
1

Lecture Material

Derived classes

Text-mode windowing system

Resource management
Resource Acquisition Is Initialization technique

unique_ptr and shared_ptr templates

2

Derived Classes
A concept does not exist in isolation.
When trying to describe the concept of "car" leads us to introduce
the concepts of:

wheels
engines
drivers
pedestrians
trucks
ambulances
road
gasoline
speeding tickets

To represent concepts we use classes. How do we represent
relationships between concepts?

to express the hierarchical features, i.e. commonality between classes, we
use derived classes

3

Derived Classes
Consider building a program dealing with people employed by a
firm.

A manager is also an employee; the Employee data is stored in the
emp member of a Manager object. This may be obvious to a
human reader, but there is nothing that tells the compiler and other
tools that Manager is also an Employee. The correct approach is to
explicitly state that a Manager is an Employee, with a few pieces
of information added:

struct Employee {
string first_name,family_name;
char middle_initial;
Date hiring_date;
short department;
// ...

};

struct Manager {
Employee emp;

 // manager’s employee record
set<Employee*> group; // people managed
short level;

 // ...
};

struct Manager : public Employee {
set<Employee*> group;
short level;

// ...
};

4

Derived Classes
The Manager is derived from Employee, and conversely, Employee is a base
class for Manager.

Derivation is often represented graphically by a pointer from the derived class
to its base class indicating that the derived class refers to its base. This
relationship is also called inheritance.

A popular and efficient implementation of the notion of derived classes has an
object of the derived class represented as an object of the base class, with the
information belonging specifically to the derived class added at the end.

first_name
family_name

...

Employee

Manager

first_name
family_name

...
group
level
...

Employee: Manager:

5

Derived Classes

A Manager is (also) an Employee, so a Manager* can be
used as a Employee*.

The opposite conversion, from Employee* to Manager*,
must be explicit.

void f(Manager m1,Employee e1)
{
list<Employee*> elist;
elist.push_front(&m1) ;
elist.push_front(&e1) ;
// ...

}

void g(Manager mm, Employee ee)
{
Employee* pe= &mm; // ok: every Manager is an Employee
Manager* pm= ⅇ // error: not every Employee is a Manager
pm->level = 2; // disaster: ee doesn’t have a ‘level’
pm = static_cast<Manager*>(pe) ; // brute force: works because pe points

// to the Manager mm
pm->level = 2; // fine: pm points to the Manager mm that has a ‘level’

}

6

Member Functions
Simple data structures, such as Employee and Manager, are really
not that interesting and often not particularly useful. We need to
give the information as a proper type that provides a suitable set of
operations that present the concept, and we need to do this without
tying us to the details of a particular representation.

class Employee {
string first_name, family_name;
char middle_initial;
// ...

public:
void print() const;
string full_name() const
{ return first_name+ ´ ´ +middle_initial+ ´ ´ + family_name; }
// ...

};

class Manager : public Employee {
// ...

public:
void print() const;
// ...

};

7

Member Functions

A member of a derived class can use the public and
protected members of its base class as if they were
declared in the derived class itself.

However, a derived class cannot use a base class’ private
names:

void Manager::print() const
{
cout << "name is" << full_name() << ´\n´;
// ...

}

void Manager::print() const
{
cout << " name is" << family_name << ´\n´; // error!
// ...

}

8

Member Functions

The cleanest solution is for the derived class to use only
the public members of its base class.

Note that :: must be used because print() has been
redefined in Manager. Without it, we would find the
program involved in an unexpected sequence of
recursive calls.

void Manager::print() const
{
Employee::print() ; // print Employee information
cout << level; // print Manager-specific information
// ...

}

void Manager::print() const
{
print() ; // oops!
// print Manager-specific information

}

9

Constructors and Destructors

Some derived classes need constructors. If a base class has
constructors, then a constructor must be invoked. Default
constructors can be invoked implicitly. However, if all
constructors for a base require arguments, then a constructor
for that base must be explicitly called.

class Employee {
string first_name, family_name;
short department;
// ...

public:
Employee(const string& n, int d) ;

// ...
};
class Manager : public Employee {

set<Employee*> group; // people managed
short level;
// ...

public:
Manager(const string& n, int d, int lvl) ;
// ...

};

10

Constructors and Destructors
Arguments for the base class’ constructor are specified in the definition of a derived
class’ constructor.

A derived class constructor can specify initializers for its own members and immediate
bases only; it cannot directly initialize members of a base.

Class objects are constructed from the bottom up: first the base, then the members, and
then the derived class itself. They are destroyed in the opposite order: first the derived
class itself, then the members, and then the base. Members and bases are constructed in
order of declaration in the class and destroyed in the reverse order.

Employee::Employee(const string& n, int d) : family_name(n) , department(d)
 // initialize members
{
// ...

}
Manager::Manager(const string& n, int d, int lvl)
 : Employee(n,d) , // initialize base

level(lvl) // initialize members
{
// ...

}

Manager::Manager(const string& n, int d, int lvl):
 family_name(n) , // error: family_name not declared in Manager
department(d) , // error: department not declared in Manager
level(lvl)

{
// ...

}

11

Constructors and Destructors
Copying of class objects is defined by the copy constructor and assignments

Because the Employee copy functions do not know anything about Managers,
only the Employee part of a Manager is copied. This is commonly referred to as
slicing and can be a source of surprises and errors.
If an assignment operator is not defined explicitly, it will be generated
automatically by a compiler. It means, that the assignment operator cannot be
inherited.
In default-generated assignement operator first the base class is assigned (using
its assignment operator), then the members, fiels by field.

class Employee {
// ...
Employee& operator=(const Employee&) ;
Employee(const Employee&) ;

};
void f(const Manager& m)
{
Employee e = m; // construct e from Employee part of m
e = m; // assign Employee part of m to e

}

12

Class Hierarchies
A derived class can itself be a base class.

Such a set of related classes is traditionally called a class
hierarchy. Such a hierarchy is most often a tree, but it can also be
a more general directed acyclic graph structure.

class Employee{ /* ... */ };
class Manager : public Employee{ /* ... */ };
class Director : public Manager{ /* ... */ };

class Temporary{ /* ... */ };
class Secretary : public Employee{ /* ... */ };
class Tsec : public Temporary, public Secretary{ /* ... */ };
class Consultant : public Temporary, public Manager{ /* ... */ };

Employee

Manager

Temporary

Secretary

Tsec

DirectorConsultant

13

Type Fields
Pointers to base classes are commonly used in the design of
container classes such as set, vector, and list.

The list can contain pointers to employees and managers. The
preceding function will print-out only the information about the
employee part. The level field will not be printed for managers.

What can we do to make function work according to our
expectations?

The solution to the problem requires an answer to the question:
what is the type of the object pointed by pointer?

void print_list(const list<Employee*>& elist)
{
for (list<Employee*>::const_iterator p = elist.begin(); p!=elist.end(); ++p)

(*p)->print(); //oops! Prints only the Employee part
}

14

Type Fields
Given a pointer of type base*, to which derived type does the
object pointed to really belong? There are four fundamental
solutions to the problem:

Ensure that only objects of a single type are pointed to
Place a type field in the base class for the functions to inspect
Use dynamic_cast
Use virtual functions

Pointers to base classes are commonly used in the design of
container classes such as set, vector, and list. In this case, solution
1 yields homogeneous lists, that is, lists of objects of the same
type. Solutions 2, 3, and 4 can be used to build heterogeneous
lists, that is, lists of (pointers to) objects of several different types.
Solution 3 is a language-supported variant of solution 2. Solution
4 is a special typesafe variation of solution 2. Combinations of
solutions 1 and 4 are particularly interesting and powerful; in
almost all situations, they yield cleaner code than do solutions 2
and 3.

15

Type Fields

Why the type field in a class should be avoided?
Let us consider an example:

struct Employee {
enum Empl_type {M,E };
Empl_type type;
Employee() : type(E) { }
string first_name, family_name;
char middle_initial;
Date hiring_date;
short department;
// ...

};
struct Manager : public Employee {
Manager() { type =M; }
set<Employee*> group; // people managed
short level;
// ...

};

16

Type Fields
Let us write a function that prints information about each
Employee:

We can use it to print a list of Employees:

void print_employee(const Employee* e)
{
switch (e->type) {
case Employee::E:

cout << e->family_name << ´\t´ << e->department << ´\n´;
// ...
break;

case Employee::M:
{ cout << e->family_name << ´\t´ << e->department << ´\n´;
// ...
const Manager* p = static_cast<const Manager*>(e) ;
cout << " level" << p->level << ´\n´;
// ...
break;
}

}
}

void print_list(const list<Employee*>& elist)
{
for (list<Employee*>::const_iterator p = elist.begin(); p!=elist.end(); ++p)

print_employee(*p) ;
}

17

Type Fields

This works fine, especially in a small program
maintained by a single person.
It depends on the programmer manipulating
types in a way that cannot be checked by the
compiler.
Finding all tests on the type field buried in a
large function that handles many derived classes
can be difficult.
Any addition of a new kind of Employee
involves a change to all the key functions in the
system – the ones containing the tests on the type
field.

18

Virtual Functions
Virtual functions overcome the problems with the type field solution by
allowing the programmer to declare functions in a base class that can be
redefined in each derived class.

The compiler will guarantee the correct correspondence between objects and
the functions applied to them.

To allow a virtual function declaration to act as an interface to functions
defined in derived classes, the argument types specified for a function in a
derived class cannot differ from the argument types declared in the base, and
only very slight changes are allowed for the return type.

class Employee {
string first_name, family_name;
short department;
 // ...

public:
Employee(const string& name, int dept) ;
virtual void print() const;
// ...

};

19

Virtual Functions
A virtual function must be defined for the class in which it is first declared

A virtual function can be used even if no class is derived from its class, and a
derived class that does not need its own version of a virtual function need not
provide one. When deriving a class, simply provide an appropriate function, if
it is needed.

void Employee::print() const
{
cout << family_name << '\t' << department << '\n';
// ...

}

class Manager : public Employee {
set<Employee*> group;
short level;
// ...

public:
Manager(const string& name, int dept, int lvl) ;
void print() const;
// ...

};
void Manager::print() const
{

Employee::print() ;
cout << "\tlevel" << level << '\n';
// ...

}

20

Virtual Functions
The global function print_employee() is now unnecessary because the print() member
functions have taken its place. A list of Employees can be printed like this:

or even

The following code

will print out:

void print_list(set<Employee*>& s)
{
for (set<Employee*>::const_iterator p = s.begin() ; p!=s.end() ; ++p)

(*p)->print() ;
}

void print_list(set<Employee*>& s)
{
for_each(s.begin() ,s.end() ,mem_fun(&Employee::print)) ;

}

int main()
{
Employee e("Brown",1234) ;
Manager m("Smith",1234,2) ;
set<Employee*> empl;
empl.insert(&e) ;
empl.insert(&m) ;
print_list(empl) ;

}

Smith 1234
level 2

Brown 1234

21

Polymorphism
Getting "the right" behavior from Employee’s functions independently of
exactly what kind of Employee is actually used is called polymorphism.
A type with virtual functions is called a polymorphic type.

To get polymorphic behavior in C++, the member functions called must
be virtual and objects must be manipulated through pointers or
references. When manipulating an object directly (rather than through a
pointer or reference), its exact type is known by the compilation so that
runtime polymorphism is not needed.

Clearly, to implement polymorphism, the compiler must store some kind
of type information in each object of class Employee and use it to call
the right version of the virtual function print(). In a typical
implementation, the space taken is just enough to hold a pointer.

Calling a function using the scope resolution operator :: as is done in
Manager::print() ensures that the virtual mechanism is not used.

22

Typical implementation of virtual functions consists in adding to evey object of a class
containing at least one virtual function the pointer to the virtual function table

This table contains pointers to all the virtual functions of the classes the given object
belongs to

Polymorphism

class Employee {
//...
virtual void print();
virtual void fire();
virtual ~Employee();

};

class Manager : public
 Employee {
//...
virtual void print();
virtual void fire();
virtual ~Manager();

};
Employee e,f;
Manager m,n;

vtbl

...

family_name

first_name

Employee::~Employee

Employee::fire

Employee::print

Manager::~Manager

Manager::fire

Manager::print

f

vtbl

...

family_name

first_name

m

vtbl

...

family_name

first_name

n

vtbl

...

family_name

first_namee

23

Abstract Classes
Many classes resemble class Employee in that they are useful both
as themselves and also as bases for derived classes.

Some classes, such as class Shape, represent abstract concepts for
which objects cannot exist. A Shape makes sense only as the base
of some class derived from it. This can be seen from the fact that it
is not possible to provide sensible definitions for its virtual
functions:

Trying to make a shape of this unspecified kind is silly but legal:

It is silly because every operation on s will result in an error.

class Shape {
public:
virtual void rotate(int) { error("Shape::rotate") ; } // inelegant
virtual void draw() { error("Shape::draw") ; }
// ...

};

Shape s; // silly: ‘‘shapeless shape’’

24

Abstract Classes

A better alternative is to declare the virtual functions of
class Shape to be pure virtual functions. A virtual
function is "made pure" by the initializer = 0 :

A class with one or more pure virtual functions is an
abstract class, and no objects of that abstract class can be
created:

class Shape{ // abstract class
public:

virtual void rotate(int) = 0; // pure virtual function
virtual void draw() = 0; // pure virtual function
virtual bool is_closed() = 0; // pure virtual function
// ...

};

Shape s; // error: variable of abstract class Shape

25

Abstract Classes

An abstract class can be used only as an interface and as
a base for other classes.

class Point{ /* ... */ };
class Circle : public Shape {
public:

void rotate(int) { } // override Shape::rotate
void draw() ; // override Shape::draw
bool is_closed() { return true; } // override Shape::is_closed
Circle(Point p, int r) ;

private:
Point center;
int radius;

};

26

Abstract Classes

A pure virtual function that is not defined in a derived
class remains a pure virtual function, so the derived class
is also an abstract class.

This allows us to build implementations in stages:

class Polygon : public Shape{ // abstract class
public:

bool is_closed() { return true; } // override Shape::is_closed
// ... draw and rotate not overridden ...

};
Polygon b; // error: declaration of object of abstract class Polygon
class Irregular_polygon : public Polygon {

list<Point> lp;
public:

void draw() ; // override Shape::draw
void rotate(int) ; // override Shape::rotate
// ...

};
Irregular_polygon poly(some_points) ; // fine (assume suitable constructor)

27

Abstract Classes

An important use of abstract classes is to provide an
interface without exposing any implementation details.
An operating system might hide the details of its device
drivers behind an abstract class:

We can then specify drivers as classes derived from
Character_device, and manipulate a variety of drivers
through that interface.
Every class having at least one virtual function should
have the virtual destructor.

class Character_device {
public:

virtual int open(int opt) = 0;
virtual int close(int opt) = 0;
virtual int read(char* p, int n) = 0;
virtual int write(const char* p, int n) = 0;
virtual int ioctl(int ...) = 0;
virtual ~Character_device() { } // virtual destructor

};

28

Example - Text-mode Windowing System

A windowing system operating in text mode based on
ncurses library

The ncurses library allows to portably control the cursor
position

The program uses only a small subset of functions
offered by ncurses

//screen.h
void init_screen ();
void done_screen ();
void gotoyx (int y, int x);
int ngetch ();
void getscreensize (int &y, int &x);

//ncurses.h
int printw(char *fmt [, arg] ...);
int refresh(void);

29

Example - Text-mode Windowing System

In cpoint.h auxillary classes CPoint i CRect are
defined:

struct CPoint
{
 int x;
 int y;
 CPoint(int _x=0, int _y=0): x(_x), y(_y) {};
 CPoint& operator+=(const CPoint& delta)
 {
 x+=delta.x;
 y+=delta.y;
 return *this;
 };
};

struct CRect
{
 CPoint topleft;
 CPoint size;
 CRect(CPoint t1=CPoint(), CPoint s=CPoint()): topleft(t1), size(s) {};
};

30

Example - Text-mode Windowing System

 The class hierarchy used in program

CDesktop CFramedWindow

CView

CWindowCGroup

CInputLine

31

Example - Text-mode Windowing System

CView - an object visible on screen
The geom field describing dimensions and posistion of a view

The paint printing the window's contents

The handleEvent functions handling events

Virtual destructor
class CView
{
protected:
 CRect geom;
public:
 CView (CRect g):geom (g)
 {
 };
 virtual void paint () = 0;
 virtual bool handleEvent (int key) = 0;
 virtual void move (const CPoint & delta)
 {
 geom.topleft += delta;
 };
 virtual ~CView () {};
};

32

Example - Text-mode Windowing System

Event-driven environment

Reacts only on external event
keypress

redraw command

The objects do not do anything "on their own".

33

Example - Text-mode Windowing System

CWindow - movable window
class CWindow:public CView
{
protected:
 char c;
public:
 CWindow (CRect r, char _c = '*'):CView (r), c (_c) {};

 void paint ()
 {
 for (int i = geom.topleft.y; i < geom.topleft.y + geom.size.y; i++)
 {
 gotoyx (i, geom.topleft.x);
 for (int j = 0; j < geom.size.x; j++)
 printw ("%c", c);
 };
 };
 bool handleEvent (int key)
 {
 switch (key)
 {
 case KEY_UP:
 move (CPoint (0, -1));
 return true;
 case KEY_DOWN:
 move (CPoint (0, 1));
 return true;
 case KEY_RIGHT:
 move (CPoint (1, 0));
 return true;
 case KEY_LEFT:
 move (CPoint (-1, 0));
 return true;
 };
 return false;
 };
};

34

Example - Text-mode Windowing System

CFramedWindow - a window with a frame
class CFramedWindow: public CWindow
{
public:
 CFramedWindow (CRect r, char _c = '\''):CWindow (r, _c) {};
 void paint ()
 {
 for (int i = geom.topleft.y; i < geom.topleft.y + geom.size.y; i++)
 {
 gotoyx (i, geom.topleft.x);
 if ((i == geom.topleft.y)||(i == geom.topleft.y + geom.size.y - 1))
 {
 printw ("+");
 for (int j = 1; j < geom.size.x - 1; j++)
 printw ("-");
 printw ("+");
 }
 else
 {
 printw ("|");
 for (int j = 1; j < geom.size.x - 1; j++)
 printw ("%c", c);
 printw ("|");
 }
 }
 };
};

35

Example - Text-mode Windowing System

CInputLine - text input window
class CInputLine:public CFramedWindow
{
 string text;
public:
 CInputLine (CRect r, char _c = ','):CFramedWindow (r, _c) {};
 void paint ()
 {
 CFramedWindow::paint ();
 gotoyx (geom.topleft.y + 1, geom.topleft.x + 1);
 for (unsigned j = 1, i = 0; (j + 1 < (unsigned) geom.size.x) &&

(i < text.length ()); j++, i++)
 printw ("%c", text[i]);
 };
 bool handleEvent (int c)
 {
 if (CFramedWindow::handleEvent (c))
 return true;
 if ((c == KEY_DC) || (c == KEY_BACKSPACE))
 {
 if (text.length () > 0)
 {
 text.erase (text.length () - 1);

return true;
 };
 }
 if ((c > 255) || (c < 0))
 return false;
 if (!isalnum (c) && (c != ' '))
 return false;
 text.push_back (c);
 return true;
 }
};

36

Example - Text-mode Windowing System

CGroup - a group of objects
class CGroup:public CView
{
 list < CView * >children;
public:
 CGroup (CRect g):CView (g) {};
 void paint ()
 {
 for (list < CView * >::iterator i = children.begin ();
 i != children.end (); i++)
 (*i)->paint ();
 };
 //...
};

37

Example - Text-mode Windowing System

CGroup - a group of objects (contd.)
class CGroup:public CView
{
 list < CView * >children;
public:
 CGroup (CRect g):CView (g) {};
 void paint ();
bool handleEvent (int key)
{

 if (!children.empty () && children.back ()->handleEvent (key))
 return true;
 if (key == '\t')
 {
 if (!children.empty ())
 {
 children.push_front (children.back ());
 children.pop_back ();
 };
 return true;
 }
 return false;
 }
//...

};

38

Example - Text-mode Windowing System

CGroup - a group of objects (contd.)

class CGroup:public CView
{
 list < CView * >children;
public:
 CGroup (CRect g):CView (g) {};
 void paint ();
bool handleEvent (int key);
void insert (CView * v)

 {
 children.push_back (v);
 };
 ~CGroup ()
 {
 for (list < CView * >::iterator i = children.begin ();

 i != children.end (); i++)
 delete (*i);
 };
};

39

Example - Text-mode Windowing System

CDesktop - the entire screen
class CDesktop:public CGroup
{
public:
CDesktop ():CGroup (CRect ())
 {
 int y, x;
 init_screen ();
 getscreensize (y, x);
 geom.size.x = x;
 geom.size.y = y;
 };
~CDesktop ()
 {
 done_screen ();
 };
void paint()
{
 for (int i = geom.topleft.y;
 i < geom.topleft.y + geom.size.y; i++)

 {
 gotoyx (i, geom.topleft.x);
 for (int j = 0; j < geom.size.x; j++)
 printw (".");
 };
 CGroup::paint();
}

int getEvent ()
 {
 return ngetch ();
 };
void run ()
 {
 int c;
 paint ();
 refresh ();
 while (1)
 {
 c = getEvent ();
 if (c == 27)
 break;
 if (handleEvent (c))
 {
 paint ();
 refresh ();
 };
 };
 };
};

40

Example - Text-mode Windowing System

The main function

int main ()
{
 CDesktop d;
 d.insert (new CInputLine (CRect (CPoint (5, 7), CPoint (15, 15))));
 d.insert (new CWindow (CRect (CPoint (2, 3), CPoint (20, 10)), '#'));
 d.run ();
 return 0;
};

41

Resource Management
When a function acquires a resource – that is, it opens a file, allocates some
memory from the free store, sets an access control lock, etc., – it is often
essential for the future running of the system that the resource be properly
released. Often that "proper release" is achieved by having the function that
acquired it release it before returning to its caller.

This looks plausible until you realize that if something goes wrong after the call
of fopen() and before the call of fclose(), an exception may cause use_file() to
be exited without fclose() being called. We can fix it as follows:

void use_file(const char* fn)
{

FILE* f = fopen(fn,"w") ;
// use f
fclose(f) ;

}

void use_file(const char* fn)
{

FILE* f = fopen(fn,"w") ;
try {

// use f
}
catch (...) {

fclose(f) ;
throw;

}
fclose(f) ;

}

42

Resource Management
The problem with the solution on the previous slide is that it is
verbose, tedious, and potentially expensive. Furthermore, any
verbose and tedious solution is error-prone because programmers
get bored. Fortunately, there is a more elegant solution. The
general form of the problem looks like this:

It is typically important that resources are released in the reverse
order of their acquisition. This strongly resembles the behavior of
local objects created by constructors and destroyed by destructors.

void acquire()
{

// acquire resource 1
// ...
// acquire resource n

// use resources

// release resource n
// ...
// release resource 1

}

43

Resource Acquisition Is Initialization Technique

Let's define a File_ptr class, which behaves as a
FILE*:

The program size is significantly reduced

class File_ptr {
FILE* p;

public:
File_ptr(const char* n, const char* a) { p = fopen(n,a) ; }
File_ptr(FILE* pp) { p = pp; }
~File_ptr() { fclose(p) ; }
operator FILE*() { return p; }

};

void use_file(const char* fn)
{

File_ptr f(fn,"r") ;
// use f

}

44

Resource Acquisition and Constructors
The similar technique can be applied in constructors

The most common resource acquired in an ad-hoc manner is
memory.

Usually it is better to employ a standard vector template

class X {
File_ptr aa;
Lock_ptr bb;

public:
X(const char* x, const char* y)
: aa(x,"rw") , // acquire ‘x’
 bb(y) // acquire ‘y’
{}

// ...
};

class Y {
 int* p;
 void init() ;
public:
 Y(int s) {p = new int[s]; init() ; }
 ~Y() { delete[] p; }
// ...

};

class Z {
vector<int> p;
void init() ;

public:
Z(int s) : p(s) { init() ; }

// ...
};

45

unique_ptr Template

The standard library provides the template class
unique_ptr, which supports the "resource acquisition is
initialization" technique.

The unique_ptr template is declared in <memory>.

Basically, an unique_ptr is initialized by a pointer and
can be dereferenced in the way that a pointer can.

Also, the object pointed to will be implicitly deleted at
the end of the unique_ptr's scope.

void f()
{
 std::unique_ptr<Shape> a(new Shape());
 a->move(3,3);
 ...
 if(in_a_mess)
 throw Exception()
}

46

unique_ptr Template

The unique_ptr does not have copy constructor
nor the copying assignment operator.

It has a move constructor and move assignment
operator

std::unique_ptr<Shape> a(new Shape());

std::unique_ptr<Shape> b(a); // error - no copy constructor

std::unique_ptr<Shape> c;

c = a; // error - no copying assignment operator

std::unique_ptr<Shape> a(new Shape());

std::unique_ptr<Shape> b(std::move(a));

std::unique_ptr<Shape> c;

c = std::move(a);

47

The Move Constructor and Assignment Operator

The move constructor destroys the original

Is used by default if the source is an rvalue
 Something you cannot take the address of, e.g. literal

or temporary/anonymous object

You can force its application with std::move
int main()
{
 Example a(3);
 Example b = std::move(a);
 Example c(Example(4));
 Example d;
 d = std::move(b);
}

class Example {
 public:
 int* val;
 Example(Example&& rhs) : val(rhs.val)
 {
 rhs.val = nullptr;
 }
 Example& operator=(Example&& rhs)
 {
 val = rhs.val;
 rhs.val = nullptr;
 return *this;
 }
 Example(int a): val(new int(a)) {}
 ~Example() { delete val; }
};

48

unique_ptr and Exception Safety
unique_ptr still requires some care to make it exception-
safe

The line below can cause problems:
fun(unique_ptr<Example>(new Example), genexc())

If the evaluation order is as follows:
 new Example object is constructed
 genexc is called
 unique_ptr constructor is invoked

exception in genexc will cause a memory leak

That's why we have make_unique
 fun(make_unique<Example>(), genexc());

The line above is fully exception-safe

49

shared_ptr Template

Due to lack of the copy constructor in unique_ptr
we can have only one pointer to a given object

If we need more, we have to use shared_ptr

Due to reference counting, the last shared_ptr to
a given object destroys it

std::shared_ptr<T>

Pointer to T
Pointer to Control Block

T

...

Control Block

Reference Count
Weak Count

...

50

shared_ptr Template

We can pass shared pointers around without
worrying about ownership ...

unless we create a cycle:

The code above introduces a memory leak

std::shared_ptr<Example> getPtr() {
 std::shared_ptr<Example> a(new Example());
 std::shared_ptr<Example> b = a;
 return a;
}

int main() {
 std::shared_ptr<Example> c = getPtr();
}

int main() {
 std::shared_ptr<Example> p1 = std::make_shared<Example>();
 std::shared_ptr<Example> p2 = std::make_shared<Example>();
 p1->ptr=p2;
 p2->ptr=p1;
 return 0;
}

51

weak_ptr Template

We can use weak_ptr to break a cycle:

weak_ptr is a non-owning pointer and before we
can use it we have to convert it to shared_ptr
 due to this fact, it can dangle, i.e. point to deleted

object

int main()
{
 std::weak_ptr<Example> w1;
 {
 std::shared_ptr<Example> p1 = std::make_shared<Example>();
 w1 = p1;
 std::shared_ptr<Example> p2 = w1.lock();
 assert(p2 != nullptr);
 }

 std::shared_ptr<Example> p3 = w1.lock();
 assert(p3 == nullptr);
}

52

Smart Pointers and Arrays

Do not use a smart pointer to hold a pointer to an array:

Use vector template for this purpose

void g()
{
shared_ptr<int> p=new int[100];

 // error, delete instead of delete[] invoked on exit from g
}

void g()
{
 vector<int> a(100);
 int* p=&(a[0]); // guaranteed to point to array of 100 integers
}

	Dzisiejszy wykład
	Klasy pochodne
	Slide 3
	Slide 4
	Slide 5
	Metody
	Slide 7
	Slide 8
	Konstruktory i destruktory
	Slide 10
	Slide 11
	Hierarchie klas
	Pola typu
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Funkcje wirtualne
	Slide 19
	Slide 20
	Polimorfizm
	Slide 22
	Klasy abstrakcyjne
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Przykład - tekstowy system okienkowy
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Zarządzanie zasobami
	Slide 42
	Technika zdobywanie zasobów jest inicjalizacją
	Zdobywanie zasobów i konstruktory
	Wzorzec auto_ptr
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

