
A Brief Introduction to Krylov Space Methods
for Solving Linear Systems

Martin H. Gutknecht1

ETH Zurich, Seminar for Applied Mathematics mhg@math.ethz.ch

With respect to the “influence on the development and practice of science
and engineering in the 20th century”, Krylov space methods are considered
as one of the ten most important classes of numerical methods [1]. Large
sparse linear systems of equations or large sparse matrix eigenvalue problems
appear in most applications of scientific computing. Sparsity means that most
elements of the matrix involved are zero. In particular, discretization of PDEs
with the finite element method (FEM) or with the finite difference method
(FDM) leads to such problems. In case the original problem is nonlinear,
linearization by Newton’s method or a Newton-type method leads again to a
linear problem. We will treat here systems of equations only, but many of the
numerical methods for large eigenvalue problems are based on similar ideas
as the related solvers for equations.

Sparse linear systems of equations can be solved by either so-called sparse
direct solvers, which are clever variations of Gauss elimination, or by iterative
methods. In the last thirty years, sparse direct solvers have been tuned to
perfection: on the one hand by finding strategies for permuting equations and
unknowns to guarantee a stable LU decomposition and small fill-in in the
triangular factors, and on the other hand by organizing the computation so
that optimal use is made of the hardware, which nowadays often consists of
parallel computers whose architecture favors block operations with data that
are locally stored or cached.

The iterative methods that are today applied for solving large-scale linear
systems are mostly preconditioned Krylov (sub)space solvers. Classical meth-
ods that do not belong to this class, like the successive overrelaxation (SOR)
method, are no longer competitive. However, some of the classical matrix
splittings, e.g. the one of SSOR (the symmetric version of SOR), are still used
for preconditioning. Multigrid is in theory a very effective iterative method,
but normally it is now applied as an inner iteration with a Krylov space solver
as outer iteration; then, it can also be considered as a preconditioner.

In the past, Krylov space solvers were referred to also by other names
such as semi-iterative methods and polynomial acceleration methods. Some

2 Martin H. Gutknecht

of them can also be used as (fixed) preconditioners, in which case they are
known as polynomial preconditioners; but in this function they are reportedly
not competitive. Flexible preconditioning allows us to apply any Krylov space
solver as a preconditioner of another Krylov space solver. Such combinations,
called inner-outer iteration methods, may be very effective; see, e.g., [14].

Krylov space methods for solving Ax = b have the special feature that the
N ×N matrix A needs only be given as an operator: for any N -vector y one
must be able to compute Ay; so A may be given as a function (or procedure
or subroutine). We refer to the operation Ay as matrix-vector product (MV).
In practice, it may be much more complicated than the multiplication of a
vector by a sparse matrix; e.g., this operation may include the application of
a preconditioner, which may also require the solution of a large linear system.

1 From Jacobi iteration to Krylov space methods

The simplest iterative method is Jacobi iteration. It is the same as diagonally
preconditioned fixed point iteration: if the diagonal matrix D with the diagonal
of A is nonsingular, we can transform Ax = b into

x = B̂x + b̂ with B̂ := I−D−1A , b̂ := D−1b (1)

and apply the fixed point iteration xn+1 := B̂xn + b̂.
It is easy to show by considering the powers of the Jordan canonical form

of B̂ that the following convergence result is valid for Jacobi iteration:

xn → x? for every x0 ⇐⇒ ρ(B̂) < 1 , (2)

where x? := A−1b and ρ(B̂) := max{|λ|
∣∣ λ eigenvalue of B̂} is the spectral

radius of B̂. From the suggested proof of (2) one actually sees that the as-
ymptotic root convergence factor is bounded by ρ(B̂) (if less than 1), and that
this bound is sharp:

lim sup
n→∞

‖xn − x?‖1/n ≤ ρ(B̂) , (3)

and equality holds for some x0.
Unfortunately, even the simplest examples of boundary value problems,

like u′′ = f on (0, 1) with u(0) = u(1) = 0, discretized by a standard finite
difference method, show that Jacobi iteration may converge extremely slowly.

Unless we know the solution x? we cannot compute the nth error (vector)

dn := xn − x? . (4)

Thus, for checking the convergence we normally use the nth residual (vector)

rn := b−Axn . (5)

Note that rn = −A(xn − x?) = −Adn .

Brief Introduction to Krylov Space Solvers 3

Assuming D = I and letting B := I−A we have

rn = b−Axn = Bxn + b− xn = xn+1 − xn ,

so we can rewrite the Jacobi iteration as

xn+1 := xn + rn . (6)

Multiplying this by −A, we obtain a recursion for the residual:

rn+1 := rn −Arn = Brn . (7)

So we can compute rn either according to definition (5) or by the recursion
(7); either way it requires one MV. From (7) it follows by induction that

rn = pn(A)r0 ∈ span {r0,Ar0, . . . ,Anr0} , (8)

where pn(ζ) = (1− ζ)n is a polynomial of exact degree n. From (6) we have

xn = x0 + r0 + · · ·+ rn−1 = x0 + qn−1(A)r0 (9)

with a polynomial qn−1 of exact degree n − 1. So, xn lies in the affine space
x0 + span

{
r0, . . . ,An−1r0

}
obtained by shifting the subspace of rn−1.

Computing qn−1(A)r0 and pn(A)r0 requires n+ 1 MVs, because we need
to build up the subspace span

{
r0,Ar0, . . . ,An−1r0

}
. This is the main work.

We may ask: Is there a better choice for xn in the same affine space?
The subspace that appears in (8) and (9) is what we call a Krylov space:

Definition 1. Given a nonsingular A ∈ CN×N and y 6= o ∈ CN , the nth
Krylov (sub)space Kn(A,y) generated by A from y is

Kn := Kn(A,y) := span (y,Ay, . . . ,An−1y). (10)

Clearly, K1 ⊆ K2 ⊆ K3 ⊆ ... , and the dimension increases at most by one
in each step. But when does the equal sign hold? Moreover, it seems clever to
choose the nth approximate solution xn in x0 +Kn(A, r0). But can we expect
to find the exact solution x? in one of those affine space? These questions are
answered in the following lemmas and corollaries that we cite without proof.

Lemma 1. There is a positive integer ν := ν(y,A), called grade of y with
respect to A, such that

dim Kn(A,y) =
{
n if n ≤ ν ,
ν if n ≥ ν .

Corollary 1. Kν(A,y) is the smallest A–invariant subspace that contains y.

Lemma 2. The nonnegative integer ν of Lemma 1 satisfies

ν = min
{
n

∣∣ A−1y ∈ Kn(A,y)
}
.

4 Martin H. Gutknecht

Corollary 2. Let x? be the solution of Ax = b and let x0 be any initial
approximation of it and r0 := b−Ax0 the corresponding residual. Moreover,
let ν := ν(r0,A). Then

x? ∈ x0 +Kν(A, r0) .

The idea behind Krylov space solvers is to generate a sequence of approx-
imate solutions xn ∈ x0 + Kn(A, r0) of Ax = b, so that the corresponding
residuals rn ∈ Kn+1(A, r0) “converge” to the zero vector o. Here, “converge”
may also mean that after a finite number of steps, rn = o, so that xn = x?

and the process stops. This is in particular true (in exact arithmetic) if a
method ensures that the residuals are linearly independent: then rν = o. In
this case we say that the method has the finite termination property.

It is not so easy to give a formal definition of Krylov space solvers that
covers all relevant cases and is not too general in the sense that it no longer
grasps some relevant aspects of Krylov space solvers. Here is our proposal:

Definition 2. A (standard) Krylov space method for solving a linear
system Ax = b or, briefly, a Krylov space solver is an iterative method
starting from some initial approximation x0 and the corresponding residual
r0 := b−Ax0 and generating for all, or at least most n, until it possibly finds
the exact solution, iterates xn such that

xn − x0 = qn−1(A)r0 ∈ Kn(A, r0) (11)

with a polynomial qn−1 of exact degree n − 1. For some n, xn may not exist
or qn−1 may have lower degree.

A similar statement can be made for the residuals, if they exist:

Lemma 3. The residuals rn of a Krylov space solver satisfy

rn = pn(A)r0 ∈ r0 + AKn(A, r0) ⊆ Kn+1(A, r0) , (12)

where pn is a polynomial of degree n, called nth residual polynomial, which is
related to the polynomial qn−1 of (11) by

pn(ζ) = 1− ζqn−1(ζ) . (13)

In particular, it satisfies the consistency condition pn(0) = 1 .

The vague expression “for all, or at least most n” in Definition 2 is needed
because in some widely used Krylov space solvers (e.g., BiCG) there may exist
exceptional situations, where for some n the iterate xn and the residual rn

are not defined. In other Krylov space solvers (e.g., CR), there may be indices
where xn exists, but the polynomial qn−1 is of lower degree than n− 1.

There are also nonstandard Krylov space methods where the search space
for xn − x0 is still a Krylov space but one that differs from Kn(A, r0).

Brief Introduction to Krylov Space Solvers 5

When applied to large real-world problems Krylov space solvers often con-
verge very slowly — if at all. In practice, Krylov space solvers are therefore
nearly always applied with preconditioning : Ax = b is replaced by

CA︸︷︷︸
Â

x = Cb︸︷︷︸
b̂

or AC︸︷︷︸
Â

C−1x︸ ︷︷ ︸
x̂

= b or CLACR︸ ︷︷ ︸
Â

C−1
R x︸ ︷︷ ︸
x̂

= CLb︸︷︷︸
b̂

.

The first two cases are referred to as left and right preconditioning, respec-
tively, while in the last case we apply a split preconditioner CLCR. Actually,
here C and CLCR are approximate inverses of A. Often we use instead of C
a preconditioner M ≈ A with the property that the system My = z is easily
solved for any z. Then, in the above formulas we have to replace C by M−1

and CL, CR by M−1
L , M−1

R . Applying a preconditioned Krylov space solver
just means to apply the method to Âx̂ = b̂.

2 The conjugate gradient method

The conjugate gradient (CG) method is due to Hestenes and Stiefel [7]. It
should only be applied to systems that are symmetric positive definite (spd)
or Hermitian positive definite (Hpd), and it is still the method of choice for
this case. We will assume real data here.

CG is the archetype of a Krylov space solver that is an orthogonal projec-
tion method and satisfies a minimality condition: the error is minimal in the
so-called energy norm or A-norm of the error vector d := x− x?,

‖d‖A =
√

dTAd .

In nature, stable states are characterized by minimum energy. Discretiza-
tion leads to the minimization of a quadratic function:

Ψ(x) := 1
2 xTAx− bTx + γ (14)

with an spd matrix A. Ψ is convex and has a unique minimum. Its gradient
is ∇Ψ(x) = Ax−b = −r , where r is the residual corresponding to x. Hence,

x minimizer of Ψ ⇐⇒ ∇Ψ(x) = o ⇐⇒ Ax = b . (15)

If x? denotes the minimizer and d := x−x? the error vector, and if we choose
γ := 1

2 bTA−1b, it is easily seen that

‖d‖2A = ‖x− x?‖2A = ‖Ax− b‖2A−1 = ‖r‖2A−1 = 2 Ψ(x) . (16)

In summary: If A is spd, to minimize the quadratic function Ψ means to
minimize the energy norm of the error vector of the linear system Ax = b.
The minimizer x? is the solution of Ax = b.

6 Martin H. Gutknecht

The above discussion suggest to find the minimizer of Ψ by descending on
the surface representing Ψ by following the direction of steepest descent. If
we took infinitely many infinitesimal steps, we would find the minimum by
following a curved line. However, each determination of the gradient requires
an MV, and therefore we need to take long steps and follow a piecewise straight
line. In each step we go to the lowest point in the chosen descent direction.

Since A is spd, the level curves Ψ(x) = const are just concentric ellipses if
N = 2 and concentric ellipsoids if N = 3. As can be seen from a sketch, even
for a 2× 2 system many steps may be needed to get close to the solution.

We can do much better: by choosing the second direction v1 conjugate
or A-orthogonal to v0, the first one, i.e., so that vT

1 Av0 = 0, we find the
minimum in at most two steps, because for ellipses, any radius vector and the
corresponding tangent direction are conjugate to each other.

How does this generalize to N dimensions, and what can be said about
the intermediate results? We choose search directions or direction vectors vn

that are conjugate (A–orthogonal) to each other:

vT
nAvk = 0 , k = 0, . . . , n− 1, (17)

and define
xn+1 := xn + vnωn , (18)

so that rn+1 = rn −Avnωn . Here, ωn is again chosen such that the A-norm
of the error is minimized on the line ω 7→ xn + vnω . This means that

ωn :=
〈rn,vn〉
〈vn,Avn〉

. (19)

Definition 3. Any iterative method satisfying (17), (18), and (19) is called
a conjugate direction (CD) method.

By definition, such a method chooses the step length ωn so that xn+1 is
locally optimal on the search line. But does it also yield the best

xn+1 ∈ x0 + span {v0, . . . ,vn} (20)

with respect to the A-norm of the error? By verifying that

Ψ(xn+1) = Ψ(xn)− ωnvT
nr0 + 1

2 ω
2
nvT

nAvn .

one can prove that this is indeed the case [3]:

Theorem 1. For a conjugate direction method the problem of minimizing the
energy norm of the error of an approximate solution of the form (20) decouples
into n+1 one-dimensional minimization problems on the lines ω 7→ xk +vkω,
k = 0, 1, . . . , n. Therefore, a conjugate direction method yields after n+1 steps
the approximate solution of the form (20) that minimizes the energy norm of
the error in this affine space.

Brief Introduction to Krylov Space Solvers 7

In general, conjugate direction methods are not Krylov space solvers, but
with suitably chosen search directions they are. Since

xn+1 = x0 + v0ω0 + · · ·+ vnωn ∈ x0 + span {v0,v1, . . . ,vn} ,

we need that

span {v0, . . . ,vn} = Kn+1(A, r0) , n = 0, 1, 2, (21)

Definition 4. The conjugate gradient (CG) method is the conjugate di-
rection method with the choice (21).

Theorem 1 yields now the main result on CG:

Theorem 2. The CG method yields approximate solutions xn ∈ x0+Kn(A, r0)
that are optimal in the sense that they minimize the energy norm (A-norm)
of the error (i.e., the A−1-norm of the residual) for xn from this affine space.

Associated with this minimality is the Galerkin condition

Kn ⊥ rn ∈ Kn+1 , (22)

which implies that the residuals {rn}ν̄−1
n=0 are orthogonal to each other and

form an orthogonal basis of Kν̄ . On the other hand, by assumption, the search
directions {vn}ν̄−1

n=0 form a conjugate basis of Kν̄ .
Here is a formulation of the standard version of CG due to Hestenes and

Stiefel, which is sometimes called OrthoMin or OMin version now.

Algorithm 1 (OMin form of the CG method) For solving Ax = b let
x0 be an initial approximation, and let v0 := r0 := b−Ax0 and δ0 := ‖r0‖2.
Then, for n = 0, 1, 2, . . . , compute

δ′n := ‖vn‖2A , (23a)
ωn := δn/δ

′
n , (23b)

xn+1 := xn + vnωn , (23c)
rn+1 := rn −Avnωn , (23d)
δn+1 := ‖rn+1‖2, (23e)
ψn := −δn+1/δn , (23f)

vn+1 := rn+1 − vnψn . (23g)

If ‖rn+1‖ ≤ tol, the algorithm terminates and xn+1 is a sufficiently accurate
approximation of the solution.

The conjugate residual (CR) method is defined in analogy to the CG
method, but the 2-norm is replaced by the A-norm. So what is minimized
is now the A2-norm of the error, which is the 2-norm of the residual. Here,
the residuals {rn}ν̄−1

n=0 form an A-orthogonal basis of Kν̄ and the search di-
rections {vn}ν̄−1

n=0 form a A2-orthogonal basis of Kν̄ . The challenge is to find
recurrences so that still only one MV is needed per iteration.

8 Martin H. Gutknecht

3 Methods for nonsymmetric systems

Solving nonsymmetric (or non-Hermitian) linear systems iteratively with
Krylov space solvers is considerably more difficult and costly than symmetric
(or Hermitian) systems. There are two different ways to generalize CG:

• Maintain the orthogonality of the projection and the related minimality
of the error by constructing either orthogonal residuals rn (generalized
CG (GCG)) or ATA-orthogonal search directions vn (generalized CR
(GCR)). Then, the recursions involve all previously constructed residuals
or search directions and all previously constructed iterates.

• Maintain short recurrence formulas for residuals, direction vectors and
iterates (biconjugate gradient (BiCG) method, Lanczos-type product
methods (LTPM)). The resulting methods are at best oblique projection
methods. There is no minimality property of error or residuals vectors.

3.1 The biconjugate gradient (BiCG) method

While CG (for spd A) has mutually orthogonal residuals rn with

rn = pn(A)r0 ∈ span {r0,Ar0, . . . ,Anr0} =: Kn+1(A, r0) ,

BiCG constructs in the same spaces residuals that are orthogonal to a dual
Krylov space spanned by “shadow residuals”

r̃n = p̃n(AT)r̃0 ∈ span
{
r̃0,ATr̃0, . . . , (AT)n r̃0

}
=: Kn+1(AT, r̃0) =: K̃n+1 .

The initial shadow residual r̃0 can be chosen freely. So, BiCG requires two
MVs to extend Kn and K̃n: one multiplication by A and one by AT. But there
are still short recurrences for xn, rn, and r̃n. Now there are two Galerkin
conditions

K̃n ⊥ rn ∈ Kn+1 , Kn ⊥ r̃n ∈ K̃n+1 ,

but only the first one is relevant for determining xn.
The residuals {rn}m

n=0 and the shadow residuals {r̃n}m
n=0 form biorthogonal

bases or dual bases of Km+1 and K̃m+1:

〈r̃m, rn〉 =
{

0 if m 6= n,
δn 6= 0 if m = n.

The search directions {vn}m
n=0 and the “shadow search directions” {ṽn}m

n=0

form biconjugate bases of Km+1 and Km+1 :

〈ṽm,Avn〉 =
{

0 if m 6= n,
δ′n 6= 0 if m = n.

BiCG goes back to Lanczos [8], but was brought to its current, CG-
like form later. For a detailed discussion of versions and difficulties such as
breakdowns and a possibly somewhat erratic convergence see [6].

Brief Introduction to Krylov Space Solvers 9

3.2 Lanczos-type product methods (LTPMs)

Sonneveld [17] found with the (bi)conjugate gradient squared method (CGS)
a way to replace the multiplication with AT by a second one with A. The nth
residual polynomial of CGS is p2

n, where pn is still the nth BiCG residual
polynomial. In each step the dimension of the Krylov space and the search
space increases by two. Convergence is nearly twice as fast as for BiCG, but
even more erratic.

BiCGStab by Van der Vorst [18] includes some local optimization and
smoothing, and therefore the residual norm histories tend to be much smoother.
The nth residual polynomial is pntn, where now tn satisfies the recursion

tn+1(ζ) = (1− χn+1ζ)tn(ζ)

with χn+1 chosen by residual minimization. However, in BiCGStab all zeros
of tn are real (if A, b are real). If A has a complex spectrum, it is better to
choose two possibly complex new zeros in every other iteration. This is the
idea behind BiCGStab2 [5]. Further generalizations of BiCGStab include
BiCGStab(`) by Sleijpen and Fokkema [15], [16] and GPBI-CG by Zhang
[19]; see [6] for references to yet other proposals.

In view of the form of the residual polynomials, this family of methods has
been called Lanczos-type product methods. These are often the most efficient
solvers. They have short recurrences, they are typically about twice as fast as
BiCG, and they do not require AT. Unlike in GMRes, the memory needed
does not increase with the iteration index n.

3.3 Solving the system in coordinate space: MinRes, SymmLQ,
GMRes, and QMR

There is yet another class of Krylov space solvers, which includes well-known
methods like MinRes, SymmLQ, GMRes, and QMR. It was pioneered by
Paige and Saunders [10]. Their approach was later adapted to more general
cases by Saad and Schultz [12] and Freund and Nachtigal [2].

The basic idea is to successively construct a basis of the Krylov space by
combining the extension of the space with Gram-Schmidt orthogonalization or
biorthogonalization, and to update at each iteration the approximate solution
of Ax = b in coordinate space. There are essentially three cases:

• symmetric Lanczos process MinRes, SymmLQ [10]
• nonsymmetric Lanczos process QMR [2]
• Arnoldi process GMRes [12]

3.4 Further reading

For further study we suggest recent books on Krylov space solvers such as
those of Greenbaum [4], Meurant [9], and Saad [11], as well as the review
article by Simoncini and Szyld [13], which also covers developments of the
last ten years. Nonsymmetric Lanczos-type solvers were reviewed in [6].

10 Martin H. Gutknecht

References

1. J. Dongarra and F. Sullivan. Guest editors’ introduction to the top 10 algo-
rithms. Computing in Science and Engineering, 2(1):22–23, 2000.

2. R. W. Freund and N. M. Nachtigal. QMR: a quasi-minimal residual method for
non-Hermitian linear systems. Numer. Math., 60:315–339, 1991.

3. G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, Baltimore, MD, 3nd edition, 1996.

4. A. Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, Philadel-
phia, PA, 1997.

5. M. H. Gutknecht. Variants of BiCGStab for matrices with complex spectrum.
SIAM J. Sci. Comput., 14:1020–1033, 1993.

6. M. H. Gutknecht. Lanczos-type solvers for nonsymmetric linear systems of
equations. Acta Numerica, 6:271–397, 1997.

7. M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear
systems. J. Res. Nat. Bureau Standards, 49:409–435, 1952.

8. C. Lanczos. Solution of systems of linear equations by minimized iterations. J.
Res. Nat. Bureau Standards, 49:33–53, 1952.

9. G. Meurant. Computer solution of large linear systems, volume 28 of Studies in
Mathematics and its Applications. North-Holland, Amsterdam, 1999.

10. C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12:617–629, 1975.

11. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,
2nd. edition, 2003.

12. Y. Saad and M. H. Schultz. Conjugate gradient-like algorithms for solving
nonsymmetric linear systems. Math. Comp., 44:417–424, 1985.

13. V. Simoncini and D. B. Szyld. Recent developments in krylov subspace methods
for linear systems. Numer. Linear Algebra Appl. To appear.

14. V. Simoncini and D. B. Szyld. Flexible inner-outer Krylov subspace methods.
SIAM J. Numer. Anal., 40(6):2219–2239 (electronic) (2003), 2002.

15. G. L. G. Sleijpen and D. R. Fokkema. BiCGstab(l) for linear equations involving
unsymmetric matrices with complex spectrum. Electronic Trans. Numer. Anal.,
1:11–32, 1993.

16. G. L. G. Sleijpen, H. A. van der Vorst, and D. R. Fokkema. BiCGstab(l) and
other hybrid Bi-CG methods. Numerical Algorithms, 7:75–109, 1994.

17. P. Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.
SIAM J. Sci. Statist. Comput., 10:36–52, 1989.

18. H. A. van der Vorst. Bi-CGSTAB: a fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist.
Comput., 13:631–644, 1992.

19. S.-L. Zhang. GPBI-CG: generalized product-type methods based on Bi-CG for
solving nonsymmetric linear systems. SIAM J. Sci. Comput., 18(2):537–551,
1997.

