Groovy

Metaobject protocol



ODbjects In Groovy

* In a Groovy application we’ll work with three kinds of
objects: POJOs, POGOs and Groovy interceptors.

- Plain old Java objects (POJOs) are regular Java objects

* We can create them using Java or other languages on the Java Virtual
Machine (JVM).

- Plain old Groovy objects (POGOs) are classes written In
Groovy.

* They extend java.lang.Object but implement the
groovy.lang.GroovyObject interface.

- Groovy interceptors are Groovy objects that extend
Groovylinterceptable and have a method-interception capability



GroovyObject interface

//This is an excerpt of GroovyObject.java from Groovy source code
package groovy.lang;

public interface GroovyObject {

Object invokeMethod (String name, Object args);

Object getProperty (String property) ;

void setProperty (String property, Object newValue) ;

MetaClass getMetaClass() ;

void setMetaClass (MetaClass metaClass) ;

* invokeMethod(), getProperty() and setProperty() make Groovy objects highly
dynamic.

- We can use them to work with methods and properties created on the fly.

» getMetaClass() and setMetaClass() make it very easy to create proxies to
intercept method calls on POGOs, as well as to inject methods on POGOs.

* Once a class is loaded into the JVM, we can’t change the metaobject Class for it.

- We can change its MetaClass by calling setMetaClass().
» This gives us a feeling that the object changed its class at runtime.



Groovylnterceptable interface

//This is an excerpt of GroovyInterceptable.java from Groovy source code
package groovy.lang;
public interface GroovyInterceptable extends GroovyObject {

}

e |[t's a marker interface that extends
GroovyObject

« All method calls - both existing methods and
nonexistent methods - on an object that
Implements this interface are intercepted by Its
InvokeMethod().



Grovy metaprogramming

* Groovy allows metaprogramming for POJOs and POGOs

 For POJOs, Groovy maintains a MetaClassRegistry
class of MetaClasses

« POGOs have a direct reference to their MetaClass.

MetaClassRegistry 0—) Map r—. MetaClass

L]

Class (for POJO) GroovyObject (POGO)




Method handling for POJOs

 For a POJO, Groovy fetches its MetaClass from
the application-wide MetaClassRegistry and
delegates method invocation to It.

* Any interceptors or methods we've defined on
its MetaClass take precedence over the
POJQO’s original method.



Metod handling for POGOs

class implements

Groovylnterceptable!

call its invokeMethad ()

Call interceptor or
original method

has a property
with method namep

that property
is of type Closure?

call closure's ca11 ) method

no has yes

methodMissing () ?

call its methadnd s5ing i)

no has yes
i nvokeMethod ()7

throw MissingMethodException () call its i nvokeMethad ()




Intercepting Methods Using MOP

* In Groovy we can implement aspect-oriented programming
(AOP) - such as

method interception or method advice—fairly easily.

* There are three types of advice.

— The before advice is code for a concern we'd want to execute
before a certain operation.

- The after advice is executed after an operation’s execution.
- The around advice is executed instead of the intended operation.

* We can use MOP to implement these advice types or
Interceptors.



Intercepting Methods Using
Groovylinterceptable

o |f a Groovy object implements Groovyinterceptable, then
its iInvokeMethod() is called when any of its methods are

called
- both existing methods and nonexistent methods.

» Groovyinterceptable’s invokeMethod() hijacks all calls to
the object.

- If we want to perform an around advice, we simply implement
our logic in this method, and we’re done.

- If we want to implement the before or after advice (or both), we
first implement our before/after logic, then route the call to the
actual method at the appropriate time.



MOP Method Injection

* Using Groovy’'s MOP, we can inject behavior
using any of the following:

- Categories
- ExpandoMetaClass
- Mixins

10



Filter chaining

StringWriterl-l— UpperCaseFilterJd— ProfanityFilter

el =T S =T ~ write(...)
write(...) write(...)

StringWriterl-l— ProfanityFilter J-— UpperCaseFilter
~ - ~. -7 CT = write(...)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

