
1

Run-Time Environments

2

Run-Time Support Package

● Consists of routines which execute the generated
target code

● Handles allocation and deallocation of data objects
● Activates procedures when called
● May be multiple active instances of a single function if

recursion is allowed
● Semantics of procedures heavily influence design of run-

time support packages

3

Procedures

● Procedure Definition:
● A declarations of procedure
● Associate an identifier (procedure name) with a statement

(procedure body)
● A procedure that returns a value is sometimes

referred to as a function
● Textbook also treats full program as a procedure
● Procedure calls pass arguments (actual

parameters) to parameters (formal parameters)

4

Flow of Control

● Control flows sequentially
● Execution of a program consists of a sequence of steps
● At each step, control is at some specific point in the

program
● Execution of a procedure
● Starts at the beginning of the procedure
● Eventually returns control to the point immediately following

procedure call

5

Procedure Activation and Lifetime

● A procedure is activated when called
● The lifetime of an activation of a procedure is the
sequence of steps between the first and last steps
in the execution of the procedure body

● A procedure is recursive if a new activation can
begin before an earlier activation of the same
procedure has ended

● Can be depicted using trees

6

program sort(input, output);
var a : array [0..10] of integer;
procedure readarray;
var i : integer;
begin

for i := 1 to 9 read(a[i])
endl
function partition(y, z: integer) : integer;
var i, j, x, v: integer;
begin …
end;
procedure quicksort(m, n integer);
var i : integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end
end;

begin
a[0]:= -9999; a[10] := 999;
readarray;
quicksort(1,9);

end.

program sort(input, output);
var a : array [0..10] of integer;
procedure readarray;
var i : integer;
begin

for i := 1 to 9 read(a[i])
endl
function partition(y, z: integer) : integer;
var i, j, x, v: integer;
begin …
end;
procedure quicksort(m, n integer);
var i : integer;
begin

if (n > m) then begin
i := partition(m,n);
quicksort(m,i-1);
quicksort(i+1,n);

end
end;

begin
a[0]:= -9999; a[10] := 999;
readarray;
quicksort(1,9);

end.

Example Program

7

Activation Trees

• Each node represents an activation of a procedure
• The root represents the activation of the program
• The node for a is the parent of the node for b if and

only if control flows from activation a to b
• The node for a is to the left of node b if and only if

the lifetime of a occurs before the lifetime of b
• Often convenient to talk of control being "at a node"

8

Activation Tree

Execution begins...
enter readarray
leave readarray
enter quicksort(1,9)
enter partition(1,9)
leave partition(1,9)
enter quicksort(1,3)
 ...
leave quicksort(1,3)
enter quicksort(5,9)
 ...
leave quicksort(5,9)
leave quicksort(1,9)
Execution terminated.

s

r q(1,9)

q(1,3)

q(1,0) q(2,3)

q(2,1) q(3,3)

q(5,9)

q(5,5) q(7,9)

q(7,7) q(9,9)p(7,9)

p(5,9)

p(2,3)

p(1,3)

p(1,9)

s

r q(1,9)

q(1,3)

q(1,0) q(2,3)p(1,3)

p(1,9)

9

Control Stack

s

q(1,9)

q(1,3)

p(1,3) q(1,0) q(2,3)

p(1,9)

r

Activations:
begin sort
 enter readarray
 leave readarray
 enter quicksort(1,9)
 enter partition(1,9)
 leave partition(1,9)
 enter quicksort(1,3)
 enter partition(1,3)
 leave partition(1,3)
 enter quicksort(1,0)
 leave quicksort(1,0)
 enter quicksort(2,3)
 …

Control
stack:

Activation tree:

q(2,3)
q(1,3)
q(1,9)
s

• Flow of control in a program corresponds to a depth-first
traversal of activation tree

• A stack called a control stack can keep track of live procedure
activations

• A node is pushed as activation of procedure begins
• Node is popped when activation of procedure ends

10

Scope
● The scope of a declaration is the portion of the

program to which the declaration applies
● Sometimes convenient to speak of scope of name

itself as opposed to the declaration
● A declaration that applies only within a procedure is

said to be local to the procedure
● The same name can be used multiple times in a

program with different scopes
● When a name is encountered:

● The scope rules of a language determine which
declaration of the name applies

● At compile time, the symbol table can be used to
determine the appropriate declaration

11

Scope Rules

• Environment determines name-to-object
bindings: which objects are in scope?

program prg;
 var y : real;
function x(a : real) : real;
 begin … end;
procedure p;
 var x : integer;
 begin
 x := 1;
 …
 end;
begin
 y := x(0.0);
 …
end.

program prg;
 var y : real;
function x(a : real) : real;
 begin … end;
procedure p;
 var x : integer;
 begin
 x := 1;
 …
 end;
begin
 y := x(0.0);
 …
end.

Variable x locally declared in p

A function x

12

Bindings of Names
● Informally, a "data object" corresponds to a storage location

that can hold values
● Even if a name is declared only once, it can denote different

data objects at run time
● An environment maps a name to a storage location (l-value)
● A state maps a storage location to a value (r-value)
● If an environment associates storage location s with name
x:

● We say that x is bound to s
● The association itself is referred to as a binding of x

● A binding is the dynamic counterpart of a declaration

13

Name Binding

name storage value

environment state

var i;
…
i := 0;
…
i := i + 1;

var i;
…
i := 0;
…
i := i + 1;

14

Static and Dynamic Notions of Bindings

Lifetime of a bindingScope of a declaration

Bindings of the nameDeclaration of a name

Activations of the
procedure

Definition of a
procedure

Dynamic NotionStatic Notion

15

• May procedures be recursive?
• What happens to the values of local names when control

returns from an activation of a procedure?
• May a procedure refer to nonlocal names?
• How are parameters passed when a procedure is

called?
• May procedures be passed as parameters?
• May procedures be returned as results?
• May storage be allocated dynamically under program

control?
• Must storage be deallocated explicitly?

Factors Influencing Run-Time
Environment

16

● Run-time memory is divided into code and data
areas

● The data areas generally include static data, a
stack, and a heap

● Static data consists of data that is known at
compile-time, e.g. globals

● The stack stores activation records and locals
● The heap stores all other information, e.g.

dynamically allocated memory

Run-Time Memory

17

● Activation records (subroutine frames) hold the state of
a subroutine

● Each activation record generally resides in a contiguous
block of memory

● For many languages (e.g. Pascal, C), the activation
record is:
● Pushed to top of run-time stack when procedure is called
● Pop off of stack when control returns to caller

● Activation records consist of several fields
● Calling sequences are code statements to create

activations records on the stack and enter data in them
● Caller’s calling sequence enters actual arguments, control link,

access link, and saved machine state
● Callee’s calling sequence initializes local data
● Callee’s return sequence enters return value
● Caller’s return sequence removes activation record

Activation Records

18

● A field for temporary values such as those arising
in the evaluation of expressions

● A field for local data
● A field for saved machine status, e.g. the

program counter and machine registers that need
to be restored

● An optional field for an access link to refer to
nonlocal data held in other activation records

● An optional field for a control link pointing to the
activation record of the caller

● A field for actual parameters (i.e. arguments
supplied by the calling procedure)

● A field for the return value

Fields of Activation Records

19

Activation Records
(Subroutine Frames)

heap

stack

static data

code

Temporaries

Local data

Saved machine status

Optional access link

Optional control link

Actual parameters

Returned value

Caller’s
responsibility
to initialize

Callee’s
responsibility
to initialize

20

● The amount of storage needed for a name is
determined from its type

● The field of an activation record for local data is
laid out as declarations in a procedure

● A offset keeps track of how much memory has
been allocated for previous declarations

● This offset determines a relative address from
some base, e.g. the start of the activation record

● Some constraints may be imposed by the target
machine, e.g. integers may have to be aligned

Compile-Time Layout of Local Data

21

Data Layouts Used by Two C Compilers

6432≥ 64≥ 8structures

64322432other ptrs.

64323032char*
643212864double
64326432float
64326432long
64324832int
64162416short
64*888char

Machine 2Machine 1Machine 2Machine 1

Alignment (bits)Size (bits)Type

*8 bits in a character array

22

● Static allocation lays out storage for all data
objects at compile time

● Stack allocation manages run-time storage as a
stack

● Heap allocation allocates and deallocates storage
as needed from a heap

● Any of one these strategies can be used to
manage activation records

Storage-Allocation Strategies

23

● From type of a name, compiler determines the
amount of storage to set aside

● The address consists of an offset from the end of
the activation record for procedure

● Compiler must decide where activation records
go relative to target code

● Once decisions are made, all storage is fixed, all
addresses are known

Static Allocation (2)

24

● The size of all data objects must be known at
compile time

● Recursive procedures are restricted since all
activations use the same bindings

● Data structures cannot be created dynamically

Limitations of Static Allocation

25

● Based on the idea of a control stack
● Activation records are pushed and popped as

activation begins and ends, respectively
● Storage for locals in each call of a procedure is

contained in the activation record
● Locals are thus bound to fresh storage in each

activation
● The values of locals are deleted when the

activation ends

Stack Allocation

26

Stack of Activation Records

s

r q(1,9)

q(1,3)

p(1,3)

p(1,9)

s
a : array

s

s

r i : integer
r

a : array
s

i : integer
q(1,9)

a : array
ss

r q(1,9)

i : integer
q(1,3)

i : integer
q(1,9)

a : array
s

27

● Procedure calls are implemented by generating
calling sequences in target code

● A call sequence allocates an activation record
and enters information in fields

● A return sequence restores the state of the
machine so calling procedure can continue

● Calling sequences and activation records differ
even for implementations of same language

● Code in a calling sequence is often divided
between calling procedure and called procedure

● No exact division of run-time tasks between caller
and callee

Calling Sequences (1)

28

● Principle for designing activation records: fields
of fixed size placed in the middle

● Fixed size fields: access link, control link,
machine status information
● Links are optional, decision as to whether or not to use

is part of compiler design
● If same machine-status information saved for each

activation, same code can do saving and restoring
● Programs such as debuggers will have an easier time

deciphering stack contents when an error occurs

Calling Sequences (2)

29

● Size of field for temporaries eventually fixed as
compile time

● May not be known to front end, since careful
optimization may reduce number of temporaries

● As far as front end is concerned, the size of this
field is unknown
● For this reason, temporaries generally placed at end of

activation record
● Offsets of locals relative to fields in the middle are

therefore not affected

Temporaries in Activation Records

30

● Each call has its own actual parameters
(arguments)

● These arguments are communicated to the
activation record of the called procedure

● Various schemes exist to pass parameters
(discussed more later)

● In run-time stack, the activation record of the
caller is just below that of the callee

● Advantages of placing fields for parameters and
return value next to activation record of caller
● Caller can access using offset from the end of its own

activation record
● No need for caller to know about local data or temporaries

of the called procedure

Parameters in Activation Records

31

Calling Sequence Possibility

• The caller evaluates arguments and places them on
stack in new activation record

• The caller stores a return address into new
activation record

• The callee saves the old value of fp, register
values and other status information

• The callee initializes its own local data and begins
execution

• This scheme allows for the number of arguments of
the called procedure to depend on the call

32

Return Sequence Possibility

● The callee places a return value next to the
activation record of the caller

● Using information in the status field:
● The callee restores fp and other registers
● The callee executes a branch to the appropriate return

address in the caller's code
● The caller may copy the returned value into its own

activation record

33

Handling Variable-Length Data
● Some languages allow procedures to accept

variable-length parameters
● Such data does not get stored in the activation

record for the procedure
● Example, variable-length arrays for procedure p:

● A pointer to the start of each array appears in the
activation record for p

● The relative addresses of these pointers are known at
compile time so target code can access the arrays

● Arrays appear after activation record of p

34

Variable-Length Data Example

control link
pointer to a
pointer to b
pointer to c

array a

array b

array c

control link

Activation record for p

fp
(frame pointer)

sp
(stack pointer)

Arrays of p

Activation record
 for procedure q called by p

Arrays of q

35

Accessing the Stack
● Accessing the stack is done through two pointers,
sp and fp

● The pointer sp:
● Points to the actual top of the stack
● Denotes location where next activation record will be

placed
● The pointer fp:

● Used to locate local data
● Often points to end of machine-status field

● The control link of each activation record points to
the previous value of fp

● Code to reposition sp and fp when a procedure
returns can be generated at compile time

36

Dangling References

• A dangling reference occurs when there is a
reference to storage that has been deallocated

• It is a logical error to use dangling references

int main(void) {
int *p;
p = dangle();
…

}
int *dangle() {

int i = 23;
return &i;

}

int main(void) {
int *p;
p = dangle();
…

}
int *dangle() {

int i = 23;
return &i;

}

37

Limits of Stack Allocation

● The values of local names can not be retained
when an activation ends

● A called activation can never outlive the caller
● Will always be true if activation trees correctly

depict flow of control for the language
● If not true, storage can not be organized as a

stack (last-in, first-out)

38

Heap Allocation

● Heap allocation parcels out pieces of contiguous
storage as needed

● Can be used for activation records or other data
objects

● Pieces may be deallocated in any order
● Heap will therefore consist of alternate areas that

are free and in use
● If used for activation records:

● Can not assume that activation record of called
procedure follows activation record of caller

● May be free space in between current activation records;
up to heap manager to make use of space

39

Access to Nonlocal Names
● The scope rules of a language determine the
treatment of references to nonlocal names

● One common rule is the lexical-scope rule (a.k.a.
the static scope rule)
● The declaration that applies to a name is determined by

examining program text alone
● Used for most common languages (e.g. C, Pascal)
● Often a "most closely nested" stipulation goes along with

this strategy
● An alternative rule is the dynamic-scope rule

● Declaration applicable to a name is determines at run-
time by considering current activations

● Used by languages including Lisp and APL

40

Blocks
● A block is a statement containing its own local

declarations
● In C, a block (compound statement) has syntax: {declarations statements}
● Delimiters mark the beginning and end of a block

● Delimiters ensure that two blocks are either
independent or one is nested inside the other

● This property is referred to as block structure

41

The Most Closely Nested Rule

● The scope of a declaration in block B includes B
(minus holes)

● If a name, x, is not declared in block B, and an
occurrence of x is in B, then:
● This x is in the scope of a declaration of x in an

enclosing block B'
● B' must have the following two properties:

● B' has a declaration of x
● B' is more closely nested around B than any other block with a

declaration of x

42

Scope in C Example (1)

int main()
{
 int a = 0;
 int b = 0;
 {
 int b = 1;
 {
 int a = 2;
 printf("%d %d\n", a, b);
 }
 {
 int b = 3;
 printf("%d %d\n", a, b);
 }
 printf("%d %d\n", a, b);
 }
 printf("%d %d\n", a, b);
};

B0

B1
B2

B3

B3int b = 3;
B2int a = 2;
B1 - B3int b = 1;
B0 - B1int b = 0;
B0 - B2int a = 0;

ScopeDeklaration

a2, b3

b1

b0

a0

43

Scope in C Example (2)

● Each declaration initializes a name to the number of
the block in which it is declared

● The scope of the declaration of b in B0 does not
include B1
● This is because redeclared in B1

● The scope of the declaration of b in B0 is therefore B0– B1
● The gap is referred to as a hole

44

Implementing Block Structure (1)

● Block structure can be implemented using stack
allocation

● Since the scope of a declaration does not extend
outside the block in which it appears:

● Space for declared name is allocated when block is
entered, deallocated when control leaves block

● This view treats block as a "parameterless procedure"
● Called only from the point just before the block
● Returning only to the point just after the block

● This can be a bit more confusing depending on the
language's rules for goto statements

45

Implementing Block Structure (2)

● An alternative is to allocate storage for complete
procedures at one time

● If there are blocks within a procedure:
● Allowances are made for storage needed for declarations

within these blocks
● Some times two locals can share the same storage (e.g.
a in B2 and b in B3 in example)

46

Implementing Block Structure (3)

● In the absence of variable-length data:
● Maximum storage needed during execution of a block

can be determined at compile time
● Variable-length data can be handled using pointers (as

with activation records)
● Common to conservatively assume that all control

paths in a block can be taken

47

Scope without Nested Procedures

● In the absence of nested procedures:
● Lexical scope can be implemented with the stack-

allocation strategy directly
● Storage for all names declared outside any procedure

can be allocated statically
● Any name must be local to the current activation or else

in a known static address
● Makes it easier to pass procedures to functions or

return procedures as results

48

Non-Nested Procedures Example

program pass(input, output);
 var m : integer;
 function f(n : integer) : integer;
 begin f := m + n end; {f}
 function g(n : integer) : integer;
 begin g := m + n end; {g}
 procedure b(function h(n : integer) : integer);
 begin write(h(2)) end; {b}
 begin
 m := 0;
 b(f); b(g); writeln
 end.

program pass(input, output);
 var m : integer;
 function f(n : integer) : integer;
 begin f := m + n end; {f}
 function g(n : integer) : integer;
 begin g := m + n end; {g}
 procedure b(function h(n : integer) : integer);
 begin write(h(2)) end; {b}
 begin
 m := 0;
 b(f); b(g); writeln
 end.

49

Scope with Nested Procedures
● Nesting Depth

● Let the name of the main program be at nesting depth 1
● Add 1 to the nesting depth when move from any enclosing to

an enclosed procedure
● With the occurrence of any name, associate the nesting

depth of the procedure in which it is declared
● Access Links

● An access link is an extra pointer added to each activation
record

● For any procedure p:
● Let q be the procedure in which p is immediately nested in

the source text
● The access link in an activation record for p will point to

the record for the most recent activation of q

50

Nested Procedures Example (1)
program sort(input, output);

var a: array [0..10] of integer;
 x: integer;

procedure readarray;
var i : integer;
begin ... a ... end { readarray } ;

procedure exchange(i, j: integer);
begin

x : = a[i]; a[i] := a[j]; a[j] := x
end { exchange } ;

procedure quicksort(m, n: integer);
var k, v : integer;

function partition(y, z: integer): integer;
var i, j: integer;
begin ... a ...
 ... v ...
 ... exchange(i,j); ...
end { partition }

begin ... end { quicksort };

begin ... end { sort };

program sort(input, output);
var a: array [0..10] of integer;
 x: integer;

procedure readarray;
var i : integer;
begin ... a ... end { readarray } ;

procedure exchange(i, j: integer);
begin

x : = a[i]; a[i] := a[j]; a[j] := x
end { exchange } ;

procedure quicksort(m, n: integer);
var k, v : integer;

function partition(y, z: integer): integer;
var i, j: integer;
begin ... a ...
 ... v ...
 ... exchange(i,j); ...
end { partition }

begin ... end { quicksort };

begin ... end { sort };

51

Nested Procedures Example (2)

• The declaration of quicksort is at nesting depth 2
• The declaration of partition is at nesting depth 3
• The names of a, v, and i in partition have

nesting depths 1, 2, and 3
• The activation record for quicksort will always

point to the record for sort
• The record for partition will always point to that

of the most recent activation of quicksort

52

Nested Procedures Example (3)

access link
k, v

q(1,9)
a, x

s

q(1,3)
access link

k, v

access link
k, v

q(1,9)
a, x

s

p(1,3)
access link

i, j

q(1,3)
access link

k, v

access link
k, v

q(1,9)
a, x

s

e(1,3)
access link

p(1,3)
access link

i, j

q(1,3)
access link

k, v

access link
k, v

q(1,9)
a, x

s

The access link points to
the activation record of the
static parent procedure:
s is parent of r, e, and q
q is parent of p

53

Algorithm for Finding a Nonlocal

● Suppose procedure p at nesting depth np refers to
nonlocal a with nesting depth na < np

● If control is in p, activation record for p must be at
top of stack

● First follow np – na access links (computed at
compile time)

● Easy if access links point to access links
● Brings us to activation record for procedure that a is local

to
● Storage for a at fixed offset to some position in

record (fixed position could be access link)

54

Setting Up Access Links

● Code to set up access links is part of calling
sequence

● Suppose procedure p with nesting depth np calls
procedure x with nesting depth nx

● If np < nx
● Procedure x must be declared within p
● Access link of x points to access link of p

● If np >= nx
● There must be some common enclosing procedure
● Following np – nx + 1 access from p brings us to

activation record of common ancestor
● This is record to which access link for x must point

55

Passing Procedures as Parameters (1)

• Lexical scope rules apply when a nested procedure
is passed as a parameter

• The access link must be passed along with
procedure parameter

• Calling procedure must determine access link for
passed procedure

• When procedure parameter is activated, access link
is used for activation record

56

Program param(input, output);
procedure b(function h(n:integer): integer);
begin writeln(h(2)) end;
procedure c;
var m : integer;
function f(n : integer): integer;

begin f := m + n end ;
begin m := 0; b(f) end ;

begin
c
end;

Program param(input, output);
procedure b(function h(n:integer): integer);
begin writeln(h(2)) end;
procedure c;
var m : integer;
function f(n : integer): integer;

begin f := m + n end ;
begin m := 0; b(f) end ;

begin
c
end;

Passing Procedures as Parameters (2)

Procedure passed as a parameter must take its access link along with it.

57

Displays
● A display is an array of pointers to activation records

● Maintained so that any nonlocal a at nesting depth i is in
activation record pointed to by display d[i]

● Faster than using access links since only need to access
element of d and follow one pointer

● Display is updated as part of call and return sequence
● Simple approach for maintaining the display

● Use access links in addition to the display
● Whenever an access link to an activation record at

nesting depth n is followed, d[n] is updated
● A better method exists if no procedure parameters

● Save the value of d[i] in every new activation record
● Set d[i] to point to the new activation record
● Restore d[i] just before activation ends

58

Display Example

saved d[2]
k, v

q(1,9)
a, x

s

q(1,3)
saved d[2]

k, v

saved d[2]
k, v

q(1,9)
a, x

s

p(1,3)
saved d[3]

i, j

q(1,3)
saved d[2]

k, v

saved d[2]
k, v

q(1,9)
a, x

s

e(1,3)
saved d[2]

p(1,3)
saved d[3]

i, j

q(1,3)
saved d[2]

k, v

saved d[2]
k, v

q(1,9)
a, x

s

d[2]

d[1]

d[2]

d[1]

d[3]

d[2]

d[1]

d[3]

d[2]

d[1]

59

Dynamic Scope
● Under dynamic scope:

● A new activation inherits the existing bindings of nonlocal
names to storage

● A nonlocal a in the called activation refers to the same
storage as in the calling activation

● The output of a program may depend on whether
lexical or dynamic scope is used

60

program dynamic(input, output);
var r : real;
procedure show;

begin write (r :5:3) end;
procedure small;

var r : real;
begin r := 0.125; show end;

begin
r := 0.25;
show; small; writeln;
show; small; writeln;

end.

program dynamic(input, output);
var r : real;
procedure show;

begin write (r :5:3) end;
procedure small;

var r : real;
begin r := 0.125; show end;

begin
r := 0.25;
show; small; writeln;
show; small; writeln;

end.

Dynamic Scope Example

61

Implementing Dynamic Scope
● Deep Access

● Dispense with access links
● Use control links to search stack for first activation record

containing storage for nonlocal name
● Search may go deep into stack
● Depth of search depends on input, can not be

determined at compile time
● Shallow Access

● Hold the current value of each name in statically
allocated storage

● When a new activation of procedure p occurs, a local
name n in p takes over storage statically allocated for n

● Previous value of n can be saved in activation record for p, must be restored when activation of p ends

62

Parameter Passing
● When one procedure calls another, communication

is done through:
● nonlocal names
● parameters of the called procedure

● Several methods exist for associating actual and
formal parameters

● call-by-value
● call-by-reference
● copy-restore
● call-by-name

63

L-values and R-values

• Consider an assignment, e.g. a[i] := a[j]
• The term l-value refers to the storage represented

by an expression
• The term r-value refers to the value contained in

such storage
• If an expression appears to the left of an assignment

symbol, it represents an l-value
• If an expression appears to the right of an

assignment symbol, it represents an r-value

64

Call-by-Value

• The simplest method of passing parameters
• The actual parameters are evaluated and their

r-values are passed to the called procedure
• Used in C and sometimes Pascal
• A formal parameter is treated like a local name, so

storage for it is in the activation record
• The caller evaluates the actual parameters and

places the r-values in the storage for the formals

65

Using Call-by-Value
● Operations on formal parameters do not affect

values in activation record of caller
● A procedure called by value can affect its caller in

two ways:
● Using nonlocals
● Through pointers that are explicitly passed as value

66

Call-by-Value Example

#include <stdio.h>
void swap(int *, int *);
int main(void) {
 int a = 1, b = 2;
 swap(&a, &b);
 printf("a is now %d, b is now %d\n", a, b);
}
void swap(int *x, int *y) {
 int temp;
 temp = *x; *x = *y; *y = temp;
}

#include <stdio.h>
void swap(int *, int *);
int main(void) {
 int a = 1, b = 2;
 swap(&a, &b);
 printf("a is now %d, b is now %d\n", a, b);
}
void swap(int *x, int *y) {
 int temp;
 temp = *x; *x = *y; *y = temp;
}

67

Call-by-Reference
● Also known as call-by-address and call-by-location
● The caller passes a pointer to the storage address

of each parameter
● If an actual parameter is a name or expression with

an l-value, the l-value itself is passed
● If the actual parameter is an expression without an

l-value:
● The expression is evaluated in a new location
● The address of that location is passed

68

Call-by-Reference Example

program reference(input, output);
var a, b : integer;
procedure swap(var x, y: integer);
 var temp : integer;
 begin
 temp := x;
 x := y;
 y := temp
 end;
begin
 a := 1; b := 2;
 swap(a, b);
 writeln('a = ', a); writeln('b =', b)
end.

program reference(input, output);
var a, b : integer;
procedure swap(var x, y: integer);
 var temp : integer;
 begin
 temp := x;
 x := y;
 y := temp
 end;
begin
 a := 1; b := 2;
 swap(a, b);
 writeln('a = ', a); writeln('b =', b)
end.

69

Copy-Restore
● Also known as copy-restore linkage, copy-in copy-

out, or value-result
● A hybrid between call-by-value and call-by-reference
● The calling sequence:

● The actual parameters are evaluated before a call
● The r-values of the actuals are passed to the called

procedure as in call-by-value
● In addition, the l-values of the actual parameters having

l-values are determined before the call
● The return sequence:

● When control returns, the current r-values of the actuals
are copied back into the l-values of the actuals

● The l-values computed before the call are used (only
actuals having l-values are copied)

70

Copy-Restore Example

program copyout(input, output);
var a : integer;
procedure unsafe(var x : integer);
 begin
 x := 2;
 a := 0
 end;
begin
 a : = 1;
 unsafe(a);
 writeln(a)
end.

program copyout(input, output);
var a : integer;
procedure unsafe(var x : integer);
 begin
 x := 2;
 a := 0
 end;
begin
 a : = 1;
 unsafe(a);
 writeln(a)
end.

71

Call-by-Name
● Traditionally defined by the "copy-rule" of Algol
● The procedure is treated as if it were a macro

● The body is substituted for the call in the caller
● Actual parameters are literally substituted for the formals
● Such a literal expansion is called macro-expansion of in-

line expansion
● Local names of the called procedure are kept distinct

from names of the calling procedure
● The actual parameters are surrounded by parentheses if

necessary to preserve their integrity
● Implementations use a form of in-line code

expansion (thunk) to evaluate parameters
● Supposedly, there is no way to write

a correct version of swap using
call-by-name!

swap(i,a[i])

temp:=i;
i:=a[i];
a[i]=temp;

swap(i,a[i])

temp:=i;
i:=a[i];
a[i]=temp;

72

Call-by-Name
● "Whereas Europeans generally pronounce his name

the right way ('Nick-louse Veert'), Americans
invariably mangle it into 'Nickel's Worth.' This is to
say that Europeans call him by name, but Americans
call him by value."

● Adriaan van Wijngaarden introducing Niklaus Wirth at the IFIP Congress
(1965).

73

Dynamic Storage Allocation

• Many languages provide facilities for dynamic
allocation under program control

• Storage for such data is generally taken from a
heap

• The allocation can be explicit or implicit
• Allocated data is often retained until it is

explicitly deallocated
• Deallocated memory can be reused

74

Dynamic Allocation Example
program table(input, output);
type link = ↑ cell;
cell = record
 key, info : integer;
 next : link
end;
var head : link;
procedure insert (k, i : integer);
var p : link;
begin
 new(p); p↑.key := k; p↑.info := i;
 p↑.next := head; head := p
end;
begin
 head := nil;
 insert(7,1); insert(4,2); insert(76,3);
 writeln(head↑.key, head↑.info);
 writeln(head↑.next↑.key, head↑.next↑.info);
 writeln(head↑.next↑.next↑.key,
 head↑.next↑.next↑.info);
end.

program table(input, output);
type link = ↑ cell;
cell = record
 key, info : integer;
 next : link
end;
var head : link;
procedure insert (k, i : integer);
var p : link;
begin
 new(p); p↑.key := k; p↑.info := i;
 p↑.next := head; head := p
end;
begin
 head := nil;
 insert(7,1); insert(4,2); insert(76,3);
 writeln(head↑.key, head↑.info);
 writeln(head↑.next↑.key, head↑.next↑.info);
 writeln(head↑.next↑.next↑.key,
 head↑.next↑.next↑.info);
end.

75

Explicit Allocation (1)

● The simplest form of dynamic allocation involves
fixed sized blocks

● Using a linked list of blocks requires little overhead
● A portion of each block will link to the next block
● A pointer to the first available block is also maintained
● Allocation consists of taking a block off the list
● Deallocation consists of putting a block back on the list
● The compiler does not need to know the type of object

that will be held in each block

76

Explicit Allocation (2)

• When variable-sized blocks are allocated, storage
can become fragmented

• The heap may consist of alternate blocks that are
free and in use

• Allocation and deallocation must be careful in
dealing with fragmentation issues

• With a simple scheme, a program can not allocate a
block larger than the largest free block

• When a block is deallocated, if it is next to a free
block it is combined with the free block (block
coalescing)

77

First-fit, Best-fit, Next-fit ...
• First-fit

– To allocate the requested memory in the first hole in which it
fits (fast, but lots of small holes)

• Best-fit
– To allocate the requested memory in the smallest hole that is

large enough (low locality)
• Next-fit

– To allocate in the chunk that has last been split
• Worst-fit

– put the object in the largest possible hole
– under what workload is this good?

• objects need to grow
• eg. database construction
• eg. network connection table

78

Heap Deallocation

• No deallocation
– Stop when space run out

• Explicit (manual) deallocation
– free (C, PL/1), delete (C++), dispose (Pascal),

deallocation (Ada)
– May lead to memory leak and dangling reference

• Implicit deallocation
– Reference count
– Garbage collection

79

Garbage

• Dynamically allocated storage can become
unreachable

• For example, in program just examined, let's say a
new line reads:
head↑.next := nil;

• Some languages perform garbage collection
• In other languages, the program must explicitly

deallocate storage
• In languages without garbage collection, garbage

remains until program finishes

80

Dangling References

• A dangling reference occurs when storage that has
been deallocated is referenced

• For example, in program just examined, let's say a
new line reads:
dispose(head↑.next);

• A dangling reference can lead to unpredictable
behavior in a program

81

Garbage Collection (GC)

• Remove the burden of manual deallocation from the
programmer by automatically deallocating
unreachable data objects

• Dates back to the initial implementation of Lisp in
1958

• Java, Perl, Modula-3, Prolog and Smalltalk offers
garbage collection

82

Soundness and Completeness

• For any program analysis
– Sound?

• are the operations always correct?
• usually an absolute requirement

– Complete?
• does the analysis capture all possible instances?

• For Garbage Collection
– sound = does it ever delete current memory?
– complete = does it delete all unused memory?

83

GC Assumptions

• We assume objects have a type that can be
determined by GC at runtime. From the type
information, we can tell how large the object is, and
which components contain pointers (to other
objects)

• We assume references to objects are always to the
address of the beginning of the object. Thus all
references to the same object have the same value
and can be identified

84

Type Safety

• Based on our assumption, GC cannot be applied to
type unsafe languages such as C and C++ (where
integer can be cast as pointer, arithmetic operations
can be applied to pointers, …)

• Since most C/C++ programs do not generate
pointers arbitrarily, some unsound GCs may work in
practice. A conservative approach can also be used
(treat any bit pattern that may form a valid address
as pointers).

85

Reachability and Root Set
• Root set

– All the data that can be accessed directly by a program without
having to dereference any pointer

– For example, in Java, the root set is all the static field members
and all variables on the stack

• Impact of compiler optimizations
– Reference variables might have been kept in registers
– Compiler may use arithmetic operations to generate new pointers

• In such cases, the compiler should assist GC to find the correct
root set
– Restrict GC invocation at certain safe point
– Annotation to inform GC
– To ensure a reference to the base address of every reachable

object

86

Change of Reachable Objects

• Object Allocation: adds members to reachable set
• Parameter passing and return value
• Reference assignments

– x=y, x is now a reference to the object pointed to by y.
the original reference in x is now lost. If it is the last
reference to the object, this object becomes unreachable.

• Procedure return.
– The frame holding local variables are popped off. Some

variables there may hold the last reference to an object

87

Reference Count-Based GC
• We maintain a count of the references to an object, as the

program performs actions that may change the reachability
set. When the count goes to 0, the object becomes
unreachable
– Allocation: set ref count of the new object to 1
– Parameter passing and return value: ref count for each

object passed is incremented
– Reference assignment (e.g. x=y): *y increment and *x

decrement
– Procedure return: ref count in each reference hold in

stack variables is decremented
• Transitive loss of reachability  if an object is no longer

reachable, decrement the ref count for each reference it
holds

88

Reference Count - Based GC
• Disadvantages

– constant cost, even when lots of space
– optimize the common case!
– can’t detect cycles

• Has fallen out of favor

2

11
Reachable

89

Trees

• Top-level objects
– In the root set

• Garbage collector starts top-level
– Builds a graph of the reachable objects

90

Mark and Sweep

• Two-pass algorithm
–Execution is temporarily suspended
– First pass: walk the graph and mark all objects

• everything starts unmarked
– Second pass: sweep the heap, remove unmarked

• not reachable implies garbage

• Soundness?
– Yes: any object not marked is not reachable

• Completeness?
– Yes, since any object unreachable is not marked

91

Copy Collectors

• Instead of just marking as we trace
– copy each reachable object to new part of heap
– needs to have enough space to do this
– no need for second pass

• Advantages
– one pass
– compaction

• Disadvantages
– higher memory requirements

92

Compaction

• Compaction is a process which moves all blocks to
one end of the heap

• This leaves all free space together as one large
block, preventing fragmentation

• Only a benefit when dealing with a scheme allowing
variable-sized blocks

• Requires information about all pointers into blocks
• When a used block is moved, all pointers to it have

to be updated

93

Incremental Garbage Collection

• Problem of simple GC: pauses
• Collection „parallel“ to mutator
• Separate process

– Concurrent
• Interwoven with mutator

– Inserted into allocate routine („new“)

94

Pros and Cons

• Hard to state generally
– No need to pause the mutator
– (except short breaks)

• Better response times
• Slower overall than simple GC

– Overhead of synchronizing mutator with collector

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

