Groovy

Dynamic typing



Types Iin Java — abstract methods

public void takeHelp (Man man) {

//. ..
man . helpMoveThings () ;

//...

public abstract class Human {
public abstract void helpMoveThings () ;
//...

public void takeHelp (Human human) {

//...
human .helpMoveThings () ;

//...




Types Iin Java — interfaces

public interface Helper ({

public void helpMoveThings() ;
}

public void takeHelp (Helper helper) ({

//. ..
helper.helpMoveThings () ;

//...
}




Duck typing

def takeHelp (helper) ({

//...
helper.helpMoveThings ()

//...

}

* Design by capabillity.

- Instead of asking the helper to conform to some
explicit interface, we're making use of the object’s
capability, relying upon an implicit interface.

* Duck typing - "If it walks like a duck and quacks
like a duck, it must be a duck.

 Example 00



Problems with dynamic typing

* We might mistype the method name when creating
one of the helpers.

- Unit testing

« Without the type information, how do we know what
to send to the method?

- Naming conventions

 What if we send the method a nonhelper (an object
that’s not capable of moving stuff)?

- Method discovery



Polymorphism

In Java

public class Employee {
public void raise (Number amount) {

System.out.println ("Employee got raise") ;

public class Executive extends Employee {
public void raise (Number amount) {
System.out.println ("Executive got raise") ;
}
public void raise(java.math.BigDecimal amount) ({

System.out.println ("Executive got outlandish raise") ;

public class GiveRaiseJava ({
public static void giveRaise (Employee employee) {
employee.raise (new BigDecimal (10000.00)) ;
}
public static void main(String[] args) ({
giveRaise (new Employee()) ;

giveRaise (new Executive()) ;




Multimethods in Groovy

void giveRaise (Employee employee) {
employee.raise (new BigDecimal (10000.00))
// same as
//employee.raise (10000.00)

}

giveRaise new Employee ()

giveRaise new Executive ()

» Groovy picks the correct implementation based
not only on the target object, but also on the
parameter(s) we send to the call.

» Since the method-dispatching is based on
multiple objects - the target plus the parameters
- this Is called multiple dispatch or multimethods,



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

