
1

Functions with Variable Number of ParametersFunctions with Variable Number of Parameters

● Must include <stdarg.h>
● When declaring the function there must be

● at least one fixed parameter
● and an ellipsis (...)

● One of the fixed parameters must tell the function how many
parameters are passed in (...)

● The function must know the type of each argument in the
variable list
● The example will have a single type so there should not be a

problem
● Otherwise you’ll have to use something like printf’s

approach

2

Retrieving ArgumentsRetrieving Arguments

● stdarg.h has four macros:
● va_list :

● a pointer data type
● va_start() :

● a macro used to initialize the argument list
● va_arg() :

● a macro used to retrieve each argument in list
● va_end() :

● a macro used to clean up when all retrieved

3

Retrieving Arguments (Steps)Retrieving Arguments (Steps)

● Each of the following steps are required in the function
● Declare a pointer of type va_list.

● used to access individual arguments (arg_ptr)
● Call va_start()

● pass it the arg_ptr and the name of the last fixed argument
● no value is returned
● it initializes arg_ptr to the first variable argument

● Call va_arg() passing arg_ptr and type of next argument
● returns “value” of next argument
● if n arguments are present this can be called n times
● all are retrieved in order

● Call va_end()
● pass the arg_ptr

4

An ExampleAn Example
#include <stdio.h>
#include <stdarg.h>
float average (int num, ...);
int main ()
{
 float x;
 x = average (10, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
 printf ("The first average is %f.\n", x);
 x = average (5, 121, 206, 76, 31, 5);
 printf ("The second average is %f.\n", x);
 return 0;
}
float average (int num, ...)
{
 va_list arg_ptr;
 int count, total = 0;
 va_start (arg_ptr, num);
 for (count = 0; count < num; count++)
 total += va_arg (arg_ptr, int);
 va_end (arg_ptr);
 return ((float) total / num);
}

5

string.hstring.h

● #include <string.h>
● Functions of two families:

● Memory functions - mem…()
● Manipulating blocks of memory of specified size.
● Can be thought of as array of bytes

● String functions – str…()
● Manipulating null terminated strings.

6

string.hstring.h - Memory Handling Functions - Memory Handling Functions

● void *memset(void *p, int c, size_t n)
● Fills the first n bytes of the memory area pointed to by p with

the constant byte c.
● void *memcpy(void *to, const void *from,
 size_t n)
● Copies n bytes from memory area from to memory area to.

The memory areas may not overlap.
● void *memmove(void *to, const void *from,
 size_t n)
● Same as above, can handle also overlapping blocks.

7

#include <stdio.h>
#include <string.h>
int
main ()
{
 char x[] = "Home Sweet Home";
 printf ("%s%s\n", "The string in array x before memmove is: ", x);
 printf ("%s%s\n",
 "The string in array x after memmove is: ",
 (char*)memmove(x, &x[5], 10));
 return 0;
}

memmovememmove example example

The string in array x before memmove is: Home Sweet Home
The string in array x after memmove is: Sweet Home Home

8

string.hstring.h - Memory Handling Functions - Memory Handling Functions

● int memcmp(const void *p, const void *q,
 size_t n)
● Lexicographic comparison of byte sequences
● Return value is less than, equal to, or greater than zero

according to comparison
● void *memchr(const void *p, int c, size_t n)

● Scans the first n bytes of the memory area pointed to by s for
the character c. The first byte to match c (interpreted as an
unsigned character) stops the operation. Returns a pointer to
the matching byte or NULL if the character does not occur in
the given memory area.

9

#include <string.h>
#include <stdio.h>
int
main ()
{
 char s[] = "This is a string";
 printf ("%s%s\n", "The remainder of s after character 'r' is found is: ",
 (char *) memchr (s, 'r', 16));
 return 0;
}

memchrmemchr example example

The remainder of s after character 'r' is found is: ring

10

string.hstring.h - String Handling Functions - String Handling Functions

● size_t strlen(const char *s)
● Return the length of the string s, not counting the terminating

null character
● char *strcpy(char *s1, const char *s2)

● Copies the string pointed to by s2 (including the terminating `\
0' character) to the array pointed to by s1. The strings may not
overlap, and the destination string s1 must be large enough to
receive the copy.

● char *strncpy(char *s1, const char *s2,
 size_t n)
● Similar, except that not more than n bytes of s2 are copied.

Thus, if there is no null byte among the first n bytes of s2, the
result will not be null-terminated.

11

string.hstring.h - String Handling Functions - String Handling Functions
● char *strcat(char *s1, const char *s2)
● char *strncat(char *s1, const char *s2,
 size_t n)
● strcat() appends the s2 string to the s1 string overwriting the ‘\0’

character at the end of s1, and then adds a terminating ‘\0’ character.
The strings may not overlap, and the dest string must have enough
space for the result.

● strncat() is similar, except that only the first n characters of s2
are appended to s1.

● int strcmp(const char *s1, const char *s2)
● int strncmp(const char *s1, const char *s2,
 size_t n)
● Lexicographic comparison
● Return value is less than, equal to, or greater than zero according

comparison
● strncmp() compares at most n characters

12

#include <stdio.h>
#include <string.h>
int
main ()
{
 char s1[16] = "Happy ";
 char s2[] = "New Year ";
 char s3[22] = "";
 printf ("s1 = %s\ns2 = %s\n", s1, s2);
 printf ("strcat(s1, s2) = %s\n", strcat (s1, s2));
 printf ("strncat(s3, s1, 6) = %s\n", strncat (s3, s1, 6));
 printf ("strcat(s3, s1) = %s\n", strcat (s3, s1));
 return 0;
}

strcat/strncatstrcat/strncat example example

s1 = Happy
s2 = New Year
strcat(s1, s2) = Happy New Year
strncat(s3, s1, 6) = Happy
strcat(s3, s1) = Happy Happy New Year

13

strtokstrtok
● char *strtok(char *s1, const char *s2)

● Initialization call (with s1) and than consecutive calls with NULL
● Returns the next token in each call
● Destroys the original string

#include <stdio.h>
#include <string.h>
int
main ()
{
 char string[] =
 "This is a sentence with 7 tokens";
 char *tokenPtr;
 printf ("%s\n%s\n\n%s\n",
 "The string to be tokenized is:"
 , string, "The tokens are:");
 tokenPtr = strtok (string, " ");
 while (tokenPtr != NULL)
 {
 printf ("%s\n", tokenPtr);
 tokenPtr = strtok (NULL, " ");
 }
 return 0;
}

The string to be tokenized is:
This is a sentence with 7 tokens
The tokens are:
This
is
a
sentence
with
7
tokens

14

string.hstring.h - String Search Functions - String Search Functions
● char *strchr(const char *s, int c)
● char *strrchr(const char *s, int c)

● strchr() returns a pointer to the first occurrence of the
character c in the string s.

● strrchr() returns a pointer to the last occurrence of the
character c in the string s.

● Both return NULL if the character is not found.
● size_t strspn(const char *s,
 const char *accept)

● size_t strcspn(const char *s,
 const char *reject)
● strspn() returns the number of characters in the initial

segment of s which consist only of characters from accept.
● strcspn() returns the number of characters in the initial

segment of s which are not in the string reject.

15

strspnstrspn Example Example
#include <stdio.h>
#include <string.h>
int
main ()
{
 const char *string1 = "The value is 3.14159";
 const char *string2 = "aehi lsTuv";
 printf ("%s%s\n%s%s\n\n%s\n%s%u\n",
 "string1 = ", string1, "string2 = ", string2,
 "The length of the initial segment of string1",
 "containing only characters from string2 = ",
 strspn (string1, string2));
 return 0;
}

string1 = The value is 3.14159
string2 = aehi lsTuv
The length of the initial segment of string1
containing only characters from string2 = 13

16

string.hstring.h - String Search Functions - String Search Functions

● char *strpbrk(const char *s,
 const char *accept)
● Returns a pointer to the character in s that matches one of the

characters in accept, or NULL if no such character is found.
● char *strstr(const char *haystack,
 const char *needle)
● Finds the first occurrence of the substring needle in the string
haystack. Returns a pointer to the beginning of the substring,
or NULL if the substring is not found.

17

String Conversion FunctionsString Conversion Functions

● Convert to numeric values, searching, comparison
● <stdlib.h>
● Most functions take const char *
● Do not modify string

18

String Conversion FunctionsString Conversion Functions

● double atof(const char *nPtr)
● Converts string to floating point number (double)
● Returns 0 if cannot be converted

● int atoi(const char *nPtr)
● Converts string to integer
● Returns 0 if cannot be converted

● long atol(const char *nPtr)
● Converts string to long integer
● If int and long have the same size, then atoi and atol

identical

19

The Standard C Library Error HandlingThe Standard C Library Error Handling
● Most library functions return a special value to indicate that

they have failed. The special value is typically -1, a null
pointer, or a constant such as EOF that is defined for that
purpose.

● To find out what kind of error it was, you need to look at the
error code stored in the variable errno. This variable is
declared in the header file <errno.h>
● The initial value of errno at program startup is zero.
● Many library functions are guaranteed to set it to certain

nonzero values when they encounter certain kinds of errors.
These error conditions are listed for each function.

● These functions do not change errno when they succeed;
thus, the value of errno after a successful call is not
necessarily zero,

● You should not use errno to determine whether a call failed.

20

perrorperror
● You can use the perror function to inform user about error

conditions
● void perror(const char *s)

● It produces a message on the standard error output,
describing the error contained in the errno variable. The
argument string s is printed first, then a colon and a blank,
then the message and a new-line.

#include <stdio.h>
int
main ()
{
 FILE *pFile;
 pFile = fopen ("unexist.ent", "rb");
 if (pFile == NULL)
 perror ("This error has occurred");
 else
 fclose (pFile);
 return 0;
}
This error has occurred: No such file or directory

21

String Conversion FunctionsString Conversion Functions

● double strtod(const char *nPtr, char **endPtr)
● Converts first argument to double, returns that value
● Sets second argument to location of first character after

converted portion of string
● If no conversion is performed, zero is returned and the value

of nPtr is stored in the location referenced by endPtr
● If the correct value would cause overflow or underflow, errno is

set to ERANGE

● strtod("123.4this is a test", &stringPtr);
● Returns 123.4
● stringPtr points to "this is a test"

22

strtodstrtod
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
int main (int argc, char *argv[])
{
 char *stringPtr;
 double v;
 int i;
 for (i = 1; i < argc; i++)
 {
 v = strtod (argv[i], &stringPtr);
 if (errno == ERANGE)
 printf ("Argument %d is an invalid number\n", i);
 else if (argv[i] == stringPtr)
 printf ("Argument %d is not a number\n", i);
 else
 printf ("Argument %d is a number %f\n", i, v);
 }
 return 0;
}
./strtod She is 17 now 1e123131231
Argument 1 is not a number
Argument 2 is not a number
Argument 3 is a number 17.000000
Argument 4 is not a number
Argument 5 is an invalid number

23

String Conversion FunctionsString Conversion Functions

● long strtol(const char *nPtr, char **endPtr,
 int base)
● Converts first argument to long, returns that value
● Sets second argument to location of first character after

converted portion of string
● Third argument is base of value being converted

● Any number 2 - 36
● 0 specifies octal, decimal, or hexadecimal

● On overflow or underflow, errno is set to ERANGE
● unsigned long int strtoul(const char *nptr,
 char **endptr, int base)
● As above, with unsigned long

24

File Handling in CFile Handling in C

● Storage of data in variables, arrays or dynamic data
structures is temporary
● when the program terminates all data is lost

● Files are used for the retention of large amounts of data
● ASCII or text data:

● Character ‘1’ ‘2’ ‘3’
● ASCII Decimal value 49 50 51
● ASCII Binary value 00110011 00110010 00110011

● Binary Data: The decimal number 123 could be stored as
the binary number 01111011, less storage than ASCII.

25

Binary filesBinary files

● Binary files are very similar to arrays of structures, except
the structures are in a disk file rather than in an array in
memory.

● Because the structures in a binary file are on disk, you can
create very large collections of them (limited only by your
available disk space).

● They are also permanent and always available.
● The only disadvantage is the slowness that comes from disk

access time.

26

Binary filesBinary files

● Binary files have two features that distinguish them from text
files:
● You can jump instantly to any structure in the file, which

provides random access as in an array; and you can change
the contents of a structure anywhere in the file at any time.

● Binary files usually have faster read and write times than text
files, because a binary image of the record is stored directly
from memory to disk (or vice versa).

● In a text file, everything has to be converted back and forth to
text, and this takes time.

27

StreamsStreams

● All input and output in C is performed with streams
● Text stream is a sequence of characters organized into lines

● each line consists of 0 or more characters and ends with the
newline character ‘\n’

● Streams provide communications channels between files and
programs

● A stream can be connected to a file by opening it and the
connection is broken by closing the stream.

28

StreamsStreams

● When program execution begins, three files and their
associated streams are connected to the program
automatically
● the standard input stream
● the standard output stream
● the standard error stream

29

StreamsStreams

● Standard input is connected to the keyboard
● it enables a program to read data from the keyboard

● Standard output is connected to the screen
● it enables a program to write data to the screen

● Standard error is connected to the screen
● all error messages are output to standard error

● Operating systems often allow these streams to be
redirected to other devices

30

StreamsStreams

● Files are accessed via a pointer to a FILE structure

● The FILE structure
● Contains information used to process a file
● Is declared in <stdio.h>
● You don't need to worry about the details of the structure.

● In fact it may vary from system to system.

● Standard input, standard output and standard error are
manipulated with file pointers stdin, stdout and stderr

31

Opening FilesOpening Files

● A file must be opened before its contents can be accessed
● To open a file

● FILE *fopen (const char *name, const char *mode)

● fopen accepts two arguments
● name: a string containing the name of the file
● mode: a string containing the file open mode or the type of access

that the file is opened for

● fopen returns a file pointer which is needed for all future
access to the file

32

File I/OFile I/O

FILE* fopen(const char* name,const char* mode);
● Mode can be (from man page)

● r Open file for reading
● w Truncate to zero length or create file for writing
● a Append; open or create file for writing at

end-of-file
● r+ Open file for update (reading and writing)
● w+ Truncate to zero length or create file for update
● a+ Append; open or create file for update, writing

at end-of-file
● b Can be added to the modes above to indicate binary files

33

mode
"r" y n n n beginning

"r+" y y n n beginning
"w" n y y y beginning

"w+" y y y y beginning
"a" n y n y end-of-file

"a+" y y n y end-of-file

open
stream
for read

open
stream

for write
truncate

file
create

file
starting
position

fopenfopen modes modes

To read the first line, "r" will open a stream for read, the stream
will not be opened for write, will not truncate the file to zero
length, will not create the file if it doesn't already exist and will
be positioned at the beginning of the stream.

34

Closing FilesClosing Files

● A file must be closed after use

● To close a file use the function
● int fclose(FILE *fptr)

● fclose takes one argument
● the file pointer to the file to be closed

● fclose returns zero if no errors occur and returns EOF
otherwise

35

Unformatted Text FilesUnformatted Text Files

● <stdio.h> provides many functions for reading and writing
to unformatted text files

● int fgetc(FILE *stream)
● to read the next character from the stream
● returns the character (as an integer) or EOF if end of file or an

error occurs

● int fputc(int c, FILE *stream)
● writes the character c to the stream
● returns the character or EOF for error

36

Copy File ExampleCopy File Example
#include <stdio.h>
int
main (int argc, char *argv[])
{
 FILE *ifp, *ofp;
 int c;
 if (argc != 3) /*check for valid input */
 printf ("Incorrect number of parameters");
 else if ((ifp = fopen (*++argv, "r")) == NULL)
 printf ("Cannot open %s for reading \n", *argv);
 else if ((ofp = fopen (*++argv, "w")) == NULL)
 printf ("Cannot open %s for writing \n", *argv);
 else
 while ((c = fgetc (ifp)) != EOF)
 fputc (c, ofp);
 fclose (ifp);
 fclose (ofp);
 return 0;
}

37

Push Back CharacterPush Back Character
● int ungetc(int c, FILE *stream)

● pushes c back to stream, cast to unsigned char
● next read operation from the stream will return this character
● only one pushback is guaranteed

● Useful, when we need the character available for subsequent operations
#include <ctype.h>
#include <stdio.h>
int main(int argc, char *argv[]) {
 int sum = 0;
 int result;
 int c = getchar();
 while ((c = getchar()) != EOF) {
 if (isdigit(c)) {
 ungetc(c, stdin);
 scanf("%d", &result);
 sum += result;
 }
 }
 printf("sum=%d\n", sum);
 return 0;
}

38

Unformatted Text FilesUnformatted Text Files

● char* fgets (char *s,int n,FILE *stream)
● reads at most the next n-1 characters from the stream into the

array s. Reading stops after an EOF or a newline. If a newline
is read, it is stored into the buffer. A '\0' is stored after the
last character in the buffer.

● returns s or NULL if EOF or error occurs

● int fputs (const char *s, FILE *stream)
● write the string s to the stream,
● returns EOF for error

39

Unformatted TextUnformatted Text
● These file handling functions can be used instead of reading

and writing characters and strings from the keyboard and to
the screen
● int fgetc (FILE *stream)

● is similar to getchar()

● int fputc (int c, FILE *stream)
● is similar to putchar(int)

● char *fgets (char *s,int n,FILE *stream)
● is similar to gets(char*) (never use gets()!)

● int fputs (const char *s, FILE *stream)
● is similar to puts(const char*)

40

Convert File to Uppercase ExampleConvert File to Uppercase Example
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
int
main ()
{
 char szLine[1000];
 char *p = 0;
 FILE *fileIn, *fileOut;
 fileIn = fopen ("mary.txt", "r");
 if (!fileIn) {
 fprintf (stderr, "Cannot open input file\n");
 exit (1); };
 fileOut = fopen ("mary.new", "w");
 if (!fileOut) {
 fprintf (stderr, "Cannot open output file\n");
 exit (2); };
 while (fgets (szLine, 1000, fileIn))
 {
 for (p = szLine; *p; ++p)
 *p = toupper (*p);
 fputs (szLine, fileOut);
 }
 fclose (fileOut);
 fclose (fileIn);
 return 0;
}

41

Formatted Text File I/OFormatted Text File I/O

● For formatted input and output to files use the following
functions:

● int fprintf (FILE *fptr, const char* fmt,...)
● int fscanf (FILE *fptr, const char* fmt, ...)

● These functions are the same as printf and scanf
except that the output is directed to the stream accessed by
the file pointer, fptr

42

feoffeof Function Function

● The function feof tests for end of file
● int feof(FILE *fptr)

● feof accepts a pointer to a FILE
● feof returns non-zero if EOF and zero otherwise

● Used when reading a file to check whether the EOF has
been reached

43

Simple Accounts ProblemSimple Accounts Problem

● Consider a simple accounting system to keep track of the
amounts owed by a company’s clients

● For each client the following information has to be kept
● client account number
● client name
● client balance

● This information constitutes the “record” for the client which
must be provided by the program

44

Processing as a Text FileProcessing as a Text File

● Consider that the file to hold the account information is a
text file

● Need to use the formatted I/O functions to write and read
from the file
● fscanf and fprintf

● File operations that need to be implemented include
● reading from the file
● writing to the file - setting up the client records
● searching for particular record(s) in the file
● appending new clients to the existing master file
● updating existing client records in the file

45

Writing to The Text FileWriting to The Text File

● Writing a record to the file:
● fprintf (fptr,"%d %s %.2f\n",
 accNo,name,balance);

● where the following variables have been declared and
initialized appropriately
● int accNo;
● char name[21];
● float balance;

● fprintf returns the number of characters written or
negative if an error occurs

46

Example WriterExample Writer
#include <stdio.h>#include <stdlib.h>#include <time.h>
int main (int argc, char *argv[]){ FILE *fptr; int accNo = 1234; char names[][21] = { "Achison", "Agnew", "Barry", "Cunningham", "White" }; float balance; int i; if ((fptr = fopen ("clients.dat", "w")) == NULL) { perror ("Error opening clients.dat"); exit (1); } srand (time (NULL)); for (i = 0; i < sizeof (names) / sizeof (names[0]); i++) { balance = (1000.0 * rand () / (RAND_MAX + 1.0)) - 500.0; /* random balance in range [-500,500[*/ if (fprintf (fptr, "%d %s %.2f\n", accNo, names[i], balance) < 0) { perror ("Error writing data to clients.dat"); exit (2); } accNo += 16; } if (fclose (fptr) != 0) { perror ("Error closing clients.dat"); exit (3); } return 0;}

47

Reading From The Text FileReading From The Text File

● Reading a record from the file:
● fscanf (fptr,"%d %20s %f",
 &accNo,name, &balance);

● where the following variables have been declared
appropriately
● int accNo;
● char name[21];
● float balance;

● fscanf returns the number of input items assigned or EOF
if an error or EOF occurs before any characters are input

● rewind(FILE* ptr)- resets the current file position to the
start of the file.

48

Searching The FileSearching The File

● Accessing a particular record(s) requires
● a sequential read from the start of the file
● testing each record to see is it being searched for
● reset the file pointer to the start of the file ready for the next

search

● Example:
● Print the details of all the accounts with a negative balance or
● Create a report of all accounts with a negative balance

49

Searching a Text FileSearching a Text File

 while (1)
 {
 int args = fscanf (fptr, "%d %20s %f", &accNo, name, &balance);
 if (args == EOF)
 break;
 if (args != 3)
 {
 fprintf (stderr, "Error in clients.dat");
 exit (2);
 }
 if (balance < 0)
 printf ("%6d %30s %6.2f\n", accNo, name, balance);
 }
 rewind (fptr);

50

Updating Records in A Text FileUpdating Records in A Text File

● The text file contains variable length records
● 300 Barry 67.00
● 345 Cunningham 756.50

● A record cannot be modified in place as it may destroy other
data in the file

● Consider changing Barry to Barrett
● 300 Barry 67.00 345 Cunningham 756.50 ...

changes to
● 300 Barrett 67.0045 Cunningham 756.50

51

Updating Records in a Text FileUpdating Records in a Text File

● Records cannot be updated in place
● To update a text file the entire file is rewritten

Master
File

Update
Program

New Master
File

297 Achison 89.00
299 Agnew 23.87
300 Barry 67.00
345 Cunningham 756.50

297 Achison 89.00
299 Agnew 23.87
300 Barrett 67.00
345 Cunningham 756.50

copy

rewrite

copy

52

Update ExampleUpdate Example

 while (1)
 {
 char *tname;
 int args = fscanf (infile, "%d %20s %f", &accNo, name, &balance);
 if (args == EOF)
 break;
 if (args != 3)
 {
 fprintf (stderr, "Error in clients.dat");
 exit (3);
 }
 if (strcmp (name, "Barry"))
 tname = name;
 else /* replace Barry with Barrett */
 tname = "Barrett";
 if (fprintf (outfile, "%d %s %.2f\n", accNo, tname, balance) < 0)
 {
 perror ("Error writing data to clients.new");
 exit (4);
 }
 }

53

Positioning the File Pointer Positioning the File Pointer

● The function fseek sets the file position for a stream
● Subsequent reads and writes will access data in the file

beginning at the new position
● int fseek (FILE *fp, long offset,int origin);

● fseek takes 3 arguments
● fp the file pointer for the file in question
● offset is an offset in a file we want to seek to
● origin is the position that the file pointer is set to

54

Positioning the File PointerPositioning the File Pointer

● origin can be either
● SEEK_SET - beginning of file
● SEEK_CUR - current position in file
● SEEK_END - end of file

● It may be necessary when performing a number of different
types of access to a single file to reset the file pointer in
certain instances
● e.g. searching for a particular record in a file may leave the file

pointer in the middle of the file
● to write a new record to this file the pointer should be reset to

point to the end of file

55

Positioning the File PointerPositioning the File Pointer

● The function rewind resets the file pointer back to the start
of file
● void rewind (FILE *fp)

● rewind(fp)
is equivalent to

● fseek(fp,0,SEEK_SET)

56

Binary FilesBinary Files

● Formatted Text files
● contain variable length records
● must be accessed sequentially, processing all records from the

start of file to access a particular record

● Binary files
● contain fixed length records
● can be accessed directly, directly accessing the record that is

required

● Binary files are appropriate for online transaction processing
systems,
● e.g. airline reservation, order processing, banking systems

57

Binary FilesBinary Files

● The main points about binary files:
● Binary files are in binary format (machine readable) not a

human readable format like text files
● Binary files can be accessed directly (i.e. random access)
● The record structure for a binary file is created using structures
● They are more efficient than text files as conversion from

ASCII to binary (reading) and vice versa for writing does not
have to occur

● They cannot be read easily by other non-C programs

58

Writing to a Binary FileWriting to a Binary File

● The function fwrite is used to write to a binary file

● size_t fwrite (void *ptr, size_t size,
 size_t n, FILE *fptr);

● fwrite writes from array ptr, n objects of size size to file

pointed to by fptr

● fwrite returns the number of objects written
● which is less than n if an error occurs

59

Reading from a Binary FileReading from a Binary File

● The function fread is used to read from a binary file
● size_t fread (void *ptr, size_t size,

 size_t n, FILE *fptr);

● fread reads n objects of size size from a file pointed to by
fptr, and places them in array ptr

● fread returns the number of objects read
● which may be less than the number requested
● call to feof() is necessary to distinguish EOF and error

condition

60

Simple Account ProblemSimple Account Problem

● Consider a simple accounting system to keep track of the
amounts owed by a company’s clients

● For each client the following information has to be kept
● client account number
● client name
● client balance

● This information constitutes the “record” for the client which
must be provided by the program

61

Processing as a Binary FileProcessing as a Binary File

● Consider that the file to hold the account information is a
binary file

● File operations that need to be implemented include
● searching and reading specific records from the file
● adding new customer details to the file
● updating records on the file
● reading the records sequentially from the file

62

Record StructureRecord Structure

● Set up a user defined type that represents a record on the
file

typedef struct {
char name[21];
float balance;

} CustAccount;
● Note, that the account number is determined by a position in

a file

63

Structure of The Accounts FileStructure of The Accounts File

● Accessing a particular record in a binary file depends on
accessing a fixed number of bytes at a particular location in
the file. If a single record occupies 100 bytes, you get the
following illustration:

Record

Record

Record

Record

Offset in bytes from the beginning of the file

0

100

200

300

Record No

1

 2

 3

 4

64

Structure of The Accounts FileStructure of The Accounts File

● With binary files:
● The records must be stored in ascending order

● The position of the record is determined by the key of the data
in that record

● e.g. record with accNo is stored at byte
 (accNo-1) * sizeof(CustAccount)

● The binary file must be set up initially - with all records blank

65

Creating the Binary FileCreating the Binary File

● Open the file for writing
fp= fopen ("clients.dat", "wb");

● Set up a CustAccount variable that is initialised as a blank
record
CustAccount cust={"",0.0};

● Loop around for n records writing a “blank” record each time
for (i=0;i<n;i++)
 fwrite (&cust,sizeof(CustAccount),1, fptr);

66

Positioning The File PointerPositioning The File Pointer

● fseek is used to position the file pointer at the appropriate
record in the file before reading or writing a record

● int fseek(FILE *fp, long offset, int origin)

● The position is set to the offset from the origin
● fseek returns non zero on error
● To position the file pointer at the record for accNo

fseek(fptr,(accNo-1)*sizeof(CustAccount),
 SEEK_SET)

67

Example Binary File WriterExample Binary File Writer
 for (i = 0; i < ACCOUNTS; i++)
 {
 if (fwrite (&cust, sizeof (CustAccount), 1, fptr) != 1)
 {
 perror ("Error during initialization of clients.dat");
 exit (2);
 }
 }
 srand (time (NULL));
 for (i = 0; i < sizeof (names) / sizeof (names[0]); i++)
 {
 cust.balance = (1000.0 * rand () / (RAND_MAX + 1.0)) - 500.0;
 /* random balance in range [-500,500[*/
 strcpy (cust.name, names[i]);
 if (fseek (fptr, (accNo - 1) * sizeof (CustAccount), SEEK_SET))
 {
 perror ("Error seeking in clients.dat");
 exit (3);
 }
 if (fwrite (&cust, sizeof (CustAccount), 1, fptr) != 1)
 {
 perror ("Error during initialization of clients.dat");
 exit (2);
 };
 accNo += 16;
 }

68

Example Search in A Binary FileExample Search in A Binary File
 printf ("Accounts with debit balance \n\n");
 for (i = 0; i < ACCOUNTS; i++)
 {
 if (fread (&cust, sizeof (CustAccount), 1, fptr) != 1)
 {
 perror ("Error reading from clients.dat");
 exit (2);
 }
 if ((cust.balance < 0) && (cust.name[0]))
 printf ("%6d %30s %6.2f\n", i + 1, cust.name, cust.balance);
 }
 rewind (fptr);
 printf ("\n\nAccounts with credit balance \n\n");
 for (i = 0; i < ACCOUNTS; i++)
 {
 if (fread (&cust, sizeof (CustAccount), 1, fptr) != 1)
 {
 perror ("Error reading from clients.dat");
 exit (2);
 }
 if ((cust.balance >= 0) && (cust.name[0]))
 printf ("%6d %30s %6.2f\n", i + 1, cust.name, cust.balance);
 }

69

Updating a Binary FileUpdating a Binary File
● To update a record in a binary file,

● Read the record from the file
● Change any of the details
● Write the record back to the appropriate position in the file
 for (i = 0; i < ACCOUNTS; i++) { if (fread (&cust, sizeof (CustAccount), 1, fptr) != 1) { perror ("Error reading from clients.dat"); exit (2); } if (!strcmp (cust.name, "Barry")) { strcpy (cust.name, "Barrett"); if (fseek (fptr, i * sizeof (CustAccount), SEEK_SET)) { perror ("Error seeking in clients.dat"); exit (3); }
 if (fwrite (&cust, sizeof (CustAccount), 1, fptr) != 1) { perror ("Error reading from clients.dat"); exit (4); } break; } }

