Object oriented modeling

2006/2007

Part |

UML

Modeling

* Modeling is important for creating high quality
software

e \We model in order to:

— understand the system

- specify desired structure and behaviour

— describe the architecture and be able to alter it
— Improve risk management

Model

* Model is a simplification of reality

* The simplification allows to skip unimportant (at
a particular moment) details

* At the same time it allows to emphasize
important aspects

Modeling principles

* Model choice influences the solution of the
problem - both the method and quality

* Every model can have various levels of detail

* The model should reflect reality

* Usually, one mode
iIndependent mode
system is not trivia

IS not enough. Several
s are the best solution of the

Modeling paradigms

e Structural. It evolved from structural
programming languages and spawned a large
number of different approaches. The
discrepancies between approaches severely
limited usefulness of structural modeling Two
attempts at unification:

- CRIS (Comparative Review of Information Systems
Methodologies) workgroup

- EuroMethod

Modeling paradigms

* Object oriented. Resulted from increased
interest in object-oriented languages. During
'89-'94 period more than 50 different solutions

were active, however, unlike the structural
approach, they converged into one.

Modeling paradigms

* The most important methods that constituted
the final approach were:

- OMT (Object Modeling Technique), Rumbaugh
1991

- OOAD (Object Oriented Analysis and Design),
Booch 1991

- OOSE (Object Oriented Software Engineering),
Jacobson 1992

Towards UML

* Work on UML started in 1994, when Rumbaugh
and Booch, both employed by Rational
Software Corporation, started work on
unification of OMT and OOAD. The result,
Unified Method (UM) 0.8, was presented in '95.
At the same year Jacobson joined Rational and
enhanced UM with elements of his OOSE,
which resulted in UM 0.9 and UM 0.91 (both in

'96). From this point the language is known as
UML.

UML development

* The efforts of Rational were quickly backed by
some important players: IBM, DEC, HP, Oracle,
Unisys, Microsoft- among others. This led to
further developments and version 1.0 in 1997.
This version was later passed to Object
Management Group (OMG). Version 1.1
followed in the same year. This version was the
official one up till 2001 (version 1.4). Version
1.5 became the official one in 2003.

UML 2.0

* Version 2.0 was introduced in 2003. It is the
first major revision of the standard, introducing
many new diagrams and modeling categories.

UML diagrams

* Model in UML is a graphical representation of
the system

* The representation consists of logically
interconnected diagrams

* Version 2.0 contains 13 types of diagrams

* An important concept is that of a classifier -
abstract category that generalizes a collection
of instances having the same features, and
instance - a realization of classifier

UML views

* System design requires collaboration of a
number of persons, having different
competences and responsibilities (managers,
designers, programmers, clients etc.)

* Each person sees the system from different
point of view

* UML addresses this problem by employing 5
different views of the system

UML views

* use case view - most important, defines scope
and expected functionality of the system

* dynamic view - describes behaviour (dynamics)
of instances in the systems

* logical view - describes statics of the system

* implementation view - mostly used by
programmers, describes components of the
system

* deployment view - describes hardware required
by the components

Extension mechanisms

* Although UML contains broad spectrum of
concepts and elements, it may not suit a
particular modeling domain

* For that reason extension mechanisms are
incorporated into UML

* There are three types of extension
mechanisms:

- stereotype
— constraint
- tagged value

Stereotypes

* Allow to introduce new modeling categories
based on existing ones

* Stereotypes can be:

- textual - the name is surrounded by << >> quotes
and placed on the stereotyped element

— graphical - specific graphical symbol is placed on
the stereotyped element

* A large number of standard stereotypes is
recommended by OMG

Constraints

* Constraint is an expression describing condition
applied to the constrained element

* |t can be expressed in natural language, as a
mathematic formula or in OCL (Object
Constraint Language) - special language for
object constraints

* Constraints are placed in { } parentheses, next
to the constrained element

Tagged values

* Tagged values allow to define new properties

* They are expressed as name-value pairs

* They are placed in { } parentheses

Use case diagrams

* They allow to:

- identify and document requirements
- analyze scope of applicability

- communicate between developers, owners, clients
etc.

— develop project of the future system
- develop testing procedures for the system

* There are two types of use case diagrams:

- business use case diagrams
- system use case diagrams

Use case diagrams

* They contain:

- use cases
- actors
- relationships

Use cases

* Specification of sequence of actions (and their
variants) which the system can perform through
the interaction with actors of that system

* Use case is a coherent fragment of system
functionality

* |[ts name a curt order to perform particular
function, expressed in imperative. The namie is
placed inside an oval

check password

Actor

* Actor is a coherent collection of roles played by
users of the use case, during interaction with
this use case

* Actors can be
- persons (single person, group, organisation etc.)
- external systems (software or hardware)
- time
* Name is a noun reflecting the role played in the
system

e Actor can use more than one use case, an use
case can interact with one or more actors

Actor stereotypes

* The classic symbol of actor can be stereotyped
to distinguish between various types of actors

O O L
/NN N N\

classic / human device

external system time

Relationship

* Ties elements of the diagram (e.g. actors and
use cases)

* There are 4 kinds of relationship:
— association
- generalisation
- dependence
- realisation

Association

* Association describes ties between instances of
classifiers (two or more)

* In the use case diagram it represents
bidirectional communication between an actor
and a use case

* |tis depicted as a solid line
* Usually they do not have names

Association

Q

find product

7

Dependency

* Dependency is a relationship between two
model elements where change in one element
(independent one) influences the second
element (dependent one)

* |tis depicted as a dashed arrow

* In use case diagrams dependency is
stereotyped into:

- <<include>> dependency
- <<extend>> dependency

<<include>> dependency

* Relationship between the containing case and
contained case

* The contained case is executed always when
the containing case is executed - and only then

e |t is useful when several use cases contain the
same part

* The arrow points from the containing case to
the contained case

<<include>> dependency

find product

~_
. ~
<<include>> .
log to a DB
/
e
/

/
— <<include>>
/
add product

<<extend>> dependency

* Relationship between base case and a case
that optionally may introduce additional
functionality to the base case

* |t is useful when a case may, under certain
conditions, rely on some other cases

* The arrow points from the extension to the base

<<extend>> dependency

find product verify password
- /

~_ /

. e
<<include>> . > <<extend>>
log to a DB

e ~
.

/
~ IS

/ o
. << >
~ <<include>> extend>>
< access network
add product

Extension points

* |t is possible to specify situations/conditions
under which the extending cases must be
included

* They are listed in the extended case, under a
horizontal line

Extension points

find product verify password

~_ _—

L] \ /
<<include>> - <<extend>>

log to a DB
Extension points
password required
DB not local

N
- .

{ <<include>> <<extend>> (gccess network

add product

Generalisation

* Generalization is a taxonomic relation between
general and specialised classifier

e Specialised classifier inherits all features of the
general classifier

* |t is depicted by a solid-line arrow with triangle
head, pointing towards the general classifier

Generalisation

find product verify password
- /

~_ /
<<include>> . _~ <<extend>>
log to a DB
D
T /) .

S
~ <<include>> <<extend>>
N access network
add product
log to MySQL

Multiplicity

* Allows to specify the number of items at each
end of the association that take place in the
association

e Possible cases:

-n (n > 0) exactly n
- n..” (n=0) n or more
- Nn..m (m >n = 0)between nand m

*

= many (unknown number)
-n,mo..p,q (gq>p..) list

Multiplicity

Wisual Parad far UML Community Edition [not for commer cial use
b

ohserve

a.r

user

&
baidl
Q.
buyer
1
offer
0.10

zeller

Navigability

* Bidirectional association can be enhanced by
providing information about the side that
initiates communication

* This is depicted using an arrow

e The arrow does not indicate direction of data
flow

Navigability

Visual Parad far UML Community Edition [not for commercial use

ahserve

X 3

LIzer

buyer

0.1

' ¢

seller

System

* The use cases can be grouped to form a
complete system

* The grouping is depicted by placing them inside
a hamed rectangle

Frame

* The whole diagram (any type) can be placed
inside a frame

* The frame has a header (at the left-top corner)
that contains information about diagram name
and, optionally, its type and parameters

* Framing improves clarity of documentation
when the project is large

Frame

L

Isﬂﬂm]’nr UML Community Edtion [notfor commercial use]

User

buyer

seller

Documenting use cases

* Use case diagram is very general

* |[n order to clearly define intended behaviour of
the system, each use case should have
additional information, called scenario

* Scenario is a sequence of actions documenting
behaviour

* [n complex cases it is possible to define main
scenario and alternative scenarios

e Scenario can be written down as natural
language text, pseudo-code, table etc.

Sample diagrams

W ale

<< extend P e an express arder
Make an order LT

Extension Points
determing priarity:

Check password

Trace the arder
execution

Sample diagrams

Connection
init

<< extend ==

Operatar
netwark
Accept
<< extend >> waiting connection
Use dialer
LUser pragram

Cellphone

Sample diagrams

ud: UseCase diagram_alfJ

—T

Institution

-

Persan

Client

Credit card verification system

Execute
card

transaction

Setlle

N

transaction

Accept
transaction

Manage

client account

Spansaring
financial

arganization

Sample diagrams

ud: basic UseCases)

apply far job

|

]
Surfer

1
. change content
register
i 1

ContentManager

I
== agytend == ; I @
f 1]
1
b
sign up for newsletter i
== gteng ==

Member

1

Administrator

Client

Class diagrams

* Contain information about static elements
(classes) and relationships between them

* They are very closely related to the object-
oriented programming technique

* Are among the most important UML diagrams

Class symbol

* The symbol of a class is a rectangle, usually
divide by horizontal lines into three sections:

- name
— attributes
— operations

* |f needed, this can be expanded with additional

sections (e.g. exceptions)
rEua] Faracpgeagar UL Lo

-nick
-eMail

+Loglini)
+Create()
+Show)

Class symbol

* For complex classes displaying all attributes
and operations may take too much space

e Possible solutions are:

- displaying only class name without attributes and
operations sections

- displaying only class name with empty attributes
and operations sections

- displaying part of attributes and operations
sections, denoting continuation of the list by ellipsis

- hiding (some) operations / attributes

Visibility of class members
* |t is possible to specify visibility of attributes and
operations

* Visibility translates to access control of object
oriented languages

e Possibilities are:

s ual Faragppgedor Uil Lam
>+ public i

eMai
- - private ~Login()

+Createl)
- # protected ¥arad)

- ~ packet

* Other possibilities, better suited for some
languages, can be used

Static members

* Members can be declared as static

* Concept is identical to the idea of static
members in object-oriented programming

* Static members are depicted by underline

YiEual Far a-'l_i'-:_%'m r ML Ganh
-nick

Zefail
-count

~Logini)
+Createf)
+Showl)

Members specification

* For attributes it is possible to specify:

- type. The type is placed after attribute name,
separated by a colon

— count
— Initial value

* For operations it is possible to specify:

- return type. The type is placed after operation
name, separated by a colon

- arguments. Each argument can be specified just as
attribute, with the addition of direction of passing

(13- 7

the argument (“in” is the default direction)

Members specification

Relationship

* All 4 types of relationship are used
* The main type is association

* Association can have the following features
(bold are new compared to use cases):

- hame
- roles

- navigability
- multiplicity

- aggregation

Association name

* |tis possible to name an association in order to
provide more detailed information

e The name can also contain direction

ysual Faradigm far UML Uormmunity Egyliae [notTor commereial use]

~L oglnipassword : String) : boolean
+Create(nick : String = "user”, eMail ; String = "usen@null .com ") : boolean

B puts to sale

+Show(): String

Associlation roles

* Roles are another way to provide more detailed
iInformation about association

* Role of a class is described by text placed close
to the class symbol

* |t is possible to specify both association name
and class roles

yEual Faradigm for UL Lommunity Epygae [notfor commereial use]

owWner property lem

~Loglin{password : String) : boolean
+Create(nick ; String = "user’, eMail ; String = "usen@null .com ") ; boolean

- puts to sale

+Show() . String

Association navigability

* Default navigability is bidirectional

* To specify unidirectional navigability, the
association is depicted with an arrow at the end

* |n the class diagram unidirectional navigability
means the communication is unidirectional (cf.
use case diagrams)

fEual Faradigm far UML Gammunity & E&H [motfor commerelal use]
~Login{password : String) : hoolean aWner pl'npertf) ltem
+Createinick : String = "user”", eMail : String = "usen@null .com ") : boolean

I: . ' : 2 : B puts to sale

+Show(): String

Association multiplicity

* The same meaning as in the use case

diagrams
fsual Faradigm far URIL Gommunity Epyuee [notTor eammerelsl use]
~Login{password : String) . hoolean TR pl'npeng,
+Createlnick ;. String = "user’, eMail ; String = "usen@@null .com ™) ; boolean 1 8

P puts to sale

+Show(): String

Association aggregation

* Aggregation describes relationship between the
whole and the part

* There are two kinds of aggregation:
- complete (composition, strong aggregation)
- partial (aggregation, weak aggregation)
* Aggregation is depicted by a parallelogram

placed next to the symbol representing the
whole

e Strong aggregation is depicted by a solid
parallelogram, weak - by hollow

Strong and weak aggregation

In case of strong aggregation the contained objects
cannot exist if the containing object is removed

The concept is identical to the situation in object-
oriented language when one class contains objects of
another class

In case of weak aggregation the contained objects
can exist without the containing object

Furthermore, one object can be contained by many
other objects

This concept is identical to the situation when one
class contains pointer (reference) to object of another

class

Strong and weak aggregation

AuctionTracer

Auction

Offer Item

Associlation class

* Can be used to precisely describe relationship
between classes

* |t is depicted by a class placed close to the
association and connected wit the association
by a dashed line

Associlation class

User

-nick : String

#eMail : String[1..%]
-count :int =0

Offer

~Logln(password : String) : bo...
+Create(nick : String = "user", ...

BidM anager
+1sOfferValid()

Multiple associations

* Two classes can be differently related to each
other in different contexts

* This may result to more than one association
between classes

* Every one of the multiple associations should
be named

Multiple associations

Self association

* |tis possible to make an association that relates
the class to itself

Container 1

Item Subitem

N-ary association

* |s is possible to specify association between
more than two classes

* Such an association may also contain an
association class

* |t should not be confused with multiple
association

N-ary association

Buyer

Item

Seller

N
M

Auction

Dependency

* This relationship means that one class (client)
makes (some sort of) use of another class

(supplier)

* |t is depicted using a dashed line with arrow
pointing from the client to the supplier

Auction Listing Sorter

Generalisation

* Generalisation is commonly used in class
diagrams

* There are several concepts that enhance the
idea of generalisation to precisely describe this
relationship

Abstract classes

e Abstract classes do not have instances
(objects)

* The concept is identical to the abstract classes
In object-oriented programming

* Abstract classes are denoted by names in
italics

Abstract classes

GenericUser

AN

Observer

JAN

Registered User

Buyer

Seller

Realisation

* |n class diagram this is a relationship between
an interface and its implementation

* This is identical to the concept used in object-
oriented languages

* Realisation is depicted by a dashed line with
hollow arrow pointing from the class to the
interface

* The interface can be displayed either as a
rectangle with operations (similar to the class),
or as a ball

Realisation

Realisation

Book

-title
-author

+GetValue()
+GetDescription()

Product

DVD

-title
-director
-stars[1..”]

+Get\Value()
+GetDescription()

Sample diagrams

ed: Class diagram_3)

<< datatype ==

Int

Jvaluesfrom -2*31to +2731-1}

<< enumeration ==
State

+idle:int
+busy:int
+errarint

Sample diagrams

od: Class diagram_5)

fcon
{root}

Rectanglelcon Anylicon

Button

OKButton
{leaf}

Sample diagrams

cd: Class diagram_2)

LieD etector

<< initializer =>+new():
+yerifyCOrder(z: Order):;

Responsibilities

- checks orders
- sets off an alarm if order is suspicious

Sample diagrams

cd: class diagram 1)

Figure

+toText ():String

1

Circle

- piidouble =3.1423
- radius double = 2

+middle

Point

0.1

+diameter () double
+ Circle {_radius . double);
+main (aras(] .String § void

+taText ():String

+x:double =0
-y:double =0

+toText ():String
+setPoint {_x:double , ydouble Y wvaid

Sample diagrams

cd. products J

-wiriter (String

- plattform :String

- farmat :string

Product
-id:int
-price int=100
A"
1%
DigitalProduct PhysicalProduct
- kilobytes :int
Music Software Graphie Book

- authar :String

Sample diagrams

cd: clients J

e CreditCard
i - number :int
- address :String 1 -validThru :shart
+getAddress ():String _ 1 1 creditCard +getvalidThru (:short
+setAddress (_address (String):voig +setvalidThru (_validThru :short):void

0.1 | +getMumber (:int
+ sethlumber (_number :int):void

" related

Account ﬂ-ddrem

- street :String
- City :String
+paymentReceived (void - Zip :String
+paymentOverdue {:void

Pay 0 + getStreet (). String

-hasﬂpenlmm:e; = + getStreet (_street | String):void
-hasOverduelnvoices ():hoolean + getCity (° String

+Account (cliert (Client): + setCity (_city : String):void
+ getZip (:String
+ setZip (_zip:String):void

Sample diagrams

defines an order

- =

P>

payment << entity >
<> Order
0.1 -
+getTotalSum ():int
<< entity >> -getvAT ():vaid
Bill
- amount :int

<< entity »> << entity »>
Invoice Deduction

+Invoice (order :Order fg]

+Deduction (order: Order):

halds

H+ country

Countrylnformation

- currencyName :String
- VATV alue Integer

UKInformation

USInformation

Sample diagrams

cd: BECE Sl:hema)

<< contral == << contral ==
ClientController OrderController
{from ciients) (from ordering)

-instances Vector =new “ector()

+login (name :String ,password (String):boalean +OrderController (client: Client); ? controller
+getClient (ID:int):Client +getCrderContraller (ID:int):OrderCantraller
+addClient (client :Client):void +addOrderController [oc: OrderContraller):void
+getClientFarhame (name : String):Client +updateAll ():vaid
+controller +upda:|j I bl
i << entity ==
Account 1 SSRSIEEASSNN (¢ Payment ty
; Bill - <> Order
(from clients > .
(from ordering) (from orderingg
1 related ’
<< entity == == gnfity ==
Deduction Invoice

(from ordering) (from ordenngpgy

Sample diagrams

cd: Al ainCIassestewiew)

payment

holds

Product
(from producis)

-id:int
-price int=100

t+ country

Code generation

public class Client {
private products.int smallOrderLimit = 150;
private String login;
private String password;
public clients.CreditCard creditCard;
public clients.EMail eMail;
public java.util.Collection address = new java.util. TreeSet();
public java.util.Collection client = new java.util. TreeSet();
public ordering.void paymentReceived() {
return null;
}
public ordering.void eMailReceived() {
return null;
}
public ordering.void deliveryReturned() {
return null;
}
public boolean checkPassword(String password) {
return false;
}
[*..%/
public java.util.Collection order = new java.util.ArrayList();
clients.Account account;
public clients.ClientController controller;

Sample diagrams

Customer
LoyaltyProgram -name: String
-title: String
-isale:Boolean
+enmllic:Customer):Boolean | T PrOgrant 1 -date-fCJIEnth:F{LDate
+LoyaltyProgram:void -age.n
1 N +Customer_age:int,_isMale:Boolean,_name:String):
1.* 1
Membership owner | 1
1.% | partners
ProgramPartner B embership(p: Loy alty Program c:Customer): :
el e R e * | cards
nuMmberOfCustomers: Integer +Membership(c:Customer, card:CustormerCard):
, card CustomerCard
1.* | servicelLevel 1 merbership L1
+actuallevel g 4 ’ -validBoolean=new Boolean(false)
1 servicel evel -validFromRLDate=new RLDate(2001,1,1)
" . . Lo Account -goodThru: RLDate=new RLDate(2001 §,1)
deliveredSernvices -name:String valty _printedName:String
-points:l nteger colorVector
Service :
+eamii:integer)void . el e A
P CustomerCard(c:Customer):
-conditionBoolean L +hum(i:Inte ger):v oid ‘ :
-pointsEarned Integer +isEmpty(): Boolean
-pointsBurned:integer f | .-viesenvices ™[Transactions Fea
-description: String 1
Transaction
ll \ transactions -pmrrt_s:lrrteger
' ~date:RLDate +transactions
1 +programi:LoyattyProgram

RLDate

-year:int=2000 N -
-monthint=1 Burning Earning

-day:int=1

+isBefore(tRLDate).Boolean
+igAfter(tRLDate): Boolean
+RLDatefy:int miint,d:int):

Associations revisited

* Association — a relationship exists between two
classes (student — teacher, seller — buyer)

* Weak aggregation — one class belongs to
another, but the part can exist without a whole
(order — products, library — books)

e Strong aggregation (composition) — one class
belongs to another, the part cannot exist
without a whole (polygon — its vertices, order —
shipping address)

Activity diagrams

* Describe dynamics of the system (cf. class
diagrams)

* They graphically represent sequential and
concurrent control and data flows

* They can be used for modeling:

— business processes

— use cases scenarios
- algorithms

— operations

Main elements of activity diagrams

activity
action
control flow
initial node
activity final
flow final

Activity

* Activity may represent complex processes and
algorithms

* In order to improve readability, not all elements
of the process/algorithm are represented

* [nstead, activity can be decomposed into other
activities (using a separate diagram), creating a
hierarchical structure

* The decomposition can be performed till we
reach the level of actions - elementary entities
describing dynamics of the system

Activity and action

* Activities are represented by rectangles with
rounded corners

* Decomposable activities may have special
mark denoting this fact placed in right lower
corner

* Actions are depicted in the same manner as
activities (but cannot have the “"decomposable
symbol)

7

Control flow

* Control flow is a relation between two
activities/actions denoting that after completion
of one activity/action the control will be passed
to the other

* |t is denoted by an arrow

N\ 4

Display welcome screen

N

Initial node, activity final, flow final

* |nitial node indicates beginning of control

flow(s). Usually one per diagram. Denoted by a
solid circle

* Activity final indicates stop of all flows in the
diagrams. May be more than one. Denoted by a
small solid circle inside a bigger hollow one

* Flow final indicates stop of one flow. May be

more than one. Denoted by a hollow circle with
a cross (X)

o ©® X

- Simple diagram

Decision and merge nodes

* More complicated diagrams require means of
representing decisions and alternate control paths

* This can be achieved by using decision and merge
nodes

* Decision node has one input flow and two or more
output flows. Only one output can be selected at a
time

* Merge node has may inputs and only one output

 Symbol of both nodes is a diamond, they are
distinguished on the basis of the number of inputs
and outputs

Decision node

* Qutput selection is performed on the basis of a
guard condition

* Guard condition is placed in rectangular
parentheses close to the output

* All guard conditions must be mutually exclusive

* One of the gurad conditions can be replaced by
the keyword else (also placed in the square
parentheses)

Merge node

* Does not perform any synchronisation functions
- every flow that reaches the merge node will be
immediately forwarded to the output

Sample diagram

+ B . .
+ + N R .
+ + N R .
+ + + + . . . N
=
—y
+ + + + o + N . .
+ + N R .
+ + N R .
+ + + + . . . N
+

'{cfedénﬁalis 'DK]j

Concurrent flows

* |t is possible to specify flows that execute in
parallel (concurrently)

* |n order to model this functionality, fork node
and join node are defined

* Fork node has one input and two or more
outputs; flows entering fork node are split

* Join node has two or more inputs and one
output. It can be used to synchronise flows. It is
possible to use join specification - boolean
condition that specifies that the flow is passed
to the output (true) or destroyed (false)

Sample diagram

?

[Start order verification }

[{erify availability } [{erify client data]

[available] [valid]
u

Data flow

* As a supplement to the control flow, is is
possible to describe data flow (flow of objects)

* |t is useful when:
— Actual object flow takes place
- State of an object is changed

* The object has to be connected with an activity
or action

* The object is depicted by a rectangle with the
object name

e Alternatively, object flow can be depicted using
input/output pins

Simple data flow

“Client = Client ™~

Activity parameter

* |t is possible to specify that an object is a
parameter of an activity

* This is depicted by the object rectangle placed
on the border of an activity

(Prepare invoice A

Products
I Invoice

Customer J
N

Partitions

* Activities, actions —
and objects can be
grouped into
partitions J
p.ﬁ

Expansion region

* Expansion region allows to specify a part of a
diagram that is executed many times,
depending on the number of elements on its
iInput

* The inputs and outputs of the expansion region
are called expansion nodes

* The mode of execution is specified by a string
in italics, placed inside the expansion region,
and can be:

— iterative
— parallel
- streaming

ample expansion region

e e T e e e T &

Interruptible activity region

* Allows to specify a part of the diagram where
execution can be immediately interrupted by an
external condition

* |[n case of an interruption all flows are
terminated except the interrupting edge

* The interrupting edge always starts inside of the
interruptible activity region and ends outside

* For this functionality signals notation can be
useful

Signals

* Signals can be used to represent asynchronous
processing

* |tis possible to:

- send signal
- accept signal

SendSignalAction > > AcceptEventAction

Sample interruptible activity region

!

[ﬂmalyze data to write]

Exception handlers

* Allow to model an activity performed in error
situation

* |[n case of an exception condition, control is
passed to the handling activity

* The handler must be named

Sample exception handler

]

Search for an item

N

A\ J

(Display item's page)—’/‘@ ' Display apology screerD
Page does not exist

;

Sample diagrams

?
2=

Hire an archite

Make a plan

[not acce ptakle]

E‘erfarm cnnstructinr} E:'erform ﬁnishing]

End construdion : FinalAcceptanceP rotocol

Sample diagrams

ad: Process Reservation: Process Analysis /

Initial State [erroneous reservation reguest]

v

Receive Resewation Reguest j"’
L - -

[cancel]

[no vehicles available]

[OK]

[Check Vehicle Availahilty]

[at least one vehicle available]

Vi
M SelectVehicle]
[cancel

Cancel /N

[DK] [vehicle no longer availahle]

[Reserve Wehicle]

Cancelled Feserved

Sample diagrams

ad: StattAuto: Main PI'DEESSAHElYSiSJ

Liser Login]

[OK]

Identify Member }i

W [edit existing reservation]
Select Category _J

[cancel]
[edit new reservation] [ldentify Reservation M

Cancel

i

[OK]

_

[Process Reservation =
[cancel]

[OK]

4[Confirm Reservation
[OK]

1T

Sample diagrams

ad: Vehicle Reservation - System Use Case /

== Activity ==

[OK]
Er

[derntify Memb

[cancel]
0]
== Activity == [0k
Ilser Login
Initial State
[end]
Final State

/]

N /)

i
[cancel :

[cancel]

== Activity ==
Select Category

[cancel]

w [wiew resewatinn]\J/

)

[create reservation]

== Artivity ==
FProcess Reservation

[OK]

[OK]

o

== Activity ==
Confirm Resenvation

)
)

i

View Reservation J

State machine diagrams

* State machine diagram describes graphically discrete
behaviour (state-transition) of finite systems

* Describe states of ojects

* Can be directly used to generate programming
language code

* Are constructed using elements introduced in the
activity diagrams
* Main elements are:

- State
— Transition
— Initial and final states

State machine diagrams

e State is a condition of an object. It may be
performing some actions, waiting for an event,
fulfilling a condition

* Transition indicates that an object being in the
first state will perform some actions and transit
to the second state whenever particular
conditions are met

Sample state machine

Elements of the state

e The state in a machine can be divided into
sections:

- Name

- Internal activities
- |Internal transitions
- Decomposition

* The sections are separated using horizontal
lines

State name

 Should in an unambiguous way define state of
an object. Unlike in activity diagrams, where
names were imperatives ordering to perform
some action, here the names describe condition
the object is in

Internal activities

* Describe activities performed in connection with
a state. Three kinds are possible:

- Entry — activity performed when an object enters
particular state

- Do — activity performed while an objectis in a
particular state

- Exit — activity performed when an object leaves a
particular state

* |t is possible to define only one activity of
“entry” and “exit” kind, and an unlimited number
of “do” kind

Internal transitions

* Indicate transitions that start and end In the
same state

* Unlike external transition that starts and ends In
the same state, this transition does not trigger
the “enter” and “exit” activities

Sample state machine

Composite state

* |s used to provide more details about a
(complex) state

e |t can contain a submachine

* Submachine is a normal state machine diagram

* The state containing a submachine is depicted
using a submachine symbol in the lower right
corner

Composite state - submachine

Choice, junction, fork and join nodes

* |t is possible to use nodes similar to the activity
diagrams:
- Choice (similar to decision node)
- Junction (similar to decision and merge nodes)
- Fork
- Join

Choice node

Shallow history, deep history,
termination

* History enables to save information about
complex state upon leaving this state

- Shallow history saves a pointer to the substate that
was active

- Deep history saves also information about all
substates (i.e. pointers to the active substates in
substates, and so on)

* Termination indicates end of state machine
processing due to destruction of the object
being processed

® ® X

History sample

+ - -+

Events

* Events trigger transition from one state to
another. Possible events are:

- Signal. Asynchronous.
— Call event. Similar to function call.

- Time event. Happen after certain amount of time.
Defined by after keyword

- Change event. Happen when condition is met.
Defined by when keyword

Sample diagrams

sm. State diagram_*l)

"
AN

Heatin
Warmingl Pl
I~
aalin

S
\

Sample diagrams

sm: State diagram_z)

(Idle

Maintenance

e)
H- Device 1

testing
\)
-

SelfTest

_____ - - - — =

'

Waiting
A A

N

Execute
cammands

Sample diagrams

sm: State diagramj)

Ferforming backup

Executing
commands
L

@ Hf Gathering \]
1 J

(Copying W

L J

(CleaninglUp W

J

Sample diagrams

sm: Accnunt)

balanced

update/

unbalanced

[hasOverduelnvoices]

locked

:
)

" R

Sample diagrams

sm: Client J
update update verified |

NV

[eMail.isValid() && deliveryAddrisyvalid()]

[else]

Sequence diagrams

* Describes interactions between objects as a
sequence of messages

* Good for documenting use cases

* Two dimensions are used in the sequence
diagrams:

- Horizontal is used to indicate the objects taking part
In the communication

- Vertical is used to indicate the time sequence of
Interation

Sequence diagrams

* Three types are possible:

— Conceptual. Only basic elements are used. Suitable
for first sketches, and managers

- Generic. Much more detailed, employs all elements
and concepts. When documenting use cases,
Include the main scenario and the alternative ones.
Are the basis for (automatic) code generation

- Instance. Describes single scenario from the main
and alternative ones

Main elements of the diagram

Object

Lifeline

Message

Execution specification

Object

 Sequence diagrams typically describe
interactions between objects of classes

* Thy can also include instances of other
classifiers: use cases, actors, signals etc.

* They are depicted using a rectangle with a
name (sometimes underlined)

* |n trivial diagrams they are all placed along the
top line of the diagram

Lifeline

* Represents life span of the object

* |s depicted by a dashed line going from the
object downwards

Messages

* Message represents information exchange
between objects. It is an order from one object
to another to perform some operation(s)

* The complete syntax is as follows:

predecessor/sequence expression signature

* Only signature is compulsory (and only part of
it)

Messages - predecessor

* Predecessor is the number of message that has
to appear (some time before) in order for this
message to be executed

* \When more that one message has to appear
before the current one, they can be all listed,
comma separated

Message — sequence expression

* May contain:

- Message identification (number or name)
- Message recurrence or iteration sequence

* The above fields are separated by colon
* Message recurrence is expressed as

[actualCondition]

* Message iteration sequence is expressed as

*[1terationSpecification]

e Examples: 1.2:[x>15]
initial:*[1:=1..15]

Message - signature

* May consist of:

- Name (compulsory)
- Arguments list
- Return value

Message - sighature

* Name indicates the operation that will be
performed by the receiver of the message

* Arguments list and return value may be
specified similarly as in class specification, but
represent actual, not formal parameters (and
types are not included)

* Return value makes only sense in messages
that result in passing data to the caller

e Example:

findItem(name) :1temslList

Execution specification

* Represents activity period of an object
(computations, message passing from/to an
object)

* |s depicted by a rectangle placed on the life
line, the height representing timspan of the
activity

* The beginning is a result of an activation (often
result of received message), end — of a
deactivation

Userinterface

= K

Sample diagram

CueryParser

1: parseQuery

2 findltems

SearchEngine

_— s s = = =

2. reportltems

1

Message types

Synchronous
Asynchronous
Return

_ost
Found

Synchronous message

* Control is passed to the called object

e Control flow of the sender is suspended until
called action is executed

* |s depicted by a solid arrow
* This translates to a typical function call

Asynchronous message

* Control flow of the caller is not interrupted
* |s depicted using “open” arrow

* |s possible when the caller and callee are not In
the same thread

Userlnterface ComputationEngine

I 1
.
: 1. StatComputations

2. ReportProgress

2 ReportResults

Return message

Indicates return of the control flow to the caller
of previous message (makes sense in case of
synchronous messages)

Is not required

Also indicates that a certain operation in the
caller of the previous message is started

Is depicted using dashed arrow

Userinterface ComputationEngine

Lost & found messages

* | ost & found messages are useful when the
caller (found) or callee (lost) are not known
during creation of the diagram

* This is common in large system

* These messages are depicted by placing a
solid circle in place of the unknown object

ComputationEngine

]
1. startComputations I

o
2 reportResults
@

Creating and destroying objects

* Creation and destruction of objects can be
depicted in the diagrams

* This is marked by adding create or destroy
stereotypes to appropriate messages

* At the end of create message a new object has
to be placed (which results in its placement
being lower than of the “typical” objects)

* After callee receives destroy message, its
lifeline is terminated. This is indicated by an X
placed at the end of lifeline

Sample creation and destruction

Userlinterface

1: find

QueryManaager

o displayResuUlts

2 process

____________ ;_;

3. reportResults

CueryProcessor

4. destroy

Conditional messages

* |t is possible to specify the guard condition(s)
under which the message is passed

* They are placed in square parentheses before
the message specification

* |t is possible to specify more than one condition

* |[f the condition(s) is/are not met, the message
IS not passed and the operation in the callee is
not performed

Sample conditional message

Userinterface

]
I
| 1: [string not null]
I

Queryhanager

1
|
L

o displayREesults

>t

2. process

_____________>.

3. reportResults

ClueryProcessor

4 destroy

Branch

* Conditional messages allowed to model the
situations when the message is either passed,
or not passed

* Another approach is required when two or more
different messages can be passed, depending
on some condition

* |t is possible to branch message depending on
a guard condition

* The alternative messages may be passed to
different object or to the same object — in the
latter case the lifeline of the calee is split

Sample diagrams

c:Client mMapServer pMapCache

|
1).a:getMapiarea) ’_:

21.bgetMapiarea)

4———1‘”————].

{a.executionTime=10ms}

_________1|L___________

Sample diagrams

c.Client ‘TauristinfBrachure 5.Schedule
| | |
| 1 t | |
| -<<create== [|
I :I b_ |
| << Create == |
| |
[1) [
D e I e I R R R e R e N e N |
[2) . establishTravelGoal(c [I
.) (c) - !
| |
| |
| 3) .establishRoute() |
| |
| |
| |
-
[2) route [
S N S N S . T L o N S A R AR |
.. <<desiroy=> - |
— |

4) inform() | .‘:

Sample diagrams

o

wehsite:

loginCirl: ClientController

|
|
I 171 .navigate
I
|
|

II“— 1) webpage

21 .Joginfname, password) ."—

*_ . ﬂln&in

3 .Ingin{x,passwnrd}:nami

client:Client

|4) getClientF orMame

5 LcheckPassword(passwar

41 LgetClientF ortflameiname): client

&1 checkPassword
=

Sample diagrams

new Customer LovaltyProgram cugtomer Customer card: Customerc ard mem ship:Membership

1) .=end data

P

i
i
i
i
2% new Customer() i
=< create ==

* 2) customer

3) .enroll(x):cugomer

|
i
|
|
|
:
B33 enroll :
|

47 new CustomerCard{customer)
=< Create == :

i
4 card i

—-
51 new Membershiplcustomer carc)

i
i
i
i
i
i
i
i
i
|
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i i

T
== cregte == |

i

I

Simemship

.‘_ ___________

) .addh em bership{memship)

I k) true

T

I

I

I

i

i

i

i

I

i

I

I

I

I

i

1imembership card i

- .
i
i
i
i

Combined fragments

* More complex concepts can be expressed using
combined fragments

* These are selected parts of the diagram,
characterised by interaction operator

* Graphically they are depicted in a similar fashion to
the diagram documentation — by a frame
encompassing a region with a header in the left top
corner

* The header contains interaction operator and,
optionally, parameters

* For some operators several operands, i.e. fragments,
are present, separated by dash-dot line

Combined fragments interaction
operators

o Alt

Opt
Break
Loop
Neg

Par

e Critical
 Assert

e Consider
* [gnore

Alt operator - alternative

* |[ndicates that only one of the fragment's
operands (subfragments) can be selected

* Which operand is selected depends upon
conditions placed in the operands (in square
parentheses)

* The operand without a condition is the default
one

* This concept can be used instead of branching

Userinterface

— i —— —

Sample alt diagram

Freprocessor

1: find

[———

G: displayResults

QlueryManager

[

alt

2. processCiuery

>

3. process QueryProcessor

5. reportResults

4. getByPattern

CataBase

9: displayResults

[string contains only numbers]

3: getDocumentByNumber

ﬁ
e
X

7. destroy

g
]

__f_________

-

Opt operator - option

* |[ndicates that part of the diagram will be

executed optional
* The conditionis p

y, depending on the condition
aced, is square parentheses,

In the fragment in question

* This can be used instead of message condition

Sample opt diagram

Userinterface ComputationEngine
i 1
| 1. StartComputations N
optj,l
[time > 10s]

2. ReportProgress

3. ReportResults

Break operator — execution

iInterruption

* Break allows to define a fragment that will be
performed in case a condition is met

* |[f the fragment is performed, the rest of the
execution specification is skipped

Userlnterface ComputationEngine
I I
| 1
| 1: StartComputations
brleak}
portE
pt}J
[time > 10s]
3. ReportProg
4. ReportResults

Neg operator — erratic behaviour

* Neg indicates fragment that should not be
performed (if it Is performed, it is treated as
erratic behaviour)

Userinterface QueryProcessor Disklnterface

1
D 2. ReadData

ne
 neg) 3 WiiteData

ey |y |

Loop operation - iteration

* Allows to repeat specified fragment a number of
times

* The number of iterations can be specified as a
parameter of the operator

Userinterface ComputationEngine ResultLoger

I
|

| 1: StartComputations I
Ilac:p)

2 storePartialResults DH

3 ReportResults

[time > 10s]

bl

Par operator — parallel (concurrent)
execution

* |ndicates that all operators of the region are
performed concurrently

Userinterface ComputationEngine Disklnterface

| |
| I
! 1. StartComputations |

e s s i

[time > 10s]

e s s i

5 ReportResults

Critical operator — high priority
fragment

* [ndicates part of the diagram that, when
executed, will block the objects that are
included in the operator until the critical
operation is finished

* Operations that involve other objects can be
carried on

Sample critical operation

Userlinterface

ComputationEngine

| 1. StatComputations |

DiskInterface

par

[time > 10s]

2. HeadData

critical

6. ReportResults

Assert operator — required
seguence

* Allows to specify a sequence of messages that
has to appear in the system exactly as
iIndicated. In other words, this sequence is
required, absence of it would be an error
condition (cf. neg operator)

Sample assert operation

Userinterface ComputationEngine Disklnterface

| 1 StatComputations

assert)
2. ReserveSpace

par
4: ReadData

[time > 10s]

critical

|
|
8 ReportR esmits :
|
|
|

Ignore and consider operators

* |[gnore operator allows to indicate operations
(messages) that are not important to the
execution process (they are often omitted in the

diagram)

* Consider operator indicates operations that are
important to the execution (it is the same as
specifying all other messages as 'ignore')

Sample ignore operator

Userlinterface ClueryFrocessor Disklnterface

| I I
| 1. ProcessCiuery | I
> i
ignore) 2: ReadData H

[ReporiStatistics |

<j

3. ReportStatistics

he
i g 4 \WiiteData

g

Large diagrams

* In large systems it is impossible to place all
interactions in one diagram

* |t is possible to split the diagrams

* For example, it is possible to create a "main”
diagram, containing only top-level interactions,
and a number of sub-diagrams, containing
details

* The sub-diagrams can be represented in the
“main” diagram as interaction occurrence

(depicted by ref region)

Sample ref region

Userinterface

ComputationEngine

| 1. StartComputations

Disklnterface

assert
—) 2. ReserveSpace

30Ok

[time > 10s]

4. ReportResults

Computations

Gates

* Are means of communication between
(fragments of) diagrams

* Are represented by small squares placed on the
edge of (fragment of) a diagram

* Allow important in large (fragmented) diagrams

Sample gates

sd Frame J

Computationinterface

1. statComputations

>

]

|

|
L

2. Compute

B

2 Report

>

Computations

-1
[d

4 ReportResults

AV

Communication Diagrams

* Allow functionality similar to sequence diagrams

* Use different approach:

- the messages are not explicitly ordered in time by
the vertical axis,

- the objects can placed anywhere in the diagram

* The only way to denote order of the messages
IS their numbering

e Communication diagrams can be translated
(also automatically) to sequence diagrams, and
vice-versa

Limitations

* Not all concepts from the sequence diagrams
can be presented in communication diagrams

* Missing concepts are:

- Lost and found messages
- Combined fragments
- Gates

Elements of communication diagram

* Object — similar to the object in sequence
diagram, but with no lifeline

* Link — shows that two objects communicate
(exchange messages). Does not denote any
actual message passing. Depicted as a line
between two objects

* Message — similar to message in sequence
diagram. Depicted as a short arrow with
message description next to the link

Sample communication diagram

Userlnterface

1. parseCiliery

2. reportltems

: 2. findltems
SearchEngine QueryParser

Messages

* When many messages of the same type are
passed between two objects, they may be
represented by a single arrow with multiple
descriptions

* Numbering with dots (1.1, 1.2 and so on) may
be used to group messages

* By using the same predecessor for a number of
messages parallel processing can be
documented

Objects

* When message is passed to a all objects of the
same class, this can be shown by replacing the
typical object symbol with multiple objects
symbol (three rectangles placed in a pile)

* A special type of object is that belonging to an
active class. Such object can initiate message-
passing sequence. It is depicted by double
vertical edges

Sample active class object

Userinterf. .

1. parseQliery

3. reportltems

_ 2 findltems
SearchEngine CueryParser

Sample communication diagram

Disklnterface

2. ReserveSpace

300k Q
V

4: ReadData

A

B StoreResults

A

7. CompressResults

fi} 1. StartComputations
5. PerformComputations <
8. ReportResults
VY
e

ComputationEngine Userinterface

Sample communication diagram

1: find

<

Userinterf...

9. displayResults

o

8. getDocumentByMNumber

1>

FPreprocessor DataBase

2. processauery 4 qetByPattern

{7 Z} 6. displayResults
7. destroy /%

QueryProcessor QueryManager

3 process

Q_

S5 reportResults

—

Sample communication diagram

Disklnterface

2 ReadData

0

3. ReportStatistics

v

4 -WiiteData

0

1. ProcessCiuery
CueryProcessor Userinterface

<:]_

Sample communication diagram

Disklnterface

2. ReserveSpace

0

30K

V

: : 1. StartComputations
ComputationEngine Userinterface

é

4 ReportResults

%

Timing diagram

* Used to describe state changes of object(s)

* The state changes are described In strict
relation to time

* They are especially useful for systems where
timing of operations is crucial (multimedia, real-
time applications)

* They are related to machine state diagrams and
sequence diagrams

Timing diagrams

* Basic diagram consists of a timing frame,
containing:
- Time scale (horizontal axis, lower edge)

- Names of classifiers for which the states are
depicted

- Names of states (for each classifier). Typical states
are: idle, active, waiting, computing etc.

- Lifelines (for each classifier) showing the state
changes in time

Sample timing diagram

Alternative notation

* Timing diagrams can be presented In
alternative, compact notation

* Not all elements are possible in this notation

FrameJ
Userinterface Idle>< Active >< Idle Idle

QueryManager Idle >< Active >< Idle
DB Idle >< Active >< Idle

Time constraints

* |t is possible to specify constraints that
precisely control duration of the states

* The constraints can contain any kind of
expression, they are placed above appropriate
lifeline

* They can be displayed in both full and compact
modes

Sample time constraints

Sample time constraints

Stimuli

* |tis possible to describe events that result in
state changes

* They are simply displayed as expressions next
to the point of state change

* They are not visible in the compact mode

Sample stimuli

Interaction overview diagram

* Allows to tie a number of sequence,
communication and timing diagrams using a
notation inherited from activity diagrams

* Are suitable for large systems, where
interactions and connections between a large

number of mentioned diagram have to be
shown

Interaction overview diagrams

* The sd, cd and td diagrams can be represented
in two ways:

- As a REF region pointing to another diagram

- As a frame containing complete specification of a
particular diagram

* Both representations can be mixed in one
diagram

e Apart from this, elements from activity diagrams
are present: control flows, initial and final
nodes, decision, merge, for and join nodes

Sample |OD diagram

(ret)

Query Processing

[found]

(re)

Results Presentation

Component diagrams

* Allow to describe interactions between
components (modules) of the system

* Component is a hermetic part of the software
system that interacts with other components
through interfaces and may be related to
interfaces through dependency or realisation

* |t is closely related to the concept of reusability

* Components are depicted by a symbol
resembling class symbol, sometimes with two
“pins” over the left edge. They may be
stereotyped

Component diagrams

* Typical components are:

- Executables (including dynamic link libraries)
— Libraries

- Databases

- Subsystems

- Services

* Stereotypes are provided for these (and more)
components

Dependency

* In the simple approach it is possible to describe
connections between components using
dependency relationship

* This is depicted by a dashed-line arrow pointing
from the dependent component (i.e. the one
that utilises some services provided by the

other component)

<<component=>
<<executable>>
SearchEngine

\/

<<component=>
<<library=>
WebControls

Sample component diagram

<<component=>
<<executable>>
DBEngine

\/

<<component=>
<<table>>

DBData

Interfaces

* More details about components may be
provided by describing the interfaces

* Two distinct situations are possible:

- Component realizes an interface. This means the
component implements functionality required by the
iInterface and can offer this functionality to other
components. This is call provided interface and is
depicted by a ball

- Component depends on interface. This means that
components needs service of another component,
that implements the interface. This is called
required interface and is depicted by a socket

IList

Sample interfaces

|Edit

<<component=>
<<library=>
WebControls

IQuery

<<component==
<<executable>>
DBEngine

IDiskAccess

)

Interfaces

* The ball-socket connections can be used to
precisely describe dependency

<<component=>
<<gxecutable>>
SearchEngine

IList IEdit

<<component=>
<<library=>
WebControls

Internal structure

It is also possible to provide more details about
internal structure of the component by showing
its sub-components

In this case it may be useful to indicate which
sub-components use interfaces of the parent

component
This may be done by using ports

ney are depicted as small rectangles on the
border of the component

Sample component with ports

Sample diagram

+ controller

<< component == = |
CliemtManagement

<= component == 5 |
ClientApplication

/N
|
|
|
I
|
|
|

N/

<< compaonent ==
OrderManagement
':'
== gntity == e == gontral ==
Order [m OrderController)
1.*

Product

Sample diagram

cd: Deployment diagram_1)

<< interface ==
ISpelling

A

<<interface >> 7} -

IUnknown

<< component >> £ |
MrWord.dll

- D>

<< jnterface ==
ITezaurus

F]
ryso

Sample diagram

cd: Deployment diagram_?)

<< component =>
drawing.java

@_ - - = <<interface ==

<< component >> £ |
drawing.java

ImageObs erver

._::]__

<<component >> &]

component.java

<< Iinterface =>
ImageOhbserver

q::]___

+image Update():Boolean

<< component >> £ |
component.java

Deployment diagrams

* Allow to describe the hardware components of
the system and tie them to previously created
elements of the model

* They use the concept of an artifact

* Artifact is any part of the software system. This
can be a class, file, diagram, model, database,
document and so on. Artifact is a physical item

In the sense it is composed from a sequence of
bits

* The artifacts are placed in nodes
* Nodes can be connected

Nodes

* Nodes represent physical or logical entities that
provide means to “store” artifacts

* There are two different types of nodes:

- Devices. These are physical appliances, such as
computers, printers, switches etc.

- Execution environments. These include software
systems, such as operating systems, database
systems etc.

* Node types are distinguished by stereotypes.
Further details can be provided by more precise
stereotypes (server, printer, Debian etc.)

Communication paths

* Represent connections between nodes
* They often represent network connections
* Are depicted using associations

<<Server=>
WebServer

<<GBit Ethemet>>

<<Server>> <<RAID>>
DBServer <<Fibre Channel>> RAID1

Artifacts in nodes

* Artifacts are embedded in appropriate nodes

* There are two possible ways of representing
this fact:

- By placing artifact inside of the node symbol

- By connecting the node and artifact with
dependency having <<deploy>> stereotype

Sample diagram

- <<GBit Ethemet>>

S+ +

Sample diagram

<<Server>>
WebServer

<<GBit Ethemet>>

<<RAID>>
{;gestir:: <<Fibre Channel=> RAID1
/:\ /’:\
{{dep|oy}}i i <<deploy>>
<<artifact>> <<artifact>>

DBFiles MySQL

Manifestation

* The artifacts can manifest components, i.e.
Indicate that they contain a particular
component and therefore it is availabale at the

node they are placed

* This is depicted using dependency with
<<manifest>> stereotype

Sample manifestation

<<Server>>
WebServer

<<GBit Ethemet>>

<<Server>>

DBServer <<Fibre Channel==>

/:\ /:\

<<deploy=> I <<deploy=>>
l
<<artifact>> <<artifact>>
DBFiles MySQL
I I
: <<manifest>> : <<manifest>>
\/ \/
<<component=> <<component==
<<table>> <_ -4 <<gxecutable>>
DBData DBENgine

<<RAID>>
RAID1

Sample diagram

kiosk

<< 10-T Ethernet == << processor == RAID

server

console

<< BS5-232 >=

Sample diagram

: << processor ==

“kiosk _ , - RAID

5 SENE
<< component == @ . console
config.exe S

| |

| | |

A4 W \Vi

<< component >> £ | << component >> £ | << component >> £ |

adm.exe admbd.exe tkmstr.exe

Sample diagrams

Client Senjer Database Server
<< artifact == [9 <= artifact => [<< artifact => [1§
client jar SEerVerjar db jar
I 1 1 1
t I I |
| == manifest == == manifest == 1 | == manifest == T N
\llllllr I "I.L."' I
<< component => £ | ' <= component == 2 | \/
. |
{frDmC'JEnE] | fffm]senlrﬂj e CDI’T‘JD”E”I: . @
Client Application | _ _ _ _ _ _ _ _ o> Client Manag ement (from Database Server)
| I Database
' M
|
I =
' I 4"
' I .|
i W .|
== component == = |
{from Senver)

Resenvation Management

Composite structure diagram

* Allows to present collaborations between
classifiers

* The important element is collaboration symbol,
an oval with dashed-line border

* The collaboration depicts the classifiers that
“work” together for some reason

* The diagram should present only the classifiers
that take part in the collaboration, and for these
classifiers only the functionality (interfaces) that
are relevant

Composite structure diagram

* The classifiers may be placed inside the
collaboration oval

* Alternatively, the classifiers can be placed
outside of the oval and connected with it using
associations

e The associations should be named to describe
the roles in the collaboration

Composite structure diagram

Package diagram

* Allows to arrange and group model elements

* Main elements are packages, dependencies
and containment of packages

* Any model elements can be placed inside
package

* The name of package is placed inside the
package symbol, in the package symbol tab (if
elements are placed in the package symbol) or
in the frame tab (if frame is used to describe
package)

Package diagram

* The packages can be connected by
dependencies

* There are three possibilities, denoted by
stereotypes

- Import. Means that elements of the source package
can use elements of the target package by means
of unqualified names

- Merge. Generalisation between elements of the
source package and elements with the same
names of the target package

- Access. Similar to import, but the names must be
qgualified

Package diagram

Packages can contain other packages

This can be depicted by placing packages
iInside other packages, or by containment
relationship

"he packages can be stereotyped

'ypical stereotypes include <<model>>,
<<subsystem>>, <<framework>>

It is possible to specify visibility of package
elements — as with calsses

Package diagram

Package diagram

Sample package diagram

cd: packagemewiew)

Railway crossing case

ud: Controller)

Railway crossing case

cd: Class Diagram_1)

Console Information =< persistent ==
Logbook
+Alam(): +Read(timePeriod: anonymaus):
+Warning(): +Add(position:anonymoaus);
: 0.1 Steering << interface ==
<< nterface == Gate
Enter
+Lawer():
+TurnOn{mode:int): . U
. . +=aise():
+Report{from: Time ta: Time):
T
[_
o : << interface >>
) L A Signalling
<< interface »» Signals +Start():
EXIt EﬂtEr[l(Ziﬂt]l +St,:|p|::|:
Exit(lint)
Lowered()

Raised()

Railway crossing case

cid: Class Diagram_1)

Communication steering G ate steering
+TurnOnimaode:int): +Init):
+Report(from: Time toTime): +Enter(l:int):
+AlarmG(. +Exit(k:int);
+Enterkeyhil:int): +Raised(:
+Exitkeyh(k:int): +Lowered():
+EnrterSensor(k:int): +Wakelp(event anonymous, param:anony maus):
+ExitSensor(k:int): :
h__ﬁﬁ - = = L
(Steering)
~ -
— — -
|
Watchdog

+3etWakellpieventanonymous, param: anonymous timePeriod:anony maus):
+CancelWakellplevent:anony mous,param; anony maous)

Railway crossing case

c¢d: Class diagram_‘l)

<< interface ==

Console

Inform ation

Communication steering

=< nterface ==
Enter

=< nterface ==
Exit

=< persistent ==

Logbook

<< interface ==
Gate

Gate steering

Watchdog

S
-

<< nterface ==

Signalling

Railway crossing case

cd: Class diagram_?)

Information
Communication steering -logLoghook
-inf:lnfnrmatinn_ +Add{event Evert tr: TrackMo t Time):
-stG:Gate steening +Readifrom: Time to: Time X
-con Console

+Turnonim :Moce):
+Reportifrom:Time to:Time):

+Alarmi): =< perssent ==
+Entereybit TrackMo): Loghook
+Exitk eyt Track Mo

-list:Position[*]
+ErterSensori: TrackMo):

+ExitSensont: TrackMo):

Gate steering
-stC omm: Communication steering Watchdog
-watch Watchdog -stG:Gate steering
-gate:Gate -waitList WaitingE ven*]
-zign: Signalling -curent: Time

-count:int

+SetWakelplevert:Event tr: TrackMo t: Time:

+Init(}: +Cancelakel plevent: Event tr TrackMo):
+Ertenk: TrackMoX

+Exiti{k:Trackho

+Raised():

+Lowered():

+Wakellplevernt.Event, param: Ohject]

Railway crossing case

sm: State diagraij

. ,‘HI, Gate raised \L‘,

/Le ntryl/Action_2 J"‘

G ate lowering]
entryfinf Addl..) =

h, o

Gate lowered

entryfAction_5 e
LS A

G ate raising \|

Le ntrylAction_6G J

Railway crossing case

s State diaglamj)

i Mormal steering

entry/ Action _2

“r Gate raised \L,

/Lerdrw.-’-'-.ctiun 1 JH

Gate lowering

M

ﬁfm ergency steering;]
{erﬂrw.ﬁ.ctinn 1 J

M

entryf &ction _2
=
\, S
Gate lowered
entry/ Action _3
=
', Ao

Gate raising ‘|
entry/ Action _4 J

W b,

Railway crossing case

st State diagram _1)

ra Ty
Maormal mode

ertryf Action _1

| Work h

i i Test mode

entryf Action_2

Wiork -‘\{

Railway crossing case

sd: Sequence diagram_1)

= === F=+==

=
Sl___.__L_L. N LN _L____________
c /A O
& o =
¢~ | R R N I I R A R R R O e R
LS doa
5 5| 5| =
L] o Wiy
=
i
=)
B = m =] —_—
— e e =L
@ -
v o =
= v “
e = =
= - =
o

Railway crossing case

si: Sequence diagram_z)

= = =
& A £ T2
_Hum. o =
o| T Tl
Sl gl [af
=1 5 Tl
- = :
k]
Sl _L_L_ W o I V¥ [__ - _____[_C_C.
5 M -
ﬂ.l.”_ -
= =
=
4
|
_ :
—
19 5 B
gl - -
=
o
=
=0
- =
_UI.. "
¢ ..
I
=
=
-
]
o
I—I ||
o
— —
[] —_— f
[N o [WN]
[s [
W W ol
— —]
- e -
[} [l =t
sl sl 2

Railway crossing case

sd: Sequence diagram_S)

|-
@
I=]
=
& Vi
©
=
5| 2
= W L
: =
=
]
=
[.
S
=
_ E
L
L
|-
2
0
A
— T
=l
=

- Start()
>

)

= = = = = "mad

LAlarm

I

{t2-t1>TBa}

Railway crossing case

ed: Deployment diagram_1)

¢ Consale

inf : Infarm ation

Ib: Loghbaolk

5 . Steering

Q. Gate

50 signalling

RSS case

=«<xS0toplevelElement ==
I

RichSiteSummary Resource
<<¥SDattribute>= version : string = 0.91 title : string
description : string
getChannel(u : User) : Channel link : uriReference
+channel | 1
Channel tem Textinput Image
p—_ © 5tri | - uriReference
language : string name : string ur .
rating [0..1] : string _ width [0.1] - integer
copyright [0..1] : string 1.0 | +item height [0..1] : integer
pubDate [0..1] : date 0.1 [+Hextlnput
lastBuildDate [0..1] : string
docs [0..1] : string 0.1 / +image

managingEditar [0..1] : string .-
webMaster [0..1] : string

Z<anumerations=
DayType

Monday

Hours Days Tuesday

" _ Wednesday
h 1.24]: int day [1..7]: DayT
our [1..24] © integer ay [1..7] - DayType Thursday

Friday
Saturday
Sunday

+skipHours 0.1 01

+skipDays

Modeling XML Applications with UML, by David Carlson, Ph.D. Published by: Addison-Wesley 2001, ISBN 0-201-70915-5

XML case

+categary
.Fee.uture Categary Discount
game_. tS_trlngat . Heature [T String +parent name : String
|description : String oo — oo
rultivalued : boolean | 0.7 description - String 0. g;asgc[;rbpr:{gr;fcgetrzltn%lnat
discounttmount : Money

Q .= Taxonormy discountPrice : Maoney
1] +type +eategory \ stantDate : Date

o.” +subcategorny endDate : Date

Feature\r’alge Categorization
- |walue [0.%] : String
Heature
Cat - Hem | g o* o1 .
SEQOFISI0N - +item 0.1 | +custamer
atalogltem
hame : String Part
Catalog deserintian - Stri . arty
ption : String +supplier ——
© [name : String +item listPrice : Money FRYE! partyType : fatrm.g _
description : String O_______—% sku - String 1 globalldentifier : String
- |startDate : Date 0. glohalldentifier ; String
endDate ; Date
+contains
| <<Simplexlink==
, Fesource
ProductBundle Product Service
0+ photolURL : String units : UnitCfTime
units : UnitOfMdeasure

==gnumeration== “=Lphumeration== MDHE],f
UnitOffMeasure UnitOfTirme Currency - String
each hour amaount : double
dozen day
meter week
kilogram manth
year

Modeling XML Applications with UML, by David Carlson, Ph.D. Published by: Addison-Wesley 2001, ISBN 0-201-70915-5

School case l

0.1

member

Company

Department

—

name: Name

Location

Office

{subset}

manager

Persan

name: Name
employeelD: int
title: String

getPhotolp: Photo)
getSoundBite()

getContactinformation() 4 = = = = = = - == >.

getPersonalRecords() .

_ h,. address: String
voice: Number

Headquarters

Contactinformation

address: String

PersonnelRecord

taxlD
exmploymentHistory
salary

Booch, Rumbaugh and Jacobson 1999

O

Securelnformation

School case

School

{persistant}
name: Mame Department 0.1
address:String {persistent} B
phone: Number has

,. name: Mame

addStudent() 1 1.*
remave Student() addInstructor()
getStudent() removelnstructor()
gethllStudents() getinstructor()
addDepartment() getAllinstructors()
remove Department()
getDepartment() 1% 1.
getAllDepartments()

1. assigned to
member

- K 0.1
1.r 1.7 chairperson
Student Course Instructar
{persistent} {persistant} {persistant}
* attends "

name: Mame h,, name: Mame .‘ﬂ name: Mame
studentlD: Mumber coursell: Mumber * 1.

Fowler 2004

School case

weinterfaces>
Collection

equals
add

Fowler 2004

Order winterfaces>
Sy List
_____________ >
Lineltems[*]
get
Order f_ ArraylList
Lineltems[*] '\.(_:)

Abstractlist

equals
add
get

ArrrayList

get
add

Field loading case

parent: Workd reaFormView

GetDocurnent f

==potntnent==

Bead sequence clockwise.

Loading data to controls
i OnInitiallTpdate,

Here just showr loading
Surnatne bt a normal
view loads multiple
controls, calling Get
tnethods on the . Data
class.

[

domestionnaire WithessDietailsViear

SetWindowText / /

m WitnessSwrmamneEdit:

http://www.oofile.com.au/adsother/UMLSamples.html

GetOuestionnaire WithessDetailsData —

ChrrentDioc:-SessionDocment

CGretWithessSurnarne \

ionestionnaire WitnessDietailsTata

Searc

Entry of Forensichearch details wia GUT forms and role of SessionDiocument in supplying results to match the oquery.

S u b S yS t . effectrvely nin continmonsly in VehicleQuestionmaire so we can always update a resulting count on the status bar,

WorkAreaFormliew
WorkArealiew
==romrnent==
Beport ninrang total on status
bar via Matrdfrarne.
. ForensicSearchView
ForensicResulisView
éj,_,ff" ShowllatchingVehiclCount()
MainFrame
Suppli b Result,
Supplier of ctapent Cuesfionnaire pplier of fearch Rosults
==romrnent==
Update constraints
regularly and get resulting
set to update status bar, SessionDocument
®
0.1
1 0.1 CurrentRasults
Chrrent(uestionnaire 1 VehicleSearchResulis

Vehicle Questionnaire http://www.oofile.com.au/adsother/lUMLSamples.html

ation cas|e

SetWorks reaVie

CurrentWork ATea: MaazationController essionDocurnent NehicleSearchBesults
¥tCorrnard
Diolext
saveiewData 'I'
GetMext Workd reaWiewDefinition T
| — [ifbCormpletedVibualSearch] gzet results
GetVehliclebearchB rsults .
GretWehicleLibrary .
GreneratelvlatchindVelaclesSearchFesults N
S
[f bCanFoBack] Sethl et World reaWiewr N
[else] Delete & NFtomHistory

http!//www.oofile.com.au/adsothér/UMLSamples.html

Register for Class
A studentrenisters fora class throughthe web interface. Both course full and course open scenarios are

shown.
Class
j’\' 2=l]== Eedistration
Browser Internet WehSerer Pane astudent acourse (B]=]
Student | —/—————
[[|
re g I S t ra t I O l l The sltudent browlses o the Automated Registralion Systam home page
1 Browse to Hame Page
Ca S e Request Home Page
N Pl
2 i Response
. [Home Pane]
The sltuc:fentcﬂc.ff? on the Ragistration fink in the home page
s Select Registration Page
. Request Registration Page
5 if {Student not quged ing
Perfarm uaserfogin prr.%-cedure
T o User Login
g new’) . page
Frepare
2 I P
Imitialize the registration page before itia prepared for rendering
1
Initialize) : void
1|:| ... —.. ...
11 new (studentld) © aStudent
12 GetRegistrationinfod)
13 GetStudentRegistration{studentld)
return (data
. A - { L
15 returniregistrationData)
15 .. Render Fhage
17 Response ~ return
[Registration Page])

Sale case

| i Start Page |l Use Case Diagraml

Use Case Diagram1

LK

W
—
W

DL W

r&prtss

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Sale case

B
1
§
;!F |

Claszs Diagram1

‘WCECER TR

= = .
-" Customes | i : | T
U |[omsodaess| :
-] -pagmnord i .t o
@ | foome —— BuyOrdes
; Hoslen oo placed by it
o 3 o+ [otal_amount
ali 1
L & posted by E_'E' 2,
(151
= i d_price [mrey
‘_F; - w OrderLine
: Lo iian '
B s 1. -puantity
has
1
L Book

Hitle

L antheor

HISEM

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

ATM case

] | Start Page | @ Withdraw maoney

Withdraw money

3
iger 1ATM iBankAccount
g
| sd Withdraw mnnev/I
il
= /3@(AT ‘BankAccount ‘
—
‘User I I E.
A 1: withcrawidoney() | |
i D¢ 2. getBalance() |
5 | il
& att || I
| I
L [balance = amount] I
1
- 4. dispenseCash() m 3 withdraw(am ount) Dﬁ
EF] d:jl
4 | I
: : :
(il 5 displayE morMsgl Il:else] I
2 | |
) ! !
E G: dispenssCard) i i
® [] |
=f |
I I
= | |

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Order case

_| r,ﬁi Start Page " iClass Diagraml | Fill Order

= Fill Order

e sd Fill Order

}.D:r&

: Product

4. updateQuantity()

{:]_

Pllirrte=r=r b

.
-

oINS

s Qrder
3 setStatus)
2 fillCrder()
: ProcessOrderC ontraol U FillButton
<+
1. press)

{7 2. changeStatus()

DU OrdeDetail

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Customer

Order case

] -"r'“ Skart Page | Stake Diagraml

% State Diagram1

¢ Placing Order M
=
J . .
® [invalid customer]
“ @ >
@ -
T_ [order
browse produd browse produd / commited]
[zt [valid customer]
electing ltem Commiting
1t — Order
?L checkout /
[press chedkout)
L S
4

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Dialing case

é Start ™

o> entry / start dial tong

.,Eﬂit-" stop dial tone p

Dialing
i Partial Dial N
> =0,
digit(n) = entry / number.appendind
L) [numberisyalid(]

/|

i

digitin)

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Study case

. Studying M

Term Project

First Test

F ailed

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

Activity Diagraml |

@ Activity Diagram1

Requested

o S

N

4
=
=
-,
&
L]
®,
Y
=,
i
=
i
=
L
be
o
=,
=

=
"

oEe Crcler

http://www.visual-paradigm.com/VPGallery/diagrams/index.html

Order case

Component Diagraml

¥ Component Diagram1

< 4

e e T 1
[
Customer |--------- [
=T-"'| T T T T T i :—?O 1' '
2w | |Customer "4 :

- :
@ | :
- = s ==infrastrudure=:= I
— <= gpplication== [Persistence :
I'_J' Orcder Management : :
t ' | i
| [[
|_ [[[
I E Crdler : :

[
= e =@ | |
: Order | |
| [[
11, [[i
i [[
sf; '-.,'|‘,.-' i i
" :
[
; = 9] |
[
% Database " 0 :
N <o

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Order case

' Deployment Diagrami '

Deployment Diagram

Databaze Server

COracle Database O
Transaction Reqguest

)

TS -

[
[
i
1
1
: Application Server
[
[
1

% JZEE Server Order Request
e
i
i
1
1
: Client
i
i

i Swing Application

L B

of BRE JEE
i
e

rEBr
:
i

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Car case

i i Skart Page | E Composite Structure Diagraml

& Composite Structure Diagram1

Car

Clutch|__Engine L

(]
{GasP adel
Wheel - :DrivingShaﬂ: Transmission
‘Wheel 0 I| Stﬂﬂi"ﬂmtﬂ'"ll I_jSteeﬁnaneel
D L

y
=
=]
H
-
L
.
t,
=

0

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Sale case

— EBrokersdSale -
il o,
- s — — — — — — — — — — — — — —
-~
I_.li'
Fa
i - =
y ¢ wholesale: ™
A ~ Sale =
f - - - -
|Il - - = - -
— - T,

[L . Y~

broker L seller
| seller
!
Y u

\ I s
N zellel v o
—_
, R [CONSLEMer
. f retail: :}
", N Sale +
" === buyer
- ¥
oy,

http://www.visual-paradigm.com/VPGallery/diagrams/index.htmi

Check case

http://www-128.ibm.com/developerworks/rational/library/3101.html

bank : Bank

getarmount {)

thecheck : Check

..E___

amount

getBalance (|

account : Checkingaccount

balancp

e - m s D R EGECECEE R P L L EEEP e

| alt
[

[balance == amount]

|

|

addDebitTransactjon { check
Murmber , amo

addInsuFﬁentFunAFee {0

e e SN

—_—

L §
T

[
nDteRet_JrnedChech { theCheck 3

returnCheck {ﬂﬂeCIJ]eck 3

.
-

———A

Check

sd Cash Check)

bark : Bank

cashCheck (theCheck) |
.,_I_

case

http://www-128.ibm.com/developerworks/rational/library/3101.html

getamount |)

theCheck : Check

getbalance }!

account : CheckingAccount

|
balanc#

[balance < amount]

|

I
addInsuFﬁenFungFee {0

I

nu:uteRetJrnedCheclL [theCheck

returnCheck (ﬂﬁeChEFck b

addDebitTransal:’an { check
MNurmber , amount

storePhotoOfChedk (theCheck)

Microwave
case

hungryPerson : Person

cookFood {)

oven . Microw aveZven

yummyFood

|.(: ___________________

........... :

nukeFood

ratateFood {

http://www-128.ibm.com/developerworks/rational/library/3101.html

analyst : Financial&nalyst

systerm @ ReportingSystern

secSystem @ SecuritySystem

. Reports

getivailableReports ([) i |

ol

getSecurityClearance (| L,ISEI’IEl__]

R’eport T

availableReports | Reports

reportsEnu ¢ Reports

aReport | Repart

getRequ

redSecuritvLevel |

Level] add [aRe : rt)

has.ﬁ.nntherRFpDrt)

has.ﬁ.nutherRel:urt

|
|

i s i e i | i i
|
|

Seminar case

Enrallment

Open For

Proposed Enroliment

student dropped
[seminar size = 0]

classes
erd

Closed to
Enrallment

Scheduled

student dropped
[seminar size = 0]

cancelled

http://www.agilemodeling.com/artifacts/stateMachineDiagram.htm

