackgroundLocatorCacheUpdates

Synopsis

Ice.BackgroundLocatorCacheUpdates=num

Description

If num is set to zero (the default), an invocation on an indirect proxy whose 
endpoints are older than the configured locator cache timeout triggers a locator 
cache update; the run time delays the invocation until the new endpoints are 
returned by the locator.

If num is set to a value larger than zero, an invocation on an indirect proxy with 
expired endpoints still triggers a locator cache update, but the update is performed 
in the background, and the run time uses the expired enpoints for the invocation. 
This avoids delaying the first invocation that follows expiry of a cache entry.



 1873

Ice.BatchAutoFlush

Synopsis

Ice.BatchAutoFlush=num

Description

This property controls how the Ice run time deals with flushing of batch messages. 
If num is set to a non-zero value (the default), the run time automatically forces a 
flush of the current batch when a new message is added to a batch and that 
message would cause the batch to exceed Ice.MessageSizeMax. If num is set to 
zero, batches must be flushed explicitly by the application; in this case, if the 
application adds more messages to a batch than permitted by Ice.Message-
SizeMax, the application receives a MemoryLimitException when it flushes 
the batch.

Ice.CacheMessageBuffers

Synopsis

Ice.CacheMessageBuffers=num (Java, .NET)

Description

If num is a value greater than zero, the Ice run time caches message buffers for 
future reuse. This can improve performance and reduce the amount of garbage 
produced by Ice internals that the garbage collector would eventually spend time 
to reclaim. However, for applications that exchange very large messages, this 
cache may consume excessive amounts of memory and therefore should be 
disabled by setting this property to zero.

Platform Notes

Java

Ice allocates non-direct message buffers when this property is set to 1 and 
direct message buffers when set to 2. Use of direct message buffers minimizes 
copying and typically results in improved throughput. If not defined, the 
default value is 2.

.NET

If not defined, the default value is 1.
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Ice.ChangeUser

Synopsis

Ice.ChangeUser=user

Description

If set, Ice changes the user and group id to the respective ids of user in 
/etc/passwd. This only works if the Ice application is executed by the super-
user (Unix only).

Ice.Compression.Level

Synopsis

Ice.Compression.Level=num

Description

Specifies the bzip2 compression level. Legal values for num are 1 to 9, where 
1 represents the fastest compression and 9 represents the best compression. Note 
that higher levels cause the bzip2 algorithm to devote more resources to the 
compression effort, and may not result in a significant improvement over lower 
levels. If not specified, the default value is 1.

Ice.ConsoleListener

Synopsis

Ice.ConsoleListener=num

Description

This property applies only to Ice for .NET. If num is non-zero, the Ice run time 
installs a ConsoleTraceListener that writes its messages to stderr. If 
num is zero, logging is disabled. Note that the setting of Ice.LogFile overrides 
this property: if Ice.LogFile is set, messages are written to the log file regardless 
of the setting of Ice.ConsoleListener.



 1875

Ice.EventLog.Source

Synopsis

Ice.EventLog.Source=name

Description

Specifies the name of an event log source to be used by a Windows service that 
subclasses Ice::Service (see Section 8.3.2). The value of name represents a 
subkey of the Eventlog registry key. An application (or administrator) typically 
prepares the registry key when the service is installed. If no matching registry key 
is found, Windows logs events in the Application log. Any backslashes in 
name are silently converted to forward slashes. If not defined, Ice::Service 
uses the service name as specified by the --service option.

Ice.GC.Interval

Synopsis

Ice.GC.Interval=num

Description

This property determines the frequency with which the class garbage collector 
runs. If the interval is set to zero (the default), no collector thread is created. 
Otherwise, the collector thread runs every num seconds.

Ice.ImplicitContext

Synopsis

Ice.ImplicitContext=type

Description

Specifies whether a communicator has an implicit context and, if so, at what scope 
the context applies. Legal values for this property are None (equivalent to the 
empty string), PerThread, and Shared. If not specified, the default value is 
None. See Section 32.12.4 for more information on implicit contexts.
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Ice.LogFile

Synopsis

Ice.LogFile=file

Description

Replaces the communicator’s default logger (see Section 32.19.1) with a simple 
file-based logger implementation. This property does not affect the per-process 
logger (see Section 32.19.5). The logger creates the specified file if necessary, 
otherwise it appends to the file. If the logger is unable to open the file, the applica-
tion receives an InitializationException during communicator initialization. 
If a logger object is supplied in the InitializationData argument during 
communicator initialization, it takes precedence over this property.

The logger does not provide any built-in support for log file maintenance 
(such as log rotation), but it can coexist with system tools such as logrotate.

Ice.MessageSizeMax

Synopsis

Ice.MessageSizeMax=num

Description

This property controls the maximum size (in kilobytes) of an uncompressed 
protocol message that is accepted or sent by the Ice run time. The size includes the 
size of the Ice protocol header. The default size is 1024 (1 Megabyte). Settings 
with a value less than 1 are ignored.

If a client sends a message that exceeds the client’s Ice.MessageSizeMax, or 
the server returns a reply that exceeds the client’s Ice.MessageSizeMax, the client 
receives a MemoryLimitException.

If a client sends a message that exceeds the server’s Ice.MessageSizeMax, the 
server immediately closes its connection, so the client receives a ConnectionLo-
stException in that case. In addition, the server logs a MemoryLimitException if 
Ice.Warn.Connections is set.

If the server returns a reply that exceeds the server’s Ice.MessageSizeMax, 
the server logs a MemoryLimitException (if Ice.Warn.Connections is set) but 
does not close its connection to the client. The client receives an UnknownLo-
calException in this case.
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Ice.MonitorConnections

Synopsis

Ice.MonitorConnections=num

Description

If active connection management (ACM) is enabled (see Section 36.4), the Ice run 
time scans for idle connections to be closed once every num seconds. If you to not 
set this property or set num to zero or a negative value, the run time applies a 
heuristic to determine how often to scan for idle connections: the default scanning 
interval is the 10% of smallest configured ACM timeout, with a minimum of 5 
seconds, and a maximum of 5 minutes.

Ice.Nohup

Synopsis

Ice.Nohup=num (C++)

Description

If num is set to a value larger than zero, the C++ classes Ice::Application 
and Ice::Service ignore SIGHUP (for Unix) and CTRL_LOGOFF_EVENT 
(for Windows). As a result, an application that sets Ice.Nohup continues to run if 
the user that started the application logs off. The default value for Ice::Appli-
cation is 0, and the default value for Ice::Service is 1.

Ice.NullHandleAbort

Synopsis

Ice.NullHandleAbort=num (C++)

Description

If num is set to a value larger than zero, invoking an operation using a null smart 
pointer causes the program to abort immediately instead of raising 
IceUtil::NullHandleException.
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Ice.Package.module

Synopsis

Ice.Package.module=package (Java)

Description

Associates a top-level Slice module with a Java package. If global metadata is 
used to enclose generated Java classes in a user-defined package, the Ice run time 
must be configured in order to successfully unmarshal exceptions and concrete 
class types. If all top-level modules are generated into the same user-defined 
package, it is easier to use Ice.Default.Package instead.

Ice.PrintAdapterReady

Synopsis

Ice.PrintAdapterReady=num

Description

If num is set to a value larger than zero, an object adapter prints “adapter_name 
ready” on standard output after initialization is complete. This is useful for scripts 
that need to wait until an object adapter is ready to be used.

Ice.PrintProcessId

Synopsis

Ice.PrintProcessId=num

Description

If num is set to a value larger than zero, the process ID is printed on standard 
output upon startup.

Ice.PrintStackTraces

Synopsis

Ice.PrintStackTraces=num (C++)
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Description

If num is set to a value larger than zero, inserting an exception that derives from 
IceUtil::Exception into a logger helper class (such as Ice::Warning) 
also displays the exception’s stack trace. If not defined, the default value depends 
on how the Ice run time is compiled: 0 for an optimized build and 1 for a debug 
build. Stack traces are only available when Ice is compiled with GCC; this prop-
erty has no effect for other compilers.

Ice.ProgramName

Synopsis

Ice.ProgramName=name

Description

name is the program name, which is set automatically from argv[0] (C++) and 
from AppDomain.CurrentDomain.FriendlyName (.NET) during initial-
ization. (For Java, Ice.ProgramName is initialized to the empty string.) For all 
languages, the default name can be overridden by setting this property.

Ice.RetryIntervals

Synopsis

Ice.RetryIntervals=num [num ...]

Description

This property defines the number of times an operation is retried and the delay 
between each retry. For example, if the property is set to 0 100 500, the operation 
is retried 3 times: immediately after the first failure, again after waiting 100ms 
after the second failure, and again after waiting 500ms after the third failure. The 
default value (0) is to retry once immediately. If set to -1, no retry occurs.

Ice.ServerIdleTime

Synopsis

Ice.ServerIdleTime=num
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Description

If num is set to a value larger than zero, Ice automatically calls Communi-
cator::shutdown once the communicator has been idle for num seconds. This 
shuts down the Communicator's server side and causes all threads waiting in 
Communicator::waitForShutdown to return. After that, a server will typically do 
some clean-up work before exiting. The default value is zero, meaning that the 
server will not shut down automatically.

Ice.StdErr

Synopsis

Ice.StdErr=filename

Description

If filename is not empty, the standard error stream of this process is redirected to 
this file, in append mode. This property is checked only for the first communicator 
that is created in a process.

Ice.StdOut

Synopsis

Ice.StdOut=filename

Description

If filename is not empty, the standard output stream of this process is redirected 
to this file, in append mode. This property is checked only for the first communi-
cator created in a process.

Ice.SyslogFacility

Synopsis

Ice.SyslogFacility=string
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Description

This property sets the syslog facility to string (Unix only). This property has no 
effect if Ice.UseSyslog is not set.

string can be any of syslog facilities: LOG_AUTH, LOG_AUTHPRIV, LOG_CRON, 
LOG_DAEMON, LOG_FTP, LOG_KERN, LOG_LOCAL0, LOG_LOCAL1, LOG_LOCAL2, 
LOG_LOCAL3, LOG_LOCAL4, LOG_LOCAL5, LOG_LOCAL6, LOG_LOCAL7, LOG_LPR, 
LOG_MAIL, LOG_NEWS, LOG_SYSLOG, LOG_USER, LOG_UUCP.

The default value is LOG_USER.

Ice.UseSyslog

Synopsis

Ice.UseSyslog=num

Description

If num is set to a value larger than zero, a special logger is installed that logs to the 
syslog facility instead of standard error. The identifier for syslog is the value 
of Ice.ProgramName (Unix only).

D.12 IceSSL Properties

IceSSL.Alias

Synopsis

IceSSL.Alias=alias (Java)

Description

Selects a particular certificate from the key store specified by IceSSL.Keystore. 
The certificate identified by alias is presented to the peer request during authen-
tication.
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IceSSL.CertAuthDir

Synopsis

IceSSL.CertAuthDir=path (C++)

Description

Specifies the directory containing the certificates of trusted certificate authorities. 
The directory must be prepared in advance using the OpenSSL utility 
c_rehash. The path name may be specified relative to the default directory 
defined by IceSSL.DefaultDir.

IceSSL.CertAuthFile

Synopsis

IceSSL.CertAuthFile=file (C++, Ice Touch)

Description

Specifies a file containing the certificate of a trusted certificate authority. The file 
name may be specified relative to the default directory defined by 
IceSSL.DefaultDir.

Platform Notes

C++

The certificate must be encoded using the PEM format.

Ice Touch

The certificate must be encoded using the DER format.

If IceSSL.DefaultDir is also defined, IceSSL attempts to open the specified 
CA certificate file as Resources/DefaultDir/file in the application’s 
resource bundle and as DefaultDir/file in the file system.

If IceSSL.DefaultDir is not defined, IceSSL attempts to open the specified 
CA certificate file as Resources/file in the application’s resource bundle 
and as file in the file system.

If this property is not defined, IceSSL looks for suitable CA certificates in the 
user’s keychains and in the system keychain.
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IceSSL.CertFile

Synopsis

IceSSL.CertFile=file (.NET, Ice Touch)
IceSSL.CertFile=file[:file] (C++ - Unix)
IceSSL.CertFile=file[;file] (C++ - Windows)

Description

Specifies a file that contains the program's certificate, and may also contain the 
corresponding private key. The file name may be specified relative to the default 
directory defined by IceSSL.DefaultDir.

Platform Notes

C++

The private key is optional; if not present, the file containing the private key 
must be identified by IceSSL.KeyFile. If a password is required, OpenSSL 
will prompt the user at the terminal unless the application has installed a pass-
word handler or supplied the password using IceSSL.Password. The certifi-
cate must be encoded using the PEM format.

OpenSSL allows you to specify certificates for both RSA and DSA. To 
specify both certificates, separate the filenames using the platform’s path 
separator character.

.NET

The file must use the PFX (PKCS#12) format and contain the certificate and 
its private key. The password for the file must be supplied using 
IceSSL.Password.

Ice Touch

The file must use the PFX (PKCS#12) format and contain the certificate and 
its private key. The password for the file must be supplied using 
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IceSSL.Password. The certificate is imported into the keychain identified by 
the IceSSL.Keychain property.

If IceSSL.DefaultDir is also defined, IceSSL attempts to open the specified 
certificate file as Resources/DefaultDir/file in the application’s resource 
bundle and as DefaultDir/file in the file system.

If IceSSL.DefaultDir is not defined, IceSSL attempts to open the specified 
certificate file as Resources/file in the application’s resource bundle and as 
file in the file system.

IceSSL.CertVerifier

Synopsis

IceSSL.CertVerifier=classname (Java, .NET)

Description

Specifies the name of a Java or .NET class that implements the IceSSL.Certifi-
cateVerifier interface (see Section 41.5).

IceSSL.CheckCertName

Synopsis

IceSSL.CheckCertName=num

Description

If num is a value greater than zero, IceSSL attempts to match the server's host 
name as specified in the proxy endpoint against the common name component of 
the server certificate’s subject name. If no match is found, IceSSL attempts to 
match the host name against the DNS and IP address fields of the server certifi-
cate’s subject alternative name. The search does not issue any DNS queries but 
simply performs a case-insensitive string match. The server’s certificate is 
accepted if its common name or any of its DNS or IP addresses matches the host 
name in the proxy endpoint. IceSSL skips this validation step if the server does 
not supply a certificate, or if the proxy endpoint does not include a host name and 
Ice.Default.Host is not defined. This property has no affect on a server’s 
validation of a client’s certificate. If no match is found, IceSSL aborts the connec-
tion attempt and raises an exception. If not defined, the default value is zero.
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IceSSL.CheckCRL

Synopsis

IceSSL.CheckCRL=num (.NET)

Description

If num is a value greater than zero, IceSSL checks the certificate revocation list to 
determine if the peer's certificate has been revoked. If so, IceSSL aborts the 
connection and raises an exception.

IceSSL.Ciphers

Synopsis

IceSSL.Ciphers=ciphers (C++, Java)

Description

Specifies the cipher suites that IceSSL is allowed to negotiate. A cipher suite is a 
set of algorithms that satisfies the four requirements for establishing a secure 
connection: signing and authentication, key exchange, secure hashing, and 
encryption. Some algorithms satisfy more than one requirement, and there are 
many possible combinations.

Platform Notes

C++

The value of this attribute is given directly to the OpenSSL library and is 
dependent on how OpenSSL was compiled. You can obtain a complete list of 
the supported cipher suites using the command openssl ciphers. This 
command will likely generate a long list. To simplify the selection process, 
OpenSSL supports several classes of ciphers. Classes and ciphers can be 
excluded by prefixing them with an exclamation point. The special keyword 
@STRENGTH sorts the cipher list in order of their strength, so that SSL gives 
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preference to the more secure ciphers when negotiating a cipher suite. The 
@STRENGTH keyword must be the last element in the list. The classes are:

Here is an example of a reasonable setting:
ALL:!ADH:!LOW:!EXP:!MD5:@STRENGTH

This value excludes the ciphers with low bit-strength and known problems, 
and orders the remaining ciphers according to their strength. Note that no 
warning is given if an unrecognized cipher is specified.

Java

The property value is interpreted as a list of tokens delimited by white space. 
The plug-in executes the tokens in the order of appearance in order to 

ALL Enables all supported cipher suites. This class should be used with 
caution, as it may enable low-security cipher suites.

ADH Anonymous ciphers.

LOW Low bit-strength ciphers.

EXP Export-crippled ciphers.
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assemble the list of enabled cipher suites. The table below describes the 
tokens:

If not specified, the plug-in uses the security provider's default cipher suites. 
Set IceSSL.Trace.Security=1 to determine which cipher suites are enabled 
by default, or to verify your cipher suite configuration.

IceSSL.DefaultDir

Synopsis

IceSSL.DefaultDir=path

Description

Specifies the default directory in which to look for certificate, key, and key store 
files. See the descriptions of the relevant properties for more information.

IceSSL.DH.bits

Synopsis

IceSSL.DH.bits=file (C++)

NONE Disables all cipher suites. If specified, it must be the first token in the 
list.

ALL Enables all supported cipher suites. If specified, it must be the first 
token in the list. This token should be used with caution, as it may 
enable low-security cipher suites.

NAME Enables the cipher suite matching the given name.

!NAME Disables the cipher suite matching the given name.

(EXP) Enables cipher suites whose names contain the regular expression EXP. 
For example, the value NONE (.*DH_anon.*) selects only cipher 
suites that use anonymous Diffie-Hellman authentication.

!(EXP) Disables cipher suites whose names contain the regular expression EXP. 
For example, the value ALL !(.*DH_anon.*) enables all cipher suites 
except those that use anonymous Diffie-Hellman authentication.
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Description

Specifies a file containing Diffie Hellman parameters whose key length is bits, 
as shown in the following example:

IceSSL.DH.1024=dhparams1024.pem

IceSSL supplies default parameters for key lengths of 512, 1024, 2048, and 4096 
bits, which are used if no user-defined parameters of the desired key length are 
specified. The file name may be specified relative to the default directory defined 
by IceSSL.DefaultDir. The parameters must be encoded using the PEM format.

IceSSL.EntropyDaemon

Synopsis

IceSSL.EntropyDaemon=file (C++)

Description

Specifies a Unix domain socket for the entropy gathering daemon, from which 
OpenSSL gathers entropy data to initialize its random number generator.

IceSSL.FindCert.location.name

Synopsis

IceSSL.FindCert.location.name=criteria (.NET)

Description

Queries the certificate repository for matching certificates and adds them to the 
application's collection of certificates that are used for authentication. The value 
for location must be LocalMachine or CurrentUser.

The name corresponds to the .NET enumeration StoreName and may be one 
of the following values: AddressBook, AuthRoot, CertificateAuthority, 
Disallowed, My, Root, TrustedPeople, TrustedPublisher. It is also possible to 
use an arbitrary value for name.
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The value for criteria may be *, in which case all of the certificates in the 
store are selected. Otherwise, criteria must be one or more field:value pairs 
separated by white space. The valid field names are described below: 

The field names are case-insensitive. If multiple criteria are specified, only certifi-
cates that match all criteria are selected. Values must be enclosed in single or 
double quotes to preserve white space.

Multiple occurrences of the property are allowed, but only one query is 
possible for each location/name combination. The certificates from all queries are 
combined to form the certificate collection, including a certificate loaded using 
IceSSL.CertFile. Here are some sample queries:

IceSSL.FindCert.LocalMachine.My=issuer:verisign serial:219336
IceSSL.FindCert.CurrentUser.Root=subject:"Joe's Certificate"

A server requires a certificate for authentication purposes, therefore IceSSL 
selects the first certificate in the accumulated collection. This is normally the 
certificate loaded via IceSSL.CertFile, if that property was defined. Otherwise, 
one of the certificates from IceSSL.FindCert is selected. Since IceSSL does not 
guarantee the order in which it evaluates IceSSL.FindCert properties, it is 
recommended that the criteria select only one certificate.

IceSSL.ImportCert.location.name

Synopsis

IceSSL.ImportCert.location.name=file[;password] (.NET)

Issuer Matches a substring of the issuer's name.

IssuerDN Matches the issuer's entire distinguished name.

Serial Matches the certificate's serial number.

Subject Matches a substring of the subject's name.

SubjectDN Matches the subject's entire distinguished name.

SubjectKeyId Matches the certificate's subject key identifier.

Thumbprint Matches the certificate's thumbprint.
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Description

Imports the certificate in file into the specified certificate store. The value for 
location must be LocalMachine or CurrentUser. The name corresponds to the 
.NET enumeration StoreName and may be one of the following values: 
AddressBook, AuthRoot, CertificateAuthority, Disallowed, My, Root, Trust-
edPeople, TrustedPublisher. It is also possible to use an arbitrary value for 
name, which adds a new store to the repository. If you are importing a trusted CA 
certificate, it must be added to AuthRoot or Root.

The password is optional; it is only necessary if the certificate file also 
contains a private key or uses a secure storage format such as PFX.

The file name and password may be enclosed in single or double quotes if 
necessary. The file name may be specified relative to the default directory defined 
by IceSSL.DefaultDir.

Importing a certificate into LocalMachine requires administrator privileges, 
while importing into CurrentUser may cause the platform to prompt the user for 
confirmation.

IceSSL.Keychain

Synopsis

IceSSL.Keychain=name (Ice Touch)

Description

Specifies the name of keychain in which to import the certificate identified by 
IceSSL.CertFile. If not defined, the keychain named login is used by default. 
Note that this property is only relevant for the iPhone simulator and Mac OS X 
targets.

IceSSL.KeychainPassword

Synopsis

IceSSL.KeychainPassword=password (Ice Touch)
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Description

Specifies the password for the keychain identified by IceSSL.Keychain. If not 
defined, IceSSL attempts to open the keychain without a password. Note that this 
property is only relevant for the iPhone simulator and Mac OS X targets.

IceSSL.KeyFile

Synopsis

IceSSL.KeyFile=file (C++)

Description

Specifies a file containing the private key associated with the certificate identified 
by IceSSL.CertFile. The file name may be specified relative to the default direc-
tory defined by IceSSL.DefaultDir. The key must be encoded using the PEM 
format.

IceSSL.Keystore

Synopsis

IceSSL.Keystore=file (Java)

Description

Specifies a key store file containing certificates and their private keys. If the key 
store contains multiple certificates, you should specify a particular one to use for 
authentication using IceSSL.Alias. IceSSL first attempts to open the file as a 
class loader resource and then as a regular file. If the file cannot be found in the 
file system, IceSSL attempts to open the file relative to the directory specified by 
IceSSL.DefaultDir. The format of the file is determined by IceSSL.Keystore-
Type.

If this property is not defined, the application will not be able to supply a 
certificate during SSL handshaking. As a result, the application may not be able to 
negotiate a secure connection, or might be required to use an anonymous cipher 
suite.
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IceSSL.KeystorePassword

Synopsis

IceSSL.KeystorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the key store defined by 
IceSSL.Keystore. The integrity check is skipped if this property is not defined.
It is a security risk to use a plain-text password in a configuration file.

IceSSL.KeystoreType

Synopsis

IceSSL.KeystoreType=type (Java)

Description

Specifies the format of the key store file defined by IceSSL.Keystore. Legal 
values are JKS and PKCS12. If not defined, the JVM’s default value is used 
(normally JKS).

IceSSL.Password

Synopsis

IceSSL.Password=password

Description

Specifies the password necessary to decrypt the private key. 

Platform Notes

C++

This property supplies the password that was used to secure the private key 
contained in the file defined by IceSSL.CertFile or IceSSL.KeyFile. If this 
property is not defined and you have not installed a password callback object, 
OpenSSL will prompt the user for a password if one is necessary.
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Java

This property supplies the password that was used to secure the private key 
contained in the key store defined by IceSSL.Keystore. All of the keys in the 
key store must use the same password.

.NET

This property supplies the password that was used to secure the file defined by 
IceSSL.CertFile.

Ice Touch

This property supplies the password that was used to secure the file defined by 
IceSSL.CertFile.

It is a security risk to use a plain-text password in a configuration file.

IceSSL.PasswordCallback

Synopsis

IceSSL.PasswordCallback=classname (Java, .NET)

Description

Specifies the name of a Java or .NET class that implements the IceSSL.Pass-
wordCallback interface (see Section 41.6.1).

IceSSL.PasswordRetryMax

Synopsis

IceSSL.PasswordRetryMax=num (C++)

Description

Specifies the number of attempts IceSSL should allow the user to make when 
entering a password. If not defined, the default value is 3.

IceSSL.Protocols

Synopsis

IceSSL.Protocols=list (C++, Java, .NET)
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Description

Specifies the protocols to allow during SSL handshaking. Legal values are SSL3 
and TLS1. You may also specify both values, separate by commas or white space. 
If this property is not defined, the platform's default is used.

IceSSL.Random

Synopsis

IceSSL.Random=filelist (C++, Java)

Description

Specifies one or more files containing data to use when seeding the random 
number generator. The file names should be separated using the platform's path 
separator (a colon on Unix and a semicolon on Windows). The file names may be 
specified relative to the default directory defined by IceSSL.DefaultDir.

In Java, IceSSL first attempts to open the files as class loader resources and 
then as regular files.

IceSSL.Trace.Security

Synopsis

IceSSL.Trace.Security=num (C++, Java, .NET)

Description

The SSL plug-in trace level:

IceSSL.TrustOnly

Synopsis

IceSSL.TrustOnly=ENTRY[;ENTRY;...] (C++, Java, .NET)

0 No security tracing (default).

1 Display diagnostic information about SSL connections.
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Description

Identifies trusted and untrusted peers. This family of properties provides an addi-
tional level of authentication by using the peer certificate’s distinguished name 
(DN) to decide whether to accept or reject a connection.

Each ENTRY in the property value consists of relative distinguished name 
(RDN) components, formatted according to the rules in RFC 2253. Specifically, 
the components must be separated by commas, and any component that contains a 
comma must be escaped or enclosed in quotes. For example, the following two 
property definitions are equivalent:

IceSSL.TrustOnly=O="Acme, Inc.",OU=Sales
IceSSL.TrustOnly=O=Acme\, Inc.,OU="Sales"

Use a semicolon to separate multiple entries in a property:

IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales;O=Acme\, Inc.,OU=Marketing

By default, each entry represents an acceptance entry. A ! character appearing at 
the beginning of an entry signifies a rejection entry. The order of the entries in a 
property is not important.

After the SSL engine has successfully completed its authentication process, 
IceSSL evaluates the relevant IceSSL.TrustOnly properties in an attempt to find 
an entry that matches the peer certificate's DN. For a match to be successful, the 
peer DN must contain an exact match for all of the RDN components in an entry. 
An entry may contain as many RDN components as you wish, depending on how 
narrowly you need to restrict access. The order of the RDN components in an 
entry is not important.

The connection semantics are described below:

1. IceSSL aborts the connection if any rejection or acceptance entries are defined 
and the peer does not supply a certificate.

2. IceSSL aborts the connection if the peer DN matches any rejection entry. (This 
is true even if the peer DN also matches an acceptance entry.)

3. IceSSL accepts the connection if the peer DN matches any acceptance entry, 
or if no acceptance entries are defined.

The example shown above limits access to people in the sales and marketing 
departments:

IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales;O=Acme\, Inc.,OU=Marketing

If it later becomes necessary to deny access to certain individuals in these depart-
ments, you can add a rejection entry and restart the program:

http://www.ietf.org/rfc/rfc2253.txt
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IceSSL.TrustOnly=O=Acme\, Inc.,OU=Sales; O=Acme\, 
Inc.,OU=Marketing; !O=Acme\, Inc.,CN=John Smith

While testing your trust configuration, you may find it helpful to set the 
IceSSL.Trace.Security property to a non-zero value, which causes IceSSL to 
display the DN of each peer during connection establishment.

This property affects incoming and outgoing connections. IceSSL also 
supports similar properties that affect only incoming connections or only outgoing 
connections.

IceSSL.TrustOnly.Client

Synopsis

IceSSL.TrustOnly.Client=ENTRY[;ENTRY;...] (C++, Java, .NET)
IceSSL.TrustOnly.Client=ID (Ice Touch)

Description

Identifies trusted and untrusted peers for outgoing (client) connections. The 
entries defined in this property are combined with those of IceSSL.TrustOnly.

Platform Notes

Ice Touch

For an outgoing connection to succeed, the peer certificate’s subject key iden-
tifier must match the property value exactly. The property value is formatted 
as a series of hexadecimal values separated by colons or spaces, as shown in 
the example below:

C2:E8:D3:33:D7:83:99:6E:08:F7:C2:34:31:F7:1E:8E:44:87:38:57

Since this value is specific to a single certificate authority, this property is 
valid only when used in conjunction with IceSSL.CertAuthFile.

IceSSL.TrustOnly.Server

Synopsis

IceSSL.TrustOnly.Server=ENTRY[;ENTRY;...] (C++, Java, .NET)
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Description

Identifies trusted and untrusted peers for incoming (“server”) connections. The 
entries defined in this property are combined with those of IceSSL.TrustOnly. To 
configure trusted and untrusted peers for a particular object adapter, use 
IceSSL.TrustOnly.Server.AdapterName.

IceSSL.TrustOnly.Server.AdapterName

Synopsis

IceSSL.TrustOnly.Server.AdapterName=ENTRY[;ENTRY;...] (C++, Java, 
.NET)

Description

Identifies trusted and untrusted peers for incoming (server) connections to the 
object adapter AdapterName. The entries defined in this property are combined 
with those of IceSSL.TrustOnly and IceSSL.TrustOnly.Server.

IceSSL.Truststore

Synopsis

IceSSL.Truststore=file (Java)

Description

Specifies a key store file containing the certificates of trusted certificate authori-
ties. IceSSL first attempts to open the file as a class loader resource and then as a 
regular file. If the file cannot be found in the file system, IceSSL attempts to open 
the file relative to the directory specified by IceSSL.DefaultDir. The format of 
the file is determined by IceSSL.TruststoreType.

If this property is not defined, IceSSL uses the value of IceSSL.Keystore by 
default. If no truststore is specified and the keystore does not contain a valid certif-
icate chain, the application will not be able to authenticate the peer's certificate 
during SSL handshaking. As a result, the application may not be able to negotiate 
a secure connection, or might be required to use an anonymous cipher suite.
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IceSSL.TruststorePassword

Synopsis

IceSSL.TruststorePassword=password (Java)

Description

Specifies the password used to verify the integrity of the key store defined by 
IceSSL.Truststore. The integrity check is skipped if this property is not defined.
It is a security risk to use a plain-text password in a configuration file.

IceSSL.TruststoreType

Synopsis

IceSSL.TruststoreType=type (Java)

Description

Specifies the format of the key store file defined by IceSSL.Truststore. Legal 
values are JKS and PKCS12. If not defined, the default value is JKS.

IceSSL.VerifyDepthMax

Synopsis

IceSSL.VerifyDepthMax=num (C++, Java, .NET)

Description

Specifies the maximum depth of a trusted peer's certificate chain, including the 
peer's certificate. A value of zero accepts chains of any length. If not defined, the 
default value is 2.

IceSSL.VerifyPeer

Synopsis

IceSSL.VerifyPeer=num (C++, Java, .NET)
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Description

Specifies the verification requirements to use during SSL handshaking. The legal 
values are shown in the table below. If this property is not defined, the default 
value is 2. 

Platform Notes

.NET

This property has no effect on outgoing connections, since .NET always uses 
the semantics of value 2. For an incoming connection, the value 0 has the 
same semantics as the value 1.

D.13 IceBox Properties

IceBox.InheritProperties

Synopsis

IceBox.InheritProperties=num

Description

If num is set to a value larger than zero, each service inherits the configuration 
properties of the IceBox server’s communicator. If not defined, the default value is 
zero.

0 For an outgoing connection, the client verifies the server's certificate 
(if an anonymous cipher is not used) but does not abort the connection 
if verification fails. For an incoming connection, the server does not 
request a certificate from the client.

1 For an outgoing connection, the client verifies the server's certificate 
and aborts the connection if verification fails. For an incoming con-
nection, the server requests a certificate from the client and verifies it 
if one is provided, aborting the connection if verification fails.

2 For an outgoing connection, the semantics are the same as for the 
value 1. For an incoming connection, the server requires a certificate 
from the client and aborts the connection if verification fails.
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IceBox.InstanceName

Synopsis

IceBox.InstanceName=name

Description

Specifies an alternate identity category for the IceBox service manager object. If 
defined, the identity of the object becomes name/ServiceManager. If not speci-
fied, the default identity category is IceBox.

IceBox.LoadOrder

Synopsis

IceBox.LoadOrder=names

Description

Determines the order in which services are loaded. The service manager loads the 
services in the order they appear in names, where each service name is separated 
by a comma or white space. Any services not mentioned in names are loaded 
afterward, in an undefined order.

IceBox.PrintServicesReady

Synopsis

IceBox.PrintServicesReady=token

Description

If this property is set to a value greater than zero, the service manager prints 
“token ready” on standard output once initialization of all the services is 
complete. This is useful for scripts that wish to wait until all services are ready to 
be used.
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IceBox.Service.name

Synopsis

IceBox.Service.name=entry_point[,version] [args]

Description

Defines a service to be loaded during IceBox initialization. Any arguments that 
follow the entry point are examined; those matching the --name=value pattern are 
interpreted as property definitions and appear in the property set of the communi-
cator that is passed to the service start method, and all remaining arguments are 
passed to the start method in the args parameter.

Platform Notes

C++

The value of entry_point has the form basename[,version]:function. 
The basename and optional version components are used to construct the 
name of a DLL or shared library. If no version is supplied, the version is the 
empty string. The function component is the name of a function with extern 
C linkage. For example, the entry point IceStormService,34:createIceS-
torm implies a shared library name of libIceStormService.so.34 on 
Unix and IceStormService34.dll on Windows. Furthermore, if 
IceBox is built on Windows with debugging, a d is automatically appended to 
the version (e.g., IceStormService34d.dll).

The function must be declared with extern C linkage and have the following 
signature:

IceBox::Service* function(Ice::CommunicatorPtr c);

Note that the function must return a pointer and not a smart pointer. The Ice 
core deallocates the object when it unloads the library. The communicator 
instance passed to this function is the server’s communicator, which is not the 
same as the communicator passed to the service’s start method.

Java

The value of entry_point is the name of a class that must implement the 
IceBox.Service interface. The class must provide a public default 
constructor.
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.NET

The value of entry_point has the form assembly:class. The assembly can 
be the full assembly name, such as 
myplugin, Version=0.0.0.0, Culture=neutral, or an assembly DLL 
name such as myplugin.dll. The specified class must implement the 
IceBox.Service interface and define a public default constructor.

IceBox.ServiceManager.name

Synopsis

IceBox.ServiceManager.name=value

Description

IceBox uses the adapter name IceBox.ServiceManager for its object adapter. 
Therefore, all the adapter properties detailed in Section D.4 can be used to 
configure the IceBox object adapter.

IceBox.UseSharedCommunicator.name

Synopsis

IceBox.UseSharedCommunicator.name=num

Description

If num is set to a value larger than zero, the service manager supplies the service 
with the given name a communicator that might be shared by other services. If the 
IceBox.InheritProperties property is also defined, the shared commu-
nicator inherits the properties of the IceBox server. If not defined, the default 
value is zero.
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D.14 IceBoxAdmin Properties

IceBoxAdmin.ServiceManager.Proxy

Synopsis

IceBoxAdmin.ServiceManager.Proxy=proxy

Description

This property configures the proxy that is used by the iceboxadmin utility to 
locate the service manager.

D.15 IceGrid Properties

Ice.Plugin.DB

Synopsis

Ice.Plugin.DB=IceGridSqlDB:createSqlDB

Description

The database storage mechanism used by the IceGrid registry is abstracted in such 
a way that an alternate mechanism can be selected using the standard Ice plug-in 
facility. If this property is not defined, the registry uses Freeze as its default 
storage mechanism. Alternatively, you can define the Ice.Plugin.DB property as 
shown above to use a SQL database instead, in which case additional properties 
may also be necessary (see the IceGrid.SQL properties below).

IceGrid.InstanceName

Synopsis

IceGrid.InstanceName=name
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Description

Specifies an alternate identity category for the IceGrid objects. If defined, the 
identities of the IceGrid objects become:

name/AdminSessionManager
name/AdminSessionManager-replica
name/AdminSSLSessionManager
name/AdminSSLSessionManager-replica
name/NullPermissionsVerifier
name/NullSSLPermissionsVerifier
name/Locator
name/Query
name/Registry
name/Registry-replica
name/RegistryUserAccountMapper
name/RegistryUserAccountMapper-replica
name/SessionManager
name/SSLSessionManager

If not specified, the default identity category is IceGrid.

IceGrid.Node.AllowEndpointsOverride

Synopsis

IceGrid.Node.AllowEndpointsOverride=num

If num is set to a non-zero value, an IceGrid node permits servers to override previ-
ously set endpoints even if the server is active. Setting this property to a non-zero 
value is necessary if the servers managed by the node call the object adapter 
refreshPublishedEndpoints method. The default value of num is zero.

IceGrid.Node.AllowRunningServersAsRoot

Synopsis

IceGrid.Node.AllowRunningServersAsRoot=value

If num is set to a non-zero value, an IceGrid node will permit servers started by the 
node to run with super-user privileges. Note that you should not set this property 
unless the node uses a secure endpoint; otherwise, clients can start arbitrary 
processes with super-user privileges on the node’s machine.

The default value of num is zero.
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IceGrid.Node.name

Synopsis

IceGrid.Node.name=value

Description

An IceGrid node uses the adapter name IceGrid.Node for the object adapter that 
the registry contacts to communicate with the node. Therefore, the adapter proper-
ties detailed in Section D.4 can be used to configure this adapter.

IceGrid.Node.CollocateRegistry

Synopsis

IceGrid.Node.CollocateRegistry=num

Description

If num is set to a value larger than zero, the node collocates the IceGrid registry.

The collocated registry is configured with the same properties as the standalone 
IceGrid registry.

IceGrid.Node.Data

Synopsis

IceGrid.Node.Data=path

Description

Defines the path of the IceGrid node data directory. The node creates distrib, 
servers, and tmp subdirectories in this directory if they do not already exist. 
The distrib directory contains distribution files downloaded by the node from 
an IcePatch2 server. The servers directory contains configuration data for each 
deployed server. The tmp directory holds temporary files.
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IceGrid.Node.DisableOnFailure

Synopsis

IceGrid.Node.DisableOnFailure=num

Description

The node considers a server to have terminated improperly if it has a non-zero exit 
code or if it exits due to one of the signals SIGABRT, SIGBUS, SIGILL, 
SIGFPE, or SIGSEGV. The node marks such a server as disabled if num is a non-
zero value; a disabled server cannot be activated on demand. For values of num 
greater than zero, the server is disabled for num seconds. If num is a negative value, 
the server is disabled indefinitely, or until it is explicitly enabled or started via an 
administrative action. The default value is zero, meaning the node does not disable 
servers in this situation.

IceGrid.Node.Name

Synopsis

IceGrid.Node.Name=name

Description

Defines the name of the IceGrid node. All nodes using the same registry must have 
unique names; a node refuses to start if there is a node with the same name 
running already. This property must be defined for each node.

IceGrid.Node.Output

Synopsis

IceGrid.Node.Output=path

Description

Defines the path of the IceGrid node output directory. If set, the node redirects the 
stdout and stderr output of the started servers to files named server.out 
and server.err in this directory. Otherwise, the started servers share the 
stdout and stderr of the node's process.
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IceGrid.Node.PrintServersReady

Synopsis

IceGrid.Node.PrintServersReady=token

Description

The IceGrid node prints “token ready” on standard output after all the servers 
managed by the node are ready. This is useful for scripts that wish to wait until all 
servers have been started and are ready for use.

IceGrid.Node.ProcessorSocketCount

Synopsis

IceGrid.Node.ProcessorSocketCount=num

Description

This property sets the number of processor sockets. This value is reported by the 
icegridadmin node processors command (Section 38.24.1). On 
Windows Vista, Windows Server 2008, and Linux systems, the number of proces-
sors is set automatically by the Ice run time. On other systems, the run time cannot 
obtain the socket count from the operating system; you can use this property to set 
the number of processor sockets manually on such systems.

IceGrid.Node.PropertiesOverride

Synopsis

IceGrid.Node.PropertiesOverride=overrides

Description

Defines a list of properties that override the properties defined in server deploy-
ment descriptors. For example, in some cases it is desirable to set the property 
Ice.Default.Host for servers, but not in server deployment descriptors. The 
property definitions must be separated by white space.
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IceGrid.Node.RedirectErrToOut

Synopsis

IceGrid.Node.RedirectErrToOut=num

Description

If num is set to a value larger than zero, the stderr of each started server is redi-
rected to the server's stdout.

IceGrid.Node.Trace.Activator

Synopsis

IceGrid.Node.Trace.Activator=num

Description

The activator trace level:

IceGrid.Node.Trace.Adapter

Synopsis

IceGrid.Node.Trace.Adapter=num

Description

The object adapter trace level:

0 No activator trace (default).

1 Trace process activation, termination.

2 Like 1, but more verbose, including process signaling and more diag-
nostic messages on process activation.

3 Like 2, but more verbose, including more diagnostic messages on pro-
cess activation (e.g., path, working directory, and arguments of the 
activated process).

0 No object adapter trace (default).
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IceGrid.Node.Trace.Patch

Synopsis

IceGrid.Node.Trace.Patch=num

Description

The patch trace level:

IceGrid.Node.Trace.Replica

Synopsis

IceGrid.Node.Trace.Replica=num

Description

The replica trace level:

1 Trace object adapter addition, removal.

2 Like 1, but more verbose, including object adapter activation and deac-
tivation and more diagnostic messages.

3 Like 2, but more verbose, including object adapter transitional state 
change (for example, “waiting for activation”).

0 No patching trace (default).

1 Show summary of patch progress.

2 Like 1, but more verbose, including download statistics.

3 Like 2, but more verbose, including checksum information.

0 No replica trace (default).

1 Trace session lifecycle between nodes and replicas.

2 Like 1, but more verbose, including session establishment attempts 
and failures.
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IceGrid.Node.Trace.Server

Synopsis

IceGrid.Node.Trace.Server=num

Description

The server trace level:

IceGrid.Node.UserAccountMapper

Synopsis

IceGrid.Node.UserAccountMapper=proxy

Description

Specifies the proxy of an object that implements the IceGrid::UserAccount-
Mapper interface. The IceGrid node invokes this proxy to map session identifiers 
(the user id for sessions created with a user name and password, or the distin-
guished name for sessions created from a secure connection) to user accounts.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

3 Like 2, but more verbose, including keep alive messages sent to the 
replica.

0 No server trace (default).

1 Trace server addition, removal.

2 Like 1, but more verbose, including server activation and deactivation 
and more diagnostic messages.

3 Like 2, but more verbose, including server transitional state change 
(activating and deactivating).
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IceGrid.Node.UserAccounts

Synopsis

IceGrid.Node.UserAccounts=file

Description

Specifies the file name of an IceGrid node user account map file. Each line of the 
file must contain an identifier and a user account, separated by white space. The 
identifier will be matched against the client session identifier (the user id for 
sessions created with a user name and password, or the distinguished name for 
sessions created from a secure connection). This user account map file is used by 
the node to map session identifiers to user accounts. This property is ignored if 
IceGrid.Node.UserAccountMapper is defined.

IceGrid.Node.WaitTime

Synopsis

IceGrid.Node.WaitTime=num

Description

Defines the interval in seconds that IceGrid waits for server activation and deacti-
vation.

If a server is automatically activated and does not register its object adapter 
endpoints within this time interval, the node assumes there is a problem with the 
server and return an empty set of endpoints to the client.

If a server is being gracefully deactivated and IceGrid does not detect the 
server deactivation during this time interval, IceGrid kills the server.

The default value is 60 seconds.

IceGrid.Registry.AdminCryptPasswords

Synopsis

IceGrid.Registry.AdminCryptPasswords=file
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Description

Specifies the file name of an IceGrid registry access control list for admin clients 
(see Section 38.11.2). Each line of the file must contain a user name and a pass-
word, separated by white space. The password must be a 13-character crypt-
encoded string. If this property is not defined, the default value is admin-pass-
words. This property is ignored if IceGrid.Registry.AdminPermissionsVeri-
fier is defined.

IceGrid.Registry.AdminPermissionsVerifier

Synopsis

IceGrid.Registry.AdminPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface (see Section 38.11.2). The IceGrid registry invokes this proxy 
to validate each new admin session created by a client with the 
IceGrid::Registry interface.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

IceGrid.Registry.AdminSessionFilters

Synopsis

IceGrid.Registry.AdminSessionFilters=num

Description

This property controls whether IceGrid establishes filters for sessions created with 
the IceGrid session manager (see Section 38.15.2). If num is set to a value larger 
than zero, IceGrid establishes these filters, so Glacier2 limits access to the 
IceGrid::AdminSession object and the IceGrid::Admin object that is returned 
by the getAdmin operation. If num is set to zero, IceGrid does not establish filters, 
so access to these objects is controlled solely by Glacier2’s configuration.

The default value is 1.
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IceGrid.Registry.AdminSessionManager.name

Synopsis

IceGrid.Registry.SessionManager.name=value

Description

The IceGrid registry uses the adapter name IceGrid.Registry.AdminSession-
Manager for the object adapter that processes incoming requests from IceGrid 
administrative sessions (see Section 38.14). Therefore, all the adapter properties 
detailed in Section D.4 can be used to configure this adapter. (Note any setting of 
IceGrid.Registry.SessionManager.AdapterId is ignored because the registry 
always provides a direct adapter.)

For security reasons, defining endpoints for this object adapter is optional. If 
you do define endpoints, they should only be accessible to Glacier2 routers used 
to create IceGrid administrative sessions.

IceGrid.Registry.AdminSSLPermissionsVerifier

Synopsis

IceGrid.Registry.AdminSSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface (see Section 38.11.2). The IceGrid registry invokes this 
proxy to validate each new admin session created by a client from a secure 
connection with the IceGrid::Registry interface.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

IceGrid.Registry.Client.name

Synopsis

IceGrid.Registry.Client.name=value
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Description

IceGrid uses the adapter name IceGrid.Registry.Client for the object adapter 
that processes incoming requests from clients. Therefore, all the adapter proper-
ties detailed in Section D.4 can be used to configure this adapter. (Note any setting 
of IceGrid.Registry.Client.AdapterId is ignored because the registry always 
provides a direct adapter.)

Note that IceGrid.Registry.Client.Endpoints controls the client endpoint 
for the registry. The port numbers 4061 (for TCP) and 4062 (for SSL) are reserved 
for the registry by the Internet Assigned Numbers Authority (IANA).

IceGrid.Registry.CryptPasswords

Synopsis

IceGrid.Registry.CryptPasswords=file

Description

Specifies the file name of an IceGrid registry access control list (see 
Section 38.11.2). Each line of the file must contain a user name and a password, 
separated by white space. The password must be a 13-character crypt-encoded 
string. If this property is not defined, the default value is passwords. This prop-
erty is ignored if IceGrid.Registry.PermissionsVerifier is defined.

IceGrid.Registry.Data

Synopsis

IceGrid.Registry.Data=path

Description

Defines the path of the IceGrid registry data directory. The directory specified in 
path must already exist. This property must be defined only when the registry 
uses Freeze or SQLite for its database storage.

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
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IceGrid.Registry.DefaultTemplates

Synopsis

IceGrid.Registry.DefaultTemplates=path

Description

Defines the path name of an XML file containing default template descriptors. A 
sample file named config/templates.xml that contains convenient server 
templates for Ice services is provided in the Ice distribution.

IceGrid.Registry.DynamicRegistration

Synopsis

IceGrid.Registry.DynamicRegistration=num

Description

If num is set to a value larger than zero, the locator registry does not require Ice 
servers to preregister object adapters and replica groups, but rather creates them 
automatically if they do not exist. If this property is not defined, or num is set to 
zero, an attempt to register an unknown object adapter or replica group causes 
adapter activation to fail with Ice.NotRegisteredException. An object adapter 
registers itself when the adapter.AdapterId property is defined. The 
adapter.ReplicaGroupId property identifies the replica group.

IceGrid.Registry.Internal.name

Synopsis

IceGrid.Registry.Internal.name=value

Description

The IceGrid registry uses the adapter name IceGrid.Registry.Internal for the 
object adapter that processes incoming requests from nodes and slave replicas. 
Therefore, all the adapter properties detailed in Section D.4 can be used to 
configure this adapter. (Note any setting of 
IceGrid.Registry.Internal.AdapterId is ignored because the registry always 
provides a direct adapter.)
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IceGrid.Registry.NodeSessionTimeout

Synopsis

IceGrid.Registry.NodeSessionTimeout=num

Description

Each IceGrid node establishes a session with the registry that must be refreshed 
periodically. If a node does not refresh its session within num seconds, the node's 
session is destroyed and the servers deployed on that node become unavailable to 
new clients. If not specified, the default value is 30 seconds.

IceGrid.Registry.PermissionsVerifier

Synopsis

IceGrid.Registry.PermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface (see Section 38.11.2). The IceGrid registry invokes this proxy 
to validate each new client session created by a client with the 
IceGrid::Registry interface.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

IceGrid.Registry.ReplicaName

Synopsis

IceGrid.Registry.ReplicaName=name

Description

Specifies the name of a registry replica. If not defined, the default value is 
Master, which is the name reserved for the master replica. Each registry replica 
must have a unique name. See Section 38.12 for more information on registry 
replication.
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IceGrid.Registry.ReplicaSessionTimeout

Synopsis

IceGrid.Registry.ReplicaSessionTimeout=num

Description

Each IceGrid registry replica establishes a session with the master registry that 
must be refreshed periodically. If a replica does not refresh its session within num 
seconds, the replica's session is destroyed and the replica doesn't receive anymore 
replication information from the master registry. If not specified, the default value 
is 30 seconds.

IceGrid.Registry.Server.name

Synopsis

IceGrid.Registry.Server.name=value

Description

The IceGrid registry uses the adapter name IceGrid.Registry.Server for the 
object adapter that processes incoming requests from servers. Therefore, all the 
adapter properties detailed in Section D.4 can be used to configure this adapter. 
(Note any setting of IceGrid.Registry.Server.AdapterId is ignored because 
the registry always provides a direct adapter.)

IceGrid.Registry.SessionFilters

Synopsis

IceGrid.Registry.SessionFilters=num

Description

This property controls whether IceGrid establishes filters for sessions created with 
the IceGrid session manager (see Section 38.15.3). If num is set to a value larger 
than zero, IceGrid establishes these filters, so Glacier2 limits access to the 
IceGrid::Query and IceGrid::Session objects, and to objects and adapters 
allocated by the session. If num is set to zero, IceGrid does not establish filters, so 
access to objects is controlled solely by Glacier2’s configuration.
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The default value is 0.

IceGrid.Registry.SessionManager.name

Synopsis

IceGrid.Registry.SessionManager.name=value

Description

The IceGrid registry uses the adapter name IceGrid.Registry.SessionManager 
for the object adapter that processes incoming requests from client sessions (see 
Section 38.11). Therefore, all the adapter properties detailed in Section D.4 can be 
used to configure this adapter. (Note any setting of IceGrid.Registry.Session-
Manager.AdapterId is ignored because the registry always provides a direct 
adapter.)

For security reasons, defining endpoints for this object adapter is optional. If 
you do define endpoints, they should only be accessible to Glacier2 routers used 
to create IceGrid client sessions.

IceGrid.Registry.SessionTimeout

Synopsis

IceGrid.Registry.SessionTimeout=num

Description

IceGrid clients or administrative clients might establish a session with the registry. 
This session must be refreshed periodically. If the client does not refresh its 
session within num seconds, the session is destroyed. If not specified, the default 
value is 30 seconds.

IceGrid.Registry.SSLPermissionsVerifier

Synopsis

IceGrid.Registry.SSLPermissionsVerifier=proxy
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Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface (see Section 38.11.2). The IceGrid registry invokes this 
proxy to validate each new client session created by a client from a secure connec-
tion with the IceGrid::Registry interface.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

IceGrid.Registry.Trace.Adapter

Synopsis

IceGrid.Registry.Trace.Adapter=num

Description

The object adapter trace level:

IceGrid.Registry.Trace.Application

Synopsis

IceGrid.Registry.Trace.Adapter=num

Description

The application trace level:

0 No object adapter trace (default).

1 Trace object adapter registration, removal, and replication.

0 No application trace (default).

1 Trace application addition, update and removal.
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IceGrid.Registry.Trace.Locator

Synopsis

IceGrid.Registry.Trace.Locator=num

Description

The locator and locator registry trace level:

IceGrid.Registry.Trace.Node

Synopsis

IceGrid.Registry.Trace.Node=num

Description

The node trace level:

IceGrid.Registry.Trace.Object

Synopsis

IceGrid.Registry.Trace.Object=num

0 No locator trace (default).

1 Trace failures to locate an adapter or object, and failures to register 
adapter endpoints.

2 Like 1, but more verbose, including registration of adapter endpoints.

0 No node trace (default).

1 Trace node registration, removal.

2 Like 1, but more verbose, including load statistics.
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Description

The object trace level:

IceGrid.Registry.Trace.Patch

Synopsis

IceGrid.Registry.Trace.Patch=num

Description

The patch trace level:

IceGrid.Registry.Trace.Replica

Synopsis

IceGrid.Registry.Trace.Replica=num

Description

The server trace level:

IceGrid.Registry.Trace.Server

Synopsis

IceGrid.Registry.Trace.Server=num

0 No object trace (default).

1 Trace object registration, removal.

0 No patching trace (default).

1 Show summary of patch progress.

0 No server trace (default).

1 Trace session lifecycle between master replica and slaves.
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Description

The server trace level:

IceGrid.Registry.Trace.Session

Synopsis

IceGrid.Registry.Trace.Session=num

Description

The session trace level:

IceGrid.Registry.UserAccounts

Synopsis

IceGrid.Registry.UserAccounts=file

Description

Specifies the file name of an IceGrid registry user account map file. Each line of 
the file must contain an identifier and a user account, separated by white space. 
The identifier will be matched against the client session identifier (the user id for 
sessions created with a user name and password, or the distinguished name for 
sessions created from a secure connection). This user account map file is used by 
IceGrid nodes to map session identifiers to user accounts if the nodes’ 
IceGrid.Node.UserAccountMapper property is set to the proxy IceGrid/Regis-
tryUserAccountMapper.

0 No server trace (default).

1 Trace server registration, removal.

0 No client or admin session trace (default).

1 Trace client or admin session registration, removal.

2 Like 1, but more verbose, includes keep alive messages.
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IceGrid.SQL.DatabaseType

Synopsis

IceGrid.SQL.DatabaseType=type

Description

This property determines the type of the database for QSqlData-
base::addDatabase. Permissible values of type are QSQLITE, QMSQL, QPSQL, 
and QODBC.

IceGrid.SQL.DatabaseName

Synopsis

IceGrid.SQL.Database=name

Description

This property determines the name of the database for QSqlData-
base::setDatabaseName. For SQLite, name is the file name for the data-
base. For MySQL and PostgreSQL, name is the database name. For SQL Server, 
name is the DSN name.

IceGrid.SQL.HostName

Synopsis

IceGrid.SQL.HostName=name

Description

This property determines the host name for QSqlDatabase::setHostName. 
For PostgreSQL and MySQL, name is the database host name. For SQL Server, 
name is the host name and server name separated by a blackslash, such local-
host\SQLExpress. For SQLite, this property has no effect and need not be 
set.
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IceGrid.SQL.Port

Synopsis

IceGrid.SQL.Port=num

Description

This property determines the port number for QSqlDatabase::setPort.

IceGrid.SQL.UserName

Synopsis

IceGrid.SQL.UserName=name

Description

This property determines the user name for QSqlDatabase::setUserName. 
For SQLite, this property has no effect and need not be set.

IceGrid.SQL.Password

Synopsis

IceGrid.SQL.Password=password

Description

This property determines the password for QSqlDatabase::setPassword. 
For SQLite, this property has no effect and need not be set.

D.16 IceGrid Administrative Client Properties

IceGridAdmin.AuthenticateUsingSSL

Synopsis

IceGridAdmin.AuthenticateUsingSSL=num
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Description

If num is a value greater than zero, icegridadmin uses SSL authentication 
when establishing its session with the IceGrid registry. If not defined or the value 
is zero, icegridadmin uses user name and password authentication. See 
Section 38.24.1 for more information.

IceGridAdmin.Password

Synopsis

IceGridAdmin.Password=password

Description

Specifies the password that icegridadmin should use when authenticating its 
session with the IceGrid registry. For security reasons you may prefer not to 
define a password in a plain-text configuration property, in which case you should 
omit this property and allow icegridadmin to prompt you for it interactively. 
This property is ignored when SSL authentication is enabled via IceGrid-
Admin.AuthenticateUsingSSL. See Section 38.24.1 for more informa-
tion.

IceGridAdmin.Replica

Synopsis

IceGridAdmin.Replica=name

Description

Specifies the name of the registry replica to contact. If not defined, the default 
value is Master. See Section 38.24.1 for more information.

IceGridAdmin.Trace.Observers

Synopsis

IceGridAdmin.Trace.Observers=num
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Description

If num is a value greater than zero, the IceGrid graphical administrative client 
displays trace information about the observer callbacks it receives from the 
registry. If not defined, the default value is zero.

IceGridAdmin.Trace.SaveToRegistry

Synopsis

IceGridAdmin.Trace.SaveToRegistry=num

Description

If num is a value greater than zero, the IceGrid graphical administrative client 
displays trace information about the modifications it commits to the registry. If not 
defined, the default value is zero.

IceGridAdmin.Username

Synopsis

IceGridAdmin.Username=name

Description

Specifies the username that icegridadmin should use when authenticating its 
session with the IceGrid registry. This property is ignored when SSL authentica-
tion is enabled via IceGridAdmin.AuthenticateUsingSSL. See 
Section 38.24.1 for more information.

D.17 IceStorm Properties

All IceStorm properties use the IceStorm service name as their prefix. For 
example, suppose an IceBox configuration loads IceStorm as shown below:

IceBox.Service.DataFeed=IceStormService,...

IceStorm properties defined for this service must use DataFeed as the prefix, 
such as DataFeed.Discard.Interval=10.
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Ice.Plugin.DB

Synopsis

Ice.Plugin.DB=IceStormSqlDB:createSqlDB

Description

The database storage mechanism used by IceStorm is abstracted in such a way 
that an alternate mechanism can be selected using the standard Ice plug-in facility. 
If this property is not defined, IceStorm uses Freeze as its default storage mecha-
nism. Alternatively, you can define the Ice.Plugin.DB property as shown above 
to use a SQL database instead, in which case additional properties may also be 
necessary (see the service.SQL properties below).

service.Discard.Interval

Synopsis

service.Discard.Interval=num

Description

An IceStorm server detects when a subscriber to which it forwards events 
becomes non-functional and, at that point, stops delivery attempts to that 
subscriber for num seconds before trying to forward events to that subscriber 
again. The default value of this property is 60 seconds.

service.Election.ElectionTimeout

Synopsis

service.Election.ElectionTimeout=num

Description

This property is used by a replicated IceStorm deployment (see Section 44.7). It 
specifies the interval in seconds at which a coordinator attempts to form larger 
groups of replicas. If not defined, the default value is 10.
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service.Election.MasterTimeout

Synopsis

service.Election.MasterTimeout=num

Description

This property is used by a replicated IceStorm deployment (see Section 44.7). It 
specifies the interval in seconds at which a slave checks the status of the coordi-
nator. If not defined, the default value is 10.

service.Election.ResponseTimeout

Synopsis

service.Election.ResponseTimeout=num

Description

This property is used by a replicated IceStorm deployment (see Section 44.7). It 
specifies the interval in seconds that a replica waits for replies to an invitation to 
form a larger group. Lower priority replicas wait for intervals inversely propor-
tional to the maximum priority:

ResponseTimeout + ResponseTimeout * (max - pri)

If not defined, the default value is 10.

service.Flush.Timeout

Synopsis

service.Flush.Timeout=num

Description

Defines the interval in milliseconds with which batch reliability events are sent to 
subscribers. The default is 1000ms.
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service.InstanceName

Synopsis

service.InstanceName=name

Description

Specifies an alternate identity category for all objects hosted by the IceStorm 
object adapters. If not specified, the default identity category is IceStorm.

service.Node.name

Synopsis

service.Node.name=value

Description

In a replicated deployment, IceStorm uses the adapter name service.Node for the 
replica node’s object adapter (see Section 44.7). Therefore, all the adapter proper-
ties detailed in Section D.4 can be used to configure this adapter.

service.NodeId

Synopsis

service.NodeId=value

Description

Specifies the node id of an IceStorm replica, where value is a non-negative 
integer. The node id is also used as the replica’s priority, such that a larger value 
assigns higher priority to the replica. As described in Section 44.7, the replica 
with the highest priority becomes the coordinator of its group. This property must 
be defined for each replica.

service.Nodes.id

Synopsis

service.Nodes.id=value
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Description

This property is used for a manual deployment of HA IceStorm (see 
Section 44.12.3), in which each of the replicas must be explicitly configured with 
the proxies of all other replicas. The value is a proxy for the replica with the given 
node id. A replica’s object identity has the form instance-name/nodeid, such as 
DemoIceStorm/node2.

service.Publish.name

Synopsis

service.Publish.name=value

Description

IceStorm uses the adapter name service.Publish for the object adapter that 
processes incoming requests from publishers. Therefore, all the adapter properties 
detailed in Section D.4 can be used to configure this adapter.

service.ReplicatedPublishEndpoints

Synopsis

service.ReplicatedPublishEndpoints=value

Description

This property is used for a manual deployment of HA IceStorm (see 
Section 44.12.3). It specifies the set of endpoints returned for the publisher proxy 
returned from IceStorm::Topic::getPublisher.

If this property is not defined, the publisher proxy returned by a topic instance 
points directly at that replica and, should the replica become unavailable, 
publishers will not transparently failover to other replicas.

service.ReplicatedTopicManagerEndpoints

Synopsis

service.ReplicatedTopicManagerEndpoints=value
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Description

This property is used for a manual deployment of HA IceStorm (see 
Section 44.12.3). It specifies the set of endpoints used in proxies that refer to a 
replicated topic. This set of endpoints should contain the endpoints of each IceS-
torm replica.

For example, the operation IceStorm::TopicManager::create returns a 
proxy that contains this set of endpoints.

service.Send.Timeout

Synopsis

service.Send.Timeout=num

Description

IceStorm applies a send timeout when it forwards events to subscribers. The value 
of this property determines how long IceStorm will wait for forwarding of an 
event to complete. If an event cannot be forwarded within num milliseconds, the 
subscriber is considered dead and its subscription is cancelled. The default value 
is 60 seconds. Setting this property to a negative value disables timeouts.

service.SQL.DatabaseType

Synopsis

service.SQL.DatabaseType=type

Description

This property determines the type of the database for QSqlData-
base::addDatabase. Permissible values of type are QSQLITE, QMSQL, QPSQL, 
and QODBC.

service.SQL.DatabaseName

Synopsis

service.SQL.Database=name
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Description

This property determines the name of the database for QSqlData-
base::setDatabaseName. For SQLite, name is the file name for the data-
base. For MySQL and PostgreSQL, name is the database name. For SQL Server, 
name is the DSN name.

service.SQL.HostName

Synopsis

service.SQL.HostName=name

Description

This property determines the host name for QSqlDatabase::setHostName. 
For PostgreSQL and MySQL, name is the database host name. For SQL Server, 
name is the host name and server name separated by a blackslash, such as 
localhost\SQLExpress. For SQLite, this property has no effect and need 
not be set.

service.SQL.Port

Synopsis

service.SQL.Port=num

Description

This property determines the port number for QSqlDatabase::setPort.

service.SQL.UserName

Synopsis

service.SQL.UserName=name

Description

This property determines the user name for QSqlDatabase::setUserName. 
For SQLite, this property has no effect and need not be set.
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service.SQL.Password

Synopsis

service.SQL.Password=password

Description

This property determines the password for QSqlDatabase::setPassword. 
For SQLite, this property has no effect and need not be set.

service.TopicManager.name

Synopsis

service.TopicManager.name=value

Description

IceStorm uses the adapter name service.TopicManager for the topic manager’s 
object adapter. Therefore, all the adapter properties detailed in Section D.4 can be 
used to configure this adapter.

service.Trace.Election

Synopsis

service.Trace.Election=num

Description

Trace activity related to elections:

service.Trace.Replication

Synopsis

service.Trace.Replication=num

0 No election trace (default).

1 Trace election activity.
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Description

Trace activity related to replication:

service.Trace.Subscriber

Synopsis

service.Trace.Subscriber=num

Description

The subscriber trace level:

service.Trace.Topic

Synopsis

service.Trace.Topic=num

Description

The topic trace level:

0 No replication trace (default).

1 Trace replication activity.

0 No subscriber trace (default).

1 Trace topic diagnostic information on subscription and unsubscrip-
tion.

2 Like 1, but more verbose, including state transitions for a subscriber 
(such as going offline after a temporary network failure, and going 
online again after a successful retry, etc.).

0 No topic trace (default).

1 Trace topic links, subscription, and unsubscription.

2 Like 1, but more verbose, including QoS information, and other diag-
nostic information.
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service.Trace.TopicManager

Synopsis

service.Trace.TopicManager=num

Description

The topic manager trace level:

service.Transient

Synopsis

service.Transient=num

Description

If num is a value greater than zero, IceStorm runs in a fully transient mode in 
which no database is required. Replication is not supported in this mode. If not 
defined, the default value is zero.

IceStormAdmin.TopicManager.Default

Synopsis

IceStormAdmin.TopicManager.Default=proxy

Description

Defines the proxy for the default IceStorm topic manager. This property is used by 
icegridadmin. IceStorm applications may choose to use this property for their 
configuration as well.

0 No topic manager trace (default).

1 Trace topic creation.
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IceStormAdmin.TopicManager.name

Synopsis

IceStormAdmin.TopicManager.name=proxy

Description

Defines a proxy for an IceStorm topic manager for icegridadmin. Properties 
with this pattern are used by icestormadmin if multiple topic managers are in 
use, for example:

IceStormAdmin.TopicManager.A=A/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.B=Foo/TopicManager:tcp -h x -p 9995
IceStormAdmin.TopicManager.C=Bar/TopicManager:tcp -h x -p 9987

This sets the proxies for three topic managers. Not that name need not match the 
instance name of the corresponding topic manager—name simply serves as tag. 
With these property settings, the icestormadmin commands that accept a 
topic can now specify a topic manager other than the default topic manager that is 
configured with IceStormAdmin.TopicManager.Default. For example:

current Foo
create myTopic
create Bar/myOtherTopic

This sets the current topic manager to the one with instance name Foo; the first 
create command then creates the topic within that topic manager, whereas the 
second create command uses the topic manager with instance name Bar.

D.18 Glacier2 Properties

Glacier2.AddConnectionContext

Synopsis

Glacier2.AddConnectionContext=num

Description

If num is set to 1 or 2, Glacier2 adds a number of key–value pairs to the context 
that it sends with each request. If num is set to 1, these entries are adde to the 
context for all forwarded requests. If num is set to 2, the contexts are added only to 
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calls to checkPermissions and authorize on permission verifiers, and to calls to 
create on session managers.

If num is non-zero, Glacier2 adds the following context entries:

The default value is zero, meaning that no context are added.

Glacier2.AddSSLContext

Synopsis

Glacier2.AddSSLContext=num

Description

For sessions created with createSessionFromSecureConnection, this property, 
when set to a value greater than zero, instructs Glacier2 to provide additional 
information in the context of each request:

_con.type The type of the connection as returned by Connec-
tion::type.

_con.localAddress The local address (TCP and SSL only).

_con.localPort The local port (TCP and SSL only).

_con.remoteAddress The remote address (TCP and SSL only).

_con.remotePort The remote port (TCP and SSL only).

_con.cypher The cypher (SSL only).

_con.peerCert The first certificate of the client certificate chain (SSL 
only).

SSL.Active If the client established an SSL connection to the router, 
this entry is present and has the value 1. This entry is not 
present if SSL was not used.

SSL.Cipher A description of the ciphersuite negotiated for the SSL 
connection.

SSL.Remote.Host The client’s originating host name or address.

SSL.Remote.Port The client’s originating port number.
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Note that these SSL context entries are forwarded regardless of the setting of 
Glacier2.Client.ForwardContext.

If Glacier2.AddSSLContext is not defined, its default value is zero.

This property is deprecated and supported only for backward-compatibility. New 
applications should use Glacier2.AddConnectionContext.

Glacier2.AddUserToAllowCategories

Synopsis

Glacier2.AddUserToAllowCategories=num

Description

Specifies whether to add an authenticated user id to the Glacier2.AllowCatego-
ries property when creating of a new session. The legal values are shown below: 

This property is deprecated and supported only for backward-compatibility. New 
applications should use Glacier2.Filter.Category.AcceptUser.

Glacier2.AllowCategories

Synopsis

Glacier2.AllowCategories=list

SSL.Local.Host The router’s local host name or address.

SSL.Local.Port The router’s local port number.

SSL.PeerCert If the client supplied a certificate, this entry is present and 
contains the encoded certificate in PEM format.

0 Do not add the user id (default).

1 Add the user id.

2 Add the user id with a leading underscore.



 1939

Description

Specifies a white space-separated list of identity categories. If this property is 
defined, then the Glacier2 router only allows requests to Ice objects with an iden-
tity that matches one of the categories from this list. If Glacier2.AddUserToAl-
lowCategories is defined with a non-zero value, the router automatically adds 
the user id of each session to this list.

This property is deprecated and supported only for backward-compatibility. 
New applications should use Glacier2.Filter.Category.Accept.

Glacier2.Client.AlwaysBatch

Synopsis

Glacier2.Client.AlwaysBatch=num

Description

If num is set to a value larger than zero, the Glacier2 router always batches queued 
oneway requests from clients to servers regardless of the value of their _fwd 
contexts. This property is only relevant when Glacier2.Client.Buffered=1. 
The default value is 0.

Glacier2.Client.Buffered

Synopsis

Glacier2.Client.Buffered=num

Description

If num is set to a value larger than zero, the Glacier2 router operates in buffered 
mode, in which incoming requests from clients are queued and processed in a 
separate thread. If num is set to zero, the router operates in unbuffered mode in 
which a request is forwarded in the same thread that received it. The default value 
is 1. See Section 42.9 for more information.



1940 Properties

Glacier2.Client.name

Synopsis

Glacier2.Client.name=value

Description

Glacier2 uses the adapter name Glacier2.Client for the object adapter that it 
provides to clients. Therefore, all the adapter properties detailed in Section D.4 
can be used to configure this adapter.

This adapter must be accessible to clients of Glacier2. Use of a secure trans-
port for this adapter is highly recommended.

Note that Glacier2.Registry.Client.Endpoints controls the client 
endpoint for Glacier2. The port numbers 4063 (for TCP) and 4064 (for SSL) are 
reserved for Glacier2 by the Internet Assigned Numbers Authority (IANA).

Glacier2.Client.ForwardContext

Synopsis

Glacier2.Client.ForwardContext=num

Description

If num is set to a value larger than zero, the Glacier2 router includes the context in 
forwarded requests from clients to servers. The default value is 0.

Glacier2.Client.SleepTime

Synopsis

Glacier2.Client.SleepTime=num

Description

If num is set to a value larger than zero, the Glacier2 router sleeps for the specified 
number of milliseconds after forwarding all queued requests from a client. This 
delay is useful for batched delivery because it makes it more likely for events to 
accumulate in a single batch. Similarly, if overrides are used, the delay makes it 
more likely for overrides to actually take effect. This property is only relevant 
when Glacier2.Client.Buffered=1. The default value is 0.

http://www.iana.org/assignments/port-numbers
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Glacier2.Client.Trace.Override

Synopsis

Glacier2.Client.Trace.Override=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever a request was overridden. The default value is 0.

Glacier2.Client.Trace.Reject

Synopsis

Glacier2.Client.Trace.Reject=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever the router's configured filters reject a client's request. The default value 
is 0.

Glacier2.Client.Trace.Request

Synopsis

Glacier2.Client.Trace.Request=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
for each request that is forwarded from a client. The default value is 0.

Glacier2.CryptPasswords

Synopsis

Glacier2.CryptPasswords=file
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Description

Specifies the file name of a Glacier2 access control list (see Section 42.6.1). Each 
line of the file must contain a user name and a password, separated by white 
space. The password must be a 13-character crypt-encoded string. This property is 
ignored if Glacier2.PermissionsVerifier is defined.

Glacier2.Filter.AdapterId.Accept

Synopsis

Glacier2.Filter.AdapterId.Accept=string

Description

Specifies a space-separated list of adapter identifiers. If defined, the Glacier2 
router only allows requests to Ice objects with an adapter identifier that matches 
one of the entries in this list.

Identifiers that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within an identifier must be escaped with a 
leading backslash.

Glacier2.Filter.Address.Accept

Synopsis

Glacier2.Filter.Address.Accept=string

Description

Specifies a space-separated list of address–port pairs. When defined, the Glacier2 
router only allows requests to Ice objects through proxies that contain network 
endpoint information that matches an address–port pair listed in this property. If 
not defined, the default value is *, which indicates that any network address is 
permitted. Requests accepted by this property may be rejected by the 
Glacier2.Filter.Address.Reject property.

Each pair is of the form address:port. The address or port number portion 
can include wildcards ('*') or value ranges or groups. Ranges and groups are in the 
form [value1, value2, value3, ...] and/or [value1-value2]. Wildcards, 
ranges, and groups may appear anywhere in the address–port pair string. 



 1943

Glacier2.Filter.Address.Reject

Synopsis

Glacier2.Filter.Address.Reject=string

Description

Specifies a space-separated list of address–port pairs. When defined, the Glacier2 
router rejects requests to Ice objects through proxies that contain network 
endpoint information that matches an address–port pair listed in this property. If 
not set, the Glacier2 router allows requests to any network address unless the 
Glacier2.Filter.Address.Accept property is set, in which case requests will 
be accepted or rejected based on the Glacier2.Filter.Address.Accept prop-
erty. If both the Glacier2.Filter.Address.Accept and 
Glacier2.Filter.Address.Reject properties are defined, the 
Glacier2.Filter.Address.Reject property takes precedence.

Each pair is of the form address:port. The address or port number portion 
can include wildcards ('*') or value ranges or groups. Ranges and groups are in the 
form of [value1, value2, value3, ...] and/or [value1-value2]. Wildcards, 
ranges, and groups may appear anywhere in the address–port pair string. 

Glacier2.Filter.Category.Accept

Synopsis

Glacier2.Filter.Category.Accept=string

Description

Specifies a space-separated list of identity categories. If defined, the Glacier2 
router only allows requests to Ice objects with an identity that matches one of the 
categories in this list. If Glacier2.Filter.CategoryAcceptUser is defined with 
a non-zero value, the router automatically adds the user name of each session to 
this list.

Categories that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within a category must be escaped with a 
leading backslash.
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Glacier2.Filter.Category.AcceptUser

Synopsis

Glacier2.Filter.Category.AcceptUser=num

Description

Specifies whether to add an authenticated user id to the Glacier2.Filter.Cate-
gory.Accept property when creating of a new session. The legal values are shown 
below: 

Glacier2.Filter.Identity.Accept

Synopsis

Glacier2.Filter.Identity.Accept=string

Description

Specifies a space-separated list of identities. If defined, the Glacier2 router only 
allows requests to Ice objects with an identity that matches one of the entries in 
this list.

Identities that contain spaces must be enclosed in single or double quotes. 
Single or double quotes that appear within an identity must be escaped with a 
leading backslash.

Glacier2.Filter.ProxySizeMax

Synopsis

Glacier2.Filter.ProxySizeMax=num

0 Do not add the user id (default).

1 Add the user id.

2 Add the user id with a leading underscore.
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Description

If set, the Glacier2 router rejects requests whose stringified proxies are longer than 
num. This helps secure the system against attack. If not set, Glacier2 will accept 
requests using proxies of any length. 

Glacier2.InstanceName

Synopsis

Glacier2.InstanceName=name

Description

Specifies a default identity category for the Glacier2 objects. If defined, the iden-
tity of the Glacier2 admin interface becomes name/admin and the identity of the 
Glacier2 router interface becomes name/router.

If not defined, the default value is Glacier2.

Glacier2.PermissionsVerifier

Synopsis

Glacier2.PermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::Permissions-
Verifier interface (see Section 42.6.1). The router invokes this proxy to validate 
the user name and password of each new session. Sessions created from a secure 
connection are verified by the object specified in Glacier2.SSLPermissions-
Verifier. For simple configurations, you can specify the name of a password file 
using Glacier2.CryptPasswords.

Glacier2 supplies a “null” permissions verifier object that accepts any user-
name and password combination for situations in which no authentication is 
necessary. To enable this verifier, set the property value to 
instance/NullPermissionsVerifier, where instance is the value of 
Glacier2.InstanceName.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.



1946 Properties

Glacier2.ReturnClientProxy

Synopsis

Glacier2.ReturnClientProxy=num

Description

If num is a value greater than zero, Glacier2 maintains backward compatibility 
with clients using Ice versions prior to 3.2.0. In this case you should also define 
Glacier2.Client.PublishedEndpoints to specify the endpoints that clients 
should use to contact the router. For example, if the Glacier2 router resides behind 
a network firewall, the Glacier2.Client.PublishedEndpoints property should 
specify the firewall’s external endpoints.

If not defined, the default value is zero.

Glacier2.RoutingTable.MaxSize

Synopsis

Glacier2.RoutingTable.MaxSize=num

Description

This property sets the size of the router's routing table to num entries. If more 
proxies are added to the table than this value, proxies are evicted from the table on 
a least-recently used basis.

Clients based on Ice version 3.1 and later automatically retry operation calls 
on evicted proxies and transparently re-add such proxies to the table. Clients 
based on Ice versions earlier than 3.1 receive an ObjectNotExistException for 
invocations on evicted proxies. For such older clients, num must be set to a suffi-
ciently large value to prevent these clients from failing.

The default size of the routing table is 1000.

Glacier2.Server.name

Synopsis

Glacier2.Server.name=value
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Description

Glacier2 uses the adapter name Glacier2.Server for the object adapter that it 
provides to servers. Therefore, all the adapter properties detailed in Section D.4 
can be used to configure this adapter.

This adapter provides access to the SessionControl interface and must be 
accessible to servers that call back to router clients.

Glacier2.Server.AlwaysBatch

Synopsis

Glacier2.Server.AlwaysBatch=num

Description

If num is set to a value larger than zero, the Glacier2 router always batches queued 
oneway requests from servers to clients regardless of the value of their _fwd 
contexts. This property is only relevant when Glacier2.Server.Buffered=1. 
The default value is 0.

Glacier2.Server.Buffered

Synopsis

Glacier2.Server.Buffered=num

Description

If num is set to a value larger than zero, the Glacier2 router operates in buffered 
mode, in which incoming requests from servers are queued and processed in a 
separate thread. If num is set to zero, the router operates in unbuffered mode in 
which a request is forwarded in the same thread that received it. The default value 
is 1. See Section 42.9 for more information.

Glacier2.Server.ForwardContext

Synopsis

Glacier2.Server.ForwardContext=num
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Description

If num is set to a value larger than zero, the Glacier2 router includes the context in 
forwarded requests from servers to clients. The default value is 0.

Glacier2.Server.SleepTime

Synopsis

Glacier2.Server.SleepTime=num

Description

If num is set to a value larger than zero, the Glacier2 router sleeps for the specified 
number of milliseconds after forwarding all queued requests from a server. This 
delay is useful for batched delivery because it makes it more likely for events to 
accumulate in a single batch. Similarly, if overrides are used, the delay makes it 
more likely for overrides to actually take effect. This property is only relevant 
when Glacier2.Server.Buffered=1. The default value is 0.

Glacier2.Server.Trace.Override

Synopsis

Glacier2.Server.Trace.Override=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
whenever a request is overridden. The default value is 0.

Glacier2.Server.Trace.Request

Synopsis

Glacier2.Server.Trace.Request=num

Description

If num is set to a value larger than zero, the Glacier2 router logs a trace message 
for each request that is forwarded from a server. The default value is 0.
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Glacier2.SessionManager

Synopsis

Glacier2.SessionManager=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SessionManager 
interface. The router invokes this proxy to create a new session for a client, but 
only after the router validates the client's user name and password.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

Glacier2.SessionTimeout

Synopsis

Glacier2.SessionTimeout=num

Description

If num is set to a value larger than zero, a client's session with the Glacier2 router 
expires after the specified num seconds of inactivity. The default value is 0, 
meaning sessions do not expire due to inactivity.

It is important to choose num such that client sessions do not expire prema-
turely.

Setting the session timeout enables active connection management of client 
connections (by setting Glacier2.Client.ACM). By default, the ACM timeout is 
set to twice the session timeout. If no session timeout is defined, ACM is disabled.

Glacier2.SSLPermissionsVerifier

Synopsis

Glacier2.SSLPermissionsVerifier=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLPermis-
sionsVerifier interface (see Section 42.6.1). The router invokes this proxy to 
verify the credentials of clients that attempt to create a session from a secure 
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connection. Sessions created with a user name and password are verified by the 
object specified in Glacier2.PermissionsVerifier.

Glacier2 supplies a “null” permissions verifier object that accepts the creden-
tials of any client for situations in which no authentication is necessary. To enable 
this verifier, set the property value to instance/NullSSLPermissionsVerifier, 
where instance is the value of Glacier2.InstanceName.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

Glacier2.SSLSessionManager

Synopsis

Glacier2.SSLSessionManager=proxy

Description

Specifies the proxy of an object that implements the Glacier2::SSLSessionMan-
ager interface. The router invokes this proxy to create a new session for a client 
that has called createSessionFromSecureConnection.

As a proxy property, you can configure additional aspects of the proxy using 
the properties described in Section D.9.

Glacier2.Trace.RoutingTable

Synopsis

Glacier2.Trace.RoutingTable=num

Description

The routing table trace level:

0 No routing table trace (default).

1 Logs a message for each proxy that is added to the routing table.

2 Logs a message for each proxy that is evicted from the routing table 
(see Glacier2.RoutingTable.MaxSize).

3 Combines the output for trace levels 1 and 2.
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Glacier2.Trace.Session

Synopsis

Glacier2.Trace.Session=num

Description

If num is set to a value larger than zero, the Glacier2 router logs trace messages 
about session-related activities. The default value is 0.

D.19 Freeze Properties

Freeze.DbEnv.env-name.CheckpointPeriod

Synopsis

Freeze.DbEnv.env-name.CheckpointPeriod=num

Description

Every Berkeley DB environment created by Freeze has an associated thread that 
checkpoints this environment every num seconds. If num is less than 0, no check-
pointing is performed. The default is 120 seconds.

Freeze.DbEnv.env-name.DbHome

Synopsis

Freeze.DbEnv.env-name.DbHome=db-home

Description

Defines the home directory of this Freeze database environment. The default is 
env-name.

Freeze.DbEnv.env-name.DbPrivate

Synopsis

Freeze.DbEnv.env-name.DbPrivate=num
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Description

If num is set to a value larger than zero, Freeze instructs Berkeley DB to use 
process-private memory instead of shared memory. The default value is 1. Set this 
property to 0 in order to run a FreezeScript utility, or a Berkeley DB utility such as 
db_archive, on a running environment.

Freeze.DbEnv.env-name.DbRecoverFatal

Synopsis

Freeze.DbEnv.env-name.DbRecoverFatal=num

Description

If num is set to a value larger than zero, fatal recovery is performed when the envi-
ronment is opened. The default value is 0.

Freeze.DbEnv.env-name.LockFile

Synopsis

Freeze.DbEnv.env-name.LockFile=num

Description

If num is set to a value larger than zero, Freeze creates a lock file in the database 
environment to prevent other processes from opening the environment. The 
default value is 1.

Note that applications should not normally disable the lock file because simul-
taneous access to the same environment by multiple processes can lead to data 
corruption.

FreezeScript utilities automatically disable the lock file when 
Freeze.DbEnv.env-name.DbPrivate is set to zero.

Freeze.DbEnv.env-name.OldLogsAutoDelete

Synopsis

Freeze.DbEnv.env-name.OldLogsAutoDelete=num
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Description

If num is set to a value larger than zero, old transactional logs no longer in use are 
deleted after each periodic checkpoint (see Freeze.DbEnv.env-name.Check-
pointPeriod). The default value is 1.

Freeze.DbEnv.env-name.PeriodicCheckpointMinSize

Synopsis

Freeze.DbEnv.env-name.PeriodicCheckpointMinSize=num

Description

num is the minimum size in kilobytes for the periodic checkpoint (see 
Freeze.DbEnv.env-name.CheckpointPeriod). This value is passed to Berkeley 
DB's checkpoint function. The default is 0 (which means no minimum).

Freeze.Evictor.env-name.filename.name.BtreeMinKey

Synopsis

Freeze.Evictor.env-name.filename.name.BtreeMinKey=num

Description

name may represent a database name or an index name. This property sets the 
B-tree minkey of the corresponding Berkeley DB database. num is ignored if it is 
less than 2. Please refer to the Berkeley DB documentation for details.

Freeze.Evictor.env-name.filename.name.Checksum

Synopsis

Freeze.Evictor.env-name.filename.Checksum=num

Description

If num is greater than 0, checksums on the corresponding Berkeley DB database(s) 
are enabled. Please refer to the Berkeley DB documentation for details.

http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)
http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
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Freeze.Evictor.env-name.filename.MaxTxSize

Synopsis

Freeze.Evictor.env-name.filename.MaxTxSize=num

Description

Freeze uses a background thread to save updates to the database. Transactions are 
used to save many facets together. num defines the maximum number of facets 
saved per transaction. The default is 10 * SaveSizeTrigger (see 
Freeze.Evictor.env-name.filename.SaveSizeTrigger); if this value is nega-
tive, the actual value is set to 100.

Freeze.Evictor.env-name.filename.PageSize

Synopsis

Freeze.Evictor.env-name.filename.PageSize=num

Description

If num is greater than 0, it sets the page size of the corresponding Berkeley DB 
database(s). Please refer to the Berkeley DB documentation for details.

Freeze.Evictor.env-name.filename.PopulateEmptyIndices

Synopsis

Freeze.Evictor.env-name.filename.PopulateEmptyIndices=num

Description

When num is not 0 and you create an evictor with one or more empty indexes, the 
createBackgroundSaveEvictor or createTransactionalEvictor call will 
populate these indexes by iterating over all the corresponding facets. This is 
particularly useful after transforming a Freeze evictor with FreezeScript, since 
FreezeScript does not transform indexes; however this can significantly slow 
down the creation of the evictor if you have an empty index because none of the 
facets currently in the database match the type of this index. The default value for 
this property is 0.

http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)
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Freeze.Evictor.env-name.filename.RollbackOnUserException

Synopsis

Freeze.Evictor.env-name.filename.RollbackOnUserException=num

Description

If num is non-zero, a transactional evictor rolls back its transaction if the outcome 
of the dispatch is a user exception. If num is 0 (the default), the transactional 
evictor commits the transaction.

Freeze.Evictor.env-name.filename.SavePeriod

Synopsis

Freeze.Evictor.env-name.filename.SavePeriod=num

Description

Freeze uses a background thread to save updates to the database. After num milli-
seconds without saving, if any facet is created, modified, or destroyed, this back-
ground thread wakes up to save these facets. When num is 0, there is no periodic 
saving. The default is 60000.

Freeze.Evictor.env-name.filename.SaveSizeTrigger

Synopsis

Freeze.Evictor.env-name.filename.SaveSizeTrigger=num

Description

Freeze uses a background thread to save updates to the database. When num is 0 
or positive, as soon as num or more facets have been created, modified, or 
destroyed, this background thread wakes up to save them. When num is negative, 
there is no size trigger. The default is 10.
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Freeze.Evictor.env-name.filename.StreamTimeout

Synopsis

Freeze.Evictor.env-name.filename.StreamTimeout=num

Description

When the saving thread saves an object, it needs to lock this object in order to get 
a consistent copy of the object's state. If the lock cannot be acquired within num 
seconds, a fatal error is generated. If a fatal error callback was registered by the 
application, this callback is called; otherwise the program is terminated immedi-
ately. When num is 0 or negative, there is no timeout. The default value is 0.

Freeze.Map.name.BtreeMinKey

Synopsis

Freeze.Map.name.BtreeMinKey=num

Description

name may represent a database name or an index name. This property sets the -tree 
minkey of the corresponding Berkeley DB database. num is ignored if it is less 
than 2. Please refer to the Berkeley DB documentation for details.

Freeze.Map.name.Checksum

Synopsis

Freeze.Map.name.Checksum=num

Description

name may represent a database name or an index name. If num is greater than 0, 
checksums for the corresponding Berkeley DB database are enabled. Please refer 
to the Berkeley DB documentation for details.

http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setBtreeMinKey(int)
http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setChecksum(boolean)
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Freeze.Map.name.PageSize

Synopsis

Freeze.Map.name.PageSize=num

Description

name may represent a database name or an index name. If num is greater than 0, it 
sets the page size of the corresponding Berkeley DB database. Please refer to the 
Berkeley DB documentation for details.

Freeze.Trace.DbEnv

Synopsis

Freeze.Trace.DbEnv=num

Description

The Freeze database environment activity trace level:

Freeze.Trace.Evictor

Synopsis

Freeze.Trace.Evictor=num

Description

The Freeze evictor activity trace level:

0 No database environment activity trace (default).

1 Trace database open and close.

2 Also trace checkpoints and the removal of old log files.

0 No evictor activity trace (default).

1 Trace Ice object and facet creation and destruction, facet streaming 
time, facet saving time, object eviction (every 50 objects) and evictor 
deactivation.

http://www.oracle.com/technology/documentation/berkeley-db/db/java/com/sleepycat/db/DatabaseConfig.html#setPageSize(int)
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Freeze.Trace.Map

Synopsis

Freeze.Trace.Map=num

Description

The Freeze map activity trace level:

Freeze.Trace.Transaction

Synopsis

Freeze.Trace.Transaction=num

Description

The Freeze transaction activity trace level:

Freeze.Warn.Deadlocks

Synopsis

Freeze.Warn.Deadlocks=num

2 Also trace object lookups, and all object evictions.

3 Also trace object retrieval from the database.

0 No map activity trace (default).

1 Trace database open and close.

2 Also trace iterator and transaction operations, and reference counting 
of the underlying database.

0 No transaction activity trace (default).

1 Trace transaction IDs and commit and rollback activity.
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Description

If num is set to a value larger than zero, Freeze logs a warning message when a 
deadlock occur. The default value is 0.

Freeze.Warn.Rollback

Synopsis

Freeze.Warn.Deadlocks=num

Description

If num is set to a value larger than zero, Freeze logs a warning message when it 
rolls back a transaction that goes out of scope together with its associated connec-
tion. The default value is 1. (C++ only)

D.20 IcePatch2 Properties

IcePatch2.name

Synopsis

IcePatch2.name=value

Description

IcePatch2 uses the adapter name IcePatch2 for the server. Therefore, all the 
adapter properties detailed in Section D.4 can be used to configure this adapter.

Note that the property IcePatch2.Endpoints must be set for IcePatch2 
clients, so they can locate the IcePatch2 server.

IcePatch2.ChunkSize

Synopsis

IcePatch2.ChunkSize=kilobytes
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Description

The IcePatch2 client uses this property to determine how many kilobytes are 
retrieved with each call to getFileCompressed.

The default value is 100.

IcePatch2.Directory

Synopsis

IcePatch2.Directory=dir

Description

The IcePatch2 server uses this property to determine the data directory if no data 
directory is specified on the command line.

This property is also used by IcePatch2 clients to determine the local data 
directory.

IcePatch2.InstanceName

Synopsis

IcePatch2.InstanceName=name

Description

Specifies the identity category for well-known IcePatch2 objects. If defined, the 
identity of the IcePatch2::Admin interface becomes name/admin and the identity 
of the IcePatch2::FileServer interface becomes name/server.

If not defined, the default value is IcePatch2.

IcePatch2.Remove

Synopsis

IcePatch2.Remove=num

Description

This property determines whether IcePatch2 clients delete files that exist locally, 
but not on the server. A negative or zero value prevents removal of files. A value 
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of 1 enables removal and causes the client to halt with an error if removal of a file 
fails. A value of 2 or greater also enables removal, but causes the client to silently 
ignore errors during removal.

The default value is 1.

IcePatch2.Thorough

Synopsis

IcePatch2.Thorough=num

Description

This property determines whether IcePatch2 clients recompute checksums. Any 
value greater than zero is interpreted as true. The default value is 0 (false).
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Appendix E
Proxies and Endpoints

E.1 Proxies

Synopsis

identity -f facet -t -o -O -d -D -s  @ adapter_id  : endpoints

Description

A stringified proxy consists of an identity, proxy options, and an optional object 
adapter identifier or endpoint list. White space (the space, tab (\t), line feed (\n), 
and carriage return (\r) characters) act as token delimiters; if a white space char-
acter appears as part of a component of a stringified proxy (such as the identity), it 
must be quoted or escaped as described below.

A proxy containing an identity with no endpoints, or an identity with an object 
adapter identifier, represents an indirect proxy that will be resolved using the Ice 
locator (see the Ice.Default.Locator property).

Proxy options configure the invocation mode:

-f 
facet

Select a facet of the Ice object.

-t Configures the proxy for twoway invocations (default).

-o Configures the proxy for oneway invocations.
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The proxy options -t, -o, -O, -d, and -D are mutually exclusive.
The object identity identity is structured as [category/]name, where the 

category component and slash separator are optional. If identity contains white 
space or either of the characters : or @, it must be enclosed in single or double 
quotes. The category and name components are UTF-8 strings that use the 
encoding described below. Any occurrence of a slash (/) in category or name 
must be escaped with a backslash (i.e., \/).

The facet argument of the -f option represents a facet name. If facet 
contains white space, it must be enclosed in single or double quotes. A facet name 
is a UTF-8 string that uses the encoding described below.

The object adapter identifier adapter_id is a UTF-8 string that uses the 
encoding described below. If adapter_id contains white space, it must be 
enclosed in single or double quotes.

Single or double quotes can be used to prevent white space characters from 
being interpreted as delimiters. Double quotes prevent interpretation of a single 
quote a as an opening or closing quote, for example:

"a string with a ' quote"

Single quotes prevent interpretation of a double quote as an opening or closing 
quote. For example:

'a string with a " quote'

Escape sequences such as \b are interpreted within single and double quotes.
UTF-8 strings are encoded using ASCII characters for the ordinal range 32–

126 (inclusive). Characters outside this range must be encoded using escape 
sequences (\b, \f, \n, \r, \t) or octal notation (e.g., \007). Single and double 
quotes can be escaped using a backslash, as can the backslash itself (\\).

If endpoints are specified, they must be separated with a colon (:) and 
formatted as described on page 1963. The order of endpoints in the stringified 
proxy is not necessarily the order in which connections are attempted during 
binding: when a stringified proxy is converted into a proxy instance, by default, 
the endpoint list is randomized as a form of load balancing. You can change this 

-O Configures the proxy for batch oneway invocations.

-d Configures the proxy for datagram invocations.

-D Configures the proxy for batch datagram invocations.

-s Configures the proxy for secure invocations.
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this default behavior by setting properties (see the Ice.Default.EndpointSe-
lection and name.Endpoint.Selection properties in Appendix D).

If the -s option is specified, only those endpoints that support secure invoca-
tions are considered during binding. If no valid endpoints are found, the applica-
tion receives Ice::NoEndpointException.

Otherwise, if the -s option is not specified, the endpoint list is ordered so that 
non-secure endpoints have priority over secure endpoints during binding. In other 
words, connections are attempted on all non-secure endpoints before any secure 
endpoints are attempted.

If an unknown option is specified, or the stringified proxy is malformed, the 
application receives Ice::ProxyParseException. If an endpoint is malformed, 
the application receives Ice::EndpointParseException.

E.2 Endpoints

Synopsis

endpoint : endpoint

Description

An endpoint list comprises one or more endpoints separated by a colon (:).1 An 
endpoint has the following format: 

protocol option

The supported protocols are tcp, udp, ssl, and default. If default is used, it is 
replaced by the value of the Ice.Default.Protocol property. If an endpoint is 
malformed, or an unknown protocol is specified, the application receives 
Ice::EndpointParseException. The ssl protocol is only available if the IceSSL 
plug-in is installed.

Ice uses endpoints for two similar but distinct purposes:

1. In a client context (that is, in a proxy), endpoints determine how Ice estab-
lishes a connection to a server.

2. In a server context (that is, in an object adapter’s configuration), endpoints 
define the addresses and transports over which new incoming connections are 

1. See Section 32.4.6 for examples.
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accepted. These endpoints are also embedded in the proxies created by the 
object adapter, unless a separate set of “published” endpoints are explicitly 
configured.

The sections that follow discuss the addressing component of endpoints, as well as 
the protocols and their supported options.

Addressing

Synopsis

host : hostname | x.x.x.x (IPv4)
host : hostname | ":x:x:x:x:x:x:x" (IPv6)

Description

Ice supports Internet Protocol (IP) versions 4 and 6 in all language mappings2. 
Support for these protocols is configured using the properties Ice.IPv4 (enabled 
by default) and Ice.IPv6 (disabled by default).

In the endpoint descriptions below, the host parameter represents either a host 
name that is resolved via the Domain Name System (DNS), an IPv4 address in 
dotted quad notation, or an IPv6 address in 128-bit hexadecimal format and 
enclosed in double quotes. Due to limitation of the DNS infrastructure, host and 
domain names are restricted to the ASCII character set.

The presence (or absence) of the host parameter has a significant influence on 
the behavior of the Ice run time. The table below describes these semantics:

2. IPv6 is not supported when using Ice for Java on Windows due to a limitation in the JVM.

Value Client Semantics Server Semantics

None If host is not specified in a 
proxy, Ice uses the value of the 
Ice.Default.Host property. If 
that property is not defined, out-
going connections are only 
attempted over loopback inter-
faces.

If host is not specified in an 
object adapter endpoint, Ice uses 
the value of the 
Ice.Default.Host property. 
If that property is not defined, 
the adapter behaves as if the 
wildcard symbol * was specified 
(see below).

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6230761
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Host 
name

The host name is resolved via 
DNS. Outgoing connections are 
attempted to each address 
returned by the DNS query.

The host name is resolved via 
DNS, and the object adapter lis-
tens on the network interfaces 
corresponding to each address 
returned by the DNS query. The 
specified host name is embedded 
in proxies created by the adapter.

IPv4 
address

An outgoing connection is 
attempted to the given address.

The object adapter listens on the 
network interface corresponding 
to the address. The specified 
address is embedded in proxies 
created by the adapter.

IPv6 
address

An outgoing connection is 
attempted to the given address.

The object adapter listens on the 
network interface corresponding 
to the address. The specified 
address is embedded in proxies 
created by the adapter.

0.0.0.0
(IPv4)

A “wildcard” IPv4 address that 
causes Ice to try all local inter-
faces when establishing an out-
going connection.

Equivalent to * (see below).

"::"
(IPv6)

A “wildcard” IPv6 address that 
causes Ice to try all local inter-
faces when establishing an out-
going connection.

Equivalent to * (see below).

*
(IPv4, 
IPv6)

Not supported in proxies. The adapter listens on all net-
work interfaces (including the 
loopback interface), that is, binds 
to INADDR_ANY for the enabled 
protocols (IPv4 and/or IPv6). 
Endpoints for all addresses 
except loopback and IPv6 link-
local are published in proxies 
(unless loopback is the only 
available interface, in which case 
only loopback is published).

Using Mono, proxies created by 
an object adapter listening on the 
IPv6 wildcard address contain 
only the IPv6 loopback address 
unless published endpoints are 
configured.
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There is one additional benefit in specifying a wildcard address for host (or not 
specifying it at all) in an object adapter’s endpoint: if the list of network interfaces 
on a host may change while the application is running, using a wildcard address 
for host ensures that the object adapter automatically includes the updated inter-
faces. Note however that the list of published endpoints is not changed automati-
cally; see page 938 for more information. For diagnostic purposes, you can set the 
configuration property Ice.Trace.Network=3 to cause Ice to log the current 
list of local addresses that it is substituting for the wildcard address.

When IPv4 and IPv6 are enabled, an object adapter endpoint that uses an IPv6 
(or wildcard) address can accept both IPv4 and IPv6 connections. This is true for 
all supported platforms except Windows XP and Windows Server 2003, where 
you must define separate IPv4 and IPv6 endpoints if you want the object adapter 
to accept both types of connections.

Java Notes

Java’s default network stack always accepts both IPv4 and IPv6 connections 
regardless of the settings of Ice.IPv4 and Ice.IPv6. You can configure the Java 
run time to use only IPv4 by starting your application with the following JVM 
option:

java -Djava.net.preferIPv4Stack=true ...

TCP Endpoint

Synopsis

tcp -h host -p port -t timeout -z

Description

A tcp endpoint supports the following options:

Option Description Client Semantics Server Semantics

-h host Specifies the host 
name or IP address 
of the endpoint. If 
not specified, the 
value of 
Ice.Default.Ho
st is used instead.

See page 1964. See page 1964.
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-p port Specifies the port 
number of the end-
point.

Determines the port 
to which a connec-
tion attempt is 
made (required).

The port will be 
selected by the 
operating system if 
this option is not 
specified or port is 
zero.

-t timeout Specifies the end-
point timeout in 
milliseconds.

If timeout is 
greater than zero, it 
specifies the time-
out used by the cli-
ent to open or close 
connections and to 
read or write data. It 
also specifies how 
long the run time 
waits for an invoca-
tion to complete. If 
a timeout occurs, 
the application 
receives 
Ice::Timeout-
Exception.

If timeout is 
greater than zero, it 
specifies the time-
out used by the 
server to accept or 
close connections 
and to read or write 
data (see page 938 
and Section 32.13).
timeout also con-
trols the timeout 
that is published in 
proxies created by 
the object adapter.

-z Specifies bzip2 
compression.

Determines 
whether com-
pressed requests are 
sent.

Determines 
whether compres-
sion is advertised in 
proxies created by 
the adapter.
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UDP Endpoint

Synopsis

udp -v major.minor -e major.minor -h host -p port -z --ttl TTL
    --interface INTF

Description

A udp endpoint supports either unicast or multicast delivery; the address resolved 
by the host argument determines the delivery mode. To use multicast in IPv4, 
select an IP address in the range 233.0.0.0 to 239.255.255.255. In IPv6, use an 
address that begins with ff, such as ff01::1:1.

A udp endpoint supports the following options: 

Option Description Client Semantics Server Semantics

-v 
major.
minor

Specifies the protocol 
major and highest 
minor version num-
ber to be used for this 
endpoint. If not spec-
ified, the protocol 
major version and 
highest supported 
minor version of the 
client-side Ice run 
time is used.

Determines the pro-
tocol major version 
and highest minor 
version used by the 
client side when 
sending messages to 
this endpoint. The 
protocol major ver-
sion number must 
match the protocol 
major version num-
ber of the server; the 
protocol minor ver-
sion number must not 
be higher than the 
highest minor version 
number supported by 
the server.

Determines the pro-
tocol major version 
and highest minor 
version advertised by 
the server side for 
this endpoint. The 
protocol major ver-
sion number must 
match the protocol 
major version num-
ber of the server; the 
protocol minor ver-
sion number must not 
be higher than the 
highest minor version 
number supported by 
the server.
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-e 
major.
minor

Specifies the encod-
ing major and highest 
minor version num-
ber to be used for this 
endpoint. If not spec-
ified, the encoding 
major version and 
highest supported 
minor version of the 
client-side Ice run 
time is used.

Determines the 
encoding major ver-
sion and highest 
minor version used 
by the client side 
when sending mes-
sages to this end-
point. The encoding 
major version num-
ber must match the 
encoding major ver-
sion number of the 
server; the encoding 
minor version num-
ber must not be 
higher than the high-
est minor version 
number supported by 
the server.

Determines the 
encoding version and 
highest minor version 
advertised by the 
server side for this 
endpoint. The proto-
col major version 
number must match 
the protocol major 
version number of 
the server; the proto-
col minor version 
number must not be 
higher than the high-
est minor version 
number supported by 
the server.

-h 
host

Specifies the host 
name or IP address of 
the endpoint. If not 
specified, the value 
of 
Ice.Default.Hos
t is used instead.

See page 1964. See page 1964.

-p 
port

Specifies the port 
number of the end-
point.

Determines the port 
to which datagrams 
are sent (required).

The port will be 
selected by the oper-
ating system if this 
option is not speci-
fied or port is zero.

-z Specifies bzip2 com-
pression.

Determines whether 
compressed requests 
are sent.

Determines whether 
compression is 
advertised in proxies 
created by the 
adapter.
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Multicast Interfaces

When host denotes a multicast address, the --interface INTF option selects a 
particular network interface to be used for communication. The format of INTF 
depends on the language and IP version:

• C++ and .NET (IPv4)

INTF can be an interface name, such as eth0, or an IP address. Interface names 
on Windows may contain spaces, such as Local Area Connection, therefore 
they must be enclosed in double quotes.

• C++ and .NET (IPv6)

INTF can be an interface name, such as eth0, or an interface index.

• Java

INTF can be an interface name, such as eth0, or an IP address. On Windows, 
Java maps interface names to Unix-style nicknames.

SSL Endpoint

Synopsis

ssl -h host -p port -t timeout -z

--ttl 
TTL

Specifies the time-to-
live (also known as 
“hops”) of multicast 
messages.

Determines whether 
multicast messages 
are forwarded 
beyond the local net-
work. If not speci-
fied, or the value of 
TTL is -1, multicast 
messages are not for-
warded. The maxi-
mum value is 255.

N/A

--inte
rface 
INTF

Specifies the network 
interface or group for 
multicast messages 
(see below).

Selects the network 
interface for outgo-
ing multicast mes-
sages. If not 
specified, multicast 
messages are sent 
using the default 
interface.

Selects the network 
interface to use when 
joining the multicast 
group. If not speci-
fied, the group is 
joined on the default 
network interface.
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Description

An ssl endpoint supports the following options: 

Option Description Client Semantics Server Semantics

-h host Specifies the host 
name or IP address 
of the endpoint. If 
not specified, the 
value of 
Ice.Default.Ho
st is used instead.

See page 1964. See page 1964.

-p port Specifies the port 
number of the end-
point.

Determines the port 
to which a connec-
tion attempt is 
made (required).

The port will be 
selected by the 
operating system if 
this option is not 
specified or port is 
zero.

-t timeout Specifies the end-
point timeout in 
milliseconds.

If timeout is 
greater than zero, it 
specifies the time-
out used by the cli-
ent to open or close 
connections and to 
read or write data. It 
also specifies how 
long the run time 
waits for an invoca-
tion to complete. If 
a timeout occurs, 
the application 
receives 
Ice::Timeout-
Exception.

If timeout is 
greater than zero, it 
specifies the time-
out used by the 
server to accept or 
close connections 
and to read or write 
data (see page 938 
and Section 32.13).
timeout also con-
trols the timeout 
that is published in 
proxies created by 
the object adapter.

-z Specifies bzip2 
compression.

Determines 
whether com-
pressed requests are 
sent.

Determines 
whether compres-
sion is advertised in 
proxies created by 
the adapter.
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Opaque Endpoint

Synopsis

opaque -t type -v value

Description

Proxies can contain endpoints that are not universally understood by Ice 
processes. For example, a proxy can contain an SSL endpoint; if that proxy is 
marshaled to a receiver without the IceSSL plug-in, the SSL endpoint does not 
make sense to the receiver.

Ice preserves such unknown endpoints when they are received over the wire. 
For the preceding example, if the receiver remarshals the proxy and sends it back 
to an Ice process that does have the IceSSL plug-in, that process can invoke on the 
proxy using its SSL transport. This mechanism allows proxies containing 
endpoints for arbitrary transports to pass through processes that do not understand 
these endpoints without losing information.

If an Ice process stringifies a proxy containing an unknown endpoint, it writes 
the endpoint as an opaque endpoint. For example:

opaque -t 2 -v CTEyNy4wLjAuMREnAAD/////AA==

This is how a process without the IceSSL plug-in stringifies an SSL endpoint. 
When a process with the IceSSL plug-in unstringifies this endpoint and converts it 
back into a string, it produces:

ssl -h 127.0.0.1 -p 10001

An opaque endpoint supports the following options:

Exactly one each of the -t and -v options must be present in an opaque endpoint.

Option Description

-t type Specifies the transport for the endpoint. Transports are indicated by 
positive integers (1 for TCP, 2 for SSL, and 3 for UDP).

-v value Specifies the marshaled encoding of the endpoint (including its 
enclosing encapsulation) in base-64 encoding.
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Appendix F
The C++ Utility Library

F.1 Introduction

Ice for C++ includes a number of utility classes and functions in the IceUtil 
namespace. This appendix summarizes the contents of IceUtil for reference. 
Many of the classes and functions in IceUtil are documented elsewhere in this 
manual so, where appropriate, the sections here simply reference the relevant 
sections.

F.2 AbstractMutex

AbstractMutex defines a mutex base interface used by the Freeze Back-
groundSaveEvictor (see Section 39.3.9). The interface allows the evictor to 
synchronize with servants that are stored in a Freeze database. The class has the 
following definition:

class AbstractMutex {
public:
    typedef LockT<AbstractMutex> Lock;
    typedef TryLockT<AbstractMutex> TryLock;

    virtual ~AbstractMutex();
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    virtual void lock() const = 0;
    virtual void unlock() const = 0;
    virtual bool tryLock() const = 0;
};

This class definition is provided in IceUtil/AbstractMutex.h. The same 
header file also defines a few template implementation classes that specialize 
AbstractMutex:

• AbstractMutexI

This template class implements AbstractMutex by forwarding all member 
functions to its template argument:

template <typename T>
class AbstractMutexI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexI> Lock;
    typedef TryLockT<AbstractMutexI> TryLock;

    virtual void lock() const {
        T::lock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryLock();
    }

    virtual ~AbstractMutexI() {}
};

• AbstractMutexReadI

This template class implements a read lock by forwarding the lock and 
tryLock functions to the readLock and tryReadLock functions of its 
template argument:

template <typename T>
class AbstractMutexReadI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexReadI> Lock;
    typedef TryLockT<AbstractMutexReadI> TryLock;

    virtual void lock() const {
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        T::readLock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryReadLock();
    }

    virtual ~AbstractMutexReadI() {}
};

• AbstractMutexWriteI

This template class implements a write lock by forwarding the lock and 
tryLock functions to the writeLock and tryWriteLock functions of 
its template argument:

template <typename T>
class AbstractMutexWriteI : public AbstractMutex, public T {
public:
    typedef LockT<AbstractMutexWriteI> Lock;
    typedef TryLockT<AbstractMutexWriteI> TryLock;

    virtual void lock() const {
        T::writeLock();
    }

    virtual void unlock() const {
        T::unlock();
    }

    virtual bool tryLock() const {
        return T::tryWriteLock();
    }

    virtual ~AbstractMutexWriteI() {}
};

Apart from use with Freeze servants, these templates are also useful if, for 
example, you want to implement your own evictor.
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F.3 Cache

This class allows you to efficiently maintain a cache that is backed by secondary 
storage, such as a Berkeley DB database, without holding a lock on the entire 
cache while values are being loaded from the database. If you want to create evic-
tors (see Section 32.9.4) for servants that store their state in a database, the 
Cache class can simplify your evictor implementation considerably.1

The Cache class has the following interface:

template<typename Key, typename Value>
class Cache {
public:
    typedef typename
                std::map</* ... */, /* ... */>::iterator Position;

    bool pin(const Key& k, const Handle<Value>& v);
    Handle<Value> pin(const Key& k);
    void unpin(Position p);

    Handle<Value> putIfAbsent(const Key& k, const Handle<Value>& v
);

    Handle<Value> getIfPinned(const Key&, bool = false) const;

    void clear();
    size_t size() const;


protected:
    virtual Handle<Value> load(const Key& k) = 0;
    virtual void pinned(const Handle<Value>& v, Position p);

    virtual ~Cache();
};

Note that Cache is an abstract base class—you must derive a concrete implemen-
tation from Cache and provide an implementation of the load and, optionally, 
of the pinned member function.

1. You may also want to examine the implementation of the Freeze BackgroundSaveE-
victor in the source distribution; it uses IceUtil::Cache for its implementation.
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Internally, a Cache maintains a map of name–value pairs. The key and value 
type of the map are supplied by the Key and Value template arguments, respec-
tively. The implementation of Cache takes care of maintaining the map; in partic-
ular, it ensures that concurrent lookups by callers are possible without blocking 
even if some of the callers are currently loading values from the backing store. In 
turn, this is useful for evictor implementations, such as the Freeze Back-
groundSaveEvictor. The Cache class does not limit the number of entries 
in the cache—it is the job of the evictor implementation to limit the map size by 
calling unpin on elements of the map that it wants to evict.

Your concrete implementation class must implement the load function, 
whose job it is to load the value for the key k from the backing store and to return 
a handle to that value. Note that load returns a value of type 
IceUtil::Handle (see page 1981), that is, the value must be heap-allocated 
and support the usual reference-counting functions for smart pointers. (The easiest 
way to achieve this is to derive the value from IceUtil::Shared—see 
page 1990.)

If load cannot locate a record for the given key because no such record 
exists, it must return a null handle. If load fails for some other reason, it can 
throw an exception, which is propagated back to the application code.

Your concrete implementation class typically will also override the pinned 
function (unless you want to have a cache that does not limit the number of 
entries; the provided default implementation of pinned is a no-op). The Cache 
implementation calls pinned whenever it has added a value to the map as a 
result of a call to pin; the pinned function is therefore a callback that allows the 
derived class to find out when a value has been added to the cache and informs the 
derived class of the value and its position in the cache.

The Position parameter is a std::iterator into the cache’s internal 
map that records the position of the corresponding map entry. (Note that the 
element type of map is opaque, so you should not rely on knowledge of the 
cache’s internal key and value types.) Your implementation of pinned must 
remember the position of the entry because that position is necessary to remove 
the corresponding entry from the cache again.

The public member functions of Cache behave as follows:

• bool pin(const Key& k, const Handle<Value>& v);

To add a key–value pair to the cache, your evictor can call pin. The return 
value is true if the key and value were added; a false return value indicates that 
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the map already contained an entry with the given key and the original value 
for that key is unchanged.

pin calls pinned if it adds an entry.

This version of pin does not call load to retrieve the entry from backing 
store if it is not yet in the cache. This is useful when you add a newly-created 
object to the cache.

Once an entry is in the cache, it is guaranteed to remain in the cache at the 
same position in memory, and without its value being overwritten by another 
thread, until that entry is unpinned by a call to unpin.

• Handle<Value> pin(const Key& k);

This version of pin looks for the entry with the given key in the cache. If the 
entry is already in the cache, pin returns the entry’s value. If no entry with 
the given key is in the cache, pin calls load to retrieve the corresponding 
entry. If load returns an entry, pin adds it to the cache and returns the 
entry’s value. If the entry cannot be retrieved from the backing store, pin 
returns null.

pin calls pinned if it adds an entry.

The function is thread-safe, that is, it calls load only once all other threads 
have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the 
same position in memory, and without its value being overwritten by another 
thread, until that entry is unpinned by a call to unpin.

• Handle<Value> putIfAbsent(const Key& k,
                          const Handle<Value>& v);

This function adds a a key–value pair to the cache and returns a smart pointer 
to the value. If the map already contains an entry with the given key, that 
entry’s value remains unchanged and putIfAbsent returns its value. If no 
entry with the given key is in the cache, putIfAbsent calls load to 
retrieve the corresponding entry. If load returns an entry, putIfAbsent 



 1979

adds it to the cache and returns the entry’s value. If the entry cannot be 
retrieved from the backing store, putIfAbsent returns null.

putIfAbsent calls pinned if it adds an entry.

The function is thread-safe, that is, it calls load only once all other threads 
have unpinned the entry.

Once an entry is in the cache, it is guaranteed to remain in the cache at the 
same position in memory, and without its value being overwritten by another 
thread, until that entry is unpinned by a call to unpin.

• Handle<Value> getIfPinned(const Key& k,
                         bool wait = false) const;

This function returns the value stored for the key k.

• If an entry for the given key is in the map, the function returns the value 
immediately, regardless of the value of wait.

• If no entry for the given key is in the map and the wait parameter is false, 
the function returns a null handle.

• If no entry for the given key is in the map and the wait parameter is true, 
the function blocks the calling thread if another thread is currently 
attempting to load the same entry; once the other thread completes, 
getIfPinned completes and returns the value added by the other thread.

• void unpin(Position p);

This function removes an entry from the map. The iterator p determines which 
entry to remove. (It must be an iterator that previously was passed to 
pinned.) The iterator p is invalidated by this operation, so you must not use 
it again once unpin returns. (Note that the Cache implementation ensures 
that updates to the map never invalidate iterators to existing entries in the map; 
unpin invalidates only the iterator for the removed entry.)

• void clear();

This function removes all entries in the map.

• size_t size() const;

This function returns the number of entries in the map.

F.4 CtrlCHandler

See Section 31.10 for a description of this class.
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F.5 Exception

This class is at the root of the derivation tree for Ice exceptions and encapsulates 
functionality that is common to all Ice and IceUtil exceptions:

class Exception : public std::exception {
public:
    Exception();
    Exception(const char* file, int line);
    virtual ~Exception() throw();

    virtual std::string ice_name() const;
    virtual void ice_print(std::ostream&) const;
    virtual const char* what() const throw();
    virtual Exception* ice_clone() const;
    virtual void ice_throw() const;
    const char* ice_file() const;
    int ice_line() const;
};

The second constructor stores a file name and line number in the exception that 
are returned by the ice_file and ice_line member functions, respectively. 
This allows you to identify the source of an exception by passing the __FILE__ 
and __LINE__ preprocessor macros to the constructor.

The what member function is a synonym for ice_print. The default 
implementation of ice_print prints the file name, line number, and the name 
of the exception.

The remaining member functions are described in Section 6.9.

F.6 generateUUID

The signature of generateUUID is:

std::string generateUUID();

The function returns a universally-unique identifier, such as

02b066f5-c762-431c-8dd3-9b1941355e41

Each invocation returns a new identifier that is differs from all previous ones.2

2. Or, rather, differs from all previous ones for the next few decades.
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F.7 Handle Template

IceUtil::Handle implements a smart reference-counted pointer type. Smart 
pointers are used to guarantee automatic deletion of heap-allocated class 
instances. (See Section 6.14.6 for a detailed explanation of smart pointers.)

Handle is a template class with the following interface:3

template<typename T>
class Handle : /* ... */ {
public:

    typedef T element_type;

    T* _ptr;

    T* operator->() const;
    T& operator*() const;
    T* get() const;

    operator bool() const;

    void swap(HandleBase& other);

    Handle(T* p = 0);

    template<typename Y>
    Handle(const Handle<Y>& r);

    Handle(const Handle& r);

    ~Handle();

    Handle& operator=(T* p);

    template<typename Y>
    Handle& operator=(const Handle<Y>& r);

    Handle& operator=(const Handle& r);


3. Note that the actual implementation is split into a base and a derived class. For simplicity, we 
show the combined interface here. If you want to see the full implementation detail, it can be 
found in IceUtil/Handle.h.
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    template<class Y>
    static Handle dynamicCast(const HandleBase<Y>& r);

    template<class Y>
    static Handle dynamicCast(Y* p);
};

template<typename T, typename U>
bool operator==(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator!=(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator<(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator<=(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator>(const Handle<T>& lhs, const Handle<U>& rhs);

template<typename T, typename U>
bool operator>=(const Handle<T>& lhs, const Handle<U>& rhs);

The template argument must be a class that derives from Shared or Simple-
Shared (or that implements reference counting with the same interface as these 
classes); see page 1990 for a description of these classes.

This is quite a large interface, but all it really does is to faithfully mimic the 
behavior of ordinary C++ class instance pointers. Rather than discussing each 
member function in detail, we provide a simple overview here that outlines the 
most important points. Please see Section 6.14.6 for more examples of how to use 
smart pointers.

• element_type

This type definition follows the STL convention of defining the element type 
with the fixed name element_type so you can use it for template program-
ming or the definition of generic containers.

• _ptr

This data member stores the pointer to the underlying heap-allocated class 
instance.
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• Constructors, copy constructor, and assignment operators

These member functions allow you to construct, copy, and assign smart 
pointers as if they were ordinary pointers. In particular, the constructor and 
assignment operator are overloaded to work with raw C++ class instance 
pointers, which results in the “adoption” of the raw pointer by the smart 
pointer. For example, the following code works correctly and does not cause a 
memory leak:

typedef Handle<MyClass> MyClassPtr;

void foo(const MyClassPtr&);

// ...

foo(new MyClass); // OK, no leak here.

• operator->, operator*, and get

The arrow and indirection operators allow you to apply the usual pointer 
syntax to smart pointers to use the target of a smart pointer. The get member 
function returns the class instance pointer to the underlying reference-counted 
class instance; the return value is the value of _ptr.

• dynamicCast

This member function works exactly like a C++ dynamic_cast:4 it tests 
whether the argument supports the specified type and, if so, returns a non-null 
pointer; if the target does not support the specified type, it returns null. For 
example:

MyClassPtr p = ...;
MyOtherClassPtr o = ...;

o = MyOtherClassPtr::dynamicCast(p);
if (o)
{
    // o points at an instance of type MyOtherClass.
}
else
{

4. The reason for not using an actual dynamic_cast and using a dynamicCast function 
instead is that dynamic_cast only operates on pointer types, but IceUtil::Handle is a 
class.
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    // p points at something that is
    // not compatible with MyOtherClass.
}

Note that this example also illustrates the use of operator bool: when 
used in a boolean context, a smart pointer returns true if it is non-null and false 
otherwise.

• Comparison operators: ==, !=, <, <=, >, >=

The comparison operators compare the value of the underlying class instance 
pointer, that is, they compare the value returned by get. In other words, == 
returns true if two smart pointers point at the same underlying class instance, 
and the ordering operators compare the memory addresses of the underlying 
class instances.

F.8 Handle Template Adaptors

IceUtil provides adaptors that support use of smart pointers with STL algo-
rithms. Each template function returns a corresponding function object that is for 
use by an STL algorithm. The adaptors are defined in the header 
IceUtil/Functional.h.

Here is a list of the adaptors:

memFun
memFun1
voidMemFun
voidMemFun1

secondMemFun
secondMemFun1
secondVoidMemFun
secondVoidMemFun1

constMemFun
constMemFun1
constVoidMemFun
constVoidMemFun1

secondConstMemFun
secondConstMemFun1
secondConstVoidMemFun
secondConstVoidMemFun1
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As you can see, the adaptors are in two groups. The first group operates on non-
const smart pointers, whereas the second group operates on const smart pointers 
(for example, on smart pointers declared as const MyClassPtr).

Each group is further divided into two sub-groups. The adaptors in the first 
group operate on the target of a smart pointer, whereas the second<name> 
adapters operate on the second element of a pair, where that element is a smart 
pointer.

Each of the four sub-groups contains four adaptors:

• memFun

This adaptor is used for member functions that return a value and do not 
accept an argument. For example:

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    int getVal() { return _i; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(42));
mcp.push_back(new MyClass(99));

transform(mcp.begin(), mcp.end(),
          ostream_iterator<int>(cout, " "),
          IceUtil::memFun(&MyClass::getVal));
cout << endl;

This code invokes the member function getVal on each instance that is 
pointed at by smart pointers in the vector mcp and prints the return value of 
getVal on cout, separated by spaces. The output from this code is:

42 99

• memFun1

This adaptor is used for member functions that return a value and accept a 
single argument. For example:

class MyClass : public IceUtil::Shared {
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public:
    MyClass(int i) : _i(i) {}
    int plus(int v) { return _i + v; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

int A[3] = { 5, 7, 9 };
transform(mcp.begin(), mcp.end(), A,
          ostream_iterator<int>(cout, " "),
          IceUtil::memFun1(&MyClass::plus));
cout << endl;

This code invokes the member function plus on each instance that is pointed 
at by smart pointers in the vector mcp and prints the return value of a call to 
plus on cout, separated by spaces. The calls to plus are successively 
passed the values stored in the array A. The output from this code is:

7 11 15

• voidMemFun

This adaptor is used for member functions that do not return a value and do 
not accept an argument. For example:

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    void print() { cout << _i << endl; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

vector<MyClassPtr> mcp;



 1987

mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

for_each(mcp.begin(), mcp.end(),
         IceUtil::voidMemFun(&MyClass::print));

This code invokes the member function print on each instance that is 
pointed at by smart pointers in the vector mcp. The output from this code is:

2
4
6

• voidMemFun1

This adaptor is used for member functions that do not return a value and 
accept a single argument. For example:

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    void printPlus(int v) { cout << _i + v << endl; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

vector<MyClassPtr> mcp;
mcp.push_back(new MyClass(2));
mcp.push_back(new MyClass(4));
mcp.push_back(new MyClass(6));

for_each(
    mcp.begin(), mcp.end(),
    bind2nd(IceUtil::voidMemFun1(&MyClass::printPlus), 3));

This code invokes the member function printPlus on each instance that is 
pointed at by smart pointers in the vector mcp. The output from this code is:

5
7
9

As mentioned on page 1985, the second<name> versions of the adaptors 
operate on the second element of a std::pair<T1, T2>, where T2 must be a 
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smart pointer. Most commonly, these adaptors are used to apply an algorithm to 
each lookup value of a map or multi-map. Here is an example:

class MyClass : public IceUtil::Shared {
public:
    MyClass(int i) : _i(i) {}
    int plus(int v) { return _i + v; }
private:
    int _i;
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

// ...

map<string, MyClassPtr> m;
m["two"] = new MyClass(2);
m["four"] = new MyClass(4);
m["six"] = new MyClass(6);

int A[3] = { 5, 7, 9 };
transform(
    m.begin(), m.end(), A,
    ostream_iterator<int>(cout, " "),
    IceUtil::secondMemFun1<int, string, MyClass>(&MyClass::plus));

This code invokes the plus member function on the class instance denoted by the 
second smart pointer member of each pair in the dictionary m. The output from 
this code is:

9 13 11

Note that secondMemFun1 is a template that requires three arguments: the 
return type of the member function to be invoked, the key type of the dictionary, 
and the type of the class that is pointed at by the smart pointer.

In general, the second<name> adaptors require the following template 
arguments:

secondMemFun<R, K, T>
secondMemFun1<R, K, T>
secondVoidMemFun<K, T>
secondVoidMemFun<K, T>

where R is the return type of the member function, K is the type of the first 
member of the pair, and T is the class that contains the member function.
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F.9 ScopedArray

IceUtil::ScopedArray is a smart pointer class similar to Ptr smart 
pointers. However, instead of managing the memory for class instances, 
ScopedArray manages memory for an array. This class is provided mainly for 
use with the stream API (see Section 35.2.1). However, you can use it with arrays 
for other purposes.

Here is the definition of the template in full:

template<typename T>
class ScopedArray : private IceUtil::noncopyable
{
public:
    explicit ScopedArray(T* ptr = 0)
        : _ptr(ptr) { }

    ScopedArray(const ScopedArray& other) {
        _ptr = other._ptr;
        const_cast<ScopedArray&>(other)._ptr = 0;
    }

    ~ScopedArray() {
        if (_ptr != 0)
            delete[] _ptr;
    }

    void reset(T* ptr = 0) {
        assert(ptr == 0 || ptr != _ptr);
        if (_ptr != 0)
            delete[] _ptr;
        _ptr = ptr;
    }

    T& operator[](size_t i) const {
        assert(_ptr != 0);
        assert(i >= 0);
        return _ptr[i];
    }

    T* get() const {
        return _ptr;
    }

    void swap(ScopedArray& a) {
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        T* tmp = a._ptr;
        a._ptr = _ptr;
        _ptr = tmp;
    }

private:
    T* _ptr;
};

The class allows you to allocate an array on the heap and assign its pointer to a 
ScopedArray instance. When the instance goes out of scope, it calls 
delete[] on the array, so you do not need to deallocate the array explicitly 
yourself. This greatly reduces the risk of a memory leak due to an early return or 
uncaught exception.

F.10 Shared and SimpleShared

IceUtil::Shared and IceUtil::SimpleShared are base classes that 
implement the reference-counting mechanism for smart pointers (see 
Section 6.14.6). The two classes provide identical interfaces; the difference 
between Shared and SimpleShared is that SimpleShared is not thread-
safe and, therefore, can only be used if the corresponding class instances are 
accessed only by a single thread. (SimpleShared is marginally faster than 
Shared because it avoids the locking overhead that is incurred by Shared.)

The interface of Shared looks as follows. (Because SimpleShared has 
the same interface, we do not show it separately here.)

class Shared {
public:
    Shared();
    Shared(const Shared&);
    virtual ~Shared();

    Shared& operator=(const Shared&);

    virtual void __incRef();
    virtual void __decRef();
    virtual int __getRef() const;
    virtual void __setNoDelete(bool);
};
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The class maintains a reference that is initialized to zero by the constructor. 
__incRef increments the reference count and __decRef decrements it. If, 
during a call to __decRef, after decrementing the reference count, the reference 
count drops to zero, __decRef calls delete this, which causes the corre-
sponding class instance to delete itself. The copy constructor increments the refer-
ence count of the copied instance, and the assignment operator increments the 
reference count of the source and decrements the reference count of the target.

The __getRef member function returns the value of the reference count and 
is useful mainly for debugging.

The __setNoDelete member function can be used to temporarily disable 
self-deletion and re-enable it again. This is useful mainly if you initialize a smart 
pointer with the this pointer of a class instance during construction—see 
page 241 for a detailed explanation.

To create a class that is reference-counted, you simply derive the class from 
Shared and define a smart pointer type for the class, for example:

class MyClass : public IceUtil::Shared {
    // ...
};

typedef IceUtil::Handle<MyClass> MyClassPtr;

F.11 Threads and Synchronization Primitives

The IceUtil namespace contains a platform-independent thread and synchroni-
zation API. This API is documented in Chapter 31.

F.12 Time

The Time class provides basic facilities for getting the current time, constructing 
time intervals, adding and subtracting times, and comparing times:

namespace IceUtil {

    typedef ... Int64;

    class Time {
    public:
        enum Clock { Realtime, Monotonic };
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        Time(Clock = Realtime);
        static Time now();
        static Time seconds(Int64);
        static Time milliSeconds(Int64);
        static Time microSeconds(Int64);

        Int64 toSeconds() const;
        Int64 toMilliSeconds() const;
        Int64 toMicroSeconds() const;

        double toSecondsDouble() const;
        double toMilliSecondsDouble() const;
        double toMicroSecondsDouble() const;

        std::string toDateTime() const;
        std::string toDuration() const;

        Time operator-() const;

        Time operator-(const Time&) const;
        Time operator+(const Time&) const;

        Time operator*(int) const;
        Time operator*(Int64) const;
        Time operator*(double) const;

        double operator/(const Time&) const;
        Time operator/(int) const;
        Time operator/(Int64) const;
        Time operator/(double) const;

        Time& operator-=(const Time&);
        Time& operator+=(const Time&);

        Time& operator*=(int);
        Time& operator*=(Int64);
        Time& operator*=(double);

        Time& operator/=(int);
        Time& operator/=(Int64);
        Time& operator/=(double);

        bool operator<(const Time&) const;
        bool operator<=(const Time&) const;
        bool operator>(const Time&) const;
        bool operator>=(const Time&) const;



 1993

        bool operator==(const Time&) const;
        bool operator!=(const Time&) const;

#ifndef _WIN32
        operator timeval() const;
#endif
    };

    std::ostream& operator<<(std::ostream&, const Time&);
}

The member functions behave as follows:

• Time

Internally, the Time class stores ticks in microsecond units. For absolute time, 
this is the number of microseconds since the Unix epoch (00:00:00 UTC on 
1 Jan. 1970). For durations, this is the number of microseconds in the dura-
tion. The default constructor initializes the tick count to zero and selects the 
real-time clock. Constructing Time with an argument of Monotonic selects 
the monotonic clock on platforms that support it; the real-time clock is used on 
other platforms.

• now

This function constructs a Time object that is initialized to the current time of 
day.

• seconds
milliSeconds
microSeconds

These functions construct Time objects from the argument in the specified 
units. For example, the following code fragment creates a time duration of one 
minute:

IceUtil::Time t = IceUtil::Time::seconds(60);

• toSeconds
toMilliSeconds
toMicroSeconds

The member functions provide explicit conversion of a duration to seconds, 
milliseconds, and microseconds, respectively. The return value is a 64-bit 
signed integer (IceUtil::Int64).

IceUtil::Time t = IceUtil::Time::milliSeconds(2000);
IceUtil::Int64 secs = t.toSeconds(); // Returns 2
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• toSecondsDouble
toMilliSecondsDouble
toMicroSecondsDouble

The member functions provide explicit conversion of a duration to seconds, 
milliseconds, and microseconds, respectively. The return value is of type 
double.

• toDateTime

This function returns a human-readable representation of a Time value as a 
date and time.

• toDuration

This function returns a human-readable representation of a Time value as a 
duration.

• operator-
operator+
operator*
operator/
operator-=
operator+=
operator*=
operator/=

These operators allow you to add, subtract, multiply, and divide times. For 
example:

IceUtil::Time oneMinute = IceUtil::Time::seconds(60);
IceUtil::Time oneMinuteAgo = IceUtil::Time::now() - oneMinute;

The multiplication and division operators permit you to multiply and divide a 
duration. Note that these operators provide overloads for int, long long, 
and double.

• The comparison operators allow you to compare times and time intervals with 
each other, for example:

IceUtil::Time oneMinute  = IceUtil::Time::seconds(60);
IceUtil::Time twoMinutes = IceUtil::Time::seconds(120);
assert(oneMinute < twoMinutes);

• operator timeval

This operator converts a Time object to a struct timeval, defined as 
follows:
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struct timeval {
    long tv_sec;
    long tv_usec;
};

The conversion is useful for API calls that require a struct timeval 
argument, such as select. To convert a duration into a timeval structure, 
simply assign a Time object to a struct timeval:

IceUtil::Time oneMinute = IceUtil::Time::seconds(60);
struct timeval tv;
tv = t;

Note that this member function is not available under Windows.

• std::ostream& operator<<(std::ostream&, Time&);

This operator prints the number of whole seconds since the epoch.

F.13 Timer and TimerTask

The Timer class allows you to schedule some code for once-only or repeated 
execution after some time interval elapses. The code to be executed resides in a 
class you derive from TimerTask:

class Timer;
typedef IceUtil::Handle<Timer> TimerPtr;

class TimerTask : virtual public IceUtil::Shared {
public:
    virtual ~TimerTask() { }
    virtual void runTimerTask() = 0;
};

typedef IceUtil::Handle<TimerTask> TimerTaskPtr;

Your derived class must override the runTimerTask member function; the code 
in this method is executed by the timer. If the code you want to run requires access 
to some program state, you can pass that state into the constructor of your class or, 
alternatively, set that state via member functions of your class before scheduling it 
with a timer.

The Timer class invokes the runTimerTask member function to run your 
code. The class has the following definition:



1996 The C++ Utility Library

class Timer : /* ... */ {
public:
    Timer();
    Timer(int priority);

    void schedule(const TimerTaskPtr& task,
                  const IceUtil::Time& interval);

    void scheduleRepeated(const TimerTaskPtr& task,
                          const IceUtil::Time& interval);

    bool cancel(const TimerTaskPtr& task);

    void destroy();
};

typedef IceUtil::Handle<Timer> TimerPtr;

The constructor is overloaded to allow you specify a thread priority (see 
Section 31.8.1). The priority controls the priority of the thread that executes your 
task.

The schedule member function schedules an instance of your timer task for 
once-only execution after the specified time interval has elapsed. Your code is 
executed by a separate thread that is created by the Timer class. The function 
throws an IllegalArgumentException if you invoke it on a destroyed 
timer.

The scheduleRepeated member function runs your task repeatedly, at the 
specified time interval. Your code is executed by a separate thread that is created 
by the Timer class; the same thread is used every time your code runs. The func-
tion throws an IllegalArgumentException if you invoke it on a destroyed 
timer.

If your code throws an exception, the Timer class ignores the exception, that 
is, for a task that is scheduled to run repeatedly, an exception in the current execu-
tion does not cancel the next execution.

If your code takes longer to execute than the time interval you have specified 
for repeated execution, the second execution is delayed accordingly. For example, 
if you ask for repeated execution once every five seconds, and your code takes ten 
seconds to complete, then the second execution of your task starts five seconds 
after the previous execution finishes, that is, the interval specifies the wait time 
between successive executions.
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A TimerTask instance that has already been scheduled with a Timer 
instance cannot be scheduled again with the same Timer instance until the task 
has completed or been canceled.

For a single Timer instance, the execution of all registered tasks is serialized. 
The wait interval applies on a per-task basis so, if you schedule task A at an 
interval of five seconds, and task B at an interval of ten seconds, successive runs 
of task A start no sooner than five seconds after the previous task A has finished, 
and successive runs of task B start no sooner than ten seconds after the previous 
task B has finished. If, at the time a task is scheduled to run, another task is still 
running, the new task’s execution is delayed until the previous task has finished.

If you want scheduled tasks to run concurrently, you can create several Timer 
instances; tasks then execute in as many threads concurrently as there are Timer 
instances.

The cancel member function removes a task from a timer’s schedule. In 
other words, it stops a task that is scheduled for repeated execution from being 
executed again. (For once-only tasks, cancel does nothing.) If you cancel a task 
while it is executing, cancel returns immediately and the currently running task 
is allowed to complete normally; that is, cancel does not wait for any currently 
running task to complete.

The return value is true if cancel removed the task from the schedule. This 
is the case if you invoke cancel on a task that is scheduled for repeated execu-
tion and this was the first time you cancelled that task; subsequent calls to 
cancel return false. Calling cancel on a task scheduled for once-only execu-
tion always returns false, as does calling cancel on a destroyed timer.

The destroy member function removes all tasks from the timer’s schedule. 
If you call destroy from any thread other than the timer’s own execution thread, 
it joins with the currently executing task (if any), so the function does not return 
until the current task has completed. If you call destroy from the timer’s own 
execution thread, it instead detaches the timer’s execution thread. Calling 
destroy a second time on the same Timer instance has no effect. Similarly, 
calling cancel on a destroyed timer has no effect.

Note that you must call destroy on a Timer instance before allowing it to 
go out of scope; failing to do so causes undefined behavior.

Calls to schedule or scheduleRepeated on a destroyed timer do 
nothing.
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F.14 Unicode and UTF-8 Conversion Functions

The IceUtil namespace contains two helper functions that allow you to convert 
between wide strings containing Unicode characters (either 16- or 32-bit, 
depending on your native wchar_t size) and narrow strings in UTF-8 encoding:

enum ConversionFlags { strictConversion, lenientConversion };

std::string wstringToString(const std::wstring&,
                            ConversionFlags = lenientConversion);
std::wstring stringToWstring(const std::string&,
                             ConversionFlags = lenientConversion);

These functions always convert to and from UTF-8 encoding, that is, they ignore 
any locale setting that might specify a different encoding.

Byte sequence that are illegal, such as 0xF4908080, result in a UTFCon-
versionException. For other errors, the ConversionFlags parameter 
determines how rigorously the functions check for errors. When set to 
lenientConversion (the default), the functions tolerate isolated surrogates 
and irregular sequences, and substitute the UTF-32 replacement character 
0x0000FFFD for character values above 0x10FFFF. When set to strict-
Conversion, the functions do not tolerate such errors and throw a UTFCon-
versionException instead:

enum ConversionError { partialCharacter, badEncoding };

class UTFConversionException : public Exception {
public:
    UTFConversionException(const char* file, int line,
                           ConversionError r);

    ConversionError conversionError() const;
    // ...
};

The conversionError member function returns the reason for the failure:

• partialCharacter

The UTF-8 source string contains a trailing incomplete UTF-8 byte sequence.

• badEncoding

The UTF-8 source string contains a byte sequence that is not a valid UTF-8 
encoded character, or the Unicode source string contains a bit pattern that does 
not represent a valid Unicode character.
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F.15 Version Information

The header file IceUtil/Config.h defines two macros that expand to the 
version of the Ice run time:

#define ICE_STRING_VERSION "3.3.0" // "<major>.<minor>.<patch>"
#define ICE_INT_VERSION 30300      // AABBCC, with AA=major,
                                   // BB=minor, CC=patch

ICE_STRING_VERSION is a string literal in the form 
<major>.<minor>.<patch>, for example, 3.3.0. For beta releases, the 
version is <major>.<minor>b, for example, 3.3b.

INT_VERSION is an integer literal in the form AABBCC, where AA is the 
major version number, BB is the minor version number, and CC is patch level, for 
example, 30300 for version 3.3.0. For beta releases, the patch level is set to 51 
so, for example, for version 3.3b, the value is 30351.
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Appendix G
The Java Utility Library

G.1 Introduction

Ice for Java includes a number of utility APIs in the IceUtil package and the 
Ice.Util class. This appendix summarizes the contents of these APIs for refer-
ence.

G.2 The IceUtil Package

Cache and Store

The Cache class allows you to efficiently maintain a cache that is backed by 
secondary storage, such as a Berkeley DB database, without holding a lock on the 
entire cache while values are being loaded from the database. If you want to create 
evictors (see Section 32.9.4) for servants that store their state in a database, the 
Cache class can simplify your evictor implementation considerably.1

The Cache class has the following interface:

1. You may also want to examine the implementation of the Freeze BackgroundSaveE-
victor in the source distribution; it uses IceUtil.Cache for its implementation.
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package IceUtil;

public class Cache {
    public Cache(Store store);

    public Object pin(Object key);
    public Object pin(Object key, Object o);
    public Object unpin(Object key);

    public Object putIfAbsent(Object key, Object newObj);
    public Object getIfPinned(Object key);

    public void clear();
    public int size();
}

Internally, a Cache maintains a map of name–value pairs. The implementation of 
Cache takes care of maintaining the map; in particular, it ensures that concurrent 
lookups by callers are possible without blocking even if some of the callers are 
currently loading values from the backing store. In turn, this is useful for evictor 
implementations, such as the Freeze BackgroundSaveEvictor. The Cache 
class does not limit the number of entries in the cache—it is the job of the evictor 
implementation to limit the map size by calling unpin on elements of the map 
that it wants to evict.

The Cache class works in conjunction with a Store interface for which you 
must provide an implementation. The Store interface is trivial:

package IceUtil;

public interface Store {
    Object load(Object key);
}

You must implement the load method in a class that you derive from Store. 
The Cache implementation calls load when it needs to retrieve the value for the 
passed key from the backing store. If load cannot locate a record for the given 
key because no such record exists, it must return null. If load fails for some other 
reason, it can throw an exception derived from java.lang.RuntimeExcep-
tion, which is propagated back to the application code.

The public member functions of Cache behave as follows:

• Cache(Store s);

The constructor initializes the cache with your implementation of the Store 
interface.
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• Object pin(Object key, Object val);

To add a key–value pair to the cache, your evictor can call pin. The return 
value is null if the key and value were added; otherwise, if the map already 
contains an entry with the given key, the entry is unchanged and pin returns 
the original value for that key.

This version of pin does not call load to retrieve the entry from backing 
store if it is not yet in the cache. This is useful when you add a newly-created 
object to the cache.

• Object pin(Object key);

This version of pin returns the value stored in the cache for the given key if 
the cache already contains an entry for that key. If no entry with the given key 
is in the cache, pin calls load to retrieve the corresponding value (if any) 
from the backing store. pin returns the value returned by load, that is, the 
value if load could retrieve it, null if load could not retrieve it, or any 
exception thrown by load.

• Object unpin(Object key);

unpin removes the entry for the given key from the cache. If the cache 
contained an entry for the key, the return value is the value for that key; other-
wise, the return value is null.

• Object putIfAbsent(Object key, Object val);

This function adds a key–value pair to the cache. If the cache already contains 
an entry for the given key, putIfAbsent returns the original value for that 
key. If no entry with the given key is in the cache, putIfAbsent calls load 
to retrieve the corresponding entry (if any) from the backing store and returns 
the value returned by load.

If the cache does not contain an entry for the given key and load does not 
retrieve a value for the key, the method adds the new entry and returns null.

• Object getIfPinned(Object key);

This function returns the value stored for the given key. If an entry for the 
given key is in the map, the function returns the corresponding value; other-
wise, the function returns null. getIfPinned does not call load.

• void clear();

This function removes all entries in the map.

• int size();

This function returns the number of entries in the map.
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G.3 The Ice.Util Class

Communicator Initialization Methods

Ice.Util provides a number of overloaded initialize methods that create 
a communicator. See Section 30.7 for details on these methods.

Identity Conversion

Ice.Util contains two methods to convert object identities of type 
Ice.Identity to and from strings. These methods are described in 
Section 32.5.2.

Property Creation Methods

Ice.Util provides a number of overloaded createProperties methods 
that create property sets. See Section 30.9.2 for details on these methods.

Proxy Comparison Methods

Two methods, proxyIdentityCompare and proxyIdentityAnd-
FacetCompare, allow you to compare object identities that are stored in 
proxies (either ignoring the facet or taking the facet into account). See 
Section 10.11.5 for more details.

Stream Creation

Two methods, createInputStream and createOutputStream create 
streams for use with dynamic invocation. See Section 35.2.2 for more detail.

UUID Generation

Ice.Util contains a method generateUUID with the following signature:

static synchronized String generateUUID();

The function returns a unique identifier, such as

c0:a8:4:3:6e868177:119eabd625b:-8000
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Version Information
The stringVersion and intVersion methods return the version of the Ice 
run time:

public static String stringVersion();
public static int intVersion();

The stringVersion method returns the Ice version in the form 
<major>.<minor>.<patch>, for example, 3.3.0. For beta releases, the 
version is <major>.<minor>b, for example, 3.3b.

The intVersion method contains the Ice version in the form AABBCC, 
where AA is the major version number, BB is the minor version number, and CC is 
patch level, for example, 30300 for version 3.3.0. For beta releases, the patch 
level is set to 51 so, for example, for version 3.3b, the value is 30351.
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Appendix H
Windows Services

H.1 Introduction

A Windows service is a program that runs in the background and typically does 
not require user intervention. Similar to a daemon on Unix platforms, a Windows 
service is usually launched automatically when the operating system starts and 
runs until the system shuts down.

Ice includes a class named Service that simplifies the task of writing an Ice-
based Windows service in C++ (see Section 8.3.2). Writing the service is only the 
first step, however, as it is also critically important that the service be installed and 
configured correctly for successful operation. Service installation and configura-
tion is outside the scope of the Service class because these tasks are generally 
not performed by the service itself but rather as part of a larger administrative 
effort to deploy an application. Furthermore, there are security implications to 
consider when a service is able to install itself: such a service typically needs 
administrative rights to perform the installation, but does not necessarily need 
those rights while it is running. A better strategy is to grant administrative rights to 
a separate installer program and not to the service itself.
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H.2 Installing a Windows Service

The installation of a Windows service varies in complexity with the needs of the 
application, but usually involves the following activities:

• Selecting the user account in which the service will run.

• Registering the service and establishing its activation mode and dependencies.

• Creating one or more file system directories to contain executables, libraries, 
and supporting files or databases.

• Configuring those directories with appropriate permissions so that they are 
accessible to the user account selected for the service.

• Creating keys in the Windows registry.

• Configuring the Windows Event Log so that the service can report status and 
error messages.

There are many ways to perform these tasks. For example, an administrator can 
execute them manually, as we discuss beginning on page 2014. Another option is 
to write a script or program tailored to the needs of your application. Finally, you 
can build an installer using a developer tool such as InstallShield.

Selecting a User Account
Before installing a service, you should give careful consideration to the user 
account that will run the service. Unless your service has special requirements, we 
recommend that you use the built-in account that Windows provides specifically 
for this purpose. On Windows XP and Windows Server 2003, the fully-qualified 
name for this account is NT Authority\LocalService; in an English 
locale, its name is displayed as Local Service. On Windows Vista, the 
account name is simply Local Service.

H.3 The Ice Service Installer

Ice provides the command-line tool iceserviceinstall to assist you in 
installing and uninstalling the following Windows services:

• IceGrid registry

• IceGrid node

• Glacier2 router
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Ice includes other programs that can also be run as Windows services, such as the 
IceBox and IcePatch2 servers. Typically it is not necessary to install these 
programs as Windows services because they can be launched by an IceGrid node 
service. However, if you wish to run an IceBox or IcePatch2 server as a Windows 
service without the use of IceGrid, you must install the service manually (see 
page 2014).

In this section, we describe how to use the Ice service installer and discuss its 
actions and prerequisites.

Usage

iceserviceinstall supports the following options and arguments:

iceserviceinstall [options] service config-file [property ...]

Options:
-h, --help           Show this message.
-n, --nopause        Do not call pause after displaying a message.
-v, --version        Display the Ice version.
-u, --uninstall      Uninstall the Windows service.

The service and config-file arguments are required during installation 
and uninstallation.

The service argument selects the type of service you are installing; use one 
of the following values:

• icegridregistry

• icegridnode

• glacier2router

Note that the Ice service installer currently does not support the installation of an 
IceGrid node with a collocated registry, therefore you must install the registry and 
node separately.

The config-file argument specifies the name of an Ice configuration file. 
See page 2010 for additional information.

When installing a service, properties can be defined on the command line 
using the --name=value syntax, or they can be defined in the configuration 
file. The supported properties are described on page 2011.
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Security Considerations

None of the Ice services require privileges beyond a normal user account. In the 
case of the IceGrid node service in particular, we do not recommend running it in 
a user account with elevated privileges because the service is responsible for 
launching server executables, and those servers would inherit the node’s access 
rights. See page 2008 for more information selecting a user account.

Configuration File

The Ice service installer requires that you specify the path name of the Ice config-
uration file for the service being installed or uninstalled. The tool needs this path 
name for several reasons:

• During installation, it verifies that the configuration file has sufficient access 
rights.

• It configures a newly-installed service to load the configuration file using its 
absolute path name, therefore you must decide in advance where the file will 
be located.

• It reads the configuration file and examines certain service-specific properties. 
For example, prior to installing an IceGrid registry service, the tool verifies 
that the directory specified by the property IceGrid.Registry.Data 
has sufficient access rights.

• The tool supports its own configuration parameters that may also be defined as 
properties in this file (see page 2011).

You may still modify a service’s configuration file after installation, but you 
should uninstall and reinstall the service if you change any of the properties that 
influence the service installer’s actions. The table below describes the service 
properties that affect the installer:

Property Service Description

IceGrid.InstanceName IceGrid Registry Value appears in the service 
name; also included in the 
default display name if one 
is not defined.

IceGrid.Node.Data IceGrid Node Directory is created if nec-
essary; access rights are 
verified.
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The steps performed by the tool during an installation are described in detail on 
page 2012.

Sample Configuration Files

Ice includes sample configuration files for the IceGrid and Glacier2 services in the 
config subdirectory of your Ice installation. We recommend that you review the 
comments and settings in these files to familiarize yourself with a typical configu-
ration of each service.

You can modify a configuration file to suit your needs or copy one to use as a 
starting point for your own configuration.

Installer Properties

The Ice service installer uses a set of optional properties that customize the instal-
lation process. These properties can be defined in the service’s configuration file 
as discussed in the previous section, or they can be defined on the command line 
using the familiar --name=value syntax:

iceserviceinstall --DependOnRegistry=1 ...

The installer’s properties are listed below:

IceGrid.Node.Name IceGrid Node Value appears in the service 
name; also included in the 
default display name if one 
is not defined.

IceGrid.Registry.Data IceGrid Registry Directory is created if nec-
essary; access rights are 
verified.

Ice.Default.Locator IceGrid Node, 
Glacier2 Router

The IceGrid instance name 
is derived from the identity 
in this proxy.

Ice.EventLog.Source All Specifies the name of an 
event log source for the ser-
vice.

Property Service Description
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• AutoStart=num

If num is a value greater than zero, the service is configured to start automati-
cally at system start up. Set this property to zero to configure the service to 
start on demand instead. If not specified, the default value is 1.

• DependOnRegistry=num

If num is a value greater than zero, the service is configured to depend on the 
IceGrid registry, meaning Windows will start the registry prior to starting this 
service. Enabling this feature also requires that the property 
Ice.Default.Locator be defined in config-file. If not specified, 
the default value is zero.

• Description=value

A brief description of the service. If not specified, a general description is 
used.

• DisplayName=name

The friendly name that identifies the service to the user. If not specified, 
iceserviceinstall composes a default display name.

• EventLog=name

The name of the event log used by the service. If not specified, the default 
value is Application.

• ImagePath=path

The path name of the service executable. If not specified, iceservicein-
stall assumes the service executable resides in the same directory as itself 
and fails if the executable is not found.

• ObjectName=name

Specifies the account used to run the service. If not specified, the default value 
is NT Authority\LocalService.

• Password=value

The password required by the account specified in ObjectName.

Installation Process
The Ice service installer performs a number of steps to install a service. As 
discussed on page 2010, you must specify the path name of the service’s configu-
ration file because the service installer uses certain properties during the installa-
tion process. The actions taken by the service installer are described below:
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• Obtain the service’s instance name from the configuration file. The instance 
name is specified by the property IceGrid.InstanceName or 
Glacier2.InstanceName. If an instance name is not specified, the 
default value is IceGrid or Glacier2, respectively. If the service being 
installed depends on the IceGrid registry, the IceGrid instance name is derived 
from the value of the Ice.Default.Locator property.

• For an IceGrid node, obtain the node’s name from the property 
IceGrid.Node.Name. This property must be defined when installing a 
node.

• Compose the service name from the service type, instance name, and node 
name (for an IceGrid node). For example, the default service name for an 
IceGrid registry is icegridregistry.IceGrid. Note that the service 
name is not the same as the display name.

• Resolve the user account specified by ObjectName.

• For an IceGrid registry, create the data directory specified by the property 
IceGrid.Registry.Data and ensure that the user account specified by 
ObjectName has read/write access to the directory.

• For an IceGrid node, create the data directory specified by the property 
IceGrid.Node.Data and ensure that the user account specified by 
ObjectName has read/write access to the directory.

• For an IceGrid node, ensure that the user account specified by ObjectName 
has read access to the following registry key:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

This key allows the node to access CPU utilization statistics (see page 2024).

• Ensure that the user account specified by ObjectName has read/write access 
to the configuration file.

• Create a new Windows event log by adding the registry key specified by 
EventLog.

• Add an event log source under EventLog for the source name specified by 
Ice.EventLog.Source (see Appendix D). If this property is not defined, 
the service name is used as the source name.

• Install the service, including command line arguments that specify the service 
name (--service name) and the absolute path name of the configuration 
file (--Ice.Config=config-file).

The Ice service installer currently does not perform these tasks:
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• modify access rights for the service’s executable or its DLL dependencies

•  verify that the user account specified by ObjectName has the right to “Log 
on as a service”

Uninstallation

When uninstalling an existing service, the Ice service installer first ensures that 
the service is stopped, then proceeds to remove the service. The service’s event 
log source is removed and, if the service is not using the Application log, the 
event log registry key is also removed.

H.4 Manual Installation

This section describes how to manually install and configure an Ice service using 
the IcePatch2 service as a case study. For the purposes of this discussion, we 
assume that Ice is installed in the directory C:\Ice. We also assume that you 
have administrative access to your system, which is required by many of the 
installation steps discussed in this section.

Selecting a User Account

The IcePatch2 service can run in a regular user account, therefore we will follow 
the recommendation on page 2008 and use the Local Service account.

Preparing a Directory

The service needs a directory in which to store the files that it distributes to 
clients. A common mistake is assuming that a service will be able to access a file 
or directory that you created using your current account, which is likely to cause 
the service to fail in a way that is difficult to diagnose. To prevent such failures, 
we will ensure that the directory has the necessary permissions for the service to 
access it while running in the Local Service account.

Selecting a Directory

The directory tree for our IcePatch2 service is shown below:
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C:\Documents and Settings\
  LocalService\
    Local Settings\
      Application Data\
        ZeroC\
          icepatch2\
            data\

Note that this tree applies to Windows XP and Windows Server 2003, and is locale 
dependent. On Windows Vista, we would use the following tree instead:

C:\Windows\
  ServiceProfiles\
    LocalService\
      AppData\
        Local\
          ZeroC\
            icepatch2\
              data\

For this example, we will use the Windows XP directory tree.

Creating the Directory

Since Local Service is a built-in account, its user directory should already 
exist and have the proper access rights.1 If the directory does not exist, we can 
create it in a command window with the following steps:

cd \Documents and Settings
mkdir LocalService

At this point we could create the rest of the directory hierarchy. However, a newly-
created directory inherits the privileges of its enclosing directory, and we have not 
yet modified the privileges of the LocalService directory to grant access to 
the Local Service account. At present, the privileges of the LocalSer-
vice directory are inherited from Documents and Settings and require 
modification. In general, it is better to establish the necessary access rights on the 
parent directory prior to creating any subdirectories, so we will modify the 
LocalService directory first.

1. If you open C:\Documents and Settings in Windows Explorer, the LocalService 
directory may not be visible until you modify your folder options to show protected files and 
folders.



2016 Windows Services

On all Windows systems, we can use the command-line utility cacls. The 
following command does what we need:

cacls LocalService /G "Local Service":F Administrators:F

By omitting the /E option to cacls, we have replaced all of the prior access 
rights on the directory with the rights given in this command. As a result, the 
Local Service account and anyone in the Administrators group are granted 
full access to the directory, while all others are forbidden. (We grant full access to 
the Administrators group because presumably someone other than the Local 
Service account will need to manage the subdirectory, create the configuration 
file, an so on). You can verify the directory's current privilege settings by running 
cacls without options:

cacls LocalService

Now we can create the remaining subdirectories, and they will automatically 
inherit the access rights established for the LocalService directory:

cd LocalService
mkdir "Local Settings\Application Data\ZeroC\icepatch2\data"

If you want to further restrict access to files or subdirectories, you can modify 
them as necessary using the cacls utility. Note however that certain actions may 
cause a file to revert back to the access rights of its enclosing directory. For 
example, modifying a file using a text editor is often the equivalent of erasing the 
file and recreating it, which discards any access rights you may have previously 
set for the file.

On some versions of Windows XP, and on Windows Server 2003 and 
Windows Vista, you can manage privilege settings interactively using Windows 
Explorer. For example, right click on the LocalService directory, select Prop-
erties, and select the Security tab. Next select Advanced and Edit, uncheck 
“Include inheritable permissions from this object’s parent,” and select Copy. 
Remove all permission entries, then add entries for Local Service and the Admin-
istrators group and grant Full Control to each.

Populating the Directory

Now you can copy the files that will be distributed to clients into the data subdi-
rectory. The new files should inherit the access rights of their enclosing directory. 
For the sake of discussion, let us copy some Slice files from the Ice distribution 
into the data directory:
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cd "Local Settings\Application Data\ZeroC\icepatch2\data"
copy \Ice\slice\Ice\*.ice

Next we need to run icepatch2calc to prepare the directory for use by the 
IcePatch2 service:

icepatch2calc .

Configuration File

IcePatch2 requires a minimal set of configuration properties. We could specify 
them on the service’s command line, but if we later want to modify those proper-
ties we would have to reinstall the service. Defining the properties in a file simpli-
fies the task of modifying the service’s configuration.

Our IcePatch2 configuration is quite simple:

IcePatch2.Directory=C:\Documents and Settings\LocalService\
Local Settings\Application Data\ZeroC\icepatch2\data
IcePatch2.Endpoints=tcp -p 10000

The IcePatch2.Directory property specifies the location of the server’s 
data directory, which we created in the previous section.

We will save our configuration properties into the following file:

C:\Ice\config\icepatch2.cfg

We must also ensure that the service has permission to access its configuration 
file. The Ice run time never modifies a configuration file, therefore read access is 
sufficient. The configuration file likely already has the necessary access rights, 
which we can verify using the cacls utility that we described in the previous 
section:

cacls C:\Ice\config\icepatch2.cfg

Creating the Service

We will use Microsoft’s Service Control (sc) utility2 in a command window to 
create the service. Our first sc command does the majority of the work (the 
command is formatted for readability but must be typed on a single line):

2. See http://support.microsoft.com/kb/251192 for more information about the SC 
utility.

http://support.microsoft.com/kb/251192
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sc create icepatch2
  binPath= "C:\Ice\bin\icepatch2server.exe
    --Ice.Config=C:\Ice\config\icepatch2.cfg --service icepatch2"
  DisplayName= "IcePatch2 Server" start= auto
  obj= "NT Authority\LocalService" password= ""

There are several important aspects of this command:

• The service name is icepatch2. You can use whatever name you like, as 
long as it does not conflict with an existing service. Note however that this 
name is used in other contexts, such as in the --service option discussed 
below, therefore you must use it consistently.

• Following the service are several options. Note that all of the option names 
end with an equals sign and are separated from their arguments with at least 
one space.

• The binPath= option is required. We supply the full path name of the 
IcePatch2 server executable, as well as command-line arguments that define 
the location of the configuration file and the name of the service, all enclosed 
in quotes.

• The DisplayName= option sets a friendly name for the service.

• The start= option configures the start up behavior for the service. We used 
the argument auto to indicate the service should be started automatically 
when Windows boots.

• The obj= option selects the user account in which this service runs. As 
explained on page 2008, the Local Service account is appropriate for 
most services.

• The password= option supplies the password associated with the user 
account indicated by obj=. The Local Service account has an empty 
password.

The sc utility should report success if it was able to create the service as speci-
fied. You can verify that the new service was created with this command:

sc qc icepatch2

Alternatively, you can start the Services administrative control panel and inspect 
the properties of the IcePatch2 service.

If you start the control panel, you will notice that the entry for IcePatch2 does 
not have a description. To add a description for the service, use the following 
command:

sc description icepatch2 "IcePatch2 file server"
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After refreshing the list of services, you should see the new description.

Creating the Event Log

By default, programs such as the IcePatch2 service that utilize the Service class 
(see Section 8.3.2) log messages to the Application event log. Below we 
describe how to prepare the Windows registry for the service’s default behavior, 
and we also show how to use a custom event log instead. We make use of Micro-
soft’s Registry (reg) utility to modify the registry, although you could also use 
the interactive regedit tool. As always, caution is recommended whenever you 
modify the registry.

Using the Application Log

We must configure an event log source for events to display properly. The first 
step is to create a registry key with the name of the source. Since the Service 
class uses the service name as the source name by default, we add the key 
icepatch2 as shown below:

reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
Application\icepatch2

Inside this key we must add a value that specifies the location of the Ice run time 
DLL:

reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
Application\icepatch2 /v EventMessageFile /t REG_EXPAND_SZ
/d C:\Ice\bin\ice34.dll

We will also add a value indicating the types of events that the source supports:

reg add HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
Application\icepatch2 /v TypesSupported /t REG_DWORD /d 7

The value 7 corresponds to the combination of the following event types:

• EVENTLOG_ERROR_TYPE

• EVENTLOG_WARNING_TYPE

• EVENTLOG_INFORMATION_TYPE

You can verify that the registry values have been defined correctly using the 
following command:

reg query HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
Application\icepatch2
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Our configuration of the event log is now complete.

Changing the Source Name

Using the configuration described in the previous section, events logged by the 
IcePatch2 service are recorded in the event log using the source name 
icepatch2. If you prefer to use a source name that differs from the service 
name, you can replace icepatch2 in the registry commands with the name of 
your choosing, but you must also add a matching definition for the property 
Ice.EventLog.Source to the service’s configuration file.

For example, to use the source name Ice File Patching Service, 
you would add the registry key as shown below:

reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
Application\Ice File Patching Service"

The commands to add the EventMessageFile and TypesSupported 
values must be modified in a similar fashion. Finally, add the following configura-
tion property to icepatch2.cfg:

Ice.EventLog.Source=Ice File Patching Service

Using a Custom Log

You may decide that you want your services to record messages into an applica-
tion-specific log instead of the Application log that is shared by other unre-
lated services. As an example, let us create a log named MyApp:

reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\MyApp"

Next we add a subkey for the IcePatch2 service. As described in the previous 
section, we will use a friendlier source name:

reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
MyApp\Ice File Patching Service"

Now we can define values for EventMessageFile and TypesSupported:

reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
MyApp\Ice File Patching Service" /v EventMessageFile
/t REG_EXPAND_SZ /d C:\Ice\bin\ice34.dll

reg add "HKLM\SYSTEM\CurrentControlSet\Services\EventLog\
MyApp\Ice File Patching Service" /v TypesSupported /t REG_DWORD /d 7

Finally, we define Ice.EventLog.Source in the IcePatch2 service’s configu-
ration file:



 2021

Ice.EventLog.Source=Ice File Patching Service

Note that you must restart the Event Viewer control panel after adding the MyApp 
registry key in order to see the new log.

Registry Caching

The first time a service logs an event, Windows’ Event Log service caches the 
registry entries associated with the service’s source. If you wish to modify a 
service’s event log configuration, such as changing the service to use a custom log 
instead of the Application log, you should perform the following steps:

1. Stop the service.

2. Remove the unwanted event log registry key.

3. Add the new event log registry key(s).

4. Restart the system (or at least the Event Log service).

5. Start the service and verify that the log entries appear in the intended log.

After following these steps, open a log entry and ensure that it displays properly. 
If it does not, for example if the event properties indicate that the description of an 
event cannot be found, the problem is likely due to a misconfigured event source. 
Verify that the value of EventMessageFile refers to the correct location of 
the Ice run time DLL, and that the service is defining Ice.EventLog.Source 
in its configuration file (if necessary).

Starting the Service

We are at last ready to start the service. In a command window, you can use the sc 
utility:

sc start icepatch2

The program usually responds with status information indicating that the start 
request is pending. You can query the service’s status to verify that it started 
successfully:

sc query icepatch2

The service should now be in the running state. If it is not in this state, open the 
Event Viewer control panel and inspect the relevant log for more information that 
should help you to locate the problem. Even if the service started successfully, you 
may still want to use the Event Viewer to confirm that the service is using the log 
you expected.
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Test the Service

Ice includes a graphical IcePatch2 client in the demo/IcePatch2/MFC direc-
tory of the Ice distribution. Once you have built the client, you can use it to test 
that the service is working properly.

H.5 Troubleshooting

Missing Libraries

One failure that commonly occurs when starting a Windows service is caused by 
missing DLLs, which usually results in an error window stating a particular DLL 
cannot be found. Fixing this problem can often be a trial-and-error process 
because the DLL mentioned in the error may depend on other DLLs that are also 
missing. It is important to understand that a Windows service is launched by the 
operating system and can be configured to execute as a different user, which 
means the service’s environment (most importantly its PATH) may not match 
yours and therefore extra steps are necessary to ensure that the service can locate 
its required DLLs3.

The simplest approach is to copy all of the necessary DLLs to the directory 
containing the service executable. If this solution is undesirable, another option is 
to modify the system PATH to include the directory or directories containing the 
required DLLs. (Note that modifying the system PATH requires restarting the 
system.) Finally, you can copy the necessary DLLs to \WINDOWS\system32, 
although we do not recommend this approach4. 

Assuming that DLL issues are resolved, a Windows service can fail to start for 
a number of other reasons, including

• invalid command-line arguments or configuration properties

3. The command-line utility dumpbin can be used to discover the dependencies of an executable 
or DLL.

4. Copying DLLs to \WINDOWS\system32 often results in subtle problems later when trying to 
develop using newer versions of the DLLs. Inevitably you will forget about the DLLs in 
\WINDOWS\system32 and struggle to determine why your application is misbehaving or 
failing to start.
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• inability to access necessary resources such as file systems and databases, 
because either the resources do not exist or the service does not have sufficient 
access rights to them

• networking issues, such as attempting to open a port that is already in use, or 
DNS lookup failures

Failures encountered by the Ice run time prior to initialization of the communi-
cator are reported to the Windows event log if no other logger implementation is 
defined, so that should be the first place you look. Typically you will find an entry 
in the System event log resembling the following message:

The IcePatch2 service terminated with service-specific error 1.

Error code 1 corresponds to EXIT_FAILURE, the value used by the Service 
class to indicate a failure during startup. Additional diagnostic messages may be 
available in the Application event log. See page 289 for more information on 
configuring a logger for a Windows service.

As we mentioned earlier, insufficient access rights can also prevent a Windows 
service from starting successfully. By default, a Windows service is configured to 
run under a local system account, in which case the service may not be able to 
access resources owned by other users. It may be necessary for you to configure a 
service to run under a different account, which you can do using the Services 
control panel. See page 2008 for more information on selecting a user account for 
your service, and page 2014 for instructions on configuring the access rights of 
files and directories.

Windows Firewall

Your choice of user account determines whether you receive any notification 
when the Windows Firewall blocks the ports that are used by your service. For 
example, if you use Local Service as recommended on page 2008, you will 
not see any Windows Security Alert dialog (see this Microsoft article for details).

If you are not prompted to unblock your service, you will need to manually 
add an exception in Windows Firewall. For example, follow the steps below to 
unblock the ports of a Glacier2 router service:

1. Open the Windows Firewall Settings panel and navigate to the Exceptions 
panel.

2. Select “Add program...”

3. Select “Browse,” navigate to the Glacier2 router executable, and click “OK.”

http://technet2.microsoft.com/WindowsServer/en/library/b3440a22-ae9c-45a3-8a61-da3f8a2c791f1033.mspx?mfr=true
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Note that adding an exception for a program unblocks all ports on which the 
program listens. Review the endpoint configurations of your services carefully to 
ensure that no unnecessary ports are opened.

For services listening on one or a few fixed ports, you could also create port 
exceptions in your Windows Firewall. Please refer to the Windows Firewall docu-
mentation for details.

IceGrid Node Performance Monitoring

The IceGrid node uses Windows’ Perflib facility to obtain statistics about the 
CPU utilization of its host (see Section 38.10). On Vista-derived operating 
systems, the IceGrid node may log the following warning message:

warning: Unable to lookup the performance counter name

This message is an indication that the node does not have sufficient privileges to 
access a key in the Windows registry:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib

As part of its installation procedure, the iceserviceinstall utility 
described in Section H.2 modifies the permissions of this registry key to grant 
read access to the node’s designated user account. If you are trying to change the 
node’s user account, we recommend using the iceserviceinstall utility to 
uninstall and reinstall the node. If you wish to modify the permissions of this 
registry key manually, follow these steps:

1. Start regedit and navigate to the Perflib key.

2. Right click on Perflib and select Permissions.

3. If the desired user account is not already present, click Add to add the user 
account. Enter LOCAL SERVICE if you wish to run the node in the Local 
Service account, otherwise enter the name of the user account. Press OK.

4. Check the Read box in the Allow column to grant read access to the registry 
key and press OK to apply the changes.

Another way to grant the node’s user account with the necessary access rights is to 
add it to the Performance Monitor Users group.
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Appendix I
The .NET Utility Library

I.1 Introduction

Ice for .Net includes a number of utility APIs in the Ice.Util class. This 
appendix summarizes the contents of these APIs for reference.

I.2 Communicator Initialization Methods

Ice.Util provides a number of overloaded initialize methods that create 
a communicator. See Section 30.7 for details on these methods.

I.3 Identity Conversion

Ice.Util contains two methods to convert object identities of type 
Ice.Identity to and from strings. These methods are described in 
Section 32.5.2.
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I.4 Property Creation Methods

Ice.Util provides a number of overloaded createProperties methods 
that create property sets. See Section 30.9.2 for details on these methods.

I.5 Proxy Comparison Methods

Two methods, proxyIdentityCompare and proxyIdentityAnd-
FacetCompare, allow you to compare object identities that are stored in 
proxies (either ignoring the facet or taking the facet into account). See 
Section 14.10.4 for more details.

I.6 Stream Creation

Two methods, createInputStream and createOutputStream create 
streams for use with dynamic invocation. See Section 35.2.3 for more detail.

I.7 UUID Generation

Ice.Util contains a method generateUUID with the following signature:

static string generateUUID();

The function returns a universally-unique identifier, such as

02b066f5-c762-431c-8dd3-9b1941355e41

Each invocation returns a new identifier that differs from all previous ones.1

I.8 Version Information

The stringVersion and intVersion methods return the version of the Ice 
run time:

1. Or, rather, differs from all previous ones for the next few decades.
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public static string stringVersion();
public static int intVersion();

The stringVersion method returns the Ice version in the form 
<major>.<minor>.<patch>, for example, 3.3.0. For beta releases, the 
version is <major>.<minor>b, for example, 3.3b.

The intVersion method contains the Ice version in the form AABBCC, 
where AA is the major version number, BB is the minor version number, and CC is 
patch level, for example, 30300 for version 3.3.0. For beta releases, the patch 
level is set to 51 so, for example, for version 3.3b, the value is 30351.
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Appendix J
Binary Distributions

J.1 Introduction

ZeroC supplies binary distributions for the combinations of platforms and 
compilers that Ice supports. The packaging of each distribution varies with the 
platform:

• a Microsoft Installer (MSI) for Windows

• a collection of RPMs for Red Hat Enterprise Linux and SuSE Linux Enter-
prise Server

• a compressed TAR file (tarball) for other Unix platforms

In general, the binary distributions are intended for the developer, and not for the 
end users of the developer’s application. In other words, ZeroC expects you, as an 
Ice developer, to bundle the necessary Ice run time components into your own 
installation package. This chapter discusses ZeroC’s binary distributions and 
provides guidelines for distributing your applications.

J.2 Developer Kits

The Windows installer and the Unix tarballs are developer kits that provide every-
thing necessary for you to develop applications with Ice, including header files, 
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pre-compiled shared libraries, Slice compilers, and executables for services such 
as IceGrid. The Windows installer also includes the source code for sample 
programs1 as well as debug versions of the Ice run time libraries.

The RPM distributions are different than the monolithic distributions of other 
platforms. Packaged using standard RPM conventions, these distributions include 
separate run time and developer kit RPMs for each language mapping. For 
example, the ice-java RPM contains the Ice for Java run time (Ice.jar), 
while the ice-java-devel RPM contains development tools such as the 
Slice-to-Java compiler. Additional RPMs are provided for third-party dependen-
cies that are not included in the Red Hat distribution, or whose versions are out of 
date, such as Berkeley DB.

Regardless of the platform, we do not recommend using Ice developer kits as a 
way of installing the Ice run time components required by your application 
because the majority of what is installed by a developer kit is irrelevant to end user 
applications. The RPM distribution, however, is packaged in such a way that you 
may find it convenient to simply redistribute select Ice run time RPMs along with 
your application.

J.3 Guidelines

This section provides some guidance for developers that are planning to distribute 
an Ice-based application. We can start by listing items that typically should not be 
included in your binary distribution:

• Slice compilers

• Slice files (unless you are using a scripting language, as discussed below)

• Executables and libraries for Ice services and tools that your application does 
not use

• For C++ programs on Windows:

• DLLs built in debug mode (such as ice34d.dll)

• program database (PDB) files

• header files

• import library (LIB) files

1. Sample programs for Unix platforms are provided as a separate source tarball.
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Each of the language mappings is discussed in its own subsection below. In the 
following discussion, we use the term library to refer to a shared library or DLL as 
appropriate for the platform.

C++

The Ice library contains the implementation of the core Ice run time. Supple-
mental libraries provide the stubs and skeletons for the Ice services, as well as 
utility functions used by Ice, its services, and Ice applications:

• Glacier2

• IceBox

• IceGrid

• IcePatch2

• IceSSL

• IceStorm

The IceUtil library is a dependency of the Ice library and therefore must be 
distributed with any Ice application. The IceXML library is required by certain 
Ice services.

Your distribution needs to include only those libraries that your application 
uses. If your application implements an IceBox service, you must also distribute 
the IceBox server executable (icebox).

Discovering Dependencies

On Windows, you can use the dumpbin utility in a command window to display 
the dependencies of a DLL or executable. For example, here is the output for the 
glacier2router executable:

> dumpbin /dependents glacier2router.exe
ice34.dll
iceutil34.dll
LIBEAY32.dll
glacier234.dll
icessl34.dll
MSVCP90.dll
MSVCR90.dll
KERNEL32.dll

We can deduce from the names of the Microsoft Visual C++ run time DLLs that 
this Ice installation was compiled with Visual Studio 2008. Note that each of these 
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DLLs has its own dependencies, which can be inspected using additional 
dumpbin commands. However, tracking down the dependencies recursively 
through each DLL can quickly become tedious, therefore you should consider 
using the Dependency Walker2 graphical utility instead.

On Unix, the ldd utility displays the dependencies of shared libraries and 
executables.

Qt Libraries

The IceGrid and IceStorm services use a pluggable architecture for their persistent 
storage needs. These services use Freeze as their default persistent store, but it is 
also possible to use SQL databases instead. To implement the SQL persistence 
solution, Ice uses libraries from the Qt framework (see 
http://qt.nokia.com). Ice has no other dependency on the Qt libraries, 
therefore you only need to include the Qt libraries in your own distribution if you 
use IceGrid (see Section 38.16) or IceStorm (see Section 44.12.6) with a SQL 
database. In this case, you would need to bundle the following libraries:

• IceGridSqlDB (for IceGrid)

• IceStormSqlDB (for IceStorm)

• QtCore and QtSql

.NET
The Ice assembly contains the implementation of the core Ice run time. Supple-
mental assemblies provide the stubs and skeletons for the Ice services:

• Glacier2

• IceBox

• IceGrid

• IcePatch2

• IceSSL

• IceStorm

Your distribution needs to include only those assemblies that your application 
uses. If your application implements an IceBox service, you must also distribute 
the IceBox server executable (iceboxnet.exe).

2. See http://www.dependencywalker.com.

http://www.dependencywalker.com
http://qt.nokia.com
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On Mono, the file Ice.dll.config provides a mapping for the Bzip2 
DLL. If your application does not use Ice’s protocol compression feature, you do 
not need to distribute this file. Otherwise, you should include the file and verify 
that its mapping is appropriate for your target platform.

Java

The Ice for Java run time (Ice.jar) contains the following components:

• implementations of Ice, IceSSL, and the IceBox server

• stubs and skeletons for all of the Ice services

If your application uses Freeze, you must also distribute Freeze.jar along 
with the Berkeley DB run time libraries and JAR file.

For assistance with packaging your Java application, consider using a utility 
such as ProGuard.3

Python and Ruby

The Ice run time for a Python or Ruby application consists of the following 
components:

• the library for the scripting language extension: IcePy or IceRuby

• the libraries required by the extension: Ice, IceUtil, and Slice

• the source code generated from the Slice files in the Ice distribution

In addition, your distribution should include the source code generated for your 
own Slice files, or the Slice files themselves if your application loads them 
dynamically.

PHP

The Ice run time for a PHP application consists of the following components:

• the library for the scripting language extension: IcePHP or php_ice

• the libraries required by the extension: Ice, IceUtil, and Slice

• the source code generated from the Slice files in the Ice distribution

3. See http://proguard.sourceforge.net.

http://proguard.sourceforge.net
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In addition, your distribution should include the source code generated for your 
own Slice files.



2035

Appendix K
Deprecated AMI Mapping

K.1 Chapter Overview

NOTE: As of version 3.4, Ice provides a new API for asynchronous method invocation 
(AMI). The mapping described in this appendix is the old AMI mapping, which is 
deprecated and will be removed in a future version of Ice.

This chapter describes the deprecated asynchronous method invocation API. 
Section K.2 gives a brief overview of the capabilities and demonstrates how to 
modify Slice definitions to enable asynchronous support in language mappings. 
Section K.3 provides an introduction to the types and concepts used in the AMI 
mapping. Finally, Section K.4 presents the API for C++, Java, C#, and Python.

K.2 Introduction

Modern middleware technologies attempt to ease the programmer’s transition to 
distributed application development by making remote invocations as easy to use 
as traditional method calls: a method is invoked on an object and, when the 
method completes, the results are returned or an exception is raised. Of course, in 
a distributed system the object’s implementation may reside on another host, and 
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consequently there are some semantic differences that the programmer must be 
aware of, such as the overhead of remote invocations and the possibility of 
network-related errors. Despite those issues, the programmer’s experience with 
object-oriented programming is still relevant, and this synchronous programming 
model, in which the calling thread is blocked until the operation returns, is 
familiar and easily understood.

Ice is inherently an asynchronous middleware platform that simulates 
synchronous behavior for the benefit of applications (and their programmers). 
When an Ice application makes a synchronous twoway invocation on a proxy for a 
remote object, the operation’s in parameters are marshaled into a message that is 
written to a transport, and the calling thread is blocked in order to simulate a 
synchronous method call. Meanwhile, the Ice run time operates in the back-
ground, processing messages until the desired reply is received and the calling 
thread can be unblocked to unmarshal the results.

There are many cases, however, in which the blocking nature of synchronous 
programming is too restrictive. For example, the application may have useful 
work it can do while it awaits the response to a remote invocation; using a 
synchronous invocation in this case forces the application to either postpone the 
work until the response is received, or perform this work in a separate thread. 
When neither of these alternatives are acceptable, the asynchronous facilities 
provided with Ice are an effective solution for improving performance and scal-
ability, or simplifying complex application tasks.

Asynchronous Method Invocation

Asynchronous Method Invocation (AMI) is the term used to describe the client-
side support for the asynchronous programming model. AMI supports both 
oneway and twoway requests, but unlike their synchronous counterparts, AMI 
requests never block the calling thread. When a client issues an AMI request, the 
Ice run time hands the message off to the local transport buffer or, if the buffer is 
currently full, queues the request for later delivery. The application can then 
continue its activities and, in the case of a twoway invocation, is notified when the 
reply eventually arrives. Notification occurs via a callback to an application-
supplied programming-language object1.

1. Polling for a response is not supported by the Ice run time, but it can be implemented easily by 
the application if desired.
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AMI is described in detail in Section K.3.

Controlling Code Generation using Metadata
A programmer indicates a desire to use an asynchronous model (AMI, AMD, or 
both) by annotating Slice definitions with metadata (Section 4.17). The 
programmer can specify this metadata at two levels: for an interface or class, or 
for an individual operation. If specified for an interface or class, then asynchro-
nous support is generated for all of its operations. Alternatively, if asynchronous 
support is needed only for certain operations, then the generated code can be mini-
mized by specifying the metadata only for those operations that require it.

Synchronous invocation methods are always generated in a proxy; specifying 
AMI metadata merely adds asynchronous invocation methods. In contrast, speci-
fying AMD metadata causes the synchronous dispatch methods to be replaced 
with their asynchronous counterparts. This semantic difference between AMI and 
AMD is ultimately practical: it is beneficial to provide a client with synchronous 
and asynchronous versions of an invocation method, but doing the equivalent in a 
server would require the programmer to implement both versions of the dispatch 
method, which has no tangible benefits and several potential pitfalls.

Consider the following Slice definitions:

["ami"] interface I {
  bool isValid();
  float computeRate();
};

interface J {
  ["amd"]        void startProcess();
  ["ami", "amd"] int endProcess();
};

In this example, all proxy methods of interface I are generated with support for 
synchronous and asynchronous invocations. In interface J, the startProcess 
operation uses asynchronous dispatch, and the endProcess operation supports 
asynchronous invocation and dispatch.

Specifying metadata at the operation level, rather than at the interface or class 
level, not only minimizes the amount of generated code, but more importantly, it 
minimizes complexity. Although the asynchronous model is more flexible, it is 
also more complicated to use. It is therefore in your best interest to limit the use of 
the asynchronous model to those operations for which it provides a particular 
advantage, while using the simpler synchronous model for the rest.
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Transparency

The use of an asynchronous model does not affect what is sent “on the wire.” 
Specifically, the invocation model used by a client is transparent to the server, and 
the dispatch model used by a server is transparent to the client. Therefore, a server 
has no way to distinguish a client’s synchronous invocation from an asynchronous 
invocation, and a client has no way to distinguish a server’s synchronous reply 
from an asynchronous reply.

K.3 Using AMI

In this section, we describe the Ice implementation of AMI and how to use it. We 
begin by discussing a way to (partially) simulate AMI using oneway invocations. 
This is not a technique that we recommend, but it is an informative exercise that 
highlights the benefits of AMI and illustrates how it works. Next, we explain the 
AMI mapping and illustrate its use with examples.

Simulating AMI using Oneways

As we discussed at the beginning of the chapter, synchronous invocations are not 
appropriate for certain types of applications. For example, an application with a 
graphical user interface typically must avoid blocking the window system’s event 
dispatch thread because blocking makes the application unresponsive to user 
commands. In this situation, making a synchronous remote invocation is asking 
for trouble.

The application could attempt to avoid this situation using oneway invocations 
(see Section 32.14), which by definition cannot return a value or have any out 
parameters. Since the Ice run time does not expect a reply, the invocation blocks 
only as long as it takes to establish a connection (if necessary), marshal the 
request, and copy the message into the local transport buffer. However, these 
network activities may still block. Furthermore, the use of oneway invocations 
may require unacceptable changes to the interface definitions. For example, a 
twoway invocation that returns results or raises user exceptions must be converted 
into at least two operations: one for the client to invoke with oneway semantics 
that contains only in parameters, and one (or more) for the server to invoke to 
notify the client of the results.

To illustrate these changes, suppose that we have the following Slice defini-
tion:
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interface I {
  int op(string s, out long l);
};

In its current form, the operation op is not suitable for a oneway invocation 
because it has an out parameter and a non-void return type. In order to accommo-
date a oneway invocation of op, we can change the Slice definitions as shown 
below:

interface ICallback {
  void opResults(int result, long l);
};

interface I {
  void op(ICallback* cb, string s);
};

We made several modifications to the original definition:

• We added interface ICallback, containing an operation opResults whose 
arguments represent the results of the original twoway operation. The server 
invokes this operation to notify the client of the completion of the operation.

• We modified I::op to be compliant with oneway semantics: it now has a void 
return type, and takes only in parameters.

• We added a parameter to I::op that allows the client to supply a proxy for its 
callback object.

As you can see, we have made significant changes to our interface definitions to 
accommodate the implementation requirements of the client. One ramification of 
these changes is that the client must now also be a server, because it must create an 
instance of ICallback and register it with an object adapter in order to receive 
notifications of completed operations.

A more severe ramification, however, is the impact these changes have on the 
type system, and therefore on the server. Whether a client invokes an operation 
synchronously or asynchronously should be irrelevant to the server; this is an arti-
fact of behavior that should have no impact on the type system. By changing the 
type system as shown above, we have tightly coupled the server to the client, and 
eliminated the ability for op to be invoked synchronously.

To make matters even worse, consider what would happen if op could raise 
user exceptions. In this case, ICallback would have to be expanded with addi-
tional operations that allow the server to notify the client of the occurrence of each 
exception. Since exceptions cannot be used as parameter or member types in 
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Slice, this quickly becomes a difficult endeavor, and the results are likely to be 
equally difficult to use.

At this point, you will hopefully agree that this technique is flawed in many 
ways, so why do we bother describing it in such detail? The reason is that the Ice 
implementation of AMI uses a strategy similar to the one described above, with 
several important differences:

1. No changes to the type system are required in order to use AMI. The on-the-
wire representation of the data is identical, therefore synchronous and asyn-
chronous clients and servers can coexist in the same system, using the same 
operations.

2. The AMI solution accommodates exceptions in a reasonable way.

3. Using AMI does not require the client to also be a server.

4. Ice guarantees that AMI requests never block the calling thread.

Overview

AMI operations have the same semantics in all of the language mappings that 
support asynchronous invocations. This section provides a language-independent 
introduction to the AMI model.

Proxy Method

Annotating a Slice operation with the AMI metadata tag does not prevent an 
application from invoking that operation using the traditional synchronous model. 
Rather, the presence of the metadata extends the proxy with an asynchronous 
version of the operation, so that invocations can be made using either model.

The asynchronous operation never blocks the calling thread. If the message 
cannot be accepted into the local transport buffer without blocking, the Ice run 
time queues the request and immediately returns control to the calling thread.

The parameters of the asynchronous operation are modified similar to the 
example from page 2038: the first argument is a callback object (described 
below), followed by any in parameters in the order of declaration. The operation’s 
return value and out parameters, if any, are passed to the callback object when the 
response is received.

The asynchronous operation only raises CommunicatorDestroyedException 
directly; all other exceptions are reported to the callback object. See page 2057 for 
more information on error handling.
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Finally, the return value of the asynchronous operation is a boolean that indi-
cates whether the Ice run time was able to send the request synchronously; that is, 
whether the entire message was immediately accepted by the local transport 
buffer. An application can use this value to implement flow control (see 
page 2050).

Callback Object

The asynchronous operation requires the application to supply a callback object as 
the first argument. This object is an instance of an application-defined class; in 
strongly-typed languages this class must inherit from a superclass generated by 
the Slice compiler. In contrast to the example on page 2038, the callback object is 
a purely local object that is invoked by the Ice run time in the client, and not by 
the remote server.

The Ice run time always invokes methods of the callback object from a thread 
in an Ice thread pool, and never from the thread that is invoking the asynchronous 
operation. Exceptions raised by a callback object are ignored but may cause the 
Ice run time to log a warning message (see the description of 
Ice.Warn.AMICallback in Appendix D).

The callback class must define two methods:

• ice_response

The Ice run time invokes ice_response to supply the results of a 
successful twoway invocation; this method is not invoked for oneway invoca-
tions. The arguments to ice_response consist of the return value (if the 
operation returns a non-void type) followed by any out parameters in the 
order of declaration.

• ice_exception

This method is called if an error occurs during the invocation. As explained on 
page 2057, the only exception that can be raised to the thread invoking the 
asynchronous operation is CommunicatorDestroyedException; all other 
errors, including user exceptions, are passed to the callback object via its 
ice_exception method. In the case of a oneway invocation, 
ice_exception is only invoked if an error occurs before the request is 
sent.

For an asynchronous invocation, the Ice run time calls ice_response or 
ice_exception, but not both. It is possible for one of these methods to be 
called before control returns to the thread that is invoking the operation.

A callback object may optionally define a third method:
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• ice_sent

The ice_sent method is invoked when the entire message has been passed 
to the local transport buffer. The Ice run time does not invoke ice_sent if 
the asynchronous operation returned true to indicate that the message was sent 
synchronously. An application must make no assumptions about the order of 
invocations on a callback object; ice_sent can be called before, after, or 
concurrently with ice_response or ice_exception. Refer to 
page 2050 for more information about the purpose of this method.

K.4 Language Mappings

The AMI language mappings are described in separate subsections below.

C++ Mapping

The C++ mapping emits the following code for each AMI operation:

1. An abstract callback class whose name is formed using the pattern 
AMI_class_op. For example, an operation named foo defined in interface 
I results in a class named AMI_I_foo. The class is generated in the same 
scope as the interface or class containing the operation. Two methods must be 
defined by the subclass:

void ice_response(<params>);
void ice_exception(const Ice::Exception &);

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method returns a boolean indicating whether the 
request was sent synchronously. The first parameter is a smart pointer to an 
instance of the callback class described above. The remaining parameters 
comprise the in parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation foo is shown below:
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class AMI_I_foo : public ... {
public:
    virtual void ice_response(Ice::Int, Ice::Long) = 0;
    virtual void ice_exception(const Ice::Exception&) = 0;
};
typedef IceUtil::Handle<AMI_I_foo> AMI_I_fooPtr;

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

bool foo_async(const AMI_I_fooPtr&, Ice::Short);

The overview on page 2040 describes proxy methods and callback objects in 
greater detail.

Java Mapping

The Java mapping emits the following code for each AMI operation:

1. An abstract callback class whose name is formed using the pattern 
AMI_class_op. For example, an operation named foo defined in interface 
I results in a class named AMI_I_foo. The class is generated in the same 
scope as the interface or class containing the operation. Three methods must 
be defined by the subclass:

public void ice_response(<params>);
public void ice_exception(Ice.LocalException ex);
public void ice_exception(Ice.UserException ex);

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method returns a boolean indicating whether the 
request was sent synchronously. The first parameter is a reference to an 
instance of the callback class described above. The remaining parameters 
comprise the in parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation foo is shown below:
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public abstract class AMI_I_foo extends ... {
    public abstract void ice_response(int __ret, long l);
    public abstract void ice_exception(Ice.LocalException ex);
    public abstract void ice_exception(Ice.UserException ex);
}

The proxy methods for asynchronous invocation of operation foo are generated as 
follows:

public boolean foo_async(AMI_I_foo __cb, short s);
public boolean foo_async(AMI_I_foo __cb, short s,
                         java.util.Map<String, String> __ctx);

As usual, the version of the operation without a context parameter forwards an 
empty context to the version with a context parameter.

The overview on page 2040 describes proxy methods and callback objects in 
greater detail.

C# Mapping

The C# mapping emits the following code for each AMI operation:

1. An abstract callback class whose name is formed using the pattern 
AMI_class_op. For example, an operation named foo defined in interface 
I results in a class named AMI_I_foo. The class is generated in the same 
scope as the interface or class containing the operation. Two methods must be 
defined by the subclass:

public abstract void ice_response(<params>);
public abstract void ice_exception(Ice.Exception ex);

2. An additional proxy method, having the mapped name of the operation with 
the suffix _async. This method returns a boolean indicating whether the 
request was sent synchronously. The first parameter is a reference to an 
instance of the callback class described above. The remaining parameters 
comprise the in parameters of the operation, in the order of declaration.

For example, suppose we have defined the following operation:

interface I {
  ["ami"] int foo(short s, out long l);
};

The callback class generated for operation foo is shown below:
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public abstract class AMI_I_foo : ...
{
    public abstract void ice_response(int __ret, long l);
    public abstract void ice_exception(Ice.Exception ex);
}

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

bool foo_async(AMI_I_foo __cb, short s);
bool foo_async(AMI_I_foo __cb, short s,
               Dictionary<string, string> __ctx);

As usual, the version of the operation without a context parameter forwards an 
empty context to the version with a context parameter.

The overview on page 2040 describes proxy methods and callback objects in 
greater detail.

Python Mapping

For each AMI operation, the Python mapping emits an additional proxy method 
having the mapped name of the operation with the suffix _async. This method 
returns a boolean indicating whether the request was sent synchronously. The first 
parameter is a reference to a callback object; the remaining parameters comprise 
the in parameters of the operation, in the order of declaration.

Unlike the mappings for strongly-typed languages, the Python mapping does 
not generate a callback class for asynchronous operations. In fact, the callback 
object’s type is irrelevant; the Ice run time simply requires that it define the 
ice_response and ice_exception methods:

def ice_response(self, <params>)
def ice_exception(self, ex)

For example, suppose we have defined the following operation:

interface I {
  ["ami"] int foo(short s, out long l);
};

The method signatures required for the callback object of operation foo are shown 
below:
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class ...
    #
    # Operation signatures:
    #
    # def ice_response(self, _result, l)
    # def ice_exception(self, ex)

The proxy method for asynchronous invocation of operation foo is generated as 
follows:

def foo_async(self, __cb, s)

The overview on page 2040 describes proxy methods and callback objects in 
greater detail.

Example
To demonstrate the use of AMI in Ice, let us define the Slice interface for a simple 
computational engine:

module Demo {
    sequence<float> Row;
    sequence<Row> Grid;

    exception RangeError {};

    interface Model {
        ["ami"] Grid interpolate(Grid data, float factor)
            throws RangeError;
    };
};

Given a two-dimensional grid of floating point values and a factor, the interpo-
late operation returns a new grid of the same size with the values interpolated in 
some interesting (but unspecified) way. In the sections below, we present C++, 
Java, and C# clients that invoke interpolate using AMI.

C++ Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate
{
public:
    virtual void ice_response(const Demo::Grid& result)
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    {
        cout << "received the grid" << endl;
        // ... postprocessing ...
    }

    virtual void ice_exception(const Ice::Exception& ex)
    {
        try {
            ex.ice_throw();
        } catch (const Demo::RangeError& e) {
            cerr << "interpolate failed: range error" << endl;
        } catch (const Ice::LocalException& e) {
            cerr << "interpolate failed: " << e << endl;
        }
    }
};

The implementation of ice_response reports a successful result, and 
ice_exception displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo::ModelPrx model = ...;
AMI_Model_interpolatePtr cb = new AMI_Model_interpolateI;
Demo::Grid grid;
initializeGrid(grid);
model->interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a Model object, the client instantiates a callback 
object, initializes a grid and invokes the asynchronous version of interpolate. 
When the Ice run time receives the response to this request, it invokes the callback 
object supplied by the client.

Java Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

class AMI_Model_interpolateI extends Demo.AMI_Model_interpolate {
    public void ice_response(float[][] result)
    {
        System.out.println("received the grid");
        // ... postprocessing ...
    }

    public void ice_exception(Ice.UserException ex)
    {
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        assert(ex instanceof Demo.RangeError);
        System.err.println("interpolate failed: range error");
    }

    public void ice_exception(Ice.LocalException ex)
    {
        System.err.println("interpolate failed: " + ex);
    }
}

The implementation of ice_response reports a successful result, and the 
ice_exception methods display a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo.ModelPrx model = ...;
AMI_Model_interpolate cb = new AMI_Model_interpolateI();
float[][] grid = ...;
initializeGrid(grid);
model.interpolate_async(cb, grid, 0.5);

After obtaining a proxy for a Model object, the client instantiates a callback 
object, initializes a grid and invokes the asynchronous version of interpolate. 
When the Ice run time receives the response to this request, it invokes the callback 
object supplied by the client.

C# Client

We must first define our callback implementation class, which derives from the 
generated class AMI_Model_interpolate:

using System;

class AMI_Model_interpolateI : Demo.AMI_Model_interpolate {
    public override void ice_response(float[][] result)
    {
        Console.WriteLine("received the grid");
        // ... postprocessing ...
    }

    public override void ice_exception(Ice.Exception ex)
    {
        Console.Error.WriteLine("interpolate failed: " + ex);
    }
}
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The implementation of ice_response reports a successful result, and the 
ice_exception method displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

Demo.ModelPrx model = ...;
AMI_Model_interpolate cb = new AMI_Model_interpolateI();
float[][] grid = ...;
initializeGrid(grid);
model.interpolate_async(cb, grid, 0.5);

Python Client

We must first define our callback implementation class:

class AMI_Model_interpolateI(object):
    def ice_response(self, result):
        print "received the grid"
        # ... postprocessing ...

  def ice_exception(self, ex):
      try:
          raise ex
      except Demo.RangeError, e:
          print "interpolate failed: range error"
      except Ice.LocalException, e:
          print "interpolate failed: " + str(e)

The implementation of ice_response reports a successful result, and the 
ice_exception method displays a diagnostic if an exception occurs.

The code to invoke interpolate is equally straightforward:

model = ...
cb = AMI_Model_interpolateI()
grid = ...
initializeGrid(grid)
model.interpolate_async(cb, grid, 0.5)

Concurrency Issues

Support for asynchronous invocations in Ice is enabled by the client thread pool 
(see Section 32.10), whose threads are primarily responsible for processing reply 
messages. It is important to understand the concurrency issues associated with 
asynchronous invocations:
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• A callback object must not be used for multiple simultaneous invocations. An 
application that needs to aggregate information from multiple replies can 
create a separate object to which the callback objects delegate.

• Calls to the callback object are always made by threads from an Ice thread 
pool, therefore synchronization may be necessary if the application might 
interact with the callback object at the same time as the reply arrives. Further-
more, since the Ice run time never invokes callback methods from the client’s 
calling thread, the client can safely make AMI invocations while holding a 
lock without risk of a deadlock.

• The number of threads in the client thread pool determines the maximum 
number of simultaneous callbacks possible for asynchronous invocations. The 
default size of the client thread pool is one, meaning invocations on callback 
objects are serialized. If the size of the thread pool is increased, the application 
may require synchronization, and replies can be dispatched out of order. The 
client thread pool can also be configured to serialize messages received over a 
connection so that AMI replies from a connection are dispatched in the order 
they are received (see Section 32.10.4).

• AMI invocations do not use collocation optimization (see page 2057). As a 
result, AMI invocations are always sent “over the wire” and thus are 
dispatched by the server thread pool.

Flow Control

The Ice run time queues asynchronous requests when necessary to avoid blocking 
the calling thread, but places no upper limit on the number of queued requests or 
the amount of memory they can consume. To prevent unbounded memory utiliza-
tion, Ice provides the infrastructure necessary for an application to implement its 
own flow-control logic.

The components were introduced on page 2040:

• The return value of the asynchronous proxy method

• The ice_sent method in the AMI callback object

The return value of the proxy method determines whether the request was queued. 
If the proxy method returns true, no flow control is necessary because the request 
was accepted by the local transport buffer and therefore the Ice run time did not 
need to queue it. In this situation, the Ice run time does not invoke the ice_sent 
method on the callback object; the return value of the proxy method is sufficient 
notification that the request was sent.
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If the proxy method returns false, the Ice run time has queued the request. 
Now the application must decide how to proceed with subsequent invocations:

• The application can be structured so that at most one request is queued. For 
example, the next invocation can be initiated when the ice_sent method is 
called for the previous invocation.

• A more sophisticated solution is to establish a maximum allowable number of 
queued requests and maintain a counter (with appropriate synchronization) to 
regulate the flow of invocations.

Naturally, the requirements of the application must dictate an implementation 
strategy.

Implementing ice_sent in C++

To indicate its interest in receiving ice_sent invocations, an AMI callback 
object must also derive from the C++ class Ice::AMISentCallback:

namespace Ice {
    class AMISentCallback {
    public:
        virtual ~AMISentCallback();
        virtual void ice_sent() = 0;
    };
}

We can modify the example on page 2046 to include an ice_sent callback as 
shown below:

class AMI_Model_interpolateI :
    public Demo::AMI_Model_interpolate,
    public Ice::AMISentCallback
{
public:
    // ...

    virtual void ice_sent()
    {
        cout << "request sent successfully" << endl;
    }
};

Implementing ice_sent in Java

To indicate its interest in receiving ice_sent invocations, an AMI callback 
object must also implement the Java interface Ice.AMISentCallback:
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package Ice;

public interface AMISentCallback {
    void ice_sent();
}

We can modify the example on page 2047 to include an ice_sent callback as 
shown below:

class AMI_Model_interpolateI
    extends Demo.AMI_Model_interpolate
    implements Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        System.out.println("request sent successfully");
    }
}

Implementing ice_sent in C#

To indicate its interest in receiving ice_sent invocations, an AMI callback 
object must also implement the C# interface Ice.AMISentCallback:

namespace Ice {
    public interface AMISentCallback
    {
        void ice_sent();
    }
}

We can modify the example on page 2048 to include an ice_sent callback as 
shown below:

class AMI_Model_interpolateI :
    Demo.AMI_Model_interpolate,
    Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        Console.Out.WriteLine("request sent successfully");
    }
}
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class AMI_Model_interpolateI :
    Demo.AMI_Model_interpolate,
    Ice.AMISentCallback {
    // ...

    public void ice_sent()
    {
        Console.Out.WriteLine("request sent successfully");
    }
}

Implementing ice_sent in Python

To indicate its interest in receiving ice_sent invocations, an AMI callback 
object need only define the ice_sent method.

We can modify the example on page 2049 to include an ice_sent callback 
as shown below:

class AMI_Model_interpolateI(object):
    # ...

  def ice_sent(self):
      print "request sent successfully"

Flushing Batch Requests

Applications that send batched requests (see Section 32.16) can either flush a 
batch explicitly or allow the Ice run time to flush automatically. The proxy method 
ice_flushBatchRequests performs an immediate flush using the synchro-
nous invocation model and may block the calling thread until the entire message 
can be sent. Ice also provides an asynchronous version of this method for applica-
tions that wish to flush batch requests without the risk of blocking.

The proxy method ice_flushBatchRequests_async initiates an 
asynchronous flush. Its only argument is a callback object; this object must define 
an ice_exception method for receiving a notification if an error occurs 
before the message is sent.

If the application is interested in flow control (see page 2050), the return value 
of ice_flushBatchRequests_async is a boolean indicating whether the 
message was sent synchronously. Furthermore, the callback object can define an 
ice_sent method that is invoked when an asynchronous flush completes.
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C++ Mapping

The base proxy class ObjectPrx defines the asynchronous flush operation as 
shown below:

namespace Ice {
    class ObjectPrx : ... {
    public:
        // ...
        bool ice_flushBatchRequests_async(
            const Ice::AMI_Object_ice_flushBatchRequestsPtr& cb)
    };
}

The argument is a smart pointer for an object that implements the following class:

namespace Ice {
    class AMI_Object_ice_flushBatchRequests : ... {
    public:
        virtual void ice_exception(const Ice::Exception& ex) = 0;
    };
}

As an example, the class below demonstrates how to define a callback class that 
also receives a notification when the asynchronous flush completes:

class MyFlushCallbackI :
    public Ice::AMI_Object_ice_flushBatchRequests,
    public Ice::AMISentCallback
{
public:
    virtual void ice_exception(const Ice::Exception& ex);
    virtual void ice_sent();
};

Java Mapping

The base proxy class ObjectPrx defines the asynchronous flush operation as 
shown below:

package Ice;

public class ObjectPrx ... {
    // ...
    boolean ice_flushBatchRequests_async(
        AMI_Object_ice_flushBatchRequests cb);
}

The argument is a reference for an object that implements the following class:
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package Ice;

public abstract class AMI_Object_ice_flushBatchRequests ...
{
    public abstract void ice_exception(LocalException ex);
}

As an example, the class below demonstrates how to define a callback class that 
also receives a notification when the asynchronous flush completes:

class MyFlushCallbackI
    extends Ice.AMI_Object_ice_flushBatchRequests
    implements Ice.AMISentCallback
{
    public void ice_exception(Ice.LocalException ex) { ... }
    public void ice_sent() { ... }
}

C# Mapping

The base proxy class ObjectPrx defines the asynchronous flush operation as 
shown below:

namespace Ice {
    public class ObjectPrx : ... {
        // ...
        bool ice_flushBatchRequests_async(
            AMI_Object_ice_flushBatchRequests cb);
    }
}

The argument is a reference for an object that implements the following class:

namespace Ice {
    public abstract class AMI_Object_ice_flushBatchRequests ... {
        public abstract void ice_exception(Ice.Exception ex);
    }
}

As an example, the class below demonstrates how to define a callback class that 
also receives a notification when the asynchronous flush completes:

class MyFlushCallbackI : Ice.AMI_Object_ice_flushBatchRequests,
                         Ice.AMISentCallback
{
    public override void
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    ice_exception(Ice.LocalException ex) { ... }

    public void ice_sent() { ... }
}

Python Mapping

The base proxy class defines the asynchronous flush operation as shown below:

def ice_flushBatchRequests_async(self, cb)

The cb argument represents a callback object that must implement an 
ice_exception method. As an example, the class below demonstrates how to 
define a callback class that also receives a notification when the asynchronous 
flush completes:

class MyFlushCallbackI(object):
    def ice_exception(self, ex):
        # handle an exception

    def ice_sent(self):
        # flush has completed

Timeouts

Timeouts for asynchronous invocations behave like those for synchronous invoca-
tions: an Ice::TimeoutException is raised if the response is not received within 
the given time period. In the case of an asynchronous invocation, however, the 
exception is reported to the ice_exception method of the invocation’s call-
back object. For example, we can handle this exception in C++ as shown below:

class AMI_Model_interpolateI : public Demo::AMI_Model_interpolate
{
public:
    // ...

    virtual void ice_exception(const Ice::Exception& ex)
    {
        try {
            ex.ice_throw();
        } catch (const Demo::RangeError& e) {
            cerr << "interpolate failed: range error" << endl;
        } catch (const Ice::TimeoutException&) {
            cerr << "interpolate failed: timeout" << endl;
        } catch (const Ice::LocalException& e) {
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            cerr << "interpolate failed: " << e << endl;
        }
    }
};

Error Handling

It is important to remember that all errors encountered by an AMI invocation 
(except CommunicatorDestroyedException) are reported back via the 
ice_exception callback, even if the error condition is encountered “on the 
way out”, when the operation is invoked. The reason for this is consistency: if an 
invocation, such as foo_async could throw exceptions, you would have to handle 
exceptions in two places in your code: at the point of call for exceptions that are 
encountered “on the way out”, and in ice_exception for error conditions that 
are detected after the call is initiated.

Where this matters is if you want to send off a number of AMI calls, each of 
which depends on the preceding call to have succeeded. For example:

p1->foo_async(cb1);
p2->bar_async(cb2);

If bar depends for its correct working on the successful completion of foo, this 
code will not work because the bar invocation will be sent regardless of whether 
foo failed or not.

In such cases, where you need to be sure that one call is dispatched only if a 
preceding call succeeds, you must instead invoke bar from within foo’s 
ice_response implementation, instead of from the main-line code.

Limitations

AMI invocations cannot be sent using collocated optimization. If you attempt to 
invoke an AMI operation using a proxy that is configured to use collocation opti-
mization, the Ice run time will raise CollocationOptimizationException if the 
servant happens to be collocated; the request is sent normally if the servant is not 
collocated. Section 32.21 provides more information about this optimization and 
describes how to disable it when necessary.
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K.5 Summary

Synchronous remote invocations are a natural extension of local method calls that 
leverage the programmer’s experience with object-oriented programming and ease 
the learning curve for programmers who are new to distributed application devel-
opment. However, the blocking nature of synchronous invocations makes some 
application tasks more difficult, or even impossible, therefore Ice provides a 
straightforward interface to its asynchronous facilities.

Using asynchronous method invocation, a calling thread is able to invoke an 
operation and regain control immediately, without blocking while the operation is 
in progress. When the results are received, the Ice run time notifies the application 
via a callback.
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