

Object oriented modeling

2006/2007

Part I

UML

Modeling
● Modeling is important for creating high quality

software
● We model in order to:

– understand the system
– specify desired structure and behaviour
– describe the architecture and be able to alter it
– improve risk management

Model
● Model is a simplification of reality
● The simplification allows to skip unimportant (at

a particular moment) details
● At the same time it allows to emphasize

important aspects

Modeling principles
● Model choice influences the solution of the

problem - both the method and quality
● Every model can have various levels of detail
● The model should reflect reality
● Usually, one model is not enough. Several

independent models are the best solution of the
system is not trivial

Modeling paradigms
● Structural. It evolved from structural

programming languages and spawned a large
number of different approaches. The
discrepancies between approaches severely
limited usefulness of structural modeling Two
attempts at unification:
– CRIS (Comparative Review of Information Systems

Methodologies) workgroup
– EuroMethod

Modeling paradigms
● Object oriented. Resulted from increased

interest in object-oriented languages. During
'89-'94 period more than 50 different solutions
were active, however, unlike the structural
approach, they converged into one.

Modeling paradigms
● The most important methods that constituted

the final approach were:
– OMT (Object Modeling Technique), Rumbaugh

1991
– OOAD (Object Oriented Analysis and Design),

Booch 1991
– OOSE (Object Oriented Software Engineering),

Jacobson 1992

Towards UML
● Work on UML started in 1994, when Rumbaugh

and Booch, both employed by Rational
Software Corporation, started work on
unification of OMT and OOAD. The result,
Unified Method (UM) 0.8, was presented in '95.
At the same year Jacobson joined Rational and
enhanced UM with elements of his OOSE,
which resulted in UM 0.9 and UM 0.91 (both in
'96). From this point the language is known as
UML.

UML development
● The efforts of Rational were quickly backed by

some important players: IBM, DEC, HP, Oracle,
Unisys, Microsoft- among others. This led to
further developments and version 1.0 in 1997.
This version was later passed to Object
Management Group (OMG). Version 1.1
followed in the same year. This version was the
official one up till 2001 (version 1.4). Version
1.5 became the official one in 2003.

UML 2.0
● Version 2.0 was introduced in 2003. It is the

first major revision of the standard, introducing
many new diagrams and modeling categories.

UML diagrams
● Model in UML is a graphical representation of

the system
● The representation consists of logically

interconnected diagrams
● Version 2.0 contains 13 types of diagrams
● An important concept is that of a classifier -

abstract category that generalizes a collection
of instances having the same features, and
instance - a realization of classifier

UML views
● System design requires collaboration of a

number of persons, having different
competences and responsibilities (managers,
designers, programmers, clients etc.)

● Each person sees the system from different
point of view

● UML addresses this problem by employing 5
different views of the system

UML views
● use case view - most important, defines scope

and expected functionality of the system
● dynamic view - describes behaviour (dynamics)

of instances in the systems
● logical view - describes statics of the system
● implementation view - mostly used by

programmers, describes components of the
system

● deployment view - describes hardware required
by the components

Extension mechanisms
● Although UML contains broad spectrum of

concepts and elements, it may not suit a
particular modeling domain

● For that reason extension mechanisms are
incorporated into UML

● There are three types of extension
mechanisms:
– stereotype
– constraint
– tagged value

Stereotypes
● Allow to introduce new modeling categories

based on existing ones
● Stereotypes can be:

– textual - the name is surrounded by << >> quotes
and placed on the stereotyped element

– graphical - specific graphical symbol is placed on
the stereotyped element

● A large number of standard stereotypes is
recommended by OMG

Constraints
● Constraint is an expression describing condition

applied to the constrained element
● It can be expressed in natural language, as a

mathematic formula or in OCL (Object
Constraint Language) - special language for
object constraints

● Constraints are placed in { } parentheses, next
to the constrained element

Tagged values
● Tagged values allow to define new properties
● They are expressed as name-value pairs
● They are placed in { } parentheses

Use case diagrams
● They allow to:

– identify and document requirements
– analyze scope of applicability
– communicate between developers, owners, clients

etc.
– develop project of the future system
– develop testing procedures for the system

● There are two types of use case diagrams:
– business use case diagrams
– system use case diagrams

Use case diagrams
● They contain:

– use cases
– actors
– relationships

Use cases
● Specification of sequence of actions (and their

variants) which the system can perform through
the interaction with actors of that system

● Use case is a coherent fragment of system
functionality

● Its name a curt order to perform particular
function, expressed in imperative. The namie is
placed inside an oval

verify user
check password

Actor
● Actor is a coherent collection of roles played by

users of the use case, during interaction with
this use case

● Actors can be
– persons (single person, group, organisation etc.)
– external systems (software or hardware)
– time

● Name is a noun reflecting the role played in the
system

● Actor can use more than one use case, an use
case can interact with one or more actors

Actor stereotypes
● The classic symbol of actor can be stereotyped

to distinguish between various types of actors

classic / human
external system

device
time

Relationship
● Ties elements of the diagram (e.g. actors and

use cases)
● There are 4 kinds of relationship:

– association
– generalisation
– dependence
– realisation

Association
● Association describes ties between instances of

classifiers (two or more)
● In the use case diagram it represents

bidirectional communication between an actor
and a use case

● It is depicted as a solid line
● Usually they do not have names

Association

find product

user

Dependency
● Dependency is a relationship between two

model elements where change in one element
(independent one) influences the second
element (dependent one)

● It is depicted as a dashed arrow
● In use case diagrams dependency is

stereotyped into:
– <<include>> dependency
– <<extend>> dependency

<<include>> dependency
● Relationship between the containing case and

contained case
● The contained case is executed always when

the containing case is executed - and only then
● It is useful when several use cases contain the

same part
● The arrow points from the containing case to

the contained case

<<include>> dependency

find product

log to a DB

add product

<<include>>

<<include>>

<<extend>> dependency
● Relationship between base case and a case

that optionally may introduce additional
functionality to the base case

● It is useful when a case may, under certain
conditions, rely on some other cases

● The arrow points from the extension to the base

<<extend>> dependency

find product

log to a DB

add product

<<include>>

<<include>>

verify password

<<extend>>

access network
<<extend>>

Extension points
● It is possible to specify situations/conditions

under which the extending cases must be
included

● They are listed in the extended case, under a
horizontal line

Extension points

find product

log to a DB
Extension points
password required

DB not local

add product

<<include>>

<<include>>

verify password

<<extend>>

access network<<extend>>

Generalisation
● Generalization is a taxonomic relation between

general and specialised classifier
● Specialised classifier inherits all features of the

general classifier
● It is depicted by a solid-line arrow with triangle

head, pointing towards the general classifier

Generalisation

find product

log to a DB

add product

<<include>>

<<include>>

verify password

<<extend>>

access network
<<extend>>

log to MySQL

Multiplicity
● Allows to specify the number of items at each

end of the association that take place in the
association

● Possible cases:
– n (n > 0) exactly n
– n..* (n ≥ 0) n or more
– n..m (m > n ≥ 0) between n and m
– * many (unknown number)
– n, m, o..p, q (q > p...) list

Multiplicity

Navigability
● Bidirectional association can be enhanced by

providing information about the side that
initiates communication

● This is depicted using an arrow
● The arrow does not indicate direction of data

flow

Navigability

System
● The use cases can be grouped to form a

complete system
● The grouping is depicted by placing them inside

a named rectangle

System

Frame
● The whole diagram (any type) can be placed

inside a frame
● The frame has a header (at the left-top corner)

that contains information about diagram name
and, optionally, its type and parameters

● Framing improves clarity of documentation
when the project is large

Frame

Documenting use cases
● Use case diagram is very general
● In order to clearly define intended behaviour of

the system, each use case should have
additional information, called scenario

● Scenario is a sequence of actions documenting
behaviour

● In complex cases it is possible to define main
scenario and alternative scenarios

● Scenario can be written down as natural
language text, pseudo-code, table etc.

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Class diagrams
● Contain information about static elements

(classes) and relationships between them
● They are very closely related to the object-

oriented programming technique
● Are among the most important UML diagrams

Class symbol
● The symbol of a class is a rectangle, usually

divide by horizontal lines into three sections:
– name
– attributes
– operations

● If needed, this can be expanded with additional
sections (e.g. exceptions)

Class symbol
● For complex classes displaying all attributes

and operations may take too much space
● Possible solutions are:

– displaying only class name without attributes and
operations sections

– displaying only class name with empty attributes
and operations sections

– displaying part of attributes and operations
sections, denoting continuation of the list by ellipsis

– hiding (some) operations / attributes

Visibility of class members
● It is possible to specify visibility of attributes and

operations
● Visibility translates to access control of object

oriented languages
● Possibilities are:

➢ + public
➢ - private
➢ # protected
➢ ~ packet

● Other possibilities, better suited for some
languages, can be used

Static members
● Members can be declared as static
● Concept is identical to the idea of static

members in object-oriented programming
● Static members are depicted by underline

Members specification
● For attributes it is possible to specify:

– type. The type is placed after attribute name,
separated by a colon

– count
– initial value

● For operations it is possible to specify:
– return type. The type is placed after operation

name, separated by a colon
– arguments. Each argument can be specified just as

attribute, with the addition of direction of passing
the argument (“in” is the default direction)

Members specification

Relationship
● All 4 types of relationship are used
● The main type is association
● Association can have the following features

(bold are new compared to use cases):
– name
– roles
– navigability
– multiplicity
– aggregation

Association name
● It is possible to name an association in order to

provide more detailed information
● The name can also contain direction

Association roles
● Roles are another way to provide more detailed

information about association
● Role of a class is described by text placed close

to the class symbol
● It is possible to specify both association name

and class roles

Association navigability
● Default navigability is bidirectional
● To specify unidirectional navigability, the

association is depicted with an arrow at the end
● In the class diagram unidirectional navigability

means the communication is unidirectional (cf.
use case diagrams)

Association multiplicity
● The same meaning as in the use case

diagrams

Association aggregation
● Aggregation describes relationship between the

whole and the part
● There are two kinds of aggregation:

– complete (composition, strong aggregation)
– partial (aggregation, weak aggregation)

● Aggregation is depicted by a parallelogram
placed next to the symbol representing the
whole

● Strong aggregation is depicted by a solid
parallelogram, weak - by hollow

Strong and weak aggregation
● In case of strong aggregation the contained objects

cannot exist if the containing object is removed
● The concept is identical to the situation in object-

oriented language when one class contains objects of
another class

● In case of weak aggregation the contained objects
can exist without the containing object

● Furthermore, one object can be contained by many
other objects

● This concept is identical to the situation when one
class contains pointer (reference) to object of another
class

Strong and weak aggregation

Association class
● Can be used to precisely describe relationship

between classes
● It is depicted by a class placed close to the

association and connected wit the association
by a dashed line

Association class

Multiple associations
● Two classes can be differently related to each

other in different contexts
● This may result to more than one association

between classes
● Every one of the multiple associations should

be named

Multiple associations

Self association
● It is possible to make an association that relates

the class to itself

N-ary association
● Is is possible to specify association between

more than two classes
● Such an association may also contain an

association class
● It should not be confused with multiple

association

N-ary association

Dependency
● This relationship means that one class (client)

makes (some sort of) use of another class
(supplier)

● It is depicted using a dashed line with arrow
pointing from the client to the supplier

Generalisation
● Generalisation is commonly used in class

diagrams
● There are several concepts that enhance the

idea of generalisation to precisely describe this
relationship

Abstract classes
● Abstract classes do not have instances

(objects)
● The concept is identical to the abstract classes

in object-oriented programming
● Abstract classes are denoted by names in

italics

Abstract classes

Realisation
● In class diagram this is a relationship between

an interface and its implementation
● This is identical to the concept used in object-

oriented languages
● Realisation is depicted by a dashed line with

hollow arrow pointing from the class to the
interface

● The interface can be displayed either as a
rectangle with operations (similar to the class),
or as a ball

Realisation

Realisation

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Code generation
public class Client {
 private products.int smallOrderLimit = 150;
 private String login;
 private String password;
 public clients.CreditCard creditCard;
 public clients.EMail eMail;
 public java.util.Collection address = new java.util.TreeSet();
 public java.util.Collection client = new java.util.TreeSet();
 public ordering.void paymentReceived() {
 return null;
 }
 public ordering.void eMailReceived() {
 return null;
 }
 public ordering.void deliveryReturned() {
 return null;
 }
 public boolean checkPassword(String password) {
 return false;
 }

/*...*/
 public java.util.Collection order = new java.util.ArrayList();
 clients.Account account;
 public clients.ClientController controller;
 }

Sample diagrams

Associations revisited
● Association – a relationship exists between two

classes (student – teacher, seller – buyer)
● Weak aggregation – one class belongs to

another, but the part can exist without a whole
(order – products, library – books)

● Strong aggregation (composition) – one class
belongs to another, the part cannot exist
without a whole (polygon – its vertices, order –
shipping address)

Activity diagrams
● Describe dynamics of the system (cf. class

diagrams)
● They graphically represent sequential and

concurrent control and data flows
● They can be used for modeling:

– business processes
– use cases scenarios
– algorithms
– operations

Main elements of activity diagrams
● activity
● action
● control flow
● initial node
● activity final
● flow final

Activity
● Activity may represent complex processes and

algorithms
● In order to improve readability, not all elements

of the process/algorithm are represented
● Instead, activity can be decomposed into other

activities (using a separate diagram), creating a
hierarchical structure

● The decomposition can be performed till we
reach the level of actions - elementary entities
describing dynamics of the system

Activity and action
● Activities are represented by rectangles with

rounded corners
● Decomposable activities may have special

mark denoting this fact placed in right lower
corner

● Actions are depicted in the same manner as
activities (but cannot have the “decomposable”
symbol)

Log in Pay x := y + 5 * z

Control flow
● Control flow is a relation between two

activities/actions denoting that after completion
of one activity/action the control will be passed
to the other

● It is denoted by an arrow

Initial node, activity final, flow final
● Initial node indicates beginning of control

flow(s). Usually one per diagram. Denoted by a
solid circle

● Activity final indicates stop of all flows in the
diagrams. May be more than one. Denoted by a
small solid circle inside a bigger hollow one

● Flow final indicates stop of one flow. May be
more than one. Denoted by a hollow circle with
a cross (X)

Simple diagram

Decision and merge nodes
● More complicated diagrams require means of

representing decisions and alternate control paths
● This can be achieved by using decision and merge

nodes
● Decision node has one input flow and two or more

output flows. Only one output can be selected at a
time

● Merge node has may inputs and only one output
● Symbol of both nodes is a diamond, they are

distinguished on the basis of the number of inputs
and outputs

Decision node
● Output selection is performed on the basis of a

guard condition
● Guard condition is placed in rectangular

parentheses close to the output
● All guard conditions must be mutually exclusive
● One of the gurad conditions can be replaced by

the keyword else (also placed in the square
parentheses)

Merge node
● Does not perform any synchronisation functions

- every flow that reaches the merge node will be
immediately forwarded to the output

Sample diagram

Concurrent flows
● It is possible to specify flows that execute in

parallel (concurrently)
● In order to model this functionality, fork node

and join node are defined
● Fork node has one input and two or more

outputs; flows entering fork node are split
● Join node has two or more inputs and one

output. It can be used to synchronise flows. It is
possible to use join specification - boolean
condition that specifies that the flow is passed
to the output (true) or destroyed (false)

Sample diagram

Data flow
● As a supplement to the control flow, is is

possible to describe data flow (flow of objects)
● It is useful when:

– Actual object flow takes place
– State of an object is changed

● The object has to be connected with an activity
or action

● The object is depicted by a rectangle with the
object name

● Alternatively, object flow can be depicted using
input/output pins

Simple data flow

Activity parameter
● It is possible to specify that an object is a

parameter of an activity
● This is depicted by the object rectangle placed

on the border of an activity

Partitions
● Activities, actions

and objects can be
grouped into
partitions

Expansion region
● Expansion region allows to specify a part of a

diagram that is executed many times,
depending on the number of elements on its
input

● The inputs and outputs of the expansion region
are called expansion nodes

● The mode of execution is specified by a string
in italics, placed inside the expansion region,
and can be:
– iterative
– parallel
– streaming

Sample expansion region

Interruptible activity region
● Allows to specify a part of the diagram where

execution can be immediately interrupted by an
external condition

● In case of an interruption all flows are
terminated except the interrupting edge

● The interrupting edge always starts inside of the
interruptible activity region and ends outside

● For this functionality signals notation can be
useful

Signals
● Signals can be used to represent asynchronous

processing
● It is possible to:

– send signal
– accept signal

Sample interruptible activity region

Exception handlers
● Allow to model an activity performed in error

situation
● In case of an exception condition, control is

passed to the handling activity
● The handler must be named

Sample exception handler

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

State machine diagrams
● State machine diagram describes graphically discrete

behaviour (state-transition) of finite systems
● Describe states of ojects
● Can be directly used to generate programming

language code
● Are constructed using elements introduced in the

activity diagrams
● Main elements are:

– State
– Transition
– Initial and final states

State machine diagrams
● State is a condition of an object. It may be

performing some actions, waiting for an event,
fulfilling a condition

● Transition indicates that an object being in the
first state will perform some actions and transit
to the second state whenever particular
conditions are met

Sample state machine

Elements of the state
● The state in a machine can be divided into

sections:
– Name
– Internal activities
– Internal transitions
– Decomposition

● The sections are separated using horizontal
lines

State name
● Should in an unambiguous way define state of

an object. Unlike in activity diagrams, where
names were imperatives ordering to perform
some action, here the names describe condition
the object is in

Internal activities
● Describe activities performed in connection with

a state. Three kinds are possible:
– Entry – activity performed when an object enters

particular state
– Do – activity performed while an object is in a

particular state
– Exit – activity performed when an object leaves a

particular state
● It is possible to define only one activity of

“entry” and “exit” kind, and an unlimited number
of “do” kind

Internal transitions
● Indicate transitions that start and end in the

same state
● Unlike external transition that starts and ends in

the same state, this transition does not trigger
the “enter” and “exit” activities

Sample state machine

Composite state
● Is used to provide more details about a

(complex) state
● It can contain a submachine
● Submachine is a normal state machine diagram
● The state containing a submachine is depicted

using a submachine symbol in the lower right
corner

Composite state - submachine

Choice, junction, fork and join nodes
● It is possible to use nodes similar to the activity

diagrams:
– Choice (similar to decision node)
– Junction (similar to decision and merge nodes)
– Fork
– Join

Choice node

Shallow history, deep history,
termination

● History enables to save information about
complex state upon leaving this state
– Shallow history saves a pointer to the substate that

was active
– Deep history saves also information about all

substates (i.e. pointers to the active substates in
substates, and so on)

● Termination indicates end of state machine
processing due to destruction of the object
being processed

History sample

Events
● Events trigger transition from one state to

another. Possible events are:
– Signal. Asynchronous.
– Call event. Similar to function call.
– Time event. Happen after certain amount of time.

Defined by after keyword
– Change event. Happen when condition is met.

Defined by when keyword

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Sequence diagrams
● Describes interactions between objects as a

sequence of messages
● Good for documenting use cases
● Two dimensions are used in the sequence

diagrams:
– Horizontal is used to indicate the objects taking part

in the communication
– Vertical is used to indicate the time sequence of

interation

Sequence diagrams
● Three types are possible:

– Conceptual. Only basic elements are used. Suitable
for first sketches, and managers

– Generic. Much more detailed, employs all elements
and concepts. When documenting use cases,
include the main scenario and the alternative ones.
Are the basis for (automatic) code generation

– Instance. Describes single scenario from the main
and alternative ones

Main elements of the diagram
● Object
● Lifeline
● Message
● Execution specification

Object
● Sequence diagrams typically describe

interactions between objects of classes
● Thy can also include instances of other

classifiers: use cases, actors, signals etc.
● They are depicted using a rectangle with a

name (sometimes underlined)
● In trivial diagrams they are all placed along the

top line of the diagram

Lifeline
● Represents life span of the object
● Is depicted by a dashed line going from the

object downwards

Messages
● Message represents information exchange

between objects. It is an order from one object
to another to perform some operation(s)

● The complete syntax is as follows:
predecessor/sequence_expression signature

● Only signature is compulsory (and only part of
it)

Messages - predecessor
● Predecessor is the number of message that has

to appear (some time before) in order for this
message to be executed

● When more that one message has to appear
before the current one, they can be all listed,
comma separated

Message – sequence expression
● May contain:

– Message identification (number or name)
– Message recurrence or iteration sequence

● The above fields are separated by colon
● Message recurrence is expressed as
[actualCondition]

● Message iteration sequence is expressed as
*[iterationSpecification]

● Examples: 1.2:[x>15]
initial:*[i:=1..15]

Message - signature
● May consist of:

– Name (compulsory)
– Arguments list
– Return value

Message - signature
● Name indicates the operation that will be

performed by the receiver of the message
● Arguments list and return value may be

specified similarly as in class specification, but
represent actual, not formal parameters (and
types are not included)

● Return value makes only sense in messages
that result in passing data to the caller

● Example:
findItem(name):itemsList

Execution specification
● Represents activity period of an object

(computations, message passing from/to an
object)

● Is depicted by a rectangle placed on the life
line, the height representing timspan of the
activity

● The beginning is a result of an activation (often
result of received message), end – of a
deactivation

Sample diagram

Message types
● Synchronous
● Asynchronous
● Return
● Lost
● Found

Synchronous message
● Control is passed to the called object
● Control flow of the sender is suspended until

called action is executed
● Is depicted by a solid arrow
● This translates to a typical function call

Asynchronous message
● Control flow of the caller is not interrupted
● Is depicted using “open” arrow
● Is possible when the caller and callee are not in

the same thread

Return message
● Indicates return of the control flow to the caller

of previous message (makes sense in case of
synchronous messages)

● Is not required
● Also indicates that a certain operation in the

caller of the previous message is started
● Is depicted using dashed arrow

Lost & found messages
● Lost & found messages are useful when the

caller (found) or callee (lost) are not known
during creation of the diagram

● This is common in large system
● These messages are depicted by placing a

solid circle in place of the unknown object

Creating and destroying objects
● Creation and destruction of objects can be

depicted in the diagrams
● This is marked by adding create or destroy

stereotypes to appropriate messages
● At the end of create message a new object has

to be placed (which results in its placement
being lower than of the “typical” objects)

● After callee receives destroy message, its
lifeline is terminated. This is indicated by an X
placed at the end of lifeline

Sample creation and destruction

Conditional messages
● It is possible to specify the guard condition(s)

under which the message is passed
● They are placed in square parentheses before

the message specification
● It is possible to specify more than one condition
● If the condition(s) is/are not met, the message

is not passed and the operation in the callee is
not performed

Sample conditional message

Branch
● Conditional messages allowed to model the

situations when the message is either passed,
or not passed

● Another approach is required when two or more
different messages can be passed, depending
on some condition

● It is possible to branch message depending on
a guard condition

● The alternative messages may be passed to
different object or to the same object – in the
latter case the lifeline of the calee is split

Sample diagrams

Sample diagrams

Sample diagrams

Sample diagrams

Combined fragments
● More complex concepts can be expressed using

combined fragments
● These are selected parts of the diagram,

characterised by interaction operator
● Graphically they are depicted in a similar fashion to

the diagram documentation – by a frame
encompassing a region with a header in the left top
corner

● The header contains interaction operator and,
optionally, parameters

● For some operators several operands, i.e. fragments,
are present, separated by dash-dot line

Combined fragments interaction
operators

● Alt
● Opt
● Break
● Loop
● Neg
● Par
● Critical
● Assert
● Consider
● Ignore

Alt operator - alternative
● Indicates that only one of the fragment's

operands (subfragments) can be selected
● Which operand is selected depends upon

conditions placed in the operands (in square
parentheses)

● The operand without a condition is the default
one

● This concept can be used instead of branching

Sample alt diagram

Opt operator - option
● Indicates that part of the diagram will be

executed optionally, depending on the condition
● The condition is placed, is square parentheses,

in the fragment in question
● This can be used instead of message condition

Sample opt diagram

Break operator – execution
interruption

● Break allows to define a fragment that will be
performed in case a condition is met

● If the fragment is performed, the rest of the
execution specification is skipped

Neg operator – erratic behaviour
● Neg indicates fragment that should not be

performed (if it is performed, it is treated as
erratic behaviour)

Loop operation - iteration
● Allows to repeat specified fragment a number of

times
● The number of iterations can be specified as a

parameter of the operator

Par operator – parallel (concurrent)
execution

● Indicates that all operators of the region are
performed concurrently

Critical operator – high priority
fragment

● Indicates part of the diagram that, when
executed, will block the objects that are
included in the operator until the critical
operation is finished

● Operations that involve other objects can be
carried on

Sample critical operation

Assert operator – required
sequence

● Allows to specify a sequence of messages that
has to appear in the system exactly as
indicated. In other words, this sequence is
required, absence of it would be an error
condition (cf. neg operator)

Sample assert operation

Ignore and consider operators
● Ignore operator allows to indicate operations

(messages) that are not important to the
execution process (they are often omitted in the
diagram)

● Consider operator indicates operations that are
important to the execution (it is the same as
specifying all other messages as 'ignore')

Sample ignore operator

Large diagrams
● In large systems it is impossible to place all

interactions in one diagram
● It is possible to split the diagrams
● For example, it is possible to create a “main”

diagram, containing only top-level interactions,
and a number of sub-diagrams, containing
details

● The sub-diagrams can be represented in the
“main” diagram as interaction occurrence
(depicted by ref region)

Sample ref region

Gates
● Are means of communication between

(fragments of) diagrams
● Are represented by small squares placed on the

edge of (fragment of) a diagram
● Allow important in large (fragmented) diagrams

Sample gates

Communication Diagrams
● Allow functionality similar to sequence diagrams
● Use different approach:

– the messages are not explicitly ordered in time by
the vertical axis,

– the objects can placed anywhere in the diagram
● The only way to denote order of the messages

is their numbering
● Communication diagrams can be translated

(also automatically) to sequence diagrams, and
vice-versa

Limitations
● Not all concepts from the sequence diagrams

can be presented in communication diagrams
● Missing concepts are:

– Lost and found messages
– Combined fragments
– Gates

Elements of communication diagram
● Object – similar to the object in sequence

diagram, but with no lifeline
● Link – shows that two objects communicate

(exchange messages). Does not denote any
actual message passing. Depicted as a line
between two objects

● Message – similar to message in sequence
diagram. Depicted as a short arrow with
message description next to the link

Sample communication diagram

Messages
● When many messages of the same type are

passed between two objects, they may be
represented by a single arrow with multiple
descriptions

● Numbering with dots (1.1, 1.2 and so on) may
be used to group messages

● By using the same predecessor for a number of
messages parallel processing can be
documented

Objects
● When message is passed to a all objects of the

same class, this can be shown by replacing the
typical object symbol with multiple objects
symbol (three rectangles placed in a pile)

● A special type of object is that belonging to an
active class. Such object can initiate message-
passing sequence. It is depicted by double
vertical edges

Sample active class object

Sample communication diagram

Sample communication diagram

Sample communication diagram

Sample communication diagram

Timing diagram
● Used to describe state changes of object(s)
● The state changes are described in strict

relation to time
● They are especially useful for systems where

timing of operations is crucial (multimedia, real-
time applications)

● They are related to machine state diagrams and
sequence diagrams

Timing diagrams
● Basic diagram consists of a timing frame,

containing:
– Time scale (horizontal axis, lower edge)
– Names of classifiers for which the states are

depicted
– Names of states (for each classifier). Typical states

are: idle, active, waiting, computing etc.
– Lifelines (for each classifier) showing the state

changes in time

Sample timing diagram

Alternative notation
● Timing diagrams can be presented in

alternative, compact notation
● Not all elements are possible in this notation

Time constraints
● It is possible to specify constraints that

precisely control duration of the states
● The constraints can contain any kind of

expression, they are placed above appropriate
lifeline

● They can be displayed in both full and compact
modes

Sample time constraints

Sample time constraints

Stimuli
● It is possible to describe events that result in

state changes
● They are simply displayed as expressions next

to the point of state change
● They are not visible in the compact mode

Sample stimuli

Interaction overview diagram
● Allows to tie a number of sequence,

communication and timing diagrams using a
notation inherited from activity diagrams

● Are suitable for large systems, where
interactions and connections between a large
number of mentioned diagram have to be
shown

Interaction overview diagrams
● The sd, cd and td diagrams can be represented

in two ways:
– As a REF region pointing to another diagram
– As a frame containing complete specification of a

particular diagram
● Both representations can be mixed in one

diagram
● Apart from this, elements from activity diagrams

are present: control flows, initial and final
nodes, decision, merge, for and join nodes

Sample IOD diagram

Component diagrams
● Allow to describe interactions between

components (modules) of the system
● Component is a hermetic part of the software

system that interacts with other components
through interfaces and may be related to
interfaces through dependency or realisation

● It is closely related to the concept of reusability
● Components are depicted by a symbol

resembling class symbol, sometimes with two
“pins” over the left edge. They may be
stereotyped

Component diagrams
● Typical components are:

– Executables (including dynamic link libraries)
– Libraries
– Databases
– Subsystems
– Services

● Stereotypes are provided for these (and more)
components

Dependency
● In the simple approach it is possible to describe

connections between components using
dependency relationship

● This is depicted by a dashed-line arrow pointing
from the dependent component (i.e. the one
that utilises some services provided by the
other component)

Sample component diagram

Interfaces
● More details about components may be

provided by describing the interfaces
● Two distinct situations are possible:

– Component realizes an interface. This means the
component implements functionality required by the
interface and can offer this functionality to other
components. This is call provided interface and is
depicted by a ball

– Component depends on interface. This means that
components needs service of another component,
that implements the interface. This is called
required interface and is depicted by a socket

Sample interfaces

Interfaces
● The ball-socket connections can be used to

precisely describe dependency

Internal structure
● It is also possible to provide more details about

internal structure of the component by showing
its sub-components

● In this case it may be useful to indicate which
sub-components use interfaces of the parent
component

● This may be done by using ports
● They are depicted as small rectangles on the

border of the component

Sample component with ports

Sample diagram

Sample diagram

Sample diagram

Deployment diagrams
● Allow to describe the hardware components of

the system and tie them to previously created
elements of the model

● They use the concept of an artifact
● Artifact is any part of the software system. This

can be a class, file, diagram, model, database,
document and so on. Artifact is a physical item
in the sense it is composed from a sequence of
bits

● The artifacts are placed in nodes
● Nodes can be connected

Nodes
● Nodes represent physical or logical entities that

provide means to “store” artifacts
● There are two different types of nodes:

– Devices. These are physical appliances, such as
computers, printers, switches etc.

– Execution environments. These include software
systems, such as operating systems, database
systems etc.

● Node types are distinguished by stereotypes.
Further details can be provided by more precise
stereotypes (server, printer, Debian etc.)

Communication paths
● Represent connections between nodes
● They often represent network connections
● Are depicted using associations

Artifacts in nodes
● Artifacts are embedded in appropriate nodes
● There are two possible ways of representing

this fact:
– By placing artifact inside of the node symbol
– By connecting the node and artifact with

dependency having <<deploy>> stereotype

Sample diagram

Sample diagram

Manifestation
● The artifacts can manifest components, i.e.

Indicate that they contain a particular
component and therefore it is availabale at the
node they are placed

● This is depicted using dependency with
<<manifest>> stereotype

Sample manifestation

Sample diagram

Sample diagram

Sample diagrams

Composite structure diagram
● Allows to present collaborations between

classifiers
● The important element is collaboration symbol,

an oval with dashed-line border
● The collaboration depicts the classifiers that

“work” together for some reason
● The diagram should present only the classifiers

that take part in the collaboration, and for these
classifiers only the functionality (interfaces) that
are relevant

Composite structure diagram
● The classifiers may be placed inside the

collaboration oval
● Alternatively, the classifiers can be placed

outside of the oval and connected with it using
associations

● The associations should be named to describe
the roles in the collaboration

Composite structure diagram

Package diagram
● Allows to arrange and group model elements
● Main elements are packages, dependencies

and containment of packages
● Any model elements can be placed inside

package
● The name of package is placed inside the

package symbol, in the package symbol tab (if
elements are placed in the package symbol) or
in the frame tab (if frame is used to describe
package)

Package diagram
● The packages can be connected by

dependencies
● There are three possibilities, denoted by

stereotypes
– Import. Means that elements of the source package

can use elements of the target package by means
of unqualified names

– Merge. Generalisation between elements of the
source package and elements with the same
names of the target package

– Access. Similar to import, but the names must be
qualified

Package diagram
● Packages can contain other packages
● This can be depicted by placing packages

inside other packages, or by containment
relationship

● The packages can be stereotyped
● Typical stereotypes include <<model>>,

<<subsystem>>, <<framework>>
● It is possible to specify visibility of package

elements – as with calsses

Package diagram

Package diagram

Sample package diagram

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

Railway crossing case

RSS case

Modeling XML Applications with UML, by David Carlson, Ph.D. Published by: Addison-Wesley 2001, ISBN 0-201-70915-5

XML case

Modeling XML Applications with UML, by David Carlson, Ph.D. Published by: Addison-Wesley 2001, ISBN 0-201-70915-5

School case

Booch, Rumbaugh and Jacobson 1999

School case

Fowler 2004

School case

Fowler 2004

Field loading case

http://www.oofile.com.au/adsother/UMLSamples.html

Search
subsystem

case

http://www.oofile.com.au/adsother/UMLSamples.html

UI navigation case

http://www.oofile.com.au/adsother/UMLSamples.html

Class
registration

case

Sale case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Sale case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

ATM case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Dialing case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Study case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Car case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Sale case

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Check case

http://www-128.ibm.com/developerworks/rational/library/3101.html

Check
case

http://www-128.ibm.com/developerworks/rational/library/3101.html

Microwave
case

http://www-128.ibm.com/developerworks/rational/library/3101.html

Report
case

http://www-128.ibm.com/developerworks/rational/library/3101.html

Seminar case

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm

