
Shift
left 2

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15-11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

ALU
control

ALU
result

ALU

Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5-0]

Instruction
[31-26]

Instruction [5-0]

M
u
x

0

2

Jump
address [31-0]Instruction [25-0] 26 28

Shift

left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Complete multi–cycle architecture



• Microprogram-based control is a ROM organized in n-bit words, called micro-
instructions, representing control signals and addressed by microinstruction counter.

• Microinstructions read from the memory in consecutive clock cycles provide the
proper execution of each processor instruction.

• All the sequences of microinstructions that implement all the processor instruc-
tions are called a microprogram.

• Some microinstructions can be shared by various processor instructions, so the
size of microprogram memory can be reduced to the number of unique states
of the state machine.

• Microprogram can be executed in sequence or with conditional or unconditional
jumps, depending on the instruction opcode.
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Exceptions (Interrupts)

• Exception — an occurrence of an (unpredictable) event at an un-

predictable moment requiring an immediate change of normal pro-

gram sequence (call to an exception handling routine)

• Exceptions can be handled in two ways:

– jump to an address of individual handling routine (ver. 1)

– jump to a common address of general handling routine (ver. 2)

• Exception handling mechanism (ver. 2):

– register EPC (Exception Program Counter)

– register Cause — internal number of exception

– control lines CauseWrite, IntCause, EPCWrite



Implementation example of exception handling:

• illegal instruction — Cause=0 — an attempt to execute of a bit

pattern not corresponding to any defined opcode

• arithmetic overflow — Cause=1 — generation of overflow bit dur-

ing arithmetic operation in ALU

• address of common exception handling routine $C0000000 to PC



Shift
left 2

Memory

MemData

Write
data

M
u
x

0

1

Instruction
[15-11]

M
u
x

0

1

4

Instruction
[15-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

ALU
control

ALU
result

ALU

Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

Control

Outputs

Op
[5-0]

Instruction
[31-26]

Instruction [5-0]

M
u
x

0

2

Jump
address [31-0]Instruction [25-0] 26 28

Shift

left 2

PC [31-28]

1

Address

EPC

CO 00 00 00 3

Cause

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

EPCWrite

IntCause
CauseWrite

1

0

1 M
u
x

0

3

2

M
u
x

0

1

M
u
x

0

1

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALUOut

Implementation of exception handling in multi-cycle architecture



ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

RegDst = 1

RegWrite

MemtoReg = 0

MemWrite

IorD = 1

MemRead

IorD = 1

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 00

RegWrite

MemtoReg = 1

RegDst = 0

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

Jump

completion

Branch

completionExecution
Memory address

computation

Memory

access

Memory

access R-type completion

Write-back step

(Op = 'LW') or (O
p = 'SW') (O

p = R-ty
pe)

(O
p 

= 
'B

E
Q

')

(O
p

 =
 'J

')

(O
p = 'S

W
')

(O
p

 =
 'L

W
')

4

0
1

9862

7 11 1053

Start

(O
p =

 other)

Overflow

Overflow

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 01

EPCWrite

PCWrite

PCSource = 11

IntCause = 0

CauseWrite

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 01

EPCWrite

PCWrite

PCSource = 11

IntCause = 1

CauseWrite

PCWrite

PCSource = 10

Control state-machine with exception handling


