
PC

Memory

Address

Instruction
or data

Data

Instruction

register

Registers

Register #

Data

Register #

Register #

ALU

Memory

data

register

A

B

ALUOut

Overview of the multi–cycle Architecture Datapath



Multi-cycle Architecture:

• each instruction is executed in several clock cycles

• instruction execution time (machine cycle) is variable

• instructions can store intermediate results (in intermediate registers) to be used
in next stages of execution of this instruction

• the final instruction results are stored either in register file, memory or PC

• reduction of dedicated architecture elements in favor of intermediate registers

Hardware Blocks:

• common memory unit for both program and data

• register file

• single general-purpose ALU

• intermediate registers at output of each hardware block

Intermediate Registers (not accessible directly)

IR — instruction register — stores instr. code during whole machine cycle

MDR — memory data register — stores the data read from the memory

A,B — store the data read from the register file

ALUOut — stores the result of ALU operation



Shift

left 2

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15-0]

Sign

extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction

register
1 M

u
x

0

3

2

M
u
x

ALU
result

ALU

Zero

Memory

data

register

Instruction
[15-11]

A

B

ALUOut

0

1

Address

Additional multiplexers are required to make the hardware (ALU) available to all

instruction operations (R-type operations, PC increment, memory address

calculation)

Multi–cycle Architecture Datapath with Hardware Sharing



Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory

MemData

Write
data

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15-11]

M
u
x

0

1

M
u
x

0

1

4

ALUOpALUSrcB

RegDst RegWrite

Instruction
[15-0]

Instruction [5-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

1 M
u
x

0

3

2

ALU
control

M
u
x

0

1
ALU

result

ALU

ALUSrcA

Zero
A

B

ALUOut

IRWrite

Address

Memory
data

register

Multi–cycle Control Signals



Shift
left 2

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15-11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

ALU
control

ALU
result

ALU

Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5-0]

Instruction
[31-26]

Instruction [5-0]

M
u
x

0

2

Jump
address [31-0]Instruction [25-0] 26 28

Shift

left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Complete Multi–cycle Architecture



Signal 0 1

RegDst reg. loaded from memory reg. modified by R-type
RegWrite — allow to modify the register file
ALUSrcA PC to ALU A to ALU
MemRead — allow to read the memory
MemWrite — allow to write the memory

MemToReg
ALUOut is to be stored

in the register file
MDR is to be stored
in the register file

IorD PC addressing the memory ALUOut addressing the memory
IRWrite — allow to write the IR
PCWrite — allow to write the PC

PCWriteCond — allow conditionally write the PC

1-bit Control Signals



Signal Value Operation

ALUOp

00
01
10

add (load-store)
subtract (branch)

depending on function field (R-type)

ALUSrcB

00
01
10
11

B (R-type) to ALU
4 to ALU

instruction[15-0] (load-store) to ALU
instruction[15-0]¡¡2 (branch) to ALU

PCSource

00
01
10

ALU (PC+4) to PC
ALUOut (branch) to PC

PC[31-26]+IR[25-0]¡¡2 (jump) to PC

2-bit Control Signals



PCWrite

PCSource = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

ALUSrcA =1

ALUSrcB = 00

ALUOp= 10

RegDst = 1

RegWrite

MemtoReg = 0

MemWrite

IorD = 1

MemRead

IorD = 1

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst= 0

RegWrite

MemtoReg=1

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

MemRead

ALUSrcA = 0

IorD = 0

IRWrite

ALUSrcB = 01

ALUOp = 00

PCWrite

PCSource = 00

Instruction fetch
Instruction decode/

register fetch

Jump
completion

Branch
completionExecution

Memory address
computation

Memory
access

Memory
access R-type completion

Write-back step

(Op = 'LW') or (O
p = 'SW') (O

p = R-ty
pe)

(O
p 

= 
'B

E
Q

')

(O
p
 =

 'J
')

(O
p = 'S

W
')

(O
p
 =

 'L
W

')

4

0
1

9862

753

Start

state Diagram of Multi–cycle Control Block



State Machine of the Multi–cycle Control Block



ROM-based Hardware Implementation of multi–cycle Control Block


