Representation
of Integer Numbers
In Computer Systems
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Positional Numbering System

©

= Additive Systems - history but ... Roman numerals

€ Positional Systems: v
A = ZiZ—oo r; ai

r— system base (radix)

* A —number value
* a-digit
* | —digit position
e.g.
-11,3125 =-1101,0101
01, _=-00(0011)

( ! init (rational) numbers may have infinite representation)
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Base

€ System Base r (radix)

* constant value for all digit positions (fixed-radix)
decimal, hexadecimal, octal, binary
* may have different values for digit positions (mixed-radix)
time. hour, minute, second r = (24,60,60)
angle: degree, minute, second r = (360,60,60)
factoradic r = (... 5!, 4!, 3!, 2!, 11) = (... 120, 24, 6, 2, 1)
54321 . =719
5X51 + 4x41 + 3x3! + 2x21 + 1x1! = 719
primoradicr={(... 11, 7,5, 3, 2, 1)
54321 . o= 69,
5X7 +4x5 + 3x3 + 2x2 + 1x1 = 69
* may be other than natural number (negative, rational, complex, ...)

54321, = -462810,
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Digits

€ r-radix system using standard digit set [0... r-1]
IS hon-redundant:
* binary— [0, 1]
* decimal — [0... 9]
* hexadecimal — [0... F]

€ system using more digits than radix r is redundant:

* binary — [0, 1, 2] or [-1, 0, 1]
* decimal - [0... F]
° decimal —» [0...9 &, &, v ¢

€ representation in redundant systems is not unique:
e binary [0,1,2]:  1000=8,_ or 0120=8__
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Redundant Systems Taxonomy

S
> Positional fixed-radix systems with [-a, §] digit set — redundancy p=a+p+1-r
s
%) — - p21
g //////Q/Q//
- Generalized
; Non-redundant signed-digit (GSD)
=1 //////\ >
S a=0 a=1 ////p/ \f&
%) Mi - l/ .
SN Conventional  Non-redundant Gérgma I(\}Ingl)-mlmmal
E signed-digit
~ a=3 \ B a=3 a#p3
Q:\j\ (ev ;
= Asymmetric Symmetric Asymmetric
% Symmetric minimal GSD non-minimal non-minimal
i§ minimal GSD GSD GSD
N - | a=0 a=1(r#2) G<ri a=0 a=1, B=r
N - Saved-carry Non-binary
AN - - i . ..
i Binary (SO) SB Qrdmilg, " Unsigned-digit ~ Stored-carry-or
= : . \ signed-digit  redundant (UDR) -borrow (SCB)
S signed-digit \‘ (OSD)
§ (B5D) rzz\y a=r/A2N:1 r2¢
O Binary saved-carry o s
(BSC) Minimally Maximally BSCB
redundant redundant

OSD OSD
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Capacity

€ In conventional (non-redundant) r-radix system,
with n-digit number:

©

ne range of representationis 0 ... r"-1

{
the number of unique representations is "

©

° e.g. 8-hits binary — range 0...255, with 256 unique values

€ Number of digits needed to accommodate numbers
from arbitrary range 0 ... max:

n= floor|(log. max)|+1=ceil|log, (max+1)]

e.g. for 50000 numbers (representations) in binary:
l0g,49999+1 =16.61 — (floor) — 16 digits (bits)
log,50000 =15.61 - (ceil) — 16 digits (bits)
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Optimal radix ?

€ What would 'the best' numbering system (in term of r)
to represent numbers from a given range 0...max ?

€ Criteria for conventional, non-redundant system:

* high capacity (- small n)
* few symbols-digits (— small r)
* convenient physical realization

€ Let's think of mathematical criteria:
E()=r-n

©

©
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(where r Is system radix for n-digit number)




Optimal radix ?

€ Looking for maximum of function: E(r) =r - n

(r)=rn=rlog (max 1) =)y ) 2
dE ln(r)—l
—=In(max+1 =0
dr ( ) 1112(’”)
7 262271

optimal

Optimal (according to E(r) criterion) radix is 3, but 2 is almost as good
and offers better physical implementation possibilities.
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Non-Positional Numerical Codes

€ Gray Code - non-positional binary code

€ codes of every two successive values differ in only one bit

©

codes for first and last represented values also differ in only
one bit (cyclic code)

€ applications: hazard-free digital electronics (counters, A/D
converters, angle/position sensors, etc.)

value Gray
000
001
011
010
110
111
101
100

Noahshwdh-=-20
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Non-Positional Numerical Codes

€ BCD - Binary-Coded Decimal

€ each decimal digit coded with 4 bits, one byte can
accommodate positive numbers in range 0..99

€ applications:
e communication with digital 7-segment LED displays

* direct operations on decimal numbers in binary code — no
problems with decimal/binary/decimal conversions

digit | BCD
0000
0001
0010

0100 5127_.. = 0101000100100111,___

0101
0110
0111
1000
1001
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Natural Binary Code (NBC)

€ NBC features:
€ fixed radix-2 with two digits 0 and 1 — [0, 1] digit set

o~

€ n-bit representation of non-negative values [0 ... 2"-1]
n—1

=22
A, 1Q,...a,ay=2, 24,

4-bits:  range0..2%1 - 0...15

8-bits:  range0...2%-1 - 0... 255

16-bits: range 0 ... 2*%-1 — 0...65535

32-bits: range 0...2%%-1 - 0...4 294 967 295

64-bits: range 0...2%-1 - 0... 18 446 744 073 709 551 615
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€ NBC cannot represent negative values
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Arithmetic Overflow in NBC

€ Overflow: result of addition is out of allowed range
€ e.g. 8-bit addition:

111131131113
+ 00000001

1 00000000 (9-bits)

€ Carry-bit (C) signals arithmetic overflow in NBC
for unsigned arithmetics

€ Carry-bit is always stored by Arithmetical-Logical
Units for the purpose of result correctness control



Negative Numbers Coding

©

= Mapping negative numbers on range of positive rep.

©

= Simple arithmetic operations (addition/subtraction)

©

= Intuitive representation (?)

©

= Sligned magnitude coding (SM)

©

= Biased coding (Bias-N or Excess-N)

©

= Complement coding (1C, 2C)
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Signed-Magnitude (SM)

©

= Oldest, simplest, but inconvenient

©

= Binary n-digit SM code:

* most significant bit represents the sign of the number
(1 - negative, 0 — positive)

* range of representation is symmetrical [-2"1+1, 2™-1]
€ Advantages:
* Intuitive representation
* symmetrical range
* simple negation
€ Disadvantages:
* complex arithmetical operations (addition/subtraction) !!!
* double representation of zero

49___=00110001,
-49___=10110001_,
+0___ = 00000000,
-0__. = 10000000,
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SM Mapping

represented values

-N -1 0 +B

0 e -0 -1
mapping onto NBC

0010
+2

0011
+3

\ 0100
+4 /

Increment
Increment

0101 /

+5 /
0110

0111
1001 1000 | %13
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Biased Coding (Excess-N)

©

= Range [-N, +P] Is mapped onto positive [0, N+P]

©

= Conversion requires addition of a bias value
[ -4, +11 ] with bias=4 — [0, 15]
eg.-1—-+3
€ Advantages:
* linear mapping — comparison of two numbers is easy
€ Disadvantages:

* addition/subtraction requires correction
* multiplication/division is difficult
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Biased Coding

€ Binary n-digit Excess-N code:

©

range of representation [-2™, 2™1-1]

©

bias (N) amounts to 2™

fo—

€ most significant bit corresponds to the sign
(0 — negative, 1 — positive) — opposite to SM and 2C

@

P

€ bias correction(addition/subtraction) is easy for N=2",
toggling most significant bit

=

€ negation requires negation of all bits and
addition of 1 to the total (same as in 2C)

16, — 16, .+ bias= 16___ +128___ = 10010000

D Excess128

-16,_. — -16___+ bias =-16___ + 128___ = 01110000

D Excess128
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Biased Coding - ADD/ISUB Correction

€ Addition/subtraction can be performed according
to the same rules as for NBC

€ Result of addition/subtraction operations
reguires a correction:

X =X+ bias
Y =y + bias

X+Y - x+bias+y+bhbias=x+y+2:-bias - X+Y - bias

X-Y—- Xx+bias-y-bias=x-y+0-bias - X-Y +bias
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Biased Coding Mapping

represented values

-N -1/0 +P

-N =1 0

mapping onto NBC

Increment
Increment
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Complement Coding

©

Range [-N, +P] is mapped onto [0, N+P]

©

Positive numbers are identical with NBC

Representation of negative numbers is calculated
as complement to a constant M = N+P+1

©

X - M-x (=4, +117 with M=16 — [0, 15 ]
-1 — 15
€ Advantages:
* simple arithmetic operations — identical as in NBC !!!
€ Disadvantages:

* non-intuitive representation (but not for computers...:)
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Binary 2's Complement Coding (2C)

©

= Range of n-bit number representation [-2", 2"1-1]

©

= Complement constant M = 2" (radix-complement)

©

= Most significant bit corresponds to the sign
(1 — negative, 0 — positive)

€ Negation:
-x=2"-x=(2"-1)-x+1=11.1 -Xx+1=
= bit_negation(x) + 1

€ Modulo-M arithmetics:
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€ ignoring last carry bit (drop carry-out)




Negation in 2C

€ Negation of x:
a) simple rule (binary level): bit_negation(x) + 1
b) from definition (all positional): -x — M-x
¢) from weighted-position formula (binary level):

A, ==2"" +Zn_2 2

Y

sign with magnitude
negative weight N NBC
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Arithmetic Overflow Iin 2C

€ Overflow: result of operation Is out of range:

€ bit V signals arithmetic overflow in 2C (signed-arithmetic)

€ overflow: two operands have the same sign,
but different than result — comparison of MSB's

e.g. 8-bit: 01111111 + 00000001 = 10000000

€ OQverflow bit (V) Is always calculated by Arithmetical-
Logical Units for the purpose of correctness control

€ Carry-bit (C) does not signal arithmetic overflow in 2C

e.g. 8-bit: 11111111 + 00000001 = 1 00000000
(result Is correct, C is ignored)



2C Mapping
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\HVJ
S represented values
> -N -1 0 +P
O
" 0 +P -N
~ mapping onto NBC
=
> \
%)
O 1111 0000 0001
= 1110
0010
=
Qv’\) 1101 0011
= 3
-~
o o | =
= E g‘ 1100 0100 2
< 5 | ¢ 8
= 2 =
s B 011 0101
Y 5
§ 1010 0110
Y \
S 1931 1000
O -8 \




Binary 1's Complement Coding (1C)

©

= Range of representation [-2™!+1, 2™1-1]

©

= Complementation constant M = 2"-1 (dligit-complement)

©

= Most significant bit corresponds to the sign
(1 — negative, 0 — positive)

©

= Double representation of zero

©

= Negation:
-x=2"-1-x=11..1 - x=hit_negation(x)
BIN

€ Modulo-M arithmetics

€ correction: adding carry bit from last position to the total
(end-around carry)
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1C Mapping

-N

-1 0
0

mapping onto NBC

Increment
]
w

1111

\

\ 0000

0001

0110

represented values

+P

+P —-N

0010

0011
3 \

\ 0100 |

4
/

0101
3)

Increment

&1

0
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