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Documentation for AT91SAM9263 MicrocontrollerDocumentation for AT91SAM9263 Microcontroller
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Documentation for AT91SAM9263 – I/O PortsDocumentation for AT91SAM9263 – I/O Ports

Źródło: ATMEL, doc6249.pdf, strona 425
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Block Diagram of 32-bits I/O PortBlock Diagram of 32-bits I/O Port

Advanced Peripheral Bus
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Power Consumption vs Clock SignalPower Consumption vs Clock Signal
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Control Registers for I/O portsControl Registers for I/O ports
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Memory MapMemory Map
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Documentation as Source of Registers' Information Documentation as Source of Registers' Information 
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Simplified Block Diagram of I/O Port Simplified Block Diagram of I/O Port 

PIO_PDSR (Pin Data Status Register)

Port I/O

PIO_OER

D                 Q

Clk                 

Clk

PIO_ODR = 1

PIO_ODR – Output Disable Register

PIO_OER – Output Enable Register

PIO_OSR – Output Status Register

PIO_OSR

R                 Q

               
PIO_SODR (set)

PIO_CODR (clear)

PIO_ODSR (Output Data Status Reg.)

Clk

S                
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I/O Port – How to Control Output ? I/O Port – How to Control Output ? 

Pull-Up Enable Reg.

PIO Enable Reg.

Periph. A status Reg.

Output Enable Reg.

Set Output Data Reg.

Multi-driver  
Enable Reg.
(OpenDrain)

100 k
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I/O – How to Read Input ?I/O – How to Read Input ?

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.
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Digital SignalDigital Signal

Digital Signal can be 
characterised with:

f  –  frequency (period),

A – amplitude.

Digital circuits can be triggered 
with:

Change of signal level (lower or 
higher than signal threshold 
level),

Change of signal slope 
(transaction of digital signal from 
'0' to '1' or from '1' to '0').
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Schematic Diagrams (1)Schematic Diagrams (1)

Power Supply Bus Symbols

Ground Symbols
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Schematic Diagrams (2)Schematic Diagrams (2)

Electrical connections

No connection

Connection



Department of Microelectronics and Computer Science

 

Schematic Diagram – How to Draw ?Schematic Diagram – How to Draw ?
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Schematic Diagrams – Better Way Schematic Diagrams – Better Way 
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Timing charts during I/O operationsTiming charts during I/O operations

1 clock delay, when output driven from registers SODR/CODR,

2 clocks delay during access to the whole port (32 bits, set bits of 
PIO_OWSR register). 
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Reading state of buttonReading state of button

IRQ

Polling loop Interrupt

Asynchronous signal
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How to Control Clock Signal for Peripheral DevicesHow to Control Clock Signal for Peripheral Devices

write_register(PMC_PCER,0x00000110); // Peripheral clocks 2 and 4 are enabled.

write_register(PMC_PCDR,0x00000010); // Peripheral clock 2 is disabled.

PMC Peripheral Clock Enable Register
Register Name:PMC_PCER
Address: 0xFFFFFC10
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I/O Registers for I/O PortsI/O Registers for I/O Ports

typedef volatile unsigned int *AT91_REG;     // Hardware register definition

 AT91_REG  PIO_PER = 0xFFFFF200; // PIO Enable Register, 32-bit register

AT91_REG  PIO_PDR = 0xFFFFF204; // PIO Disable Register

AT91_REG  PIO_PSR = 0xFFFFF208; // PIO Status Register

AT91_REG  Reserved0[1]= 0xFFFFF20C; // Filler 

AT91_REG  PIO_OER; // Output Enable Register

AT91_REG  PIO_ODR; // Output Disable Registerr

AT91_REG  PIO_OSR; // Output Status Register

AT91_REG  Reserved1[1]; // 

AT91_REG  PIO_IFER; // Input Filter Enable Register

AT91_REG  PIO_IFDR; // Input Filter Disable Register

AT91_REG  PIO_IFSR; // Input Filter Status Register

AT91_REG  Reserved2[1]; // 

AT91_REG  PIO_SODR; // Set Output Data Register

AT91_REG  PIO_CODR; // Clear Output Data Register

AT91_REG  PIO_ODSR; // Output Data Status Register
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I/O Registers Mapped into Structure (1)I/O Registers Mapped into Structure (1)

typedef volatile unsigned int AT91_REG;     // Hardware register definition

typedef struct _AT91S_PIO {

AT91_REG  PIO_PER; // PIO Enable Register, 32-bit register

AT91_REG  PIO_PDR; // PIO Disable Register

AT91_REG  PIO_PSR; // PIO Status Register

AT91_REG  Reserved0[1]; // 

AT91_REG  PIO_OER; // Output Enable Register

AT91_REG  PIO_ODR; // Output Disable Registerr

AT91_REG  PIO_OSR; // Output Status Register

AT91_REG  Reserved1[1]; // 

AT91_REG  PIO_IFER; // Input Filter Enable Register

AT91_REG  PIO_IFDR; // Input Filter Disable Register

AT91_REG  PIO_IFSR; // Input Filter Status Register

AT91_REG  Reserved2[1]; // 

AT91_REG  PIO_SODR; // Set Output Data Register

AT91_REG  PIO_CODR; // Clear Output Data Register

AT91_REG  PIO_ODSR; // Output Data Status Register

} AT91S_PIO, *AT91PS_PIO;
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I/O Registers Mapped into Structure (2)I/O Registers Mapped into Structure (2)

Declartion of a new structure type creates a template for registers mapped on the memory of the 
processor. A Symbolic name is assigned to each register. The created structure is called according 
to used processor and functionality defined by registers, e.g. AT91S_PIO and *AT91PS_PIO.

Lack of information describing access to registers, e.g. access mode R/W, value after reset, offset.

The information can be supplied as a comments in header file. 

typedef struct _AT91S_PIO { /*     Register name              R/W     Reset value                Offset

AT91_REG  PIO_PER; // PIO Enable Register W - 0x00

AT91_REG  PIO_PDR; // PIO Disable Register W - 0x04

AT91_REG  PIO_PSR; // PIO Status Register R - 0x08

AT91_REG  Reserved0[1]; // memory filler 

AT91_REG  PIO_OER; // Output Enable Register     W - 0x10

AT91_REG  PIO_ODR; // Output Disable Register    W - 0x14

AT91_REG  PIO_OSR; // Output Status Register W - 0x18

}  AT91S_PIO, *AT91PS_PIO

/* structure describing registers file (block of registers) for I/O ports PIOA...PIOE */

#define AT91C_BASE_PIOA      (AT91PS_PIO) 0xFFFFF200     // (PIOA) Base Address

/* definition of bit mask for zero bit in port PA */

#define AT91C_PIO_PA0        (1 <<  0) // Pin Controlled by PA0

How can we set 0 and 19 bits of OER register ?
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Manipulation on Registers BitsManipulation on Registers Bits

Save value to register:

AT91PS_PIO->PIO_OER = 0x5;

Read value from register:

volatile unsigned int ReadData;

ReadData = AT91PS_PIO->PIO_OSR;

Bit operations:
AT91C_BASE_PIOA->ENABLE_REGISTER  = (AT91C_PIO_PA0 | AT91C_PIO_PA19);

AT91C_BASE_PIOA->DISABLE_REGISTER = (AT91C_PIO_PA0 | AT91C_PIO_PA19);

How to negate bit ?
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Registers mapped into structure - exerciseRegisters mapped into structure - exercise

Registers of DRAM memory are 
mapped into memory space,

Base address: 0xFFFE.2000,

Registers type: 8, 16, 32 bit,

Task to do:

Create new struct type for DRAM 
registers,

Declare pointer,

Read, write data from memory, 

Set and clear configuration 
registers (bit 5, bit 29),

Check busy flag in status register 
(bit 9)

DRAM_WR
DRAM_
REFRESH

DRAM_STATUS

DRAM_RD

DRAM_CONF

DRAM_BASE_ADDRESS

DRAM_ADDRESS_MASK

DRAM_WR_LATENCY
DRAM_
BS

DRAM_RD_LATENCY

DRAM_CS

Base address
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Bit-fields – Register Mapped as Structure Bit-fields – Register Mapped as Structure 

Struct Port_4bit {

unsigned Bit_0 : 1;

unsigned Bit_1 : 1;

unsigned Bit_2 : 1;

unsigned Bit_3 : 1;

unsigned Bit_Filler : 4;

};

#define PORTC (*(Port_4bit*)0x4010.0002U)

int i = PORTC.Bit_0;  /* read data */

PORTC.Bit_2 = 1;    /* write data */

Port_4bit* PortTC = (Port_4bit*) 0x4010.000FU;

int i = PortTC->Bit_0;

PortTC->Bit_0 = 1;

Bit-fields allows to 'pack' data – 
usage of single bits, e.g. bit flags

Increase of code complexity required 
for operations on registers

Bit-fields can be mapped in different 
ways in memory according different 
compilers and processors 
architectures 

Cannot use offsetof macro to 
calculate data offset in structure

Cannot use sizeof macro to calculate 
size of data

Tables cannot use bit-fields
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Union – Registers With Different FunctionalitiesUnion – Registers With Different Functionalities

extern volatile union {

  struct {

    unsigned EID16 :1;

    unsigned EID17 :1;

    unsigned :1;

    unsigned EXIDE :1;

    unsigned  :1;

    unsigned SID0 :1;

    unsigned SID1 :1;

    unsigned SID2 :1;

  };

  struct {

    unsigned :3;

    unsigned EXIDEN :1;

  };

} RXF3SIDLbits_;

Structures have the same address:

#define RXF3SIDLbits 
(*(Port_RXF3SIDLbits_*)0x4010.0000)

Access to data mapped into structure:

/* data in first structure */
RXF3SIDLbits.EID16 = 1;

/* data in second structure */
RXF3SIDLbits.EXIDEN = 0; 
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Example of Control Register – Real-time TimerExample of Control Register – Real-time Timer

// -------- RTTC_RTMR : (RTTC Offset: 0x0) Real-time Mode Register -------- 

#define AT91C_RTTC_RTPRES     (0xFFFF <<  0) // (RTTC) Real-time Timer Prescaler Value

#define AT91C_RTTC_ALMIEN     (0x1 << 16) // (RTTC) Alarm Interrupt Enable

#define AT91C_RTTC_RTTINCIEN (0x1 << 17) // (RTTC) Real Time Timer Increment Interrupt Enable

#define AT91C_RTTC_RTTRST     (0x1 << 18) // (RTTC) Real Time Timer Restart  
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Registers Definition – Header Files (1)Registers Definition – Header Files (1)

#ifndef _PROJECT_H

#define _PROJECT_H

/* 
 * Include your AT91 Library files and specific 
 * compiler definitions
 */

#include "AT91SAM9263-EK.h"

#include "AT91SAM9263.h"

#endif  // _PROJECT_H

/*------------------------*/
/*  LEDs Definition  */
/*------------------------*/

#define AT91B_LED1     AT91C_PIO_PB8   /* DS1 */

#define AT91B_LED2    AT91C_PIO_PC29  /* DS2 */

#define AT91B_NB_LEB         2

#define AT91D_BASE_PIO_LED1  (AT91C_BASE_PIOB)

#define AT91D_BASE_PIO_LED2  (AT91C_BASE_PIOC)

#define AT91D_ID_PIO_LED1    (AT91C_ID_PIOB)

#define AT91D_ID_PIO_LED2    (AT91C_ID_PIOC)

/*--------------------------------*/
/* Push Button Definition  */
/*--------------------------------*/

#define AT91B_BP1       AT91C_PIO_PC5  // Left click

#define AT91B_BP2       AT91C_PIO_PC4  // Right click

#define AT91D_BASE_PIO_BP    AT91C_BASE_PIOC

#define AT91D_ID_PIO_BP      AT91C_ID_PIOCDE
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Registers Definition – Header Files (2)Registers Definition – Header Files (2)

#define AT91C_PIO_PB8        (1 <<  8)    // Pin 
Controlled by PB8

#define AT91C_PIO_PC29       (1 << 29) // Pin 
Controlled by PC29

#define AT91C_BASE_PIOB      
(AT91_CAST(AT91PS_PIO) 0xFFFFF400) // 
(PIOB) Base Address

#define AT91C_BASE_PIOC      
(AT91_CAST(AT91PS_PIO) 0xFFFFF600) // 
(PIOC) Base Address

#define AT91C_ID_PIOB   ( 3) // Parallel IO 
Controller B

#define AT91C_PIO_PC4        (1 <<  4) // Pin 
Controlled by PC4

#define AT91C_PIO_PC5        (1 <<  5) // Pin 
Controlled by PC5

#define AT91C_ID_PIOCDE ( 4) // Parallel IO 
Controller C, Parallel IO Controller D, Parallel IO 
Controller E

/*------------------------*/
/*  LEDs Definition  */
/*------------------------*/

#define AT91B_LED1     AT91C_PIO_PB8   /* DS1 */

#define AT91B_LED2    AT91C_PIO_PC29  /* DS2 */

#define AT91B_NB_LEB         2

#define AT91D_BASE_PIO_LED1  (AT91C_BASE_PIOB)

#define AT91D_BASE_PIO_LED2  (AT91C_BASE_PIOC)

#define AT91D_ID_PIO_LED1    (AT91C_ID_PIOB)

#define AT91D_ID_PIO_LED2    (AT91C_ID_PIOC)

/*--------------------------------*/
/* Push Button Definition  */
/*--------------------------------*/

#define AT91B_BP1       AT91C_PIO_PC5  // Left click

#define AT91B_BP2       AT91C_PIO_PC4  // Right click

#define AT91D_BASE_PIO_BP    AT91C_BASE_PIOC

#define AT91D_ID_PIO_BP      AT91C_ID_PIOCDE
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ATMEL Development Board – LEDs, ButtonsATMEL Development Board – LEDs, Buttons

#define AT91B_LED1           AT91C_PIO_PB8   /* DS1 */

#define AT91B_LED2           AT91C_PIO_PC29  /* DS2 */

#define AT91B_BP1             AT91C_PIO_PC5  // Left click

#define AT91B_BP2             AT91C_PIO_PC4  // Right clic
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Configuration of I/O portsConfiguration of I/O ports

#define AT91C_PIO_PB8        (1U <<  8) // Pin Controlled by PB8

#define AT91C_BASE_PIOB   (AT91PS_PIO) 0xFFFF.F400U // (PIOB) Base Address

Input mode:

  /* Enable the peripheral clock for the PIO controller, This is mandatory when PIO are configured as input */

  AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_PIOCDE ); // peripheral clock enable register (port C, D, E)

  /* Set the PIO line in input */

  AT91C_BASE_PIOD->PIO_ODR = 0x0000.000FU; // 1 – Set direction of the pin to input 

  /* Set the PIO controller in PIO mode instead of peripheral mode */

  AT91C_BASE_PIOD->PIO_PER = AT91C_PIO_PB8; // 1 – Enable PIO to control the pin

Output mode:

  /* Configure the pin in output */

  AT91C_BASE_PIOB->PIO_OER = AT91C_PIO_PB8 ;

  /* Set the PIO controller in PIO mode instead of peripheral mode */

  AT91C_BASE_PIOD->PIO_PER = 0xFFFF.FFFFU; // 1 – Enable PIO to control the pin

  AT91C_BASE_PIOE->PIO_PER = AT91C_PIO_PB31;

  /* Disable pull-up */

  AT91C_BASE_PIOA->PIO_PPUDR = 0xFFFF.0000U; // 1 – Disable the PIO pull-up resistor



Department of Microelectronics and Computer Science

Embedded Systems

35

Time in processor systems
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How can We Measure Time ?How can We Measure Time ?

Generate defined delay ?

Generate date and time ?

Measure length of pulses ?

Delay in Real-Time systems ?
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Crystal Clock... Crystal Clock... 

Quartz from chemical point of view is a compound called silicon dioxide. 
Properly cut and mounted crystal of quartz can be made to vibrate, or 
oscillate, using an alternating electric current. The frequency at which the 
crystal oscillates is dependent on its shape and size, and the positions at 
which electrodes are placed on it. If the crystal is accurately shaped and 
positioned, it will oscillate at a desired frequency; in clocks and watches, 
the frequency is usually 32,768 Hz, as a crystal for this frequency is 
conveniently small. Such a crystals are usually used in digital systems.
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TimersTimers

Timer – peripheral device of processor dedicated for time measurement 
(counting single processor cycles). Flag is marked or interrupt is triggered 
when timer counter reaches threshold level. Timers are used as a system 
time source. They can be used to generate delays, switch threads, generate 
events, etc...

Example of different Timers:
PIT Timer (Periodic Interval Timer, Programmable Interrupt Timer),

RTT Timer (Real-Time Timer),

PWM Timer (Pulse Width Modulation), 

TC Timer (Timer Counter),

WDT Timer (Watch-dog).
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Periodic Interval Timer
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Block Diagram of PITBlock Diagram of PIT

Main Counter

Secondary Counter
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Automatic Reload of TimerAutomatic Reload of Timer

0x00000

0xFFFFF

PITS=1

Period of generated interrupts:

(PIV_VALUE+1)*16 / Clk

Clk = 100 MHz, PIV = 62500 => tPIT = 10 ms
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PIT in operationPIT in operation
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Registers of PITRegisters of PIT

typedef struct S_PIT { /*     Register name              R/W     Reset val.         Offset

AT91_REG  PIT_MR; // PIT Mode Register        R/W 0x000F.FFFF 0x00

AT91_REG  PIT_SR; // PIT Status Register R 0x0000.0000 0x04

AT91_REG  PIT_PIVR; // PIT Per. Int. Val. Reg. R 0x0000.0000 0x08

AT91_REG  PIT_PIIR; // PIT Per. Int. Image Reg. R  0x0000.0000 0x0C

}  S_PIT, *PS_PIT;

/* Block of PIT registers */

#define PIT      ((PS_PIT) 0xFFFFFD30)     // (PIT) Base Address
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PIT registersPIT registers

                                                    PITS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 031

PIT_SR

                                                    CPIVPICNT

  20  19 031

         PIT_PIVR/PIT_PIIR

                                                    PIV- - - - -

19 0

PIT_MR

31

- - - - -PITIEN PITEN

25 24
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Real Time TimerReal Time Timer

Real Time Timer (RTT) is used to measure longer periods of time than PIT timer. 

Features of RTT:

32-bit down counter and programmable 16 bit divider,

Can be used to measure elapsed seconds, 

triggered with slow clock (32.768 kHz),

1s increment with a typical slow clock of 32.768kHz,

count up to maximum 136 years (for 1 Hz clock signal),

Alarm can generate an interrupt,

Additional interrupt when main timer is increased by one.
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Real Time Timer – block diagramReal Time Timer – block diagram
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Watchdog Timer Watchdog Timer 

Watchdog Timer (WDT) is used to prevent microprocessor system lock-up if the 
software becomes trapped in a deadlock. 

Features of WDT:

12-bit down counter,

Triggered with slow clock (32.768 kHz),

Maximum watchdog period of up to 16 seconds,

Can generate a general reset or a processor reset only,

WDT can be stopped while the processor is in debug mode or idle mode,

Write protected WDT_CR (control register).
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Watchdog Timer – block diagramWatchdog Timer – block diagram
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WDT – timing chartsWDT – timing charts
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WDT – registers (1)WDT – registers (1)
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WDT – registers (2)WDT – registers (2)
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Timer CounterTimer Counter

• Features

Three 16-bit Timer/Counter channels

Wide range of functions:
Frequency measurement

Event counting

Interval measurement

Pulse generation

Delay timing

Pulse Width Modulation

Clock inputs
3 External and 5 Internal clock inputs

Two configurable Input/Ouput signals

Internal interrupt signal
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Interfaces in 
Embedded Systems
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FundamentalFundamental  DefinitionsDefinitions

Computer Memory

Electronic or mechanic device used for storing digital data or computer programs 
(operating system and applications). 

Peripheral Device

Electronic device connected to processor via system bus or computer interface. 
External devices are used to realise dedicated functionality of the computer system. 
Internal devices are mainly used by processor and operating system.

Computer Bus

Electrical connection or subsystem that transfers data between computer 
components: processors, memories and peripheral devices. System bus is 
composed of dozens of multiple connections (Parallel Bus) or a few single serial 
channels (Serial Bus).

Interface

Electronic or optical device that allows to connect two or more devices. Interface can 
be parallel or serial.  



Department of Microelectronics and Computer Science

Embedded Systems

58

Connectivity of Processor and Peripheral DevicesConnectivity of Processor and Peripheral Devices

Interfaces used in Embedded Systems:

 Parallel Interface PIO (usually 8, 16 or 32 bits),

 Serial interfaces:
Universal Serial Asynchronous Receiver-Transmitter (USART),

Serial Peripheral Interface (SPI),

Synchronous Serial Controller (SSC)

I2C, Two-wire Interface (TWI),

Controlled Area Network (CAN),

Universal Serial Bus (USB),

Ethernet 10/100 Mbits (1 Gbit),

Debug/programming interface (EIA RS232, JTAG, SPI, DBGU).
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Interfaces available in AT91SAM9263Interfaces available in AT91SAM9263

 Parallel Interface PIO (configurable 32 bits),

 Serial interfaces:
Debug interface (DBGU),

Universal Serial Asynchronous Receiver-Transmitter (USART),

Serial Peripheral Interface (SPI),

Synchronous Serial Controller (SSC),

I2C, Two-wire Interface (TWI),

Controlled Area Network (CAN),

Universal Serial Bus (USB, host, endpoint),

Ethernet 10/100 Mbits,

Programming interface (JTAG).
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No Lecture 

12.11.2018 Independence Day - after Day

26.11.2018 No Lecture

03.12.2018 No Lecture, No Lab

10.12.2018 No Lecture

Erasmus Practice #1:   ~04.12.2018
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Universal Asynchronous 
Receiver/Transmitter Module
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  EIA RS232 Serial InterfaceEIA RS232 Serial Interface
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UART Transceiver UART Transceiver 

transmitter

Receiver

TxD

RxD

D0-D7

D0-D7

Clk

Clk

Shift register
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Data Frame of UART (1)Data Frame of UART (1)

Mark

Space
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Data Frame of UART (2)Data Frame of UART (2)

Send data: 0100.1011b = 0x4B
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Synchronous vs asynchronous transmission Synchronous vs asynchronous transmission 

Transmitter

Internal clock

Transmitter Receiver

Receiver

Data

Clock

Internal clock

Similar reference frequency
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Electrical specification of EIA RS232cElectrical specification of EIA RS232c
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Null-Modem Cabel  EIA 232Null-Modem Cabel  EIA 232
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Hardware Flow ControlHardware Flow Control

DTE Data Terminal Equipment – terminal, PC

DCE - Data Circuit-terminating Equipment –  Modem

DSR - Data Set Ready - modem

DTR - Data Terminal Ready – terminal 

RTS - Request to Send Data 

CTS - Clear to Send - ready to send data

RemarksSymbol

Start transmission

Line state

Modem ready

Circuit

Request to send

Ready to send

Computer ready
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Null-Modem Cabel  EIA 232 with Hardware flow ControlNull-Modem Cabel  EIA 232 with Hardware flow Control
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Voltage Levels of EIA RS232Voltage Levels of EIA RS232

Processor output

EIA RS 232
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Voltage Levels TranslatorVoltage Levels Translator

MAX 232   (5 V)
MAX 3232 (3,3 V)
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Software for EIA RS232 communication Software for EIA RS232 communication 

Hyper terminal

Minicom

ssh

Terminal
(http://www.elester-pkp.com.pl/index.php?id=92&lang=pl&zoom=0)
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AT91SAM9263 – 
debug module DBGU 

(chapter 30)
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Serial interface as Diagnostic ToolSerial interface as Diagnostic Tool

Features of DBGU port (DeBuG Unit):
Asynchronous data transmission compatible with RS232 standard   (8 bits, 
single parity bit – can be switched off),

Single system interrupt, shared with PIT, RTT, WDT, DMA, PMC, RSTC, MC,

Frame correctness analysis,

RxD buffer overflow signal,

Diagnostic modes: external loopback, local loopback and echo,

Maximum transmission baudrate 1 Mbit/s,

Direct connectivity to debug module build in ARM core (COMMRx/COMMTx).
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Block diagram of DBGU transmission module Block diagram of DBGU transmission module 

Interrupt signal

Input-Output
ports

Serial Transceiver
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Transmission speedTransmission speed

Reference clock generator is responsible for Baud Rate .

Baud rate can be calculated using formula:

 Baud Rate = MCK / (16 x CD), where CD 
 Clock Divisor can be found in DBGU_BRGR register
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Transmission errorsTransmission errors

Receiver Buffer Overflow (BGU_RHR)

Parity Error (PE)

Frame Error (FE)
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Configuration of DBGU transceiverConfiguration of DBGU transceiver

static void Open_DBGU (void){

 1. Deactivate DBGU interrupts (register AT91C_BASE_DBGU->DBGU_IDR)

 2. Reset and turn off receiver (register AT91C_BASE_DBGU->DBGU_CR)

 3. Reset and turn off transmitter (register AT91C_BASE_DBGU->DBGU_CR)

 4. Configure RxD i TxD DBGU as input peripheral ports (registers AT91C_BASE_PIOC->PIO_ASR and  
AT91C_BASE_PIOC->PIO_PDR)

 5. Configure throughput (e.g. 115200 bps, register AT91C_BASE_DBGU->DBGU_BRGR)

 6. Configure operation mode (e.g. 8N1, register AT91C_BASE_DBGU->DBGU_MR, flags         
        AT91C_US_CHMODE_NORMAL, AT91C_US_PAR_NONE)

 7. Configure interrupts if used, e.g. Open_DBGU_INT()

 8. Turn on receiver (register AT91C_BASE_DBGU->DBGU_CR),

 9. Turn on transmitter if required (register AT91C_BASE_DBGU->DBGU_CR),

}
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Read and write via DBGU portRead and write via DBGU port

Interrupts are disabled.

void dbgu_print_ascii (const char Buffer)

{

    while ( data_are_in_buffer ) {

 while ( …TXRDY... ){};  /* wait intil Tx buffer busy – check TXRDY flag */

        DBGU_THR = ...   /* write a single char to Transmitter Holding Register  */

             }

}

void dbgu_read_ascii (char *Buffer, unsigned int Size){

 do {

 While ( ...RXRDY... ){}; /* wait until data available */

 Buffer[...] = DBGU_RHR; /* read data from Receiver Holding Register */

 } while ( …read_enough_data... )

}
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AT91SAM9263 – USART
(chapter 34)
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Serial port USARTSerial port USART

Features of Universal Synch. Asynch. Receiver-Transmitter:
Asynchronous or synchronous data transfer,

Programmable frame length, parity, stop bits,

Single system interrupt (shared with: PIT, RTT, WDT,DMA, PMC, RSTC, MC),

Analysis of correctness of received frames,

Buffer overflow error TxD or RxD,

Elastic buffer – possibility of receiving frames with different length (uses additional 
counter),

Diagnostic modes: external loopback, local loopback and echo,

Maximum transmission speed 1 Mbit/s,

Hardware flow control,

Support for Multidrop transmission – data and address,

Available Direct Memory Access channel,

Support for RS485 differential transmission mode and infrared systems (build-in IrDA 
modulator-demodulator).
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Block diagram of USART transceiverBlock diagram of USART transceiver
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Data structures
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Stack  (1)Stack  (1)

 Stack or LIFO (Last-In, First-Out) – abstract data 
type and data structure. A stack can have any abstract 
data type as an element, but it is characterized by only 
two fundamental operations: push and pop. The push 
operation adds to the top of the list, hiding any items 
already on the stack, or initializing the stack if it is 
empty. The pop operation removes an item from the 
top of the list, and returns this value to the caller. A pop 
either reveals previously concealed items, or results in 
an empty list.

     FIFO (First In, First Out) – a linear buffer, the 
opposite structure to stack. The first element placed 
into FIFO is immediately transferred to the end of the 
queue. Therefore the first element stored in FIFO is 
supposed to be processed first. 
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Stack – push dataStack – push data

0x0000.0000

0x1000.0000

SP = R13
  

The last stored data 

n-1

Free area

Free area
SP = R13           

                Contents of registers
               R1,R2,R3,R7-R9

R13 register – stack pointer

STMDB SP!, {registers list}
STMDB SP!, {R1,R2,R3,R7-R9}     | decrease SP by 24, stores 8 registers on stack
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Stack - popStack - pop

0x0000.0000

0x1000.0000

SP = R13
  

The last stored data

n-1

Free area

Free area
SP = R13           

           Stored registers 
               R1,R2,R3,R7-R9

R13 register – stack pointer

LDMIA SP!, {list of registers}
LDMIA SP!, {R1,R2,R3,R7-R9}    | increase SP by 24, recover 8 registers from stack
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FIFO (1)FIFO (1)

A few different applications can try to write data into FIFO queue. In such a case 
a semaphore can be used to control access during writing data to queue. 

Data are read from queue in the same order as was written
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FIFO (2)FIFO (2)

Tail

Data in FIFO 

Head

Write data to FIFO:
Increase Head by one, write data.

Read data from FIFO:
Read data, increase Tail by one.

When the Tail or Head points the last element in queue the pointer is not 
increased (zero is written to the pointer) - circular buffer.  

0xffD50 0xffD50 + size -1Memory address:
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FIFO (3)FIFO (3)

T  H

Empty FIFO   T = H 

T

Some data in queue, amount of data = H – T 

T

Full FIFO
(T = 0) & (H = Size)   or    T – H = 1 

H    TH

H
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FIFO – implementation in C (1)FIFO – implementation in C (1)

#define BUFFERSIZE 0xFF /* FIFO buffer size and mask */

typedef struct FIFO {

    char buffer [BUFFERSIZE+1];

    unsigned int head;

    unsigned int tail; 

};

void FIFO_Init (struct FIFO *Fifo);

void FIFO_Empty (struct FIFO *Fifo);

int FIFO_Put (struct FIFO *Fifo, char Data);

int FIFO_Get (struct FIFO *Fifo, char *Data)

void FIFO_Init (struct FIFO *Fifo){

    Fifo->head=0;

    Fifo->tail=0;

/* optional: initialize data in buffer with 0 */

}



Department of Microelectronics and Computer Science

Systemy wbudowane

94

FIFO – implementation in C (2)FIFO – implementation in C (2)

void FIFO_Empty (struct FIFO *Fifo){

       Fifo->head = Fifo->tail; /* now FIFO is empty*/

}

int FIFO_Put (struct FIFO *Fifo, char Data){

 if ((Fifo->tail-Fifo->head)==1 || (Fifo->tail-Fifo->head)==BUFFERSIZE)){

    return -1; }; /* FIFO overflow */

 Fifo->buffer[Fifo->head] = Data;

    Fifo->head = (Fifo->head + 1) & BUFFERSIZE; 

 return 1; /* Put 1 byte successfully */

}

int FIFO_Get (struct FIFO *Fifo, char *Data){

    If ((TxFifo.head!=TxFifo.tail)){

 *Data = Fifo->buffer[Fifo->tail];

    Fifo->tail = (Fifo->tail + 1) & BUFFERSIZE; 

 return 1; /* Get 1 byte successfully */ 

 } else return -1; /* No data in FIFO */ 

}
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FIFO – trapsFIFO – traps

void FIFO_Empty (struct FIFO *Fifo){

       Fifo->head = Fifo->tail; /* now FIFO is empty*/

}

int FIFO_Put (struct FIFO *Fifo, char Data){

 if ((Fifo->tail-Fifo->head)==1 || (Fifo->tail-Fifo->head)==BUFFERSIZE)){

    return -1; }; /* FIFO overflow */

 Fifo->buffer[Fifo->head++] = Data;

    Fifo->head = Fifo->head & BUFFERSIZE; /* be carefull with interrupts */

 return 1; /* Put 1 byte successfully */

}

int FIFO_Get (struct FIFO *Fifo, char *Data){

    If ((TxFifo.head!=TxFifo.tail)){

 *Data = Fifo->buffer[Fifo->tail++];

    Fifo->tail &= BUFFERSIZE; /* be carefull with interrupts */

 return 1; /* Get 1 byte successfully */ 

 } else return -1; /* No data in FIFO */ 

}



Department of Microelectronics and Computer Science

Embedded Systems

96

LectureLecture Agenda Agenda

 Microprocessor systems, embedded systems

 ARM processors family

 Peripheral devices

 Memories and address decoders

 ARM processor as platform for embedded programs

 Methodology of designing embedded systems 

 Interfaces in embedded systems

 Real-time microprocessor systems
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From Acorn Computers Ltd. ARM to ARM Ltd.From Acorn Computers Ltd. ARM to ARM Ltd.

 Acorn

 Small company founded in November 1990,

Spun out of Acorn Computers (BBC Micro computer),

 Design the ARM range of RISC processor cores, 

 ARM company does not fabricate silicon itself,

 Licenses ARM cores to partners: Intellectual Property Cores of ARM processors 
and peripheral devices,

 Develop tools (compilers, debuggers), starter-kits for embedded system 
development and creates standards, etc...
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List of ARM silicon partnersList of ARM silicon partners

    Agi lent, AKM, Alcatel, Altera, Atmel, Broadcom, Chip Express, Cirrus Logic, Digital 
Semiconductor, eSilicon, Fujitsu, GEC Plessey, Global UniChip, HP, Hyundai, IBM, Intel, 
ITRI, LG Semicon, LSI Logic, Lu cent, Matsushita, Micrel, Micronas, Mitsubishi, Freescale, 
NEC, OKI, Philips, Qu alcomm, Rockwell, Rohm, Samsung, Samsung, Sanyo, Seagate, 
Seiko Epson, Sharp, Sony, STMicroelectronics, Symbios Logic, Texas Instru ments, Xilinx, 
Yamaha, Zeevo, ZTEIC, ...
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History of ARM ProcessorsHistory of ARM Processors

1983 – Sophie Wilson and Steve Furber fabricate the first RISC processor in Acorn             
Computers Limited, Cambridge, ARM = Acorn (Advanced) RISC Machine

1985 – The first processor ARM 1 (architecture version v1) 

1986 – First ARM 2 processors left company (32-bits, 26-bits address, 16 registers 16-bits, 
      30.000 transistors, architecture version v2/v2a, 8 MHz)

1990 – Apple Computer and VLSI Technology start work on the next version of ARM core,

1990 – New company is created Advanced RISC Machines Ltd. Responsible for the development 
of ARM cores,

1991 – The cooperation of Apple and VLSI Tech. provides new ARM 6  processor (ARM 610 
applied in Apple Newton PDA, architecture version v3, 33 MHz)

1995 – ARM company offers famous ARM7TDMI core (core architecture ARMv4T) and Intel 
offers StrongARM (233 MHz)

2001 – ARM company offers ARM9TDMI core (core architecture ARMv5TEJ, 220 MHz)

2004 – Cortex M3 processor (ARMv7-M, 100 MHz)

2008 – ARM Cortex A8 (core architecture ARMv7, 1 GHz)

now  – ARM Cortex A9/A15 – MPCore architecture
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ARM Cortex A9 in MPCore Configuration ARM Cortex A9 in MPCore Configuration 

New MPCore technology allows to design SoC – four A9 cores
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Processors with ARM CoreProcessors with ARM Core

 ARM processors are widely used in embedded systems and mobile devices 
that require low power devices 

 The ARM processor is the most commonly used device in the World. You can 
find the processor in hard discs, mobile phones, routers, calculators and toys,

 Currently, more than 75% of 32-bits embedded CPUs market belongs to ARM 
processors,

 The most famous and successful processor is ARM7TDMI, very often used in 
mobile phones,

 Processing power of ARM devices allows to install multitasking operating 
systems with TCP/IP software stack and filesystem (e.g. FAT32). 

 The known operating systems for ARM processors: embedded Linux 
(Embedded Debian, Embedded Ubuntu), Windows CE, Symbian, NUTOS 
(Ethernut), RTEMS,... 
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ARM Powered ProductsARM Powered Products
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Comparison of Selected ARMsComparison of Selected ARMs

Family Architecture 
Version

Core Feature Cache (I/D)/MMU Typical MIPS @ MHz

ARM6 ARMv3 ARM610 Cache, no coprocessor 4K unified 17 MIPS @ 20 MHz
ARM7 ARMv3 ARM7500FE Integrated SoC. "FE" Added FPA and EDO memory controller. 4 KB unified 55 MIPS @ 56 MHz
ARM7TDMI ARMv5TEJ ARM7EJ-S Jazelle DBX, Enhanced DSP instructions, 5-stage pipeline 8 KB 120 MIPS @ 133 MHz
StrongARM ARMv4 SA-110 5-stage pipeline, MMU 16 KB/16 KB, MMU 235 MIPS @ 206 MHz

ARM8 ARMv4 ARM810[7]
5-stage pipeline, static branch prediction, double-bandwidth 
memory

8 KB unified, MMU 1.0 DMIPS/MHz

ARM9TDMI ARMv4T ARM920T 5-stage pipeline 16 KB/16 KB, MMU 245 MIPS @ 250 MHz 
ARM9E ARMv5TEJ  ARM926EJ-S Jazelle DBX, Enhanced DSP instructions variable, TCMs, MMU 220 MIPS @ 200 MHz
ARM10E ARMv5TE ARM1020E VFP, 6-stage pipeline, Enhanced DSP instructions 32 KB/32 KB, MMU 300 MIPS @ 325 MHz 
XScale ARMv5TE PXA27x MMX and SSE instruction set, four MACs, 32 Kb/32 Kb, MMU 800 MIPS @ 624 MHz
ARM11 ARMv6 ARM1136J(F)-S SIMD, Jazelle DBX, VFP, 8-stage pipeline variable, MMU 740 @ 532-665 MHz

Cortex ARMv7-A Cortex-A8
Application profile, VFP, NEON, Jazel le RCT, Thumb-2, 13-stage 
superscalar pipeline

variable (L1+L2), 
MMU+TrustZone

>1000 MIPS@ 
600 M-1 GHz
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ARM Processor Core
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ARM architecture (1)ARM architecture (1)

ARM processor core – processor designed according to ARM processor architecture 
described in high level description language (VHDL lub Verilog) provided as macro-cell or 
Intellectual Property (IP). 

Features of ARM processor cores:
Supposed to be used for further development  – microcontroller, SoC

32-bits RISC architecture

Optimised for low power consumption

Support three different modes of operation: 

ARM instructions, 32 bits, 

Thumb instructions, 16 bits,

Jazelle DBX - Direct java instructions. 

Supported Big or Little Endian

Fast Interrupt Response mode for Real-time applications

Virtual memory

List of efficient and powerful instructions selected from both RISC and CISC architectures 

Hardware support for higher level software (Ada, C, C++)
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ARM architecture (2)ARM architecture (2)

Nomenclature:

ARM {x} {y} {z} {T} {D} {M} {I} {E} {J} {F} {S}
x – core family  

y – implemented Memory Management Unit 

z – cache memory

T  – Thumb mode (16 bit command)

D –  Build in debugger, (usually via JTAG interface)

M – Build in multiplier, hardware multiplier (32x32 => 64 bits)

I   – In-Circuit Emulator, another ICE debugger 

E – Enhanced DSP instructions, Digital Signal Processing 

J – Jazelle mode

F – Floating-point unit

S – Synthesizable version, available source code for further synthesis and EDA tools

Example of ARM cores:

 ARM7TDMI ARM9TDMI-EJ-S
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ARM architecture (3)ARM architecture (3)

Core in version 1, v1 
Base arithmetic and logic operations, 

Hardware interrupts, 

8 and 32 bits operations, 

26 bits address

Core in version 2, v2
Implemented Multiply ACcumulate unit, 

Available coprocessor, 

Additional commands for threads synchronisation , 

26 bits address

Core in version 3, v3 
New registers CPSR, SPSR, MRS, MSR, 

Additional modes Abort and Undef, 

32 bits address
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ARM architecture (4)ARM architecture (4)

Core in version 4, v4 
First standardised architecture 

Available 16 bits operations

THUMB - new mode of operation, 16 bits commands 

Added privileged mode

PC can be incremented by 64 bits

Core in version 5, v5
Improved cooperation between ARM and THUMB modes, mode of operation can be 
changed during program execution, 

Added instruction CLZ

Software breakpoints 

Support for multiprocessor operation

Core in version 6, v6
Improved MMU (Management Memory Unit)

Hardware support for video and sound processing (FFT, MPEG4, SIMD etc...)

Improved exception handing (new flag in PSR)
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  ARM instruction sets ARM instruction sets 

Taking into consideration executed commands ARM processor 
can operate in one of the following modes:

  ARM – 32-bits instructions optimised for time execution (code must 
be aligned to 4 bytes),

  Thumb, Thumb-2 – 16-bits instructions optimised for code size 
(code must be aligned to 2 bytes, processor registers are still 32 bits 
wide),

  Jazelle v1 – mode used for direct execution of Java code (without 
virtual machine JVM) (1000 Caffeine Marks @ 200MHz)
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Support for Java language Support for Java language 

ARM core marked with 'J'

Dynamic exchange of registers and stack

Hardware decoder of Java instructions 
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Programming Model – RegistersProgramming Model – Registers

ARM Processor provides 37 registers (all are 32-bits wide). The 
registers are arranged into several banks (accessible bank being 
governed by the current processor mode):

PC (r15) – Program Counter

CPSR – Main status register, Current Program Status Register

SPSR –  Copy of status register, available in different modes of operation 
Saved Program Status Register

LR (r14) – Link Register, used for stack frame during execution of 
subroutines or return address register 

SP (r13) – used as a Stack Pointer

r0 - r12 – General purpose registers (dependent of the mode of operation) 
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Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U  n  d  e  f  i  n  e  dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation 

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during 
ALU operations (QADD, QDADD, QSUB or 
QDSUB, or operation of SMLAxy, SMLAWx, 
result more than 32 bits)

Interrupt disable bits
I=1   Disables the IRQ

F=1  Disables the FIQ 

Flags for xT architecture

T=0   Processor in ARM mode

T=1   Processor in Thumb mode

Mode bits 
Specify the processor operation mode 
(seven modes)

Read/Modify/Write strategy should be used to write data to PSR (to ensure further 
compatibility)  
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Programming Model – modes of processor operationProgramming Model – modes of processor operation

Operating mode – defined which resources of processor are available, e.g. registers, 
memory regions, peripheral devices, stack, etc...

ARM processor can operate in on of 7 modes:
User – user mode (not privileged), dedicated for user programs execution

FIQ – fast interrupts and high priority exceptions (used only when really necessary)

IRQ – handling of low or normal priority interrupts 

Supervisor – supervisor mode gives access to all resource of the processor, used 
during debugging. Available after reset or during interrupt handling.

Abort – used for handling of memory access exceptions (memory access violations) 

Undef – triggered when unknown or wrong commands is detected 

System – privileged mode, access to registers as in user mode, however various 
memory segments are available 
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Programming Model – registers available in User or System modes Programming Model – registers available in User or System modes 

r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ IRQ SVC Undef Abort

User Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

FIQ IRQ SVC Undef Abort
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Programming Model – registers available in FIQ modeProgramming Model – registers available in FIQ mode

r0

r1

r2

r3

r4

r5

r6

r7

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User IRQ SVC Undef Abort

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

FIQ Mode
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Programming Model – registers available in IRQ modeProgramming Model – registers available in IRQ mode

IRQ Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ SVC Undef Abort

r13 (sp)

r14 (lr)
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Programming Model – registers available in Supervisor modeProgramming Model – registers available in Supervisor mode

SVC Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ Undef Abort

r13 (sp)

r14 (lr)
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Programming Model – registers available in Abort modeProgramming Model – registers available in Abort mode

Abort Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Undef

r13 (sp)

r14 (lr)
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Programming Model – registers available in Undef modeProgramming Model – registers available in Undef mode

Undef Mode
r0

r1

r2

r3

r4

r5

r6

r7

r8

r9

r10

r11

r12

r15 (pc)

cpsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r13 (sp)

r14 (lr)

spsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

Current Visible Registers

Banked out Registers

User FIQ IRQ SVC Abort

r13 (sp)

r14 (lr)
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Programming Model – registers summaryProgramming Model – registers summary

User
mode
r0-r7,
r15,
and
cpsr

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

spsr

FIQ

r8

r9

r10

r11

r12

r13 (sp)

r14 (lr)

r15 (pc)

cpsr

r0

r1

r2

r3

r4

r5

r6

r7

User

r13 (sp)

r14 (lr)

spsr

IRQ

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Undef

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

SVC

User
mode

r0-r12,
r15,
and
cpsr

r13 (sp)

r14 (lr)

spsr

Abort

User
mode

r0-r12,
r15,
and
cpsr

T humb s tate
L ow  registers

T humb s tate
H igh registers

Note: System mode uses the User mode register set 
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Interrupts and Exceptions
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Handling of ExceptionsHandling of Exceptions
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ExceptionException

Exception – mechanism that control flow of data used in microprocessors-based 
systems and programming languages to handling asynchronous and 
unpredictable situations.    

Exceptions can be divided into:

Faults,  

Aborts,

Traps. 

In addition to exceptions processor supervises also interrupts.   

ARM processors can handle two different modes of interrupts:

FIQ - Fast interrupt (interrupt with low latency handling),

IRQ - Normal Interrupt.
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Interrupts  Interrupts  

Interrupt or IRQ – Interrupt ReQuest – is an asynchronous signal indicating the 
need for attention or a synchronous event in software indicating the need for a 
change in execution. A hardware interrupt causes the processor to save its state 
of execution and begin execution of an interrupt handler. Software interrupts are 
usually implemented as instructions in the instruction set, which cause a context 
switch to an interrupt handler similar to a hardware interrupt. Interrupts are a 
commonly used technique for computer multitasking, especially in real-time 
computing. Such a system is said to be interrupt-driven.

Examples of interrupts:

Receive or transmission of data via serial interface (e.g. EIA RS232),

Change of state or detected slope on processor's pin.

Status of device can be checked using software commands, however it requires 
continuous reading and checking of status register of the device. This operation 
is called polling. Even simple polling usually requires a significant amount of 
processing power and unnecessary loads processor, e.g. transmission of single 
symbol lasts ~100 us (processor can execute hundreds of thousands of 
instructions during this time). 
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Program Status RegisterProgram Status Register

2731

N Z C V Q

28 67

I F T mode

1623 815 5 4 024

f s x c

U  n  d  e  f  i  n  e  dJ

Condition code flags
V – ALU operation oVerflowed

C – ALU operation Carried out

Z – Zero result from ALU operation 

N – Negative result from ALU operation

Flags for processor from family 5TE/J

J – Processor in Jazelle mode

Q – Sticky Overflow – saturation flag, set during 
ALU operations (QADD, QDADD, QSUB or 
QDSUB, or operation of SMLAxy, SMLAWx, 
result more than 32 bits)

Interrupt disable bits
I=1    Disables the IRQ

F=1  Disables the FIQ 

Flags for xT architecture

T=0   Processor in ARM mode

T=1   Processor in Thumb mode

Mode bits 
Specify the processor operation mode 
(seven modes)
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Handling of exceptionsHandling of exceptions

Execution of not allowed operation in given processor mode can cause 
exception, e.g. access to protected memory segment.

Handling of exception covers all operations when the exception was 
detected until the first command of exception handler.

1. a) Change operating mode to ARM (from Thumb or Jazelle),
b) Change to interrupt of exception mode (FIQ/IRQ),
c) Set interrupt level mask on level equal to the handling interrupt (disable       

            interrupts).
d) Change registers bank: 

make a copy of CPSR → SPSR and PC (r15) → Link Register (r14),
e) Make active SPSR register.

2.    Calculate exception vector (interrupt).

3.    Branch to the first instruction handling exception or interrupt. 

4. Return from exception/interrupt:
a) Recover CPSR (r15) register,
b) Recover PC (Link Register r14),
c) Return to the interrupted program.
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Exceptions (1)Exceptions (1)

Exception handling by the ARM processor is controlled 
through the use of an area of memory called the 
vector table. This lives (normally) at the bottom of the 
memory map from 0x0 to 0x1c. Within this table one 
word is allocated to each of the various exception 
types. This word will contain some form of ARM 
instruction that should perform a branch. It does not 
contain an address.

When one of these exceptions is taken, the ARM goes 
through a low-overhead sequence of actions in order to 
invoke the appropriate exception handler.  The current 
instruction is always allowed to complete (except in case 
of Reset).

IRQ is disabled on entry to all exceptions; FIQ is also 
disabled on entry to Reset and FIQ.

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Memory image
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Exceptions (2)Exceptions (2)

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00

Vector table is located in memory address 0x0. 

The base address of exception table can be 
modified: 0xFFFF.0000 (ARM 7/9/10).

Memory image

Reset - executed on power on

Undef - when an invalid instruction reaches the execute 
stage of the pipeline

SWI - when a software interrupt instruction is executed

Prefetch - when an instruction is fetched from memory that 
is invalid for some reason, if it reaches the execute stage 
then this exception is taken

Data - if a load/store instruction tries to access an invalid 
memory location, then this exception is taken

IRQ - normal interrupt

FIQ - fast interrupt
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Exceptions TableExceptions Table

LDR     PC, =FIQ_Addr

LDR     PC, =IRQ_Addr

NOP ; Reserved vector

LDR     PC, =Abort_Addr

LDR     PC, =Prefetch_Addr

LDR     PC, =SWI_Addr

LDR     PC, =Undefined_Addr

LDR     PC, =Reset_Addr

Memory image

FIQ

IRQ

(Reserved)

Data Abort

Prefetch Abort

Software Interrupt

Undefined Instruction

Reset

0x1C

0x18

0x14

0x10

0x0C

0x08

0x04

0x00
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Exception Handlers (1)Exception Handlers (1)

IRQ_Addr:
/*- Manage Exception Entry */
/*- Adjust and save LR_irq in IRQ stack */
        sub      lr, lr, #4
        stmfd    sp!, {lr}
/*- Save r0 and SPSR in IRQ stack */
        mrs      r14, SPSR
        stmfd    sp!, {r0,r14}
/*- Write in the IVR to support Protect Mode */
/*- No effect in Normal Mode */
/*- De-assert the NIRQ and clear the source in Protect Mode */
        ldr      r14, =AT91C_BASE_AIC
        ldr      r0 , [r14, #AIC_IVR]
        str      r14, [r14, #AIC_IVR]
...

/*- Branch to the routine pointed by the AIC_IVR */
        mov      r14, pc
        bx       r0 /* Branch to IRQ handler */
...
/*- Restore adjusted  LR_irq from IRQ stack directly in the PC */
        ldmia    sp!, {pc}^  /* ^ - Recover CSPR */
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Exception Handlers (2)Exception Handlers (2)

/* lowlevel.c */
/*-----------------------------------------------------------------------------
 * Function Name       : default_spurious_handler
 * Object              : default handler for spurious interrupt
 *-----------------------------------------------------------------------------*/
void default_spurious_handler(void)
{
    dbgu_print_ascii("-F- Spurious Interrupt\n\r ");
    while (1);
}

/*-----------------------------------------------------------------------------
 * Function Name       : default_fiq_handler
 * Object              : default handler for fast interrupt
 *-----------------------------------------------------------------------------*/
void default_fiq_handler(void)
{
    dbgu_print_ascii("-F- Unexpected FIQ Interrupt\n\r ");
    while (1);
}
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Advanced Interrupt Controller
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Block diagram of AIC of ARM processorBlock diagram of AIC of ARM processor

Manages vectorised interrupts,

Can monitor up to 32 internal and external interrupts,

Each interrupt can be disabled/enabled (masked),

Handles normal nIRQ and fast nFIR interrupts,

8 priority levels (0 – the lowest, 7 – the highest),

Handles interrupts triggered with level or edge.
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Advanced Interrupt Controller of ARM processorAdvanced Interrupt Controller of ARM processor

AIC uses system clock, however the clock signal cannot be disabled to save 
power.

Interrupts can be used to wake up processor from sleep or hibernation mode.

Interrupt with number 0 (FIQ) is always FIQ type. 

Interrupt with number  1 (SYS) is logic sum of a few interrupts of internal 
peripheral devices of ARM core, programmer control priority and select interrupts 

Interrupts with numbers 2-31 (PID2-PID331) can be used for others internal and 
external devices and I/O ports.

AIC is able to supervise interrupts triggered by selected level or edge.  
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Shared InterruptsShared Interrupts

Internal peripheral devices use a single system shared interrupt SYS (number 
defined by constant AT91C_ID_SYS = 1).

Devices handled by system interrupt: 

Timers PIT, RTT, WDT, 

Diagnostic interface (DBGU), 

DMA controller (PMC), 

Reset circuit (RSTC), 

Memory Controller (MC).

Therefore, the SYS handler should check state of all interrupts and execute 
functions-handlers for the active interrupts (mask register AIC_MSK).



Department of Microelectronics and Computer Science

Embedded Systems

136

Block diagram of AICBlock diagram of AIC
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Internal InterruptsInternal Interrupts

IRQ mask – AIC_IECR/IDCR (status → AIC_IMR),

Clear interrupt flag when AIC_IVR register is read (for FIQ → AIC_FVR),

Interrupt status available in AIC_IPR

Interrupt can be triggered by high level or rising edge
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External InterruptsExternal Interrupts

User can select method of triggering: level (high, low) or edge (rising, 
falling)
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ID Numbers for Peripheral Devices ID Numbers for Peripheral Devices 

// *****************************************************************************

//               PERIPHERAL ID DEFINITIONS FOR AT91SAM9263

// *****************************************************************************

#define AT91C_ID_FIQ    ( 0) // Advanced Interrupt Controller (FIQ)

#define AT91C_ID_SYS    ( 1) // System Controller

#define AT91C_ID_PIOA   ( 2) // Parallel IO Controller A

#define AT91C_ID_PIOB   ( 3) // Parallel IO Controller B

#define AT91C_ID_PIOCDE ( 4) // Parallel IO Controller C, Parallel IO Controller D, Parallel IO Controller E

#define AT91C_ID_US0    ( 7) // USART 0

#define AT91C_ID_US1    ( 8) // USART 1

#define AT91C_ID_US2    ( 9) // USART 2

#define AT91C_ID_MCI0   (10) // Multimedia Card Interface 0

#define AT91C_ID_MCI1   (11) // Multimedia Card Interface 1

#define AT91C_ID_CAN    (12) // CAN Controller

#define AT91C_ID_TWI    (13) // Two-Wire Interface

#define AT91C_ID_SPI0   (14) // Serial Peripheral Interface 

ID=0, ID=30-31 external interrupts, others are internal
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Registers of AIC (1)Registers of AIC (1)
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Registers of AIC – mapped as structRegisters of AIC – mapped as struct

typedef struct _AT91S_AIC {

AT91_REG  AIC_SMR[32]; // Source Mode Register

AT91_REG  AIC_SVR[32]; // Source Vector Register

AT91_REG  AIC_IVR; // IRQ Vector Register

AT91_REG  AIC_FVR; // FIQ Vector Register

AT91_REG  AIC_ISR; // Interrupt Status Register

AT91_REG  AIC_IPR; // Interrupt Pending Register

AT91_REG  AIC_IMR; // Interrupt Mask Register

AT91_REG  AIC_CISR; // Core Interrupt Status Register

...

} AT91S_AIC, *AT91PS_AIC;

#define AT91C_BASE_AIC       (AT91_CAST(AT91PS_AIC) 0xFFFFF000) // (AIC) 
Base Address
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Registers of AIC (2)Registers of AIC (2)

AIC_SMR[32]; // Source Mode Register – configure method of int triggering, priority

AIC_SVR[32]; // Source Vector Register – 32-bit addresses for int handlers

AIC_IVR; // IRQ Vector Register – address of currently handled normal interrupt

AIC_FVR; // FIQ Vector Register – address of currently handled fast interrupt

AIC_ISR; // Interrupt Status Register – number of currently handled interrupt

AIC_IPR; // Interrupt Pending Register – register with pending interrupts, bits 0-31

AIC_IMR; // Interrupt Mask Register – register with masks for interrupts, bits 0-31

AIC_CISR; // Core Interrupt Status Register – status for IRQ/FIQ core interrupts 

AIC_IECR; // Interrupt Enable Command Register – register for enabling interrupts

AIC_IDCR; // Interrupt Disable Command Register – register for disabling interrupts  

AIC_ICCR; // Interrupt Clear Command Register – register for deactivating interrupts

AIC_ISCR; // Interrupt Set Command Register – register for triggering interrupts

AIC_EOICR; // End of Interrupt Command Register – inform that INT treatment is finished

AIC_SPU; // Spurious Vector Register – handler for spurious interrupt
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I/O – InterruptsI/O – Interrupts

Pin Data Status Reg.

Interrupt Enable Reg.

Input Filter Diss. Reg.

Interrupt Status Reg.

Interrupt Mask Reg.
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Keyboard interrupts configurationKeyboard interrupts configuration

Buttons are connected to Port C – interrupt generated by input signals of ports  
C/D/E (use mask AT91C_ID_PIOCDE) 

Configuration of interrupts for C/D/E port(s):

1. Configure both ports as inputs (left and right hand buttons), activate clock signal 

2. Turn off interrupts for port C/D/E (register AIC_IDCR, mask AT91C_ID_PIOCDE)

3. Configure pointer for C/D/E port interrupt handler – use AIC_SVR table    
AIC_SVR[AT91C_ID_PIOCDE] = ...

4. Configure method of interrupt triggering: high level, (AIC_SMR register, triggered by 
AT91C_AIC_SRCTYPE_EXT_HIGH_LEVEL and priority, e.g. AT91C_AIC_PRIOR_HIGHEST)

5. Clear interrupt flag for port C/D/E (register AIC_ICCR)

6. Turn on interrupts for both input ports (register PIO_IER)

7. Turn on interrupts for C/D/E port (register AIC_IECR)
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INT Handler for KeyboardINT Handler for Keyboard

Set address for interrupt function (handler) for the interrupt (32-bits address) 

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) BUTTON_IRQ_handler;

Keyboard interrupt handler  

void BUTTON_IRQ_handler (void) {

 If flag on the suitable bit-position is active the button is/was pressed (PIO_ISR)

  Read PIO_ISR status register to clear the flag

}
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Interrupt from PITInterrupt from PIT

Main Counter

Secondary Counter
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PIT Timer interrupts configurationPIT Timer interrupts configuration

PIT Timer generates system interrupt (ID number 1) – interrupt from 
processor peripheral devices (System Controller, mask AT91C_ID_SYS) 

Configuration of PIT Timer interrupts: 
1. Calculate time counter value for defined period of time, e.g. 5 ms  

2. Disable PIT Timer interrupts – only during configuration (AIC_IDCR, interrupt nr 1 – processor 
peripheral devices, used defined constant AT91C_ID_SYS)

3. Configure pointer for timer interrupt handler – handler for processor peripheral devices, see  
AIC_SVR table  (AIC_SVR[AT91C_ID_SYS])

4. Configure method of interrupt triggering: level, edge, (AIC_SMR register, triggered by 
AT91C_AIC_SRCTYPE_INT_LEVEL_SENSITIVE, and priority, e.g. AT91C_AIC_PRIOR_LOWEST)

5. Clear interrupt flag of peripheral devices (AIC_ICCR register)

6. Turn on the interrupt AT91C_ID_SYS (AIC_IECR register)

7. Turn on PIT Timer interrupt (AT91C_PITC_PITIEN register)

8. Turn on PIT Timer (AT91C_PITC_PITEN)

9. Clear local counter (variable Local_Counter) to see if Timer triggers interrupts
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INT Handler for TimerINT Handler for Timer

Set address for interrupt function (handler) for the interrupt (32-bits address) 

AT91C_BASE_AIC->AIC_SVR[AT91C_ID_SYS] = (unsigned int) TIMER_INT_handler;

Timer interrupt handler 

void TIMER_INT_handler (void) {

  if flag PITIE for Timer interrupt is set (PIT_MR register) /* interrupt enabled */

 if flag PITS in PIT_SR register is set /* timer requested int */

 read the PITC_PIVR register to clear PITS flag in PIT_SR

 /* delay ~100 ms */

 TimerCounter++; /* LedToggle... */

 else another device requested interrupts 

 check which device requested INT,

 process INT, clear INT flag, 

 if unknown device, just increase counter of unknown interrupts

}
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Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU generates system interrupt (ID number 1) – interrupt from processor 
peripheral devices (System Controller, mask AT91C_ID_SYS). We have 
distinguish which device triggered interrupt. A few interrupts can be 
triggered.

DGBU can generate the following interrupts:
RXRDY: Enable RXRDY Interrupt

TXRDY: Enable TXRDY Interrupt

ENDRX: Enable End of Receive Transfer Interrupt

ENDTX: Enable End of Transmit Interrupt

OVRE: Enable Overrun Error Interrupt

FRAME: Enable Framing Error Interrupt

PARE: Enable Parity Error Interrupt

TXEMPTY: Enable TXEMPTY Interrupt

TXBUFE: Enable Buffer Empty Interrupt

RXBUFF: Enable Buffer Full Interrupt

COMMTX: Enable COMMTX (from ARM) Interrupt

COMMRX: Enable COMMRX (from ARM) Interrupt
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Interrupts from DBGU transceiverInterrupts from DBGU transceiver

DGBU interrupt handler 

void DGBU_INT_handler (void) {

 int IntStatus;

 SysIRQCounter++; /* to have a feeling how many system INTs are triggered */

 IntStatus = DGBU->SR;

  if (IntStatus & DBGU->IMR ) /* interrupt from DGBU */

 if INT from TxD /* transmitter interrupt */

 WriteNewData (); /* be careful INTcan be also generated in case of error */

 else if INT from RxD

 ReadDataToBuffer();/* INT can be also generated when error occur */

 else 

 other device triggered INT;

}
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Interrupt Handlers in C (1)Interrupt Handlers in C (1)

Functions used as handlers require usage of preprocessor directive __attribute__ 
((interrupt("IRQ")))

void INTButton_handler()__attribute__ ((interrupt("IRQ")));

void INTPIT_handler()__attribute__ ((interrupt("IRQ")));

void Soft_Interrupt_handler()__attribute__ ((interrupt("SWI")));

void Abort_Exception_handler()__attribute__ ((interrupt("ABORT")));

void Undef_Exception_handler()__attribute__ ((interrupt("UNDEF")));

void __irq IRQ_Handler(void)

Functions used as a handler is similar to normal function in C language

void INTButton_handler() {

// standard C function

}

During laboratory we do not use __attribute__ ((interrupt("IRQ"))), we use functions 
provided by ATMEL, defined in startup.S file.
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