
1

Lecture Material
Design Patterns
 Visitor
 Client-Server
 Factory
 Singleton



2

Design Patterns
Pattern
 A named generalization describing the elements and 

relationships of a solution for a commonly occurring 
design problem

Four essential parts of a pattern:
 Descriptive name
 Problem to be addressed
 Solution to the problem
 Consequences of adopting the pattern

A pattern solution specifies a set of classes, and 
the relationships among those classes, that will be 
combined to provide a solution.



3

Pattern Recognition
Much of successful programming, from design to 
implementation, hinges upon recognizing the 
relevance of certain basic, well-understood 
patterns to the situation at hand.
The ability to do this easily and effectively is 
what generally separates a competent novice 
from a wizard.
Studying an organized library of patterns may, in 
theory, speed up the process whereby a novice 
obtains a useful solution.



4

Design Patterns
Design Patterns book by Gamma, Helm, Johnson, 
and Vlissides
Known as the
"Gang of Four"
 (GOF) book
Defines
 Creational Patterns (5)
 Structural Patterns (7)
 Behavioral Patterns (11)

Lots of other books on 
patterns



5

Definition of Patterns in GOF book
Name - name of the pattern
Intent
 What does the design pattern do?
 What is its rationale and intent?
 What particular design issue or problem 

does it address?
Motivation
 Scenario that illustrates how the pattern 

solves a design problem
Applicability
 What are the situations in which the 

design pattern can be applied?
 What are examples of poor designs that 

the pattern can address?
 How can you recognize these situations?

Structure
 UML diagram for its parts

Participants
 Classes/objects in the pattern and their 

responsibilities

Collaboration
 How the participants collaborate 

with each other
Consequence
 How does the pattern support its 

objectives?
 What are the trade-offs and results 

of using the pattern?
 What aspect of system structure 

does it let you vary independently?
Implementation
 What pitfalls, hints, or techniques 

should you be aware of when 
implementing the pattern?

 Are there language-specific issues?
Sample Code
Known Uses
 Examples of uses

Related Patterns
 Other closely related patterns



6

Patterns in GOF Book



7

Visitor Pattern
Bounded Traversal with Conditional Exit

Specifies the basic logical pattern of a list search.
Doesn’t care if list is array, linked, or something else.
Doesn’t care what the test is that must be satisfied.
Doesn’t care what is to be done next.

Go to first list element.
If test is satisfied, Quit.
While not at end of the list:

Step to next list element.
If test is satisfied, Quit.



8

Example of Visitor Pattern

class calculate {
 int total;
public:
void operator()(string v) { total += v.length(); }
int getSum() const { return total; }

 calculate(): total(0){}
};

int main() {
list<string> alist;
calculate fobj;
string value;

cout << "Enter strings, press ^D when done" << endl;
cin >> value;
while (cin) {

alist.push_back(value);
cin >> value;

}
 for_each(alist.begin(), alist.end(), fobj);
cout << fobj.getSum() << endl;

}



9

Client-Server Pattern
Problem: to provide a service to multiple clients 
in a loosely coupled manner

Client

Connection

Se
rv

er

reply reply

request request



10

Elements and Responsibilities

Client

Connection

Se
rv

er

reply reply

request request

The Client must generate a request, which is sent to the 
Server, which then generates a reply to that request.
The Connection conveys the requests and replies 
between the Client and the Server.
The Client and Server collaborate directly with the 
Connection, not with each other.



11

Consequences

Client

Connection

Se
rv

er

reply reply

request request

Client and Server are implementation-independent, 
aside from the message types that are to be passed.
Many to one service model is easily obtained.
Server crash may lead Client to hang or crash. (Client 
requests, rather than demands the service.)



12

Flexibility

Client

Connection

Se
rv

er

reply reply

request request

The nature of the service that is requested and supplied 
is irrelevant to the pattern.
The nature of the connection (pipe, socket, buffer) is 
irrelevant to the pattern.
These are important issues, but are addressed when the 
pattern is applied to solve a specific instance of the 
basic problem the pattern addresses.



13

Factory Method Pattern
Intention: define an interface for creating a new object 
(instantiation) but let subclasses decide which one to 
create
Example:
 Application with a "New" command in File menu
 Code defined is standard for all applications
 However, the "new document" depends on different 

applications
 Writer - New means new word processing document
 Calc - New means new spreadsheet document

How can we express the "New" behaviour if we don't 
know which new object to instantiate?
Answer: New communicates with a Factory Method 
class



14

Factory Method
Participants
 Product (Document in the example)
 ConcreteProduct (TextDocument or 

SpreadsheetDocument)
 Creator (application)

 abstract class that has the Factory method
 virtual Product* Create() = 0;

 ConcreteCreator (np. Writer)
 overrides the factory method to create the particular kind of 

document
 virtual Product* Create() { return new WriterDocument(); }



15

Singleton Pattern
Intent: Ensure a class has a single instance and a way to 
get to that instance.
Done by defining the constructor as protected (or 
private).
Example implementation:

class Singleton {
protected:

Singleton() { /* do whatever might be needed here */ }
private:

static Singleton* theInstance;
public:

static Singleton* Instance() {
if (theInstance == NULL) {

theInstance = new Singleton();
}
return theInstance;

}
};
Singleton* Singleton::theInstance = NULL;


