
1

Code Generation

2

Compiler Architecture

Scanner
(lexical

 analysis)

Parser
(syntax

 analysis)

Code
Optimizer

Code
Generator

Symbol
Table

Source
language

Tokens Syntactic
structure

Target
language

Intermediate
Language

Semantic
Analysis

(IC generator)

3

Code Generation

• The code generation problem is the task of
mapping intermediate code to machine code

• Machine Dependent Optimization
• Requirements:

– Correctness
– Efficiency

4

Issues

• Input language: intermediate code (optimized or
not)

• Target architecture: must be well understood
• Interplay between

– Instruction Selection
– Register Allocation
– Instruction Scheduling

5

Example Target: MIPS Assembly Language
• General Characteristics

– Byte-addressable with 4-byte words
– N general-purpose registers
– Three-address instructions:

op destination, source1, source2

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . . (callee can clobber)

15 t7

16 s0 callee saves

. . . (caller can clobber)

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra Return Address (HW)

6

Instruction Selection

• There may be a large number of ‘candidate’
machine instructions for a given IC instruction
– each has own cost and constraints
– cost may be influenced by surrounding context
– different architectures have different needs that must be

considered: speed, power constraints, space …

7

Instruction Scheduling

• Choosing the order of instructions to best utilize
resources

• Architecture
– RISC (pipeline)
– Vector processing
– Superscalar and VLIW

• Memory hierarchy
– Ordering to decrease memory fetching
– Latency tolerance – doing something when data does

have to be fetched

8

Register Allocation

• How to best use the bounded number of
registers
• Complications:

• Special purpose registers
• Operators requiring multiple registers

9

Naive Approach to Code Generation

• Simple code generation algorithm:
–Define a target code sequence for each

intermediate code statement type
• Why is this not sufficient?

10

Mapping from Intermediate Code

• Simple code generation algorithm:
– Define a target code sequence to each intermediate code

statement type

la $t0,a
lw $t1,b
add $t0,$t0,$t1
lw $t1,c
sw $t1,($t0)

a[b] := cla $t0,b
lw $t1,c
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,a

a := b[c]

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
sw $t0,a

a := b + clw $t0,b
sw $t0,a

a := b

becomes…Intermediatebecomes…Intermediate

11

Consider the C statement: a[i] = d[c[k]];

We use 24 instructions (18 load/store + 6 arithmetic)
and allocate space for five temporaries (but only use two registers).

Mapping from Intermediate Code

t1 := 4 * k lw $t0,k
sll $t0,$t0,2
sw $t0,t1

t2 := c[t1] la $t0,c
lw $t1,t1
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t2

t3 := 4 * t2 lw $t0,t2
sll $t0,$t0,2
sw $t0,t3

t4 := d[t3] la $t0,d
lw $t1,t3
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t4

t5 := 4 * i lw $t0,i
sll $t0,$t0,2
sw $t0,t5

a[t5] := t4 la $t0,a
lw $t1,t5
add $t0,$t0,$t1
lw $t1,t4
sw $t1,($t0)

12

Problems with this approach
• Local decisions do not produce good code
• Does not take temporary variables into account
• Get rid of the temporaries (reduce load/store):

a[i] = d[c[k]];

la $t0,c
lw $t1,k
sll $t1,$t1,2
add $t0,$t0,$t1 # address of c[k]
lw $t0,($t0)
la $t1,d
sll $t0,$t0,2
add $t1,$t1,$t0 # address of d[c[k]]
lw $t1,($t1)
la $t0,a
lw $t2,i
sll $t2,$t2,2
add $t0,$t0,$t2 # address of a[i]
sw $t1,($t0)

13

• Need a way to generate machine code based
on past and future use of the data
–Analyze the code
–Use results of analysis

How to Improve Quality

14

Representing Intermediate Code:
Control Flow Graph - CFG

CFG = < V, E, Entry >, where
V = vertices or nodes, representing an instruction or basic

block (group of statements).
E = (V x V) edges, potential flow of control
Entry is an element of V, the unique program entry

1 2 3 4 5

15

Basic Blocks

A basic block is a sequence of consecutive
statements with single entry/single exit:
– Flow of control only enters at the beginning
– Flow of control only leaves at the end
– Variants: single entry/multiple exit, multiple entry/single

exit

16

Generating CFGs
from Intermediate Code

• Partition intermediate code into basic blocks
• Add edges corresponding to control flow between

blocks
– Unconditional goto
– Conditional goto – multiple edges
– No goto at end – control passes to first statement of

next block

17

Partitioning into Basic Blocks

• Input: A sequence of intermediate code statements
• Determine the leaders, the first statements of basic

blocks
– The first statement in the sequence is a leader
– Any statement that is the target of a goto (conditional or

unconditional) is a leader
– Any statement immediately following a goto (conditional

or unconditional) is a leader
• For each leader, its basic block is the leader and all

statements up to, but not including, the next leader or the
end of the program

18

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Example Code

19

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Block Leaders

20

(1) i := m – 1 (16) t7 := 4 * i
(2) j := n (17) t8 := 4 * j
(3) t1 := 4 * n (18) t9 := a[t8]
(4) v := a[t1] (19) a[t7] := t9
(5) i := i + 1 (20) t10 := 4 * j
(6) t2 := 4 * i (21) a[t10] := x
(7) t3 := a[t2] (22) goto (5)
(8) if t3 < v goto (5) (23) t11 := 4 * i
(9) j := j - 1 (24) x := a[t11]
(10) t4 := 4 * j (25) t12 := 4 * i
(11) t5 := a[t4] (26) t13 := 4 * n
(12) If t5 > v goto (9) (27) t14 := a[t13]
(13) if i >= j goto (23) (28) a[t12] := t14
(14) t6 := 4*i (29) t15 := 4 * n
(15) x := a[t6] (30) a[t15] := x

Flow Graph

21

Instruction Scheduling

• Choosing the order of instructions to best utilize
resources (CPU, registers, …)

• Consider RISC pipeline architecture:

IF

IF

IF

ID

ID

ID

EX

EX

EX

MA

MA

MA

WB

WB

WB

IF – Instruction Fetch
ID – Instruction Decode
EX – Execute
MA – Memory access
WB – Write back

time

22

Hazards

1. Structural hazards – machine resources limit
overlap

2. Data hazards – output of instruction needed by
later instruction

3. Control hazards – branching

Pipeline stalls!

23

Data Hazards

IF

IF

ID

ID

EX

EX

MA

MA WB

WBlw R1,0(R2)

add R3,R1,R4 stall

Memory latency:

Can’t add until register R1 is loaded.

24

Structural Hazards

IF

IF

ID

ID

EX EX MA

MA WB

WBaddf R3,R1,R2

addf R3,R3,R4 stall EX EX

Assumes floating point ops take 2 execute cycles

Instruction latency:

25

Dealing with Data Hazards

• Typical solution is to re-order statements
• To do this without changing the outcome, need to

understand the relationship (dependences)
between statements

IF

IF

ID

ID

EX EX MA WBaddf R3,R1,R2

add R5,R5,R6 EX MA WB

IF ID MA WBaddf R3,R3,R4 EX EX

26

Instruction Scheduling

• Many operations have non-zero latencies
• Execution time is order-dependent
• Assumed latencies (conservative):

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

27

w ← w * 2 * x * y * z

• Schedule 1
1 lw $t0,w
4 add $t0,$t0,$t0
5 lw $t1,x
8 mult $t0,$t0,$t1
9 lw $t1,y
12 mult $t0,$t0,$t1
13 lw $t1,z
16 mult $t0,$t0,$t1
18 sw $t0,w

done at time 21

• Schedule 2
1 lw $t0,w
2 lw $t1,x
3 lw $t2,y
4 add $t0,$t0,$t0
5 mult $t0,$t0,$t1
6 lw $t1,z
7 mult $t0,$t0,$t2
9 mult $t0,$t0,$t1
11 sw $t0,w

done at time 14

Issue time

28

Control Hazards

IF

IF

ID EX MA

IF ID

WB

EX MA WB

Stall if branch is made

stall stall

Branch instruction

29

Branch Scheduling

• Problem:
– Branches often take some number of cycles to complete,

creating delay slots
– Can be a delay between a compare b and its associated

branch
– Even unconditional branches have delay slots

• A compiler will try to fill these delay slots with valid
instructions (rather than nop)

30

Example
• Assume loads take

2 cycles and
branches have a
delay slot

• 7 cycles
• Can look at the

dependencies
between the
statements and
move a statement
into the delay slot

7nop
6b L1
5add $t5, $t2,1
4add $t4, $t2, $t3
2lw $t3,8($t1)
1lw $t2,4($t1)
Start TimeInstruction

1 2

34

31

Example

• 5 cycles filling delay
slots

5add $t4, $t2, $t3
4b L1
3add $t5, $t2,1
2lw $t3,8($t1)
1lw $t2,4($t1)
Start TimeInstruction

32

Register Allocation

How to best use the bounded number of registers.
– Reducing load/store operations
– What are best values to keep in registers?
– When can we ‘free’ registers?

Complications:
– special purpose registers
– operators requiring multiple registers

33

Register Allocation Algorithms

• Local (basic block level):
– Basic - using liveness information
– Register Allocation using graph coloring

• Global (CFG)
– Need to use global liveness information

34

Basic Code Generation

• Deal with each basic block individually
• Compute liveness information for the block
• Using liveness information, generate code that

uses registers as well as possible
• At end, generate code that saves any live values

left in registers

35

Concept: Variable Liveness

• For some statement s, variable x is live if
– there is a statement t that uses x
– there is a path in the CFG from s to t
– there is no assignment to x on some path from s to t

• A variable is live at a given point in the source code if
it could be used before it is defined

• Liveness tells us whether we care about the value held by
a variable

36

Example: When Is a Live?

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

Assume a,b and c are used
after this basic block

a is live

37

Example: When Is b Live?

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

Assume a,b and c are used
after this basic block

38

Computing Live Status in Basic Blocks

• Input: A basic block
• Output: For each statement, set of variables live after the

statement
• Initially all non-temporary variables go into live set (L)
• for i = last statement to first statement:

For statement i: x := y op z
1. Attach L to statement i
2. Remove x from set L
3. Add y and z to set L

39

Example

live = {}
a := b + c

live = {}
t1 := a * a

live = {}
b := t1 + a

live = {}
c := t1 * b

live = {}
t2 := c + b

live = {}
a := t2 + t2

live = {a,b,c}

40

Example Answers

live = {}
a := b + c

live = {}
t1 := a * a

live = {}
b := t1 + a

live = {}
c := t1 * b

live = {}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

41

Example Answers

live = {}
a := b + c

live = {}
t1 := a * a

live = {}
b := t1 + a

live = {}
c := t1 * b

live = {b,c}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

42

Example Answers

live = {}
a := b + c

live = {}
t1 := a * a

live = {}
b := t1 + a

live = {b,t1}
c := t1 * b

live = {b,c}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

43

Example Answers

live = {}
a := b + c

live = {}
t1 := a * a

live = {a,t1}
b := t1 + a

live = {b,t1}
c := t1 * b

live = {b,c}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

44

Example Answers

live = {}
a := b + c

live = {a}
t1 := a * a

live = {a,t1}
b := t1 + a

live = {b,t1}
c := t1 * b

live = {b,c}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

45

Example Answers

live = {b,c}  what does this mean?
a := b + c

live = {a}
t1 := a * a

live = {a,t1}
b := t1 + a

live = {b,t1}
c := t1 * b

live = {b,c}
t2 := c + b

live = {b,c,t2}
a := t2 + t2

live = {a,b,c}

46

Basic Code Generation

• Deal with each basic block individually
• Compute liveness information for the block
• Using liveness information, generate code that

uses registers as well as possible
• At end, generate code that saves any live values

left in registers

47

Basic Code Generation

• Idea: Deal with the instructions from beginning to end. For
 each instruction,
– Use registers whenever possible
– A non-live value in a register can be discarded, freeing that

register
• Data Structures:

– Register descriptor - register status (empty, full) and contents
(one or more "values")

– Address descriptor - the location (or locations) where the current
value for a variable can be found (register, stack, memory)

48

Instruction type: x := y op z
• Choose Rx, the register where the result (x) will be kept
– If y (or z) is the only variable in a register t and not live after the

statement, choose Rx = t
– Else if there is a free register t, choose Rx = t
– Else must free up a register for Rx

• Find Ry. If y is not in a register, generate load into a free
register (or Rx)

• Find Rz. If z is not in a register, generate load into a free
register (can use Rx if not used by y)

• Generate: OP Rx, Ry, Rz

49

Instruction type: x := y op z
● Update information about the current location of x
● Update information for the register holding x
● If y and/or z are not live after this instruction,

update register and address descriptors
accordingly

50

Example Code
live = {b,c}

a := b + c
live = {a}

t1 := a * a
live = {a,t1}

b := t1 + a
live = {b,t1}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

51

Code Generation Example

• Initially
Three Registers: (-; -; -) all empty
Current values: (a;b;c;t1;t2) = (m;m;m;-;-)

• Instruction 1: a := b + c, Live = {a}
Ra = $t0, Rb = $t0, Rc = $t1
• lw $t0,b
• lw $t1,c
• add $t0,$t0,$t1

Registers: (a;-;-) current values: ($t0;-;-;-;-)

Don’t need to keep track
of b or c since aren’t live.

52

• Instruction 2: t1 := a * a, Live = {a,t1}
Rt1 = $t1 (since a is live after instruction)
mul $t1,$t0,$t0

Registers: (a;t1;-) current values: ($t0;-;-;$t1;-)

• Instruction 3: b := t1 + a, Live = {b,t1}
Since a is not live after instruction, Rb = $t0
add $t0,$t1,$t0

Registers: (b;t1;-) current values: (-;$t0;-;$t1;-)

Code Generation Example

53

• Instruction 4: c := t1 * b, Live = {b,c}
Since t1 is not live after instruction, Rc = $t1
mul $t1,$t1,$t0

Registers: (b;c;-) current values: (-;$t0;$t1;-;-)

• Instruction 5: t2 := c + b, Live = {b,c,t2}
Rt2 = $t2
add $t2,$t1,$t0

Registers: (b;c;t2) current values: (-;$t0;$t1;-;$t2)

Code Generation Example

54

• Instruction 6: a := t2 + t2, Live = {a,b,c}
Ra = $t2
add $t2,$t2,$t2

Registers: (b;c;a) current values: ($t2;$t0;$t1;-;-)

• Since end of block, move live variables:
sw $t2,a
sw $t0,b
sw $t1,c

all registers available
all live variables moved to memory

Code Generation Example

55

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
add $t2,$t1,$t0
add $t2,$t2,$t2
sw $t2,a
sw $t0,b
sw $t1,c

a := b + c

t1 := a * a
b := t1 + a
c := t1 * b
t2 := c + b
a := t2 + t2

Cost = 16
How does this compare to
naive approach?

Generated code

56

• Liveness information allows us to keep values in
registers if they will be used later (efficiency)

• Why do we assume all variables are live at the end
of blocks? Can we do better?

• Why do we need to save live variables at the end?
We might have to reload them in the next block.

Improving Efficiency

57

Register Allocation with Graph Coloring

• Local register allocation - graph coloring problem
• Uses liveness information
• Allocate K registers where each register is

associated with one of the K colors

58

Graph Coloring

• The coloring of a graph G = (V,E) is a mapping C:
V S, where S is a finite set of colors, such that if
edge vw is in E, C(v) <> C(w)

• Problem is NP (for more than 2 colors)  no
polynomial time solution

• Fortunately there are approximation algorithms

59

Coloring a Graph with K Colors

No color for
this node

K = 3 K = 4

60

Register Allocation and Graph
K-Coloring

K = number of available registers
G = (V,E) where
• Vertex set V = {Vs | s is a program variable}
• Edge Vs Vt in E if s and t can be live at the same

time
G is an ‘interference graph’

61

Algorithm: K Registers

1. Compute liveness information for the basic block.
Assume, that every live variable will be stored in a
register.

2. Create interference graph G - one node for each
variable, an edge connecting any two variables
alive simultaneously

62

Example Interference Graph

 a := b + c {b,c}
 t1 := a * a {a}
 b := t1 + a {t1,a}
 c := t1 * b {b,t1}
 t2 := c + b {b,c}
 a := t2 + t2 {b,c,t2}
 {a,b,c}

a

b

t1

c

t2

63

Algorithm: K Registers

3. Simplify - For any node m with fewer than K
neighbors, remove it from the graph and push it
onto a stack. If G - m can be colored with K
colors, so can G. If we reduce the entire graph,
goto step 5.

4. Spill - If we get to the point where we are left with
only nodes with degree >= K, mark some node
for potential spilling. Remove and push onto
stack. Back to step 3.

64

Choosing a Spill Node

Potential criteria:
• Random
• Most neighbors
• Longest live range (in code)

– with or without taking the access pattern into
consideration

65

5. Assign colors - Starting with empty graph, rebuild
graph by popping elements off the stack, putting
them back into the graph and assigning them
colors different from neighbors. Potential spill
nodes may or may not be colorable.

• Process may require iterations and rewriting of
some of the code to create more temporaries

Algorithm: K Registers

66

Rewriting the Code

• Want to be able to remove some edges in the
interference graph
– write variable to memory earlier
– compute/read in variable later

• Not all live variables will be stored in registers all
the time.

67

Back to example

 a := b + c {b,c}
 t1 := a * a {a}
 b := t1 + a {t1,a}
 c := t1 * b {b,t1}
 t2 := c + b {b,c}
 a := t2 + t2 {b,c,t2}
 {a,b,c}

a

b

t1

c

t2

68

Example, k = 3

a

b

t1

c

t2

Assume k = 3

Remove t1
t1

Interference graph

69

Example

a

b

t1

c

t2

Assume k = 3

Remove a
t1
a

70

Example

a

b

t1

c

t2

Assume k = 3

Remove b
t1
a
b

71

Example

a

b

t1

c

t2

Assume k = 3

Remove c
t1
a
b
c

72

Example

a

b

t1

c

t2

Assume k = 3

Remove t2
t1
a
b
c
t2

73

Rebuild the graph

t2

Assume k = 3

t1
a
b
c

74

Example

c

t2

Assume k = 3

t1
a
b

75

Example

b

c

t2

Assume k = 3

t1
a

76

Example

a

b

c

t2

Assume k = 3

t1

77

Example

a

b

t1

c

t2

Assume k = 3

t0t2
t2t1
t2c
t1b

t0a

78

Back to example

 a := b + c
 t1 := a * a
 b := t1 + a
 c := t1 * b
 t2 := c + b
 a := t2 + t2

lw $t1,b
lw $t2,c
add $t0,$t1,$t2
mul $t2,$t0,$t0
add $t1,$t2,$t0
mul $t2,$t2,$t1
add $t0,$t2,$t1
add $t0,$t0,$t0
sw $t0,a
sw $t1,b
sw $t2,c

t0t2
t2t1
t2c
t1b
t0a

79

Generated code: Basic

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
add $t2,$t1,$t0
add $t2,$t2,$t2
sw $t2,a
sw $t0,b
sw $t1,c

Generated Code: Coloring

lw $t1,b
lw $t2,c
add $t0,$t1,$t2
mul $t2,$t0,$t0
add $t1,$t2,$t0
mul $t2,$t2,$t1
add $t0,$t2,$t1
add $t0,$t0,$t0
sw $t0,a
sw $t1,b
sw $t2,c

80

Example, k = 2

a

b

t1

c

t2

Assume k = 2

Remove b as spill
b*

81

Example

a

b

t1

c

t2

Assume k = 2

Remove t1
b*
t1

82

Example

a

b

t1

c

t2

Assume k = 2

Remove a
b*
t1

 a

83

Example

a

b

t1

c

t2

Assume k = 2

Remove c
b*
t1

 a
c

84

Example

a

b

t1

c

t2

Assume k = 2

Remove t2
b*
t1

 a
c
 t2

85

Example

a

b

t1

c

t2

Assume k = 2

???
Can flush b out to
memory, creating a
smaller window

86

After Spilling b:

a

b

t1

c

t2

 a := b + c {b,c}
 t1 := a * a {a}
 b := t1 + a {t1,a}
 c := t1 * b {b,t1}
 b to memory
 t2 := c + b {b,c}
 a := t2 + t2 {c,t2}
 {a,c}

87

After Spilling b:

a

b

t1

c

t2

t2

88

After Spilling b:

a

b

t1

c

t2

t2
c*

Have to choose c as a potential
spill node.

89

After Spilling b:

a

b

t1

c

t2

t2
c*
b

90

After Spilling b:

a

b

t1

c

t2

t2
c*
b
a

91

After Spilling b:

a

b

t1

c

t2

t2
c*
b
a
t1

92

Now Rebuild:

a

b

t1

c

t2

t2
c*
b
a

93

Now Rebuild:

a

b

t1

c

t2

t2
c*
b

94

Now Rebuild:

a

b

t1

c

t2

t2
c*

95

Now Rebuild:

a

b

t1

c

t2

t2 Fortunately, there is a color for c

96

Now Rebuild:

a

b

t1

c

t2

The graph is 2-colorable now
t0t2
t1t1
t1c
t0b
t0a

97

The Code

a := b + c
t1 := a * a
b := t1 + a
c := t1 * b
b to memory
t2 := c + b
a := t2 + t2

t0t2
t1t1
t1c
t0b
t0a

lw $t0,b
lw $t1,c
add $t0,$t0,$t1
mul $t1,$t0,$t0
add $t0,$t1,$t0
mul $t1,$t1,$t0
sw $t0,b
add $t0,$t1,$t0
add $t0,$t0,$t0
sw $t0,a
sw $t1,c

	Code Generation
	Compiler Architecture
	Slide 3
	Issues:
	Example Target: SPIM Assembly Language
	Instruction Selection
	Instruction Scheduling
	Register Allocation
	Naïve Approach to Code Generation
	Mapping from Intermediate code
	Slide 11
	Problems with this approach
	Slide 13
	Representing Intermediate Code: Control Flow Graph - CFG
	Basic Blocks
	Generating CFGs from Intermediate Code
	Partitioning into basic blocks
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Hazards
	Data Hazards
	Slide 24
	Dealing with Data Hazards
	Slide 26
	w  w * 2 * x * y * z
	Control Hazards
	Branch Scheduling
	Example
	Slide 31
	Slide 32
	Register Allocation Algorithms
	Basic Code Generation
	Concept: Variable Liveness
	Example: When is a live?
	Example: When is b live?
	Computing live status in basic blocks
	Slide 39
	Example Answers
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Instruction type: x := y op z
	Slide 49
	Example Code
	Returning to live Example
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Register Allocation with Graph Coloring
	Graph Coloring
	Coloring a graph with K colors
	Register Allocation and Graph K-Coloring
	Algorithm: K registers
	Example Interference Graph
	Slide 63
	Choosing a Spill Node
	Slide 65
	Rewriting the code
	Back to example
	Example, k = 3
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Rebuild the graph
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Example, k = 2
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	After spilling b:
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Now rebuild:
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	The code

