

GPUs

Graphics Processing Units (GPUs) were originally designed
to accelerate graphics tasks like image rendering.

* They became very very popular with videogamers, because
they’'ve produced better and better images, and lightning
fast.

* And, prices have been extremely good, ranging from three
figures at the low end to four figures at the high end.

GPUs are Popular

 Chips are expensive to design (hundreds of millions of $$3),
expensive to build the factory for (billions of $$3$), but cheap
to produce.

* In 2006 — 2007, GPUs sold at a rate of about 80 million
cards per year, generating about $20 billion per year in
revenue.

* http://www.xbitlabs.com/news/video/display/20080404234228 Shipments_of Discrete Graphics_Cards_on_the Rise but_Pric
es_Down_Jon_Peddie Research.html

* This means that the GPU companies have been able to
recoup the huge fix costs.

GPU Do Arithmetic

 GPUs mostly do stuff like rendering images.

* This is done through mostly floating point arithmetic — the
same stuff people use supercomputing for!

GPU vs. CPU

* A quiet revolution and potential build-up
e Calculation: 900 GFLOPS vs. 100 GFLOPS
* Memory Bandwidth: 100 GB/s vs. 12 GB/s

Peak GFLOP/s

1000

750

500

250

NVIDIA GPU
==lp==|ntel CPU G80
Ultra
G80
GT71
G70
Nvss V4O 3.0 GHz
NV30 e Core2 Duo
-0 o oo
Jan Jun Apr Jun Mar Nov May
2003 2004 2005 2006 2007

GT200

G92

3.2 GHz
Harpertown

Jun
2008

GT200 = GeForce GTX 280
G92 = GeForce 9800 GTX
G80 = GeForce 8800 GTX

G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX

NV40 = GeForce 6800 Ultra

NV35 = GeForce FX 5950 Ultra
NV30 = GeForce FX 5800

120

100

80

Bandwidth
GBfs 60

40

20

G80
Ultra
P
G80
.-‘l) :
G71 . /
l'.;k
NV40 7
,;-:.‘l Harpertown
Woodcrest
’ Prescott EE
¥ Northwood _.____,.._.—-——'—"
(-
2003 2004 2005 2008 2007

CPU vs. GPU

* The GPU devotes more transistors to data processing

 GPU is particularly effective for programs with high
compute-to-memory-access ratio

Control ALU ALU

ALU ALU

CPU

EEEENNEE

Hard to Program?

* In the olden days — that is, until just the last few years —
programming GPUs meant either:

e using a graphics standard like OpenGL (which is mostly meant
for rendering), or

* getting fairly deep into the graphics rendering pipeline.
* To use a GPU to do general purpose number crunching, you
had to make your number crunching pretend to be graphics.

* This was hard. So most people didn’t bother.

Easy to Program?

* More recently, GPU manufacturers have worked hard to
make GPUs easier to use for general purpose computing.

* This is known as General Purpose Graphics Processing
Units.

How to Program a GPU

 Part of the program is executed on CPU, part - the kernel -
on GPU.

* Proprietary programming language or extensions
* NVIDIA: CUDA (C/C++)
 AMD/ATI: StreamSDK/Brook+ (C/C++)

* OpenCL (Open Computing Language): an industry standard
for doing number crunching on GPUs.

 Portland Group Fortran and C compilers with accelerator
directives.

NVIDIA CUDA

C Program
Sequential
Execution
1 d Host j
Parallel kernel Device
eeeee 10<<<>>> () Grid 0

* NVIDIA proprietary

* Formerly known as “Compute
Unified Device Architecture” S e

» Extensions to C to allow better
control of GPU capabilities i

* Modest extensions but major
rewriting of the code om0

 No Fortran version available

Block (0, 0) Block (1, 0) | Block (2, 0)

Block (0, 0) Block (1, 0)

Block (0, 1) Block (1, 1)

Block (0, 2) Block (1, 2)

CUDA Example

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global void square_array(float *a, int N)
{
int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main (void)
{
float *a h, *a d; // Pointer to host & device arrays
const int N = 10; // Number of elements in arrays
size t size = N * sizeof(float);
a h = (float *)malloc(size); // Allocate array on host
cudaMalloc((void **) &a d, size); // Allocate array on device
// Initialize host array and copy it to CUDA device
for (int i=0; i<N; i++) a h[i] = (float)i;
cudaMemcpy (a_d, a_h, size, cudaMemcpyHostToDevice) ;
// Do calculation on device:
int block_size = 4;
int n blocks = N/block size + (N%¥block size == 0 ? 0:1);
square array <<< n blocks, block size >>> (a_d, N);
// Retrieve result from device and store it in host array
cudaMemcpy (a_h, a d, sizeof(float)*N, cudaMemcpyDeviceToHost) ;
// Print results
for (int i=0; i<N; i++) printf("%d %$£f\n", i, a h[i]);
// Cleanup
free(a_h); cudaFree(a_d);

http://llpanorama.wordpress.com/2008/05/2fmyst-cuda-program/

11

AMD/ATI Brook+

 AMD/ATI proprietary

* Formerly known as “Close to Metal” (CTM)

« Extensions to C to allow better control of GPU capabilities
 No Fortran version available

12

Brook+ Example

float4 matmult kernel (int y, int x, int k,
float4 MO[], float4 M1[])

{
float4 total = 0;
for (int ¢ = 0; ¢ < k / 4; c++)
{
total += MO[y][c] * M1l[x][c];
}
return total;
}

void matmult (floatd4 A[], floatd B’'[], floatd CI[])
{ for (int 1 = 0; 1 < n; i++)
{ for (j = 0; j <m / 4; j+)
{ launch thread{C[i][j] = matmult kernel(j, i, k, A, B’);}
}

}
sync_threads{}

http://developer.amd.com/gpu assets/Stream Computing Overvifew.pd

13

OpenCL

* Open Computing Language
* Open standard developed by the Khronos Group, which is a

consortium of many companies (including NVIDIA, AMD and
Intel, but also lots of others)

e |nitial version of OpenCL standard released in Dec 2008.

 Many companies will create their own implementations.
* Apple, Nvidia, AMD/ATI

14

OpenCL Example (1/2)

// create a compute context with GPU device

context = clCreateContextFromType (0, CL DEVICE TYPE GPU, NULL, NULL, NULL);

// create a work-queue

queue = clCreateWorkQueue (context, NULL, NULL, O);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer (context, CL MEM READ ONLY | CL MEM COPY HOST PTR,
sizeof (float) *2*num entries, srci);

memobjs[l] = clCreateBuffer (context, CL MEM READ WRITE, sizeof (float)*2*num entries, NULL);

// create the compute program

program = clCreateProgramFromSource (context, 1, &fftlD 1024 kernel src, NULL);

// build the compute program executable

clBuildProgramExecutable (program, false, NULL, NULL);

// create the compute kernel

kernel = clCreateKernel (program, "fftlD 1024");

// create N-D range object with work-item dimensions

global work size[0] = num entries;

local work size[0] = 64;

range = clCreateNDRangeContainer (context, 0, 1, global work size, local work size);

// set the args values

clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl mem), NULL);

clSetKernelArg(kernel, 1, (void *)&memobjs[l], sizeof(cl _mem), NULL);

clSetKernelArg(kernel, 2, NULL, sizeof(float)*(local work size[0]+1l)*16, NULL);

clSetKernelArg(kernel, 3, NULL, sizeof(float)* (local work size[0]+1l)*16, NULL);

// execute kernel

clExecuteKernel (queue, kernel, NULL, range, NULL, 0, NULL);

http://en.wikipedia.org/wiki/OpenCL#Example

15

OpenCL Example (2/2)

// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into
// calls to a radix 16 function, another radix 16 function and then a radix 4 function

__kernel void fftlD 1024 (_ global float2 *in, _ global float2 *out,
__local float *sMemx, _ local float *sMemy) ({

int tid = get _local id(0);
int blocklIdx = get _group id(0) * 1024 + tid;
float2 data[l6];
// starting index of data to/from global memory
in = in + blockIdx; out = out + blockIdx;
globalloads (data, in, 64); // coalesced global reads
fftRadixl6Pass (data) ; // in-place radix-16 pass
twiddleFactorMul (data, tid, 1024, 0);
// local shuffle using local memory
localShuffle (data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
fftRadixl6Pass (data) ; // in-place radix-16 pass
twiddleFactorMul (data, tid, 64, 4); // twiddle factor multiplication
localShuffle (data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));
// four radix-4 function calls
fftRadix4Pass (data) ; // radix-4 function number
fftRadix4Pass(data + 4); // radix-4 function number
fftRadix4Pass (data + 8); // radix-4 function number
fftRadix4Pass (data + 12); // radix-4 function number
// coalesced global writes
globalStores (data, out, 64);

= WK

16

Portland Group Accelerator Directives

* Proprietary directives in Fortran and C
e Similar to OpenMP in structure
« Currently in beta release

* |f the compiler doesn’t understand these directives, it
ignores them, so the same code can work with an
accelerator or without, and with the PG| compilers or other
compilers.

* In principle, this will be able to work on a variety of
accelerators, but the first instance will be NVIDIA; PGI
recently announced a deal with AMD/ATI.

* The directives tell the compiler what parts of the code
happen in the accelerator; the rest happens in the regular
hardware.

17

Portland Group Accelerator Directives Example

!Sacc region
do k = 1,nl
do i = 1,n3
c(i,k) = 0.0

do j = 1,n2
c(i,k) = c(i,k) + a(i,j) * b(j, k)
enddo
enddo

enddo
!$Sacc end region

http:/Mww.pgroup.com/resources/accel.htm

18

NVIDIA Tesla

* NVIDIA now offers a GPU platform named Tesla.

* |t consists of their highest end graphics card, minus the
video out connector.

 This cuts the cost of the GPU card roughly in half: Quadro
FX 5800 is ~$3000, Tesla C1060 is ~$1500 (Q1 2009).

19

NVIDIA Tesla C1060 Card Specs

e 240 GPU cores |
e 1.296 GHz "y

 Single precision floating point performance: 933 GFLOPs (3
single precision flops per clock per core)

* Double precision floating point performance: 78 GFLOPs
(0.25 double precision flops per clock per core)

e Internal RAM: 4 GB

* Internal RAM speed: 102 GB/sec (compared 21-25 GB/sec
for reqular RAM)

* Has to be plugged into a PCle slot (at most 8 GB/sec)

20

NVIDIA Tesla S1070 Server Specs

e 4 C1060 cards inside a 1U server
e Available in both 1.296 GHz and 1.44 GHz

 Single Precision (SP) floating point performance:
3732 GFLOPs (1.296 GHz) or 4147 GFLOPs (1.44 GHz)

* Double Precision (DP) floating point performance:
311 GFLOPs (1.296 GHz) or 345 GFLOPs (1.44 GHz)

* Internal RAM: 16 GB total (4 GB per GPU card)
* Internal RAM speed: 408 GB/sec aggregate

N

21

Compare x86 vs S1070

Let's compare the best dual socket x86 server today vs S1070.

Dual socket, Intel | NVIDIA Tesla S1070
2.66 hex core

Peak DP FLOPs 128 GFLOPs DP | 345 GFLOPs DP (2.7x)
Peak SP FLOPS 256 GFLOPs SP | 4147 GFLOPs SP (16.2x)

Peak RAM BW 17 GB/sec 408 GB/sec (24x)
Peak PCle BW N/A 16 GB/sec

Needs x86 server to | No Yes

attach to?

Power/Heat ~400 W ~800 W +~400 W (3x)
Code portable? Yes No (CUDA)

Yes (PGIL OpenCL)

http://oscer.ou.edu/Workshops/GPGPU/sipe gpgpu 20090428 .ppt

Compare x86 vs S1070

Here are some interesting measures:

Dual socket, Intel | NVIDIA Tesla S1070

2.66 hex core
DP GFLOPs/Watt | ~0.3 GFLOPs/Watt| ~0.3 GFLOPs/Watt (same)
SP GFLOPS/Watt | 0.64 GFLOPs/Watt| ~3.5 GFLOPs (~5x)
DP GFLOPs/sq ft | ~340 GFLOPs/sq ft| ~460 GFLOPs/sq ft (1.3x)
SP GFLOPs/sq ft | ~680 GFLOPs/sq ft| ~5500 GFLOPs/sq ft (8x)
Racks per PFLOP | 244 racks/PFLOP | 181 racks/PFLOP (3/4)
DP DP DP
Racks per PFLOP | 122 racks/PFLOP | 15 racks/PFLOP (1/8)
SP SP SP

http:

//oscer.ou.edu/Workshops/GPGPU/sipe gpgpu 20090428 .ppt

What Are the Downsides?

* You have to rewrite your code into CUDA or OpenCL or PGI
accelerator directives.

 CUDA: Proprietary, C/C++ only
* OpenCL: portable but cumbersome

* PGI accelerator directives: not clear whether you can have
most of the code live inside the GPUs.

24

Programming for Performance

» The biggest single performance bottleneck on GPU cards
today is the PCle slot:

 PCle 2.0 x16: 8 GB/sec

1600 MHz Front Side Bus: 25 GB/sec

« GDDR3 GPU card RAM: 102 GB/sec per card
* Your goal:

« At startup, move the data from x86 server RAM into GPU RAM.
Do almost all the work inside the GPU.

* Use the x86 server only for I/O and message passing, to
minimize the amount of data moved through the PCle slot.

25

Does CUDA Help?

Example Applications URL Speedup
Seismic Database http://www.headwave.com 66x — 100x
Mobile Phone Antenna Simulation http://www.accelware.com 45x
Molecular Dynamics http://www .ks.uiuc.edu/Research/vmd 21x — 100x
Neuron Simulation http://www .evolvedmachines.com 100x
MRI Processing http://bic-test.beckman.uiuc.edu 245x — 415x
Atmospheric Cloud Simulation | http://www.cs.clemson.edu/~jesteel/clouds.html 50x

http://www.nvidia.com/object/I0 43499.html

26

G80 Architecture — Graphics Mode

« Unlike the previous versions, which have had separate vertex,
geometry and pixel processors, G80 employs a unified architecture

« GeForce 8800 is composed of 681 million transistors

27

G380 Architecture — Computation Mode

* Processors execute computing threads
* New operating mode/HW interface for computing

Stream
Multiprocessor

Host

v

Input Assembler

[Texturd |

|

Parallel Data | Parallel Data Parallel Data
Cache Cache Cache
Hrexurd Hrexturd:HfHrexurd |

\ 4 \ 4 v \4
HE R | T I
H NN N I I
HNnn N | O
NN N N | O
Parallel Data

Cache

Parallel Data | Parallel Data
Cache Cache
Hlrexurd Hf Hrexurd]

Parallel Datz
Cache
Hrexurd

28

The Multiprocessor

e A multiprocessor consists of
eight Scalar Processor (SP)
cores, two special function
units for transcendentals, a
multithreaded instruction unit,
and on-chip shared memory.

* The multiprocessor creates,
manages, and executes
concurrent threads in hardware

with zero scheduling overhead. _

29

The Warps

Thread Block

« Running threads are divided into gzggggj
blocks, which share the multiprocessor
and can exchange data through the

Per-block shared
memory

YyYYyYYyYyvy

A A& A

local memory Grid 0

* Multiprocessor employs a new Block (0. 0), || Block (1, 0) | Mock (2 0)
architecture we call SIMT (single- ggggggg gggggﬁ% gggggggg
instruction, multiple-thread). Block (0, 1) Block (1,1) Block (2, 1) |

« The multiprocessor maps each thread to
one scalar processor core, and each R
scalar thread executes independently clobal memory

with its own instruction address and B S
register state.
« The multiprocessor SIMT unit creates, PSS :
manages, schedules, and executes
threads in groups of 32 parallel threads Block (0, 2) Block (1, 2)
called warps. ggggg ggggg

30

The Mapping Between Blocks and SMs

I

Device with 2 SMs

!

SM 1

Device with 4 SMs

SM 2

SM 3

31

The Warps

 Individual threads composing a SIMT warp start together at the same
program address but are otherwise free to branch and execute
independently.

 When a multiprocessor is given one or more thread blocks to execute,
it splits them into warps that get scheduled by the SIMT unit.

» Every instruction issue time, the SIMT unit selects a warp that is ready
to execute and issues the next instruction to the active threads of the
warp.

« A warp executes one common instruction at a time, so full efficiency is
realized when all 32 threads of a warp agree on their execution path.

* |f threads of a warp diverge via a datadependent conditional branch, the
warp serially executes each branch path taken, disabling threads that are
not on that path, and when all paths complete, the threads converge back
to the same execution path.

« Branch divergence occurs only within a warp; different warps execute
Independently regardless

32

Memory

« Each multiprocessor has on-chip memory of the four
following types:

* One set of local 32-bit registers per processor,

A parallel data cache or shared memory that is shared by all
scalar processor cores and is where the shared memory space

resides,

* A read-only constant cache that is shared by all scalar
processor cores and speeds up reads from the constant
memory space, which is a read-only region of device memory,

» A read-only texture cache that is shared by all scalar processor
cores and speeds up reads from the texture memory space,
which is a read-only region of device memory; each
multiprocessor accesses the texture cache via a texture unit
that implements the various addressing modes and data
filtering

33

Compute Capability

NVIDIA defines the computing capabilities of their devices by a number

G80 has a Compute Capability of 1.1:
 The maximum number of threads per block is 512;

 The maximum sizes of the x-, y-, and z-dimension of a thread block are 512, 512, and 64,
respectively;

 The maximum size of each dimension of a grid of thread blocks is 65535;
 The warp size is 32 threads;
* The number of registers per multiprocessor is 8192;

* The amount of shared memory available per multiprocessor is 16 KB organized into 16
banks;

» The total amount of constant memory is 64 KB;

* The total amount of local memory per thread is 16 KB;

» The cache working set for constant memory is 8 KB per multiprocessor;

» The cache working set for texture memory varies between 6 and 8 KB per multiprocessor;
* The maximum number of active blocks per multiprocessor is 8;

* The maximum number of active warps per multiprocessor is 24;

* The maximum number of active threads per multiprocessor is 768;

* The limit on kernel size is 2 millions of microcode instructions;

34

NVIDIA Fermi

« 512 Cores
* 40 nm technology

e First silicon produced at TSMC foundry in September 2009
with 2% yield (7 chips out of 416)

35

Fermi Architecture

e Each Fermi SM
Includes

e 32 cores,
* 16 load/store units,

o four special-function
units,

* a 32K-word register
file,

» 64K of configurable
RAM,

e thread control logic.

e Each core has both
floating-point and
integer execution
units.

36

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

