PC

Address

Memory

=p| Data

Instruction
or data

Instruction
register

l

Memory
data
reqgister

Data
Register #
Registers

Register #

Register #

Overview of the multi—cycle Architecture Datapath
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Multi-cycle Architecture:

e cach instruction is executed in several clock cycles
e instruction execution time (machine cycle) is variable

e instructions can store intermediate results (in intermediate registers) to be used
in next stages of execution of this instruction

e the final instruction results are stored either in register file, memory or PC
e reduction of dedicated architecture elements in favor of intermediate registers

Hardware Blocks:

common memory unit for both program and data
register file

single general-purpose ALU

intermediate registers at output of each hardware block

Intermediate Registers (not accessible directly)

IR — instruction register — stores instr. code during whole machine cycle
MDR — memory data register — stores the data read from the memory
A,B — store the data read from the register file

ALUOut — stores the result of ALU operation
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Additional multiplexers are required to make the hardware (ALU) available to all
instruction operations (R-type operations, PC increment, memory address

calculation)

Multi—cycle Architecture Datapath with Hardware Sharing
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Multi—cycle Control Signals
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Complete Multi—cycle Architecture




Signal 0 1
RegDst reg. loaded from memory reg. modified by R-type
RegWrite — allow to modify the register file
ALUSrcA PC to ALU A to ALU
MemRead — allow to read the memory
MemWrite — allow to write the memory
ALUOuUt Is to be stored MDR Is to be stored
MemToReg in the register file in the register file
IorD PC addressing the memory | ALUOuUt addressing the memory
IRWrite — allow to write the IR
PCWrite — allow to write the PC
PCWriteCond — allow conditionally write the PC

1-bit Control Signals



Signal

Operation

add (load-store)
subtract (branch)

ALUOp 10 depending on function field (R-type)
00 B (R-type) to ALU
01 . _ 4 to ALU
10 instruction[15-0] (load-store) to ALU
ALUSrcB 11 instruction[15-0]ii2 (branch) to ALU
00 ALU (PC+4) to PC
01 ALUOut (branch) to PC
PCSource 10 PC[31-26]+IR[25-0]ii2 (Jump) to PC

2-bit Control Signals
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State Machine of the Multi—cycle Control Block
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ROM-based Hardware Implementation of multi—cycle Control Block



