PC

Address

Memory

=p| Data

Instruction
or data

Instruction
register

l

Memory
data
reqgister

Data
Register #
Registers

Register #

Register #

Overview of the multi—cycle Architecture Datapath

ALUOut

Multi-cycle Architecture:

e cach instruction is executed in several clock cycles
e instruction execution time (machine cycle) is variable

e instructions can store intermediate results (in intermediate registers) to be used
in next stages of execution of this instruction

e the final instruction results are stored either in register file, memory or PC
e reduction of dedicated architecture elements in favor of intermediate registers

Hardware Blocks:

common memory unit for both program and data
register file

single general-purpose ALU

intermediate registers at output of each hardware block

Intermediate Registers (not accessible directly)

IR — instruction register — stores instr. code during whole machine cycle
MDR — memory data register — stores the data read from the memory
A,B — store the data read from the register file

ALUOut — stores the result of ALU operation

L PC 0 I—> 0
M Instruction »| Read M
u Address [25-21] " | register 1 u
X i Read || X
Instruction Read A 7
>\ Memory [20-16] I ’ register 2 data 1 _I—> 1 >ALU ero
MemData [y 0 Registers ALU ALUOU {my
Instruction M Write Read result
_ [15-01 [¥ instruction| u register gata 2 [>| B 0 |up]
\é\gt';e Instruction [15-11] 1X Write 4 mpl1 M
register 2
X
Instruction 3
[15-0]

)| Memory
data
register

extend

Additional multiplexers are required to make the hardware (ALU) available to all
instruction operations (R-type operations, PC increment, memory address

calculation)

Multi—cycle Architecture Datapath with Hardware Sharing

lorD MemRead MemWrite IRWrite RegDst RegWrite ALUSrcA
pPC 0 » 0
M Instruction o | Read M
u Address [25-21] " | register 1 u
X Instruction Read Readl__,, X Z
> > ero
>\ Memory [20-16] | > register2 042 L1 ALU
MemData . 0 _ Registers ALY »| ALUOU
Instruction |_ M Write Read R result
[15-0] Instruction| U register data 2 » e @—p-{ ()
Write ; 15-11 X . M
s Instruction []] Write 4 =p|1) /
register data > 2
Instruction = 0 > 3
[15-0] M \S
u
X
»| Memory :\1
data 16 ALU
register [e »| control
Instruction [5-0]
@
MemtoReg ALUSrcB ALUOp

Multi—cycle Control Signals

—»|PC

PCWriteCond/\ PCSource

PCWrite /

lorD / Outputs

MemRead

MemWrite | Control

MemtoReg

IRWrite \ [5(?8] ,CRegDSt
N

'3

\ALUOp

ALUSrcB

ALUSrcA

RegWrite

Jump
Instruction [25-0] 2\6‘ Shift 28 address [31-0]
N \left 2
Instruction
1 [31-26] t v PC [31-28]
M Instruction _| »| Read M
u Address [25-21] register 1 _| ¥ .
> 1X Memo Instruction | | o | Read Rea1d > A I X Zero
ry [20-16] . ™ register 2 data _I ! ALU
MemData > Instructi 0 W _tRegisters ALlltJ @) | ALUOU i
nstruction L& M rite Read o B resu
Writ [15-0] Instruction| u register gatg 2 " m
rite i 15-11 x . M
> Jata Instruction [] 1 Write 4 = 1 v /
register data > 2
Instruction = 0 3
[15-0] M
u
X
> Memory »{ 1
data N 16 Sign
ist [A= —
register > extend
Instruction [5-0]
<

\ 4

- O

xcZ

Complete Multi—cycle Architecture

Signal 0 1
RegDst reg. loaded from memory reg. modified by R-type
RegWrite — allow to modify the register file
ALUSrcA PC to ALU A to ALU
MemRead — allow to read the memory
MemWrite — allow to write the memory
ALUOuUt Is to be stored MDR Is to be stored
MemToReg in the register file in the register file
IorD PC addressing the memory | ALUOuUt addressing the memory
IRWrite — allow to write the IR
PCWrite — allow to write the PC
PCWriteCond — allow conditionally write the PC

1-bit Control Signals

Signal

Operation

add (load-store)
subtract (branch)

ALUOp 10 depending on function field (R-type)
00 B (R-type) to ALU
01 . _ 4 to ALU
10 instruction[15-0] (load-store) to ALU
ALUSrcB 11 instruction[15-0]ii2 (branch) to ALU
00 ALU (PC+4) to PC
01 ALUOut (branch) to PC
PCSource 10 PC[31-26]+IR[25-0]ii2 (Jump) to PC

2-bit Control Signals

Memory address
computation

\L\N‘\ 0‘ Kop -

©OP°

ALUSIrcA =1
ALUSrcB =10
ALUOp =00

.

§
Memory % Memory
access access

3
]

a
o

MemWrite
lorD =1

MemRead

lorD =1

Write-back step

RegDstE0
RegWrite

Instruction decode/

Instruction fetch register fetch

MemRead 1
ALUSrcA =0
lorD=0 ALUSIrcA =0
IRWrite »| ALUSrcB = 11
ALUSrcB =01 ALUOp =00
ALUOp =00
PCWrite N A
PCSource =0 S o/ =
4?"\\!Q Q)Q’ >
. ©O° Y I
1 \N\ Q o
Branch O o |Jump
Execution completion ~—ycompletion
6

ALUSIrcA =1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource = 01

ALUSICA =1
ALUSIGB = 00
ALUOp= 10

PCWrite

PCSource = 10

R-type completion

RegDst = 1
RegWrite
MemtoReg = 0

MemtoReg1

state Diagram of

Multi—cycle Control

Block

Combinatorial

. Control
logic

lines

(next state)

A \
' \

T 11

State reg. Control = F(Q(t), O d
Opcode ‘[‘T ontro (Q(t), Opcode)

Instr[31-26]

Q(t+1) = F(Q(t), Opcode)

Q[3-0]

State Machine of the Multi—cycle Control Block

ROM (>
>
Control signals
data < J
address
A \
s N

Opcode

ROM-based Hardware Implementation of multi—cycle Control Block

