Lecture Material

Design Patterns
Pattern

® A named generalization describing the elements and
relationships of a solution for a commonly occurring
design problem

B Four essential parts of a pattern:
® Descriptive name
® Problem to be addressed
® Solution to the problem
® Consequences of adopting the pattern
B’ A pattern solution specifies a set of classes, and

the relationships among those classes, that will be
combined to provide a solution.

Pattern Recognition

B Much of successful programming, from design to
implementation, hinges upon recognizing the
relevance of certain basic, well-understood
patterns to the situation at hand.

& The ability to do this easily and effectively 1s
what generally separates a competent novice
from a wizard.

B’ Studying an organized library of patterns may, in
theory, speed up the process whereby a novice
obtains a useful solution.

Design Patterns

B’ Design Patterns book by Gamma, Helm, Johnson,
and Vlissides

Ralph Johnson
John Vlissides

Known as the DGSlgﬂ Pattems 5
"Gang of Four" -

g Elements of Reusable =

(GOF) book Object-Oriented Software ?
E(ich Gamma §

® Creational Patterns (5)
® Structural Patterns (7)
® Behavioral Patterns (11)

™
b
=

SIS ONILAdW

Lots of other books on B oy Grady Booch
patterns

Definition of Patterns in GOF book

I Name - name of the pattern

B Intent
® What does the design pattern do?
® What is its rationale and intent?

®m What particular design issue or problem
does it address?

B Motivation

® Scenario that illustrates how the pattern
solves a design problem

B Applicability
®m What are the situations in which the
design pattern can be applied?

® What are examples of poor designs that
the pattern can address?

® How can you recognize these situations?
I Structure
m UML diagram for its parts

B Participants

m (lasses/objects in the pattern and their
responsibilities

I Collaboration

= How the participants collaborate
with each other

B Consequence

®m How does the pattern support its
objectives?

® What are the trade-offs and results
of using the pattern?

®m What aspect of system structure
does it let you vary independently?

B Implementation

m What pitfalls, hints, or techniques
should you be aware of when
implementing the pattern?

m Are there language-specific issues?

B Sample Code
B Known Uses

m Examples of uses

I Related Patterns
m Other closely related patterns

Patterns in GOF Book

Adapter
avionding
hystaresis

Builder

craafing
campaosifas

SNLTeraing
childran
adding
resporsibilities
ta abjscts

Decarator sharing
composiles

r.;r.;mpﬂsﬁd
wsing : Command

dafining iyl
: defirning
adding fraversais fhe dé-ﬁ

3 7 i=i
defirning Visitor

grarnar

changing skin
VEFSLS (UIS

addfng
sharing Interpreter operations ‘ Chain of Responsibility |
siralegiss
sharing
ferminal
Strategy sharing spimbols
states tar —

compley
(spandency
ageren! Observ

4

o
&
&

Igontam
staps oftent Lsas
Template Method T

/———| Factory Method

configoe feolony
dynanmically implament using

4
//_,_,.,i Abstract Factory
singie

insfancs
|

Visitor Pattern
H Bounded Traversal with Conditional Exit

Go to first list element.

If test 1s satisfied, Quit.

While not at end of the list:
Step to next list element.
If test 1s satisfied, Quit.

H Specifies the basic logical pattern of a list search.
H Doesn’t care if list 1s array, linked, or something else.
H Doesn’t care what the test 1s that must be satisfied.
H Doesn’t care what is to be done next.

Example of Visitor Pattern

class calculate {
int total;
public:
void operator () (string v) { total += v.length();, }
int getSum() const { return total; }
calculate(): total(0)({}

I

int main() {
list<string> alist;
calculate fobj;
string value;

cout << "Enter strings, press “D when done" << endl;
cin >> value;
while (cin) {
alist.push back(value) ;
cin >> value;
}
for each(alist.begin(), alist.end(), fobj);
cout << fobj.getSum() << endl;

}

Client-Server Pattern

B Problem: to provide a service to multiple clients
in a loosely coupled manner

Y
2
Q
N
Client
Q reply g N~ reply |
d Connection I~

Elements and Responsibilities

® The Client must generate a request, which is sent to the
Server, which then generates a reply to that request.

The Connection conveys the requests and replies
between the Client and the Server.

Server

| qj reply Ne

d Connection
request

—~_reply
—/

® The Client and Server collaborate directly with the
Connection, not with each other.

Client

]

request

10

Consequences

® Client and Server are implementation-independent,
aside from the message types that are to be passed.

® Many to one service model 1s easily obtained.

Server

| Q reply

request d

Connection

® Server crash may lead Client to hang or crash. (Client
requests, rather than demands the service.)

Client

—~_reply
—/

T

request

11

Flexibility

® The nature of the service that is requested and supplied

1s 1rrelevant to the pattern.

#® The nature of the connection (pipe, socket, buffer) 1s

Server

| Q reply

irrelevant to the pattern.

request d

Connection

® These are important 1ssues, but are addressed when the
pattern 1s applied to solve a specific instance of the
basic problem the pattern addresses.

Client

—~_reply
—/

T

request

12

Factory Method Pattern

Intention: define an interface for creating a new object
(instantiation) but let subclasses decide which one to
create

Example:

® Application with a "New" command 1n File menu
® Code defined 1s standard for all applications

® However, the "new document” depends on different
applications
® Writer - New means new word processing document

® Calc - New means new spreadsheet document

B How can we express the "New" behaviour 1f we don't
know which new object to instantiate?

H Answer: New communicates with a Factory Method
class

13

Factory Method
B Participants

® Product (Document in the example)

® ConcreteProduct (TextDocument or
SpreadsheetDocument)

® Creator (application)
® abstract class that has the Factory method
® virtual Product® Create() = 0;

® ConcreteCreator (np. Writer)

m overrides the factory method to create the particular kind of
document

® virtual Product® Create() { return new WriterDocument(); }

14

Singleton Pattern

B Intent: Ensure a class has a single instance and a way to
get to that instance.

B Done by defining the constructor as protected (or
private).

Example implementation:

class Singleton {

protected:
Singleton() { /* do whatever might be needed here */ }
private:
static Singleton* thelInstance;
public:
static Singleton* Instance() ({
if (theInstance == NULL) {

theInstance = new Singleton() ;

}

return theInstance;

}
}i
Singleton* Singleton::theInstance = NULL;

15

