
Shift
left 2

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15-11]

M
u
x

0

1

M
u
x

0

1

4

Instruction
[15-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

ALU
control

ALU
result

ALU

Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

Control

Outputs

Op
[5-0]

Instruction
[31-26]

Instruction [5-0]

M
u
x

0

2

Jump
address [31-0]Instruction [25-0] 26 28

Shift

left 2

PC [31-28]

1

1 M
u
x

0

3

2

M
u
x

0

1
ALUOut

Memory

MemData

Write
data

Address

Complete multi–cycle architecture

• Microprogram-based control is a ROM organized in n-bit words, called micro-
instructions, representing control signals and addressed by microinstruction counter.

• Microinstructions read from the memory in consecutive clock cycles provide the
proper execution of each processor instruction.

• All the sequences of microinstructions that implement all the processor instruc-
tions are called a microprogram.

• Some microinstructions can be shared by various processor instructions, so the
size of microprogram memory can be reduced to the number of unique states
of the state machine.

• Microprogram can be executed in sequence or with conditional or unconditional
jumps, depending on the instruction opcode.

Microprogram counter

Address select logic

Adder

1

Input

Datapath

control

outputs

Microcode

storage

Inputs from instruction

register opcode field

Outputs

Sequencing

control

Microprogrammed control unit

Microprogram
counter

1

0

Sequencing

3 - Seq
2 - Jump Table 2
1 - Jump Table 1
0 - Fetch

Address
select block

Instruction opcode

Jump
table 1

Jump
table 2

Microprogram sequence control — Sequencing

Label
ALU

control SRC1 SRC2
Reg

control
Memory PCWrite

control
Sequen-

cing

Add
Sub
Funct code

PC
A

B
4
lw-st offset
branch offset

Read
Write ALU
Write MDR

ALU
ALUOut-cond
Jump

Read PC
Read ALU
Write ALU

Seq
Fetch (0)
Jump Table 1
Jump Table 2

Labels from
jump tables
and label 0 (Fetch)

Single line of microprogram

Label
ALU

control SRC1 SRC2
Reg

control
Memory PCWrite

control
Sequen-

cing

Sequencing
control (2 bits)

Add
Sub
Funct code

PC
A

B
4
lw-st offset
branch offset

Read
Write ALU
Write MDR

ALU
ALUOut-cond
Jump

Read PC
Read ALU
Write ALU

Seq
Fetch (0)
Jump Table 1
Jump Table 2

Labels from
jump tables
and label 0 (Fetch)

ALU Op
(2 bits)

ALUSrcA ALUSrcB
(2 bits)

MemRead
MemWrite
IorD
IRWrite

PCWrite
PCWriteCond
PCSource (2 bits)

RegWrite
MemToReg
RegDst

Microcode fields as control signals

Label
ALU

control SRC1 SRC2
Reg

control
Memory PCWrite

control
Sequen-

cing

Fetch Add

Add

PC

PC

4

branch
offset Read

Read PC ALU Seq

Jump
Table1

Fetch and Decode microprogram

Label
ALU

control SRC1 SRC2
Reg

control
Memory PCWrite

control
Sequen-

cing

Fetch

Mem1

LW2

SW2

Rtype1

Beq1

Jump1

Add

Add

Add

Sub

Func cod

PC

PC

4

branch
offset

ls-sw
offset

Read

WriteMDR

WriteALU

WriteALU

Read PC

ReadALU

ALU

ALUOut
cond.

Seq

Seq

Seq

Fetch

Fetch

Fetch

Fetch

Fetch

Jump
Table1

Jump
Table2

A

A B

BA

Jump

Complete microprogram for multi–cycle architecture

Label LabelOpcode Opcode

Rtype

Jump

Beq

Load

Load

Store

Store

Rtype1

Jump1

Beq1

Mem1

Mem1

LW2

SW2

Jump Table 1 Jump Table 2

Microprogram jump tables

Exceptions (Interrupts)

• Exception — an occurrence of an (unpredictable) event at an un-

predictable moment requiring an immediate change of normal pro-

gram sequence (call to an exception handling routine)

• Exceptions can be handled in two ways:

– jump to an address of individual handling routine (ver. 1)

– jump to a common address of general handling routine (ver. 2)

• Exception handling mechanism (ver. 2):

– register EPC (Exception Program Counter)

– register Cause — internal number of exception

– control lines CauseWrite, IntCause, EPCWrite

Implementation example of exception handling:

• illegal instruction — Cause=0 — an attempt to execute of a bit

pattern not corresponding to any defined opcode

• arithmetic overflow — Cause=1 — generation of overflow bit dur-

ing arithmetic operation in ALU

• address of common exception handling routine $C0000000 to PC

Shift
left 2

Memory

MemData

Write
data

M
u
x

0

1

Instruction
[15-11]

M
u
x

0

1

4

Instruction
[15-0]

Sign
extend

3216

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0]

Instruction
register

ALU
control

ALU
result

ALU

Zero

Memory
data

register

A

B

IorD

MemRead

MemWrite

MemtoReg

PCWriteCond

PCWrite

IRWrite

Control

Outputs

Op
[5-0]

Instruction
[31-26]

Instruction [5-0]

M
u
x

0

2

Jump
address [31-0]Instruction [25-0] 26 28

Shift

left 2

PC [31-28]

1

Address

EPC

CO 00 00 00 3

Cause

ALUOp

ALUSrcB

ALUSrcA

RegDst

PCSource

RegWrite

EPCWrite

IntCause
CauseWrite

1

0

1 M
u
x

0

3

2

M
u
x

0

1

M
u
x

0

1

PC

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

ALUOut

Implementation of exception handling in multi-cycle architecture

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCWriteCond

PCSource = 01

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

RegDst = 1

RegWrite

MemtoReg = 0

MemWrite

IorD = 1

MemRead

IorD = 1

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 00

RegWrite

MemtoReg = 1

RegDst = 0

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

MemRead
ALUSrcA = 0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

Instruction fetch
Instruction decode/

Register fetch

Jump

completion

Branch

completionExecution
Memory address

computation

Memory

access

Memory

access R-type completion

Write-back step

(Op = 'LW') or (O
p = 'SW') (O

p = R-ty
pe)

(O
p

=
'B

E
Q

')

(O
p

 =
 'J

')

(O
p = 'S

W
')

(O
p

 =
 'L

W
')

4

0
1

9862

7 11 1053

Start

(O
p =

 other)

Overflow

Overflow

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 01

EPCWrite

PCWrite

PCSource = 11

IntCause = 0

CauseWrite

ALUSrcA = 0

ALUSrcB = 01

ALUOp = 01

EPCWrite

PCWrite

PCSource = 11

IntCause = 1

CauseWrite

PCWrite

PCSource = 10

Control state-machine with exception handling

