

Representation of Integer Numbers in Computer Systems

Positional Numbering System

- Additive Systems history but ... Roman numerals
- Positional Systems:

$$A = \sum_{i=-\infty}^{+\infty} r_i^i a_i$$

r – system base (radix)

- A number value
- a digit
- *i* digit position

$$-11,3125_{dec} = -1101,0101_{bin}$$

 $0,1_{dec} = -0,0(0011)_{bin}$

(!!! finit (rational) numbers may have infinite representation)

Base

System Base r (radix)

- constant value for all digit positions (fixed-radix)
 decimal, hexadecimal, octal, binary
- may have different values for digit positions (*mixed-radix*)

```
time: hour, minute, second r = (24,60,60)

angle: degree, minute, second r = (360,60,60)

factoradic r = (... 5!, 4!, 3!, 2!, 1!) = (... 120, 24, 6, 2, 1)

54321_{factoradic} = 719_{dec}

5 \times 5! + 4 \times 4! + 3 \times 3! + 2 \times 2! + 1 \times 1! = 719

primoradic r = (... 11, 7, 5, 3, 2, 1)

54321_{primoradic} = 69_{dec}

5 \times 7 + 4 \times 5 + 3 \times 3 + 2 \times 2 + 1 \times 1 = 69
```

may be other than natural number (negative, rational, complex, ...)

$$54321_{-10} = -462810_{dec}$$

Digits

- r-radix system using standard digit set [0... r-1] is non-redundant:
 - binary \rightarrow [0, 1]
 - decimal \rightarrow [0... 9]
 - hexadecimal \rightarrow [0... F]
- \circ system using more digits than radix r is **redundant**:
 - binary \rightarrow [0, 1, 2] or [-1, 0, 1]
 - decimal → [0... F]
 - decimal → [0... 9 ♠, ♣, ♥, ♦]
- representation in redundant systems is not unique:
 - binary [0,1,2]: $1000 = 8_{dec}$ or $0120 = 8_{dec}$

Redundant Systems Taxonomy

Positional fixed-radix systems with $[-\alpha, \beta]$ digit set \rightarrow **redundancy** $\rho = \alpha + \beta + 1 - r$

Capacity

- In conventional (non-redundant) r-radix system, with n-digit number:
 - \odot the range of representation is 0 ... r^n -1
 - \circ the number of unique representations is r^n
 - e.g. 8-bits binary → range 0...255, with 256 unique values
- Number of digits needed to accommodate numbers from arbitrary range 0 ... max:

$$n = floor[(log_r max)] + 1 = ceil[log_r(max+1)]$$

e.g. for 50000 numbers (representations) in binary:

$$\log_2 49999+1 = 16.61 \rightarrow (floor) \rightarrow 16 \text{ digits (bits)}$$

$$\log_2 50000 = 15.61 \rightarrow \text{(ceil)} \rightarrow 16 \text{ digits (bits)}$$

Optimal radix?

- What would 'the best' numbering system (in term of r) to represent numbers from a given range 0...max?
- Criteria for conventional, non-redundant system:
 - high capacity (→ small n)
 - few symbols-digits (→ small r)
 - convenient physical realization
- Let's think of mathematical criteria:

(where *r* is system radix for n-digit number)

Optimal radix?

 \odot Looking for maximum of function: E(r) = r · n

$$E(r) = r n = r \log_{r}(max+1) = r \frac{\ln(max+1)}{\ln(r)} = \ln(max+1) \frac{r}{\ln(r)}$$

$$\frac{dE}{dr} = \ln(max+1) \frac{\ln(r) - 1}{\ln^{2}(r)} = 0$$

$$r_{optimal} = e = 2.71$$

Optimal (according to E(r) criterion) radix is 3, but 2 is almost as good and offers better physical implementation possibilities.

$$\frac{E(2)}{E(3)} = 1.056, \frac{E(10)}{E(2)} = 1.5$$

Non-Positional Numerical Codes

- Gray Code non-positional binary code
 - codes of every two successive values differ in only one bit
 - codes for first and last represented values also differ in only one bit (cyclic code)
 - applications: hazard-free digital electronics (counters, A/D converters, angle/position sensors, etc.)

value	Gray
0	000
1	001
2	011
3	010
4	110
5	111
6	101
7	100

Non-Positional Numerical Codes

- BCD Binary-Coded Decimal
 - each decimal digit coded with 4 bits, one byte can accommodate positive numbers in range 0..99
 - applications:
 - communication with digital 7-segment LED displays
 - direct operations on decimal numbers in binary code no problems with decimal/binary/decimal conversions

digit	BCD	
0	0000	-
1	0001	
2	0010	
3	0011	E407 - 0404000400400444
4	0100	$5127_{\text{DEC}} = 0101000100100111_{\text{BCD}}$
5	0101	DEC
6	0110	
7	0111	
8	1000	
9	1001	

Natural Binary Code (NBC)

NBC features:

- \odot fixed radix-2 with two digits 0 and 1 \rightarrow [0, 1] digit set
- n-bit representation of non-negative values [0 ... 2ⁿ-1]

$$a_{n-1}a_n...a_1a_0 = \sum_{i=0}^{n-1} 2^i a_i$$

4-bits: range $0 \dots 2^4-1 \rightarrow 0 \dots 15$

8-bits: range $0 \dots 2^8-1 \rightarrow 0 \dots 255$

16-bits: range 0 ... 2^{16} -1 \rightarrow 0 ... 65 535

32-bits: range 0 ... 2^{32} -1 \rightarrow 0 ... 4 294 967 295

64-bits: range 0 ... 2^{64} -1 \rightarrow 0 ... 18 446 744 073 709 551 615

NBC cannot represent negative values

Arithmetic Overflow in NBC

- Overflow: result of addition is out of allowed range
 - e.g. 8-bit addition:

```
1111111
+ 00000001
-----
1 00000000 (9-bits)
```

- Carry-bit (C) signals arithmetic overflow in NBC for unsigned arithmetics
- Carry-bit is always stored by Arithmetical-Logical Units for the purpose of result correctness control

Negative Numbers Coding

- Mapping negative numbers on range of positive rep.
- Simple arithmetic operations (addition/subtraction)
- Intuitive representation (?)

- Signed magnitude coding (SM)
- Biased coding (Bias-N or Excess-N)
- Complement coding (1C, 2C)

Signed-Magnitude (SM)

- Oldest, simplest, but inconvenient
- Binary n-digit SM code:
 - most significant bit represents the sign of the number (1 - negative, 0 - positive)
 - range of representation is symmetrical [-2ⁿ⁻¹+1, 2ⁿ⁻¹-1]

 $49_{DEC} = 00110001_{SM}$

 $-49_{DFC} = 10110001_{SM}$

- Advantages:
 - intuitive representation
 - symmetrical range
 - simple negation
 - $+0_{DEC} = 00000000_{SM}$ $-0_{DEC} = 10000000_{SM}$
- - complex arithmetical operations (addition/subtraction) !!!
 - double representation of zero

SM Mapping

Biased Coding (Excess-N)

- Range [-N, +P] is mapped onto positive [0, N+P]
- Conversion requires addition of a bias value

[-4, +11] with bias=4
$$\rightarrow$$
 [0, 15] e.g. -1 \rightarrow +3

- Advantages:
 - linear mapping comparison of two numbers is easy
- Disadvantages:
 - addition/subtraction requires correction
 - multiplication/division is difficult

Biased Coding

- Binary n-digit Excess-N code:
 - \circ range of representation [-2^{n-1} , $2^{n-1}-1$]
 - bias (N) amounts to 2ⁿ⁻¹
 - \circ most significant bit corresponds to the sign $(0 \text{negative}, 1 \text{positive}) \rightarrow \text{opposite to SM and 2C}$
 - bias correction(addition/subtraction) is easy for N=2ⁿ⁻¹, toggling most significant bit
 - negation requires negation of all bits and addition of 1 to the total (same as in 2C)

$$16_{\mathrm{DEC}} \rightarrow 16_{\mathrm{DEC}} + \mathrm{bias} = 16_{\mathrm{DEC}} + 128_{\mathrm{DEC}} = 10010000_{\mathrm{Excess}128}$$
 $-16_{\mathrm{DEC}} \rightarrow -16_{\mathrm{DEC}} + \mathrm{bias} = -16_{\mathrm{DEC}} + 128_{\mathrm{DEC}} = 01110000_{\mathrm{Excess}128}$

Biased Coding – ADD/SUB Correction

- Addition/subtraction can be performed according to the same rules as for NBC
- Result of addition/subtraction operations requires a correction:

$$X = x + bias$$

$$Y = y + bias$$

$$X + Y \rightarrow x + bias + y + bias = x + y + 2 \cdot bias \rightarrow X + Y - bias$$

$$X - Y \rightarrow x + bias - y - bias = x - y + 0 \cdot bias \rightarrow X - Y + bias$$

Biased Coding Mapping

Complement Coding

- Range [-N, +P] is mapped onto [0, N+P]
- Positive numbers are identical with NBC
- Representation of negative numbers is calculated as complement to a constant M = N+P+1

$$-x$$
 → M-x [-4, +11] with M=16 → [0, 15] -1 → 15

- Advantages:
 - simple arithmetic operations identical as in NBC !!!
- Disadvantages:
 - non-intuitive representation (but not for computers...:)

Binary 2's Complement Coding (2C)

- \odot Range of n-bit number representation [-2^{n-1} , $2^{n-1}-1$]
- \odot Complement constant M = 2^n (radix-complement)
- Most significant bit corresponds to the sign (1 – negative, 0 – positive)
- Negation:

$$-x = 2^{n} - x = (2^{n} - 1) - x + 1 = 11...1_{BIN} - x + 1 =$$

- = bit_negation(x) + 1
- Modulo-M arithmetics:
 - ignoring last carry bit (drop carry-out)

Negation in 2C

- Negation of x:
 - a) simple rule (binary level): bit_negation(x) + 1
 - b) from definition (all positional): $-x \rightarrow M-x$
 - c) from weighted-position formula (binary level):

$$A_{2C} = -2^{n-1} a_{n-1} + \sum_{i=0}^{n-2} 2^{i} a_{i}$$
sign with magnitude negative weight in NBC

Arithmetic Overflow in 2C

- Overflow: result of operation is out of range:
 - bit V signals arithmetic overflow in 2C (signed-arithmetic)
 - overflow: two operands have the same sign, but different than result – comparison of MSB's

e.g. 8-bit: 01111111 + 00000001 = 10000000

- Overflow bit (V) is always calculated by Arithmetical-Logical Units for the purpose of correctness control
- Carry-bit (C) does not signal arithmetic overflow in 2C

e.g. 8-bit: 11111111 + 00000001 = 1 00000000 (result is correct, C is ignored)

2C Mapping

Binary 1's Complement Coding (1C)

- \odot Range of representation [$-2^{n-1}+1$, $2^{n-1}-1$]
- \odot Complementation constant M = 2^n-1 (*digit-complement*)
- Most significant bit corresponds to the sign (1 – negative, 0 – positive)
- Double representation of zero
- Negation:

$$-x = 2^{n} - 1 - x = 11...1_{BIN} - x = bit_negation(x)$$

- Modulo-M arithmetics
 - correction: adding carry bit from last position to the total (end-around carry)

1C Mapping

