
memory management

 memory management
◦ memory management

◦ how garbage collection works

◦ types of references

◦ how memory leaks occur in Java

◦ bad practices – what to avoid

◦ reducing memory usage

◦ fine tuning the garbage collector

“Everything should be made as simple as possible,
but not simpler.”

Albert Einstein

 there is no open memory management in Java
◦ new objects can be created

◦ there is no way to free memory after unused objects

 memory is managed by a separate Garbage
Collector threat
◦ locates and removes objects, which do not have any

connection to active threads

◦ locates and removes islands of objects

 GC cannot be forced to clear memory
◦ System.gc() – only suggests to clear memory, can be

ignored

◦ Runtime.getRuntime().gc() – same as above

 GC is the mostly misunderstood feature of
Java
◦ some think, that it is solely responsible for memory

management

◦ others try to help the GC, resulting in more work
than necessary

 understanding GC mechanisms is crucial for
highly efficient, robust software

 JVM specs give little promises on how GC
actually works
◦ heap is created when JVM starts
◦ heap is managed by GC
◦ objects are never directly cleared
◦ JVM does not specify any memory management

algorithm
◦ memory management algorithm can be selected

according to system requirements

 although every JVM can have a different
memory management algorithm, all share the
same object’s life cycle model

 created

 in use

 invisible

 unreachable

 collected

 finalized

 deallocated

 when an object is created:
◦ heap memory gets allocated
◦ object creation gets started
◦ constructor of super class gets invoked
◦ object’s attributes get initialized
◦ rest of the constructor is run

 this results in a pitfall
◦ NEVER call other methods from a constructor

 object’s creation cost depends on JVM
implementation, but always exists

 after creation, the object goes into the in use
state

 objects accessible through at least one strong
reference are in the in use state

 in Java 1.1 there where only strong references

 later new types of references have been
introduced
◦ soft

◦ weak

◦ phantom

 after adding element to the list we have two
strong references to Cat

public class Test {

 static List list = new ArrayList();

 static void makeCat() {

 Object cat = new Cat();

 list.add(cat);

 }

 public static void main (String ... args) {

 makeCat();

 }

}

 object is in invisible state if there are no
strong references available to the program,
although references may exist

 not all objects go through this state
◦ normally, when there are no strong references,

object becomes unreachable

◦ for better performance, JVM may wait till the end of
the method before removing references from stack

 after leaving the try block, there are no references to
the cat object

 it seems, the object is unreachable
◦ no code can access this object

 most efficient JVM implementations do not delete the
reference after leaving scope
◦ object has a strong reference at least till the end of run

method
◦ in this case – cat is invisible for a long time, but is not

unreachable, cannot be cleared!

public void run() {

 try {

 Cat cat = new Cat();

 cat.doSomething();

 } catch(Exception e) { ... }

 while (true) { ... }

}

 object is unreachable, if there are no strong
references available to the threat
◦ GC locates and clears islands of objects

 object in this state is a candidate for clearing
◦ it won’t be cleared immediately

◦ JVM can postpone collecting until necessary

 cyclic references do not always lead to
memory leaks

void BuildCar() {

 Car car = new Car();

 Tire tire = new Tire();

 car.tire = tire;

 tire.car = car;

} // before exiting

void testCarBuilding() {

 buildCar();

} // after exiting

 object is marked as collected if was
recognized as unreachable by GC and is
being prepared for collecting
◦ if it has finalize method, will be marked as for

finalization

◦ otherwise, will be marked as finalized

 finalize method (if present)
◦ has to be called on every object before collecting

◦ garbage collection is delayed by this method

◦ many objects can await for calling finalize, still
being present in memory

 shouldn't be widely used!

 finalize
◦ delays creating objects

 JVM has to mark the object as finalizable

◦ extends lifecycle (delays clearing)

 important for short living objects (there are the
majority)

◦ can increase the size of the object

 some JVM add a special attribute to keep the object in
a special queue

 finalize
◦ should only be used to deallocate resources not

managed by JVM

 memory used by native code

 files, sockets, db connections

◦ there is no guarantee, the method will be called

 object can never be collected

 program ends and all memory is returned to OS

 common mistake is to place substantial logic there

 it is not a destructor as known from C++

 object is in this state if still unreachable after
calling finalize
◦ method can “resurrect” object by tying it to a static

variable

 bad idea – finalize won’t be called again

 leads to serious problems

◦ finalized can be called only once

◦ won’t be called again if object will again be in
collected state

 in this state the objects waits to be cleared

 last state in GC model

 object has been cleared

 previously used space can be allocated

 there is no way to recall a cleared object

 java.lang.ref contains classes allowing better
cooperation with GC

 defines 3 new types of references (inherit after
Reference)
◦ SoftReference
◦ WeakReference
◦ PhantomReference

 every type defines a different type of garbage
collection when object is only reachable through
Reference
◦ Reference holds a reference to an object
 it behaves like a proxy

 get() returns the object

 additionally allows garbage collection when nothing uses the
object

 strongest reference (from Reference)

 used to implement memory-sensitive cache

 can be decided, whether or not to place
object in ReferenceQueue
◦ if reference has one assigned, GC will place it there

after removing physical object

◦ we can get reference from queue and clean it up

 a softly reachable has only soft references, no
strong ones

 after locating softly reachable objects, the
GC:
◦ decides, if it should clear them

 it is guaranteed they will be cleared before
OutOfMemoryError

 no other assumptions for garbage collection

◦ at the same time or later cleared references will be
enqued

 “weaker” than SoftReference

 designated for map implementation, which keys
and values can be cleared (WeakHashMap)

 can be decided whether or not to put the object
in ReferenceQueue

 a weakly reachable object has no strong or soft
references

 after locating weakly reachable object, the GC
◦ clears the references

◦ declares weakly reachable object for finalization

◦ at the same time or later queue weak references

 weakest reference

 allows performing actions before object’s destruction
in more elastic way than finalize method

 object has to be placed in ReferenceQueue

 a phantom reachable object has no strong, soft or
weak references

 after locating phantom reachable objects
◦ GC queues them (when found or later)
◦ they are not automatically cleared
◦ should be cleared manually or left

 get() always returns null
◦ cannot get a wrapped object
◦ lost objects stay that way

 only strong references lead to memory leaks
on heap
◦ forgotten references to unused objects

 main reason is that the reference will be overridden by
a new one by next use, which can never occur

◦ “lost” objects in collections

 unused elements in sets

 values in maps under unused keys

 objects in collections with hash tables, in which the
hashCode() value changed

 remember WeakHashMap<K,V>

 soft and weak references don’t lead to leaks

 some sources say, that phantom references
also, but…
◦ they are not automatically cleared

◦ if a reference taken from queue is not cleared or
dropped, a leak occurs

 finalize can lead to leaks
◦ objects with overridden finalize method, marked by

GC as unused, are send to finalization queue

 this queue can get very big

 no object will be cleared before finalizing

 there is no time guarantee

 delays clearing

◦ objects “resurrected” in finalize

 always a bad idea

 if the whole world forgot them, resurrecting often
leads to leaks

 exceptions can change the flow of control
◦ cleaning code can be skipped

 elements stay in collections

 event listeners

◦ ALWAYS put this code in finally

 objects of inner classes keep reference to
outer class
◦ when outer class not used, define inner class as

static

 some solutions allow keeping objects in scopes

 servlets define 4 scopes
◦ application – whole application life time
◦ session – from first call till end of session
 invalidate()
 time-out – can be indefinite and user does not log out

◦ request – from call till response
◦ page – from beginning generating view till end

 common problem – session “sweeling”
◦ session keep data required for one request
◦ is not cleared afterwards

 ALWAYS define objects in lowest possible scope

 can happen through stack
◦ references in invisible state can not be cleared

immediately

◦ JVM delays it till removing from heap – end of
method

◦ if leaving a block object gets invisible, its life time
is extended till end of method

◦ method can do time expensive calculations
(invisible example)

◦ reference null

 for previous case
◦ carefully reference null

◦ profiling should show if it is necessary

◦ JIT can do it for you

void example() {

 int[] array = new int[1024];

 fill(array);

 show(array); // last use

 array = null; // NOT NECESARRY

 // GC sees, that array is not used

}

 memory leaks can also not apply to memory
managed by JVM

 native methods (JNI) use code written in other
languages
◦ memory from outside JVM stack gets allocated

◦ hard to define memory used by application

◦ GC cannot manage this

◦ lack of managing code leads to leaks

◦ manually clean this memory

 finalize for object that uses JNI

 PhantomReference

 creating big objects
◦ longer allocation time
◦ longer initialization time
 more attributes to set to default (null or 0)

◦ often to big for cache (Eden space)
◦ allocated in space for older objects
 seldom cleaning

◦ can cause memory fragmentation during clear

 GC loves small objects
◦ easy to allocate memory
◦ optimization mechanisms
 placed in Eden (cache)

 optimized lists for popular allocation sizes

 System.gc() – application has too little
information
◦ never periodically

◦ bad timing – hurts efficiency

◦ occasionally

 MAYBE in clearly defined places

 when efficiency is not important (night)

 let the GC work
◦ -XX:+DisableExplicitGC

 avoid memory leaks :)

 remember how to reduce number of classes
◦ use sparingly

◦ reflections use more CPU time

 remember about soft reference collections

 avoid overriding finalize

 use lowest possible scope

 tune collections to needed size

 Java has many configuration parameters for
GC
◦ parameters starting with –X

 custom

 not guaranteed to work in all JVM

 can be changed in later versions

◦ parameters starting with –XX

 unstable

 not recommended for everyday use

 can be changed in later versions

 most of the objects die young

 to optimize this behavior memory is divided
into memory generations
◦ hold objects of different age

 GC manages every generation separately
◦ clears when generation gets too big

◦ assuming, that most objects die young

 GC mostly works on minor collection

 most objects starts and ends here

 GC clears what is significant

 old objects are not here (live for the whole time)

 concerns only young generation

 happens most often

 most important when configuring GC

 young generation full of old objects is cleared
fast

 some survived objects get reallocated to
older generation (tenured)

 covers whole heap

 occur, when whole old generation filled

 takes more time
◦ more elements to collect

 System.gc() – request for major collection
◦ AVOID

 standard generation model for all types of
GC, besides parallel collector

 during initialization the maximum amount of
memory gets virtually reserved
◦ but not allocated in physical memory until needed

 address space is divided in yound and old
generation

 permanent generation used by JVM
◦ objects describing methods and classes

 young generation consists of
◦ Eden

 youngest objects

 most of the objects start here

◦ two survivor spaces

 for objects surviving garbage collection

 one is for objects surviving clearing Eden

 second one is empty

 used alternately

 object surviving next clearing goes to second space

 objects are copied until aged enough to be moved to old
generation

 when GC becomes bottleneck configuration is
needed
◦ full heap size
◦ generation sizes

 option –verbose:gc
◦ returns data from GC for every clear
◦ allows for better tuning
◦ example: 2 minor and 1 major collection
◦ format: before->after(heap size), GC time

◦ -XX:+PrintGCDetail shows additional information
◦ -XX:+PrintGCTimeStamps adds timestamps

[GC 325407K->83000K(776768K), 0.2300771 secs]

[GC 325816K->83372K(776768K), 0.2454258 secs]

[Full GC 267628K->83769K(776768K), 1.8479984 secs]

 usually have to choose between different measures
◦ big young generation space
 higher throughput

 also pause time, footprint and promptness

◦ small young generation space
 lowers pauses

 lowers throughput

 changing the size of one generation does not affect
others

 there are no recipes for dimensioning
◦ best choice depends on user requirements and how the

application uses memory
◦ default choice is not always right
 can be changed through command line options

