
1

Lecture Material
Multiple inheritance
Class hierarchies

2

Multiple Inheritance
A class can have more than one direct base class
Consider a simulation in which concurrent
activities are represented by a class Task and data
gathering and display is achieved through a class
Displayed. We can then define a class of
simulated entities, class Satellite:

The use of more than one immediate base class is
usually called multiple inheritance. In contrast,
having just one direct base class is called single
inheritance.

class Satellite : public Task, public Displayed {
// ...

};

3

Multiple Inheritance
In addition to whatever operations are defined
specifically for a Satellite , the union of operations on
Tasks and Displayeds can be applied.

A Satellite can be passed to functions that expect a Task
or a Displayed.

void f(Satellite& s)
{
s.draw() ; // Displayed::draw()
s.delay(10) ; // Task::delay()
s.transmit() ; // Satellite::transmit()

}

void highlight(Displayed*) ;
void suspend(Task*) ;
void g(Satellite* p)
{
highlight(p) ; // pass a pointer to the Displayed part of the Satellite
suspend(p) ; // pass a pointer to the Task part of the Satellite

}

4

Multiple Inheritance
With multiple inheritance virtual functions work as
usual.

This ensures that Satellite::draw() and
Satellite::pending() will be called for a Satellite treated
as a Displayed and a Task, respectively.

class Task {
// ...
virtual void pending() = 0;

};
class Displayed {
// ...
virtual void draw() = 0;

};
class Satellite : public Task, public Displayed
{
// ...
void pending() ; // override Task::pending()
void draw() ; // override Displayed::draw()

};

5

Ambiguity Resolution
Two base classes may have member functions
with the same name.

When a Satellite is used, these functions must be
disambiguated:

class Task {
// ...
virtual debug_info* get_debug() ;

};
class Displayed {
// ...
virtual debug_info* get_debug() ;

};

void f(Satellite* sp)
{
debug_info* dip = sp->get_debug() ; // error: ambiguous
dip = sp->Task::get_debug() ; // ok
dip = sp->Displayed::get_debug() ; // ok

}

6

Ambiguity Resolution
Explicit disambiguation is messy, so it is usually best to
resolve such problems by defining a new function in the
derived class:

This localizes the information about Satellite’s base
classes. Because Satellite::get_debug() overrides the
get_debug() functions from both of its base classes,
Satellite::get_debug() is called wherever get_debug() is
called for a Satellite object.

class Satellite : public Task, public Displayed {
// ...
debug_info* get_debug() // override Task::get_debug()

 // and Displayed::get_debug()
{

debug_info* dip1 = Task::get_debug() ;
debug_info* dip2 = Displayed::get_debug() ;
return dip1->merge(dip2) ;

}
};

7

Ambiguity Resolution
A qualified name Telstar::draw() can refer to a draw() declared
either in Telstar or in one of its base classes.

If a Satellite::draw() doesn’t resolve to a draw() declared in
Satellite, the compiler recursively looks in its base classes; that is,
it looks for Task::draw() and Displayed::draw(). If exactly one
match is found, that name will be used. Otherwise,
Satellite::draw() is either not found or is ambiguous.

class Telstar : public Satellite {
// ...
void draw()
{

draw() ; // oops!: recursive call
Satellite::draw() ; // finds Displayed::draw
Displayed::draw() ;
Satellite::Displayed::draw() ; // redundant double qualification

}
};

8

Inheritance and Using Declarations
Overload resolution is not applied across different class scopes. In particular,
ambiguities between functions from different base classes are not resolved
based on argument types.
When combining essentially unrelated classes, such as Task and Displayed in
the Satellite example, similarity in naming typically does not indicate a
common purpose. When such name clashes occur, they often come as quite a
surprise to the programmer.

class Task {
// ...
void debug(double p) ; // print info only if priority is lower than p

};
class Displayed {
// ...
void debug(int v) ; // the higher the ‘v,’

 // the more debug information is printed
};
class Satellite : public Task, public Displayed {
// ...

};
void g(Satellite* p){
p->debug(1) ; // error: ambiguous.

 // Displayed::debug(int) or Task::debug(double) ?
p->Task::debug(1) ; // ok
p->Displayed::debug(1) ; // ok

}

9

Inheritance and Using Declarations
What if the use of the same name in different base classes was the result of a
deliberate design decision and the user wanted selection based on the argument
types? In that case, a using declaration can bring the functions into a common
scope.

class A {public:int f(int) ;char f(char) ;// ...};class B {public:double f(double) ;// ...};class AB: public A, public B {public:using A::f;using B::f;char f(char) ; // hides A::f(char)AB f(AB) ;};void g(AB& ab){ab.f(1) ; // A::f(int)ab.f(´a´) ; // AB::f(char)ab.f(2.0) ; // B::f(double)ab.f(ab) ; // AB::f(AB)}

10

Inheritance and Using Declarations
Using declarations allow a programmer to compose a set
of overloaded functions from base classes and the
derived class. Functions declared in the derived class
hide functions that would otherwise be available from a
base. Virtual functions from bases can be overridden as
ever.
A using declaration in a class definition must refer to
members of a base class. A using declaration may not be
used for a member of a class from outside that class, its
derived classes, and their member functions. A using
directive may not appear in a class definition and may
not be used for a class.

11

Replicated Base Classes
With the ability of specifying more than one base
class comes the possibility of having a class as a
base twice. For example, had Task and Displayed
each been derived from a Link class, a Satellite
would have two Links:

struct Link {
Link* next;

};
class Task : public Link {
// the Link is used to maintain a list of all Tasks

 // (the scheduler list)
// ...

};
class Displayed : public Link {
// the Link is used to maintain a list

 // of all Displayed objects (the display list)
// ...

};

12

Replicated Base Classes
This causes no problems. Two separate Link
objects are used to represent the links, and the
two lists do not interfere with each other.
One cannot refer to members of the Link class
without risking an ambiguity. A Satellite object
could be drawn like this:

LinkLink

DisplayedTask

Satellite

13

Replicated Base Classes
Examples of where the common base class shouldn’t be
represented by two separate objects can be handled using a virtual
base class.
Usually, a base class that is replicated the way Link is here is an
implementation detail that shouldn’t be used from outside its
immediate derived class. If such a base must be referred to from a
point where more than one copy of the base is visible, the
reference must be explicitly qualified to resolve the ambiguity.

void mess_with_links(Satellite* p)
{
p->next = 0; // error: ambiguous (which Link?)
p->Link::next = 0; // error: ambiguous (which Link?)
p->Task::Link::next = 0; // ok
p->Displayed::Link::next =0; // ok
// ...

}

14

Overriding of Virtual Functions
A virtual function of a replicated base class can be
overridden by a (single) function in a derived class. For
example, one might represent the ability of an object to
read itself from a file and write itself back to a file.

It can be used to to develop classes that can be used
independently or in combination to build more elaborate
classes.

class Storable {
public:

virtual const char* get_file() = 0;
virtual void read() = 0;
virtual void write() = 0;
virtual ~Storable() {write() ; } // to be called

 // from overriding destructors
};

15

Overriding of Virtual Functions
One way of stopping and restarting a simulation is to store components of a
simulation and then restore them later. That idea might be implemented like
this:

Typically, an overriding function calls its base class versions and then does the
work specific to the derived class:

class Transmitter : public Storable {public:void write() ;// ...};class Receiver : public Storable {public:void write() ;// ...};class Radio : public Transmitter, public Receiver {public:const char* get_file() ;void read() ;void write() ;// ...};

void Radio::write(){Transmitter::write() ;Receiver::write() ;// write radio-specific information}

16

Virtual Base Classes
The Radio example works because class Storable can be
safely, conveniently, and efficiently replicated. Often,
that is not the case for the kind of class that makes a
good building block for other classes. For example, we
might define Storable to hold the name of the file to be
used for storing the object:

class Storable {
public:

Storable(const char* s) ;
virtual void read() = 0;
virtual void write() = 0;
virtual ~Storable() ;

private:
const char* store;
Storable(const Storable&) ;
Storable& operator=(const Storable&) ;

};

17

Virtual Base Classes
Given this apparently minor change to Storable, we must must change the
design of Radio. All parts of an object must share a single copy of Storable;
otherwise, it becomes unnecessarily hard to avoid storing multiple copies of the
object. One mechanism for specifying such sharing is a virtual base class.
Every virtual base of a derived class is represented by the same (shared) object.

class Transmitter : public virtual Storable {
public:

void write() ;
// ...

};
class Receiver : public virtual Storable {
public:

void write() ;
// ...

};
class Radio : public Transmitter, public Receiver
{
public:

void write() ;
// ...

};

Storable

TransmitterReceiver

Radio

18

Programming Virtual Bases
When defining the functions for a class with a virtual base, the programmer in general cannot know
whether the base will be shared with other derived classes. This can be a problem when
implementing a service that requires a base class function to be acalled exactly once.
The language ensures that a constructor of a virtual base is called exactly once. The constructor of a
virtual base is invoked (implicitly or explicitly) from the constructor for the complete object (the
constructor for the most derived class).

The constructor for a virtual base is called before the constructors for its derived classes.

class A { // no constructor// ...};class B {public:B(); // default constructor// ...};class C {public:C(int); // no default constructor};class D : virtual public A, virtual public B, virtual public C{ public: D() { /* ... */ }; // error: no default constructor for C D(int i) :C(i) { /* ... */ }; // ok // ...};class E: public D{ public: E() { /* ... */ }; // error: no default constructor for C E(int i) :C(i) { /* ... */ }; // ok // ...};

19

Programming Virtual Bases
Where needed, the programmer can simulate this scheme by calling a virtual
base class function only from the most derived class. For example, assume we
have a basic Window class that knows how to draw its contents:

In addition, we have various ways of decorating a window and adding
facilities:

The own_draw() functions need not be virtual because they are meant to be
called from within a virtual draw() function that "knows" the type of the object
for which it was called.

class Window {
// basic stuff
virtual void draw() ;

};

class Window_with_border : public virtual Window {
// border stuff
void own_draw() ; // display the border
void draw() ;

};
class Window_with_menu : public virtual Window {
// menu stuff
void own_draw() ; // display the menu
void draw() ;

};

20

Programming Virtual Bases
From this, we can compose a plausible Clock class:

The draw() functions can now be written using the own_draw() functions so
that a caller of any draw() gets Window::draw() invoked exactly once. This is
done independently of the kind of Window for which draw() is invoked:

class Clock : public Window_with_border, public Window_with_menu {
// clock stuff
void own_draw(); // display the clock face and hands
void draw();

};

void Window_with_border::draw()
{
Window::draw() ;
own_draw(); // display the border

}
void Window_with_menu::draw()
{
Window::draw() ;
own_draw(); // display the menu

}
void Clock::draw()
{
Window::draw() ;
Window_with_border::own_draw() ;
Window_with_menu::own_draw() ;
own_draw() ; // display the clock

 // face and hands
}

Window

Window_with_menuWindow_with_border

Clock

21

Using Multiple Inheritance
The simplest and most obvious use of multiple inheritance is
to "glue" two otherwise unrelated classes together as part of
the implementation of a third class. The Satellite class built
out of the Task and Displayed classes is an example of this.
This use of multiple inheritance is crude, effective, and
important, but not very interesting. Basically, it saves the
programmer from writing a lot of forwarding functions. This
technique does not affect the overall design of a program
significantly and can occasionally clash with the wish to keep
implementation details hidden.
Using multiple inheritance to provide implementations for
abstract classes is more fundamental in that it affects the way
a program is designed.

22

Using Multiple Inheritance

In this example, the two base classes play logically distinct roles. One base is a
public abstract class providing the interface and the other is a protected
concrete class providing implementation "details".
The use of multiple inheritance is close to essential here because the derived
class needs to override virtual functions from both the interface and the
implementation.

class Ival_box {
public:

virtual int get_value() = 0;
virtual void set_value(int i) = 0;
virtual void reset_value(int i) = 0;
virtual void prompt() = 0;
virtual bool was_changed() const = 0;
virtual ~Ival_box() { }

};
class BB_ival_slider
: public Ival_box // interface
,protected BBslider // implementation

{
// implementation of functions required

 // by ‘Ival_slider’ and ‘BBslider’
// using the facilities provided by ‘BBslider’

};

BBslider

BB_ival_slider

Ival_box

BBwindow

23

Overriding Virtual Base Functions
A derived class can override a virtual function of its direct or
indirect virtual base class.
In particular, two different classes might override different virtual
functions from the virtual base.
In that way, several derived classes can contribute
implementations to the interface presented by a virtual base class.

class Window {// ...virtual set_color(Color) = 0; // set background colorvirtual void prompt() = 0;};class Window_with_border : public virtual Window {// ...set_color(Color) ; // control background color};class Window_with_menu : public virtual Window {// ...void prompt() ; // control user interactions};class My_window : public Window_with_menu, public Window_with_border {// ...};

24

Overriding Virtual Base Functions
If different derived classes override the same function, it is
allowed if and only if some overriding class is derived from every
other class that overrides the function. That is, one function must
override all others.
My_window could override prompt() to improve on what
Window_with_menu provides:

class My_window : public Window_with_menu, public Window_with_border {
// ...
void prompt() ; // don’t leave user interactions to base

};

Window {set_color(), prompt() }

Window_with_menu { prompt() }Window_with_border {set_color() }

My_window { prompt() }

25

Overriding Virtual Base Functions
If two classes override a base class function, but neither overrides the other, the
class hierarchy is an error.
No virtual function table can be constructed because a call to that function on
the complete object would have been ambiguous.
Had Radio not declared write(), the declarations of write() in Receiver and
Transmitter would have caused an error when defining Radio.
Such a conflict is resolved by adding an overriding function to the most derived
class.

A class that provides some – but not all – of the implementation for a virtual
base class is often called a "mixin".

Storable { write() }

Transmitter { write() }Receiver { write() }

Radio { write() }

26

Access Control
A member of a class can be private, protected, or public:
 If it is private, its name can be used only by member functions and friends

of the class in which it is declared.
 If it is protected, its name can be used only by member functions and

friends of the class in which it is declared and by member functions and
friends of classes derived from this class.

 If it is public, its name can be used by any function.

private:

protected:

public:

general users

derived class’ member functions and friends

own member functions and friends

27

Protected Members
As an example of how to use protected members, consider the Window
example
The own_draw() functions were (deliberately) incomplete in the service
they provided.
They were designed as building blocks for use by derived classes (only)
and are not safe or convenient for general use.
The draw() operations, on the other hand, were designed for general use.
It can be stated explicitly:

class Window_with_border {
public:

virtual void draw() ;
// ...

protected:
void own_draw() ;
// other toolbuilding stuff

private:
// representation, etc.

};

28

Protected Members
A derived class can access a base class’ protected members only
for objects of its own type:

This prevents subtle errors that would otherwise occur when one
derived class corrupts data belonging to other derived classes.

class Buffer {
protected:

char a[128] ;
// ...

};
class Linked_buffer : public Buffer{ /* ... */ };
class Cyclic_buffer : public Buffer {
// ...
void f(Linked_buffer* p) {

a[0] = 0; // ok: access to cyclic_buffer’s own protected member
p->a[0] = 0; // error: access to protected member of different type

}
};

29

Use of Protected Members
The simple private/public model of data hiding serves the notion
of concrete types well.
However, when derived classes are used, there are two kinds of
users of a class: derived classes and "the general public".
The members and friends that implement the operations on the
class operate on the class objects on behalf of these users.
The private/public model allows the programmer to distinguish
clearly between the implementers and the general public, but it
does not provide a way of catering specifically to derived classes.
Declaring data members protected is usually a design error.
 Placing significant amounts of data in a common class for all derived

classes to use leaves that data open to corruption.
 Protected data, like public data, cannot easily be restructured because there

is no good way of finding every use.

30

Access to Base Classes
Like a member, a base class can be declared private,
protected, or public.

Public derivation makes the derived class a subtype of its
base; this is the most common form of derivation.
Protected and private derivation are used to represent
implementation details.
 Protected bases are useful in class hierarchies in which further

derivation is the norm.
 Private bases are most useful when defining a class by

restricting the interface to a base so that stronger guarantees
can be provided.

class X : public B{ /* ... */ };
class Y : protected B{ /* ... */ };
class Z : private B{ /* ... */ };

31

Access to Base Classes
The access specifier for a base class can be left out. In that case, the base
defaults to a private base for a class and a public base for a struct.

The access specifier for a base class controls the access to members of the base
class and the conversion of pointers and references from the derived class type
to the base class type. Consider a class D derived from a base class B:
 If B is a private base, its public and protected members can be used only by member

functions and friends of D. Only friends and members of D can convert a D* to a
B*.

 If B is a protected base, its public and protected members can be used only by
member functions and friends of D and by member functions and friends of classes
derived from D. Only friends and members of D and friends and members of classes
derived from D can convert a D* to a B*.

 If B is a public base, its public members can be used by any function. In addition, its
protected members can be used by members and friends of D and members and
friends of classes derived from D. Any function can convert a D* to a B*.

class XX :B{ /* ... */ }; // B is a private base
struct YY :B{ /* ... */ }; // B is a public base

32

Multiple Inheritance and Access Control
If a name or a base class can be reached through multiple paths in a multiple
inheritance lattice, it is accessible if it is accessible through any path.

If a single entity is reachable through several paths, we can still refer to it
without ambiguity.

struct B {
int m;
static int sm;
// ...

};
class D1 : public virtual B{ /* ... */ } ;
class D2 : public virtual B{ /* ... */ } ;
class DD : public D1, private D2{ /* ... */ };
DD* pd = new DD;
B* pb = pd; // ok: accessible through D1
int i1 = pd->m; // ok: accessible through D1

class X1 : public B{ /* ... */ } ;
class X2 : public B{ /* ... */ } ;
class XX : public X1, public X2{ /* ... */ };
XX* pxx = new XX;
int i1 = pxx->m; // error, ambiguous: XX::X1::B::m or XX::X2::B::m
int i2 = pxx->sm; // ok: there is only one B::sm in an XX

33

Using Declarations and Access Control
A using declaration cannot be used to gain access to additional information. It is simply
a mechanism for making accessible information more convenient to use. On the other
hand, once access is available, it can be granted to other users.

When a using declaration is combined with private or protected derivation, it can be
used to specify interfaces to some, but not all, of the facilities usually offered by a class.

class B {
private:

int a;
protected:

int b;
public:

int c;
};
class D : public B {
public:

using B::a; // error: B::a is private
using B::b; // make B::b publically available through D

};

class BB : private B{ // give access to B::b and B::c, but not B::a
using B::b;
using B::c;

};

