
GPGPU – A Supercomputer
on Your Desktop

2

GPUsGPUs

Graphics Processing Units (GPUs) were originally designed
to accelerate graphics tasks like image rendering.

● They became very very popular with videogamers, because
they’ve produced better and better images, and lightning
fast.

● And, prices have been extremely good, ranging from three
figures at the low end to four figures at the high end.

3

GPUs are PopularGPUs are Popular

● Chips are expensive to design (hundreds of millions of $$$),
expensive to build the factory for (billions of $$$), but cheap
to produce.

● In 2006 – 2007, GPUs sold at a rate of about 80 million
cards per year, generating about $20 billion per year in
revenue.
● http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Pric

es_Down_Jon_Peddie_Research.html

● This means that the GPU companies have been able to
recoup the huge fix costs.

4

GPU Do ArithmeticGPU Do Arithmetic

● GPUs mostly do stuff like rendering images.
● This is done through mostly floating point arithmetic – the

same stuff people use supercomputing for!

5

GPU vs. CPUGPU vs. CPU

● A quiet revolution and potential build-up
● Calculation: 900 GFLOPS vs. 100 GFLOPS
● Memory Bandwidth: 100 GB/s vs. 12 GB/s

6

CPU vs. GPUCPU vs. GPU

● The GPU devotes more transistors to data processing
● GPU is particularly effective for programs with high

compute-to-memory-access ratio

7

Hard to Program?Hard to Program?

● In the olden days – that is, until just the last few years –
programming GPUs meant either:
● using a graphics standard like OpenGL (which is mostly meant

for rendering), or
● getting fairly deep into the graphics rendering pipeline.

● To use a GPU to do general purpose number crunching, you
had to make your number crunching pretend to be graphics.

● This was hard. So most people didn’t bother.

8

Easy to Program?Easy to Program?

● More recently, GPU manufacturers have worked hard to
make GPUs easier to use for general purpose computing.

● This is known as General Purpose Graphics Processing
Units.

9

How to Program a GPUHow to Program a GPU

● Part of the program is executed on CPU, part - the kernel -
on GPU.

● Proprietary programming language or extensions
● NVIDIA: CUDA (C/C++)
● AMD/ATI: StreamSDK/Brook+ (C/C++)

● OpenCL (Open Computing Language): an industry standard
for doing number crunching on GPUs.

● Portland Group Fortran and C compilers with accelerator
directives.

10

NVIDIA CUDANVIDIA CUDA

● NVIDIA proprietary
● Formerly known as “Compute

Unified Device Architecture”
● Extensions to C to allow better

control of GPU capabilities
● Modest extensions but major

rewriting of the code
● No Fortran version available

11

CUDA ExampleCUDA Example
#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

#include <stdio.h>
#include <cuda.h>

// Kernel that executes on the CUDA device
__global__ void square_array(float *a, int N)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 if (idx<N) a[idx] = a[idx] * a[idx];
}
// main routine that executes on the host
int main(void)
{
 float *a_h, *a_d; // Pointer to host & device arrays
 const int N = 10; // Number of elements in arrays
 size_t size = N * sizeof(float);
 a_h = (float *)malloc(size); // Allocate array on host
 cudaMalloc((void **) &a_d, size); // Allocate array on device
 // Initialize host array and copy it to CUDA device
 for (int i=0; i<N; i++) a_h[i] = (float)i;
 cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);
 // Do calculation on device:
 int block_size = 4;
 int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);
 square_array <<< n_blocks, block_size >>> (a_d, N);
 // Retrieve result from device and store it in host array
 cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
 // Print results
 for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);
 // Cleanup
 free(a_h); cudaFree(a_d);
}

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/

12

AMD/ATI Brook+AMD/ATI Brook+

● AMD/ATI proprietary
● Formerly known as “Close to Metal” (CTM)
● Extensions to C to allow better control of GPU capabilities
● No Fortran version available

13

float4 matmult_kernel (int y, int x, int k,
 float4 M0[], float4 M1[])
{
 float4 total = 0;
 for (int c = 0; c < k / 4; c++)
 {
 total += M0[y][c] * M1[x][c];
 }
 return total;
}
void matmult (float4 A[], float4 B’[], float4 C[])
{
 for (int i = 0; i < n; i++)
 {
 for (j = 0; j < m / 4; j+)
 {
 launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
 }
 }
 sync_threads{}
}

float4 matmult_kernel (int y, int x, int k,
 float4 M0[], float4 M1[])
{
 float4 total = 0;
 for (int c = 0; c < k / 4; c++)
 {
 total += M0[y][c] * M1[x][c];
 }
 return total;
}
void matmult (float4 A[], float4 B’[], float4 C[])
{
 for (int i = 0; i < n; i++)
 {
 for (j = 0; j < m / 4; j+)
 {
 launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
 }
 }
 sync_threads{}
}

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Brook+ Example Brook+ Example

14

OpenCLOpenCL

● Open Computing Language
● Open standard developed by the Khronos Group, which is a

consortium of many companies (including NVIDIA, AMD and
Intel, but also lots of others)

● Initial version of OpenCL standard released in Dec 2008.
● Many companies will create their own implementations.

● Apple, Nvidia, AMD/ATI

15

OpenCL Example (1/2)OpenCL Example (1/2)
// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float)*2*num_entries, srcA);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL);
// create the compute program
program = clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");
// create N-D range object with work-item dimensions
global_work_size[0] = num_entries;
local_work_size[0] = 64;
range = clCreateNDRangeContainer(context, 0, 1, global_work_size, local_work_size);
// set the args values
clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 2, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR,
 sizeof(float)*2*num_entries, srcA);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL);
// create the compute program
program = clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");
// create N-D range object with work-item dimensions
global_work_size[0] = num_entries;
local_work_size[0] = 64;
range = clCreateNDRangeContainer(context, 0, 1, global_work_size, local_work_size);
// set the args values
clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 2, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

http://en.wikipedia.org/wiki/OpenCL#Example

16

OpenCL Example (2/2)OpenCL Example (2/2)
// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into
// calls to a radix 16 function, another radix 16 function and then a radix 4 function

__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
 __local float *sMemx, __local float *sMemy) {
 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];
 // starting index of data to/from global memory
 in = in + blockIdx; out = out + blockIdx;
 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);
 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));
 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4
 // coalesced global writes
 globalStores(data, out, 64);
}

// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into
// calls to a radix 16 function, another radix 16 function and then a radix 4 function

__kernel void fft1D_1024 (__global float2 *in, __global float2 *out,
 __local float *sMemx, __local float *sMemy) {
 int tid = get_local_id(0);
 int blockIdx = get_group_id(0) * 1024 + tid;
 float2 data[16];
 // starting index of data to/from global memory
 in = in + blockIdx; out = out + blockIdx;
 globalLoads(data, in, 64); // coalesced global reads
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 1024, 0);
 // local shuffle using local memory
 localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4)));
 fftRadix16Pass(data); // in-place radix-16 pass
 twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication
 localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15)));
 // four radix-4 function calls
 fftRadix4Pass(data); // radix-4 function number 1
 fftRadix4Pass(data + 4); // radix-4 function number 2
 fftRadix4Pass(data + 8); // radix-4 function number 3
 fftRadix4Pass(data + 12); // radix-4 function number 4
 // coalesced global writes
 globalStores(data, out, 64);
}

17

Portland Group Accelerator DirectivesPortland Group Accelerator Directives

● Proprietary directives in Fortran and C
● Similar to OpenMP in structure
● Currently in beta release
● If the compiler doesn’t understand these directives, it

ignores them, so the same code can work with an
accelerator or without, and with the PGI compilers or other
compilers.

● In principle, this will be able to work on a variety of
accelerators, but the first instance will be NVIDIA; PGI
recently announced a deal with AMD/ATI.

● The directives tell the compiler what parts of the code
happen in the accelerator; the rest happens in the regular
hardware.

18

Portland Group Accelerator Directives ExamplePortland Group Accelerator Directives Example

!$acc region
 do k = 1,n1
 do i = 1,n3
 c(i,k) = 0.0
 do j = 1,n2
 c(i,k) = c(i,k) + a(i,j) * b(j,k)
 enddo
 enddo
 enddo
!$acc end region

!$acc region
 do k = 1,n1
 do i = 1,n3
 c(i,k) = 0.0
 do j = 1,n2
 c(i,k) = c(i,k) + a(i,j) * b(j,k)
 enddo
 enddo
 enddo
!$acc end region

http://www.pgroup.com/resources/accel.htm

19

NVIDIA TeslaNVIDIA Tesla

● NVIDIA now offers a GPU platform named Tesla.
● It consists of their highest end graphics card, minus the

video out connector.
● This cuts the cost of the GPU card roughly in half: Quadro

FX 5800 is ~$3000, Tesla C1060 is ~$1500 (Q1 2009).

20

NVIDIA Tesla C1060 Card SpecsNVIDIA Tesla C1060 Card Specs

● 240 GPU cores
● 1.296 GHz
● Single precision floating point performance: 933 GFLOPs (3

single precision flops per clock per core)
● Double precision floating point performance: 78 GFLOPs

(0.25 double precision flops per clock per core)
● Internal RAM: 4 GB
● Internal RAM speed: 102 GB/sec (compared 21-25 GB/sec

for regular RAM)
● Has to be plugged into a PCIe slot (at most 8 GB/sec)

21

NVIDIA Tesla S1070 Server SpecsNVIDIA Tesla S1070 Server Specs

● 4 C1060 cards inside a 1U server
● Available in both 1.296 GHz and 1.44 GHz
● Single Precision (SP) floating point performance:

3732 GFLOPs (1.296 GHz) or 4147 GFLOPs (1.44 GHz)
● Double Precision (DP) floating point performance:

311 GFLOPs (1.296 GHz) or 345 GFLOPs (1.44 GHz)
● Internal RAM: 16 GB total (4 GB per GPU card)
● Internal RAM speed: 408 GB/sec aggregate

22

Compare x86 vs S1070Compare x86 vs S1070

Let’s compare the best dual socket x86 server today vs S1070.

http://oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt

No (CUDA)
Yes (PGI, OpenCL)

YesCode portable?

~800 W + ~400 W (3x)~400 WPower/Heat

YesNoNeeds x86 server to
attach to?

16 GB/secN/APeak PCIe BW

408 GB/sec (24x)17 GB/secPeak RAM BW

4147 GFLOPs SP (16.2x)256 GFLOPs SPPeak SP FLOPS

345 GFLOPs DP (2.7x)128 GFLOPs DPPeak DP FLOPs

NVIDIA Tesla S1070Dual socket, Intel
2.66 hex core

No (CUDA)
Yes (PGI, OpenCL)

YesCode portable?

~800 W + ~400 W (3x)~400 WPower/Heat

YesNoNeeds x86 server to
attach to?

16 GB/secN/APeak PCIe BW

408 GB/sec (24x)17 GB/secPeak RAM BW

4147 GFLOPs SP (16.2x)256 GFLOPs SPPeak SP FLOPS

345 GFLOPs DP (2.7x)128 GFLOPs DPPeak DP FLOPs

NVIDIA Tesla S1070Dual socket, Intel
2.66 hex core

23

Compare x86 vs S1070Compare x86 vs S1070

Here are some interesting measures:

http://oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt

15 racks/PFLOP (1/8)
SP

122 racks/PFLOP
SP

Racks per PFLOP
SP

181 racks/PFLOP (3/4)
DP

244 racks/PFLOP
DP

Racks per PFLOP
DP

~5500 GFLOPs/sq ft (8x)~680 GFLOPs/sq ftSP GFLOPs/sq ft

~460 GFLOPs/sq ft (1.3x)~340 GFLOPs/sq ftDP GFLOPs/sq ft

~3.5 GFLOPs (~5x)0.64 GFLOPs/WattSP GFLOPS/Watt

~0.3 GFLOPs/Watt (same)~0.3 GFLOPs/WattDP GFLOPs/Watt

NVIDIA Tesla S1070Dual socket, Intel
2.66 hex core

15 racks/PFLOP (1/8)
SP

122 racks/PFLOP
SP

Racks per PFLOP
SP

181 racks/PFLOP (3/4)
DP

244 racks/PFLOP
DP

Racks per PFLOP
DP

~5500 GFLOPs/sq ft (8x)~680 GFLOPs/sq ftSP GFLOPs/sq ft

~460 GFLOPs/sq ft (1.3x)~340 GFLOPs/sq ftDP GFLOPs/sq ft

~3.5 GFLOPs (~5x)0.64 GFLOPs/WattSP GFLOPS/Watt

~0.3 GFLOPs/Watt (same)~0.3 GFLOPs/WattDP GFLOPs/Watt

NVIDIA Tesla S1070Dual socket, Intel
2.66 hex core

24

What Are the Downsides?What Are the Downsides?

● You have to rewrite your code into CUDA or OpenCL or PGI
accelerator directives.
● CUDA: Proprietary, C/C++ only
● OpenCL: portable but cumbersome
● PGI accelerator directives: not clear whether you can have

most of the code live inside the GPUs.

25

Programming for PerformanceProgramming for Performance

● The biggest single performance bottleneck on GPU cards
today is the PCIe slot:
● PCIe 2.0 x16: 8 GB/sec
● 1600 MHz Front Side Bus: 25 GB/sec
● GDDR3 GPU card RAM: 102 GB/sec per card

● Your goal:
● At startup, move the data from x86 server RAM into GPU RAM.
● Do almost all the work inside the GPU.
● Use the x86 server only for I/O and message passing, to

minimize the amount of data moved through the PCIe slot.

26

Does CUDA Help?Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x
MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html

27

G80 Architecture – Graphics ModeG80 Architecture – Graphics Mode
● Unlike the previous versions, which have had separate vertex,

geometry and pixel processors, G80 employs a unified architecture
● GeForce 8800 is composed of 681 million transistors

L2

FB

S P S P

L1

TF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

S P S P

L1

TF

S P S P

L1

TF

S P S P

L1

TF

S P S P

L1

TF

S P S P

L1

TF

S P S P

L1

TF

S P S P

L1

TF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

Th
re

ad
 P

ro
ce

ss
or

Vtx Thread Issue

Setup / Rstr / ZCull

Geom Thread Issue Pixel Thread Issue

Input Assembler

Host

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

S P S P

L1

TF

S PS P S PS P

L1

TFTFTF

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

L2

FB

28

G80 Architecture – Computation ModeG80 Architecture – Computation Mode

● Processors execute computing threads
● New operating mode/HW interface for computing

Load/store

Global Memory

Thre ad Exe cution Ma nage r

Input Assembler

Host

Texture Tex ture Te x ture Te xture Te xture Tex ture Tex ture Tex tureTe xture

Pa ralle l Da ta
Ca che

Pa ralle l Da ta
Ca che

Paralle l Da ta
Ca che

Pa ralle l Da ta
Ca che

Pa ralle l Da ta
Cache

Paralle l Da ta
Cache

Pa ralle l Da ta
Ca che

Paralle l Da ta
Cache

Load/store Load/store Load/store Load/store Load/storeLoad/store

Global Memory

Thre ad Exe cution Ma nage r

Input Assembler

Host

TextureTexture Tex tureTex ture Te x tureTe x ture Te xtureTe xture Te xtureTe xture Tex tureTex ture Tex tureTex ture Tex tureTex tureTe xtureTe xture

Pa ralle l Da ta
Ca che

Pa ralle l Da ta
Ca che

Paralle l Da ta
Ca che

Pa ralle l Da ta
Ca che

Pa ralle l Da ta
Cache

Paralle l Da ta
Cache

Pa ralle l Da ta
Ca che

Paralle l Da ta
Cache

Load/store Load/store Load/store Load/store Load/store

Stream
Multiprocessor

29

The MultiprocessorThe Multiprocessor

● A multiprocessor consists of
eight Scalar Processor (SP)
cores, two special function
units for transcendentals, a
multithreaded instruction unit,
and on-chip shared memory.

● The multiprocessor creates,
manages, and executes
concurrent threads in hardware
with zero scheduling overhead.

30

The WarpsThe Warps

● Running threads are divided into
blocks, which share the multiprocessor
and can exchange data through the
local memory

● Multiprocessor employs a new
architecture we call SIMT (single-
instruction, multiple-thread).
● The multiprocessor maps each thread to

one scalar processor core, and each
scalar thread executes independently
with its own instruction address and
register state.

● The multiprocessor SIMT unit creates,
manages, schedules, and executes
threads in groups of 32 parallel threads
called warps.

31

The Mapping Between Blocks and SMsThe Mapping Between Blocks and SMs

32

The WarpsThe Warps

● Individual threads composing a SIMT warp start together at the same
program address but are otherwise free to branch and execute
independently.

● When a multiprocessor is given one or more thread blocks to execute,
it splits them into warps that get scheduled by the SIMT unit.

● Every instruction issue time, the SIMT unit selects a warp that is ready
to execute and issues the next instruction to the active threads of the
warp.
● A warp executes one common instruction at a time, so full efficiency is

realized when all 32 threads of a warp agree on their execution path.
● If threads of a warp diverge via a datadependent conditional branch, the

warp serially executes each branch path taken, disabling threads that are
not on that path, and when all paths complete, the threads converge back
to the same execution path.

● Branch divergence occurs only within a warp; different warps execute
independently regardless

33

MemoryMemory

● Each multiprocessor has on-chip memory of the four
following types:
● One set of local 32-bit registers per processor,
● A parallel data cache or shared memory that is shared by all

scalar processor cores and is where the shared memory space
resides,

● A read-only constant cache that is shared by all scalar
processor cores and speeds up reads from the constant
memory space, which is a read-only region of device memory,

● A read-only texture cache that is shared by all scalar processor
cores and speeds up reads from the texture memory space,
which is a read-only region of device memory; each
multiprocessor accesses the texture cache via a texture unit
that implements the various addressing modes and data
filtering

34

Compute CapabilityCompute Capability

● NVIDIA defines the computing capabilities of their devices by a number
● G80 has a Compute Capability of 1.1:

● The maximum number of threads per block is 512;
● The maximum sizes of the x-, y-, and z-dimension of a thread block are 512, 512, and 64,

respectively;
● The maximum size of each dimension of a grid of thread blocks is 65535;
● The warp size is 32 threads;
● The number of registers per multiprocessor is 8192;
● The amount of shared memory available per multiprocessor is 16 KB organized into 16

banks;
● The total amount of constant memory is 64 KB;
● The total amount of local memory per thread is 16 KB;
● The cache working set for constant memory is 8 KB per multiprocessor;
● The cache working set for texture memory varies between 6 and 8 KB per multiprocessor;
● The maximum number of active blocks per multiprocessor is 8;
● The maximum number of active warps per multiprocessor is 24;
● The maximum number of active threads per multiprocessor is 768;
● The limit on kernel size is 2 millions of microcode instructions;

35

NVIDIA FermiNVIDIA Fermi

● 512 Cores
● 40 nm technology
● First silicon produced at TSMC foundry in September 2009

with 2% yield (7 chips out of 416)

36

Fermi ArchitectureFermi Architecture
● Each Fermi SM

includes
● 32 cores,
● 16 load/store units,
● four special-function

units,
● a 32K-word register

file,
● 64K of configurable

RAM,
● thread control logic.

● Each core has both
floating-point and
integer execution
units.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

