Electronic Technology Design and Workshop

Presented and updated by

Przemek Sekalski
DMCS room 2

2007

Electronic Technology Design and Workshop

Lecture 4

Microelectronics - elementary gates

ETDW course road map

- ✓ Schematic edition, libraries of elements
- ✓ Circuit simulation & netlist generation
- ✓ Microelectronics full custom design and simulation
- ✓ Microelectronics simple layout synthesis
- ✓ Hardware description languages behavioural description
- ✓ Logic & sequential synthesis programmable logic devices
- ✓ PCB design auto-routing
- Project bringing the pieces together

Outline

- Inverter (NOT)
- NAND
- NOR
- Transmission gate
- XOR
- Ring oscillator

5

CMOS inverter cross-section

Note that the PMOS transistor is formed in a separate *n*-type region, known as an *n* well. Another arrangement is also possible in which an *n*-type body is used and the *n* device is formed in a *p* well.

$\left[6 \right]$

CMOS inverter scheme

[7]

CMOS inverter and pair of switches

Note: switches must operate in a complementary fashion.

 $-0 v_0 = 0$

CMOS inverter operation

9

CMOS inverter operation

circuit with v1 = 0V (logic-0 level, or V_{OL});

equivalent circuit.

Operating point

$$V_{OH} \simeq V_{DD}$$
 $V_{DD} \sim v_{O}$

graphical construction to determine the operating point

[10]

Voltage transfer characteristic of the CMOS inverter

Dynamic operation of a capacitive loaded CMOS inverter

equivalent circuit during the capacitor discharge.

12

Dynamic operation of a capacitive loaded CMOS inverter

input and output waveforms

trajectory of the operating point as the input goes high and C discharges through the Q_N

[13]

Inverter layout

NAND

CMOS NAND gate

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

$$Y = \overline{AB}$$

[16]

Gate size adjustment for NAND

 $\bullet Y = \overline{ABCD}$

Proper transistor sizing for a four-input NAND gate.

Note that n and p denote the (W/L) rations of Q_N and Q_P , respectively, of the basic inverter.

NOR

CMOS NOR gate

A	В	A nor B
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = \overline{A + B}$$

20

Gate size adjustment for NOR

[21]

NOR layout

Transmission gate

Transmission gate

IN	A	OUT
0	0	Н
0	1	0
1	0	Н
1	1	1

 $R_{on} = 100\Omega$ and $R_{off} > 5~M\Omega$ (high impedance H)

Transmission gate layout

XOR

CMOS XOR

A	В	A xor B
0	0	0
0	1	1
1	0	1
1	1	0

[28]

Ring oscillator

Formed by connecting three inverters in cascade

(Normally at least five inverters are used)

Ring oscillator

The resulting waveform.

Observe that the circuit oscillates with frequency $1/(6t_p)$.

Waveforms of ring oscillator

31

Ring Oscillator (3 and 5 NOTs)

Next lecture

More complex devices: MUX, flip-flops

Thank you for your attention

