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Overview of the multi–cycle Architecture Datapath



Multi-cycle Architecture:

• each instruction is executed in several clock cycles

• instruction execution time (machine cycle) is variable

• instructions can store intermediate results (in intermediate registers) to be used
in next stages of execution of this instruction

• the final instruction results are stored either in register file, memory or PC

• reduction of dedicated architecture elements in favor of intermediate registers

Hardware Blocks:

• common memory unit for both program and data

• register file

• single general-purpose ALU

• intermediate registers at output of each hardware block

Intermediate Registers (not accessible directly)

IR — instruction register — stores instr. code during whole machine cycle

MDR — memory data register — stores the data read from the memory

A,B — store the data read from the register file

ALUOut — stores the result of ALU operation
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Additional multiplexers are required to make the hardware (ALU) available to all

instruction operations (R-type operations, PC increment, memory address

calculation)

Multi–cycle Architecture Datapath with Hardware Sharing
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Signal 0 1

RegDst reg. loaded from memory reg. modified by R-type
RegWrite — allow to modify the register file
ALUSrcA PC to ALU A to ALU
MemRead — allow to read the memory
MemWrite — allow to write the memory

MemToReg
ALUOut is to be stored

in the register file
MDR is to be stored
in the register file

IorD PC addressing the memory ALUOut addressing the memory
IRWrite — allow to write the IR
PCWrite — allow to write the PC

PCWriteCond — allow conditionally write the PC

1-bit Control Signals



Signal Value Operation

ALUOp

00
01
10

add (load-store)
subtract (branch)

depending on function field (R-type)

ALUSrcB

00
01
10
11

B (R-type) to ALU
4 to ALU

instruction[15-0] (load-store) to ALU
instruction[15-0]¡¡2 (branch) to ALU

PCSource

00
01
10

ALU (PC+4) to PC
ALUOut (branch) to PC

PC[31-26]+IR[25-0]¡¡2 (jump) to PC

2-bit Control Signals
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State Machine of the Multi–cycle Control Block



ROM-based Hardware Implementation of multi–cycle Control Block


