
1

LinkingLinking

● Last stage in building a program

● Combining separate code into one executable
● Linking done by the Linker

● ld in Unix
● a.k.a. “link-editor” or “loader”

● Often transparent (gcc can do it all for you)

PRE-
PROCESSING COMPILATION ASSEMBLY LINKING

2

Linking involves...Linking involves...

● Combining several object modules (the .o files
corresponding to .c files) into one file

● Resolving external references to variables and functions
● Producing an executable file (if no errors)

file1.c

file2.c

fileN.c

gcc

 Header files

file1.o

file2.o

fileN.o

Linker

External references

Executable

3

Linking with External ReferencesLinking with External References

● file1.o has placeholder for display()
● file2.o has placeholder for count
● object modules are relocatable

● addresses are relative offsets from top of file

int count;
void display(void);
int main(void)
{
 count = 10;
 display();
 return 0;
}

#include <stdio.h>
extern int count;
void display(void)
{
 printf(“%d”,count);
}

file1.c file2.c

Linker

Compiler

file1.o file2.o
with placeholders

4

LibrariesLibraries

● Definition:
● a file containing functions that can be referenced externally by

a C program
● Purpose:

● easy access to functions used repeatedly
● promote code modularity and re-use
● reduce source and executable file size

5

LibrariesLibraries

● Static (Archive)
● libname.a on Unix; name.lib on DOS/Windows
● Only modules with referenced code linked when compiling

● unlike .o files
● Linker copies function from library into executable file
● Update to library requires recompiling program

6

LibrariesLibraries

● Dynamic (Shared Object or Dynamic Link Library)
● libname.so on Unix; name.dll on DOS/Windows
● Referenced code not copied into executable

● Loaded in memory at run time
● Smaller executable size
● Can update library without recompiling program
● Drawback: slightly slower program startup

7

LibrariesLibraries

● Linking a static library

/* crave source file */
…
#include ”pepsi.h”
…
int main(void) {
 …
 FindPepsi();
 …
 DrinkPepsi();
 …
}
...

gcc ...
int FindPepsi()
{
 …
}
...
int CravePepsi()
{
 …
}
int DrinkPepsi()
{
 …
}
...

libpepsi.a

Linker
crave.o

 crave

...
...

/* Pepsi header file */
…
 int FindPepsi();
 int CravePepsi();
 int DrinkPepsi();
 …

pepsi.h

crave.c

8

Standard librariesStandard libraries

● ANSI C standard: set of functions which must be supported
by ANSI-standard compilers

● Standard ANSI headers contain library function prototypes:
stdio.h, stdlib.h, string.h, time.h, signal.h, math.h, …

● Standard libraries used by default when compiling

● Compilers can provide additional non-ANSI functions
(e.g. graphics)

● Unix: Standard libs often found in /lib and /usr/lib (Solaris)

9

Creating your own libraryCreating your own library

● Why:
● If you have functions that are used a lot

by different programs
● If you want to share your functions with others

10

Creating your own libraryCreating your own library

● How
● collect functions into one or more .c files
● must not have main() function
● put function prototypes in header file
● if you must use globals, make them static
● create the library using ar command (Unix)

● ar
● tool to create, modify, extract from an archive
● archive = indexed collection of object files
● keeps an index of symbols (functions, variables) defined in

object files for easy retrieval

11

Using Using arar
Source

filesmylib1.c mylib2.c mylib.h

Compile and assemble but don’t link

gcc -c mylib1.c mylib2.c

mylib1.o mylib2.o
Object

modules

Make library archive

ar rs libmylib.a mylib1.o mylib2.o

libmylib.a
Insert all files in

archive
Write/update
symbol index Library

12

Using Using arar
● ar operation[modifier] archive [list of
files]
(e.g. ar rs libmylib.a mylib1.o mylib2.o)

● Common operations
● d : delete modules
● p [list]: print specified modules to stdout
● r : insert with replacement
● t : print table of modules
● x : extract modules

● Additional modifiers used with above
● e.g. rs : insert + update index
● tv : include timestamp, owner, etc.
● rsu : insert only updated modules and update index

libmylib.a
Symbol index

…

mylib1.o

mylib2.o

13

gccgcc’s library options’s library options

● -lname
● use library archive libname.a

● e.g.: gcc -o plot main.o plot_line.o -lm
● order of .o’s and -l’s important!
● e.g.: gcc file1.c -lmylib file2.c

may cause linker error: Undefined symbol [file2.o]
(Outstanding references resolved only when library searched)

● e.g.: gcc file1.c file2.c -lstop -lwalk
may cause similar error if libwalk.a references functions
in libstop.a

“use libm.a”

14

gccgcc’s library options’s library options

● -Ldir
● add dir to list of search directories
● e.g.: gcc -o crave -L/home/libs crave.c -lpepsi
● Linker searches /home/libs first,

then standard directories (/usr/lib, /lib on Linux)
● Can override standard libraries with local versions

● -nostdlib : don’t use standard libraries
● -static : link only static libraries
● -shared : use shared libraries when possible
● -usymbol : pretend symbol undefined to force loading of

module

15

Static vs. Dynamic LinkingStatic vs. Dynamic Linking
pepsi.c

pepsi.o

Static
Library

gcc

ar

a.out

Linker

Memory

crave.c

gcc

crave.o

Loader

pepsi.c

pepsi.o

Dynamic
Library

gcc

gcc

a.out

Linker

Memory

crave.c

gcc

crave.o

Loader

16

Creating Dynamic LibraryCreating Dynamic Library

● Creating the library
● gcc -fPIC -Wall -pedantic -c findpepsi.c
● gcc -fPIC -Wall -pedantic -c drinkpepsi.c
● gcc -fPIC -Wall -pedantic -c cravepepsi.c
● gcc -shared -Wl,-soname,libpepsi.so -o libpepsi.so findpepsi.o
drinkpepsi.o cravepepsi.o

● Using the library
● Linker searches for shared libraries in the predefined system

directories
● To search for a shared library in a different directory, set
LD_LIBRARY_PATH environment variable to point to this directory
● e.g. export LD_LIBRARY_PATH=.

17

Summary (linking + libraries)Summary (linking + libraries)

● Linking
● combines code from multiple files into a single executable
● resolves external references

● Libraries
● provide “services” to programs when needed

● Together, linking and libraries promote modularity and reuse
of code

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

