
Programming and Data Structures in CProgramming and Data Structures in C

Grzegorz Jabłoński

Department of Microelectronics
and Computer Science

tel. (631) 26-48

gwj@dmcs.p.lodz.pl

http://neo.dmcs.p.lodz.pl/pdsc

2

C TimelineC Timeline

1969 – Ken Thompson creates Unix, B from BCPL

1970 – Thompson & Ritchie evolve B to C

1978 – K&R’s “The C Programming Language”

1989 – C89 (ANSI)

1990 – C90 (ISO)

1995 – C90 Normative Amendment 1 → "C95"

1999 – C99 (ISO)

2011 – C11 (ISO)

1979 – “C with Classes” (Bjarne Stroustrup)

1983 – the “C with Classes” renamed to C++

1985 – “The C++ Programming Language” published

1998 – 1st standard version: C++98

2003 – 2nd standard version: C++03

2011 – 3rd standard version: C++11

2014 – 4th standard version: C++14

2017 – 5th standard version: C++17

3

StructuralStructural Programming Programming

● C, Pascal, Fortran are procedural programming languages.
● A program in a procedural language is a list of instructions,

augmented with loops and branches.
● For small programs no other organizational principle

(paradigm) is needed.
● Larger programs are broken down into smaller units.
● A procedural program is divided into functions, such that

ideally each has clearly defined purpose and interface to
other functions.

● The idea of breaking a program into functions can be further
extended by grouping functions that perform similar tasks
into modules.

● Dividing a program into functions and modules is the key
idea of structured programming.

4

Problems with Structured ProgrammingProblems with Structured Programming

global
data Y

Function A:
local
data

Function B:
local
data

Function C:
local
data

global
data X

global
data Z

● Functions have unrestricted access to global data

● Large number of potential connections between functions
and data (everything is related to everything, no clear
boundaries)
● makes it difficult to conceptualize program structure
● makes it difficult to modify and maintain the program
● e.g.: it is difficult to tell which functions access the data

5

From Data to Data StructuresFrom Data to Data Structures

machine level data storage

primitive data types

data aggregates

high-level data structures

0100111001001011010001

28 3.1415 'A'

stack queue tree

array structure

6

On each level...On each level...

● We do not want to be concerned with the way to represent
objects of this level via objects of lower level

● We want to be concerned with the semantics of data on this
level.
● What is it ?
● What we can do with it ?

7

Primitive data typesPrimitive data types

8

Primitive Data TypesPrimitive Data Types

10

3.1415 0.001

'A' '@'

999
● Integer data

● 1, 10, 999, 1000

● Floating point data
● 2.7128, 0.003, 7.0

● Characters
● ' A', 'B', '_', '@'

9

Representation of Integers – Positional NotationRepresentation of Integers – Positional Notation

#s often written 0b…
non standard extension
official in C++14

● Number base B B symbols per digit:
● Base 10 (Decimal): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
● Base 2 (Binary): 0, 1

● Number representation:
● d31d30 ... d1d0 is a 32 digit number

● value = d31 B31 + d30 B30 + ... + d1 B1 + d0 B0

● Binary: 0,1 (In binary digits called “bits”)
● 0b11010 = 124 + 123 + 022 + 121 + 020

= 16 + 8 + 2
= 26

● Here 5 digit binary # turns into a 2 digit decimal #
● Can we find a base that converts to binary easily?

10

Hexadecimal Numbers – Base 16Hexadecimal Numbers – Base 16

● Hexadecimal: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
● Normal digits + 6 more from the alphabet
● In C, written as 0x… (e.g., 0xFAB5)

● Conversion: BinaryHex
● 1 hex digit represents 16 decimal values
● 4 binary digits represent 16 decimal values
● 1 hex digit replaces 4 binary digits

● One hex digit is a “nibble”. Two is a “byte”
● Example:

● 1010 1100 0011 (binary) = 0x_____ ?

11

Decimal vs. Hexadecimal vs. BinaryDecimal vs. Hexadecimal vs. Binary

● Examples:
● 1010 1100 0011 (binary) = 0xAC3
● 10111 (binary) = 0001 0111 (binary) = 0x17
● 0x3F9 = 11 1111 1001 (binary)

● How do we convert between hex and
decimal?

MEMORIZE!

00 0 0000
01 1 0001
02 2 0010
03 3 0011
04 4 0100
05 5 0101
06 6 0110
07 7 0111
08 8 1000
09 9 1001
10 A 1010
11 B 1011
12 C 1100
13 D 1101
14 E 1110
15 F 1111

12

How to Represent Negative Numbers?How to Represent Negative Numbers?

● Obvious solution: define leftmost bit to be sign!
● 0 +, 1 -
● Rest of bits can be numerical value of number

● Representation called sign and magnitude
● MIPS uses 32-bit integers. +1

ten
 would be:

0000 0000 0000 0000 0000 0000 0000 0001
● And –1

ten
 in sign and magnitude would be:

1000 0000 0000 0000 0000 0000 0000 0001

13

Shortcomings of Sign and Magnitude?Shortcomings of Sign and Magnitude?

● Arithmetic circuit complicated
● Special steps depending whether signs are the same or not

● Also, two zeros
● 0x00000000 = +0

ten

● 0x80000000 = -0
ten

● What would two 0s mean for programming?
● Therefore sign and magnitude abandoned

14

Standard Negative Number RepresentationStandard Negative Number Representation

● What is the result for unsigned numbers if tried to subtract
large number from a small one?
● Would try to borrow from string of leading 0s, so result would

have a string of leading 1s
● 3 - 4 00…0011 - 00…0100 = 11…1111

● With no obvious better alternative, pick representation that
made the hardware simple

● As with sign and magnitude,
● leading 0s positive,
● leading 1s negative
● 000000...xxx is ≥ 0, 111111...xxx is < 0
● except 1…1111 is -1, not -0 (as in sign & mag.)

● This representation is Two’s Complement

15

2’s Complement Number “line”: N = 52’s Complement Number “line”: N = 5

• 2N-1 non-negatives

• 2N-1 negatives

• one zero

• how many positives?

00000 00001

00010
11111

11110

10000 0111110001

0 1
2

-1
-2

-15 -16 15

.

.

.

.

.

.

-3
11101

-4
11100

00000 00001 01111...

111111111010000 ...

16

Two’s Complement for N=32Two’s Complement for N=32

0000 ... 0000 0000 0000 0000
two

 = 0
ten

0000 ... 0000 0000 0000 0001
two

 = 1
ten

0000 ... 0000 0000 0000 0010
two

 = 2
ten

. . .
0111 ... 1111 1111 1111 1101

two
 = 2,147,483,645

ten

0111 ... 1111 1111 1111 1110
two

 = 2,147,483,646
ten

0111 ... 1111 1111 1111 1111
two

 = 2,147,483,647
ten

1000 ... 0000 0000 0000 0000
two

 = –2,147,483,648
ten

1000 ... 0000 0000 0000 0001
two

 = –2,147,483,647
ten

1000 ... 0000 0000 0000 0010
two

= –2,147,483,646
ten

. . .
1111 ... 1111 1111 1111 1101

two
 = –3

ten

1111 ... 1111 1111 1111 1110
two

 = –2
ten

1111 ... 1111 1111 1111 1111
two

 = –1
ten

● One zero; 1st bit called sign bit
● 1 “extra” negative: no positive 2,147,483,648

ten

17

Two’s Complement FormulaTwo’s Complement Formula

● Can represent positive and negative numbers in terms of
the bit value times a power of 2:

● d
31

 x -(231) + d
30

 x 230 + ... + d
2
 x 22 + d

1
 x 21 + d

0
 x 20

● Example: 1101
two

= 1x-(23) + 1x22 + 0x21 + 1x20

= -23 + 22 + 0 + 20

= -8 + 4 + 0 + 1

= -8 + 5

= -3
ten

18

Two’s Complement Shortcut: NegationTwo’s Complement Shortcut: Negation

● Change every 0 to 1 and 1 to 0 (invert or complement), then
add 1 to the result

● Proof: Sum of number and its (one’s) complement must be
111...111

two

● However, 111...111
two

= -1
ten

● Let x’ one’s complement representation of x
● Then x + x’ = -1 x + x’ + 1 = 0 x’ + 1 = -x

● Example: -3 +3 -3
x : 1111 1111 1111 1111 1111 1111 1111 1101

two

x’: 0000 0000 0000 0000 0000 0000 0000 0010
two

+1: 0000 0000 0000 0000 0000 0000 0000 0011
two

()’: 1111 1111 1111 1111 1111 1111 1111 1100
two

+1: 1111 1111 1111 1111 1111 1111 1111 1101
two

19

Two’s Comp. Shortcut: Sign extensionTwo’s Comp. Shortcut: Sign extension

● Convert 2’s complement number rep. using n bits to more than n
bits

● Simply replicate the most significant bit (sign bit) of smaller to fill
new bits

● 2’s comp. positive number has infinite 0s
● 2’s comp. negative number has infinite 1s
● Binary representation hides leading bits;

sign extension restores some of them
● 16-bit -4

ten
 to 32-bit:

1111 1111 1111 1100
two

1111 1111 1111 1111 1111 1111 1111 1100
two

20

Two’s Comp. Shortcut: Multiplication and Division by 2Two’s Comp. Shortcut: Multiplication and Division by 2

● Multiplication by 2 is just a left shift (unless an overflow occurs)
(-5

ten
) * 2

ten
 = -10

ten

1111 1111 1111 1011
two

* 2
ten

=1111 1111 1111 0110
two

5
ten

 * 2
ten

 = 10
ten

0000 0000 0000 0101
two

* 2
ten

=0000 0000 0000 1010
two

● Division by 2 requires shift-in of a copy of the most significant
bit

(-4
ten

) / 2
ten

 = -2
ten

1111 1111 1111 1100
two

/ 2
ten

=1111 1111 1111 1110
two

(4
ten

) / 2
ten

 = 2
ten

0000 0000 0000 0100
two

/ 2
ten

=0000 0000 0000 0010
two

21

What If Too Big?What If Too Big?

● Binary bit patterns above are simply representatives of
numbers. Strictly speaking they are called “numerals”.

● Numbers really have an number of digits
● with almost all being same (00…0 or 11…1) except for a few of

the rightmost digits
● Just don’t normally show leading digits

● If result of add (or -, *, /) cannot be represented by these
rightmost HW bits, overflow is said to have occurred.

00000 00001 00010 1111111110

unsigned

22

C Integer TypesC Integer Types
● signed and unsigned

● treated as values with or without sign
● signed usually stored in 2's complement format

● same amount of bits, different range
● exact size and range of integer types is not defined in the

standard, it is implementation-defined
● number of bytes occupied by a variable of a given type can be

determined using the sizeof() operator
● range of values of a given type can be determined using

macros in limits.h
● overflow of signed causes undefined behavior

23

How to Swiftly Destroy a $370 Million Dollar RocketHow to Swiftly Destroy a $370 Million Dollar Rocket

● On 4 June 1996, the maiden flight of the Ariane 5 launcher
ended in a failure

● A data conversion from a 64-bit floating point number to a 16-
bit signed integer in the guidance system caused an overflow
and a hardware exception

● The error message from the guidance computer was
interpreted as flight data by the flight control computer

● This has caused an abrupt course correction that was not
needed, compensating for a wrong turn that had not taken
place

● Because of high aerodynamic load the boosters separated
from its main stage, which triggered the Autodestruct System

24

charchar Type Type

● not defined, whether it is signed or unsigned
● must store every character from the character set
● can be qualified with the keyword signed or unsigned
● by definition, sizeof(char) == 1
● at least 8 bits wide

char c1; /* signed or unsigned */
unsigned char c2;
signed char c3;

printf("%d\n", sizeof(c1)); /* prints 1 */
printf("%d\n", sizeof(char)); /* also prints 1 */

25

charchar Type – Macros in Type – Macros in <limits.h><limits.h>

● CHAR_BIT
● The macro yields the number of bits used to represent an object of type char
● CHAR_MAX
● The macro yields the maximum value for type char. Its value is:

● SCHAR_MAX if char represents negative values
● UCHAR_MAX otherwise

● CHAR_MIN
● The macro yields the minimum value for type char. Its value is:

● SCHAR_MIN if char represents negative values
● zero otherwise

● SCHAR_MAX
● The macro yields the maximum value for type signed char
● SCHAR_MIN
● The macro yields the minimum value for type signed char
● UCHAR_MAX
● The macro yields the maximum value for type unsigned char

26

Character setsCharacter sets
● ASCII

● Formula for representing
English characters as
numbers, with each letter
assigned a number from 0 to
127; not all of those are really
printable characters. An
acronym for American
Standard Code for Information
Interchange.

● ASCII control characters are
presented in the table at the
right

● EBCDIC
● Extended Binary Coded

Decimal Interchange Code
● IBM's 8-bit extension of the

4-bit Binary Coded Decimal
encoding of digits 0-9
(0000-1001).

Char Dec Control-Key Control Action
NUL 0 ^@ NULl character
SOH 1 ^A Start Of Heading
STX 2 ^B Start of TeXt
ETX 3 ^C End of TeXt
EOT 4 ^D End Of Transmission
ENQ 5 ^E ENQuiry
ACK 6 ^F ACKnowledge
BEL 7 ^G BELl, rings terminal bell
BS 8 ^H BackSpace (non-destructive)
HT 9 ^I Horizontal Tab (move to next tab position)
LF 10 ^J Line Feed
VT 11 ^K Vertical Tab
FF 12 ^L Form Feed
CR 13 ^M Carriage Return
SO 14 ^N Shift Out
SI 15 ^O Shift In

DLE 16 ^P Data Link Escape
DC1 17 ^Q Device Control 1, normally XON
DC2 18 ^R Device Control 2
DC3 19 ^S Device Control 3, normally XOFF
DC4 20 ^T Device Control 4
NAK 21 ^U Negative AcKnowledge
SYN 22 ^V SYNchronous idle
ETB 23 ^W End Transmission Block
CAN 24 ^X CANcel line
EM 25 ^Y End of Medium
SUB 26 ^Z SUBstitute
ESC 27 ^[ESCape
FS 28 ^\ File Separator
GS 29 ^] Group Separator
RS 30 ^^ Record Separator
US 31 ^_ Unit Separator

27

ASCII Printing charactersASCII Printing characters

Dec Description Char Dec Description Char Dec Description
32 Space @ 64 At-sign ` 96 Opening single quote
33 Exclamation mark A 65 Upper case A a 97 Lower case a
34 Quotation mark B 66 Upper case B b 98 Lower case b
35 Cross hatch (number sign) C 67 Upper case C c 99 Lower case c
36 Dollar sign D 68 Upper case D d 100 Lower case d
37 Percent sign E 69 Upper case E e 101 Lower case e
38 Ampersand F 70 Upper case F f 102 Lower case f
39 Closing single quote (apostrophe) G 71 Upper case G g 103 Lower case g
40 Opening parentheses H 72 Upper case H h 104 Lower case h
41 Closing parentheses I 73 Upper case I i 105 Lower case i
42 Asterisk (star, multiply) J 74 Upper case J j 106 Lower case j
43 Plus K 75 Upper case K k 107 Lower case k
44 Comma L 76 Upper case L l 108 Lower case l
45 Hyphen, dash, minus M 77 Upper case M m 109 Lower case m
46 Period N 78 Upper case N n 110 Lower case n
47 Slash (forward or divide) O 79 Upper case O o 111 Lower case o
48 Zero P 80 Upper case P p 112 Lower case p
49 One Q 81 Upper case Q q 113 Lower case q
50 Two R 82 Upper case R r 114 Lower case r
51 Three S 83 Upper case S s 115 Lower case s
52 Four T 84 Upper case T t 116 Lower case t
53 Five U 85 Upper case U u 117 Lower case u
54 Six V 86 Upper case V v 118 Lower case v
55 Seven W 87 Upper case W w 119 Lower case w
56 Eight X 88 Upper case X x 120 Lower case x
57 Nine Y 89 Upper case Y y 121 Lower case y
58 Colon Z 90 Upper case Z z 122 Lower case z
59 Semicolon [91 Opening square bracket { 123 Opening curly brace
60 Less than sign \ 92 Backslash (Reverse slant) | 124 Vertical line
61 Equals sign] 93 Closing square bracket } 125 Closing curly brace
62 Greater than sign ^ 94 Caret (Circumflex) ~ 126 Tilde (approximate)
63 Question mark _ 95 Underscore DEL 127 Delete (rubout), cross-hatch box

28

EBCDIC Character SetEBCDIC Character Set

Dec EBCDIC Dec EBCDIC Dec EBCDIC Dec EBCDIC
0 NUL Null 38 ETB End of Transmission Block 110 > Greater-than Sign 193 A
1 SOH Start of Heading 39 ESC Escape 111 ? Question Mark 194 B
2 STX Start of Text 42 SM Set Mode 122 : Colon 195 C
3 ETX End of Text 43 CU2 Customer Use 2 123 # Number Sign, Octothorp, "pound" 196 D
4 PF Punch Off 45 ENQ Enquiry 124 @ At Sign 197 E
5 HT Horizontal Tab 46 ACK Acknowledge 125 ' Apostrophe, Prime 198 F
6 LC Lower Case 47 BEL Bell 126 = Equal Sign 199 G
7 DEL Delete 50 SYN Synchronous Idle 127 " Quotation Mark 200 H

10 SMM Start of Manual Message 52 PN Punch On 129 a a 201 I
11 VT Vertical Tab 53 RS Reader Stop 130 b b 209 J
12 FF Form Feed 54 UC Upper Case 131 c c 210 K
13 CR Carriage Return 55 EOT End of Transmission 132 d d 211 L
14 SO Shift Out 59 CU3 Customer Use 3 133 e e 212 M
15 SI Shift In 60 DC4 Device Control 4 134 f f 213 N
16 DLE Data Link Escape 61 NAK Negative Acknowledge 135 g g 214 O
17 DC1 Device Control 1 63 SUB Substitute 136 h h 215 P
18 DC2 Device Control 2 64 SP Space 137 i i 216 Q
19 TM Tape Mark 74 ¢ Cent Sign 145 j j 217 R
20 RES Restore 75 . Period, Decimal Point, "dot" 146 k k 226 S
21 NL New Line 76 < Less-than Sign 147 l l 227 T
22 BS Backspace 77 (Left Parenthesis 148 m m 228 U
23 IL Idle 78 + Plus Sign 149 n n 229 V
24 CAN Cancel 79 | Logical OR 150 o o 230 W
25 EM End of Medium 80 & Ampersand 151 p p 231 X
26 CC Cursor Control 90 ! Exclamation Point 152 q q 232 Y
27 CU1 Customer Use 1 91 $ Dollar Sign 153 r r 233 Z
28 IFS Interchange File Separator 92 * Asterisk, "star" 162 s s 240 0
29 IGS Interchange Group Separator 93) Right Parenthesis 163 t t 241 1
30 IRS Interchange Record Separator 94 ; Semicolon 164 u u 242 2
31 IUS Interchange Unit Separator 95 ¬ Logical NOT 165 v v 243 3
32 DS Digit Select 96 - Hyphen, Minus Sign 166 w w 244 4
33 SOS Start of Significance 97 / Slash, Virgule 167 x x 245 5
34 FS Field Separator 107 , Comma 168 y y 246 6
36 BYP Bypass 108 % Percent 169 z z 247 7
37 LF Line Feed 109 _ Underline, Underscore 185 ` Grave Accent 248 8

249 9

29

intint Type Type

● signed type
● basic integer type, represents natural integer type for the

machine
● at least 16 bits wide
● can be qualified with the keyword signed or unsigned

int i1; /* signed */

unsigned int i2;

signed int i3;

printf("%d\n", sizeof(i1));

/* result is implementation defined */

30

long intlong int Type Type

● signed type
● at least 32 bits, no shorter than int
● can be qualified with the keyword signed or unsigned
● int keyword can be omitted in declarations

long int i1; /* signed */

unsigned long int i2;

signed long int i3;

long i4; /* same type as i1 */

unsigned long i5; /* same type as i2 */

signed long i6; /* same type as i3 */

printf("%d\n", sizeof(i1));

/* result is implementation defined */

31

short intshort int Type Type

● signed type
● at least 16 bits, no longer than int
● can be qualified with the keyword signed or unsigned
● int keyword can be omitted in declarations

short int i1; /* signed */

unsigned short int i2;

signed short int i3;

short i4; /* same type as i1 */

unsigned short i5; /* same type as i2 */

signed short i6; /* same type as i3 */

printf("%d\n", sizeof(i1));

/* result is implementation defined */

32

long long intlong long int Type Type
● C99 addition
● signed type
● at least 64 bits, no shorter than long
● can be qualified with the keyword signed or unsigned
● int keyword can be omitted in declarations

long long int i1; /* signed */

unsigned long long int i2;

signed long long int i3;

long long i4; /* same type as i1 */

unsigned long long i5; /* same type as i2 */

signed long long i6; /* same type as i3 */

printf("%d\n", sizeof(i1));

/* result is implementation defined */

33

Integer Types – Macros in <limits.h>Integer Types – Macros in <limits.h>

● INT_MAX
● The macro yields the maximum value for type int

● INT_MIN
● The macro yields the minimum value for type int

● UINT_MAX
● The macro yields the maximum value for type unsigned int

● LONG_MAX, LONG_MIN, ULONG_MAX
● The same for type long

● SHRT_MAX, SHRT_MIN, USHRT_MAX
● The same for type short

● LLONG_MAX, LLONG_MIN, ULLONG_MAX
● The same for type long long

34

Integer Constants (Literals)Integer Constants (Literals)
● Decimal notation:

● int: 1234
● long int: 1234L, 1234l
● unsigned int: 1234U, 1234u
● unsigned long int: 1234UL, 1234ul, 1234Ul, 1234uL
● long long int: 1234LL, 1234ll
● unsigned long long: 1234ULL, 1234ull, 1234uLL, 1234Ull

● Octal notation:
● starts with 0 (zero)
● 031 == 25

● (31 Oct == 25 Dec, easy to confuse Christmas with Halloween)
● the same suffixes as above applicable

● Hexadecimal notation:
● starts with 0x (zero x)
● 0x31 == 49
● the same suffixes as above applicable

35

● Direct notation:
● 'a', 'b', ..., 'z',
'0', ..., '9'

● Special characters:
● '\n'- newline
● '\r'- carriage return
● '\a'- visible alert
● '\b'- backspace
● '\f'- form feed
● '\t'- horizontal tabulation
● '\v'- vertical tabulation
● '\''- single quote
● '\"'- double quote
● '\?'- question mark
● '\\'- backslash

Character Constants (Literals)Character Constants (Literals)

● Octal notation:
● '\077'
● '\0'

(called NUL – note single 'l')
● Hexadecimal notation:

● '\x32'

36

Floating PointFloating Point

● Floating point is used to represent “real” numbers
● 1.23233, 0.0003002, 3323443898.3325358903
● Real means “not imaginary”

● Computer floating-point numbers are a subset of real numbers
● Limit on the largest/smallest number represented

● Depends on number of bits used
● Limit on the precision

● 12345678901234567890 → 12345678900000000000
● Floating point numbers are approximate, while integers are exact

representation

37

Scientific NotationScientific Notation

+ 34.383 x 102 = 3438.3

Sign Mantissa Exponent

+ 3.4383 x 103 = 3438.3 Normalized form: Only one
digit before the decimal point

+3.4383000E+03 = 3438.3 Floating point notation

8 digit mantissa can only represent 8 significant digits

38

Binary Floating Point NumbersBinary Floating Point Numbers

+ 101.1101

= 1 x 22
 + 0 x 21

 + 1 x 20
 + 1 x 2-1

 + 1 x 2-2
 + 0 x 2-3

 + 1 x 2-4

+1.011101 E+2 Normalized so that the binary point
immediately follows the leading digit

Note: First digit is always non-zero
 → First digit is always one.

= 4 + 0 + 1 + 1/2 + 1/4 + 0 + 1/16
= 5.8125

39

IEEE Floating Point Format IEEE Floating Point Format

Sign Exponent Mantissa

31 30 23 22 0

8 bits 23 bits

0: Positive
1: Negative

Biased by 127. Leading ‘1’ is implied, but not
represented

Number = -1S * (1 + M) x 2E-127

Allows representation of numbers in range 2-127 to 2+128 (10±38)

Since the mantissa always starts with ‘1’, we don’t have to represent it
explicitly

Mantissa is effectively 24 bits

● The Institute of Electrical and Electronics Engineers
● Pronounce I-triple-E
● Is best known for developing standards for the computer and

electronics industry

40

IEEE Double Precision FormatIEEE Double Precision Format

Sign

MantissaBias:1023

Number = -1S * (1 + M) x 2E-1023

Allows representation of numbers in range 2-1023 to 2+1024(10± 308)

Larger mantissa means more precision

31 0

32 bits

63 62 52 51 32

11 bits 20 bits

Exponent

41

IEEE Extended Precision IEEE Extended Precision

● Optional recommendations for precision greater than
float/double
● Implemented in hardware (Intel 80-bit)
● Single precision

● Must support at least p = 32
● At least 11 bits for exponent
● Double precision

● p >= 64
● Exponent range >= 15 bits

● We won’t say much more about these

42

Floating Point Data Types in CFloating Point Data Types in C

● Three floating point types in C
● float
● double
● long double

● Most frequently stored using IEEE standard
● not necessarily, can even use base different than 2
● floating point characteristics defined in <float.h>

● Three additional complex types in C99
● Constants:

● 1234.3 – constant of type double
● 12345.5e7 – constant of type double
● 123.4f – constant of type float
● 123.4F – constant of type float
● 123.4l – constant of type long double
● 123.4L – constant of type long double

43

Problems with Floating Point NumbersProblems with Floating Point Numbers

● Many numbers cannot be represented exactly
● The representation of 1/3 is 0.3333

● 3 * “1/3” ¹ 1
● The same problem with 1/10 in binary

● Results from floating-point calculations are almost never
exactly equal to the corresponding mathematical value

● Results from a particular calculation may vary slightly from
one computer system to another, and all may be valid.
However, when the computer systems conform to the same
standard, the amount of variation is drastically reduced.

● Results may vary with the optimization level
● Values can be stored with greater precision in processor

registers, than in memory

44

Problems with Floating Point NumbersProblems with Floating Point Numbers

● Never compare floating point numbers for equality
● do not use if (a == b) ...
● use if(fabs(a - b) < error) ... instead

int main()
{
 float a = 2.501f;
 a *= 1.5134f;
 if (a == 3.7850134)

printf("Expected value\n");
 else

printf("Unexpected value\n");
 return 0;
}

45

IdentifiersIdentifiers

● Names of things (variables, functions, etc.)
● int nMyPresentIncome = 0;
● int DownloadOrBuyCD();

● Up to 31 chars (letters, numbers, including _)
● Must begin with a letter
● Case sensitive! (“Url” is different from “URL”)

46

Naming StylesNaming Styles

● Styles:
● lower_case
● CAPITAL_CASE
● camelCase
● PascalCase (aka TitleCase)
● szHungarianNotation

● Hungarian Notation:
● Invented by Charles Simonyi, a Hungarian, born in Budapest in

1948

47

Implicit Type ConversionImplicit Type Conversion

● Implicit
● char b = ’9’; /* Converts '9' to 57 */
● int a = 1;
● int s = a + b;

● Integer promotion before operation: char/short int
● When calling variable argument function, also floating point

promotion: float double
● If one operand is double, the other is made double
● else if either is float, the other is made float

int a = 3;
float x = 97.6F;
double y = 145.987;
y = x * y;
x = x + a;

48

Explicit Type ConversionExplicit Type Conversion

● Explicit (type casting)
● Sometimes you need to change the default conversion

behavior
float x = 97.6;
x = (int)x + 1;

● Sometimes you need to help the compiler
float x = 97.6f;
printf("%d\n", x); 1610612736
printf("%d\n", (int) x); 97

● Almost any conversion does something – but not
necessarily what you intended!!

49

Bad Type ConversionBad Type Conversion

● Example:
int x = 35000;

short s = x;

printf("%d %d\n", x, s);
● Output is:

35000 -30536

50

ConstantsConstants

● Every variable can be qualified with the const modifier
● const int base = 345;

● This variable now becomes a constant
● Constant must be assigned a value at a point where it is

declared
● Trying to modify a constant will trigger a compile time error

int main()

{

 const int a = 20;

 a = 31; /* error */

 return 0;

}

51

Boolean Values in CBoolean Values in C

● C89 doesn’t have booleans
● C99 defines a _Bool type
● Emulate as int or char, with values 0 (false) and 1 or non-

zero (true)
● Allowed by control flow statements:

if (success == 0) {
printf("something wrong");

}
● You can define your own boolean:

#define FALSE 0
#define TRUE 1

52

Boolean Values in CBoolean Values in C

• This works in general, but beware:
if (success == TRUE) {

printf("everything is a-okay");
}

• If success is greater than zero, it will be non-zero, but may not
be 1; so the above is NOT the same as:
if (success) {

printf("Something is rotten in the state of "
 "Denmark");
}

53

EnumerationEnumeration

● Enums allow you to group logically related constants
● enum color {BLACK, RED, GREEN, BLUE, CYAN,
MAGENTA, YELLOW, WHITE, COLOR_MAX};

● Here's another way to mock-up a Boolean
enum boolean { FALSE, TRUE };
enum boolean eAnswer = TRUE;

● Enum constants are treated as integer type

54

EnumerationEnumeration

● Starts with 0 unless you specify value to start from
● enum boolean { FALSE, TRUE };
● enum genre { TECHNO, TRANCE=4, HOUSE };

● You can also specify values
● enum channel { TVP1=1, HBO=32, RTL=44 };

● Constant names must be different but values can be the
same
● enum boolean { FALSE=0, TRUE=1, NO=0, YES=1 };

55

Enumeration - Enumeration - typedeftypedef

● Use typedef to save some typing
enum boolean { FALSE, TRUE };
typedef enum boolean Eboolean;
EBoolean eAnswer = TRUE;

● Better yet, combine the typedef and an anonymous enum
definition
typedef enum { FALSE, TRUE } Eboolean;
EBoolean eAnswer = TRUE;

● Typedefs will come in handy later on when we talk about
structures and function pointers

56

Arithmetic OperatorsArithmetic Operators

● Basic: x+y, x-y, x*y, x/y
● Remember:

● Mismatched operands are promoted to "wider" type:
char/short int float double

● Integer division truncates the fractional part:
● 5/2 2
● 5.0/2 2.5
● (float)5/2 2.5

57

Modulo (%)Modulo (%)

● Aka "mod", remainder
● Should only be applied to positive integers
● Examples:

● 13 / 5 == 2
● 13 % 5 == 3
● is x odd?
● is x evenly divisible by y?
● map 765˚ to 0˚ - 360˚ range
● convert 18:45 to 12-hour format
● simulate a roll of a six-sided dice

● Was year 2000 a leap year?
● Must be divisible by 4 AND must not be divisible by 100,

except years divisible by 400 are always leap years
● How do we code this?

58

Assignment (Assignment (== and and <op>=<op>=))

● Assignment is an expression – its value is the value of the
left-hand side after the assignment
● Regular assignment: x = x + y
● Equivalent way: x += y
● More: x += y, x -= y, x *= y, x /= y, x %= y

● The left side of an assignment operator is evaluated only
once

(c=getchar()) += 1;

is different than
(c=getchar()) = (c=getchar()) + 1;

59

Increment/DecrementIncrement/Decrement

● Pre-increment/decrement (prefix): ++x, --x
● Post-increment/decrement (postfix): x++, x--
● ++x acts like x = x + 1 or x += 1
● However, be careful when using in expressions!

● ++x increments first and then returns x
● x++ returns x first and then increments

● int x = 0;
● assert(x == 0);
● assert(++x == 1);
● assert(x == 1);
● assert(x++ != 2);
● assert(x == 2);

60

Bitwise OperatorsBitwise Operators

● When you need to manipulate/access individual bits
● Only for integral types (char, short, int, long,
unsigned/signed)

● Bitwise operators:
● & Bitwise AND
● | Bitwise inclusive OR
● ^ Bitwise exclusive OR (XOR)
● << Left shift
● >> Right shift
● ~ One's complement (unary)

● With assignment: x &= y, x |= y, x ^= y,
x <<= y, x >>= y

61

Bitwise OperatorsBitwise Operators

● Examples:
● & Bitwise AND 0110 & 0011 0010
● | Bitwise OR 0110 | 0011 0111
● ^ Bitwise XOR 0110 ^ 0011 0101
● << Left shift 01101110 << 2 10111000
● >>Right shift 01101110 >> 3 00001101
● ~ One's complement ~0011 1100

● Notice: << and >> multiply/divide by 2n

● >> operator may not work as expected on signed types –
can perform logical or arithmetical shift (with sign bit
duplication)

● Don't confuse bitwise & | with logical && ||

62

Packing Colors into 32 bitsPacking Colors into 32 bits

/*

 * Format of RGBA colors is

 * +-+

 * | alpha | red | green | blue |

 * +-+

 */

#define GET_ALPHA(val) ((val) >> 24)

#define GET_RED(val) (((val) >> 16) & 0xff)

#define GET_GREEN(val) (((val) >> 8) & 0xff)

#define GET_BLUE(val) ((val) & 0xff)

#define MAKE_ARGB(a,r,g,b) (((a) << 24) | ((r) << 16) | ((g) << 8) | (b))

63

Bit FlagsBit Flags

● Can treat each bit as a flag (1=on, 0=off)
● This allows you to pack up to 32 flags into a single unsigned

integer
● Ex:

#define READONLY 0x00000010
#define NOSYSLOCK 0x00000800

#define NOOVERWRITE 0x00001000
#define DISCARD 0x00002000
#define NO_DIRTY_UPDATE 0x00008000

● Use | to turn a flag on
● int flags = READONLY | DISCARD;

● Use & to check a flag
● if (flags & READONLY) ...

64

Logical and Relational OperatorsLogical and Relational Operators

● Logical:
● x == y Equal
● x != y Not equal
● x && y logical AND
● x || y logical OR
● !x NOT

● Relational:
● x < y Less-than
● x <= y Less-than-or-equal-to
● x > y Greater-than
● x >= y Greater-than-or-equal-to

65

Miscellaneous OperatorsMiscellaneous Operators

● sizeof – Returns the size in bytes
int x = 0;

unsigned size = sizeof(int); 4

size = sizeof(x); 4
● ternary

● x ? y : z
● This is short for:

● if (x) y else z
● e.g: z=(a>b)?a:b; /* z = max(a,b) */

● comma
● x, y

66

Associativity and PrecedenceAssociativity and Precedence

● Addition and subtraction associate left to right
● 4 + 5 + 6 + 7 is equivalent to (((4 + 5) + 6) + 7)

● Multiplication, division, and modulo associate left to right
● 4 * 5 * 6 * 7 is equivalent to (((4 * 5) * 6) * 7)

● Assignment operators associate right to left
● a = b = c = d is equivalent to (a=(b=(c=d)))

● For complicated expressions with multiple operators, precedence rules
determine the order of operation:

Ex: c = getchar() != EOF
● Because != has higher precedence than =, the above is equivalent to

c = (getchar() != EOF)
● Definitely not what we wanted!

● When in doubt, or in cases where the expression is non-trivial, use
parenthesis
● (c = getchar()) != EOF

67

Associativity and PrecedenceAssociativity and Precedence

Operators
() [] -> . left to right

 right to left
* / % left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= |= <<= >>= right to left
, left to right

Associativity

! ~ ++ -- + - * (type) sizeof

68

Side Effects and Evaluation OrderSide Effects and Evaluation Order

● Function calls, nested assignment statements, and increment and decrement
operators cause side effects - some variable is changed as a by-product of
the evaluation of an expression.

● In any expression involving side effects, there can be subtle dependencies
on the order in which variables taking part in the expression are updated.

● C does not specify the order in which the operands of an operator are
evaluated, except for &&, ||, ?:, and ',' operators. In a statement like

x = f() + g();

f may be evaluated before g or vice versa.
● Intermediate results can be stored in temporary variables to ensure a

particular sequence.
● The order in which function arguments are evaluated is not specified, so the

statement
printf("%d %d\n", ++n, power(2, n));/* WRONG */

can produce different results with different compilers.
● Another typical situation of this kind is represented by the expression

a[i] = i++;

69

Control Flow OverviewControl Flow Overview

● Expressions, statements, and blocks
● if, else
● switch
● Looping

● while
● do-while
● for
● break and continue

● goto and labels

70

Expressions, Statements, and BlocksExpressions, Statements, and Blocks

● We've already seen many examples of these
● Expressions yield a value: x + 1, x == y, etc.
● Statements are expressions ending with ;
● Curly braces { } are used to group statements into a block
● Blocks are also used for function bodies and if, else, while,
for, etc.

71

ifif Statements Statements

● Simple if statement
if (eDay == eMONDAY)

 printf("I hate Mondays!\n");
● if-else

if (eDay == eMONDAY)

 printf("I hate Mondays!\n");

else

 printf("How soon 'till the weekend?\n");
● if-else-if-else

if (eDay == eMONDAY)

 printf("I hate Mondays!\n");

else if (eDay == eWEDNESDAY)

 printf("The weekend is in sight!\n");

else

 printf("How soon 'till the weekend?\n");

72

switchswitch Statements Statements

● Multi-way decision test

● Notice: Cases with multiple statements don't require curly braces
● default is optional but you usually want to include it
● Don't forget break!

int c = getchar();
switch (c)
{
 case '?':
 printf("Please answer Y or N\n");
 break;
 case 'y': case 'Y':
 printf("Answer is yes\n");
 break;
 case 'n': case 'N':
 printf("Answer is no\n");
 break;
 default:
 printf("By default, the answer is maybe\n");
 break;
}

73

whilewhile and and do-whiledo-while

● We've already seen an example
while((c = getchar()) != EOF)
...

● while checks the condition and then executes
● the body
● do-while executes the body and then checks the condition

int nDone = 0;

do {
...

} while (!nDone);

74

forfor Statement Statement

● Compact looping statement
for(expr1; expr2; expr3)

{
statements

}
● This is equivalent to

expr1;

while (expr2)

{
statements

expr3;

}
● expr1, expr2, expr3 are optional

75

forfor Statement – Examples Statement – Examples

● Print 4 spaces
for(i = 0; i < 4; ++i)
putchar(' ');

● Print the alphabet
for(c = 'a'; c <= 'z'; ++c)
printf("%c ", c);

● Print even digits between 0 and 100
for(n = 0; n <= 100; n += 2)
printf("%d ", n);

● When to use while, do-while, for?

76

breakbreak and and continuecontinue

● break
● Use break to break out of a loop (while, do-while, for)
● First statement after the loop will be executed

● continue
● Skips the remaining statements in the loop body
● Proceeds to loop condition (while and do-while) or expr3

(for)

77

gotogoto Statement and Labels Statement and Labels

goto label;
...
label:

● Causes program execution to jump to the label
● Used indiscriminately, goto is evil and leads to spaghetti code
● Two cases where its permissible:

● Breaking out of a nested loop
● Executing cleanup code

78

ArraysArrays

● Simplest aggregates
● Fixed length (we'll cover dynamic arrays later)

● All elements are the same type
● Kinds of arrays

● Character arrays (strings)
● Other arrays
● Multi-dimensional

79

Character arrays (“strings”)Character arrays (“strings”)

const char szMsg[] = "compiler";
● This is stored as an array of characters terminated with a
'\0' (NUL) to mark the end

● First element of the array starts at index 0
● szMsg[3] refers to the 4th char (not 3rd) 'p'
● sizeof(szMsg) = size of the array in bytes = 9

(don't forget the '\0'!)
● Number of elements

● = array size / element size
● = sizeof(szMsg)/sizeof(char)

c o m p i l e r \0

80

Character arraysCharacter arrays

● Let's create another string
char szMyMsg[4];

szMyMsg[0] = 'f';

szMyMsg[1] = 'o';

szMyMsg[2] = 'o';

szMyMsg[3] = '\0'; /* Did you forget this? */
● Here's another way to initialize a string

char szMyMsg[] = { 'f', 'o', 'o', '\0' };

81

Other Arrays and InitializationOther Arrays and Initialization

● Arrays can be any data type, including other arrays!
int aryDigitCount[10]; /* uninitialized array */

● Can initialize an array with the ={} notation
int aryDays[]= { 31, 28, 31, 30, 31, 30, 31,
31, 30, 31, 30, 31};

● In this case, you can leave out the element count because the
compiler can figure it out.

● If element count is specified and the number of initializers is
less, the compiler will fill the remaining elements with 0. This
provides a handy way to initialize an array with all zeros:
int aryDigitCount[10] = { 0 };

● You should always initialize automatic arrays; don't assume
they are initialized to 0

82

Array sizesArray sizes

● Given a string, how do we determine its length?
● Given an arbitrary array, how do we determine the number of

elements?
● Can't use sizeof if the array is passed into a function

● Number of elements of an array is usually obtained from:
● a terminating element ('\0' for strings, 0 for argv)
● a separate count variable (e.g. argc)
● count encoded in the data somehow (e.g. BSTR)
● a constant (e.g. MAX_SIZE)

● How can we write strlen()?
● What is a disadvantage of using a terminating element?

83

2D Arrays2D Arrays

● This is an array of 4 strings each with 8 chars (don't forget \0!)
● A 2D array is really a 1D array, each of whose elements is an

array
● What is the size in bytes?

char arySmiley[4][8] = {
" -- -- ",
" @ @ ",
" + ",
" |---/ ", /* trailing comma is legal */
};

84

2D Arrays2D Arrays

● Suppose we want to add colors to the smiley
● Store an RGB value, packed in an int as 0x0rgb, for each

element

● How do we paint the eyes and mouth?
● Why only 7 ints when there are 8 chars?

/* Initialize all colors to black */
unsigned long arySmileyColors[4][7] = { 0L };

/* Paint eyebrows, nose, and chin white */
arySmileyColors[0][1] = 0xFFFFFFL;
arySmileyColors[0][2] = 0xFFFFFFL;
arySmileyColors[0][4] = 0xFFFFFFL;
arySmileyColors[0][5] = 0xFFFFFFL;
arySmileyColors[2][3] = 0xFFFFFFL;
arySmileyColors[3][1] = 0xFFFFFFL;
arySmileyColors[3][5] = 0xFFFFFFL;

85

Array CaveatsArray Caveats

● You must make sure you access only valid array elements!
● Accessing/modifying elements that are out-of-bounds in C has

undefined consequences!
● ary[-1] and ary[999] will not generate any compiler errors
● If you are lucky(!), program crashes with
Segmentation fault (core dumped)

● What's wrong with this code?

int aryChrCount[26] = { 0 }; /* A-Z */
char c = '\0';
while ((c = getchar()) != EOF)
 ++aryChrCount[c];

86

Undefined Behaviour Santitizer to The RescueUndefined Behaviour Santitizer to The Rescue
● There are tools that can help you in finding undefined

behaviour in your programs
● With gcc, you can enable Undefined Behaviour Sanitizer
● It will warn you about the undefined behaviour at the runtime

$ gcc -fsanitize=undefined ub.c -o ub
$./ub.c
$ ub.c:8:9: runtime error: index 100 out of
bounds for type 'int [100]'

● When compiled without this option, the program just prints 42

int main()
{
 int array1[100];
 int array2[100];
 array2[0] = 3;
 array1[100] = 42;
 printf("%d\n",array2[0]);
}

87

Function DefinitionFunction Definition

int main(void)

{

int m = 12;

 printf(“%d\n”,fact(m));

 return 0;

}

int fact(int n)

{

int i, product = 1;

for (i = 1; i<=n; ++i)

product *= i;

return product;

}

header

body

declara-

tions

statements

type func_name(parameter_list)

{

 declarations

 statements

}

format of a
function definition:

88

Function HeaderFunction Header

type func_name(parameter_list)

type returned by the function

(void if no value returned)

list of formal arguments:

type parameter_name

multiple arguments
are separated by commas

void if no parameters

function name

a = fact(13);

error_message(2);

x=initial_value();

Usage:

int fact(int n)

void error_message(int errorcode)

int main(void)

Examples:

double initial_value(void)

89

Why Use Functions?Why Use Functions?

● Write your code as collections of small functions to make
your program modular
● structured programming
● code easier to debug
● easier modification
● reusable in other programs

90

Function PrototypesFunction Prototypes

● If a function is not defined before it is used, it must be declared by
specifying the return type and the types of the parameters
double sqrt(double);

● tells the compiler that the function sqrt() takes an argument of type
double and returns a double.

● This means, incidentally, that variables will be cast to the correct type; so
sqrt(4) will return the correct value even though 4 is int not double.

● These function prototypes are placed at the top of the program, or in a
separate header file, file.h, included as #include "file.h"

● Variable names in the argument list of a function declaration are
optional:
void f (char, int);

void f (char c, int i); /*equivalent but makes code more readable */

● If all functions are defined before they are used, no prototypes are
needed. In this case, main() is the last function of the program.

91

Function CallsFunction Calls
● When a function is called, this is what happpens:

● expressions in the parameter list are evaluated (in no particular
order!)

● results are transformed to the required type
● parameters are copied to local variables for the function
● function body is executed
● when return is encountered, the function is terminated

and the result (specified in the return statement) is
passed to the calling function (for example main)
int fact (int n)

{

int i, product = 1;

for (i = 2; i <= n; ++i)

product *= i;

return product;

}

int main (void)

{

int i = 12;

printf(“%d”,fact(i));

 return 0;

}

92

Scope Rules for BlocksScope Rules for Blocks

● Identifiers (i.e. variables etc.) are accessible only within the block in which
they are declared.

● A variable that is declared in an outer block is available in the inner block
unless it is redeclared. In this case the outer block declaration is temporarily
“masked”.

● Avoid masking!
Use different identifiers instead to keep your code debuggable!

outer a masked

{

int a = 2; /* outer block a */

printf(“%d\n”, a); /* 2 is printed */

{

int a = 5; /* inner block a */

printf(“%d\n”, a); /* 5 is printed */

}

printf(“%d\n”, a); /* 2 is printed */

}

/* a no longer defined */

93

Scope Rules for FunctionsScope Rules for Functions

● Variables defined within a function (including main) are local
to this function and no other function has direct access to
them!
● the only way to pass variables to a function is as parameters
● the only way to pass (a single) variable back to the calling

function is via the return statement

● Exceptions:
● Global Variables
● Pointers

int main (void)

{

int a = 2, b = 1, c;

c = func(a);

return 0;

}

int func (int n)

{

printf(“%d\n”,bb);

return n;

}
b not defined locally!

94

Global VariablesGlobal Variables

● Variables defined outside blocks and functions are global, i.e.
available to all blocks and functions that follow

● Avoid using global variables to pass parameters to functions!
● Only when all variables in a function are local, it can be used in

different programs
● Global variables are confusing in long code

#include <stdio.h>

int a = 1, b = 2; /* global variables */

int main (void)

{

 int b = 5; /* local redefinition */

 printf(“%d”, a+b); /* 6 is printed */

 return 0;

}

95

Call by ValueCall by Value

#include <stdio.h>
int compute_sum (int n); /* function prototype */
/* --- */
int main(void)
{

int n = 3, sum;
printf(“%d\n”, n); /* 3 is printed */
sum = compute_sum(n); /* pass value 3 down to func */
printf(“%d\n”, n); /* 3 is printed - unchanged */
printf(“%d\n”,sum); /* 6 is printed */
return 0;

}
/* --- */
int compute_sum (int n) /* sum integers 1 to n */
{

int sum = 0;
for (; n > 0; --n) /* local value of n changes */

sum += n;
return sum;

}

n unchanged

local copy of n, independent of
n in calling function

● Arguments to functions are evaluated, and the copies of the values
– not any variables in the argument – are passed down to the function
● Good: protects variables in calling function
● Bad: copying inefficient, for example for large arrays pointers

96

Storage ClassesStorage Classes
● Every variable and function in C has two attributes:

● type (int, float, ...)
● storage class

● Storage class is related to the scope of the variable
● There are four storage classes:

● auto
● extern
● register
● static

● auto is the default and the most common
● Memory for automatic variables is allocated when a block or function is

entered. They are defined and are “local” to the block. When the block is
exited, the system releases the memory that was allocated to the auto
variables, and their values are lost.

● Declaration:
● auto type variable_name;

● There’s no point in using auto, as it’s implicitly there anyway

97

externextern

● Global variables (defined outside functions) and all functions
are of the storage class extern or static and storage is
permanently assigned to them

● To access an external variable, which is defined elsewhere,
the following declaration is used:
extern type variable_name;

● it tells the compiler, that the variable variable_name with the
external storage class is defined somewhere in the program

● Within a file variables defined outside functions have
external storage class

● Files can be compiled separately, even for one program.
extern is used for global variables that are shared across
code in several files

98

externextern in Multi-File projects in Multi-File projects

/*file1.c*/
#include <stdio.h>
int a =1, b = 2, c = 3; /* external variables */
int f(void);
int main (void)
{

printf(“%3d\n”, f());
printf(“%3d%3d%3d\n”, a, b, c);
return 0;

}

/*file2.c*/
int f(void)
{

extern int a; /* look for it elsewhere */
int b, c;
a = b = c = 4;
return (a + b + c);

} return 12

a is global and changed by f

print 4, 2, 3

b and c are local and don‘t survive

● compile as: gcc file1.c file2.c –o prog

99

staticstatic
● Static variables are local variables that keep their previous value when

the block is reentered. A declaration
● static int cnt = 0;
will set cnt to zero the first time the function is used; thereafter, it will
retain its value from previous iterations.

● This can be useful, e.g., for debugging: you can insert code like this
anywhere without interfering with the rest of the program

● The variable cnt is local to the block and won’t interfere with another
variable of the same name elsewhere in an outer block; it just
increases by one every time this block is encountered.

● static can be also applied to global variables, it means, that they are
local to a file and inaccessible from the other files

● If not initialized explicitly, static and global variables are initialized to 0

{ /* debugging starts here */
 static int cnt = 0;
 printf(“*** debug: cnt = %d, v = %d\n”,++cnt, v);
}

100

RecursionRecursion

● To understand recursion, you must first understand
recursion.

● A function is called recursive if it calls itself, either directly or
indirectly.

● In C, all functions can be used recursively.
● Example:

● If you don‘t want to generate an infinite loop, you must
provide a condition to end the recursion (here n<=1), which
is eventually met.

● Recursion is often inefficient as it requires many function
calls.

int sum(int n)
{
 if (n <= 1)
 return n;
 else
 return (n + sum(n - 1));
}

101

Example: Fibonacci NumbersExample: Fibonacci Numbers

● A recursive function for Fibonacci numbers
(0,1,1,2,3,5,8,13...)

● 1.4 x 109 function calls needed to find the 43rd Fibonacci
number! (which has the value 433494437)

● If possible, it is better to write iterative functions

int fibonacci(int n)
{

if (n <= 1)
 return n;
else
 return (fibonacci(n-1) + fibonacci(n-2));

}

int factorial (int n) /* iterative version */
{
 int product = 1;

for (; n > 1; --n)
product *= n;

return product;
}

102

AssertionsAssertions

● If you include the directive
● #include <assert.h>

you can use the “assert” macro: this aborts the program if
an assertion is not true.

● You can disable assertions if you #define NDEBUG
#include <assert.h>
#include <stdio.h>

int f(int a, int b);

int main(void)
{

int a, b, c;
.....
scanf(“%d%d”, &a, &b);
.....
c = f(a,b);
assert(c > 0);/* an assertion */
.....

}

