
1

IceIce

The Internet Communications Engine



2

Object-oriented MiddlewareObject-oriented Middleware

● Used by the computing industry since  the mid-nineties
● The middleware platform takes care of the majority of 

networking chores
● Marshaling and unmarshaling
● Mapping logical object addresses to physical transport 

endpoints
● Changing the representation of data according to the native 

machine architecture
● Automatically starting servers on demand.



3

Object-oriented MiddlewareObject-oriented Middleware

● Binary protocols
● DCOM - a Microsoft-only solution, superceded by .NET

● Scales badly to large numbers (hundreds of thousands or millions) of 
objects, largely due to the overhead of its distributed garbage collection 
mechanism.

● CORBA - available from a variety of vendors, standardized by OMG
● Some problems with interoperability
● Excessive complexity

● XML based, standardized by w3c
● SOAP (Simple Object Access Protocol)

● Very serious performance penalties on applications, both in terms of 
network bandwidth and CPU overhead

● Lack of higher-level abstractions
● REST (Representational State Transfer) 

● Data access



4

The Internet Communications EngineThe Internet Communications Engine

● Developed by ZeroC, Inc.
● The main design goals of Ice:

● Provide an object-oriented middleware platform suitable 
for use in heterogeneous environments.

● Provide a full set of features that support development of 
realistic distributed applications for a wide variety of 
domains.

● Avoid unnecessary complexity, making the platform easy 
to learn and to use.

● Provide an implementation that is efficient in network 
bandwidth, memory use, and CPU overhead.

● Provide an implementation that has built-in security, 
making it suitable for use over insecure public networks.



5

The Ice ArchitectureThe Ice Architecture

● Clients and Servers
● Clients are active entities. They issue requests for service to 

servers.
● Servers are passive entities. They provide services in response 

to client requests.



6

Ice ObjectsIce Objects

● An Ice object is an entity in the local or a remote address space 
that can respond to client requests.

● A single Ice object can be instantiated in a single server or, 
redundantly, in multiple servers.

● Each Ice object has one or more interfaces. 
● An interface is a collection of named operations that are supported 

by an object.
● Clients issue requests by invoking operations.

● An operation has zero or more parameters as well as a return 
value.
● Parameters and return values have a specific type.
● Parameters are named and have a direction: 

● in-parameters are initialized by the client and passed to the server;
● out-parameters are initialized by the server and passed to the client.



7

Ice ObjectsIce Objects

● An Ice object has a distinguished interface, known as its 
main interface. 

● An Ice object can provide zero or more alternate interfaces, 
known as facets.
● Clients can select among the facets of an object to choose the 

interface they want to work with.
● Each Ice object has a unique object identity.

● An object’s identity is an identifying value that distinguishes the 
object from all other objects. 

● The Ice object model assumes that object identities are globally 
unique.



8

ProxiesProxies

● For a client to be able to contact an Ice object, the client 
must hold a proxy for the Ice object.
● A proxy is an artifact that is local to the client’s address space; 

it represents the (possibly remote) Ice object for the client. 
● A proxy acts as the local ambassador for an Ice object: when 

the client invokes an operation on the proxy, the Ice run time:
● Locates the Ice object
● Activates the Ice object’s server if it is not running
● Activates the Ice object within the server
● Transmits any in-parameters to the Ice object
● Waits for the operation to complete
● Returns any out-parameters and the return value to the client 

● or throws an exception in case of an error



9

ServantsServants

● An Ice object is a conceptual entity that has a type, identity, 
and addressing information.

● Client requests ultimately must end up with a concrete 
server-side processing entity that can provide the behavior 
for an operation invocation.

● The server-side artifact that provides behavior for operation 
invocations is known as a servant.
● A servant provides substance for (or incarnates) one or more 

Ice objects.
● It is simply an instance of a class that is written by the server 

developer and that is registered with the server-side run time as 
the servant for one or more Ice objects.

● Methods on the class correspond to the operations on the Ice 
object’s interface and provide the behavior for the operations.



10

At-Most-Once SemanticsAt-Most-Once Semantics

● Ice requests have at-most-once semantics
● The Ice run time does its best to deliver a request to the correct 

destination and, depending on the exact circumstances, may 
retry a failed request.

● Ice guarantees that it will either:
● Deliver the request
● Inform the client with an appropriate exception that it cannot 

deliver the request
● Under no circumstances is a request delivered twice



11

Different Ways of Method InvocationDifferent Ways of Method Invocation

● Synchronous Method Invocation
● Asynchronous Method Invocation
● Oneway Method Invocation
● Batched Oneway Method Invocation
● Datagram Invocations
● Batched Datagram Invocations



12

SliceSlice

● Specification Language for Ice
● Each Ice object has an interface with a number of 

operations. Interfaces, operations, and the types of data that 
are exchanged between client and server are defined using 
the Slice language. 

● Slice allows you to define the client-server contract in a way 
that is independent of a specific programming language, 
such as C++, Java, or C#. 

● The Slice definitions are compiled by a compiler into an API 
for a specific programming language, that is, the part of the 
API that is specific to the interfaces and types you have 
defined consists of generated code.



13

Language MappingsLanguage Mappings

● The rules that govern how each Slice construct is translated 
into a specific programming language are known as 
language mappings.
● For the C++ mapping a Slice sequence appears as an STL 

vector
● For the Java mapping a Slice sequence appears as a Java 

array.
● In order to determine what the API for a specific Slice 

construct looks like, you only need the Slice definition and 
knowledge of the language mapping rules.

● The rules are simple and regular enough to make it 
unnecessary to read the generated code to work out how to 
use the generated API.



14

  Client and Server StructureClient and Server Structure



15

The Ice ProtocolThe Ice Protocol
● Ice provides an RPC protocol that can use either TCP/IP or 

UDP as an underlying transport.
● Ice also allows you to use SSL as a transport, so all 

communication between client and server is encrypted.
● The Ice protocol defines:

● A number of message types, such as request and reply 
message types,

● A protocol state machine that determines in what sequence 
different message types are exchanged by client and server, 
together with the associated connection establishment and 
tear-down semantics for TCP/IP,

● Encoding rules that determine how each type of data is 
represented on the wire,

● A header for each message type that contains details such as 
the message type, the message size, and the protocol and 
encoding version in use.



16

The Ice ProtocolThe Ice Protocol

● Ice supports compression on the wire: by setting a 
configuration parameter, you can arrange for all network 
traffic to be compressed to conserve bandwidth.

● The Ice protocol is suitable for building highly-efficient event 
forwarding mechanisms as it permits forwarding of a 
message without knowledge of the details of the information 
inside a message.

● The Ice protocol also supports bidirectional operation: if a 
server wants to send a message to a callback object 
provided by the client, the callback can be made over the 
connection that was originally created by the client.



17

Ice ServicesIce Services
● Freeze

● Built-in object persistence service.
● IceGrid

● Ice location service that resolves the symbolic information in an 
indirect proxy to a protocol – address pair for indirect binding.

● IceBox
● A simple application server that can orchestrate the starting 

and stopping of a number of application components
● IceStorm

● A publish–subscribe service that decouples clients and 
servers.

● IcePatch2
● A software patching service.

● Glacier2
● The Ice firewall traversal service.



18

Architectural Benefits of IceArchitectural Benefits of Ice

● Object-oriented semantics
● Support for synchronous and asynchronous messaging
● Support for multiple interfaces
● Machine independence
● Language independence
● Implementation independence
● Operating system independence
● Threading support
● Transport independence
● Location and server transparency
● Security
● Built-in persistence
● Source code availability



19

A Hello World ApplicationA Hello World Application

// Printer.ice
module Demo {
    interface Printer {
        void printString(string s);
    };
};

// Printer.ice
module Demo {
    interface Printer {
        void printString(string s);
    };
};

$ slice2cpp Printer.ice

● The slice2cpp compiler produces two C++ source files from this definition, 
Printer.h and Printer.cpp.
● Printer.h - C++ type definitions that correspond to the Slice definitions for our 

Printer interface.
● This header file must be included in both the client and the server source code.

● Printer.cpp  - the source code for our Printer interface.
● The generated source contains type-specific run-time support for both clients 

and servers.



20

The ServerThe Server

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer {
public:
  virtual void printString(const string& s,
                           const Ice::Current&);
};

void 
PrinterI::
printString(const string& s, 
            const Ice::Current&)
{
  cout << s << endl;
}

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer {
public:
  virtual void printString(const string& s,
                           const Ice::Current&);
};

void 
PrinterI::
printString(const string& s, 
            const Ice::Current&)
{
  cout << s << endl;
}

int
main(int argc, char* argv[])
{
  int status = 0;
  Ice::CommunicatorPtr ic;
  try {
      ic = Ice::initialize(argc, argv);
      Ice::ObjectAdapterPtr adapter
        = ic->createObjectAdapterWithEndpoints(
              "SimplePrinterAdapter",
              "default -p 10000");
      Ice::ObjectPtr object = new PrinterI;
      adapter->add(object,
        ic->stringToIdentity("SimplePrinter"));
      adapter->activate();
      ic->waitForShutdown();
  } catch (const Ice::Exception& e) {
      cerr << e << endl;
      status = 1;
  } catch (const char* msg) {
      cerr << msg << endl;
      status = 1;
  }
  if (ic) {
      try {
          ic->destroy();
      } catch (const Ice::Exception& e) {
          cerr << e << endl;
          status = 1;
      }
  }
  return status;
}

int
main(int argc, char* argv[])
{
  int status = 0;
  Ice::CommunicatorPtr ic;
  try {
      ic = Ice::initialize(argc, argv);
      Ice::ObjectAdapterPtr adapter
        = ic->createObjectAdapterWithEndpoints(
              "SimplePrinterAdapter",
              "default -p 10000");
      Ice::ObjectPtr object = new PrinterI;
      adapter->add(object,
        ic->stringToIdentity("SimplePrinter"));
      adapter->activate();
      ic->waitForShutdown();
  } catch (const Ice::Exception& e) {
      cerr << e << endl;
      status = 1;
  } catch (const char* msg) {
      cerr << msg << endl;
      status = 1;
  }
  if (ic) {
      try {
          ic->destroy();
      } catch (const Ice::Exception& e) {
          cerr << e << endl;
          status = 1;
      }
  }
  return status;
}

$ g++ -I. Printer.cpp Server.cpp -lIce



21

The ClientThe Client
#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy(
                                "SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy(
                                "SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

$ g++ -I. Printer.cpp Client.cpp -lIce


