
Effective Java 
Programming

measurement as the basis



Structure

● measurement as the basis
○ benchmarking

■ micro
■ macro

○ profiling
■ why you should do this?
■ profiling tools



Motto

"We should forget about small efficiencies, 
say about 97% of the time: premature 
optimization is the root of all evil."
 

Donald Knuth



The problem

● Modern software is too complex
● Even the wisest man is not suitable for 

performance tuning
● need for techniques and tools!

○ benchmarking
○ profiling



What is benchmarking?

● it is a comparison of different solutions on 
the basis of measurements (time, memory, 
...)

● different solutions, but giving the same 
results
○ different data structures
○ different technologies (ORM, MVC)
○ various containers

● the essence is to compare
○ single result does not say anything
○ results are useful when you can compare them



How to measure?

● stopwatch
○ funny, but often appropriate
○ the most versatile technique
○ no interference with the code
○ does not require complicated tools
○ you do not always need the milliseconds

■ application start time
■ time to open a document
■ time scrolling through large tables
■ DB query execution time



How to measure?

● measurements taken into account in the 
code
○ calculation based on system time before and after 

run
○ System.currentTimeMillis ()
○ precision in milliseconds (?)
○ interference with the code - can lead to failure
○ addition to each method is tedious
○ generic stopwatch class



Why build benchmarks?

● ready made ones to compare the JRE
● but they do not evaluate your program
● you need to create a benchmark studying 

your code
○ comparison of alternative solutions
○ performance profiling in your application
○ track performance and trends in the manufacturing 

cycle
● benchmark - code, environment, utility

○ allows for comparison of different solutions
○ repeatable test cases



Micro-benchmark

● checks for a specific part of the system
● often even a few lines of code, for example:

○ Draw a rectangle 100 000, read 10MB file from disk
○ Sorting an array of 100 000 elements, performance 

of specific tasks
● good

○ quick execution, focus on the problem
● bad - does not represent the behavior of a 

real application
○ JVM "warm up"
○ unrealistic interactions in the system



Macro-benchmark

● "true" macro benchmark tests the system in 
the form the user sees it

● I would have to have the system ready...
● how to simulate?

○ work on real data
○ run on the target platform
○ lean on use cases

● you need to understand how users will work 
with the system

○ interactions and the correct sequence of events



Benchmark analysis

● results often vary considerably between 
executions

○ background processes
○ network traffic
○ GC

● perform many times and average the results
● compare results of different solutions

○ min, max, average



What is profiling?

● profiling is to identify components consuming 
the most resources

○ RAM
○ CPU
○ network

● identify system bottlenecks
● there are special tools
● allows to determine the most inefficient parts 

of the system



Why profile?

● you know which parts of the system have the 
greatest impact on performance

● you know what changes will bring the 
greatest benefits

● you avoid common mistakes
○ premature optimization
○ optimization of the bad parts of the system
○ too thorough optimization



Flat profiles problem

● usually to specify bottlenecks for the first 
time is quite simple

● after eliminating more difficult to see others
● common mistake is to rely solely on the time 

spent in the method
● it is also important:

○ how often the method is called
○ how much time is spent calling other methods



Flat profiles problem

Method Time [ms]

m1 5

m2 2

m3 1

m4 1

Method Total time [ms] Time [ms]

m1 30 1

m2 24 2

m3 10 5

m4 3 1



Flat profiles problem

● Having only the execution time you often 
mistakenly refer to bottlenecks

● what to do?
○ speed up frequently used methods
○ less invokes of slow methods

● real life example - JTable in Swing
○ first optimization - leafs
○ Swing 1.1 - 2 times faster
○ lack of clear bottlenecks
○ JViewport problem when scrolling

■ problem was in JTable update
■ redesigned - 3 times faster



What do the tools give?

● typically allow you to find:
○ what methods are most often called
○ most time consuming methods
○ which methods call most commonly used methods
○ methods consuming most memory

● commercial tools have powerful GUI
○ different views
○ sophisticated statistics



Problems

● Too less memory - 3 kinds of memory:
○ heap

■ for arrays and objects
■ error message: Java heap space

when: during class instantiation
○ non-heap

■ stack
■ for addresses, variables, class definitions and strings
■ error message: PermGen space
■ when: eg. loading class

○ native
■ managed by OS, used by native methods
■ error message: request <size> bytes for <reason>. Out of 

swap space?
■ when: using native libraries



Problems

● memory leaks
○ GC does not clean up objects that have incidental references 

pointing to them
○ can lead to memeory leak
○ GC can work more often

● finalization
○ potential memory leak
○ object overriding finalize will not be removed before calling this 

method
○ it is uncertain when or whether the method will be called
○ in the end similar to memory leaks

● deadlock
○ synchronization is faulty
○ 2 or more threads are simultaneously waiting for monitor 

release



Problems

● looped threads
○ thread has infinite loop
○ uses more and more CPU time
○ can crash whole application

● too many locks
○ synchronization blocks threads
○ frequent waiting for monitor can starve thread

● application is too slow
○ identify bottlenecks
○ which methods cause most load?



Tools

● jhat - Java Heap Analysis Tool
○ analyses heap dump
○ preview in browser
○ has its own query language OQL

● jconsole - Java Monitoring and Management 
Console

○ GUI for monitoring and managing Java applications 
and JVM

○ works locally and remotely
○ shows memory, threads, classes, pending 

finalizations
 



Tools

● jstat - JVM Statistical Monitoring Tool
○ shows performance statistics
○ not supported - can be removed in future versions

● jmap - Memory Map
○ shows details about the stack
○ not supported

● jstack - Stack Trace
○ shows call stack for threads
○ useful when looking for deadlocks
○ not supported

● java -Xhprof - Heap/CPU profiling tool
○ since early versions of Java
○ heap and CPU usage by methods



Tools

● Java Visual Virtual Machine
○ bin\jvisualvm.exe
○ since Java 6 update 7
○ much better than jconsole

■ GUI
■ track many JVM at once
■ remote JVM tracking
■ profiling options



Profiling on Eclipse

● basic tools are often "raw"
● commercial - expensive
● there are free plugins for Eclipse that provide 

profilers with a convenient GUI
○ TPTP
○ profiles

■ Eclipse plugins
■ local Java applications
■ complex applications running on multiple 

machines and different platforms



Conclusions

● what is benchmarking?
● what is a benchmark?
● how differs macro from micro benchmark?
● what is profiling?
● what are the problems with flat profiles?


