Groovy

Metaobject protocol



ODbjects In Groovy

* In a Groovy application we’ll work with three kinds of
objects: POJOs, POGOs and Groovy interceptors.

- Plain old Java objects (POJOs) are regular Java objects

* We can create them using Java or other languages on the Java Virtual
Machine (JVM).

- Plain old Groovy objects (POGOs) are classes written In
Groovy.

* They extend java.lang.Object but implement the
groovy.lang.GroovyObject interface.

- Groovy interceptors are Groovy objects that extend
Groovylinterceptable and have a method-interception capability



GroovyObject interface

//This is an excerpt of GroovyObject.java from Groovy source code
package groovy.lang;

public interface GroovyObject {

Object invokeMethod (String name, Object args);

Object getProperty (String property) ;

void setProperty (String property, Object newValue) ;

MetaClass getMetaClass() ;

void setMetaClass (MetaClass metaClass) ;

* invokeMethod(), getProperty() and setProperty() make Groovy objects highly
dynamic.

- We can use them to work with methods and properties created on the fly.

» getMetaClass() and setMetaClass() make it very easy to create proxies to
intercept method calls on POGOs, as well as to inject methods on POGOs.

* Once a class is loaded into the JVM, we can’t change the metaobject Class for it.

- We can change its MetaClass by calling setMetaClass().
» This gives us a feeling that the object changed its class at runtime.



Groovylnterceptable interface

//This is an excerpt of GroovyInterceptable.java from Groovy source code
package groovy.lang;
public interface GroovyInterceptable extends GroovyObject {

}

e |[t's a marker interface that extends
GroovyObject

« All method calls - both existing methods and
nonexistent methods - on an object that
Implements this interface are intercepted by Its
InvokeMethod().



Grovy metaprogramming

* Groovy allows metaprogramming for POJOs and POGOs

 For POJOs, Groovy maintains a MetaClassRegistry
class of MetaClasses

« POGOs have a direct reference to their MetaClass.

MetaClassRegistry 0—) Map r—. MetaClass

L]

Class (for POJO) GroovyObject (POGO)




Method handling for POJOs

 For a POJO, Groovy fetches its MetaClass from
the application-wide MetaClassRegistry and
delegates method invocation to It.

* Any interceptors or methods we've defined on
its MetaClass take precedence over the
POJQO’s original method.



Metod handling for POGOs
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Intercepting Methods Using MOP

* In Groovy we can implement aspect-oriented programming
(AOP) - such as

method interception or method advice—fairly easily.

* There are three types of advice.

— The before advice is code for a concern we'd want to execute
before a certain operation.

- The after advice is executed after an operation’s execution.
- The around advice is executed instead of the intended operation.

* We can use MOP to implement these advice types or
Interceptors.



Intercepting Methods Using
Groovylinterceptable

o |f a Groovy object implements Groovyinterceptable, then
its iInvokeMethod() is called when any of its methods are

called
- both existing methods and nonexistent methods.

» Groovyinterceptable’s invokeMethod() hijacks all calls to
the object.

- If we want to perform an around advice, we simply implement
our logic in this method, and we’re done.

- If we want to implement the before or after advice (or both), we
first implement our before/after logic, then route the call to the
actual method at the appropriate time.



MOP Method Injection

* Using Groovy’'s MOP, we can inject behavior
using any of the following:

- Categories
- ExpandoMetaClass
- Mixins
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Filter chaining

StringWriterl-l— UpperCaseFilterJd— ProfanityFilter

el =T S =T ~ write(...)
write(...) write(...)

StringWriterl-l— ProfanityFilter J-— UpperCaseFilter
~ - ~. -7 CT = write(...)
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