
Pre�x Sums and Their ApplicationsGuy E. BlellochNovember 1990CMU-CS-90-190School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213This report will appear as a chapter in the book \Synthesis of Parallel Algorithms",Editor: John H. Reif. AbstractExperienced algorithm designers rely heavily on a set of building blocks and on the toolsneeded to put the blocks together into an algorithm. The understanding of these basicblocks and tools is therefore critical to the understanding of algorithms. Many of theblocks and tools needed for parallel algorithms extend from sequential algorithms, such asdynamic-programming and divide-and-conquer, but others are new. This paper introducesone of the simplest and most useful building blocks for parallel algorithms: the all-pre�x-sums operation. The paper de�nes the operation, shows how to implement it on a P-RAMand illustrates many applications of the operation. In addition to being a useful build-ing block, the all-pre�x-sums operation is a good example of a computation that seemsinherently sequential, but for which there is an e�cient parallel algorithm.This research was sponsored by the Avionics Lab, Wright Research and Development Center, Aero-nautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under ContractF33615-90-C-1465, Arpa Order No. 7597.The views and conclusions contained in this document are those of the author and should not beinterpreted as representing the o�cial policies, either expressed or implied, of the U.S. government.

Keywords: Scan operation, parallel algorithms, all-pre�x-sums, linear-recurrence, par-allel quicksort

1 Introduction1Experienced algorithm designers rely heavily on a set of building blocks and on the toolsneeded to put the blocks together into an algorithm. The understanding of these basicblocks and tools is therefore critical to the understanding of algorithms. Many of theblocks and tools needed for parallel algorithms extend from sequential algorithms, such asdynamic-programming and divide-and-conquer, but others are new.This paper introduces one of the simplest and most useful building blocks for parallelalgorithms: the all-pre�x-sums operation. The paper de�nes the operation, shows how toimplement it on a P-RAM and illustrates many applications of the operation. In additionto being a useful building block, the all-pre�x-sums operation is a good example of acomputation that seems inherently sequential, but for which there is an e�cient parallelalgorithm. The operation is de�ned as follows:De�nition: The all-pre�x-sums operation takes a binary associative operator �, and anordered set of n elements [a0; a1; :::; an�1];and returns the ordered set[a0; (a0 � a1); :::; (a0 � a1 � :::� an�1)]:For example, if � is addition, then the all-pre�x-sums operation on the ordered set[3 1 7 0 4 1 6 3],would return [3 4 11 11 14 16 22 25].The uses of the all-pre�x-sums operation are extensive. Here is a list of some of them:1. To lexically compare strings of characters. For example, to determine that "strategy"should appear before "stratification" in a dictionary (see Problem 2).2. To add multi precision numbers. These are numbers that cannot be represented in asingle machine word (see Problem 3).3. To evaluate polynomials (see Problem 6).4. To solve recurrences. For example, to solve the recurrencesxi = aixi�1 + bixi�2 and xi = ai + bi=xi�1 (see Section 4).5. To implement radix sort (see Section 3).1This paper was originally written as a chapter to a book so all the citations appear at the end.1

proc all-pre�x-sums-Array(Out, In)i 0sum In[0]Out[0] sumwhile (i < length)i i + 1sum sum + In[i]Out[i] sum proc all-pre�x-sums-List(Out, In)i 0sum In[0].valueOut[0] sumwhile (In[i].pointer 6= End-of-List)i In[i].pointersum sum + In[i].valueOut[i] sumFigure 1: Sequential algorithms for calculating the all-pre�x-sums operation with operator +on an array and on a linked-list. In the list version, each element of In consists of two �elds: avalue (.value), and a pointer to the next position in the list (.pointer).6. To implement quicksort (see Section 5.1).7. To solve tridiagonal linear systems (see Problem 12).8. To delete marked elements from an array (see Section 3).9. To dynamically allocate processors (see Section 6).10. To perform lexical analysis. For example, to parse a program into tokens.11. To search for regular expressions. For example, to implement the UNIX grep pro-gram.12. To implement some tree operations. For example, to �nd the depth of every vertexin a tree.13. To label components in two dimensional images.In fact, all-pre�x-sums operations using addition, minimum and maximum are so usefulin practice that they have been included as primitive instructions in some machines. Re-searchers have also suggested that a subclass of the all-pre�x-sums operation be added tothe P-RAM model as a \unit time" primitive since this class theoretically can run as fastas a memory access of the shared memory in the P-RAM.Before describing the implementation we must consider how the de�nition of the all-pre�x-sums operation relates to the P-RAM model. The de�nition states that the operationtakes an ordered set, but does not specify how the ordered set is laid out in memory. Oneway to lay out the elements is in contiguous locations of an array; another way is to use alinked-list with pointers from each element to the next. It turns out that both forms of theoperation have uses. In the examples listed above, the component labeling and some of thetree operations require the linked-list version, while the other examples can use the arrayversion. 2

Sequentially, both versions are easy to compute (see Figure 1). The array version stepsdown the array, adding each element into a sum and writing the sum back, while the linked-list version follows the pointers while keeping the running sum and writing it back. Thealgorithms in Figure 1 for both versions are inherently sequential: to calculate a value atany step, the result of the previous step is needed. The algorithms therefore require O(n)time. To execute the all-pre�x-sums operation in parallel, the algorithms must be changedsigni�cantly.The remainder of this paper is just concerned with the array all-pre�x-sums operation.We will henceforth use the term scan for this operation.2De�nition: The scan operation is an array all-pre�x-sums operation.Sometimes it is useful for each element of the result array to contain the sum of all theprevious elements, but not the element itself. We call such an operation, a prescan.De�nition: The prescan operation takes a binary associative operator � with identity I,and an array of n elements [a0; a1; :::; an�1];and returns the array [I; a0; (a0 � a1); :::; (a0 � a1 � :::� an�2)]:A prescan can be generated from a scan by shifting the array right by one and insertingthe identity. Similarly, the scan can be generated from the prescan by shifting left, andinserting at the end the sum of the last element of the prescan and the last element of theoriginal array.2 ImplementationThis section describes an algorithm for executing the scan operation. For p processorsand an array of length n on an EREW P-RAM, the algorithm has a time complexityof O(n=p + lg p). The algorithm is simple and well suited for direct implementation inhardware.Before describing the scan operation, we consider a simpler problem, that of generatingonly the �nal element of the scan. We call this the reduce operation.De�nition: The reduce operation takes a binary associative operator � with identity i,and an ordered set [a0; a1; :::; an�1] of n elements, and returns the value a0�a1� :::�an�1.Again we consider only the case where the ordered set is kept in an array. A balanced binarytree can be used to implement the reduce operation by laying the tree over the values, andusing � to sum pairs at each vertex (see Figure 2a). The correctness of the result relies2The term scan comes from the computer language APL.3

3 1 7 0 4

4 7

11

25

5

1 6 3

9

14

sum[v] = sum[L[v]] + sum[R[v]](a) Executing a +-reduce on a tree.for d from 0 to (lg n)� 1in parallel for i from 0 to n � 1 by 2d+1a[i+ 2d+1 � 1] a[i+ 2d � 1] + a[i+ 2d+1 � 1]Step Array in Memory0 [3 1 7 0 4 1 6 3]1 [3 4 7 7 4 5 6 9]2 [3 4 7 11 4 5 6 14]3 [3 4 7 11 4 5 6 25](b) Executing a +-reduce on a P-RAM.Figure 2: An example of the reduce operation when � is integer addition. The boxes in (b)show the locations that are modi�ed on each step. The length of the array is n and must be apower of two. The �nal result will reside in a[n� 1].4

in parallel for each processor isum[i] a[(n=p)i]for j from 1 to n=psum[i] sum[i] + a[(n=p)i+ j]result +-reduce(sum)[4 7 1| {z }processor 0 0 5 2| {z }processor 1 6 4 8| {z }processor 2 1 9 5| {z }processor 3]Processor Sums = [12 7 18 15]Total Sum = 52Figure 3: The +-reduce operation with more elements than processors. We assume that n=pis an integer.on � being associative. The operator, however, does not need to be commutative sincethe order of the operands is maintained. On an EREW P-RAM, each level of the tree canbe executed in parallel, so the implementation can step from the leaves to the root of thetree (see Figure 2b); we call this an up-sweep. Since the tree is of depth dlg ne, and oneprocessor is needed for every pair of elements, the algorithm requires O(lgn) time and n=2processors.If we assume a �xed number of processors p, with n > p, then each processor can suman n=p section of the array to generate a processor sum; the tree technique can then beused to reduce the processor sums (see Figure 3). The time taken to generate the processorsums is dn=pe, so the total time required on an EREW P-RAM is:TR(n; p) = dn=pe+ dlg pe = O(n=p+ lg p): (1)When n=p � lg p the complexity is O(n=p). This time is an optimal speedup over thesequential algorithm given in Figure 1.We now return to the scan operation. We actually show how to implement the prescanoperation; the scan is then determined by shifting the result and putting the sum at theend. If we look at the tree generated by the reduce operation, it contains many partialsums over regions of the array. It turns out that these partial sums can be used to generateall the pre�x sums. This requires executing another sweep of the tree with one step perlevel, but this time starting at the root and going to the leaves (a down-sweep). Initially,the identity element is inserted at the root of the tree. On each step, each vertex at thecurrent level passes to its left child its own value, and it passes to its right son, � appliedto the value from the left child from the up-sweep and its own value (see Figure 4a).Let us consider why the down-sweep works. We say that vertex x precedes vertex y if xappears before y in the preorder traversal of the tree (depth �rst, from left to right).5

sum[v] = sum[L[v]] + sum[R[v]]

3 1 7 0 4

4 7

11

25

5

1 6 3

9

14

0 3 4 11 11

0

0

4

0

11

11

16

15 16 22

Up Sweep Down Sweep

prescan[R[v]] = sum[L[v]] + prescan[v]

prescan[L[v]] = prescan[v](a) Executing a +-prescan on a tree.procedure down-sweep(A)a[n � 1] 0for d from (lgn)� 1 downto 0in parallel for i from 0 to n� 1 by 2d+1t a[i+ 2d � 1] % Save in temporarya[i+ 2d � 1] a[i+ 2d+1 � 1] % Set left childa[i+ 2d+1 � 1] t + a[i+ 2d+1 � 1] % Set right childStep Array in Memory0 [3 1 7 0 4 1 6 3]up 1 [3 4 7 7 4 5 6 9]2 [3 4 7 11 4 5 6 14]3 [3 4 7 11 4 5 6 25]clear 4 [3 4 7 11 4 5 6 0]down 5 [3 4 7 0 4 5 6 11]6 [3 0 7 4 4 11 6 16]7 [0 3 4 11 11 15 16 22](b) Executing a +-prescan on a P-RAM.Figure 4: A parallel prescan on a tree using integer addition as the associative operator �.6

v

R[v]L[v]

0

A BFigure 5: Illustration for Theorem 1.Theorem 1 After a complete down-sweep, each vertex of the tree contains the sum of allthe leaf values that precede it.Proof: The proof is inductive from the root: we show that if a parent has the correct sum,both children must have the correct sum. The root has no elements preceding it, so itsvalue is correctly the identity element.Consider Figure 5. The left child of any vertex has exactly the same leaves precedingit as the vertex itself (the leaves in region A in the �gure). This is because the preordertraversal always visits the left child of a vertex immediately after the vertex. By theinduction hypothesis, the parent has the correct sum, so it need only copy this sum to theleft child.The right child of any vertex has two sets of leaves preceding it, the leaves precedingthe parent (region A), and the leaves at or below the left child (region B). Therefore, byadding the parent's down-sweep value, which is correct by the induction hypothesis, and theleft-child's up-sweep value, the right-child will contain the sum of all the leaves precedingit. 2Since the leaf values that precede any leaf are the values to the left of it in the scanorder, the values at the leaves are the results of a left-to-right prescan. To implement theprescan on an EREW P-RAM, the partial sums at each vertex must be kept during theup-sweep so they can be used during the down-sweep. We must therefore be careful not tooverwrite them. In fact, this was the motivation for putting the sums on the right duringthe reduce in Figure 2b. Figure 4b shows the P-RAM code for the down-sweep. Each stepcan execute in parallel, so the running time is 2 dlg ne.If we assume a �xed number of processors p, with n > p, we can use a similar method tothat in the reduce operation to generate an optimal algorithm. Each processor �rst sumsan n=p section of the array to generate a processor sum, the tree technique is then usedto prescan the processor sums. The results of the prescan of the processor sums are used7

[4 7 1| {z }processor 0 0 5 2| {z }processor 1 6 4 8| {z }processor 2 1 9 5| {z }processor 3]Sum = [12 7 18 15]+-prescan = [0 12 19 37][0 4 11| {z }processor 0 12 12 17| {z }processor 1 19 25 29| {z }processor 2 37 38 47| {z }processor 3]Figure 6: A +-prescan with more elements than processors.as an o�set for each processor to prescan within its n=p section (see Figure 6). The timecomplexity of the algorithm is:TS(n; p) = 2(dn=pe+ dlg pe) = O(n=p+ lg n) (2)which is the same order as the reduce operation and is also an optimal speedup over thesequential version when n=p � lg p.This section described how to implement the scan (prescan) operation. The rest of thepaper discusses its applications.3 Line-of-Sight and Radix-SortAs an example of the use of a scan operation, consider a simple line-of-sight problem. Theline-of-sight problem is: given a terrain map in the form of a grid of altitudes and anobservation point X on the grid, �nd which points are visible along a ray originating at theobservation point (see Figure 7).A point on a ray is visible if and only if no other point between it and the observationpoint has a greater vertical angle. To �nd if any previous point has a greater angle, thealtitude of each point along the ray is placed in a vector (the altitude vector). Thesealtitudes are then converted to angles and placed in the angle vector (see Figure 7). Aprescan using the operator maximum (max-prescan) is then executed on the angle vector,which returns to each point the maximum previous angle. To test for visibility each pointonly needs to compare its angle to the result of the max-prescan. This can be generalized to�nding all visible points on the grid. For n points on a ray, the complexity of the algorithmis the complexity of the scan, TS(n; p) = O(n=p+ lg n) on an EREW P-RAM.We now consider another example, a radix sort algorithm. The algorithm loops overthe bits of the keys, starting at the lowest bit, executing a split operation on each iteration(assume all keys have the same number of bits). The split operation packs the keys with a0 in the corresponding bit to the bottom of a vector, and packs the keys with a 1 in the bitto the top of the same vector. It maintains the order within both groups. The sort works8

procedure line-of-sight(altitude)in parallel for each index iangle[i] arctan(scale � (altitude[i] - altitude[0])/ i)max-previous-angle max-prescan(angle)in parallel for each index iif (angle[i] > max-previous-angle[i])result[i] "visible"elseresult[i] not "visible"
Figure 7: The line-of-sight algorithm for a single ray. The X marks the observation point. Thevisible points are shaded. A point on the ray is visible if no previous point has a greater angle.

9

procedure split-radix-sort(A, number-of-bits)for i from 0 to (number-of-bits � 1)A split(A, Ahii)A = [5 7 3 1 4 2 7 2]Ah0i = [1 1 1 1 0 0 1 0]A split(A, Ah0i) = [4 2 2 5 7 3 1 7]Ah1i = [0 1 1 0 1 1 0 1]A split(A, Ah1i) = [4 5 1 2 2 7 3 7]Ah2i = [1 1 0 0 0 1 0 1]A split(A, Ah2i) = [1 2 2 3 4 5 7 7]Figure 8: An example of the split radix sort on a vector containing three bit values. The Ahninotation signi�es extracting the nth bit of each element of the vector A. The split operationpacks elements with a 0
ag to the bottom and with a 1
ag to the top.because each split operation sorts the keys with respect to the current bit (0 down, 1 up)and maintains the sorted order of all the lower bits since we iterate from the bottom bitup. Figure 8 shows an example of the sort.We now consider how the split operation can be implemented using a scan. The basicidea is to determine a new index for each element and then permute the elements to thesenew indices using an exclusive write. To determine the new indices for elements with a 0 inthe bit, we invert the
ags and execute a prescan with integer addition. To determine thenew indices of elements with a 1 in the bit, we execute a +-scan in reverse order (startingat the top of the vector) and subtract the results from the length of the vector n. Figure 9shows an example of the split operation along with code to implement it.Since the split operation just requires two scan operations, a few steps of exclusivememory accesses, and a few parallel arithmetic operations, it has the same asymptoticcomplexity as the scan: O(n=p+lg p) on an EREW P-RAM.3 If we assume that n keys areeach O(lgn) bits long, then the overall algorithm runs in time:O((np + lg p) lgn) = O(np lg n+ lgn lg p):4 Recurrence EquationsThis section shows how various recurrence equations can be solved using the scan operation.A recurrence is a set of equations of the formxi = fi(xi�1; xi�2; � � � ; xi�m); m � i < n (3)3On an CREW P-RAM we can use the scan described in [6] to get a time of O(n=p+ lg p= lg lg p).10

procedure split(A, Flags)I-down +-prescan(not(Flags))I-up n - +-scan(reverse-order(Flags))in parallel for each index iif (Flags[i])Index[i] I-up[i]elseIndex[i] I-down[i]result permute(A, Index)A = [5 7 3 1 4 2 7 2]Flags = [1 1 1 1 0 0 1 0]I-down = [0 0 0 0 0 1 2 2]I-up = [3 4 5 6 6 6 7 7]Index = [3 4 5 6 0 1 7 2]permute(A, Index) = [4 2 2 5 7 3 1 7]Figure 9: The split operation packs the elements with an F in the corresponding
ag positionto the bottom of a vector, and packs the elements with a T to the top of the same vector.The permute writes each element of A to the index speci�ed by the corresponding position inIndex.
11

along with a set of initial values x0; � � � ; xm�1.The scan operation is the special case of a recurrence of the formxi = (a0 i = 0xi�1 � ai 0 < i < n; (4)where � is any binary associative operator. This section shows how to reduce a moregeneral class of recurrences to equation (4), and therefore how to use the scan algorithmdiscussed in Section 2 to solve these recurrences in parallel.4.1 First-Order RecurrencesWe initially consider �rst-order recurrences of the following formxi = (b0 i = 0(xi�1
 ai)� bi 0 < i < n; (5)where the ai's and bi's are sets of n arbitrary constants (not necessarily scalars) and � and
 are arbitrary binary operators that satisfy three restrictions:1. � is associative (i.e. (a� b)� c = a� (b� c)).2.
 is semiassociative (i.e. there exists a binary associative operator � such that(a
 b)
 c = a
 (b� c)).3.
 distributes over � (i.e. a
 (b� c) = (a
 b)� (a
 c)).The operator � is called the companion operator of
. If
 is fully associative, then � and
 are equivalent.We now show how (5) can be reduced to (4). Consider the set of pairsci = [ai; bi] (6)and de�ne a new binary operator � as follows:ci � cj � [ci;a � cj;a; (ci;b
 cj;a)� cj;b] (7)where ci;a and ci;b are the �rst and second elements of ci, respectively.Given the conditions on the operators � and
, the operator � is associative as we showbelow:(ci � cj) � ck = [ci;a � cj;a; (ci;b
 cj;a)� cj;b] � ck= [(ci;a � cj;a)� ck;a; (((ci;b
 cj;a)� cj;b)
 ck;a)� ck;b]= [ci;a � (cj;a � ck;a); ((ci;b
 cj;a)
 ck;a)� ((cj;b
 ck;a)� ck;b)]= [ci;a � (cj;a � ck;a); (ci;b
 (cj;a � ck;a))� ((cj;b
 ck;a)� ck;b)]= ci � [cj;a � ck;a; (cj;b
 ck;a)� ck;b]= ci � (cj � ck) 12

We now de�ne the ordered set si = [yi; xi], where the yi obey the recurrenceyi = (a0 i = 0yi�1 � ai 0 < i < n; (8)and the xi are from (5). Using (5), (6) and (8) we obtain:s0 = [y0; x0]= [a0; b0]= c0si = [yi; xi] 0 < i < n= [yi�1 � ai; (xi�1
 ai)� bi]= [yi�1 � ci;a; (xi�1
 ci;a)� ci;b]= [yi�1; xi�1] � ci= si�1 � ci:Since � is associative, we have reduced (5) to (4). The results xi are just the second valuesof si (the si;b). This allows us to use the scan algorithm of Section 2 with operator � tosolve any recurrence of the form (5) on an EREW P-RAM in time:(T� + T
 + T�)TS(n; p) = 2(T� + T
 + T�)(n=p+ lg p) (9)where T�, T
 and T� are the times taken by �,
 and � (� makes one call to each). Ifall that is needed is the �nal value xn�1, then we can use a reduce instead of scan with theoperator �, and the running time is:(T� + T
 + T�)TR(n; p) = (T� + T
 + T�)(n=p+ lg p) (10)which is asymptotically a factor of 2 faster than (9).Applications of �rst-order linear recurrences include various time-varying linear sys-tems, the backsubstitution phase of tridiagonal linear-systems solvers, and evaluation ofpolynomials.4.2 Higher Order RecurrencesWe now consider the more general order m recurrences of the form:xi = (bi 0 � i < m(xi�1
 ai;1)� � � � � (xi�m
 ai;m)� bi m � i < n (11)where � and
 are binary operators with the same three restrictions as in (5): � isassociative,
 is semiassociative, and
 distributes over �.To convert this equation into the form (5), we de�ne the following vector of variables:si = [xi � � � xi�m+1]: (12)13

a = [5 1 3 4 3 9 2 6]f = [1 0 1 0 0 0 1 0]segmented +-scan = [5 6 3 7 10 19 2 8]segmented max-scan = [5 5 3 4 4 9 2 6]Figure 10: The segmented scan operations restart at the beginning of each segment. Thevector f contains
ags that mark the beginning of the segments.Using (11) we can write (12) as:si = [xi�1 � � � xi�m]
(v) 2666666664 ai;1 1 0 � � � 0... 0 1 0... 0 � � � 0 1ai;m 0 � � � 0 0 3777777775�(v) [bi 0 � � � 0]= (si�1
(v) Ai)�(v) Bi (13)where
(v) is vector-matrix multiply and �(v) is vector addition. If we use matrix-matrixmultiply as the companion operator of
(v), then (13) is in the form (5). The time takenfor solving equations of the form (11) on an EREW P-RAM is therefore:(Tm
m(m) + Tv
m(m) + Tv�v(m))TS(n; p) = O((n=p+ lg p)Tm
m(m)) (14)where Tm
m(m) is the time taken by an m
m matrix multiply. The sequential complexityfor solving the equations is O(nm), so the parallel complexity is optimal in n when n=p �lg p, but is not optimal in m|the parallel algorithm performs a factor of O(TM
M (m)=m)more work than the sequential algorithm.Applications of the recurrence (11) include solving recurrences of the form xi = ai +bi=xi�1 (see problem 10), and generating the �rst n Fibonacci numbers x0 = x1 = 1; xi =xi�1 + xi�2 (see problem 11).5 Segmented ScansThis section shows how the array operated on by a scan can be broken into segments with
ags so that the scan starts again at each segment boundary (see Figure 10). Each ofthese scans takes two arrays of values: a data array and a
ag array. The segmented scanoperations present a convenient way to execute a scan independently over many sets ofvalues. The next section shows how the segmented scans can be used to execute a parallelquicksort, by keeping each recursive call in a separate segment, and using a segmented+-scan to execute a split within each segment.14

The segmented scans satisfy the recurrence:xi = 8><>: a0 i = 0(ai fi = 1(xi�1 � ai) fi = 0 0 < i < n (15)where � is the original associative scan operator. If � has an identity I�, then (15) can bewritten as: xi = (a0 i = 0(xi�1 �s fi)� ai 0 < i < n (16)where �s is de�ned as: x�s f = (I� f = 1x f = 0: (17)This is in the form (5) and �s is semiassociative with logical or as the companion operator(see Problem 9). Since we have reduced (15) to the form (5), we can use the techniquedescribed in Section 4.1 to execute the segmented scans in time(Tor + T�s + T�)TS(n; p) : (18)This time complexity is only a small constant factor greater than the unsegmentedversion since or and �s are trivial operators.5.1 Example: QuicksortTo illustrate the use of segmented scans, we consider a parallel version of quicksort. Similarto the standard sequential version, the parallel version picks one of the keys as a pivot value,splits the keys into three sets|keys lesser, equal and greater than the pivot|and recurseson each set.4 The parallel algorithm has an expected time complexity of O(TS(n; p) lg n) =O(np lg n+ lg2 n).The basic intuition of the parallel version is to keep each subset in its own segment,and to pick pivot values and split the keys independently within each segment. Figure 11shows pseudocode for the parallel quicksort and gives an example. The steps of the sortare outlined as follows:1. Check if the keys are sorted and exit the routine if they are.Each processor checks to see if the previous processor has a lesser or equal value. Weexecute a reduce with logical and to check if all the elements are in order.4We do not need to recursively sort the keys equal to the pivot, but the algorithm as described belowdoes. 15

procedure quicksort(keys)seg-flags[0] 1while not-sorted(keys)pivots seg-copy(keys, seg-flags)f pivots <=> keyskeys seg-split(keys, f, seg-flags)seg-flags new-seg-flags(keys, pivots, seg-flags)Key = [6.4 9.2 3.4 1.6 8.7 4.1 9.2 3.4]Seg-Flags = [1 0 0 0 0 0 0 0]Pivots = [6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4]F = [= > < < > < > <]Key split(Key, F) = [3.4 1.6 4.1 3.4 6.4 9.2 8.7 9.2]Seg-Flags = [1 0 0 0 1 1 0 0]Pivots = [3.4 3.4 3.4 3.4 6.4 9.2 9.2 9.2]F = [= < > = = = < =]Key split(Key, F) = [1.6 3.4 3.4 4.1 6.4 8.7 9.2 9.2]Seg-Flags = [1 1 0 1 1 1 1 0]Figure 11: An example of parallel quicksort. On each step, within each segment, we distributethe pivot, test whether each element is equal-to, less-than or greater-than the pivot, split intothree groups, and generate a new set of segment
ags. The operation <=> returns one of threevalues depending on whether the �rst argument is less than, equal to or greater than the second.
16

2. Within each segment, pick a pivot and distribute it to the other elements.If we pick the �rst element as a pivot, we can use a segmented scan with the binaryoperator copy, which returns the �rst of its two arguments:a copy(a; b) :This has the e�ect of copying the �rst element of each segment across the segment.The algorithm could also pick a random element within each segment (see Prob-lem 15).3. Within each segment, compare each element with the pivot and split based on theresult of the comparison.For the split, we can use a version of the split operation described in Section 3 whichsplits into three sets instead of two, and which is segmented. To implement such asegmented split, we can use a segmented version of the +-scan operation to generateindices relative to the beginning of each segment, and we can use a segmented copy-scan to copy the o�set of the beginning of each segment across the segment. We thenadd the o�set to the segment indices to generate the location to which we permuteeach element.4. Within each segment, insert additional segment
ags to separate the split values.Knowing the pivot value, each element can determine if it is at the beginning of thesegment by looking at the previous element.5. Return to step 1.Each iteration of this sort requires a constant number of calls to the scans and to theprimitives of the P-RAM. If we select pivots randomly within each segment, quicksort isexpected to complete in O(lgn) iterations, and therefore has an expected running time ofO(lgn � TS(n; p)).The technique of recursively breaking segments into subsegments and operating inde-pendently within each segment can be used for many other divide-and-conquer algorithms,such as mergesort.6 Allocating ProcessorsConsider the following problem: given a set of processors, each containing an integer,allocate that integer number of new processors to each initial processor. Such allocationis necessary in the parallel line-drawing routine described in Section 6.1. In this line-drawing routine, each processor calculates the number of pixels in the line and dynamicallyallocates a processor for each pixel. Allocating new elements is also useful for the branchingpart of many branch-and-bound algorithms. Consider, for example, a brute force chess-playing algorithm that executes a �xed-depth search of possible moves to determine thebest next move. We can test or search the moves in parallel by placing each possible movein a separate processor. Since the algorithm dynamically decides how many next moves17

V = [v1 v2 v3]A = [4 1 3]Hpointers +-prescan(A) = [0 4 5]�������� ? ?Segment-
ag = [1 0 0 0 1 1 0 0]distribute(V, Hpointers) = [v1 v1 v1 v1 v2 v3 v3 v3]index(Hpointers) = [0 1 2 3 0 0 1 2]Figure 12: An example of processor allocation. The vector A speci�es how many new elementseach position needs. We can allocate a segment to each position by applying a +-prescan toA and using the result as pointers to the beginning of each segment. We can then distributethe values of V to the new elements with a permute to the beginning of the segment and asegmented copy-scan across the segment.to generate (depending on the position), we need to dynamically allocate new processingelements.More formally, given a length l vector A with integer elements ai, allocation is the taskof creating a new vector B of length L = l�1Xi=0 ai (19)with ai elements of B assigned to each position i of A. By assigned to, we mean that theremust be some method for distributing a value at position i of a vector to the ai elementswhich are assigned to that position. Since there is a one-to-one correspondence betweenelements of a vector and processors, the original vector requires l processors and the newvector requires L processors. Typically, an algorithm does not operate on the two vectorsat the same time, so that we can use the same processors for both.Allocation can be implemented by assigning a contiguous segment of elements to eachposition i of A. To allocate segments we execute a +-prescan on the vector A that returns apointer to the start of each segment (see Figure 12). We can then generate the appropriatesegment
ags by writing a
ag to the index speci�ed by the pointer. To distribute valuesfrom each position i to its segment, we write the values to the beginning of the segmentsand use a segmented copy-scan operation to copy the values across the segment. Allocationand distribution each require one call to a scan and therefore have complexity TS(l; p) andTS(L;p) respectively.Once a segment has been allocated for each initial element, it is often necessary togenerate indices within each segment. We call this the index operation, and it can beimplemented with a segmented +-prescan. 18

6.1 Example: Line DrawingAs an example of how allocation is used, consider line drawing. The line-drawing problemis: given a set of pairs of points (h(x0; y0) : (x̂0; ŷ0)i; . . . ; h(xn�1; yn�1) : (x̂n�1; ŷn�1)i),generate all the locations of pixels that lie between on of the pairs of points. Figure 13illustrates an example. The routine we discuss returns a vector of (x; y) pairs that specifythe position of each pixel along every line. If a pixel appears in more than one line, itwill appear more than once in the vector. The routine generates the same set of pixels asgenerated by the simple digital di�erential analyzer sequential technique.The basic idea of the routine is for each line to allocate a processor for each pixel inthe line, and then for each allocated pixel to determine, in parallel, its �nal position inthe grid. Figure 13 shows the code. To allocate a processor for each pixel, each line must�rst determine the number of pixels in the line. This number can be calculated by takingthe maximum of the x and y di�erences of the line's endpoints. Each line now allocates asegment of processors for its pixels, and distributes one endpoint along with the per-pixelx and y increments across the segment. We now have one processor for each pixel andone segment for each line. We can view the position of a processor in its segment as theposition of a pixel in its line. Based on the endpoint the slope and the position in the line(determined with a index operation), each pixel can determine its �nal (x; y) location inthe grid.This routine has the same complexity as a scan TS(m;p), where m is the total numberof pixels. To actually place the points on a grid, rather than just generating their position,we would need to permute a
ag to a position based on the location of the point. In general,this will require the simplest form of concurrent-write (one of the values gets written), sincea pixel might appear in more than one line.Exercises1 Modify the algorithm in Figure 4 to execute a scan instead of a prescan.2 Use the scan operation to compare two strings of length n in O(n=p+ lg p) time on anEREW P-RAM.3 Given two vectors of bits that represent nonnegative integers, show how a prescan canbe used to add the two numbers (return a vector of bits that represents the sum of the twonumbers).4 Trace the steps of the split-radix sort on the vector[2 11 4 5 9 6 15 3].5 Show that subtraction is semiassociative and �nd its companion operator.6 Write a recurrence equation of the form (5) that evaluates a polynomialy = b1xn�1 + b2xn�2 + � � �+ bn�1x+ bn19

procedure line-draw(x, y)in parallel for each line i% determine the length of the linelength[i] maximum(jp2[i].x � p1[i].xj, jp2[i].y � p1[i].yj)% determine the x and y increments�[i].x (p2[i].x � p1[i].x) / length[i]�[i].y (p2[i].y � p1[i].y) / length[i]% distribute values and generate indexp01 distribute(p1, lengths)�0 distribute(�, lengths)index index(lengths)in parallel for each pixel j% determine the final positionresult[j].x p01[j].x + round(index[j] � �0[j].x)result[j].y p01[j].y + round(index[j] � �0[j].y)
0 5 10 15 20 25 30

0

5

10

15

Figure 13: The pixels generated by a line drawing routine. In this example the endpoints areh(11;2) : (23;14)i, h(2;13) : (13;8)i, and h(16;4) : (31;4)i. The algorithm allocates 12, 11and 16 pixels respectively for the three lines. 20

for a given x.7 Show that if
 has an inverse, the recurrence of the form (5) can be solved with somelocal operations (not involving communication among processors) and two scan operations(using
 and � as the operators).8 Prove that vector-matrix multiply is semiassociative.9 Prove that the operator �s de�ned in (17) is semiassociative.10 Show how the recurrence x(i) = a(i)+ b(i)=x(i� 1), where + is numeric addition and= is division, can be converted into the form (11) with two terms (m = 2).11 Use a scan to generate the �rst n Fibonacci numbers.12 Show how to solve a tridiagonal linear-system using the recurrences in Section 4. Isthe algorithm asymptotically optimal?13 In the language Common Lisp, the % character means that what follows the characterup to the end of the line is a comment. Use the scan operation to mark all the commentcharacters (everything between a % and an end-of-line).14 Trace the steps of the parallel quicksort on the vector[27 11 51 5 49 36 15 23].15 Describe how quicksort is changed so that it selects a random element within eachsegment for a pivot.16 Design an algorithm that given the radius and number of sides on a regular polygon,determines all the pixels that outline the polygon.NotesThe all-pre�x-sums operation has been around for centuries as the recurrence xi = ai+xi�1.A parallel circuit to execute the scan operation was �rst suggested by Ofman in 1963 [15]for the addition of binary numbers. A parallel implementation of scans on a perfect shu�enetwork was later suggested by Stone [17] for polynomial evaluation. The optimal algorithmdiscussed in Section 2 is a slight variation of algorithms suggested by Kogge and Stone [10]and by Stone [19] in the context of recurrence equations.Ladner and Fischer �rst showed an e�cient general-purpose circuit for implementing thescan operation [11]. Brent and Kung, in the context of binary addition, �rst showed an e�-cient VLSI layout for a scan circuit [4]. More recent work on implementing scan operationsin parallel include the work of Fich [7] and of Lakshmivarahan, Yang and Dhall [12], whichgive improvements over the circuit of Ladner and Fischer, and of Lubachevsky and Green-berg [13], which demonstrates the implementation of the scan operation on asynchronousmachines. Blelloch suggested that certain scan operations be included in the P-RAM modelas primitives and shows how this a�ects the complexity of various algorithms [1].21

The line-of-sight and radix-sort algorithms are discussed by Blelloch [2, 3]. The parallelsolution of recurrence problems was �rst discussed by Karp, Miller and Winograd [9], andparallel algorithms to solve them are given by Kogge and Stone [10], Stone [18, 19] andChen and Kuck [5]. Hya�l and Kung [8] show that the complexity (10) is a lower bound.Schwartz [16] and, independently, Mago [14] �rst suggested the segmented versions ofthe scans. Blelloch suggested many uses of these scans including the quicksort algorithmand the line-drawing algorithm presented in Sections 5.1 and 6.1 [2].AcknowledgmentsI would like to thank Siddhartha Chatterjee, Jonathan Hardwick and Jay Sipelstein forreading over drafts of this paper and helping to clean it up.References[1] Guy E. Blelloch. Scans as Primitive Parallel Operations. IEEE Transactions onComputers, C-38(11):1526{1538, November 1989.[2] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, Cambridge,MA, 1990.[3] Guy E. Blelloch and James J. Little. Parallel Solutions to Geometric Problems onthe Scan Model of Computation. In Proceedings International Conference on ParallelProcessing, pages Vol 3: 218{222, August 1988.[4] R. P. Brent and H. T. Kung. The Chip Complexity of Binary Arithmetic. In Proceed-ings ACM Symposium on Theory of Computing, pages 190{200, 1980.[5] Shyh-Ching Chen and David J. Kuck. Time and Parallel Processor Bounds for LinearRecurrence Systems. IEEE Transactions on Computers, C-24(7), July 1975.[6] Richard Cole and Uzi Vishkin. Faster optimal parallel pre�x sums and list ranking.Information and Computation, 81(3):334{352, June 1989.[7] Faith E. Fich. New Bounds for Parallel Pre�x Circuits. In Proceedings ACM Sympo-sium on Theory of Computing, pages 100{109, April 1983.[8] L. Hya�l and H. T. Kung. The Complexity of Parallel Evaluation of Linear Recur-rences. Journal of the Association for Computing Machinery, 24(3):513{521, July1977.[9] R. H. Karp, R. E. Miller, and S. Winograd. The Organization of Computations forUniform Recurrence Equations. Journal of the Association for Computing Machinery,14:563{590, 1967. 22

[10] Peter M. Kogge and Harold S. Stone. A Parallel Algorithm for the E�cient Solutionof a General Class of Recurrence Equations. IEEE Transactions on Computers, C-22(8):786{793, August 1973.[11] Richard E. Ladner and Michael J. Fischer. Parallel Pre�x Computation. Journal ofthe Association for Computing Machinery, 27(4):831{838, October 1980.[12] S. Lakshmivarahan, C. M. Yang, and S. K Dhall. Optimal Parallel Pre�x Circuitswith (size + depth) = 2n � n and dlogne � depth � d2 logne � 3. In ProceedingsInternational Conference on Parallel Processing, pages 58{65, August 1987.[13] Boris D. Lubachevsky and Albert G. Greenberg. Simple, E�cient Asynchronous Paral-lel Pre�x Algorithms. In Proceedings International Conference on Parallel Processing,pages 66{69, August 1987.[14] G. A. Mago. A network of computers to execute reduction languages. InternationalJournal of Computer and Information Sciences, 1979.[15] Yu. Ofman. On the Algorithmic Complexity of Discrete Functions. Soviet PhysicsDoklady, 7(7):589{591, January 1963.[16] Jacob T. Schwartz. Ultracomputers. ACM Transactions on Programming Languagesand Systems, 2(4):484{521, October 1980.[17] Harold S. Stone. Parallel Processsing with the Perfect Shu�e. IEEE Transactions onComputers, C-20(2):153{161, 1971.[18] Harold S. Stone. An E�cient Parallel Algorithm for the Solution of a TridiagonalLinear System of Equations. Journal of the Association for Computing Machinery,20(1):27{38, January 1973.[19] Harold S. Stone. Parallel Tridiagonal Equation Solvers. ACM Transactions on Math-ematical Software, 1(4):289{307, December 1975.
23

