
1

Lecture Material

Standard C++ library
STL (Standard Template Library)

2

STL – General View
STL – library of reusable components
 Meant to provide support for C++ development with containers,

algorithms, iterators, etc.

Easy to use and very powerful (and efficient)

Not OOP, but generic programming

http://en.cppreference.com/w/cpp

Objects for allocating memoryAllocators

Classes that “adapt” other classesAdaptors

“Pointers” into containers, used as index
into containers

Iterators

Classes that contain other objectsContainers

3

Some of the Containers in STL

Collection of T Values indexed by
unique Key values

map<Key,T>

Collection of unique Key valuesset<Key>

Usual stack implementationstack<T>

Linear time access, varying length,
constant time insert/delete anywhere
in list

list<T>

Random access, varying length,
constant time insert/delete at either
end

deque<T>

Random access, varying length,
constant time insert/delete at end

vector<T>

4

Common in Most Containers

Some common member functions in most
containers, for example
 size() returns the number of elements in a container
 push_back() adds objects at the "end" of a container

Access to data in containers
 direct access to data via operator[] or at() member

function

Iterators
 way of accessing elements in the container, using a for

loop with an "index"
 several available, forward, backward, const, etc.

5

STL Vector Container

The STL vector mimics the behavior of a
dynamically allocated array and also supports
automatic resizing at runtime (if you add data via
the insert and push_back).

vector
declarations:

vector<int> iVector;
vector<int> jVector(100);
vector<int> kVector(Size); // Size is int var

vector
element access:

jVector[23] = 71; // set member
jVector[41]; // get member
jVector.at(23); // get member
jVector.front(); // get first member
jVector.back(); // get last member

vector
reporters:

jVector.size(); // num elements in container
jVector.capacity(); // capacity of container
jVector.max_capacity(); // max capacity of elements
jVector.empty();

6

vector Constructors

The vector template provides several
constructors:

 vector<T> V; //empty vector
 vector<T> V(n,value);
//vector with n copies of value

 vector<T> V(n);
//vector with n copies of default for T

The vector template also provides a suitable deep
copy constructor and assignment overload.

7

vector Example

Warning: the capacity of this vector will NOT
automatically increase as needed if access is performed
using the [] operator. Using insert() and push_back() to
add members in the array will grow the vector as needed.

#include <iostream>
#include <vector> // for vector template definition
using namespace std;

int main() {
int MaxCount = 100;
vector<int> iVector(MaxCount);
for (int Count = 0; Count < MaxCount; Count++) {

iVector[Count] = Count;
}

}

Initial vector size

Access like an array

8

STL vector Indexing
In the simplest case, a vector object may be used as a simple
dynamically allocated array:

 No runtime checking of the vector index bounds
 No dynamic growth. Errors produce an access violation (if we are

lucky).

Use of the at() member function causes an out_of_range
exception in the same situation.

int MaxCount = 100;
vector<int> iVector(MaxCount);
...
for (int Count = 0; Count < 2*MaxCount; Count++) {
cout << iVector[Count];

int MaxCount = 100;
vector<int> iVector(MaxCount);
...
for (int Count = 0; Count < 2*MaxCount; Count++) {
cout << iVector.at(Count);

Efficiency

Safety

9

STL Iterators

Iterator
 An object that keeps track of a location within an

associated STL container object, providing support for
traversal (increment/decrement), dereferencing, and
container bounds detection.

 An iterator is declared with an association to a particular
container type and its implementation is both dependent
upon that type and of no particular importance to the user.

 Iterators are fundamental to many of the STL algorithms
and are a necessary tool for making good use of the STL
container library.

 Each STL container type includes member functions
begin() and end() which effectively specify iterator values
for the first element and for "one-past-end" element.

10

vector Iterator

The STL vector iterator mimics the behavior of pointer
access to a dynamically allocated array.

vector<T> v;

vector<T>::iterator idx;

for (idx = v.begin(); idx != v.end(); ++idx)

do something with *idx

iterator declaration:
vector<int>::iterator idx;
vector<int> jVector;

access iterator from
vector:

jVector.begin(); // gets iterator
jVector.end(); // gets sentinel (iterator)

vector element access via
iterator:

idx[i]; // access ith element
*idx; // access to element pointed by idx
idx++; // moves pointer to next element
idx--; // moves pointer to previous element

11

Types of Iterators
Different containers provide different types of iterators
 Forward iterator - defines ++ only
 Bidirectional - define ++ and -- on iterator
 Random-access - define ++, -- and [x]

 Addition, subtraction of integers: r+n, r-n
 Jump by integer n: r+=n, r-=n
 Iterator subtraction r - s yields integer
 Has an indexing operator []

 Constant and mutable iterators
 Constant iterators - *p does not allow you to modify the element in the container
 Mutable allows you to edit the container

for (p = v.begin(); p != v.end(); ++p)

*p = new value

 Reverse iterator, allows to traverse container from end to beginning
reverse_iterator rp;

for (rp = v.rbegin(); rp != v.rend(); ++rp)

process *rp

12

Constant Iterators

Constant iterator must be used when object is
const – typically for parameters.
Type is defined by container class:
vector<T>::const_iterator

void ivecPrint(const vector<int>& V, ostream& Out) {
vector<int>::const_iterator It; // MUST be const

for (It = V.begin(); It != V.end(); ++It) {
cout << *It;

}
cout << endl;

}

13

STL vector Iterator Example

The example below makes a copy of the BigInt vector

The vector Copy is initially empty. push_back() will
enlarge target vector to the appropriate size

We use prefix, and not suffix, iterator incrementation
operator

string DigitString = "45658228458720501289";
vector<int> BigInt;

for (int i = 0; i < DigitString.length(); i++) {
BigInt.push_back(DigitString.at(i) - '0');

}
vector<int> Copy;
vector<int>::iterator It;
for (It = BigInt.begin(); It != BigInt.end(); ++It) {
Copy.push_back(*It);

}

Iterator initialization Sentinel value.

Advance the iterator to the next element.

14

STL Iterator Operations

Each STL iterator provides certain facilities via a
standard interface:
string DigitString = "45658228458720501289";
vector<int> BigInt;

for (int i = 0; i < DigitString.length(); i++) {
BigInt.push_back(DigitString.at(i) - '0');

}

vector<int>::iterator It;

It = BigInt.begin();
int FirstElement = *It;

It++;

It = BigInt.end();

It--;
int LastElement = *It;

Create an iterator for vector<int> objects.

Target the first element of BigInt and copy it.

Step to the second element of BigInt.

Now It targets a non-element of BigInt.
Dereferencing It can yield an access violation.

Back It up to the last element of BigInt.

15

Insertion into vector Objects

Insertion at the end of the vector (using push_back()) is
most efficient.
 Inserting elsewhere requires shifting data in memory.

A vector object is potentially like array that can increase
size.

The capacity of a vector e.g. doubles in size if insertion is
performed when vector is “full”.

Insertion invalidates any iterators that target elements
following the insertion point.

Reallocation (enlargement) invalidates any iterators that
are associated with the vector object.

You can set the minimum size of a vector object V with
V.reserve(n).

16

insert() Member Function
An element may be inserted at an arbitrary position in a vector by
using an iterator and the insert() member function:

This is the worst case;
insertion is always at the beginning
of the sequence and that maximizes
the amount of shifting.

There are overloadings of insert() for inserting an arbitrary number
of copies of a data value and for inserting a sequence from another
vector object.

vector<int> Y;
for (int m = 0; m < 100; m++) {

Y.insert(Y.begin(), m);

cout << setw(3) << m
<< setw(5) << Y.capacity()
<< endl;

}

Index Cap
0 1
1 2
2 4
3 4
4 8

. . .
8 16

. . .
15 16
16 32

. . .
31 32
33 64
63 64

. . .
64 128

17

Deletion from vector Objects
As with insertion, deletion requires shifting (except for the
special case of the last element).
 Member for deletion of last element: V.pop_back()
 Member for deletion of specific element, given an iterator

It: V.erase(It)

Deletion invalidates iterators that target elements following the
point of deletion, so

j = V.begin();

while (j != V.end())

V.erase(j++);

doesn't work

Member for deletion of a range of values:

V.erase(Iter1, Iter2)

18

Container Comparison

Two containers of the same type are equal if:
 they have same size
 elements in corresponding positions are equal

The element type in the container must have
equality operator

For other comparisons (lexicographical) element
type must have appropriate operator (<, >, . . .)

19

STL deque Container

deque
 double-ended queue

Provides efficient insert/delete from either end

Also allows insert/delete at other locations via
iterators

Adds push_front() and pop_front() methods to
those provided for vector

Otherwise, most methods and constructors the
same as for vector

Requires header file <deque>

20

STL list Container

Essentially a doubly linked list

Not random access, but constant time insert and
delete at current iterator position

Some differences in methods from vector and
deque (e.g., no operator[])

Insertions and deletions do not invalidate iterators

21

Associative Containers

A standard array is indexed by values of a numeric
type:
 A[0],...,A[Size-1]
 dense indexing

An associative array would be indexed by any
type:
 A["alfred"], A["judy"]
 sparse indexing

Associative data structures support direct lookup
(“indexing”) via complex key values
The STL provides templates for a number of
associative structures

22

Ordered Associative Containers

The values (objects) stored in the container are
maintained in sorted order with respect to a key
type (e.g., an ID field in an Employee object)

possibly duplicate Keysmultimap<Key,T>

collection of T values indexed by
unique Key values

map<Key,T>

possibly duplicate Keysmultiset<Key>

collection of unique Key valuesset<Key>

23

Unordered Associative Containers

The values (objects) stored in the container do not
require an ordering

However, they require a hash function

possibly duplicate Keysunordered_multimap<Key,T, Hash>

collection of T values indexed by
unique Key values

unordered_map<Key,T, Hash>

possibly duplicate Keysunordered_multiset<Key, Hash>

collection of unique Key valuesunordered_set<Key, Hash>

24

Sets and Multisets

Both set and multiset templates store key values,
which must have a defined ordering.
 set only allows distinct objects (by order) whereas

multiset allows duplicate

 the key type has to implement operator <

set<int> iSet; // fine, built-in type has < operator
set<Employee> Payroll; // class Employee did not

// implement a < operator

bool Employee::operator<(const Employee& Other) const {
return (ID < Other.ID);

}

25

set Example

#include <functional>
#include <set>
using namespace std;
#include "employee.h"

void EmpsetPrint(const set<Employee> S, ostream& Out);

int main() {
Employee Ben("Ben", "Keller", "000-00-0000");
Employee Bill("Bill", "McQuain", "111-11-1111");
Employee Dwight("Dwight", "Barnette", "888-88-8888");
set<Employee> S;
S.insert(Bill);
S.insert(Dwight);
S.insert(Ben);
EmpsetPrint(S, cout);

}
void EmpsetPrint(const set<Employee> S, ostream& Out) {
set<Employee>::const_iterator It;
for (It = S.begin(); It != S.end(); ++It)

Out<<*It<<endl;
}

000-00-0000 Ben Keller
111-11-1111 Bill McQuain
888-88-8888 Dwight Barnette

26

Choosing a Container

A vector may used in place of a dynamically
allocated array

A list allows dynamically changing size for linear
access

A set may be used when there is a need to keep
data sorted and random access is unimportant

A map should be used when data needs to be
indexed by a unique non-integral key

Use multiset or multimap when a set or map would
be appropriate except that key values are not
unique

27

Imagine this short program...

#include <iostream>
#include <vector>
using namespace std;

int
main ()
{
 vector < int >v;
 vector < int >::iterator idx;
 int i, total;
 cout << "Enter numbers, end with ^D" << endl;
 cout << "% ";
 while (cin >> i)
 {
 v.push_back (i);
 cout << "% ";
 }
 cout << endl << endl;
 cout << "Numbers entered = " << v.size () << endl;
 for (idx = v.begin (); idx != v.end (); ++idx)
 cout << *idx << endl;
 total = 0;
 for (idx = v.begin (); idx != v.end (); ++idx)
 total = total + *idx;
 cout << "Sum = " << total << endl;
};

Common code repeated
to process container

28

Improved...

#include <iostream>
#include <vector>
#include <numeric>
using namespace std;

void print (int i) {
 cout << i << endl;
};
int main ()
{
 vector < int >v;
 vector < int >::iterator idx;
 int i, total;
 cout << "Enter numbers, end with ^D" << endl;
 cout << "% ";
 while (cin >> i)
 {
 v.push_back (i);
 cout << "% ";
 }
 cout << endl << endl;
 cout << "Numbers entered = " << v.size () << endl;
 for_each (v.begin (), v.end (), print);
 total = accumulate (v.begin (), v.end (), 0);
 cout << "Sum = " << total << endl;
}

Using the STL

29

Generic Algorithms

Common algorithms that work on the container
classes
 Implement sort, search and other basic operations

Three types of algorithms that work on sequence
containers discussed here:
 Mutating-Sequence Algorithms

 fill(), fill_n(), partition(), shuffle(), remove_if(), sort() ...

 Non-Mutating-Sequence Algorithms
 count(), count_if(), find(), for_each(),

 Numerical algorithms (from <numeric>)
 accumulate(), reduce(), inner_product(), inclusive_scan(), ...

30

Mutating Functions

Functions that modify a container in different
ways

Access to the container is done through an iterator
 Assume

vector<char> charV;

void fill(iterator,
 iterator, T)

charV.fill(charV.begin(),
 charV.end(), 'x')
puts 'x' in all positions of the vector

iterator fill_n(iterator,
 int, T)

charV.fill_n(charV.begin(), 5, 'a')
puts 'a' in first 5 positions

void generate(iterator,
 iterator, function)

char nextLetter() {
 static char letter = 'A';
 return letter++;
}
charV.generate(charV.begin(),
 charV.end(), nextLetter);
fills the array with the result of calling
nextLetter for each element

31

Non-mutating (Mathematical Algorithms)

Assume
vector<int> v;

T min_element(iterator,
 iterator)

min_element(v.begin(), v.end())
returns the minimum element from the container

function for_each
 (iterator, iterator,
 function)

void put(int val)
{ cout << val << endl; }
for_each(v.begin(), v.end(), put);
executes the function put() for each element
in the array; in this case prints all values

int count(iterator,
 iterator, T)

v.count(v.begin(), v.end(), 5)
returns how many times 5 appears in the container

int count_if(iterator,
 iterator, function)

bool GT10(int val)
{ return val > 10; }
v.count_if(v.begin(), v.end(), GT10);
returns a count of the elements that are greater than 10 in the
container

32

Other Useful Ones

Assume
vector<int> v;

As the find above, but uses a function for testing

Binary search over the container to find value

iterator find(iterator,
 iterator, T)

iterator r =find(v.begin(), v.end(), 25);
if (r == v.end())
 cout << "Not found" << endl;
else
 cout << "Found at " << (r - v.begin());

iterator find(iterator,
 iterator, function)
bool binary_search
(iterator, iterator, T)

iterator copy(iterator,
 iterator, iterator)

Copy from a container to another container. Useful when combined
with ostream_iterator
ostream_iterator<int> output(cout, " ");
copy(v.begin(), v.end(), output);

33

Much More
STL has many more operations, several other containers, and other
functionality

Style of programming using STL is called generic programming
 Write functions that depend on some operations that are defined on the

types you will process
 For example, the find() operation relies on the operator== to be

available on the data type

For a particular function, we talk about the "set of types" that can be
used with the function
 e.g. in the find(), the set is all those types for which operator== is

defined

Note the relationship to OOP… not much. The set of types that
define some operations such that they can be used in a particular
generic function do not need to be related via inheritance and thus
polymorphism is not used

34

Pointers in STL

STL is very flexible, it can store any data type in any of
its containers

The collection does not free the memory allocated for
objects, to which it stores the pointers

If you want that behaviour, make a vector of unique_ptrs
or shared_ptrs

vector< int > v;
vector< int >::iterator vi;
v.push_back(45);
for (vi = v.begin(); vi != v.end(); vi++) {
int av = *vi;

}

vector< Foo * > v;
vector< Foo * >::iterator vi;
v.push_back(new Foo(value));
for (vi = v.begin(); vi != v.end(); vi++) {
Foo * av = *vi;

}

35

Function Objects in STL

The function object is an object with function call
operator operator() defined, so that in the example below

the expression fo() is an invocation of operator() of object
fo, and not a call of function fo

The function objects can be used in STL in all places,
where the pointer to a function is acceptable

FunctionObjectType fo;
// ...
fo();

 void fo(void) {
// statements

}
 class FunctionObjectType {
 public:
 void operator() (void){

// statements
}

 };

Instead of
we write

36

Function Objects - Why to Use Them?

The function objects have the following
advantages compared to function pointers
 The function object can have a state. We can have two

instances of a function object of the same type in
different states. It is not possible with functions

 The function object is usually more efficient than the
function pointer

 The compiler can perform inlining

 It can be used as a template argument, e.g. defining a
hash function

37

The Function Object Example

#include <iostream>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
using namespace std;

bool GTRM(long val)
{
 return val > (RAND_MAX >> 1);
}

int main ()
{
 srandom(time(NULL));
 vector < long > v(10);
 generate(v.begin(),v.end(),
 random);
 cout << count_if(v.begin(),
 v.end(),GTRM);
 cout <<endl;
};

#include <iostream>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
using namespace std;

template <class T> class greater_than
{
 T reference;
public:
 greater_than (const T & v): reference (v)
 {}
 bool operator() (const T & w) {
 return w > reference;
 }
};
int main ()
{
 srandom (time (NULL));
 vector < long >v (10);
 generate (v.begin (), v.end (), random);
 cout << count_if (v.begin (), v.end (),
 greater_than<long> (RAND_MAX >> 1));
 cout << endl;
};

38

The unordered_set Example

struct Employee {
 std::string FirstName, LastName, ID;
 Employee (const std::string & fn, const std::string & ln,
 const std::string & I):FirstName (fn), LastName (ln), ID (I) {};
 bool operator==(const Employee& o) const {
 return (FirstName == o.FirstName) && (LastName == o.LastName)
 && (ID == o.ID); }
};

struct EmpHash {
 std::size_t operator()(const Employee & o) const {
 return std::hash<std::string>()(o.FirstName)
 ^ (std::hash<std::string>()(o.LastName) << 1)
 ^ (std::hash<std::string>()(o.ID) << 2);}
};

int main () {
 Employee Ben ("Ben", "Keller", "000-00-0000");
 Employee Bill ("Bill", "McQuain", "111-11-1111");
 unordered_set<Employee, EmpHash> S;
 S.insert (Bill);
 S.insert (Ben);
}

39

Anonymous functions (lambda expressions)

When we are using function pointers or functions
objects, their definition are far away from the
point od application. It makes understanding what
the code is doing more difficult.

The solution: use anonymous functions#include <iostream>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
using namespace std;

int main ()
{
 srandom (time (NULL));
 vector < long >v (10);
 generate (v.begin (), v.end (), random);
 cout << count_if (v.begin (), v.end (),

[](long i) -> bool { return i > RAND_MAX >> 1; }) << endl;

};

40

The return type specification can be omitted in this
case, as the compiler can determine it
automatically.

Anonymous functions (lambda expressions)

#include <iostream>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <time.h>
using namespace std;

int main ()
{
 srandom (time (NULL));
 vector < long >v (10);
 generate (v.begin (), v.end (), random);
 cout << count_if (v.begin (), v.end (),

[](long i) { return i > RAND_MAX >> 1; }) << endl;

};

41

An anonymous function can be stored in a variable
of type std::function. An anonymous function can
be more complex and contain variable definitions:

If we do not want to write complex declarations,
we can use the auto keyword. The return type
specification can be also skipped in this case.

Anonymous functions (lambda expressions)

int main ()
{
 function<int(int,int)> f =
 [](int x, int y) -> int {int z = x + y; return z + x;};
 cout << f(3,4) << endl;
};

 auto f = [](int x, int y) {int z = x + y; return z + x;};

42

Closure

An object binding the function and its enviroment.
The closure specification is required, when the
function uses the variables defined in enclosing
scope.

In the example above, the sum variable is captured
by reference. As the last argument to for_each a
function object, storing the reference to sum, is
passed.

int main ()
{
 vector<int> numbers = {1,2,3,4};
 int sum = 0;
 for_each(numbers.begin(), numbers.end(), [&sum](int x) { sum += x; });
 cout << sum << endl;
};

43

Capturing sum by value will not work in this case.

It can be used however to return an anonymous
function from another function:

Here, in turn, capturing by reference will not
work.

Closure

for_each(numbers.begin(), numbers.end(), [sum](int x) { sum += x; });

auto fun()
{
 int sum=12;
 return [sum](int x) { return sum + x;};
}

int main ()
{
 cout << fun()(4) << endl;
};

44

[] Capture nothing

[&] Capture any referenced variable by reference

[=] Capture any referenced variable by value

[=,&foo] Capture any referenced variable by value, but capture variable foo
by reference

[bar] Capture bar by value; don't capture anything else

[this] Capture the this pointer of the enclosing class

Capture specification

class C {
 int c;
public:
 C(int _c): c(_c) {};
 auto fun() {
 return [this](int x) { return c + x;};
 }
 void print(function<int(int)>f) {
 cout << fun()(3) << endl;
 }
};

int main () {
 C c1(1);
 C c2(2);
 auto f = c2.fun();
 c1.print(f);
};

