
Department of Microelectronics and Computer Science

Embedded Systems

1

Dariusz Makowski

Department of Microelectronics and

Computer Science

tel. 631 2720

dmakow@dmcs.pl

http://neo.dmcs.pl/sw

mailto:dmakow@dmcs.pl

Department of Microelectronics and Computer Science

Embedded Systems

2

Input-Output ports of AMR processor
based on

ATMEL
ARM AT91SAM9263

Department of Microelectronics and Computer Science

Embedded Systems

3

Department of Microelectronics and Computer Science

Embedded Systems

4

Documentation for AT91SAM9263 MicrocontrollerDocumentation for AT91SAM9263 Microcontroller

Department of Microelectronics and Computer Science

Embedded Systems

5

Documentation for AT91SAM9263 – I/O PortsDocumentation for AT91SAM9263 – I/O Ports

Źródło: ATMEL, doc6249.pdf, strona 425

Department of Microelectronics and Computer Science

Embedded Systems

6

Block Diagram of 32-bits I/O PortBlock Diagram of 32-bits I/O Port

Advanced Peripheral Bus

Department of Microelectronics and Computer Science

Embedded Systems

7

Power Consumption vs Clock SignalPower Consumption vs Clock Signal

Department of Microelectronics and Computer Science

Embedded Systems

8

Control Registers for I/O portsControl Registers for I/O ports

Department of Microelectronics and Computer Science

Embedded Systems

9

Memory MapMemory Map

Department of Microelectronics and Computer Science

Embedded Systems

10

Documentation as Source of Registers' Information Documentation as Source of Registers' Information

Department of Microelectronics and Computer Science

Embedded Systems

11

Simplified Block Diagram of I/O Port Simplified Block Diagram of I/O Port

PIO_PDSR (Pin Data Status Register)

Port I/O

PIO_OER

D Q

Clk

Clk

PIO_ODR = 1

PIO_ODR – Output Disable Register

PIO_OER – Output Enable Register

PIO_OSR – Output Status Register

PIO_OSR

R Q

PIO_SODR (set)

PIO_CODR (clear)

PIO_ODSR (Output Data Status Reg.)

Clk

S

Department of Microelectronics and Computer Science

Embedded Systems

12

I/O Port – How to Control Output ? I/O Port – How to Control Output ?

Pull-Up Enable Reg.

PIO Enable Reg.

Periph. A status Reg.

Output Enable Reg.

Set Output Data Reg.

Multi-driver
Enable Reg.
(OpenDrain)

100 k

Department of Microelectronics and Computer Science

Embedded Systems

13

I/O – How to Read Input ?I/O – How to Read Input ?

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.

Department of Microelectronics and Computer Science

Embedded Systems

14

Digital SignalDigital Signal

Digital Signal can be
characterised with:

f – frequency (period),

A – amplitude.

Digital circuits can be triggered
with:

Change of signal level (lower or
higher than signal threshold
level),

Change of signal slope
(transaction of digital signal from
'0' to '1' or from '1' to '0').

Department of Microelectronics and Computer Science

Schematic diagrams

Department of Microelectronics and Computer Science

Schematic Diagrams (1)Schematic Diagrams (1)

Power Supply Bus Symbols

Ground Symbols

Department of Microelectronics and Computer Science

Schematic Diagrams (2)Schematic Diagrams (2)

Electrical connections

No connection

Connection

Department of Microelectronics and Computer Science

Schematic Diagram – How to Draw ?Schematic Diagram – How to Draw ?

Department of Microelectronics and Computer Science

Schematic Diagrams – Better Way Schematic Diagrams – Better Way

Department of Microelectronics and Computer Science

Embedded Systems

20

Timing charts during I/O operationsTiming charts during I/O operations

1 clock delay, when output driven from registers SODR/CODR,

2 clocks delay during access to the whole port (32 bits, set bits of
PIO_OWSR register).

Department of Microelectronics and Computer Science

Embedded Systems

21

Reading state of buttonReading state of button

IRQ

Polling loop Interrupt

Asynchronous signal

Department of Microelectronics and Computer Science

Embedded Systems

22

How to Control Clock Signal for Peripheral DevicesHow to Control Clock Signal for Peripheral Devices

write_register(PMC_PCER,0x00000110); // Peripheral clocks 2 and 4 are enabled.

write_register(PMC_PCDR,0x00000010); // Peripheral clock 2 is disabled.

PMC Peripheral Clock Enable Register
Register Name:PMC_PCER
Address: 0xFFFFFC10

Department of Microelectronics and Computer Science

Embedded Systems

23

I/O Registers for I/O PortsI/O Registers for I/O Ports

typedef volatile unsigned int *AT91_REG; // Hardware register definition

 AT91_REG PIO_PER = 0xFFFFF200; // PIO Enable Register, 32-bit register

AT91_REG PIO_PDR = 0xFFFFF204; // PIO Disable Register

AT91_REG PIO_PSR = 0xFFFFF208; // PIO Status Register

AT91_REG Reserved0[1]= 0xFFFFF20C; // Filler

AT91_REG PIO_OER; // Output Enable Register

AT91_REG PIO_ODR; // Output Disable Registerr

AT91_REG PIO_OSR; // Output Status Register

AT91_REG Reserved1[1]; //

AT91_REG PIO_IFER; // Input Filter Enable Register

AT91_REG PIO_IFDR; // Input Filter Disable Register

AT91_REG PIO_IFSR; // Input Filter Status Register

AT91_REG Reserved2[1]; //

AT91_REG PIO_SODR; // Set Output Data Register

AT91_REG PIO_CODR; // Clear Output Data Register

AT91_REG PIO_ODSR; // Output Data Status Register

Department of Microelectronics and Computer Science

Embedded Systems

24

I/O Registers Mapped into Structure (1)I/O Registers Mapped into Structure (1)

typedef volatile unsigned int AT91_REG; // Hardware register definition

typedef struct _AT91S_PIO {

AT91_REG PIO_PER; // PIO Enable Register, 32-bit register

AT91_REG PIO_PDR; // PIO Disable Register

AT91_REG PIO_PSR; // PIO Status Register

AT91_REG Reserved0[1]; //

AT91_REG PIO_OER; // Output Enable Register

AT91_REG PIO_ODR; // Output Disable Registerr

AT91_REG PIO_OSR; // Output Status Register

AT91_REG Reserved1[1]; //

AT91_REG PIO_IFER; // Input Filter Enable Register

AT91_REG PIO_IFDR; // Input Filter Disable Register

AT91_REG PIO_IFSR; // Input Filter Status Register

AT91_REG Reserved2[1]; //

AT91_REG PIO_SODR; // Set Output Data Register

AT91_REG PIO_CODR; // Clear Output Data Register

AT91_REG PIO_ODSR; // Output Data Status Register

} AT91S_PIO, *AT91PS_PIO;

Department of Microelectronics and Computer Science

Embedded Systems

25

I/O Registers Mapped into Structure (2)I/O Registers Mapped into Structure (2)

Declartion of a new structure type creates a template for registers mapped on the memory of the
processor. A Symbolic name is assigned to each register. The created structure is called according
to used processor and functionality defined by registers, e.g. AT91S_PIO and *AT91PS_PIO.

Lack of information describing access to registers, e.g. access mode R/W, value after reset, offset.

The information can be supplied as a comments in header file.

typedef struct _AT91S_PIO { /* Register name R/W Reset value Offset

AT91_REG PIO_PER; // PIO Enable Register W - 0x00

AT91_REG PIO_PDR; // PIO Disable Register W - 0x04

AT91_REG PIO_PSR; // PIO Status Register R - 0x08

AT91_REG Reserved0[1]; // memory filler

AT91_REG PIO_OER; // Output Enable Register W - 0x10

AT91_REG PIO_ODR; // Output Disable Register W - 0x14

AT91_REG PIO_OSR; // Output Status Register W - 0x18

} AT91S_PIO, *AT91PS_PIO

/* structure describing registers file (block of registers) for I/O ports PIOA...PIOE */

#define AT91C_BASE_PIOA (AT91PS_PIO) 0xFFFFF200 // (PIOA) Base Address

/* definition of bit mask for zero bit in port PA */

#define AT91C_PIO_PA0 (1 << 0) // Pin Controlled by PA0

How can we set 0 and 19 bits of OER register ?

Department of Microelectronics and Computer Science

Embedded Systems

26

Manipulation on Registers BitsManipulation on Registers Bits

Save value to register:

AT91PS_PIO->PIO_OER = 0x5;

Read value from register:

volatile unsigned int ReadData;

ReadData = AT91PS_PIO->PIO_OSR;

Bit operations:
AT91C_BASE_PIOA->ENABLE_REGISTER = (AT91C_PIO_PA0 | AT91C_PIO_PA19);

AT91C_BASE_PIOA->DISABLE_REGISTER = (AT91C_PIO_PA0 | AT91C_PIO_PA19);

How to negate bit ?

Department of Microelectronics and Computer Science

Embedded Systems

27

Registers mapped into structure - exerciseRegisters mapped into structure - exercise

Registers of DRAM memory are
mapped into memory space,

Base address: 0xFFFE.2000,

Registers type: 8, 16, 32 bit,

Task to do:

Create new struct type for DRAM
registers,

Declare pointer,

Read, write data from memory,

Set and clear configuration
registers (bit 5, bit 29),

Check busy flag in status register
(bit 9)

DRAM_WR
DRAM_
REFRESH

DRAM_STATUS

DRAM_RD

DRAM_CONF

DRAM_BASE_ADDRESS

DRAM_ADDRESS_MASK

DRAM_WR_LATENCY
DRAM_
BS

DRAM_RD_LATENCY

DRAM_CS

Base address

Department of Microelectronics and Computer Science

Embedded Systems

28

Bit-fields – Register Mapped as Structure Bit-fields – Register Mapped as Structure

Struct Port_4bit {

unsigned Bit_0 : 1;

unsigned Bit_1 : 1;

unsigned Bit_2 : 1;

unsigned Bit_3 : 1;

unsigned Bit_Filler : 4;

};

#define PORTC (*(Port_4bit*)0x4010.0002U)

int i = PORTC.Bit_0; /* read data */

PORTC.Bit_2 = 1; /* write data */

Port_4bit* PortTC = (Port_4bit*) 0x4010.000FU;

int i = PortTC->Bit_0;

PortTC->Bit_0 = 1;

Bit-fields allows to 'pack' data –
usage of single bits, e.g. bit flags

Increase of code complexity required
for operations on registers

Bit-fields can be mapped in different
ways in memory according different
compilers and processors
architectures

Cannot use offsetof macro to
calculate data offset in structure

Cannot use sizeof macro to calculate
size of data

Tables cannot use bit-fields

Department of Microelectronics and Computer Science

Embedded Systems

29

Union – Registers With Different FunctionalitiesUnion – Registers With Different Functionalities

extern volatile union {

 struct {

 unsigned EID16 :1;

 unsigned EID17 :1;

 unsigned :1;

 unsigned EXIDE :1;

 unsigned :1;

 unsigned SID0 :1;

 unsigned SID1 :1;

 unsigned SID2 :1;

 };

 struct {

 unsigned :3;

 unsigned EXIDEN :1;

 };

} RXF3SIDLbits_;

Structures have the same address:

#define RXF3SIDLbits
(*(Port_RXF3SIDLbits_*)0x4010.0000)

Access to data mapped into structure:

/* data in first structure */
RXF3SIDLbits.EID16 = 1;

/* data in second structure */
RXF3SIDLbits.EXIDEN = 0;

Department of Microelectronics and Computer Science

Embedded Systems

30

Example of Control Register – Real-time TimerExample of Control Register – Real-time Timer

// -------- RTTC_RTMR : (RTTC Offset: 0x0) Real-time Mode Register --------

#define AT91C_RTTC_RTPRES (0xFFFF << 0) // (RTTC) Real-time Timer Prescaler Value

#define AT91C_RTTC_ALMIEN (0x1 << 16) // (RTTC) Alarm Interrupt Enable

#define AT91C_RTTC_RTTINCIEN (0x1 << 17) // (RTTC) Real Time Timer Increment Interrupt Enable

#define AT91C_RTTC_RTTRST (0x1 << 18) // (RTTC) Real Time Timer Restart

Department of Microelectronics and Computer Science

Embedded Systems

31

Registers Definition – Header Files (1)Registers Definition – Header Files (1)

#ifndef _PROJECT_H

#define _PROJECT_H

/*
 * Include your AT91 Library files and specific
 * compiler definitions
 */

#include "AT91SAM9263-EK.h"

#include "AT91SAM9263.h"

#endif // _PROJECT_H

/*------------------------*/
/* LEDs Definition */
/*------------------------*/

#define AT91B_LED1 AT91C_PIO_PB8 /* DS1 */

#define AT91B_LED2 AT91C_PIO_PC29 /* DS2 */

#define AT91B_NB_LEB 2

#define AT91D_BASE_PIO_LED1 (AT91C_BASE_PIOB)

#define AT91D_BASE_PIO_LED2 (AT91C_BASE_PIOC)

#define AT91D_ID_PIO_LED1 (AT91C_ID_PIOB)

#define AT91D_ID_PIO_LED2 (AT91C_ID_PIOC)

/*--------------------------------*/
/* Push Button Definition */
/*--------------------------------*/

#define AT91B_BP1 AT91C_PIO_PC5 // Left click

#define AT91B_BP2 AT91C_PIO_PC4 // Right click

#define AT91D_BASE_PIO_BP AT91C_BASE_PIOC

#define AT91D_ID_PIO_BP AT91C_ID_PIOCDE

Department of Microelectronics and Computer Science

Embedded Systems

32

Registers Definition – Header Files (2)Registers Definition – Header Files (2)

#define AT91C_PIO_PB8 (1 << 8) // Pin
Controlled by PB8

#define AT91C_PIO_PC29 (1 << 29) // Pin
Controlled by PC29

#define AT91C_BASE_PIOB
(AT91_CAST(AT91PS_PIO) 0xFFFFF400) //
(PIOB) Base Address

#define AT91C_BASE_PIOC
(AT91_CAST(AT91PS_PIO) 0xFFFFF600) //
(PIOC) Base Address

#define AT91C_ID_PIOB (3) // Parallel IO
Controller B

#define AT91C_PIO_PC4 (1 << 4) // Pin
Controlled by PC4

#define AT91C_PIO_PC5 (1 << 5) // Pin
Controlled by PC5

#define AT91C_ID_PIOCDE (4) // Parallel IO
Controller C, Parallel IO Controller D, Parallel IO
Controller E

/*------------------------*/
/* LEDs Definition */
/*------------------------*/

#define AT91B_LED1 AT91C_PIO_PB8 /* DS1 */

#define AT91B_LED2 AT91C_PIO_PC29 /* DS2 */

#define AT91B_NB_LEB 2

#define AT91D_BASE_PIO_LED1 (AT91C_BASE_PIOB)

#define AT91D_BASE_PIO_LED2 (AT91C_BASE_PIOC)

#define AT91D_ID_PIO_LED1 (AT91C_ID_PIOB)

#define AT91D_ID_PIO_LED2 (AT91C_ID_PIOC)

/*--------------------------------*/
/* Push Button Definition */
/*--------------------------------*/

#define AT91B_BP1 AT91C_PIO_PC5 // Left click

#define AT91B_BP2 AT91C_PIO_PC4 // Right click

#define AT91D_BASE_PIO_BP AT91C_BASE_PIOC

#define AT91D_ID_PIO_BP AT91C_ID_PIOCDE

Department of Microelectronics and Computer Science

Embedded Systems

33

ATMEL Development Board – LEDs, ButtonsATMEL Development Board – LEDs, Buttons

#define AT91B_LED1 AT91C_PIO_PB8 /* DS1 */

#define AT91B_LED2 AT91C_PIO_PC29 /* DS2 */

#define AT91B_BP1 AT91C_PIO_PC5 // Left click

#define AT91B_BP2 AT91C_PIO_PC4 // Right clic

Department of Microelectronics and Computer Science

Embedded Systems

34

Configuration of I/O portsConfiguration of I/O ports

#define AT91C_PIO_PB8 (1U << 8) // Pin Controlled by PB8

#define AT91C_BASE_PIOB (AT91PS_PIO) 0xFFFF.F400U // (PIOB) Base Address

Input mode:

 /* Enable the peripheral clock for the PIO controller, This is mandatory when PIO are configured as input */

 AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_PIOCDE); // peripheral clock enable register (port C, D, E)

 /* Set the PIO line in input */

 AT91C_BASE_PIOD->PIO_ODR = 0x0000.000FU; // 1 – Set direction of the pin to input

 /* Set the PIO controller in PIO mode instead of peripheral mode */

 AT91C_BASE_PIOD->PIO_PER = AT91C_PIO_PB8; // 1 – Enable PIO to control the pin

Output mode:

 /* Configure the pin in output */

 AT91C_BASE_PIOB->PIO_OER = AT91C_PIO_PB8 ;

 /* Set the PIO controller in PIO mode instead of peripheral mode */

 AT91C_BASE_PIOD->PIO_PER = 0xFFFF.FFFFU; // 1 – Enable PIO to control the pin

 AT91C_BASE_PIOE->PIO_PER = AT91C_PIO_PB31;

 /* Disable pull-up */

 AT91C_BASE_PIOA->PIO_PPUDR = 0xFFFF.0000U; // 1 – Disable the PIO pull-up resistor

Department of Microelectronics and Computer Science

Embedded Systems

35

Time in processor systems

Department of Microelectronics and Computer Science

Embedded Systems

36

How can We Measure Time ?How can We Measure Time ?

Generate defined delay ?

Generate date and time ?

Measure length of pulses ?

Delay in Real-Time systems ?

Department of Microelectronics and Computer Science

Embedded Systems

37

Crystal Clock... Crystal Clock...

Quartz from chemical point of view is a compound called silicon dioxide.
Properly cut and mounted crystal of quartz can be made to vibrate, or
oscillate, using an alternating electric current. The frequency at which the
crystal oscillates is dependent on its shape and size, and the positions at
which electrodes are placed on it. If the crystal is accurately shaped and
positioned, it will oscillate at a desired frequency; in clocks and watches,
the frequency is usually 32,768 Hz, as a crystal for this frequency is
conveniently small. Such a crystals are usually used in digital systems.

Department of Microelectronics and Computer Science

Embedded Systems

38

TimersTimers

Timer – peripheral device of processor dedicated for time measurement
(counting single processor cycles). Flag is marked or interrupt is triggered
when timer counter reaches threshold level. Timers are used as a system
time source. They can be used to generate delays, switch threads, generate
events, etc...

Example of different Timers:
PIT Timer (Periodic Interval Timer, Programmable Interrupt Timer),

RTT Timer (Real-Time Timer),

PWM Timer (Pulse Width Modulation),

TC Timer (Timer Counter),

WDT Timer (Watch-dog).

Department of Microelectronics and Computer Science

Embedded Systems

39

Department of Microelectronics and Computer Science

Embedded Systems

40

Periodic Interval Timer

Department of Microelectronics and Computer Science

Embedded Systems

41

Block Diagram of PITBlock Diagram of PIT

Main Counter

Secondary Counter

Department of Microelectronics and Computer Science

Embedded Systems

42

Automatic Reload of TimerAutomatic Reload of Timer

0x00000

0xFFFFF

PITS=1

Period of generated interrupts:

(PIV_VALUE+1)*16 / Clk

Clk = 100 MHz, PIV = 62500 => tPIT = 10 ms

Department of Microelectronics and Computer Science

Embedded Systems

43

PIT in operationPIT in operation

Department of Microelectronics and Computer Science

Embedded Systems

44

Registers of PITRegisters of PIT

typedef struct S_PIT { /* Register name R/W Reset val. Offset

AT91_REG PIT_MR; // PIT Mode Register R/W 0x000F.FFFF 0x00

AT91_REG PIT_SR; // PIT Status Register R 0x0000.0000 0x04

AT91_REG PIT_PIVR; // PIT Per. Int. Val. Reg. R 0x0000.0000 0x08

AT91_REG PIT_PIIR; // PIT Per. Int. Image Reg. R 0x0000.0000 0x0C

} S_PIT, *PS_PIT;

/* Block of PIT registers */

#define PIT ((PS_PIT) 0xFFFFFD30) // (PIT) Base Address

Department of Microelectronics and Computer Science

Embedded Systems

45

PIT registersPIT registers

 PITS- -

1 031

PIT_SR

 CPIVPICNT

 20 19 031

 PIT_PIVR/PIT_PIIR

 PIV- - - - -

19 0

PIT_MR

31

- - - - -PITIEN PITEN

25 24

Department of Microelectronics and Computer Science

Embedded Systems

47

Real Time TimerReal Time Timer

Real Time Timer (RTT) is used to measure longer periods of time than PIT timer.

Features of RTT:

32-bit down counter and programmable 16 bit divider,

Can be used to measure elapsed seconds,

triggered with slow clock (32.768 kHz),

1s increment with a typical slow clock of 32.768kHz,

count up to maximum 136 years (for 1 Hz clock signal),

Alarm can generate an interrupt,

Additional interrupt when main timer is increased by one.

Department of Microelectronics and Computer Science

Embedded Systems

48

Real Time Timer – block diagramReal Time Timer – block diagram

Department of Microelectronics and Computer Science

Embedded Systems

49

Watchdog Timer Watchdog Timer

Watchdog Timer (WDT) is used to prevent microprocessor system lock-up if the
software becomes trapped in a deadlock.

Features of WDT:

12-bit down counter,

Triggered with slow clock (32.768 kHz),

Maximum watchdog period of up to 16 seconds,

Can generate a general reset or a processor reset only,

WDT can be stopped while the processor is in debug mode or idle mode,

Write protected WDT_CR (control register).

Department of Microelectronics and Computer Science

Embedded Systems

50

Watchdog Timer – block diagramWatchdog Timer – block diagram

Department of Microelectronics and Computer Science

Embedded Systems

51

WDT – timing chartsWDT – timing charts

Department of Microelectronics and Computer Science

Embedded Systems

52

WDT – registers (1)WDT – registers (1)

Department of Microelectronics and Computer Science

Embedded Systems

53

WDT – registers (2)WDT – registers (2)

Department of Microelectronics and Computer Science

Embedded Systems

54

Timer CounterTimer Counter

• Features

Three 16-bit Timer/Counter channels

Wide range of functions:
Frequency measurement

Event counting

Interval measurement

Pulse generation

Delay timing

Pulse Width Modulation

Clock inputs
3 External and 5 Internal clock inputs

Two configurable Input/Ouput signals

Internal interrupt signal

Department of Microelectronics and Computer Science

Embedded Systems

56

Interfaces in
Embedded Systems

Department of Microelectronics and Computer Science

Embedded Systems

57

FundamentalFundamental DefinitionsDefinitions

Computer Memory

Electronic or mechanic device used for storing digital data or computer programs
(operating system and applications).

Peripheral Device

Electronic device connected to processor via system bus or computer interface.
External devices are used to realise dedicated functionality of the computer system.
Internal devices are mainly used by processor and operating system.

Computer Bus

Electrical connection or subsystem that transfers data between computer
components: processors, memories and peripheral devices. System bus is
composed of dozens of multiple connections (Parallel Bus) or a few single serial
channels (Serial Bus).

Interface

Electronic or optical device that allows to connect two or more devices. Interface can
be parallel or serial.

Department of Microelectronics and Computer Science

Embedded Systems

58

Connectivity of Processor and Peripheral DevicesConnectivity of Processor and Peripheral Devices

Interfaces used in Embedded Systems:

 Parallel Interface PIO (usually 8, 16 or 32 bits),

 Serial interfaces:
Universal Serial Asynchronous Receiver-Transmitter (USART),

Serial Peripheral Interface (SPI),

Synchronous Serial Controller (SSC)

I2C, Two-wire Interface (TWI),

Controlled Area Network (CAN),

Universal Serial Bus (USB),

Ethernet 10/100 Mbits (1 Gbit),

Debug/programming interface (EIA RS232, JTAG, SPI, DBGU).

Department of Microelectronics and Computer Science

Embedded Systems

59

Interfaces available in AT91SAM9263Interfaces available in AT91SAM9263

 Parallel Interface PIO (configurable 32 bits),

 Serial interfaces:
Debug interface (DBGU),

Universal Serial Asynchronous Receiver-Transmitter (USART),

Serial Peripheral Interface (SPI),

Synchronous Serial Controller (SSC),

I2C, Two-wire Interface (TWI),

Controlled Area Network (CAN),

Universal Serial Bus (USB, host, endpoint),

Ethernet 10/100 Mbits,

Programming interface (JTAG).

Department of Microelectronics and Computer Science

Embedded Systems

60

No Lecture

12.11.2018 Independence Day - after Day

26.11.2018 No Lecture

03.12.2018 No Lecture, No Lab

10.12.2018 No Lecture

Erasmus Practice #1: ~04.12.2018

Department of Microelectronics and Computer Science

Embedded Systems

61

Universal Asynchronous
Receiver/Transmitter Module

Department of Microelectronics and Computer Science

Embedded Systems

62

 EIA RS232 Serial InterfaceEIA RS232 Serial Interface

Department of Microelectronics and Computer Science

Embedded Systems

63

UART Transceiver UART Transceiver

transmitter

Receiver

TxD

RxD

D0-D7

D0-D7

Clk

Clk

Shift register

Department of Microelectronics and Computer Science

Embedded Systems

64

Data Frame of UART (1)Data Frame of UART (1)

Mark

Space

Department of Microelectronics and Computer Science

Embedded Systems

65

Data Frame of UART (2)Data Frame of UART (2)

Send data: 0100.1011b = 0x4B

Department of Microelectronics and Computer Science

Embedded Systems

66

Synchronous vs asynchronous transmission Synchronous vs asynchronous transmission

Transmitter

Internal clock

Transmitter Receiver

Receiver

Data

Clock

Internal clock

Similar reference frequency

Department of Microelectronics and Computer Science

Embedded Systems

67

Electrical specification of EIA RS232cElectrical specification of EIA RS232c

Department of Microelectronics and Computer Science

Embedded Systems

68

Null-Modem Cabel EIA 232Null-Modem Cabel EIA 232

Department of Microelectronics and Computer Science

Embedded Systems

69

Hardware Flow ControlHardware Flow Control

DTE Data Terminal Equipment – terminal, PC

DCE - Data Circuit-terminating Equipment – Modem

DSR - Data Set Ready - modem

DTR - Data Terminal Ready – terminal

RTS - Request to Send Data

CTS - Clear to Send - ready to send data

RemarksSymbol

Start transmission

Line state

Modem ready

Circuit

Request to send

Ready to send

Computer ready

Department of Microelectronics and Computer Science

Embedded Systems

70

Null-Modem Cabel EIA 232 with Hardware flow ControlNull-Modem Cabel EIA 232 with Hardware flow Control

Department of Microelectronics and Computer Science

Embedded Systems

71

Voltage Levels of EIA RS232Voltage Levels of EIA RS232

Processor output

EIA RS 232

Department of Microelectronics and Computer Science

Embedded Systems

72

Voltage Levels TranslatorVoltage Levels Translator

MAX 232 (5 V)
MAX 3232 (3,3 V)

Department of Microelectronics and Computer Science

Embedded Systems

73

Software for EIA RS232 communication Software for EIA RS232 communication

Hyper terminal

Minicom

ssh

Terminal
(http://www.elester-pkp.com.pl/index.php?id=92&lang=pl&zoom=0)

Department of Microelectronics and Computer Science

Embedded Systems

74

AT91SAM9263 –
debug module DBGU

(chapter 30)

Department of Microelectronics and Computer Science

Embedded Systems

75

Department of Microelectronics and Computer Science

Embedded Systems

76

Serial interface as Diagnostic ToolSerial interface as Diagnostic Tool

Features of DBGU port (DeBuG Unit):
Asynchronous data transmission compatible with RS232 standard (8 bits,
single parity bit – can be switched off),

Single system interrupt, shared with PIT, RTT, WDT, DMA, PMC, RSTC, MC,

Frame correctness analysis,

RxD buffer overflow signal,

Diagnostic modes: external loopback, local loopback and echo,

Maximum transmission baudrate 1 Mbit/s,

Direct connectivity to debug module build in ARM core (COMMRx/COMMTx).

Department of Microelectronics and Computer Science

Embedded Systems

77

Block diagram of DBGU transmission module Block diagram of DBGU transmission module

Interrupt signal

Input-Output
ports

Serial Transceiver

Department of Microelectronics and Computer Science

Embedded Systems

78

Transmission speedTransmission speed

Reference clock generator is responsible for Baud Rate .

Baud rate can be calculated using formula:

 Baud Rate = MCK / (16 x CD), where CD
 Clock Divisor can be found in DBGU_BRGR register

Department of Microelectronics and Computer Science

Embedded Systems

79

Transmission errorsTransmission errors

Receiver Buffer Overflow (BGU_RHR)

Parity Error (PE)

Frame Error (FE)

Department of Microelectronics and Computer Science

Embedded Systems

80

Configuration of DBGU transceiverConfiguration of DBGU transceiver

static void Open_DBGU (void){

 1. Deactivate DBGU interrupts (register AT91C_BASE_DBGU->DBGU_IDR)

 2. Reset and turn off receiver (register AT91C_BASE_DBGU->DBGU_CR)

 3. Reset and turn off transmitter (register AT91C_BASE_DBGU->DBGU_CR)

 4. Configure RxD i TxD DBGU as input peripheral ports (registers AT91C_BASE_PIOC->PIO_ASR and
AT91C_BASE_PIOC->PIO_PDR)

 5. Configure throughput (e.g. 115200 bps, register AT91C_BASE_DBGU->DBGU_BRGR)

 6. Configure operation mode (e.g. 8N1, register AT91C_BASE_DBGU->DBGU_MR, flags
 AT91C_US_CHMODE_NORMAL, AT91C_US_PAR_NONE)

 7. Configure interrupts if used, e.g. Open_DBGU_INT()

 8. Turn on receiver (register AT91C_BASE_DBGU->DBGU_CR),

 9. Turn on transmitter if required (register AT91C_BASE_DBGU->DBGU_CR),

}

Department of Microelectronics and Computer Science

Embedded Systems

81

Read and write via DBGU portRead and write via DBGU port

Interrupts are disabled.

void dbgu_print_ascii (const char Buffer)

{

 while (data_are_in_buffer) {

 while (…TXRDY...){}; /* wait intil Tx buffer busy – check TXRDY flag */

 DBGU_THR = ... /* write a single char to Transmitter Holding Register */

 }

}

void dbgu_read_ascii (char *Buffer, unsigned int Size){

 do {

 While (...RXRDY...){}; /* wait until data available */

 Buffer[...] = DBGU_RHR; /* read data from Receiver Holding Register */

 } while (…read_enough_data...)

}

Department of Microelectronics and Computer Science

Embedded Systems

82

AT91SAM9263 – USART
(chapter 34)

Department of Microelectronics and Computer Science

Embedded Systems

83

Department of Microelectronics and Computer Science

Embedded Systems

84

Serial port USARTSerial port USART

Features of Universal Synch. Asynch. Receiver-Transmitter:
Asynchronous or synchronous data transfer,

Programmable frame length, parity, stop bits,

Single system interrupt (shared with: PIT, RTT, WDT,DMA, PMC, RSTC, MC),

Analysis of correctness of received frames,

Buffer overflow error TxD or RxD,

Elastic buffer – possibility of receiving frames with different length (uses additional
counter),

Diagnostic modes: external loopback, local loopback and echo,

Maximum transmission speed 1 Mbit/s,

Hardware flow control,

Support for Multidrop transmission – data and address,

Available Direct Memory Access channel,

Support for RS485 differential transmission mode and infrared systems (build-in IrDA
modulator-demodulator).

Department of Microelectronics and Computer Science

Embedded Systems

85

Block diagram of USART transceiverBlock diagram of USART transceiver

Department of Microelectronics and Computer Science

Embedded Systems

86

Data structures

Department of Microelectronics and Computer Science

Embedded Systems

87

Stack (1)Stack (1)

 Stack or LIFO (Last-In, First-Out) – abstract data
type and data structure. A stack can have any abstract
data type as an element, but it is characterized by only
two fundamental operations: push and pop. The push
operation adds to the top of the list, hiding any items
already on the stack, or initializing the stack if it is
empty. The pop operation removes an item from the
top of the list, and returns this value to the caller. A pop
either reveals previously concealed items, or results in
an empty list.

 FIFO (First In, First Out) – a linear buffer, the
opposite structure to stack. The first element placed
into FIFO is immediately transferred to the end of the
queue. Therefore the first element stored in FIFO is
supposed to be processed first.

Department of Microelectronics and Computer Science

Embedded Systems

88

Stack – push dataStack – push data

0x0000.0000

0x1000.0000

SP = R13

The last stored data

n-1

Free area

Free area
SP = R13

 Contents of registers
 R1,R2,R3,R7-R9

R13 register – stack pointer

STMDB SP!, {registers list}
STMDB SP!, {R1,R2,R3,R7-R9} | decrease SP by 24, stores 8 registers on stack

Department of Microelectronics and Computer Science

Embedded Systems

89

Stack - popStack - pop

0x0000.0000

0x1000.0000

SP = R13

The last stored data

n-1

Free area

Free area
SP = R13

 Stored registers
 R1,R2,R3,R7-R9

R13 register – stack pointer

LDMIA SP!, {list of registers}
LDMIA SP!, {R1,R2,R3,R7-R9} | increase SP by 24, recover 8 registers from stack

Department of Microelectronics and Computer Science

Systemy wbudowane

90

FIFO (1)FIFO (1)

A few different applications can try to write data into FIFO queue. In such a case
a semaphore can be used to control access during writing data to queue.

Data are read from queue in the same order as was written

Department of Microelectronics and Computer Science

Systemy wbudowane

91

FIFO (2)FIFO (2)

Tail

Data in FIFO

Head

Write data to FIFO:
Increase Head by one, write data.

Read data from FIFO:
Read data, increase Tail by one.

When the Tail or Head points the last element in queue the pointer is not
increased (zero is written to the pointer) - circular buffer.

0xffD50 0xffD50 + size -1Memory address:

Department of Microelectronics and Computer Science

Systemy wbudowane

92

FIFO (3)FIFO (3)

T H

Empty FIFO T = H

T

Some data in queue, amount of data = H – T

T

Full FIFO
(T = 0) & (H = Size) or T – H = 1

H TH

H

Department of Microelectronics and Computer Science

Systemy wbudowane

93

FIFO – implementation in C (1)FIFO – implementation in C (1)

#define BUFFERSIZE 0xFF /* FIFO buffer size and mask */

typedef struct FIFO {

 char buffer [BUFFERSIZE+1];

 unsigned int head;

 unsigned int tail;

};

void FIFO_Init (struct FIFO *Fifo);

void FIFO_Empty (struct FIFO *Fifo);

int FIFO_Put (struct FIFO *Fifo, char Data);

int FIFO_Get (struct FIFO *Fifo, char *Data)

void FIFO_Init (struct FIFO *Fifo){

 Fifo->head=0;

 Fifo->tail=0;

/* optional: initialize data in buffer with 0 */

}

Department of Microelectronics and Computer Science

Systemy wbudowane

94

FIFO – implementation in C (2)FIFO – implementation in C (2)

void FIFO_Empty (struct FIFO *Fifo){

 Fifo->head = Fifo->tail; /* now FIFO is empty*/

}

int FIFO_Put (struct FIFO *Fifo, char Data){

 if ((Fifo->tail-Fifo->head)==1 || (Fifo->tail-Fifo->head)==BUFFERSIZE)){

 return -1; }; /* FIFO overflow */

 Fifo->buffer[Fifo->head] = Data;

 Fifo->head = (Fifo->head + 1) & BUFFERSIZE;

 return 1; /* Put 1 byte successfully */

}

int FIFO_Get (struct FIFO *Fifo, char *Data){

 If ((TxFifo.head!=TxFifo.tail)){

 *Data = Fifo->buffer[Fifo->tail];

 Fifo->tail = (Fifo->tail + 1) & BUFFERSIZE;

 return 1; /* Get 1 byte successfully */

 } else return -1; /* No data in FIFO */

}

Department of Microelectronics and Computer Science

Systemy wbudowane

95

FIFO – trapsFIFO – traps

void FIFO_Empty (struct FIFO *Fifo){

 Fifo->head = Fifo->tail; /* now FIFO is empty*/

}

int FIFO_Put (struct FIFO *Fifo, char Data){

 if ((Fifo->tail-Fifo->head)==1 || (Fifo->tail-Fifo->head)==BUFFERSIZE)){

 return -1; }; /* FIFO overflow */

 Fifo->buffer[Fifo->head++] = Data;

 Fifo->head = Fifo->head & BUFFERSIZE; /* be carefull with interrupts */

 return 1; /* Put 1 byte successfully */

}

int FIFO_Get (struct FIFO *Fifo, char *Data){

 If ((TxFifo.head!=TxFifo.tail)){

 *Data = Fifo->buffer[Fifo->tail++];

 Fifo->tail &= BUFFERSIZE; /* be carefull with interrupts */

 return 1; /* Get 1 byte successfully */

 } else return -1; /* No data in FIFO */

}

Department of Microelectronics and Computer Science

Embedded Systems

96

LectureLecture Agenda Agenda

 Microprocessor systems, embedded systems

 ARM processors family

 Peripheral devices

 Memories and address decoders

 ARM processor as platform for embedded programs

 Methodology of designing embedded systems

 Interfaces in embedded systems

 Real-time microprocessor systems

Department of Microelectronics and Computer Science

Embedded Systems

97

From Acorn Computers Ltd. ARM to ARM Ltd.From Acorn Computers Ltd. ARM to ARM Ltd.

 Acorn

 Small company founded in November 1990,

Spun out of Acorn Computers (BBC Micro computer),

 Design the ARM range of RISC processor cores,

 ARM company does not fabricate silicon itself,

 Licenses ARM cores to partners: Intellectual Property Cores of ARM processors
and peripheral devices,

 Develop tools (compilers, debuggers), starter-kits for embedded system
development and creates standards, etc...

Department of Microelectronics and Computer Science

Embedded Systems

98

List of ARM silicon partnersList of ARM silicon partners

 Agi lent, AKM, Alcatel, Altera, Atmel, Broadcom, Chip Express, Cirrus Logic, Digital
Semiconductor, eSilicon, Fujitsu, GEC Plessey, Global UniChip, HP, Hyundai, IBM, Intel,
ITRI, LG Semicon, LSI Logic, Lu cent, Matsushita, Micrel, Micronas, Mitsubishi, Freescale,
NEC, OKI, Philips, Qu alcomm, Rockwell, Rohm, Samsung, Samsung, Sanyo, Seagate,
Seiko Epson, Sharp, Sony, STMicroelectronics, Symbios Logic, Texas Instru ments, Xilinx,
Yamaha, Zeevo, ZTEIC, ...

Department of Microelectronics and Computer Science

Embedded Systems

99

History of ARM ProcessorsHistory of ARM Processors

1983 – Sophie Wilson and Steve Furber fabricate the first RISC processor in Acorn
Computers Limited, Cambridge, ARM = Acorn (Advanced) RISC Machine

1985 – The first processor ARM 1 (architecture version v1)

1986 – First ARM 2 processors left company (32-bits, 26-bits address, 16 registers 16-bits,
 30.000 transistors, architecture version v2/v2a, 8 MHz)

1990 – Apple Computer and VLSI Technology start work on the next version of ARM core,

1990 – New company is created Advanced RISC Machines Ltd. Responsible for the development
of ARM cores,

1991 – The cooperation of Apple and VLSI Tech. provides new ARM 6 processor (ARM 610
applied in Apple Newton PDA, architecture version v3, 33 MHz)

1995 – ARM company offers famous ARM7TDMI core (core architecture ARMv4T) and Intel
offers StrongARM (233 MHz)

2001 – ARM company offers ARM9TDMI core (core architecture ARMv5TEJ, 220 MHz)

2004 – Cortex M3 processor (ARMv7-M, 100 MHz)

2008 – ARM Cortex A8 (core architecture ARMv7, 1 GHz)

now – ARM Cortex A9/A15 – MPCore architecture

Department of Microelectronics and Computer Science

Embedded Systems

100

ARM Cortex A9 in MPCore Configuration ARM Cortex A9 in MPCore Configuration

New MPCore technology allows to design SoC – four A9 cores

Department of Microelectronics and Computer Science

Embedded Systems

101

Processors with ARM CoreProcessors with ARM Core

 ARM processors are widely used in embedded systems and mobile devices
that require low power devices

 The ARM processor is the most commonly used device in the World. You can
find the processor in hard discs, mobile phones, routers, calculators and toys,

 Currently, more than 75% of 32-bits embedded CPUs market belongs to ARM
processors,

 The most famous and successful processor is ARM7TDMI, very often used in
mobile phones,

 Processing power of ARM devices allows to install multitasking operating
systems with TCP/IP software stack and filesystem (e.g. FAT32).

 The known operating systems for ARM processors: embedded Linux
(Embedded Debian, Embedded Ubuntu), Windows CE, Symbian, NUTOS
(Ethernut), RTEMS,...

Department of Microelectronics and Computer Science

Embedded Systems

102

ARM Powered ProductsARM Powered Products

Department of Microelectronics and Computer Science

Embedded Systems

103

Comparison of Selected ARMsComparison of Selected ARMs

Family Architecture
Version

Core Feature Cache (I/D)/MMU Typical MIPS @ MHz

ARM6 ARMv3 ARM610 Cache, no coprocessor 4K unified 17 MIPS @ 20 MHz
ARM7 ARMv3 ARM7500FE Integrated SoC. "FE" Added FPA and EDO memory controller. 4 KB unified 55 MIPS @ 56 MHz
ARM7TDMI ARMv5TEJ ARM7EJ-S Jazelle DBX, Enhanced DSP instructions, 5-stage pipeline 8 KB 120 MIPS @ 133 MHz
StrongARM ARMv4 SA-110 5-stage pipeline, MMU 16 KB/16 KB, MMU 235 MIPS @ 206 MHz

ARM8 ARMv4 ARM810[7]
5-stage pipeline, static branch prediction, double-bandwidth
memory

8 KB unified, MMU 1.0 DMIPS/MHz

ARM9TDMI ARMv4T ARM920T 5-stage pipeline 16 KB/16 KB, MMU 245 MIPS @ 250 MHz
ARM9E ARMv5TEJ ARM926EJ-S Jazelle DBX, Enhanced DSP instructions variable, TCMs, MMU 220 MIPS @ 200 MHz
ARM10E ARMv5TE ARM1020E VFP, 6-stage pipeline, Enhanced DSP instructions 32 KB/32 KB, MMU 300 MIPS @ 325 MHz
XScale ARMv5TE PXA27x MMX and SSE instruction set, four MACs, 32 Kb/32 Kb, MMU 800 MIPS @ 624 MHz
ARM11 ARMv6 ARM1136J(F)-S SIMD, Jazelle DBX, VFP, 8-stage pipeline variable, MMU 740 @ 532-665 MHz

Cortex ARMv7-A Cortex-A8
Application profile, VFP, NEON, Jazel le RCT, Thumb-2, 13-stage
superscalar pipeline

variable (L1+L2),
MMU+TrustZone

>1000 MIPS@
600 M-1 GHz

Department of Microelectronics and Computer Science

Embedded Systems

104

ARM Processor Core

Department of Microelectronics and Computer Science

Embedded Systems

105

ARM architecture (1)ARM architecture (1)

ARM processor core – processor designed according to ARM processor architecture
described in high level description language (VHDL lub Verilog) provided as macro-cell or
Intellectual Property (IP).

Features of ARM processor cores:
Supposed to be used for further development – microcontroller, SoC

32-bits RISC architecture

Optimised for low power consumption

Support three different modes of operation:

ARM instructions, 32 bits,

Thumb instructions, 16 bits,

Jazelle DBX - Direct java instructions.

Supported Big or Little Endian

Fast Interrupt Response mode for Real-time applications

Virtual memory

List of efficient and powerful instructions selected from both RISC and CISC architectures

Hardware support for higher level software (Ada, C, C++)

Department of Microelectronics and Computer Science

Embedded Systems

106

ARM architecture (2)ARM architecture (2)

Nomenclature:

ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {S}
x – core family

y – implemented Memory Management Unit

z – cache memory

T – Thumb mode (16 bit command)

D – Build in debugger, (usually via JTAG interface)

M – Build in multiplier, hardware multiplier (32x32 => 64 bits)

I – In-Circuit Emulator, another ICE debugger

E – Enhanced DSP instructions, Digital Signal Processing

J – Jazelle mode

F – Floating-point unit

S – Synthesizable version, available source code for further synthesis and EDA tools

Example of ARM cores:

 ARM7TDMI ARM9TDMI-EJ-S

Department of Microelectronics and Computer Science

Embedded Systems

107

ARM architecture (3)ARM architecture (3)

Core in version 1, v1
Base arithmetic and logic operations,

Hardware interrupts,

8 and 32 bits operations,

26 bits address

Core in version 2, v2
Implemented Multiply ACcumulate unit,

Available coprocessor,

Additional commands for threads synchronisation ,

26 bits address

Core in version 3, v3
New registers CPSR, SPSR, MRS, MSR,

Additional modes Abort and Undef,

32 bits address

Department of Microelectronics and Computer Science

Embedded Systems

108

ARM architecture (4)ARM architecture (4)

Core in version 4, v4
First standardised architecture

Available 16 bits operations

THUMB - new mode of operation, 16 bits commands

Added privileged mode

PC can be incremented by 64 bits

Core in version 5, v5
Improved cooperation between ARM and THUMB modes, mode of operation can be
changed during program execution,

Added instruction CLZ

Software breakpoints

Support for multiprocessor operation

Core in version 6, v6
Improved MMU (Management Memory Unit)

Hardware support for video and sound processing (FFT, MPEG4, SIMD etc...)

Improved exception handing (new flag in PSR)

Department of Microelectronics and Computer Science

Embedded Systems

109

 ARM instruction sets ARM instruction sets

Taking into consideration executed commands ARM processor
can operate in one of the following modes:

 ARM – 32-bits instructions optimised for time execution (code must
be aligned to 4 bytes),

 Thumb, Thumb-2 – 16-bits instructions optimised for code size
(code must be aligned to 2 bytes, processor registers are still 32 bits
wide),

 Jazelle v1 – mode used for direct execution of Java code (without
virtual machine JVM) (1000 Caffeine Marks @ 200MHz)

Department of Microelectronics and Computer Science

Embedded Systems

110

Support for Java language Support for Java language

ARM core marked with 'J'

Dynamic exchange of registers and stack

Hardware decoder of Java instructions

Department of Microelectronics and Computer Science

Embedded Systems

111

Programming Model – RegistersProgramming Model – Registers

ARM Processor provides 37 registers (all are 32-bits wide). The
registers are arranged into several banks (accessible bank being
governed by the current processor mode):

PC (r15) – Program Counter

CPSR – Main status register, Current Program Status Register

SPSR – Copy of status register, available in different modes of operation
Saved Program Status Register

LR (r14) – Link Register, used for stack frame during execution of
subroutines or return address register

SP (r13) – used as a Stack Pointer

r0 - r12 – General purpose registers (dependent of the mode of operation)

Department of Microelectronics and Computer Science

Embedded Systems

112

Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during
ALU operations (QADD, QDADD, QSUB or
QDSUB, or operation of SMLAxy, SMLAWx,
result more than 32 bits)

Interrupt disable bits
I=1 Disables the IRQ

F=1 Disables the FIQ

Flags for xT architecture

T=0 Processor in ARM mode

T=1 Processor in Thumb mode

Mode bits
Specify the processor operation mode
(seven modes)

Read/Modify/Write strategy should be used to write data to PSR (to ensure further
compatibility)

Department of Microelectronics and Computer Science

Embedded Systems

113

Programming Model – modes of processor operationProgramming Model – modes of processor operation

Operating mode – defined which resources of processor are available, e.g. registers,
memory regions, peripheral devices, stack, etc...

ARM processor can operate in on of 7 modes:
User – user mode (not privileged), dedicated for user programs execution

FIQ – fast interrupts and high priority exceptions (used only when really necessary)

IRQ – handling of low or normal priority interrupts

Supervisor – supervisor mode gives access to all resource of the processor, used
during debugging. Available after reset or during interrupt handling.

Abort – used for handling of memory access exceptions (memory access violations)

Undef – triggered when unknown or wrong commands is detected

System – privileged mode, access to registers as in user mode, however various
memory segments are available

Department of Microelectronics and Computer Science

Embedded Systems

114

Programming Model – registers available in User or System modes Programming Model – registers available in User or System modes

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort

Department of Microelectronics and Computer Science

Embedded Systems

115

Programming Model – registers available in FIQ modeProgramming Model – registers available in FIQ mode

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ Mode

Department of Microelectronics and Computer Science

Embedded Systems

116

Programming Model – registers available in IRQ modeProgramming Model – registers available in IRQ mode

IRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Embedded Systems

117

Programming Model – registers available in Supervisor modeProgramming Model – registers available in Supervisor mode

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Embedded Systems

118

Programming Model – registers available in Abort modeProgramming Model – registers available in Abort mode

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Embedded Systems

119

Programming Model – registers available in Undef modeProgramming Model – registers available in Undef mode

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)

Department of Microelectronics and Computer Science

Embedded Systems

120

Programming Model – registers summaryProgramming Model – registers summary

User
mode
r0-r7,
r15,
and
cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12,
r15,
and
cpsr

T humb s tate
L ow registers

T humb s tate
H igh registers

Note: System mode uses the User mode register set

Department of Microelectronics and Computer Science

Embedded Systems

121

Interrupts and Exceptions

Department of Microelectronics and Computer Science

Embedded Systems

122

Handling of ExceptionsHandling of Exceptions

Department of Microelectronics and Computer Science

Embedded Systems

123

ExceptionException

Exception – mechanism that control flow of data used in microprocessors-based
systems and programming languages to handling asynchronous and
unpredictable situations.

Exceptions can be divided into:

Faults,

Aborts,

Traps.

In addition to exceptions processor supervises also interrupts.

ARM processors can handle two different modes of interrupts:

FIQ - Fast interrupt (interrupt with low latency handling),

IRQ - Normal Interrupt.

Department of Microelectronics and Computer Science

Embedded Systems

124

Interrupts Interrupts

Interrupt or IRQ – Interrupt ReQuest – is an asynchronous signal indicating the
need for attention or a synchronous event in software indicating the need for a
change in execution. A hardware interrupt causes the processor to save its state
of execution and begin execution of an interrupt handler. Software interrupts are
usually implemented as instructions in the instruction set, which cause a context
switch to an interrupt handler similar to a hardware interrupt. Interrupts are a
commonly used technique for computer multitasking, especially in real-time
computing. Such a system is said to be interrupt-driven.

Examples of interrupts:

Receive or transmission of data via serial interface (e.g. EIA RS232),

Change of state or detected slope on processor's pin.

Status of device can be checked using software commands, however it requires
continuous reading and checking of status register of the device. This operation
is called polling. Even simple polling usually requires a significant amount of
processing power and unnecessary loads processor, e.g. transmission of single
symbol lasts ~100 us (processor can execute hundreds of thousands of
instructions during this time).

Department of Microelectronics and Computer Science

Embedded Systems

125

Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U n d e f i n e dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during
ALU operations (QADD, QDADD, QSUB or
QDSUB, or operation of SMLAxy, SMLAWx,
result more than 32 bits)

Interrupt disable bits
I=1 Disables the IRQ

F=1 Disables the FIQ

Flags for xT architecture

T=0 Processor in ARM mode

T=1 Processor in Thumb mode

Mode bits
Specify the processor operation mode
(seven modes)

Department of Microelectronics and Computer Science

Embedded Systems

126

Handling of exceptionsHandling of exceptions

Execution of not allowed operation in given processor mode can cause
exception, e.g. access to protected memory segment.

Handling of exception covers all operations when the exception was
detected until the first command of exception handler.

1. a) Change operating mode to ARM (from Thumb or Jazelle),
b) Change to interrupt of exception mode (FIQ/IRQ),
c) Set interrupt level mask on level equal to the handling interrupt (disable

 interrupts).
d) Change registers bank:

make a copy of CPSR → SPSR and PC (r15) → Link Register (r14),
e) Make active SPSR register.

2. Calculate exception vector (interrupt).

3. Branch to the first instruction handling exception or interrupt.

4. Return from exception/interrupt:
a) Recover CPSR (r15) register,
b) Recover PC (Link Register r14),
c) Return to the interrupted program.

Department of Microelectronics and Computer Science

Embedded Systems

127

Exceptions (1)Exceptions (1)

Exception handling by the ARM processor is controlled
through the use of an area of memory called the
vector table. This lives (normally) at the bottom of the
memory map from 0x0 to 0x1c. Within this table one
word is allocated to each of the various exception
types. This word will contain some form of ARM
instruction that should perform a branch. It does not
contain an address.

When one of these exceptions is taken, the ARM goes
through a low-overhead sequence of actions in order to
invoke the appropriate exception handler. The current
instruction is always allowed to complete (except in case
of Reset).

IRQ is disabled on entry to all exceptions; FIQ is also
disabled on entry to Reset and FIQ.

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Memory image

Department of Microelectronics and Computer Science

Embedded Systems

128

Exceptions (2)Exceptions (2)

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Vector table is located in memory address 0x0.

The base address of exception table can be
modified: 0xFFFF.0000 (ARM 7/9/10).

Memory image

Reset - executed on power on

Undef - when an invalid instruction reaches the execute
stage of the pipeline

SWI - when a software interrupt instruction is executed

Prefetch - when an instruction is fetched from memory that
is invalid for some reason, if it reaches the execute stage
then this exception is taken

Data - if a load/store instruction tries to access an invalid
memory location, then this exception is taken

IRQ - normal interrupt

FIQ - fast interrupt

Department of Microelectronics and Computer Science

Embedded Systems

129

Exceptions TableExceptions Table

LDR PC, =FIQ_Addr

LDR PC, =IRQ_Addr

NOP ; Reserved vector

LDR PC, =Abort_Addr

LDR PC, =Prefetch_Addr

LDR PC, =SWI_Addr

LDR PC, =Undefined_Addr

LDR PC, =Reset_Addr

Memory image

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Department of Microelectronics and Computer Science

Embedded Systems

130

Exception Handlers (1)Exception Handlers (1)

IRQ_Addr:
/*- Manage Exception Entry */
/*- Adjust and save LR_irq in IRQ stack */
 sub lr, lr, #4
 stmfd sp!, {lr}
/*- Save r0 and SPSR in IRQ stack */
 mrs r14, SPSR
 stmfd sp!, {r0,r14}
/*- Write in the IVR to support Protect Mode */
/*- No effect in Normal Mode */
/*- De-assert the NIRQ and clear the source in Protect Mode */
 ldr r14, =AT91C_BASE_AIC
 ldr r0 , [r14, #AIC_IVR]
 str r14, [r14, #AIC_IVR]
...

/*- Branch to the routine pointed by the AIC_IVR */
 mov r14, pc
 bx r0 /* Branch to IRQ handler */
...
/*- Restore adjusted LR_irq from IRQ stack directly in the PC */
 ldmia sp!, {pc}^ /* ^ - Recover CSPR */

Department of Microelectronics and Computer Science

Embedded Systems

131

Exception Handlers (2)Exception Handlers (2)

/* lowlevel.c */
/*---
 * Function Name : default_spurious_handler
 * Object : default handler for spurious interrupt
 ---/
void default_spurious_handler(void)
{
 dbgu_print_ascii("-F- Spurious Interrupt\n\r ");
 while (1);
}

/*---
 * Function Name : default_fiq_handler
 * Object : default handler for fast interrupt
 ---/
void default_fiq_handler(void)
{
 dbgu_print_ascii("-F- Unexpected FIQ Interrupt\n\r ");
 while (1);
}

Department of Microelectronics and Computer Science

Embedded Systems

132

Advanced Interrupt Controller

Department of Microelectronics and Computer Science

Embedded Systems

133

Block diagram of AIC of ARM processorBlock diagram of AIC of ARM processor

Manages vectorised interrupts,

Can monitor up to 32 internal and external interrupts,

Each interrupt can be disabled/enabled (masked),

Handles normal nIRQ and fast nFIR interrupts,

8 priority levels (0 – the lowest, 7 – the highest),

Handles interrupts triggered with level or edge.

Department of Microelectronics and Computer Science

Embedded Systems

134

Advanced Interrupt Controller of ARM processorAdvanced Interrupt Controller of ARM processor

AIC uses system clock, however the clock signal cannot be disabled to save
power.

Interrupts can be used to wake up processor from sleep or hibernation mode.

Interrupt with number 0 (FIQ) is always FIQ type.

Interrupt with number 1 (SYS) is logic sum of a few interrupts of internal
peripheral devices of ARM core, programmer control priority and select interrupts

Interrupts with numbers 2-31 (PID2-PID331) can be used for others internal and
external devices and I/O ports.

AIC is able to supervise interrupts triggered by selected level or edge.

Department of Microelectronics and Computer Science

Embedded Systems

135

Shared InterruptsShared Interrupts

Internal peripheral devices use a single system shared interrupt SYS (number
defined by constant AT91C_ID_SYS = 1).

Devices handled by system interrupt:

Timers PIT, RTT, WDT,

Diagnostic interface (DBGU),

DMA controller (PMC),

Reset circuit (RSTC),

Memory Controller (MC).

Therefore, the SYS handler should check state of all interrupts and execute
functions-handlers for the active interrupts (mask register AIC_MSK).

Department of Microelectronics and Computer Science

Embedded Systems

136

Block diagram of AICBlock diagram of AIC

Department of Microelectronics and Computer Science

Embedded Systems

137

Internal InterruptsInternal Interrupts

IRQ mask – AIC_IECR/IDCR (status → AIC_IMR),

Clear interrupt flag when AIC_IVR register is read (for FIQ → AIC_FVR),

Interrupt status available in AIC_IPR

Interrupt can be triggered by high level or rising edge

Department of Microelectronics and Computer Science

Embedded Systems

138

External InterruptsExternal Interrupts

User can select method of triggering: level (high, low) or edge (rising,
falling)

Department of Microelectronics and Computer Science

Embedded Systems

139

ID Numbers for Peripheral Devices ID Numbers for Peripheral Devices

// ***

// PERIPHERAL ID DEFINITIONS FOR AT91SAM9263

// ***

#define AT91C_ID_FIQ (0) // Advanced Interrupt Controller (FIQ)

#define AT91C_ID_SYS (1) // System Controller

#define AT91C_ID_PIOA (2) // Parallel IO Controller A

#define AT91C_ID_PIOB (3) // Parallel IO Controller B

#define AT91C_ID_PIOCDE (4) // Parallel IO Controller C, Parallel IO Controller D, Parallel IO Controller E

#define AT91C_ID_US0 (7) // USART 0

#define AT91C_ID_US1 (8) // USART 1

#define AT91C_ID_US2 (9) // USART 2

#define AT91C_ID_MCI0 (10) // Multimedia Card Interface 0

#define AT91C_ID_MCI1 (11) // Multimedia Card Interface 1

#define AT91C_ID_CAN (12) // CAN Controller

#define AT91C_ID_TWI (13) // Two-Wire Interface

#define AT91C_ID_SPI0 (14) // Serial Peripheral Interface

ID=0, ID=30-31 external interrupts, others are internal

Department of Microelectronics and Computer Science

Embedded Systems

140

Registers of AIC (1)Registers of AIC (1)

Department of Microelectronics and Computer Science

Embedded Systems

141

Registers of AIC – mapped as structRegisters of AIC – mapped as struct

typedef struct _AT91S_AIC {

AT91_REG AIC_SMR[32]; // Source Mode Register

AT91_REG AIC_SVR[32]; // Source Vector Register

AT91_REG AIC_IVR; // IRQ Vector Register

AT91_REG AIC_FVR; // FIQ Vector Register

AT91_REG AIC_ISR; // Interrupt Status Register

AT91_REG AIC_IPR; // Interrupt Pending Register

AT91_REG AIC_IMR; // Interrupt Mask Register

AT91_REG AIC_CISR; // Core Interrupt Status Register

...

} AT91S_AIC, *AT91PS_AIC;

#define AT91C_BASE_AIC (AT91_CAST(AT91PS_AIC) 0xFFFFF000) // (AIC)
Base Address

Department of Microelectronics and Computer Science

Embedded Systems

142

Registers of AIC (2)Registers of AIC (2)

AIC_SMR[32]; // Source Mode Register – configure method of int triggering, priority

AIC_SVR[32]; // Source Vector Register – 32-bit addresses for int handlers

AIC_IVR; // IRQ Vector Register – address of currently handled normal interrupt

AIC_FVR; // FIQ Vector Register – address of currently handled fast interrupt

AIC_ISR; // Interrupt Status Register – number of currently handled interrupt

AIC_IPR; // Interrupt Pending Register – register with pending interrupts, bits 0-31

AIC_IMR; // Interrupt Mask Register – register with masks for interrupts, bits 0-31

AIC_CISR; // Core Interrupt Status Register – status for IRQ/FIQ core interrupts

AIC_IECR; // Interrupt Enable Command Register – register for enabling interrupts

AIC_IDCR; // Interrupt Disable Command Register – register for disabling interrupts

AIC_ICCR; // Interrupt Clear Command Register – register for deactivating interrupts

AIC_ISCR; // Interrupt Set Command Register – register for triggering interrupts

AIC_EOICR; // End of Interrupt Command Register – inform that INT treatment is finished

AIC_SPU; // Spurious Vector Register – handler for spurious interrupt

Department of Microelectronics and Computer Science

Embedded Systems

143

I/O – InterruptsI/O – Interrupts

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.

Department of Microelectronics and Computer Science

Embedded Systems

144

Keyboard interrupts configurationKeyboard interrupts configuration

Buttons are connected to Port C – interrupt generated by input signals of ports
C/D/E (use mask AT91C_ID_PIOCDE)

Configuration of interrupts for C/D/E port(s):

1. Configure both ports as inputs (left and right hand buttons), activate clock signal

2. Turn off interrupts for port C/D/E (register AIC_IDCR, mask AT91C_ID_PIOCDE)

3. Configure pointer for C/D/E port interrupt handler – use AIC_SVR table
AIC_SVR[AT91C_ID_PIOCDE] = ...

4. Configure method of interrupt triggering: high level, (AIC_SMR register, triggered by
AT91C_AIC_SRCTYPE_EXT_HIGH_LEVEL and priority, e.g. AT91C_AIC_PRIOR_HIGHEST)

5. Clear interrupt flag for port C/D/E (register AIC_ICCR)

6. Turn on interrupts for both input ports (register PIO_IER)

7. Turn on interrupts for C/D/E port (register AIC_IECR)

Department of Microelectronics and Computer Science

Embedded Systems

145

INT Handler for KeyboardINT Handler for Keyboard

Set address for interrupt function (handler) for the interrupt (32-bits address)

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) BUTTON_IRQ_handler;

Keyboard interrupt handler

void BUTTON_IRQ_handler (void) {

 If flag on the suitable bit-position is active the button is/was pressed (PIO_ISR)

 Read PIO_ISR status register to clear the flag

}

Department of Microelectronics and Computer Science

Embedded Systems

146

Interrupt from PITInterrupt from PIT

Main Counter

Secondary Counter

Department of Microelectronics and Computer Science

Embedded Systems

147

PIT Timer interrupts configurationPIT Timer interrupts configuration

PIT Timer generates system interrupt (ID number 1) – interrupt from
processor peripheral devices (System Controller, mask AT91C_ID_SYS)

Configuration of PIT Timer interrupts:
1. Calculate time counter value for defined period of time, e.g. 5 ms

2. Disable PIT Timer interrupts – only during configuration (AIC_IDCR, interrupt nr 1 – processor
peripheral devices, used defined constant AT91C_ID_SYS)

3. Configure pointer for timer interrupt handler – handler for processor peripheral devices, see
AIC_SVR table (AIC_SVR[AT91C_ID_SYS])

4. Configure method of interrupt triggering: level, edge, (AIC_SMR register, triggered by
AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE, and priority, e.g. AT91C_AIC_PRIOR_LOWEST)

5. Clear interrupt flag of peripheral devices (AIC_ICCR register)

6. Turn on the interrupt AT91C_ID_SYS (AIC_IECR register)

7. Turn on PIT Timer interrupt (AT91C_PITC_PITIEN register)

8. Turn on PIT Timer (AT91C_PITC_PITEN)

9. Clear local counter (variable Local_Counter) to see if Timer triggers interrupts

Department of Microelectronics and Computer Science

Embedded Systems

148

INT Handler for TimerINT Handler for Timer

Set address for interrupt function (handler) for the interrupt (32-bits address)

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) TIMER_INT_handler;

Timer interrupt handler

void TIMER_INT_handler (void) {

 if flag PITIE for Timer interrupt is set (PIT_MR register) /* interrupt enabled */

 if flag PITS in PIT_SR register is set /* timer requested int */

 read the PITC_PIVR register to clear PITS flag in PIT_SR

 /* delay ~100 ms */

 TimerCounter++; /* LedToggle... */

 else another device requested interrupts

 check which device requested INT,

 process INT, clear INT flag,

 if unknown device, just increase counter of unknown interrupts

}

Department of Microelectronics and Computer Science

Embedded Systems

149

Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU generates system interrupt (ID number 1) – interrupt from processor
peripheral devices (System Controller, mask AT91C_ID_SYS). We have
distinguish which device triggered interrupt. A few interrupts can be
triggered.

DGBU can generate the following interrupts:
RXRDY: Enable RXRDY Interrupt

TXRDY: Enable TXRDY Interrupt

ENDRX: Enable End of Receive Transfer Interrupt

ENDTX: Enable End of Transmit Interrupt

OVRE: Enable Overrun Error Interrupt

FRAME: Enable Framing Error Interrupt

PARE: Enable Parity Error Interrupt

TXEMPTY: Enable TXEMPTY Interrupt

TXBUFE: Enable Buffer Empty Interrupt

RXBUFF: Enable Buffer Full Interrupt

COMMTX: Enable COMMTX (from ARM) Interrupt

COMMRX: Enable COMMRX (from ARM) Interrupt

Department of Microelectronics and Computer Science

Embedded Systems

150

Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU interrupt handler

void DGBU_INT_handler (void) {

 int IntStatus;

 SysIRQCounter++; /* to have a feeling how many system INTs are triggered */

 IntStatus = DGBU->SR;

 if (IntStatus & DBGU->IMR) /* interrupt from DGBU */

 if INT from TxD /* transmitter interrupt */

 WriteNewData (); /* be careful INTcan be also generated in case of error */

 else if INT from RxD

 ReadDataToBuffer();/* INT can be also generated when error occur */

 else

 other device triggered INT;

}

Department of Microelectronics and Computer Science

Embedded Systems

151

Interrupt Handlers in C (1)Interrupt Handlers in C (1)

Functions used as handlers require usage of preprocessor directive __attribute__
((interrupt("IRQ")))

void INTButton_handler()__attribute__ ((interrupt("IRQ")));

void INTPIT_handler()__attribute__ ((interrupt("IRQ")));

void Soft_Interrupt_handler()__attribute__ ((interrupt("SWI")));

void Abort_Exception_handler()__attribute__ ((interrupt("ABORT")));

void Undef_Exception_handler()__attribute__ ((interrupt("UNDEF")));

void __irq IRQ_Handler(void)

Functions used as a handler is similar to normal function in C language

void INTButton_handler() {

// standard C function

}

During laboratory we do not use __attribute__ ((interrupt("IRQ"))), we use functions
provided by ATMEL, defined in startup.S file.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151

