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The Internet Communications Engine
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Object-oriented MiddlewareObject-oriented Middleware

● Used by the computing industry since  the mid-nineties
● The middleware platform takes care of the majority of 

networking chores
● Marshaling and unmarshaling
● Mapping logical object addresses to physical transport 

endpoints
● Changing the representation of data according to the native 

machine architecture
● Automatically starting servers on demand.
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Object-oriented MiddlewareObject-oriented Middleware

● Binary protocols
● DCOM - a Microsoft-only solution, superceded by .NET

● Scales badly to large numbers (hundreds of thousands or millions) of 
objects, largely due to the overhead of its distributed garbage collection 
mechanism.

● CORBA - available from a variety of vendors, standardized by OMG
● Some problems with interoperability
● Excessive complexity

● XML based, standardized by w3c
● SOAP (Simple Object Access Protocol)

● Very serious performance penalties on applications, both in terms of 
network bandwidth and CPU overhead

● Lack of higher-level abstractions
● REST (Representational State Transfer) 

● Data access
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The Internet Communications EngineThe Internet Communications Engine

● Developed by ZeroC, Inc.
● The main design goals of Ice:

● Provide an object-oriented middleware platform suitable 
for use in heterogeneous environments.

● Provide a full set of features that support development of 
realistic distributed applications for a wide variety of 
domains.

● Avoid unnecessary complexity, making the platform easy 
to learn and to use.

● Provide an implementation that is efficient in network 
bandwidth, memory use, and CPU overhead.

● Provide an implementation that has built-in security, 
making it suitable for use over insecure public networks.
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The Ice ArchitectureThe Ice Architecture

● Clients and Servers
● Clients are active entities. They issue requests for service to 

servers.
● Servers are passive entities. They provide services in response 

to client requests.
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Ice ObjectsIce Objects

● An Ice object is an entity in the local or a remote address space 
that can respond to client requests.

● A single Ice object can be instantiated in a single server or, 
redundantly, in multiple servers.

● Each Ice object has one or more interfaces. 
● An interface is a collection of named operations that are supported 

by an object.
● Clients issue requests by invoking operations.

● An operation has zero or more parameters as well as a return 
value.
● Parameters and return values have a specific type.
● Parameters are named and have a direction: 

● in-parameters are initialized by the client and passed to the server;
● out-parameters are initialized by the server and passed to the client.
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Ice ObjectsIce Objects

● An Ice object has a distinguished interface, known as its 
main interface. 

● An Ice object can provide zero or more alternate interfaces, 
known as facets.
● Clients can select among the facets of an object to choose the 

interface they want to work with.
● Each Ice object has a unique object identity.

● An object’s identity is an identifying value that distinguishes the 
object from all other objects. 

● The Ice object model assumes that object identities are globally 
unique.
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ProxiesProxies

● For a client to be able to contact an Ice object, the client 
must hold a proxy for the Ice object.
● A proxy is an artifact that is local to the client’s address space; 

it represents the (possibly remote) Ice object for the client. 
● A proxy acts as the local ambassador for an Ice object: when 

the client invokes an operation on the proxy, the Ice run time:
● Locates the Ice object
● Activates the Ice object’s server if it is not running
● Activates the Ice object within the server
● Transmits any in-parameters to the Ice object
● Waits for the operation to complete
● Returns any out-parameters and the return value to the client 

● or throws an exception in case of an error
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ServantsServants

● An Ice object is a conceptual entity that has a type, identity, 
and addressing information.

● Client requests ultimately must end up with a concrete 
server-side processing entity that can provide the behavior 
for an operation invocation.

● The server-side artifact that provides behavior for operation 
invocations is known as a servant.
● A servant provides substance for (or incarnates) one or more 

Ice objects.
● It is simply an instance of a class that is written by the server 

developer and that is registered with the server-side run time as 
the servant for one or more Ice objects.

● Methods on the class correspond to the operations on the Ice 
object’s interface and provide the behavior for the operations.
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At-Most-Once SemanticsAt-Most-Once Semantics

● Ice requests have at-most-once semantics
● The Ice run time does its best to deliver a request to the correct 

destination and, depending on the exact circumstances, may 
retry a failed request.

● Ice guarantees that it will either:
● Deliver the request
● Inform the client with an appropriate exception that it cannot 

deliver the request
● Under no circumstances is a request delivered twice
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Different Ways of Method InvocationDifferent Ways of Method Invocation

● Synchronous Method Invocation
● Asynchronous Method Invocation
● Oneway Method Invocation
● Batched Oneway Method Invocation
● Datagram Invocations
● Batched Datagram Invocations
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SliceSlice

● Specification Language for Ice
● Each Ice object has an interface with a number of 

operations. Interfaces, operations, and the types of data that 
are exchanged between client and server are defined using 
the Slice language. 

● Slice allows you to define the client-server contract in a way 
that is independent of a specific programming language, 
such as C++, Java, or C#. 

● The Slice definitions are compiled by a compiler into an API 
for a specific programming language, that is, the part of the 
API that is specific to the interfaces and types you have 
defined consists of generated code.
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Language MappingsLanguage Mappings

● The rules that govern how each Slice construct is translated 
into a specific programming language are known as 
language mappings.
● For the C++ mapping a Slice sequence appears as an STL 

vector
● For the Java mapping a Slice sequence appears as a Java 

array.
● In order to determine what the API for a specific Slice 

construct looks like, you only need the Slice definition and 
knowledge of the language mapping rules.

● The rules are simple and regular enough to make it 
unnecessary to read the generated code to work out how to 
use the generated API.
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  Client and Server StructureClient and Server Structure
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The Ice ProtocolThe Ice Protocol
● Ice provides an RPC protocol that can use either TCP/IP or 

UDP as an underlying transport.
● Ice also allows you to use SSL as a transport, so all 

communication between client and server is encrypted.
● The Ice protocol defines:

● A number of message types, such as request and reply 
message types,

● A protocol state machine that determines in what sequence 
different message types are exchanged by client and server, 
together with the associated connection establishment and 
tear-down semantics for TCP/IP,

● Encoding rules that determine how each type of data is 
represented on the wire,

● A header for each message type that contains details such as 
the message type, the message size, and the protocol and 
encoding version in use.
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The Ice ProtocolThe Ice Protocol

● Ice supports compression on the wire: by setting a 
configuration parameter, you can arrange for all network 
traffic to be compressed to conserve bandwidth.

● The Ice protocol is suitable for building highly-efficient event 
forwarding mechanisms as it permits forwarding of a 
message without knowledge of the details of the information 
inside a message.

● The Ice protocol also supports bidirectional operation: if a 
server wants to send a message to a callback object 
provided by the client, the callback can be made over the 
connection that was originally created by the client.
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Ice ServicesIce Services
● Freeze

● Built-in object persistence service.
● IceGrid

● Ice location service that resolves the symbolic information in an 
indirect proxy to a protocol – address pair for indirect binding.

● IceBox
● A simple application server that can orchestrate the starting 

and stopping of a number of application components
● IceStorm

● A publish–subscribe service that decouples clients and 
servers.

● IcePatch2
● A software patching service.

● Glacier2
● The Ice firewall traversal service.
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Architectural Benefits of IceArchitectural Benefits of Ice

● Object-oriented semantics
● Support for synchronous and asynchronous messaging
● Support for multiple interfaces
● Machine independence
● Language independence
● Implementation independence
● Operating system independence
● Threading support
● Transport independence
● Location and server transparency
● Security
● Built-in persistence
● Source code availability
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A Hello World ApplicationA Hello World Application

// Printer.ice
module Demo {
    interface Printer {
        void printString(string s);
    };
};

// Printer.ice
module Demo {
    interface Printer {
        void printString(string s);
    };
};

$ slice2cpp Printer.ice

● The slice2cpp compiler produces two C++ source files from this definition, 
Printer.h and Printer.cpp.
● Printer.h - C++ type definitions that correspond to the Slice definitions for our 

Printer interface.
● This header file must be included in both the client and the server source code.

● Printer.cpp  - the source code for our Printer interface.
● The generated source contains type-specific run-time support for both clients 

and servers.
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The ServerThe Server

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

class PrinterI : public Printer {
public:
  virtual void printString(const string& s,
                           const Ice::Current&);
};

void 
PrinterI::
printString(const string& s, 
            const Ice::Current&)
{
  cout << s << endl;
}
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{
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int
main(int argc, char* argv[])
{
  int status = 0;
  Ice::CommunicatorPtr ic;
  try {
      ic = Ice::initialize(argc, argv);
      Ice::ObjectAdapterPtr adapter
        = ic->createObjectAdapterWithEndpoints(
              "SimplePrinterAdapter",
              "default -p 10000");
      Ice::ObjectPtr object = new PrinterI;
      adapter->add(object,
        ic->stringToIdentity("SimplePrinter"));
      adapter->activate();
      ic->waitForShutdown();
  } catch (const Ice::Exception& e) {
      cerr << e << endl;
      status = 1;
  } catch (const char* msg) {
      cerr << msg << endl;
      status = 1;
  }
  if (ic) {
      try {
          ic->destroy();
      } catch (const Ice::Exception& e) {
          cerr << e << endl;
          status = 1;
      }
  }
  return status;
}
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$ g++ -I. Printer.cpp Server.cpp -lIce
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The ClientThe Client
#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy(
                                "SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

#include <Ice/Ice.h>
#include <Printer.h>

using namespace std;
using namespace Demo;

int
main(int argc, char* argv[])
{
    int status = 0;
    Ice::CommunicatorPtr ic;
    try {
        ic = Ice::initialize(argc, argv);
        Ice::ObjectPrx base = ic->stringToProxy(
                                "SimplePrinter:default -p 10000");
        PrinterPrx printer = PrinterPrx::checkedCast(base);
        if (!printer)
            throw "Invalid proxy";

        printer->printString("Hello World!");
    } catch (const Ice::Exception& ex) {
        cerr << ex << endl;
        status = 1;
    } catch (const char* msg) {
        cerr << msg << endl;
        status = 1;
    }
    if (ic)
        ic->destroy();
    return status;
}

$ g++ -I. Printer.cpp Client.cpp -lIce


