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Code Generation

• The code generation problem is the task of 
mapping intermediate code to machine code    

• Machine Dependent Optimization  
• Requirements:   

– Correctness 
– Efficiency 
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Issues

• Input language: intermediate code (optimized or 
not) 

• Target architecture: must be well understood 
• Interplay between

– Instruction Selection 
– Register Allocation 
– Instruction Scheduling  



5

Example Target: MIPS Assembly Language
• General Characteristics

– Byte-addressable with 4-byte words 
– N general-purpose registers 
– Three-address instructions:  

op destination, source1, source2

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8  temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)
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Instruction Selection

• There may be a large number of ‘candidate’ 
machine instructions for a given IC instruction
– each has own cost and constraints
– cost may be influenced by surrounding context
– different architectures  have different needs that must be 

considered: speed, power constraints, space …
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Instruction Scheduling

• Choosing the order of instructions to best utilize 
resources

• Architecture
– RISC (pipeline)
– Vector processing
– Superscalar and VLIW

• Memory hierarchy
– Ordering to decrease memory fetching
– Latency tolerance – doing something when data does 

have to be fetched
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Register Allocation

• How to best use the bounded number of 
registers 
• Complications: 

• Special purpose registers 
• Operators requiring multiple registers
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Naive Approach to Code Generation

• Simple code generation algorithm:   
–Define a target code sequence for each 

intermediate code statement type
• Why is this not sufficient?
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Mapping from Intermediate Code

• Simple code generation algorithm:   
– Define a target code sequence to each intermediate code   

statement type      

la $t0,a
lw $t1,b
add $t0,$t0,$t1
lw $t1,c
sw $t1,($t0)

a[b] := cla $t0,b
lw $t1,c
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,a

a := b[c]

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
sw $t0,a

a := b + clw $t0,b
sw $t0,a

a := b

becomes…Intermediatebecomes…Intermediate
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Consider the C statement:   a[i] = d[c[k]];

We use 24 instructions (18 load/store + 6 arithmetic)
and allocate space for five temporaries (but only use two registers).    

Mapping from Intermediate Code

t1 := 4 * k lw $t0,k
sll $t0,$t0,2
sw $t0,t1

t2 := c[t1] la $t0,c
lw $t1,t1
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t2

t3 := 4 * t2 lw $t0,t2
sll $t0,$t0,2
sw $t0,t3

t4 := d[t3] la $t0,d
lw $t1,t3
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t4

t5 := 4 * i lw $t0,i
sll $t0,$t0,2
sw $t0,t5

a[t5] := t4 la $t0,a
lw $t1,t5
add $t0,$t0,$t1
lw $t1,t4
sw $t1,($t0)
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Problems with this approach
• Local decisions do not produce good code
• Does not take temporary variables into account 
• Get rid of the temporaries (reduce load/store): 

a[i] = d[c[k]]; 

la $t0,c     
lw $t1,k 
sll $t1,$t1,2
add $t0,$t0,$t1   # address of c[k]
lw $t0,($t0)
la $t1,d     
sll $t0,$t0,2
add $t1,$t1,$t0   # address of d[c[k]]
lw $t1,($t1)
la $t0,a
lw $t2,i
sll $t2,$t2,2
add $t0,$t0,$t2  # address of a[i]
sw $t1,($t0)
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• Need a way to generate machine code based 
on past and future use of the data  
–Analyze the code
–Use results of analysis 

How to Improve Quality
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Representing Intermediate Code: 
Control Flow Graph  - CFG

CFG = < V, E, Entry >, where   
V = vertices or nodes, representing an instruction or basic 

block (group of statements).            
E = (V x V) edges, potential flow of control                    
Entry is an element of V,  the unique program entry

1 2 3 4 5



15

Basic Blocks

A  basic block is a sequence of consecutive 
statements with single entry/single exit:
– Flow of control only enters at the beginning 
– Flow of control only leaves at the end
– Variants: single entry/multiple exit, multiple entry/single 

exit
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Generating CFGs 
from Intermediate Code

• Partition intermediate code into basic blocks
• Add edges corresponding to control flow between 

blocks
– Unconditional goto
– Conditional goto – multiple edges
– No goto at end – control passes to first statement of 

next block
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Partitioning into Basic Blocks

• Input: A sequence of intermediate code statements
• Determine the  leaders, the first statements of basic 

blocks
– The first statement in the sequence is a leader
– Any statement that is the target of a goto (conditional or 

unconditional) is a leader
– Any statement immediately following a goto (conditional 

or unconditional) is a leader
• For each leader, its basic block is the leader and all 

statements up to, but not including, the next leader or the 
end of the program
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(1) i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1                (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i   
(9) j := j - 1                   (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23)    (28)  a[t12] := t14   
(14) t6 := 4*i                   (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Example Code
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(1) i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1                (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i   
(9) j := j - 1                   (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23)    (28)  a[t12] := t14   
(14) t6 := 4*i                   (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Block Leaders
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(1) i := m – 1 (16)  t7 := 4 * i  
(2) j := n (17)  t8 := 4 * j   
(3) t1 := 4 * n (18)  t9 := a[t8]   
(4) v := a[t1]               (19)  a[t7] := t9   
(5) i := i + 1                (20)  t10 := 4 * j   
(6) t2 := 4 * i                (21)  a[t10] := x   
(7) t3 := a[t2]                (22)  goto (5)   
(8) if t3 < v goto (5)     (23)  t11 := 4 * i   
(9) j := j - 1                   (24)  x := a[t11]   
(10) t4 := 4 * j                (25)  t12 := 4 * i   
(11) t5 := a[t4]                (26)  t13 := 4 * n   
(12) If t5 > v goto (9)     (27)  t14 := a[t13]   
(13) if i >= j goto (23)    (28)  a[t12] := t14   
(14) t6 := 4*i                   (29)  t15 := 4 * n   
(15) x := a[t6]                (30)  a[t15] := x    

Flow Graph
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Instruction Scheduling

• Choosing the order of instructions to best utilize 
resources (CPU, registers, …)

• Consider RISC pipeline architecture:

IF

IF

IF

ID

ID

ID

EX

EX

EX

MA

MA

MA

WB

WB

WB

IF – Instruction Fetch
ID – Instruction Decode
EX – Execute
MA – Memory access
WB – Write back

time



22

Hazards

1. Structural hazards – machine resources limit 
overlap

2. Data hazards – output of instruction needed by 
later instruction

3. Control hazards – branching

Pipeline stalls!
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Data Hazards

IF

IF

ID

ID

EX

EX

MA

MA WB

WBlw R1,0(R2)

add R3,R1,R4 stall

Memory latency:

Can’t add until register R1 is loaded.
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Structural Hazards

IF

IF

ID

ID

EX EX MA

MA WB

WBaddf R3,R1,R2

addf R3,R3,R4 stall EX EX

Assumes floating point ops take 2 execute cycles

Instruction latency:
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Dealing with Data Hazards

• Typical solution is to re-order statements
• To do this without changing the outcome, need to 

understand the relationship (dependences) 
between statements

IF

IF

ID

ID

EX EX MA WBaddf R3,R1,R2

add R5,R5,R6 EX MA WB

IF ID MA WBaddf R3,R3,R4 EX EX
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Instruction Scheduling

• Many operations have non-zero latencies
• Execution time is order-dependent
• Assumed latencies (conservative):

Operation Cycles 
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8
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w ← w * 2 * x  * y * z

• Schedule 1
1 lw $t0,w
4 add $t0,$t0,$t0
5 lw $t1,x
8 mult $t0,$t0,$t1
9 lw $t1,y
12 mult $t0,$t0,$t1
13 lw $t1,z
16 mult $t0,$t0,$t1
18 sw $t0,w

done at time 21

• Schedule 2
1 lw $t0,w
2 lw $t1,x
3 lw $t2,y
4 add $t0,$t0,$t0
5 mult $t0,$t0,$t1
6 lw $t1,z
7 mult $t0,$t0,$t2
9 mult $t0,$t0,$t1
11 sw $t0,w

done at time 14

Issue time
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Control Hazards

IF

IF

ID EX MA

IF ID

WB

EX MA WB

Stall if branch is made

stall stall

Branch instruction
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Branch Scheduling

• Problem: 
– Branches often take some number of cycles to complete, 

creating delay slots
– Can be a delay between a compare b and its associated 

branch
– Even unconditional branches have delay slots

• A compiler will try to fill these delay slots with valid 
instructions (rather than nop)
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Example
• Assume loads take 

2 cycles and 
branches have a 
delay slot

• 7 cycles
• Can look at the 

dependencies 
between the 
statements and 
move a statement 
into the delay slot

7nop
6b L1
5add $t5, $t2,1
4add $t4, $t2, $t3
2lw $t3,8($t1)
1lw $t2,4($t1)
Start TimeInstruction

1 2

34
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Example

• 5 cycles filling delay 
slots

5add $t4, $t2, $t3
4b L1
3add $t5, $t2,1
2lw $t3,8($t1)
1lw $t2,4($t1)
Start TimeInstruction
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Register Allocation

How to best use the bounded number of registers.  
– Reducing load/store operations
– What are best values to keep in registers?
– When can we ‘free’ registers?

Complications: 
– special purpose registers 
– operators requiring multiple registers 
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Register Allocation Algorithms

•  Local (basic block level):   
– Basic  - using liveness information 
– Register Allocation using graph coloring

• Global (CFG)
– Need to use global liveness information
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Basic Code Generation

• Deal with each basic block individually
• Compute liveness information for the block
• Using liveness information, generate code that 

uses registers as well as possible
• At end, generate code that saves any live values 

left in registers
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Concept: Variable Liveness

• For some statement s, variable x is live if 
– there is a statement t that uses x 
– there is a path in the CFG from s to t
– there is no assignment to x on some path from s to t    

• A variable is live at a given point in the source code if 
it could be used before it is defined

• Liveness tells us whether we care about the value held by 
a variable



36

Example: When Is a Live?

a := b + c   

t1 := a * a   

b := t1 + a   

c := t1 * b   

t2 := c + b   

a := t2 + t2    

Assume a,b and c are used 
after this basic block

a is live
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Example: When Is b Live?

a := b + c   

t1 := a * a   

b := t1 + a   

c := t1 * b   

t2 := c + b   

a := t2 + t2    

Assume a,b and c are used 
after this basic block
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Computing Live Status in Basic Blocks

• Input: A basic block
• Output: For each statement, set of variables live after the 

statement
• Initially all non-temporary variables go into live set (L)
• for i = last statement to first statement:

For statement i:  x := y op z 
1. Attach L to statement i
2. Remove x from set L
3. Add y and z to set L
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Example

live = {}
a := b + c   

live = {}
t1 := a * a   

live = {}
b := t1 + a   

live = {}
c := t1 * b   

live = {}
t2 := c + b   

live = {} 
a := t2 + t2    

live = {a,b,c}



40

Example Answers

live = {}
a := b + c   

live = {}
t1 := a * a   

live = {}
b := t1 + a   

live = {}
c := t1 * b   

live = {}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Example Answers

live = {}
a := b + c   

live = {}
t1 := a * a   

live = {}
b := t1 + a   

live = {}
c := t1 * b   

live = {b,c}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Example Answers

live = {}
a := b + c   

live = {}
t1 := a * a   

live = {}
b := t1 + a   

live = {b,t1}
c := t1 * b   

live = {b,c}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Example Answers

live = {}
a := b + c   

live = {}
t1 := a * a   

live = {a,t1}
b := t1 + a   

live = {b,t1}
c := t1 * b   

live = {b,c}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Example Answers

live = {}
a := b + c   

live = {a}
t1 := a * a   

live = {a,t1}
b := t1 + a   

live = {b,t1}
c := t1 * b   

live = {b,c}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Example Answers

live = {b,c}         what does this mean?
a := b + c   

live = {a}
t1 := a * a   

live = {a,t1}
b := t1 + a   

live = {b,t1}
c := t1 * b   

live = {b,c}
t2 := c + b   

live = {b,c,t2} 
a := t2 + t2    

live = {a,b,c}
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Basic Code Generation

• Deal with each basic block individually
• Compute liveness information for the block
• Using liveness information, generate code that 

uses registers as well as possible
• At end, generate code that saves any live values 

left in registers
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Basic Code Generation

• Idea: Deal with the instructions from beginning to end.  For 
 each instruction, 
– Use registers whenever possible
– A non-live value in a register can be discarded, freeing that 

register
• Data Structures:   

– Register descriptor  - register status (empty, full) and contents 
(one or more "values") 

– Address descriptor  - the location (or locations) where the current 
value for a variable can be found (register, stack, memory)



48

Instruction type: x := y op z
• Choose Rx, the register where the result (x) will be kept
– If y (or z) is the only variable in a register t and not live after the 

statement, choose Rx = t
– Else if there is a free register t, choose Rx = t
– Else must free up a register for Rx

• Find Ry. If y is not in a register, generate load into a free 
register (or Rx)

• Find Rz. If z is not in a register, generate load into a free 
register (can use Rx if not used by y)

• Generate: OP Rx, Ry, Rz
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Instruction type: x := y op z
● Update information about the current location of x
● Update information for the register holding x
● If y and/or z are not live after this instruction, 

update register and address descriptors 
accordingly
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Example Code
live = {b,c} 

a := b + c   
live = {a}

t1 := a * a   
live = {a,t1}

b := t1 + a   
live = {b,t1}

c := t1 * b   
live = {b,c}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Code Generation Example

• Initially
Three Registers: ( -; -; -) all empty    
Current values: (a;b;c;t1;t2) = (m;m;m;-;-) 

• Instruction 1: a := b + c,  Live = {a}
Ra = $t0, Rb = $t0, Rc = $t1
• lw $t0,b
• lw $t1,c
• add $t0,$t0,$t1

Registers: (a;-;-) current values: ($t0;-;-;-;-) 

Don’t need to keep track 
of b or c since aren’t live.
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• Instruction 2: t1 := a * a, Live = {a,t1} 
Rt1 = $t1 (since a is live after instruction)  
mul $t1,$t0,$t0   

Registers: (a;t1;-) current values: ($t0;-;-;$t1;-) 

• Instruction 3: b := t1 + a, Live = {b,t1} 
Since a is not live after instruction, Rb = $t0   
add $t0,$t1,$t0

Registers: (b;t1;-) current values: (-;$t0;-;$t1;-)  

Code Generation Example
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• Instruction 4: c := t1 * b, Live = {b,c}   
Since t1 is not live after instruction, Rc = $t1   
mul $t1,$t1,$t0

Registers: (b;c;-) current values: (-;$t0;$t1;-;-) 

• Instruction 5: t2 := c + b, Live = {b,c,t2}   
Rt2 = $t2   
add $t2,$t1,$t0

Registers: (b;c;t2) current values: (-;$t0;$t1;-;$t2)  

Code Generation Example
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• Instruction 6: a := t2 + t2, Live = {a,b,c}
Ra = $t2    
add $t2,$t2,$t2    

Registers: (b;c;a) current values: ($t2;$t0;$t1;-;-)

• Since end of block, move live variables:      
sw $t2,a      
sw $t0,b      
sw $t1,c      

all registers available      
all live variables moved to memory  

Code Generation Example
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lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
add $t2,$t1,$t0 
add $t2,$t2,$t2 
sw $t2,a      
sw $t0,b      
sw $t1,c      

a := b + c   

t1 := a * a   
b := t1 + a   
c := t1 * b   
t2 := c + b   
a := t2 + t2 

Cost = 16
How does this compare to
naive approach?

Generated code
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• Liveness information allows us to keep values in 
registers if they will be used later (efficiency)

• Why do we assume all variables are live at the end 
of blocks?  Can we do better?

• Why do we need to save live variables at the end?  
We might have to reload them in the next block.

Improving Efficiency
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Register Allocation with Graph Coloring

• Local register allocation  - graph coloring problem 
• Uses liveness information
• Allocate K registers where each register is 

associated with one of the K colors
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Graph Coloring

• The coloring of a graph G = (V,E) is a mapping C: 
V S, where S is a finite set of colors, such that if 
edge vw is in E, C(v) <> C(w)

• Problem is NP (for more than 2 colors)  no 
polynomial time solution

• Fortunately there are approximation algorithms
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Coloring a Graph with K Colors

No color for
this node

K = 3 K = 4
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Register Allocation and Graph 
K-Coloring

K = number of available registers
G = (V,E) where
• Vertex set V = {Vs | s is a program variable}
• Edge Vs Vt in E if s and t can be live at the same 

time
G is an ‘interference graph’
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Algorithm: K Registers

1. Compute liveness information for the basic block. 
Assume, that every live variable will be stored in a 
register.

2. Create interference graph G  - one node for each 
variable, an edge connecting any two variables 
alive simultaneously
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Example Interference Graph

 a := b + c {b,c}
 t1 := a * a {a}
 b := t1 + a {t1,a}
 c := t1 * b {b,t1}
 t2 := c + b {b,c}
 a := t2 + t2 {b,c,t2}
                  {a,b,c}

a

b

t1

c

t2
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Algorithm: K Registers

3. Simplify  - For any node m with fewer than K 
neighbors, remove it from the graph and push it 
onto a stack. If G -  m  can be colored  with K 
colors, so can G.  If we reduce the entire graph, 
goto step 5.

4. Spill  - If we get to the point where we are left with 
only nodes with degree >= K, mark some node 
for potential spilling.  Remove and push onto 
stack.  Back to step 3. 
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Choosing a Spill Node

Potential criteria:
• Random
• Most neighbors
• Longest live range (in code)

– with or without taking the access pattern into 
consideration



65

5. Assign colors  - Starting with empty graph, rebuild 
graph by popping elements off the stack, putting 
them back into the graph and assigning them 
colors different from neighbors. Potential spill 
nodes may or may not be colorable.   

• Process may require iterations and rewriting of 
some of the code to create more temporaries

Algorithm: K Registers
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Rewriting the Code

• Want to be able to remove some edges in the 
interference graph
– write variable to memory earlier
– compute/read in variable later

• Not all live variables will be stored in registers all 
the time.
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Back to example

 a := b + c     {b,c}
 t1 := a * a     {a}
 b := t1 + a    {t1,a}
 c := t1 * b     {b,t1}
 t2 := c + b    {b,c}
 a := t2 + t2   {b,c,t2}
                     {a,b,c}

a

b

t1

c

t2
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Example, k = 3

a

b

t1

c

t2

Assume k = 3

Remove t1
t1

Interference graph



69

Example

a

b

t1

c

t2

Assume k = 3

Remove a
t1
a
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Example

a

b

t1

c

t2

Assume k = 3

Remove b
t1
a
b



71

Example

a

b

t1

c

t2

Assume k = 3

Remove c
t1
a
b
c
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Example

a

b

t1

c

t2

Assume k = 3

Remove t2
t1
a
b
c
t2
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Rebuild the graph

t2

Assume k = 3

t1
a
b
c
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Example

c

t2

Assume k = 3

t1
a
b
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Example

b

c

t2

Assume k = 3

t1
a
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Example

a

b

c

t2

Assume k = 3

t1
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Example

a

b

t1

c

t2

Assume k = 3

t0t2
t2t1
t2c
t1b

t0a
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Back to example

 a := b + c 
 t1 := a * a
 b := t1 + a
 c := t1 * b
 t2 := c + b
 a := t2 + t2
                      

lw $t1,b
lw $t2,c
add $t0,$t1,$t2
mul $t2,$t0,$t0
add $t1,$t2,$t0
mul $t2,$t2,$t1
add $t0,$t2,$t1
add $t0,$t0,$t0
sw $t0,a
sw $t1,b
sw $t2,c

t0t2
t2t1
t2c
t1b
t0a
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Generated code: Basic 
    
lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
add $t2,$t1,$t0 
add $t2,$t2,$t2 
sw $t2,a      
sw $t0,b      
sw $t1,c      

Generated Code: Coloring

lw $t1,b
lw $t2,c
add $t0,$t1,$t2
mul $t2,$t0,$t0
add $t1,$t2,$t0
mul $t2,$t2,$t1
add $t0,$t2,$t1
add $t0,$t0,$t0
sw $t0,a
sw $t1,b
sw $t2,c
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Example, k = 2

a

b

t1

c

t2

Assume k = 2

Remove b as spill
b*
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Example

a

b

t1

c

t2

Assume k = 2

Remove t1
b*
t1
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Example

a

b

t1

c

t2

Assume k = 2

Remove a
b*
t1

 a
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Example

a

b

t1

c

t2

Assume k = 2

Remove c
b*
t1

 a
c
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Example

a

b

t1

c

t2

Assume k = 2

Remove t2
b*
t1

 a
c
 t2
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Example

a

b

t1

c

t2

Assume k = 2

???
Can flush b out to
memory,  creating a
smaller window
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After Spilling b:

a

b

t1

c

t2

 a := b + c     {b,c}
 t1 := a * a     {a}
 b := t1 + a    {t1,a}
 c := t1 * b     {b,t1}
 b to memory
 t2 := c + b    {b,c}
 a := t2 + t2   {c,t2}
                     {a,c}
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After Spilling b:

a

b

t1

c

t2

t2
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After Spilling b:

a

b

t1

c

t2

t2
c*

Have to choose c as a potential
spill node.
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After Spilling b:

a

b

t1

c

t2

t2
c*
b
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After Spilling b:

a

b

t1

c

t2

t2
c*
b
a
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After Spilling b:

a

b

t1

c

t2

t2
c*
b
a
t1
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Now Rebuild:

a

b

t1

c

t2

t2
c*
b
a
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Now Rebuild:

a

b

t1

c

t2

t2
c*
b
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Now Rebuild:

a

b

t1

c

t2

t2
c*
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Now Rebuild:

a

b

t1

c

t2

t2 Fortunately, there is a color for c
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Now Rebuild:

a

b

t1

c

t2

The graph is 2-colorable now
t0t2
t1t1
t1c
t0b
t0a
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The Code

a := b + c
t1 := a * a
b := t1 + a
c := t1 * b
b to memory
t2 := c + b
a := t2 + t2

t0t2
t1t1
t1c
t0b
t0a

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
sw $t0,b
add $t0,$t1,$t0
add $t0,$t0,$t0
sw $t0,a
sw $t1,c  
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