
GPGPU – A Supercomputer 
on Your Desktop
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GPUsGPUs

Graphics Processing Units (GPUs) were originally designed 
to accelerate graphics tasks like image rendering.

● They became very very popular with videogamers, because 
they’ve produced better and better images, and lightning 
fast.

● And, prices have been extremely good, ranging from three 
figures at the low end to four figures at the high end.
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GPUs are PopularGPUs are Popular

● Chips are expensive to design (hundreds of millions of $$$), 
expensive to build the factory for (billions of $$$), but cheap 
to produce.

● In 2006 – 2007, GPUs sold at a rate of about 80 million 
cards per year, generating about $20 billion per year in 
revenue.
● http://www.xbitlabs.com/news/video/display/20080404234228_Shipments_of_Discrete_Graphics_Cards_on_the_Rise_but_Pric

es_Down_Jon_Peddie_Research.html

● This means that the GPU companies have been able to 
recoup the huge fix costs.
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GPU Do ArithmeticGPU Do Arithmetic

● GPUs mostly do stuff like rendering images.
● This is done through mostly floating point arithmetic – the 

same stuff people use supercomputing for!
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GPU vs. CPUGPU vs. CPU

● A quiet revolution and potential build-up
● Calculation: 900 GFLOPS vs. 100 GFLOPS
● Memory Bandwidth: 100 GB/s vs. 12 GB/s
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CPU vs. GPUCPU vs. GPU

● The GPU devotes more transistors to data processing
● GPU is particularly effective for programs with high 

compute-to-memory-access ratio
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Hard to Program?Hard to Program?

● In the olden days – that is, until just the last few years – 
programming GPUs meant either:
● using a graphics standard like OpenGL (which is mostly meant 

for rendering), or
● getting fairly deep into the graphics rendering pipeline.

● To use a GPU to do general purpose number crunching, you 
had to make your number crunching pretend to be graphics.

● This was hard. So most people didn’t bother.
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Easy to Program?Easy to Program?

● More recently, GPU manufacturers have worked hard to 
make GPUs easier to use for general purpose computing.

● This is known as General Purpose Graphics Processing 
Units.
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How to Program a GPUHow to Program a GPU

● Part of the program is executed on CPU, part - the kernel - 
on GPU.

● Proprietary programming language or extensions
● NVIDIA: CUDA (C/C++)
● AMD/ATI: StreamSDK/Brook+ (C/C++)

● OpenCL (Open Computing Language): an industry standard 
for doing number crunching on GPUs.

● Portland Group Fortran and C compilers with accelerator 
directives.
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NVIDIA CUDANVIDIA CUDA

● NVIDIA proprietary
● Formerly known as “Compute 

Unified Device Architecture”
● Extensions to C to allow better 

control of GPU capabilities
● Modest extensions but major 

rewriting of the code
● No Fortran version available
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CUDA ExampleCUDA Example
#include <stdio.h>  
#include <cuda.h>  
  
// Kernel that executes on the CUDA device  
__global__ void square_array(float *a, int N)  
{  
  int idx = blockIdx.x * blockDim.x + threadIdx.x;  
  if (idx<N) a[idx] = a[idx] * a[idx];  
}
// main routine that executes on the host  
int main(void)
{  
  float *a_h, *a_d;  // Pointer to host & device arrays  
  const int N = 10;  // Number of elements in arrays  
  size_t size = N * sizeof(float);  
  a_h = (float *)malloc(size);        // Allocate array on host  
  cudaMalloc((void **) &a_d, size);   // Allocate array on device  
  // Initialize host array and copy it to CUDA device  
  for (int i=0; i<N; i++) a_h[i] = (float)i;  
  cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);  
  // Do calculation on device:  
  int block_size = 4;  
  int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);  
  square_array <<< n_blocks, block_size >>> (a_d, N);  
  // Retrieve result from device and store it in host array  
  cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);  
  // Print results  
  for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);  
  // Cleanup  
  free(a_h); cudaFree(a_d);  
} 

#include <stdio.h>  
#include <cuda.h>  
  
// Kernel that executes on the CUDA device  
__global__ void square_array(float *a, int N)  
{  
  int idx = blockIdx.x * blockDim.x + threadIdx.x;  
  if (idx<N) a[idx] = a[idx] * a[idx];  
}
// main routine that executes on the host  
int main(void)
{  
  float *a_h, *a_d;  // Pointer to host & device arrays  
  const int N = 10;  // Number of elements in arrays  
  size_t size = N * sizeof(float);  
  a_h = (float *)malloc(size);        // Allocate array on host  
  cudaMalloc((void **) &a_d, size);   // Allocate array on device  
  // Initialize host array and copy it to CUDA device  
  for (int i=0; i<N; i++) a_h[i] = (float)i;  
  cudaMemcpy(a_d, a_h, size, cudaMemcpyHostToDevice);  
  // Do calculation on device:  
  int block_size = 4;  
  int n_blocks = N/block_size + (N%block_size == 0 ? 0:1);  
  square_array <<< n_blocks, block_size >>> (a_d, N);  
  // Retrieve result from device and store it in host array  
  cudaMemcpy(a_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);  
  // Print results  
  for (int i=0; i<N; i++) printf("%d %f\n", i, a_h[i]);  
  // Cleanup  
  free(a_h); cudaFree(a_d);  
} 

http://llpanorama.wordpress.com/2008/05/21/my-first-cuda-program/
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AMD/ATI Brook+AMD/ATI Brook+

● AMD/ATI proprietary
● Formerly known as “Close to Metal” (CTM)
● Extensions to C to allow better control of GPU capabilities
● No Fortran version available
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float4 matmult_kernel (int y, int x, int k,
                       float4 M0[], float4 M1[])
{
    float4 total = 0;
    for (int c = 0; c < k / 4; c++)
    {
        total += M0[y][c] * M1[x][c];
    }
    return total;
}
void matmult (float4 A[], float4 B’[], float4 C[])
{
    for (int i = 0; i < n; i++)
    {
        for (j = 0; j < m / 4; j+)
        {
            launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
        }
    }
    sync_threads{}
}

float4 matmult_kernel (int y, int x, int k,
                       float4 M0[], float4 M1[])
{
    float4 total = 0;
    for (int c = 0; c < k / 4; c++)
    {
        total += M0[y][c] * M1[x][c];
    }
    return total;
}
void matmult (float4 A[], float4 B’[], float4 C[])
{
    for (int i = 0; i < n; i++)
    {
        for (j = 0; j < m / 4; j+)
        {
            launch_thread{C[i][j] = matmult_kernel(j, i, k, A, B’);}
        }
    }
    sync_threads{}
}

http://developer.amd.com/gpu_assets/Stream_Computing_Overview.pdf

Brook+ Example Brook+ Example 
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OpenCLOpenCL

● Open Computing Language
● Open standard developed by the Khronos Group, which is a 

consortium of many companies (including NVIDIA, AMD and 
Intel, but also lots of others)

● Initial version of OpenCL standard released in Dec 2008.
● Many companies will create their own implementations.

● Apple, Nvidia, AMD/ATI
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OpenCL Example (1/2)OpenCL Example (1/2)
// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                            sizeof(float)*2*num_entries, srcA);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL);
// create the compute program
program = clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");
// create N-D range object with work-item dimensions
global_work_size[0] = num_entries;
local_work_size[0] = 64;
range = clCreateNDRangeContainer(context, 0, 1, global_work_size, local_work_size);
// set the args values
clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 2, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

// create a compute context with GPU device
context = clCreateContextFromType(0, CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);
// create a work-queue
queue = clCreateWorkQueue(context, NULL, NULL, 0);
// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
                            sizeof(float)*2*num_entries, srcA);
memobjs[1] = clCreateBuffer(context, CL_MEM_READ_WRITE, sizeof(float)*2*num_entries, NULL);
// create the compute program
program = clCreateProgramFromSource(context, 1, &fft1D_1024_kernel_src, NULL);
// build the compute program executable
clBuildProgramExecutable(program, false, NULL, NULL);
// create the compute kernel
kernel = clCreateKernel(program, "fft1D_1024");
// create N-D range object with work-item dimensions
global_work_size[0] = num_entries;
local_work_size[0] = 64;
range = clCreateNDRangeContainer(context, 0, 1, global_work_size, local_work_size);
// set the args values
clSetKernelArg(kernel, 0, (void *)&memobjs[0], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 1, (void *)&memobjs[1], sizeof(cl_mem), NULL);
clSetKernelArg(kernel, 2, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
clSetKernelArg(kernel, 3, NULL, sizeof(float)*(local_work_size[0]+1)*16, NULL);
// execute kernel
clExecuteKernel(queue, kernel, NULL, range, NULL, 0, NULL);

http://en.wikipedia.org/wiki/OpenCL#Example
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OpenCL Example (2/2)OpenCL Example (2/2)
// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into 
// calls to a radix 16 function, another radix 16 function and then a radix 4 function 
 
__kernel void fft1D_1024 (__global float2 *in, __global float2 *out, 
                          __local float *sMemx, __local float *sMemy) { 
  int tid = get_local_id(0); 
  int blockIdx = get_group_id(0) * 1024 + tid; 
  float2 data[16]; 
  // starting index of data to/from global memory 
  in = in + blockIdx;  out = out + blockIdx; 
  globalLoads(data, in, 64); // coalesced global reads 
  fftRadix16Pass(data);      // in-place radix-16 pass 
  twiddleFactorMul(data, tid, 1024, 0); 
  // local shuffle using local memory 
  localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4))); 
  fftRadix16Pass(data);               // in-place radix-16 pass 
  twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication 
  localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15))); 
  // four radix-4 function calls 
  fftRadix4Pass(data);      // radix-4 function number 1
  fftRadix4Pass(data + 4);  // radix-4 function number 2
  fftRadix4Pass(data + 8);  // radix-4 function number 3
  fftRadix4Pass(data + 12); // radix-4 function number 4
  // coalesced global writes 
  globalStores(data, out, 64); 
}

// This kernel computes FFT of length 1024. The 1024 length FFT is decomposed into 
// calls to a radix 16 function, another radix 16 function and then a radix 4 function 
 
__kernel void fft1D_1024 (__global float2 *in, __global float2 *out, 
                          __local float *sMemx, __local float *sMemy) { 
  int tid = get_local_id(0); 
  int blockIdx = get_group_id(0) * 1024 + tid; 
  float2 data[16]; 
  // starting index of data to/from global memory 
  in = in + blockIdx;  out = out + blockIdx; 
  globalLoads(data, in, 64); // coalesced global reads 
  fftRadix16Pass(data);      // in-place radix-16 pass 
  twiddleFactorMul(data, tid, 1024, 0); 
  // local shuffle using local memory 
  localShuffle(data, sMemx, sMemy, tid, (((tid & 15) * 65) + (tid >> 4))); 
  fftRadix16Pass(data);               // in-place radix-16 pass 
  twiddleFactorMul(data, tid, 64, 4); // twiddle factor multiplication 
  localShuffle(data, sMemx, sMemy, tid, (((tid >> 4) * 64) + (tid & 15))); 
  // four radix-4 function calls 
  fftRadix4Pass(data);      // radix-4 function number 1
  fftRadix4Pass(data + 4);  // radix-4 function number 2
  fftRadix4Pass(data + 8);  // radix-4 function number 3
  fftRadix4Pass(data + 12); // radix-4 function number 4
  // coalesced global writes 
  globalStores(data, out, 64); 
}
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Portland Group Accelerator DirectivesPortland Group Accelerator Directives

● Proprietary directives in Fortran and C
● Similar to OpenMP in structure
● Currently in beta release
● If the compiler doesn’t understand these directives, it 

ignores them, so the same code can work with an 
accelerator or without, and with the PGI compilers or other 
compilers.

● In principle, this will be able to work on a variety of 
accelerators, but the first instance will be NVIDIA; PGI 
recently announced a deal with AMD/ATI.

● The directives tell the compiler what parts of the code 
happen in the accelerator; the rest happens in the regular 
hardware.
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Portland Group Accelerator Directives ExamplePortland Group Accelerator Directives Example

!$acc region
    do k = 1,n1
        do i = 1,n3
            c(i,k) = 0.0
            do j = 1,n2
                c(i,k) = c(i,k) + a(i,j) * b(j,k)
            enddo
        enddo
    enddo
!$acc end region 

!$acc region
    do k = 1,n1
        do i = 1,n3
            c(i,k) = 0.0
            do j = 1,n2
                c(i,k) = c(i,k) + a(i,j) * b(j,k)
            enddo
        enddo
    enddo
!$acc end region 

http://www.pgroup.com/resources/accel.htm
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NVIDIA TeslaNVIDIA Tesla

● NVIDIA now offers a GPU platform named Tesla.
● It consists of their highest end graphics card, minus the 

video out connector.
● This cuts the cost of the GPU card roughly in half: Quadro 

FX 5800 is ~$3000, Tesla C1060 is ~$1500 (Q1 2009).
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NVIDIA Tesla C1060 Card SpecsNVIDIA Tesla C1060 Card Specs

● 240 GPU cores
● 1.296 GHz
● Single precision floating point performance: 933 GFLOPs (3 

single precision flops per clock per core)
● Double precision floating point performance: 78 GFLOPs 

(0.25 double precision flops per clock per core)
● Internal RAM: 4 GB
● Internal RAM speed: 102 GB/sec (compared 21-25 GB/sec 

for regular RAM)
● Has to be plugged into a PCIe slot (at most 8 GB/sec)
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NVIDIA Tesla S1070 Server SpecsNVIDIA Tesla S1070 Server Specs

● 4 C1060 cards inside a 1U server
● Available in both 1.296 GHz and 1.44 GHz
● Single Precision (SP) floating point performance:                   

3732 GFLOPs (1.296 GHz) or 4147 GFLOPs (1.44 GHz)
● Double Precision (DP) floating point performance:           

311 GFLOPs (1.296 GHz) or 345 GFLOPs (1.44 GHz)
● Internal RAM: 16 GB total (4 GB per GPU card)
● Internal RAM speed: 408 GB/sec aggregate
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Compare x86 vs S1070Compare x86 vs S1070

Let’s compare the best dual socket x86 server today vs S1070.

http://oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt

No (CUDA)
Yes (PGI, OpenCL)

YesCode portable?

~800 W + ~400 W (3x)~400 WPower/Heat

YesNoNeeds x86 server to 
attach to?

16 GB/secN/APeak PCIe BW

408 GB/sec (24x)17 GB/secPeak RAM BW

4147 GFLOPs SP (16.2x)256 GFLOPs SPPeak SP FLOPS

345 GFLOPs DP (2.7x)128 GFLOPs DPPeak DP FLOPs

NVIDIA Tesla S1070Dual socket, Intel 
2.66 hex core

No (CUDA)
Yes (PGI, OpenCL)

YesCode portable?

~800 W + ~400 W (3x)~400 WPower/Heat

YesNoNeeds x86 server to 
attach to?

16 GB/secN/APeak PCIe BW

408 GB/sec (24x)17 GB/secPeak RAM BW

4147 GFLOPs SP (16.2x)256 GFLOPs SPPeak SP FLOPS

345 GFLOPs DP (2.7x)128 GFLOPs DPPeak DP FLOPs

NVIDIA Tesla S1070Dual socket, Intel 
2.66 hex core
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Compare x86 vs S1070Compare x86 vs S1070

Here are some interesting measures:

http://oscer.ou.edu/Workshops/GPGPU/sipe_gpgpu_20090428.ppt

15 racks/PFLOP (1/8)     
SP

122 racks/PFLOP 
SP

Racks per PFLOP 
SP

181 racks/PFLOP (3/4)  
DP

244 racks/PFLOP 
DP

Racks per PFLOP 
DP

~5500 GFLOPs/sq ft (8x)~680 GFLOPs/sq ftSP GFLOPs/sq ft

~460 GFLOPs/sq ft (1.3x)~340 GFLOPs/sq ftDP GFLOPs/sq ft

~3.5 GFLOPs (~5x)0.64 GFLOPs/WattSP GFLOPS/Watt

~0.3 GFLOPs/Watt (same)~0.3 GFLOPs/WattDP GFLOPs/Watt

NVIDIA Tesla S1070Dual socket, Intel 
2.66 hex core

15 racks/PFLOP (1/8)     
SP

122 racks/PFLOP 
SP

Racks per PFLOP 
SP

181 racks/PFLOP (3/4)  
DP

244 racks/PFLOP 
DP

Racks per PFLOP 
DP

~5500 GFLOPs/sq ft (8x)~680 GFLOPs/sq ftSP GFLOPs/sq ft

~460 GFLOPs/sq ft (1.3x)~340 GFLOPs/sq ftDP GFLOPs/sq ft

~3.5 GFLOPs (~5x)0.64 GFLOPs/WattSP GFLOPS/Watt

~0.3 GFLOPs/Watt (same)~0.3 GFLOPs/WattDP GFLOPs/Watt

NVIDIA Tesla S1070Dual socket, Intel 
2.66 hex core
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What Are the Downsides?What Are the Downsides?

● You have to rewrite your code into CUDA or OpenCL or PGI 
accelerator directives.
● CUDA: Proprietary, C/C++ only
● OpenCL: portable but cumbersome
● PGI accelerator directives: not clear whether you can have 

most of the code live inside the GPUs.
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Programming for PerformanceProgramming for Performance

● The biggest single performance bottleneck on GPU cards 
today is the PCIe slot:
● PCIe 2.0 x16: 8 GB/sec
● 1600 MHz Front Side Bus: 25 GB/sec
● GDDR3 GPU card RAM: 102 GB/sec per card

● Your goal:
● At startup, move the data from x86 server RAM into GPU RAM.
● Do almost all the work inside the GPU.
● Use the x86 server only for I/O and message passing, to 

minimize the amount of data moved through the PCIe slot.
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Does CUDA Help?Does CUDA Help?

Example Applications URL Speedup
Seismic Database 66x – 100x

Mobile Phone Antenna Simulation 45x
Molecular Dynamics 21x – 100x
Neuron Simulation 100x
MRI Processing 245x – 415x

Atmospheric Cloud Simulation 50x

http://www.headwave.com
http://www.accelware.com

http://www.ks.uiuc.edu/Research/vmd
http://www.evolvedmachines.com
http://bic-test.beckman.uiuc.edu

http://www.cs.clemson.edu/~jesteel/clouds.html

http://www.nvidia.com/object/IO_43499.html
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G80 Architecture – Graphics ModeG80 Architecture – Graphics Mode
● Unlike the previous versions, which have had separate vertex, 

geometry and pixel processors, G80 employs a unified architecture
● GeForce 8800 is composed of 681 million transistors
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G80 Architecture – Computation ModeG80 Architecture – Computation Mode

● Processors execute computing threads
● New operating mode/HW interface for computing
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The MultiprocessorThe Multiprocessor

● A multiprocessor consists of 
eight Scalar Processor (SP) 
cores, two special function 
units for transcendentals, a 
multithreaded instruction unit, 
and on-chip shared memory.

● The multiprocessor creates, 
manages, and executes 
concurrent threads in hardware 
with zero scheduling overhead.
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The WarpsThe Warps

● Running threads are divided into 
blocks, which share the multiprocessor 
and can exchange data through the 
local memory

● Multiprocessor employs a new 
architecture we call SIMT (single-
instruction, multiple-thread). 
● The multiprocessor maps each thread to 

one scalar processor core, and each 
scalar thread executes independently 
with its own instruction address and 
register state.

● The multiprocessor SIMT unit creates, 
manages, schedules, and executes 
threads in groups of 32 parallel threads 
called warps.
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The Mapping Between Blocks and SMsThe Mapping Between Blocks and SMs
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The WarpsThe Warps

● Individual threads composing a SIMT warp start together at the same 
program address but are otherwise free to branch and execute 
independently.

● When a multiprocessor is given one or more thread blocks to execute, 
it splits them into warps that get scheduled by the SIMT unit.

● Every instruction issue time, the SIMT unit selects a warp that is ready 
to execute and issues the next instruction to the active threads of the 
warp.
● A warp executes one common instruction at a time, so full efficiency is 

realized when all 32 threads of a warp agree on their execution path.
● If threads of a warp diverge via a datadependent conditional branch, the 

warp serially executes each branch path taken, disabling threads that are 
not on that path, and when all paths complete, the threads converge back 
to the same execution path.

● Branch divergence occurs only within a warp; different warps execute 
independently regardless
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MemoryMemory

● Each multiprocessor has on-chip memory of the four 
following types:
● One set of local 32-bit registers per processor,
● A parallel data cache or shared memory that is shared by all 

scalar processor cores and is where the shared memory space 
resides,

● A read-only constant cache that is shared by all scalar 
processor cores and speeds up reads from the constant 
memory space, which is a read-only region of device memory,

● A read-only texture cache that is shared by all scalar processor 
cores and speeds up reads from the texture memory space, 
which is a read-only region of device memory; each 
multiprocessor accesses the texture cache via a texture unit 
that implements the various addressing modes and data 
filtering
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Compute CapabilityCompute Capability

● NVIDIA defines the computing capabilities of their devices by a number
● G80 has a Compute Capability of 1.1:

● The maximum number of threads per block is 512;
● The maximum sizes of the x-, y-, and z-dimension of a thread block are 512, 512, and 64, 

respectively;
● The maximum size of each dimension of a grid of thread blocks is 65535;
● The warp size is 32 threads;
● The number of registers per multiprocessor is 8192;
● The amount of shared memory available per multiprocessor is 16 KB organized into 16 

banks;
● The total amount of constant memory is 64 KB;
● The total amount of local memory per thread is 16 KB;
● The cache working set for constant memory is 8 KB per multiprocessor;
● The cache working set for texture memory varies between 6 and 8 KB per multiprocessor;
● The maximum number of active blocks per multiprocessor is 8;
● The maximum number of active warps per multiprocessor is 24;
● The maximum number of active threads per multiprocessor is 768;
● The limit on kernel size is 2 millions of microcode instructions;
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NVIDIA FermiNVIDIA Fermi

● 512 Cores
● 40 nm technology
● First silicon produced at TSMC foundry in September 2009 

with 2% yield (7 chips out of 416)
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Fermi ArchitectureFermi Architecture
● Each Fermi SM 

includes 
● 32 cores, 
● 16 load/store units,
● four special-function 

units,
● a 32K-word register 

file,
● 64K of configurable 

RAM,
● thread control logic.

● Each core has both 
floating-point and 
integer execution 
units.
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