
 1

Groovy

Metaobject protocol

 2

Objects in Groovy

● In a Groovy application we’ll work with three kinds of
objects: POJOs, POGOs and Groovy interceptors.
– Plain old Java objects (POJOs) are regular Java objects

● We can create them using Java or other languages on the Java Virtual
Machine (JVM).

– Plain old Groovy objects (POGOs) are classes written in
Groovy.

● They extend java.lang.Object but implement the
groovy.lang.GroovyObject interface.

– Groovy interceptors are Groovy objects that extend
GroovyInterceptable and have a method-interception capability

 3

GroovyObject interface
//This is an excerpt of GroovyObject.java from Groovy source code

package groovy.lang;

public interface GroovyObject {

 Object invokeMethod(String name, Object args);

 Object getProperty(String property);

 void setProperty(String property, Object newValue);

 MetaClass getMetaClass();

 void setMetaClass(MetaClass metaClass);

}

● invokeMethod(), getProperty() and setProperty() make Groovy objects highly
dynamic.
– We can use them to work with methods and properties created on the fly.

● getMetaClass() and setMetaClass() make it very easy to create proxies to
intercept method calls on POGOs, as well as to inject methods on POGOs.

● Once a class is loaded into the JVM, we can’t change the metaobject Class for it.
– We can change its MetaClass by calling setMetaClass().

● This gives us a feeling that the object changed its class at runtime.

 4

GroovyInterceptable interface

//This is an excerpt of GroovyInterceptable.java from Groovy source code

package groovy.lang;

public interface GroovyInterceptable extends GroovyObject {

}

● It’s a marker interface that extends
GroovyObject

● All method calls - both existing methods and
nonexistent methods - on an object that
implements this interface are intercepted by its
invokeMethod().

 5

Grovy metaprogramming

● Groovy allows metaprogramming for POJOs and POGOs
● For POJOs, Groovy maintains a MetaClassRegistry

class of MetaClasses
● POGOs have a direct reference to their MetaClass.

 6

Method handling for POJOs

● For a POJO, Groovy fetches its MetaClass from
the application-wide MetaClassRegistry and
delegates method invocation to it.

● Any interceptors or methods we’ve defined on
its MetaClass take precedence over the
POJO’s original method.

 7

Metod handling for POGOs

 8

Intercepting Methods Using MOP

● In Groovy we can implement aspect-oriented programming
(AOP) - such as

 method interception or method advice—fairly easily.
● There are three types of advice.

– The before advice is code for a concern we’d want to execute
before a certain operation.

– The after advice is executed after an operation’s execution.

– The around advice is executed instead of the intended operation.

● We can use MOP to implement these advice types or
interceptors.

 9

Intercepting Methods Using
GroovyInterceptable

● If a Groovy object implements GroovyInterceptable, then
its invokeMethod() is called when any of its methods are
called
– both existing methods and nonexistent methods.

● GroovyInterceptable’s invokeMethod() hijacks all calls to
the object.
– If we want to perform an around advice, we simply implement

our logic in this method, and we’re done.

– If we want to implement the before or after advice (or both), we
first implement our before/after logic, then route the call to the
actual method at the appropriate time.

 10

MOP Method Injection

● Using Groovy’s MOP, we can inject behavior
using any of the following:
– Categories

– ExpandoMetaClass

– Mixins

 11

Filter chaining

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

