
memory management

 memory management
◦ memory management

◦ how garbage collection works

◦ types of references

◦ how memory leaks occur in Java

◦ bad practices – what to avoid

◦ reducing memory usage

◦ fine tuning the garbage collector

“Everything should be made as simple as possible,
but not simpler.”

Albert Einstein

 there is no open memory management in Java
◦ new objects can be created

◦ there is no way to free memory after unused objects

 memory is managed by a separate Garbage
Collector threat
◦ locates and removes objects, which do not have any

connection to active threads

◦ locates and removes islands of objects

 GC cannot be forced to clear memory
◦ System.gc() – only suggests to clear memory, can be

ignored

◦ Runtime.getRuntime().gc() – same as above

 GC is the mostly misunderstood feature of
Java
◦ some think, that it is solely responsible for memory

management

◦ others try to help the GC, resulting in more work
than necessary

 understanding GC mechanisms is crucial for
highly efficient, robust software

 JVM specs give little promises on how GC
actually works
◦ heap is created when JVM starts
◦ heap is managed by GC
◦ objects are never directly cleared
◦ JVM does not specify any memory management

algorithm
◦ memory management algorithm can be selected

according to system requirements

 although every JVM can have a different
memory management algorithm, all share the
same object’s life cycle model

 created

 in use

 invisible

 unreachable

 collected

 finalized

 deallocated

 when an object is created:
◦ heap memory gets allocated
◦ object creation gets started
◦ constructor of super class gets invoked
◦ object’s attributes get initialized
◦ rest of the constructor is run

 this results in a pitfall
◦ NEVER call other methods from a constructor

 object’s creation cost depends on JVM
implementation, but always exists

 after creation, the object goes into the in use
state

 objects accessible through at least one strong
reference are in the in use state

 in Java 1.1 there where only strong references

 later new types of references have been
introduced
◦ soft

◦ weak

◦ phantom

 after adding element to the list we have two
strong references to Cat

public class Test {

 static List list = new ArrayList();

 static void makeCat() {

 Object cat = new Cat();

 list.add(cat);

 }

 public static void main (String ... args) {

 makeCat();

 }

}

 object is in invisible state if there are no
strong references available to the program,
although references may exist

 not all objects go through this state
◦ normally, when there are no strong references,

object becomes unreachable

◦ for better performance, JVM may wait till the end of
the method before removing references from stack

 after leaving the try block, there are no references to
the cat object

 it seems, the object is unreachable
◦ no code can access this object

 most efficient JVM implementations do not delete the
reference after leaving scope
◦ object has a strong reference at least till the end of run

method
◦ in this case – cat is invisible for a long time, but is not

unreachable, cannot be cleared!

public void run() {

 try {

 Cat cat = new Cat();

 cat.doSomething();

 } catch(Exception e) { ... }

 while (true) { ... }

}

 object is unreachable, if there are no strong
references available to the threat
◦ GC locates and clears islands of objects

 object in this state is a candidate for clearing
◦ it won’t be cleared immediately

◦ JVM can postpone collecting until necessary

 cyclic references do not always lead to
memory leaks

void BuildCar() {

 Car car = new Car();

 Tire tire = new Tire();

 car.tire = tire;

 tire.car = car;

} // before exiting

void testCarBuilding() {

 buildCar();

} // after exiting

 object is marked as collected if was
recognized as unreachable by GC and is
being prepared for collecting
◦ if it has finalize method, will be marked as for

finalization

◦ otherwise, will be marked as finalized

 finalize method (if present)
◦ has to be called on every object before collecting

◦ garbage collection is delayed by this method

◦ many objects can await for calling finalize, still
being present in memory

 shouldn't be widely used!

 finalize
◦ delays creating objects

 JVM has to mark the object as finalizable

◦ extends lifecycle (delays clearing)

 important for short living objects (there are the
majority)

◦ can increase the size of the object

 some JVM add a special attribute to keep the object in
a special queue

 finalize
◦ should only be used to deallocate resources not

managed by JVM

 memory used by native code

 files, sockets, db connections

◦ there is no guarantee, the method will be called

 object can never be collected

 program ends and all memory is returned to OS

 common mistake is to place substantial logic there

 it is not a destructor as known from C++

 object is in this state if still unreachable after
calling finalize
◦ method can “resurrect” object by tying it to a static

variable

 bad idea – finalize won’t be called again

 leads to serious problems

◦ finalized can be called only once

◦ won’t be called again if object will again be in
collected state

 in this state the objects waits to be cleared

 last state in GC model

 object has been cleared

 previously used space can be allocated

 there is no way to recall a cleared object

 java.lang.ref contains classes allowing better
cooperation with GC

 defines 3 new types of references (inherit after
Reference)
◦ SoftReference
◦ WeakReference
◦ PhantomReference

 every type defines a different type of garbage
collection when object is only reachable through
Reference
◦ Reference holds a reference to an object
 it behaves like a proxy

 get() returns the object

 additionally allows garbage collection when nothing uses the
object

 strongest reference (from Reference)

 used to implement memory-sensitive cache

 can be decided, whether or not to place
object in ReferenceQueue
◦ if reference has one assigned, GC will place it there

after removing physical object

◦ we can get reference from queue and clean it up

 a softly reachable has only soft references, no
strong ones

 after locating softly reachable objects, the
GC:
◦ decides, if it should clear them

 it is guaranteed they will be cleared before
OutOfMemoryError

 no other assumptions for garbage collection

◦ at the same time or later cleared references will be
enqued

 “weaker” than SoftReference

 designated for map implementation, which keys
and values can be cleared (WeakHashMap)

 can be decided whether or not to put the object
in ReferenceQueue

 a weakly reachable object has no strong or soft
references

 after locating weakly reachable object, the GC
◦ clears the references

◦ declares weakly reachable object for finalization

◦ at the same time or later queue weak references

 weakest reference

 allows performing actions before object’s destruction
in more elastic way than finalize method

 object has to be placed in ReferenceQueue

 a phantom reachable object has no strong, soft or
weak references

 after locating phantom reachable objects
◦ GC queues them (when found or later)
◦ they are not automatically cleared
◦ should be cleared manually or left

 get() always returns null
◦ cannot get a wrapped object
◦ lost objects stay that way

 only strong references lead to memory leaks
on heap
◦ forgotten references to unused objects

 main reason is that the reference will be overridden by
a new one by next use, which can never occur

◦ “lost” objects in collections

 unused elements in sets

 values in maps under unused keys

 objects in collections with hash tables, in which the
hashCode() value changed

 remember WeakHashMap<K,V>

 soft and weak references don’t lead to leaks

 some sources say, that phantom references
also, but…
◦ they are not automatically cleared

◦ if a reference taken from queue is not cleared or
dropped, a leak occurs

 finalize can lead to leaks
◦ objects with overridden finalize method, marked by

GC as unused, are send to finalization queue

 this queue can get very big

 no object will be cleared before finalizing

 there is no time guarantee

 delays clearing

◦ objects “resurrected” in finalize

 always a bad idea

 if the whole world forgot them, resurrecting often
leads to leaks

 exceptions can change the flow of control
◦ cleaning code can be skipped

 elements stay in collections

 event listeners

◦ ALWAYS put this code in finally

 objects of inner classes keep reference to
outer class
◦ when outer class not used, define inner class as

static

 some solutions allow keeping objects in scopes

 servlets define 4 scopes
◦ application – whole application life time
◦ session – from first call till end of session
 invalidate()
 time-out – can be indefinite and user does not log out

◦ request – from call till response
◦ page – from beginning generating view till end

 common problem – session “sweeling”
◦ session keep data required for one request
◦ is not cleared afterwards

 ALWAYS define objects in lowest possible scope

 can happen through stack
◦ references in invisible state can not be cleared

immediately

◦ JVM delays it till removing from heap – end of
method

◦ if leaving a block object gets invisible, its life time
is extended till end of method

◦ method can do time expensive calculations
(invisible example)

◦ reference null

 for previous case
◦ carefully reference null

◦ profiling should show if it is necessary

◦ JIT can do it for you

void example() {

 int[] array = new int[1024];

 fill(array);

 show(array); // last use

 array = null; // NOT NECESARRY

 // GC sees, that array is not used

}

 memory leaks can also not apply to memory
managed by JVM

 native methods (JNI) use code written in other
languages
◦ memory from outside JVM stack gets allocated

◦ hard to define memory used by application

◦ GC cannot manage this

◦ lack of managing code leads to leaks

◦ manually clean this memory

 finalize for object that uses JNI

 PhantomReference

 creating big objects
◦ longer allocation time
◦ longer initialization time
 more attributes to set to default (null or 0)

◦ often to big for cache (Eden space)
◦ allocated in space for older objects
 seldom cleaning

◦ can cause memory fragmentation during clear

 GC loves small objects
◦ easy to allocate memory
◦ optimization mechanisms
 placed in Eden (cache)

 optimized lists for popular allocation sizes

 System.gc() – application has too little
information
◦ never periodically

◦ bad timing – hurts efficiency

◦ occasionally

 MAYBE in clearly defined places

 when efficiency is not important (night)

 let the GC work
◦ -XX:+DisableExplicitGC

 avoid memory leaks :)

 remember how to reduce number of classes
◦ use sparingly

◦ reflections use more CPU time

 remember about soft reference collections

 avoid overriding finalize

 use lowest possible scope

 tune collections to needed size

 Java has many configuration parameters for
GC
◦ parameters starting with –X

 custom

 not guaranteed to work in all JVM

 can be changed in later versions

◦ parameters starting with –XX

 unstable

 not recommended for everyday use

 can be changed in later versions

 most of the objects die young

 to optimize this behavior memory is divided
into memory generations
◦ hold objects of different age

 GC manages every generation separately
◦ clears when generation gets too big

◦ assuming, that most objects die young

 GC mostly works on minor collection

 most objects starts and ends here

 GC clears what is significant

 old objects are not here (live for the whole time)

 concerns only young generation

 happens most often

 most important when configuring GC

 young generation full of old objects is cleared
fast

 some survived objects get reallocated to
older generation (tenured)

 covers whole heap

 occur, when whole old generation filled

 takes more time
◦ more elements to collect

 System.gc() – request for major collection
◦ AVOID

 standard generation model for all types of
GC, besides parallel collector

 during initialization the maximum amount of
memory gets virtually reserved
◦ but not allocated in physical memory until needed

 address space is divided in yound and old
generation

 permanent generation used by JVM
◦ objects describing methods and classes

 young generation consists of
◦ Eden

 youngest objects

 most of the objects start here

◦ two survivor spaces

 for objects surviving garbage collection

 one is for objects surviving clearing Eden

 second one is empty

 used alternately

 object surviving next clearing goes to second space

 objects are copied until aged enough to be moved to old
generation

 when GC becomes bottleneck configuration is
needed
◦ full heap size
◦ generation sizes

 option –verbose:gc
◦ returns data from GC for every clear
◦ allows for better tuning
◦ example: 2 minor and 1 major collection
◦ format: before->after(heap size), GC time

◦ -XX:+PrintGCDetail shows additional information
◦ -XX:+PrintGCTimeStamps adds timestamps

[GC 325407K->83000K(776768K), 0.2300771 secs]

[GC 325816K->83372K(776768K), 0.2454258 secs]

[Full GC 267628K->83769K(776768K), 1.8479984 secs]

 usually have to choose between different measures
◦ big young generation space
 higher throughput

 also pause time, footprint and promptness

◦ small young generation space
 lowers pauses

 lowers throughput

 changing the size of one generation does not affect
others

 there are no recipes for dimensioning
◦ best choice depends on user requirements and how the

application uses memory
◦ default choice is not always right
 can be changed through command line options

